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Abstract

The Generalized Gradient (GG) formalism of Venturini
and Dragt [1] for describing static magnetic or electric fields
has been implemented in the Bmad toolkit for accelerator
simulations. In conjunction with this, a new method for
calculating GG derivatives from a field table has been devel-
oped which avoids some of the problems of the Venturini and
Dragt method. Generalized gradients are also implemented
in the PTC toolkit developed by Etienne Forest which is inter-
faced to Bmad. This allows for construction of spin/orbital
Taylor maps useful for nonlinear analysis and rapid tracking.

INTRODUCTION

Tracking particles through elements in an accelerator is
fundamental to simulations. Standard techniques exist for
tracking through fields that are longitudinally uniform. How-
ever, for elements with varying fields like an undulator or
where the fringe fields are strong enough, tracking can be
problematical both in terms of accuracy and speed. One
way to handle complex static fields is with the Generalized
Gradient (GG) description that was introduced by Venturini
and Dragt [1, 2]. This formalism has been implemented into
the Elegant program [3] and now has been implemented in
the Bmad toolkit for accelerator simulations [4] as well as
the PTC toolkit of Etienne Forest [3] that is integrated with
Bmad. With PTC, spin/orbital Taylor maps can be computed
from the GG description. The use of maps can decrease par-
ticle tracking times by orders of magnitude. Additionally, a
map allows for the computation of many lattice parameters
such as Twiss parameters, spin depolarization rates, higher
order chromatic effects, etc.

Before GGs can be used in tracking, they must be calcu-
lated. Discussed in this paper is a new method for calculating
GGs from a field table which avoids some of the problems
of the Venturini and Dragt algorithm.

GG FIELD EQUATIONS

Following Venturini and Dragt [1], DC magnetic or elec-
tric fields can be described by a scalar potential

B=-Vyg, E=-Vyg (1)
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In cylindrical (p, 6, z) coordinates, the scalar potential y
can be decomposed:

y = Z Wons(p.2) sin(mo) Z Wome(p,2) cos(md)

m=1 m=0
(2)
The v, , (@ = ¢, s) can be expanded in powers of p:!

1)n+1m.

2n+m [2n]
4nn| (I’l + m) p Cm,a (Z) (3)

where superscript [/] indicates the j# derivative of Cno(2).
“Generalized gradients” are the name Venturini and Dragt
gave to the functions C,,, , (2).

From the above equations, the field” is given by

v v (=D"m! (2n +m)
B, = Z z() il n+myl! *
[CRd (@) sinmo + Cl7e)
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While the scalar potential only involves even derivatives of
Cip.q» the field itself is dependent upon all derivatives. The
multipole index m is such that m = 0 is for solenoidal fields,
m = 1 is for dipole fields, m = 2 is for quadrupolar fields,
etc. The sine-like GGs represent normal (non-skew) fields
and the cosine—like GGs represent skew fields.

The functions C,, , (z) are characterized by specifying
Cpn.o (z;) and derivatives at a set of longitudinal points z;,
up to some maximum derivative order N,, , chosen by the
user. The points z; do not have to be equally spaced.

The advantage of a GG map over a cylindrical or Cartesian
map decomposition [6, 7] come from the fact that the field
at any point (x,y, z) is only dependent upon the C,[,i']a( yatz
and, by 1nterpolat10n the Cm }(2) can be very well approxi-
mated using the Cm,a( ) values at the evaluation points z;
and z;,; with z being in the interval [z;,z;,1]. This is in
contrast to the cylindrical or Cartesian map decomposition

! Compared to Venturini and Dragt, a negative sign is introduced in Egs. (1)
and (3) to keep y g consistent with the normal definition.

