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Chapter 1

Introduction

1.1 The Heavy quarkonium

The heavy quarkonium is a bound state of a heavy quark and its anti-quark; if the

two quarks are c and c̄ the state is commonly referred as ”charmonium”, while ”bot-

tomonium” is the common name for mesons containing a bb̄ pair. The Schroedinger

equation for this system can be separate into a spatial and a radial part, like it’s

commonly done when dealing with other bound system of a particle with its own

anti-particle such as positronium, thus naturally leading to a spectroscopic-like ar-

rangement of the quarkonium states (Figg. 1.1 and 1.2). In this framework each

Figure 1.1: Charmonium spectrum, adapted from [6].
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CHAPTER 1. Introduction

Figure 1.2: Bottomonium spectrum, adapted from [6].

state is labeled with its momentum eigenvalue J , its radial excitation number n

and the number of possible spin configurations 2S + 1. Since the quarks have spin

s = 1/2, like in the positronium case both spin singlets (stot = 0) and spin triplets

(stot = 1) are possible, while no isospin degeneration is observed since every bot-

tomonium state must have I = 0. Despite these similarities between bottomonium

and positronium, a major difference arises from the nature of the binding potential.

While the positronium is essentially an electromagnetic state, describable in terms

of classical potential or, looking for a more suitable framework, using the QED per-

turbative approach, the dominant interaction in bb̄ states is the strong one. This

means that, together with radiative transitions, also hadronic transition are allowed

between quarkonium states, when allowed by

A set of selection rules based on the conservation of total momentum, C-parity and

P-parity determine which kind of transitions, both radiative and hadronic ones, are

allowed and which are forbidden:

• Radiative transitions (bb̄)′ → γ(bb̄) are possible only between states that differs

by a unit of angular momentum (|∆l| = 1), so the possible transitions are

P ↔ S and D ↔ P and 3S ↔1 S. The same kind of transition can obviously

happen with the emission of a vector meson like the ω.

• Hadronic transitions with a single scalar meson (π0, η, η′) can connect, if we
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1.2. Theoretical models in heavy quarkonium physics

consider only the angular momentum conservation, each pair of states. On

the other hand the conservation of C- and P-parity forbids processes like

1−− ↔ (0, 1, 2)−+, namely Υ(nS) → π0, ηχbJ(mP ), while transitions like

Υ(nS) → (π0, η)(Υ(mS), hb(mP )) are still possible. Since all these transi-

tion are mediated by the strong interaction, we must take into account also

the (partial) conservation of the Isospin that greatly suppress the π0 transition

with respect to the η, η′ ones. Finally, if we consider the phase space avail-

able for each transition, we found that the only single-scalar transitions that

remains available and unsuppressed are Υ(nS)→ ηΥ(mS).

• Hadronic transitions with two scalar mesons (π+π−, π0π0) are the dominant

transitions between Υ(nS) states below the open beauty threshold. The con-

servation of the isospin requires B(Y (nS)→ π+π−Υ(mS)) ≈ 2× B(Y (nS)→

π0π0Υ(mS)).

1.2 Theoretical models in heavy quarkonium physics

Many theories has been developed to describe the experimental results on both

transitions and annihilation products of the quarkonia. A simple potential model

allows to check the relativistic or non relativistic nature of the charmonium and

make some prediction on the masses of the states. The Non-Relativistic Quantum-

Chormodimanics (NRQCD), which is based on a series expansion of the QCD Hamil-

tonian, can lead to more precise results and can also provide predictions on the

branching fractions for both transitions and annihilations. The Lattice calculation,

which is a numerical technique used in order to perform calculation within the path

integral theory framework, is used to make numerical prediction on soft and ultra-

soft processes. For different reasons, all these theories involves approximations: the

static potential theory is fully solvable but is based on a phenomenological potential,

the NRQCD is a perturbative approach and the lattice, even if the calculations are

performed within an exact theory, stills remains limited by the available computa-

tional resources.
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CHAPTER 1. Introduction

1.2.1 The potential model and the limits of the non relativistic

approach

The simplest way to describe a bound state is, in general, to solve a non-relativistic

Schroedinger equation with a suitable potential.

The bottomonium spectrum pattern suggests the presence of a radial binding po-

tential with a Coulombian-like behavior; the comparison between the charmonium,

positronium and harmonic oscillator spectrum (Figure 1.3) shown that actually the

strong potential acts as an hybrid between a Coulumbian potential and an harmonic

one. Since it is known that the strong interaction becomes attractive at long dis-

Figure 1.3: The charmonium energy levels compared with the predictions obtained with a

Coulombian-like or harmonic potential.

tances, as no free quark has been observed, a potential model used for the description

of the strong interactions must contains at least two different terms: a Coulombian-

like term that dominates at short distances, as suggested by the comparison between

charmonium ad positronium spectrum, and a confinement term that, at long dis-

tances, accounts for the quark confinement summarizing the asymptotic freedom

effects.

One of the most used model is the Cornell potential (Fig. 1.4), defined as:

V (r) = −4αs
3r

+ σr,

where αs is the strong coupling constant and σr is the confinement term.

The potential parameters are usually tuned on the experimental data of one res-

onance, and then they are used to calculate the expected masses of all the other

states.
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1.2. Theoretical models in heavy quarkonium physics

A study done by Quigg and Rosner with a modified Cornell-like potential V (r) =

C · ln(r/r0) that phenomenologically interpolates the 1/r trend at short distances

and the r dependence at long distance, leads to an estimation of the mean quadratic

velocity of the heavy quark, obtaining < v2(c) >≈ 0.24 for the c quark in the J/ψ

and < v2(b) >≈ 0.08 for the b quark in the Υ(1S); thus a non relativistic approach

is a crude approximation in charmonia description, but it is substantially correct in

describing the bottomonium states. Whitin the potential model frame it is possi-

Figure 1.4: A Cornell-like potential tuned for bottomonium states. The potential parame-

ters are extracted from the Υ(1S) and Υ(2S) experimental data.

ble to describe the fine and hyperfine splitting, which are sensitive to the Lorentz

structure of the interaction, by introducing a spin-spin interaction term in the form:

VSS(r) =
σQ · σQ̄

6m2
Q

∇2V (r)

A complete derivation of the mass formula can be found in [7].

The spectra obtained with this technique are shown in figure 1.5 and 1.6, together

with the current experimental measurements of bottomonium and charmonium lev-

els.
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CHAPTER 1. Introduction

Figure 1.5: Prediction on Charmonium spectrum with a Cornell potential model, αs =

0.290, mb = 1.2185GeV, σ = 1.306GeV/fm

Figure 1.6: Prediction on Bottomonium spectrum with a Cornell potential model, αs =

0.388, mb = 4.7645GeV, σ = 1.02GeV/fm
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1.2. Theoretical models in heavy quarkonium physics

1.2.2 Non-relativistic QCD

The Non-Relativistic QCD (NRQCD) is one of the most common framework used

in making prediction on partial width of the transitions among bottomonium states.

The foundation of NRQCD is the statement that, since the typical quark velocity

v(q) is small when compare with the QCD scale, the Lagrangian containing the

chosen potential model can be expanded in series of v(q).

The study of bottomonium shows a broad scale of energies involved in the interaction,

usually divided into a three level hierarchy:

• Hard scale, for process with energy ≈ mq, for which a perturbative approach

is allowed.

• Mid scale, with typical energy of ≈ mqv.

• Soft scale, characterized by energies ≈ mqv
2, for which a perturbative approach

is no more possible.

Processes with very different energy scales can contribute to the same physical pro-

cess, as shown in 1.7.

Figure 1.7: A Feynman diagram showing interaction at different energy scales

One of the possible declinations of the NRQCD approach is the QCD Multipole

Expansion formalism (QCDME): when dealing with hadronic transitions the QCD
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CHAPTER 1. Introduction

interaction Hamiltonian can be expanded in a series of multipoles, reminding the

usual electromagnetic multipole series expansion:

HI =

∫
d3xQ(x)tn[x · Ea(x) + σ ·Ba(x)]Q(x) + ...

where ta are the SU(3) generators and the E and B fields are the chromoelectric

and chromomagnetic fields.

The presence of the SU(3) generators make a single HI interaction able to change

the color state of a QQ̄ state from singlet to octuplet: this means that every physical

transition must include at least two single interactions: the first one turns the singlet

state into octuplet, and the second one re-turns the octuplet state into an observable

state. This behavior, which is not present in the electromagnetic interaction, can be

interpreted as the emission of at least two gluons in each hadronic transition, while

electromagnetic transitions can proceed via a single photon emission, as it indeed

happens in decays such as Υ(2S)→ χbJγ.

In the QCDME formalism the Υ(2S) → Υ(1S)η is described by with one chro-

moelectric transition E1, which does not changes the spin of the b quarks, followed

by a M1 chromomagnetic transition, which is responsible for the spin flip of the

heavy quark. Those kind of transition are predicted suppressed by the presence, in

the pure chromomagnetic term, of an additional power of v.
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1.2. Theoretical models in heavy quarkonium physics

1.2.3 Lattice QCD

The Lattice QCD is numerical approach to the strong interaction problem based on

the path integral formalism.

The basic assumption of this approach is that the transition amplitude between

two states can be expressed as the sum of single amplitudes calculated on every

possible path in the phase space that connects the initial and the final states, each

one weighted by the value of its classical action. This theory can be used, under the

additional assumptions that the more probable path is the classical one and that the

whole amplitude can be expressed as a perturbative series in the phase space around

the classical path, to perform analytical calculation, obtaining the same results that

can be obtained by the perturbative approach.

The general aspect of a path integral can be shown also in the simplest case: a

single particle propagator in one dimension, from the position x0 at the time t0 to

the point x1 at time t1 can be expressed by:

< x1, t1|x0, t0 >= lim
n→∞

kn/2
∫

Dx exp[

∫
Ldt]

Where
∫
Dx represents the sum over all the possible path connecting (x0, t0) and

(x1, t1), k = m
2πih̄∆t is the normalization constant and

∫
Ldt is the classical action

associated to each path.

Even if the integration is usually performed by introducing a series expansion that

makes possible the factorization of the interaction terms leaving a sum of free parti-

cle propagators, this is in principle an exact theory. Therefore is possible to perform

numerical calculation and obtain matrix element also for soft or ultra-soft scale pro-

cesses in QCD, that are inaccessible with a perturbative approach.

From the numerical point of view, the key of this technique is the evaluation of

the quantum operators on a discretized phase space; the transition amplitude is cal-

culated by the path integration along concatenated loops.

The computational resource required to perform those calculation are the major lim-

iting factor to the use of this technique. In the bottomonium study, in particular,

the wide range of energies involved in the interaction requires loops too extended in

the phase space to be calculated with the actual computational resources.