2 For compactness, only the magnetic field will be considered. The de-
scription of the electric field is similar.
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where the field at any point is dependent upon all of the
terms that characterize the field. This “locality” property
of generalized gradients means that calculating coefficients
is easier (the calculation of C,, ,(z) at z; can be done using
only the field near z; independent of other regions) and it is
easier to ensure that the field goes to zero at the longitudinal
ends of the element which avoids unphysical edge effects
in tracking. Additionally, the evaluation is faster since only
coefficients to either side of the evaluation point contribute.
The disadvantage of generalized gradients is that since the
derivatives are truncated at some order N,, ,, the resulting
field does not satisfy Maxwell’s equations with the error as
a function of radius scaling with the power p""*Vm.«

GG FITTING

Before the GG field description can be used for particle
tracking, the GG derivatives must be calculated. The method
developed by Venturini and Dragt [1] starts with the radial
field Bp (R, 0,z) atradius p = R. This field may be calcu-
lated from say, an electromagnetic field modeling program,
or may be obtained from a measurement. The radial field
may be expressed in terms of two sets of functions B,, (R, z)
and A,,,(R, 2):

B,,(R,z) sin(mg) + A,, (R, z) cos(me)
)

The GG derivatives can then be computed from the Fourier
transforms of A,,, and B,,,. For B,, the equation is:

gl

B,(R,0.2) =
1

3
I

in f ke lkzkm+n 1
2m m! ‘/_ I, (kR)

where [, is the modified Bessel function of the first kind

chl(z) = w(Rk) (6)

and B,, is the Fourier transform of B,,
BuRK) = —— [~ dze®B,(R2) (]
V2 T
Similarly, 1. (2) can be expressed in terms of A,,,. Borland,

et. al [3] have developed comparable equations for the case
where the field is known on a cylinder of rectangular cross-
section.

In order to achieve higher accuracy, an alternative algo-
rithm has been developed for use with Bmad. This “Bmad”
algorithm takes advantage of the locality property of GGs
and only field values near a given z; are used to evaluate the
C,[,:’ « (z;). The local nature of the Bmad method is in contrast
to the non-local nature of the Venturini and Dragt algorithm
which uses an integration of the field on the entire cylinder
surface. With the Bmad method, in regions of low field,
the calculation is not “polluted” by having to integrate over
regions of relatively high field. At the ends of the element
where deviations from zero can lead to unphysical edge field
effects, this can be a concern. Another difference is that the
Bmad algorithm can use known field values on an arbitrary
grid of points and is not limited to cylindrical surfaces. In
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fact, the algorithm works best with grid points throughout
the entire element volume.

With the Bmad algorithm, at any evaluation point z;, the
GG derivatives are fit to the set of field data points that are
within some region [z; — 8z,z; + 8z] where 8z is set by
the user. At any field point r = (x,y,z), the GG deriva-
tives at z, up to the truncation order N,, ,, are calculated by
extrapolation from the GG derivatives at z; via

Nm,rx
Chik() =)

J=n

)y L
Dl dhe®
From the C,[,f‘],x (z), the field at r can be calculated from
Egs. (4). From Eqgs. (4) and (8), it is seen that the field at
any point is linearly dependent upon the Cm b(z ;). Itis thus
straightforward to calculate a best fit set of GG derivatives
at z; that minimize the merit function M

2
M = Wi [Bg(rg) — By gidl ©)
%

where £ is an index that runs over the set of field points used
in the fit, W} is a weighting function, By 44 is the field that
is fit to at point ry, and By, (r;) is the field as calculated from
the GGs at point z; via Eq. (8).

The derivative order cut-offs N, , can be varied to find
values such that the derivatives beyond the cut-offs are not
significant. One strategy is to choose N, , = N, — m where
N, is some fixed integer and the m used in the fit are limited
to be m < N,. With this choice, the variation in field as a
function of radius is capped at p™Ne~! for all m (see Egs. (4)).

The larger the range of &z used for evaluating the deriva-
tives, the smoother the derivatives from one z; to the next
will be. However, the range should not be so large that the
polynomial extrapolation (Eq. (8)) is inaccurate.

Generally it is the “core” field near the x = y = 0 axis
that needs to be well fit for tracking purposes. To get a better
core fit, the weight of the core field points can be increased
over points further out. The Bmad fitting program uses a
weight of

Wk = R1211ax
R2ux + (we = 1) (x2 +y2)

(10)

where w, is a user settable constant and R2,,, = max;, (x,% +
y,%) with the k index running over all field points. Setting
w,. = | gives a uniform weighting and increasing w,. gives
more weight to the core points.