Nevertheless a lattice approach can be useful associated with a NRQCD calculation:
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CHAPTER 1. Introduction

the expectation values of the operators extracted from the power expansion in se-

ries of < v > can be calculated on the lattice phase space to obtain prediction on

experimental observables such as masses, width and branching ratios.

The Lattice QCD has been used also to check the consistency of the Cornell’s po-

tential: in figure 1.8 the comparison between the static potential and the Lattice

prediction is shown.

Figure 1.8: The Cornell potential compared with the Lattice QCD predictions
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1.3. The Υ(2S)→ Υ(1S)η transition

1.3 The Υ(2S)→ Υ(1S)η transition

The subject of this thesis is the Υ(2S)→ Υ(1S)η hadronic transition.

This transition has been, since the early studies on heavy quarkonia, one of the

most evident differences between charmonium and bottomonium. In charmonium,

the η → γγ band is as visible as the double cascade transitions though χc1,2 states,

with a branching ratio B = 3.13±0.08%. On the other side, in bottomonium, a weak

evidence of the transition has only recently been reported by CLEO [8].

The NRQCD predicts that this transition should be sensitive to the quark mass

mq, scaling with (p∗)3/m4
q [9], where p∗ is the η momentum in the Υ(2S) frame.

Therefore the ratio between partial widths Γ(Υ(2S) → ηΥ(1S))/Γ(ψ′ → ηJ/ψ) is

expected to be approximatively 0.25%, and therefore a branching ratio B ≈ 8×10−4

is predicted by the CLEO collaboration [8].

Recent theoretical studies predict a branching fraction between 3×10−4 and 4×10−4

[10][11].

The experimental measurement by CLEO is a factor 4 weaker than the prediction

from the CLEO collaboration, and a factor 2 weaker than the prediction from [10]

and [11]. The isospin-violating transition Υ(3S) → π0Υ(1S), predicted with a B ≈

6.5 × 10−4, has not been observed. Figure 1.9 shows the CLEO results on the η

transitions.

Figure 1.9: CLEO results on Υ(nS)→ Υ(1S)η transitions

The discrepancy between theory and experiment is even more striking at Υ(4S)
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CHAPTER 1. Introduction

energy, as Babar [12] observed the totally unexpected ηΥ(1S) transition, with a

branching ratio B(ηΥ(1S)) = 2.5 ×B(ππΥ(1S))).

All Υ(nS) → ηΥ(mS) must have the same angular distribution, as this decay is

described by only one independent helicity amplitude. The quantum numbers JPC

of this transitions are 1−− → 0−+1−−, so it must proceed with a pure P-wave am-

plitude in order to preserve both the P- and C-parity. The angular distribution of

the eta direction in CM frame is thus proportional to (1+cos2 θ).

The subject of this thesis is the measurement of the branching fraction of the

Υ(2S) → ηΥ(1S) transition using the sample of 158 Millions of Υ(2S) collected

by the Belle experiment. The analysis is performed reconstructing the final states

Υ(1S) → e+e−, Υ(1S) → µ+µ−, η → γγ and η → π+π−π0. In order to mini-

mize the possible biases a blind optimization of the selection criteria based on a full

Montecarlo simulation of both signal and background channels is performed.
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Chapter 2

The Belle Experiment

2.1 The B-factories

Among all the bottomonium states that, having quantum numbers 1−−, can be di-

rectly produced in e+e− collisions, the Υ(4S) is the first with invariant mass above

the threshold for the production of BB̄ pairs. The BB̄ pair is produced in a coherent

state, and this characteristic makes an e+e− collider with
√
s = 10.58 GeV/c2 the

perfect environment to study the phenomenology of the B mesons and, therefore, to

measure the CP-violation parameters related to the b quark. An asymmetric e+e−

collider with high luminosity, tuned at
√
s = M(Υ(4S)) energy, is commonly called

B-factory.

One of the main goals of these facilities is the study of the oscillation in B meson

system, the analogue of the phenomenon observed in the ′70 in the K system. The

strategy is to calculate the mean life of B and B̄, produced together in a coherent

state, measuring the distance between their production and decay points, following

what was already done by Cronin and Fitch for the K system. In the B meson case

the decay time is much shorter (τ = 1.5 · 10−12) than in the K case, and they are

produced almost at rest, so the distance from the primary vertex (i.e the decay point

of the Υ(4S), that coincides with the collision point of the e+e− pair) and the decay

point can not be easily measured (cτ ≈ 460µm for a B0).

The solution to this problem is to produce the BB̄ system in a boosted frame: the

boost magnifies the paths in the laboratory frame, making them measurable with

a sufficient precision. This is the reason why a typical feature of the B-factories is

large energy asymmetry between the two colliding beams, with a consequent boost

17



CHAPTER 2. The Belle Experiment

between the frame of the e+e− pair and the laboratory frame. Both BaBar and Belle

had Ee− ≈ 2Ee+ .

Even if B-factories have been designed and optimized for the CP-violation measure-

ments, they revealed a high potential also in other branches of particle physics, in

particular the quarkonium spectroscopy, with the possibility of produce directly all

the Υ resonances and, via initial state radiation, the 1−− resonances of charmonium.

The Initial State Radiation (ISR) is a second order electromagnetic process consist-

ing in the emission of a real photon by one of the two colliding particles; the resulting

collision will happen with a reduced energy in the center of mass
√
s′. By recon-

structing the emitted ISR photon is possible to determine
√
s′ as

√
s′ =

√
s−Eγ ISR.

Other topics that can be studied in a B-factory include the two photon physics, due

to the high γγ cross section related to the high luminosity of the collider, the τ

physics, the test of conservation law such the lepton number conservation in the

Υ→ l+l− process and, recently, also the search for dark matter in Υ(nS) decays.

2.2 The KEKB accumulation ring

Figure 2.1: The KEKB accelerator complex

The KEKB [13] is an high-luminosity electron-positron collider located at the

KEK (High Energy Accelerator Research Organization) in Tsukuba, Japan. The

accelerator complex consists in a 600 m long linear accelerator (LINAC) connected

18



2.2. The KEKB accumulation ring

with two storage rings (Fig. 2.1). Electron and positron bounces are accelerated

by the LINAC and then injected into the two separated rings; since the bounces

acceleration is performed only by the LINAC, the injection can proceed continuously

minimizing the detector dead time. During the Belle data taking the two beams

were kept at different energies, providing non symmetric collisions; the electrons

were injected in the High Energy Ring (HER) at the energy of EHER ≈ 8 GeV,

while the positrons were injected in the Low Energy Ring (LER) with an energy of

ELER ≈ 3.5 GeV. Table 2.1 summarizes the energies of the HER and LER beams

used during the Belle experiment to provide different
√
s. Both the HER and LER

energies were changed when changing
√
s in order to keep the center-of-mass boost

at the constant value of βCM = 0.39.

Table 2.1: HER and LER energies

√
s [GeV ] Resonance HER energy [GeV] LER energy [GeV]

9.4603 Υ(1S) 7.151100 3.128600

1.0023 Υ(2S) 7.575000 3.314100

1.0355 Υ(3S) 7.826200 3.424000

1.0579 Υ(4S) 7.998800 3.499500

1.0860 Υ(5S) 8.215000 3.594100

After the injection three groups of radio-frequency cavities (two placed along the

HER, one along the LER) were used to sustain the energy of the beams.

In order to avoid parasitic collisions and keep the beam background as low as possible

the two beams had a crossing angle of 22 mrad in the zy plane. This choice has a

problematic consequence for a high-luminosity experiment: a non-zero crossing angle

between the two beams involves a reduction of the luminosity, which is maximum

for head-on collisions. This problem was solved with a particular technology called

”crab cavities”. A group of special radio-frequencies cavities capable to provide

transverse fields was installed near the interaction point: its effect was to rotate

the beam bounces and provide the head-on collision despite the finite crossing angle

between the lines. Figure 2.2 illustrates how the crab cavities work and how they

effects the bunches’ orientation.

With this technology the total integrated luminosity delivered by the KEKB
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CHAPTER 2. The Belle Experiment

Figure 2.2: The Crab cavities effect on colliding beam

reached in June 2010 the 1000 fb−1 (Fig. 2.4), 711 fb−1 were taken with
√
s = 10.579

GeV/c2, while the remaining 289 fb−1 at the energies of the other bottomonia states,

obtaining the world largest sample of Υ(1S), Υ(2S) and Υ(5S) (Fig. 2.3).

Figure 2.3: Number of events collected by

BaBar, Belle and CLEO in the narrow bot-

tomonium and Υ(5S) region. Counts are ex-

pressed millions.

Figure 2.4: Total integrated luminosity de-

livered to the Belle experiment, compared to

the BaBar performances.

2.3 The Belle Detector

One of the primary goals of the Belle experiment (Fig. 2.5)was the study of weak

interactions, together with the oscillation in BB̄ mesons’ system. Both those ob-

jectives can be reached studying the B mesons coming for the Υ(4S) decay, thus

the whole apparatus was optimized for the detection of particles with a momentum

below 1 GeV/c, which is the typical range for particles coming from the B mesons

decays. This constrain is crucial in the design of particle ID detectors, in particu-

lar for Cerenkov counters which have an intrinsic detection threshold, time of flight

detectors, and drift chambers. Furthermore the study of B oscillation and Time-

dependent CP violation requires a very precise determination of vertices’s displaced
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2.3. The Belle Detector

from the interaction point, requiring a radiation hard vertex detector capable to

provide high resolution measurements [14].

The sub-detectors, arranged in a cylindrical shape, were:

• Silicon Vertex Detector (SVD), a tree-layer silicon strip detector placed near

the interaction point,

• Central Drift Chamber (CDC) that provided the main tracking features.

• Time Of Flight (TOF) made with two layers of fast scintillators used in the

particle-ID.

• Aerogel Cerenkov detector (ACC) used for particle ID.

• Electromagnetic calorimeter (ECL), a NaI(Tl) calorimeter.

• Kaon-Muon Detector (KLM), a system of RPC included in the the iron return

joke of the magnet, used in muons and KL reconstruction.

Figure 2.5: Belle detector layout

In this chapter the main characteristics of the different sub-detectors will be briefly

discussed.
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CHAPTER 2. The Belle Experiment

2.3.1 Silicon Vertex Detector

The inner silicon tracking system (SVD, Fig. 2.6) consisted in three layers of double

sided strip detectors with a coverage of the 86% of the full solid angle and resolution

along the beam axis of 100µm. The main SVD feature was to identify displaced ver-

Figure 2.6: The Belle silicon vertex detector

tex and providing precise tracking information in order to improve the reconstruction

performed with the central tracking system.