IMPLEMENTATION IN BMAD AND PTC

Particle tracking through fields defined by GGs is done
in Bmad using Runge-Kutta integration. Interpolation of
the field is done by constructing an interpolating polyno-
mial of order 2N,, , + 1 for each interval [z;, z;,1] which
has the correct derivatives from 0 to N, , at points z; and
Z;+1- The coeflicients of the interpolating polynomial are
easily calculated by inverting the appropriate matrix equa-
tion. The coeflicients of the interpolating polynomial are
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Figure 1: Vertical field By, along the center line (x,y) =
(0,0). Since the field is anti-symmetric, only half the field is
shown. Plotted is the field as given by the field grid, B, ,iq
(red curve), along with the difference between this field and
the fit field B, 5, calculated from the GGs as calculated by
the Elegant method (blue curve) and the Bmad algorithm

(cyan curve).

calculated and stored before tracking to avoid evaluation of
the coefficients during tracking.

The PTC toolkit[5] developed by Etienne Forest is inter-
faced to Bmad. The analytic nature of the GG description
allows PTC to construct a corresponding spin/orbital Tay-
lor map. The utilization of maps not only leads to a large
decrease in computation time but also facilitates the use of
such maps for normal form analysis. This enables the com-
putation of various parameters, including, but not limited
to, Twiss parameters, spin depolarization rates, and higher
order chromatic effects.

WIGGLER FIELD EXAMPLE

The new GG fitting procedure was tested with a 4.2 meter
long 21 pole wiggler. The field data was calculated by an
electromagnetic field solver. Field data was generated in a
grid 0.4 cm x 0.2 cm x 0.2 cm between points in x, y, and
z respectively. The extent of the field data was +5.2 cm x
+2.6 cm x 4.8 min x, y, and z.

GG derivatives were computed using both the Elegant and
Bmad fitting algorithms. Due to the symmetry of the field,
only sine-like GGs are needed. A good fit was obtained
using five GGs with m = 1,3,5,7,and 9 and with a varying
derivative cutoff of N, ; = 10 — m. GG derivatives were
computed in z every 0.2 cm corresponding to the granularity
of the field table.

For the Bmad algorithm, a good fit was produced with
the longitudinal range of field points §z set to 0.4 cm cor-
responding to using 5 planes of data for each fit at a given
z; position (except at the ends which used 3 fit planes and
the neighboring end points use 4 fit planes). Additionally,
a weight w, of 103 produced good fits both near the center
line and at the periphery of the grid. These values were used
to fit the GGs used in creating the plots shown.

Figure 1 shows the vertical field B, along the center line

(x,y) = (0,0). Plotted is the field B, ,q as given by the
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Figure 2: Same as Fig. 1 except data is drawn for the line
at maximal grid radius (x,y) = (5.2cm, 2.6cm). Top: Hori-
zontal B, component. Bottom: Vertical B, component.

field grid along with the difference between this field and the
fit field calculated from the GG derivatives as derived by the
Elegant and Bmad algorithms. The RMS of the difference
IBgria — Bl between grid and fit is 0.012 Gauss for the Bmad
fit and 0.22 Gauss for the Elegant fit. This is to be compared
to an RMS of 12000 for the field By itself. The Bmad fit
achieves an accuracy of 1 part in 10° and is about a factor
of 20 better than the Elegant fit.

Figure 2 shows the same thing as Fig. 1 for B, and B, with
the field evaluated at the edge of the field grid at (x,y) =
(5.2cm, 2.6cm). Here the RMS of the difference By — Bl
is good but not as stellar as on the center line. For the
Bmad fit the RMS is 8 Gauss, which is about 1 part in 3500
compared to an RMS of 14500 for the field By itself. For
the Elegant fit, the RMS is 110 Gauss. The Bmad fit is over
a factor of 10 better than the Elegant fit.

CONCLUSION

The generalized gradient formalism has been integrated
with the Bmad and PTC toolkits allowing for the construc-
tion of truncated Taylor series maps that can be used for
analysis and fast tracking. In conjunction with this, a new
GG derivative fitting algorithm has been developed which
can be used to accurately calculate GG coefficients.
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