Figure 2.7: Upgraded SVD layout
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2.3. The Belle Detector

The reconstruction of displaced vertexes is not a critical issue in the study of

the Υ(2S) → Υ(1S)η transition since the decay time of the involved particle is

small enough to make all the tracks to come directly from the interaction point.

Nevertheless the contribution of the SVD in the charged tracks’ momentum and

impact parameter (i.e the distance between the track and the IP) reconstruction is

not negligible. The impact parameter, in particular, is used in order to distinguish

between charged tracks coming from the primary vertex, tracks due to conversion of

photons in the detector and ghost tracks due to residual signals in the drift chamber.

The SVD was updated two times: the first update consisted in minor changes in the

data acquisition system (this layout has been called SVD 1.5), while during the final

phase of the experiment the SVD was entirely replace with a new, 4-layers pixel-strip

hybrid detector (Fig 2.7). This change has improved the tracking performances, also

thanks to the reduced radius of the inner layer.

Figure 2.8: SVD performances in impact parameter measure. Top: z-axis direction;

Bottom: xy plane. The triangles (circles) represent the resolution obtained with

SVD 1.5 (2.0).
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The performance in the impact parameter reconstruction is a function of the

pseudo-momentum of the track, for both the z direction and the xy plane, as shown

in Figure 2.8. A great improvement in the impact parameter resolution has been

archived in the low momentum region with the second update, where pions coming

from η decay can be found. The whole data sample recorded at the energy of the

Υ(2S) resonance has been acquired with the SVD 2.0 fully operational.

2.3.2 Central Drift Chamber

The Central Drift Chamber (CDC) was a multi-wire drift chamber and represented

the main tracking system. It consisted in a gas-filled chamber equipped with 50 layers

containing from three to six axial or stereo layers and three cathode strip layers each

one. In order to maximize the acceptance the CDC structure was asymmetric (Fig.

2.9), with a conical shape studied to keep the detector as close as possible to the

interaction point. This features granted the reconstruction of low momentum tracks,

such the pions coming from Υ(2S)→ π+π−Υ(1S) transitions. Assuming a magnetic

field of 1.5 T, the CDC’s inner radius of 103.55 mm allowed the tracking of charged

particles with transverse momentum greater than 50 MeV/c

Figure 2.9: The Belle CDC
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The gas melange was chosen in order to minimize the coulomb scattering and the

radiation absorption: the chosen 50% helium - 50% ethane mixture offered a long

radiation length (640 m) and a velocity drift that saturates at the value of 4 cm/µm

with an electric field of 1.6 kV/(cm · atm).

The momentum resolution of the CDC has been measured with cosmic rays, ob-

taining the distribution shown in figure 2.10. The region containing particles of

particular interest for the analysis discussed in this thesis are marked. The large

ethane component provided a good dE/dx resolution (Fig. 2.11), estimated with

beam tests to be 5.2% for 3.5 GeV/c pions. The dE/dx information contributes to

the likelihoods used for the particle identification.

Figure 2.10: The CDC performances

in momentum measurement. The red

(green) box highlights the region were

the tracks from Υ(1S) (η) decay can be

found.

Figure 2.11: The CDC dE/dx resolu-

tion. The red (green) box highlights the

region were the tracks from Υ(1S) (η) de-

cay can be found.
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2.3.3 Aerogel counter and Time of flight detector

Figure 2.12: The Belle Aerogel counter.
Figure 2.13: The Belle Time of Flight

detector.

An Aerogel Cerenkov Counter System (ACC) and a Time Of Flight detector

(TOF) were placed between the CDC and the electromagnetic calorimeter, as shown

in Figure 2.12. The ACC system, consisting in 960 modules of hydrophobic aerogel

with refraction index between 1.01 and 1.03, was optimized in order to separate

kaons from pions in the range not covered by the dE/dx information.

The TOF consisted in a 4 cm thick fast scintillator layer, with a time resolution of

100 ps for particle with momentum below 1.2 GeV/c. A layer of 0.5 cm thick scintil-

lator (TSC) was used as coincidence system in order to avoid noise from accidental

counts (Fig. 2.13). The TOF system is used as part of the trigger system for the

other subsystems.

The inner radius of the ACC was 0.880 m, so only particles with transverse momen-

tum pt > 398 MeV/c could reach this section of the detector. This feature makes the

ACC and the TOF less important than the tracking system in the Υ(2S)→ Υ(1S)η

analysis, since the decay product of the η can not reach them and the leptons from

the Υ(1S) have a typical momentum that exceeds the limits imposed by the TOF

resolution.

2.3.4 The electromagnetic calorimeter

The Belle Electromagnetic Calorimeter (ECL) was divided into three sections, the

barrel and the two endcaps (”forward” and ”backward” with respect to the HER

beam direction). The total coverage is 91% of the solid angle, with a 3% of accep-

tance loss due to the gaps between barrel and endcaps that provides the pathway

for the cabling system of the inner detectors. The ECL consisted in 8736 CsI(Tl)

crystals with a typicaldimension of (55x55)mm on the front face and 30 cm of depth,
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correspondespoding to 16.2 radiation lengths, arranged to point approximately to

the interaction point (Fig. 2.14) . The size of the crystals was arranged in such a

way that approximately the 80% of the total energy of a photon injected in its cen-

ter remained contained in the crystal. The energy resolution studies were performed

Figure 2.14: The Belle Calorimeter

with electrons and photon beams, using 3x3 (Fig. 2.16) and 5x5 (Fig. 2.15) crystal

blocks.

The energy resolution shape can be fitted with the quadratic sum of three terms

obtaining, for a 5x5 block:

σE
E

=
0.0066(%)

E
+

1.53(%)

E(1/4)
+ 1.18(%).

For a 3x3 block the parameters are different but the functional form is the same:

σE
E

=
0.066(%)

E
+

0.81(%)

E(1/4)
+ 1.34(%)

The photon reconstruction algorithm uses both the 5X5 and 3X3 block information.
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Figure 2.15: ECL energy resolution us-

ing a 5x5 block of crystals

Figure 2.16: ECL energy resolution us-

ing a 3x3 block of crystals

The ECL resolution in measuring the invariant mass of photon pairs is a crucial

feature in the study of transitions involving the η reconstruction. Figures 2.17 and

2.18 show the invariant mass distribution of reconstructed π0’s and η’s in hadronic

events, where the photon energy is required to be greater than 30 MeV/c2.

Figure 2.17: γγ pairs invariant mass in

the η region, from hadronic events

Figure 2.18: γγ pairs invariant mass in

the π0 region, from hadronic events
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2.3.5 Kaons and Muons detection system

The KML consists in alternating layers of charged particles detectors and 4.7 cm-

thick iron plates, with a total absorption length or 3.9 interaction lengths.

The detection of charged particles is provided by a glass-electrode-resistive plate

chambers, arranged in double layers called super-layers as shown in figure 2.19.

Figure 2.19: The Belle Kaon and Muon detector

The KLM performances in muon detection were studied with cosmic rays with

momentum greater than 500 MeV/c, since particles with lower momentum produced

in the IP can not reach the KLM due to the presence of the 1.5 T magnetic field.

In figure 2.21 is shown the measured efficiency as function of the muon momentum,

while fig. 2.20 shows the rake rate due to µ/π misidentification. The pions were

selected from Ks → π+π− events in e+e− collisions. For muon with momentum

above 1.5 GeV/c the identification efficiency is over 90% and the fake rate is less

than 5%.
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Figure 2.20: Muon identification fake rate

Figure 2.21: Muon detection efficiency
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Montecarlo studies and selection

criteria

In this chapter the Montecarlo (MC) studies conducted on the Υ(2S) → ηΥ(1S)

transition will be presented: a full Montecarlo simulation of all the resonant back-

grounds has been made specifically for this analysis, and the selection criteria were

fully optimized using these MC samples and then applied to the data sample, in

order to perform a completely blind analysis.

Since none of the available standard skims provided by the Belle collaboration was

adequate for this analysis, we started from the unskimmed data samples and we de-

signed a suitable skim criteria. This selection, based on the high momentum tracks

characteristics, is applied to the full Υ(2S) sample in order select only events with

a candidate Υ(1S) → e+e−, µ+µ− in the final state. After the skim selection we

required tracks and calorimeter clusters to meet some quality condition in order to

reject both ghost tracks in CDC and noisy rechits in the ECL. In order to improve

the resolution on the reconstructed Υ(1S), a dedicated selection is devoted to the

reconstruction of the photons irradiated by the high momentum leptons resulting

from the decay of Υ(1S) itself. All the γ, π, e and µ that satisfied these cuts rep-

resents the candidates for the final event reconstruction. Therefore two kinematic

fits will be applied: the first one in order to constrain the two leptons and the pho-

tons tagged as radiative ones to have the invariant mass of the Υ(1S), the second

to constrain the Υ(1S) candidate obtained from the first fit and the η candidate

to have the invariant mass of the Υ(2S). After this procedure, a final selection is
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made with different conditions, according to the η and the Υ(1S) decay mode under

investigation, in order to reject the residual background. The η candidate mass has

been chosen as variable for the final fit and branching ratio calculation, so all the

cuts has been performed, when possible, on observable weakly correlated with the η

mass.

Every cut value has been optimized by maximizing the Figure of Merit:

FoM =
Nsignal√

Nsignal +Nbackground
.

3.1 Signal topology and background determination

The inclusive search for the Υ(2S)→ ηΥ(1S) transition requires the full reconstruc-

tion of all the involved particles.

The primary η decay modes are η → γγ, with branching fraction B = 39.31%,

η → π0π0π0, with B = 32.57%, η → π+π−π0 with B = 22.74% and η → π+π−γ

with B = 4.60%.

In this analysis the η will be detected either in the γγ and π+π−π0 modes. The

π+π−γ mode has been discarded due to its low branching ratio, while the high

number of low energy photons due to the background related to the beam activity

leads to the exclusion of the 3π0 mode. The Υ(1S) will be detected in the two lep-

tonic modes Υ(1S) → e+e− and Υ(1S) → µ+µ−. The branching ratio is B = 2.5%

for both those modes. All the final states resulting from the combination of these

channels have a clean signature: with η → π+π−π0 we have to search for

• 2 high momentum tracks coming from Υ(1S) decay,

• 2 low momentum tracks coming from η decay,

• 2 low energy photons coming from π0 decay,

while when detecting η → γγ the signature is

• 2 high momentum tracks coming from Υ(1S) decay,

• 2 photons coming from η decay,

• no other charged tracks.
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Two different kind of processes can provide large backgrounds: transitions (both

hadronic and radiative) between Υ(2S) and Υ(1S) and non-resonant reactions from

the continuum e+e− → qq̄ → X. In particular all the others major transitions be-

tween Υ(2S) and Υ(1S) represent a potential background source.

Resonant backgrounds for the π+π−π0 mode from Υ(2S)→ π+π−Υ(1S) and Υ(2S)→

π0π0Υ(1S) are expected: both transitions have branching ratios which are 3 orders

of magnitude larger than the searched one. In both cases, the final state can be

easily confused with the signal final state:

• in the π+π−Υ(1S) case, a fake π0 may be created combining photons from

FSR, bremsstrahlung, or beam background.

• in the π0π0Υ(1S) case, one of the four photons may convert in the inner detec-

tor and create a low momentum electron-positron pair which is then wrongly

tagged as charged π+π− pair, while the other photon from the same π0 escapes

detection.

The η → γγ mode may be contaminated by backgrounds with the same final

state, not just on the resonance peak, but also in continuum:

• The double cascade transitions involving an intermediate χbJ state (i.e. Υ(2S)→

γ1χbJ(1P )→ γ1γ2Υ(1S)) to compete with the π0π0Υ(1S) transition, may rep-

resent source of background;

• The doubly radiative continuum process e+e− → (µ+µ−, e+e−)γγ or singly

radiative processes like Initial State Radiation (ISR), Final State Radiation

(FSR) or radiative Bhabha scattering, with an accidental extra photon com-

ing from the beam activity are expected to represent a primary source of

background.

The branching ratios of the background processes are summarize in table 3.1. The

Belle experiment has collected, during the experiments 67 and 71, 158± 3.6 millions

of Υ(2S). The total branching ratio, calculated including the Υ(1S)→ e+e−, µ+µ−,

the expected number of events for the signal and the background sources and the

ratio B(signal)
B(background) are reported in table 3.2
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Table 3.1: Branching ratios

Process Branching ratio Note

Υ(2S)→ ηΥ(1S) 2 · 10−4 CLEO[8]

Υ(2S)→ π+π−Υ(1S) 18.0% CLEO [8]

Υ(2S)→ π0π0Υ(1S) 9.0% assuming isospin symmetry

Υ(2S)→ γχb0(1P ) 3.8% PDG[15]

Υ(2S)→ γχb1(1P ) 6.9% PDG[15]

Υ(2S)→ γχb2(1P ) 7.15% PDG[15]

Υ(1S)→ e+e−, µ+µ− 2.48% PDG[15]

η → π+π−π0 22.74% PDG[15]

η → γγ 39.31% PDG[15]

χb0 → γΥ(1S) 6% upper limit PDG[15]

χb1 → γΥ(1S) 35% PDG[15]

χb2 → γΥ(1S) 22% PDG[15]

3.2 Data samples

In December 2008, Belle took a first set of data at Υ(2S) energy, during experiment

67. A brief scan was used to find the resonance peak. After establishing the energy

settings, 6.5 fb−1 data were taken only on 2S peak. The total Υ(2S) yield, 46.4±1.5

Millions, was calculated from the number of π+π−µ+µ− events. The product of

decay ratios B(Υ(2S)→ π+π−Υ(1S))×B(Υ(1S)→ µ+µ−)=0.449±0.013% (known

with 3.3% relative error), taken from PDG, was used, and dominates the systematic

error on 2S yield. By using the π+π−e+e− events, N(Υ(2S))=45.9±2.3 Millions is

obtained. A second sample of 2S decays was integrated in November 2009, Exp.71.

In between two periods of data taking on 2S peak, a sample of data on continuum, 30

MeV below the 2S energy, was accumulated. Table 3.3 summarizes all the essential

information on these datasets. The total sample of 2S data amounts to 157.8±3.6

Millions decays, which represents the world’s largest sample to date (Babar, with

100 Millions, has the second largest).
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Table 3.2: Total branching ratios, expected counts in 158 Millions of Υ(2S) decays the

ratio S/B between the expected signal yield background yield for each transition analyzed

in this work.

Channel BR Counts S/B ratio

Υ(2S)→ Υ(1S)η(→ γγ) 3.93 · 10−6 628 -

Υ(2S)→ Υ(1S)η(→ π+π−π0) 2.27 · 10−6 363 -

Υ(2S)→ π+π−Υ(1S) 0.9% 1.44 Millions 2.5 · 10−4

Υ(2S)→ π0π0Υ(1S) 0.45% 0.72 Millions 5.0 · 10−4

Υ(2S)→ γχb2 → γγΥ(1S) 7.8 · 10−4 0.125 Millions 5.01 · 10−3

Υ(2S)→ γχb1 → γγΥ(1S) 1.2 · 10−3 0.193 Millions 3.26 · 10−3

Υ(2S)→ γχb0 → γγΥ(1S) 1.4 · 10−4 0.018 Millions 3.45 · 10−2

Table 3.3: Data samples taken in the proximity of Υ(2S).

dataset
√
s(MeV ) Exp. runs Ldt(1/pb) N(Υ)

Υ(2S) scan 10023.3 ±(30,6,4,2,0) 67 1002-1015 159 -

Υ(2S) peak 10023.3 67 1016-1123 6523 41.7M

Υ(2S) continuum 9993.3 71 498-536 1692

Υ(2S) scan 10023.3 ±(1,3),+5 MeV 71 303-312 98

Υ(2S) peak 10023.3 71 313-497,537-696 18177 116.1M

3.3 MonteCarlo samples

Within the blind analysis approach, a MC sample for each background source have

been generated. In particular all the resonant backgrounds were generated using the

EVTGEN package [16], while the detector simulation has been made with Geant4

with the default Belle configuration.

EVTGEN provides different modules to model the angular distribution and dalitz

plots of the decays. The η → 3π decays were generated using the default module

ETA DALITZ .

All Υ(2S)→ ηΥ(1S) has been studied and generated with module ‘HELAMP ’ and

parameters set to ’1 0 0 0 -1 0’. The HELAMP parameters represent the helicity

amplitudes of the transition.
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The Υ(2S) → ππΥ(1S) decay is modeled using the default model VVPIPI, mod-

ified setting parameter λ = 0.28, in order to fit more accurately the dipion mass

distribution. The λ parameter represents the coefficient of the mπ related term in

the DiPion mass distribution which is expected to be dΓ
dmππ

∝ (m2
ππ − λm2

π)
2
. The

Υ(1S) → dilepton decays are modeled using the standard EvtGen package for a

vector state decaying into two leptons VLL .

PHOTOS is the standard package to simulate the final state radiation processes; it

has been used for both Υ(1S) and η → 3π decays.

Concerning the transitions with χbj intermediate states, they have been modeled

using the helicity amplitudes expected in dipole approximation:

• HELAMP with parameters ’1 0 1 0’ for the Υ(2S)→ γχb0 transition, and for

the χb0 → γΥ(1S);

• HELAMP with parameters ’1 0 1 0 -1 0 -1 0’ for both Υ(2S) → γχb1 and

χb1 → γΥ(1S);

• HELAMP with parameters ’2.494897 0 1.7320508 0 1 0 1 0 1.7320508 0 2.494897’

for the Υ(2S) → γχb2 transition, and a flat phase space distribution (module

PHSP) for the χb2 → γΥ(1S), since a known bug prevents running EvtGen

for the double cascades with a large number of independent amplitudes.

Sizes and other infos on these samples are summarized in table 3.4.

36



3.3. MonteCarlo samples

Table 3.4: MonteCarlo data samples generated for the optimization of selection cuts.

Υ(2S) Decay channel
√
s(MeV ) N. Events

Υ→ µ+µ−; η → π+π−π0 10023.3 0.5M

Υ→ e+e−; η → π+π−π0 10023.3 0.5M

Υ→ µ+µ−; η → γγ 10023.3 0.17M

Υ→ e+e−; η → γγ 10023.3 0.17M

Υπ+π−; Υ→ µ+µ− 10023.3 2.2M

Υπ+π−; Υ→ e+e− 10023.3 2.2M

Υπ0π0; Υ→ µ+µ− 10023.3 1.1M

Υπ0π0; Υ→ e+e− 10023.3 1.1M

χb0γ → Υγγ; Υ→ µ+µ− 10023.3 70K

χb0γ → Υγγ; Υ→ e+e− 10023.3 70K

χb1γ → Υγγ; Υ→ µ+µ− 10023.3 0.6M

χb1γ → Υγγ; Υ→ e+e− 10023.3 0.6M

χb2γ → Υγγ; Υ→ µ+µ− 10023.3 0.4M

χb2γ → Υγγ; Υ→ e+e− 10023.3 0.4M

The EVTGEN and Geant4 simulation is still not enough accurate to be used

in the optimization procedure of the selection criteria: other contributions coming

from the beam activities or particular environmental issues that may change run by

run can not be properly simulated, but can have a major impact in the search for

low statistic channels.

To partially solve this problem some random triggered events were recorded dur-

ing the data taking. Those events can be added to the generated montecarlo events

to account for realistic background conditions, as accidental photons that are likely

to contribute fake events with similar topologies, when overlapped to radiative QED

processes.

The background from continuum processes has been primarily analyzed using the

1.71fb−1 sample of data taken 30 MeV below the Υ(2S) energy and a small sample

of radiative bhabha scattering events e+e− → µ+µ−, e+e− + nγ.
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3.4 The preliminary selection and the definition of γ, π±

and leptons candidates.

3.4.1 Skimming condition

The first step in the analysis is the selection of the events with an Υ(1S) →

e+e−, µ+µ− candidate in the final state.

A preliminary selection criteria, called StiffPairSkim, has been prepared selecting

only events with two high momentum tracks (p∗ > 4 GeV/c) with opposite charge,

with no further cuts on particle identification.

Those tracks are the candidate leptons coming form the Υ(1S) decay, which are

expected to have, neglecting the lepton mass and the Υ(1S) momentum, p∗ = 4.730

GeV/c.

In figure 3.1 is shown the momentum spectrum of charged tracks in η → π+π−π0,Υ(1S)→

ee, µµ montecarlo events. The low momentum region (p∗ > 1 GeV/c) contains the

tracks coming from the η decay, while in the high momentum region (p∗ > 4 GeV/c)

the peak due to the leptons from the Υ(1S) decay is clearly visible. The intermediate

region is populated mainly by bad reconstructed e+ or e−.

Figure 3.1: Charged Track spectrum in η → π+π−π0 montecarlo events. The three

momentum regions (high, medium and low) are marked
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The StiffPairSkim cut is meant to allow a good normalization of the feed-down

from QED backgrounds such as radiative Bhabha, and µ+µ−γ, which are expected

to play a major role in the search for η → γγ mode. Concerning η → π+π−π0,

QED backgrounds are unlikely to produce dileptons associated simultaneously to

two extra charged tracks and a π0 candidate. In addition, the continuum events

from hadronic channels may hardly contribute dileptons at such high energy.

The StiffPairSkim from the 1.71fb−1 continuum data set contains 7.963 Mil-

lion events corresponding to an effective cross section of σSP,cont = Nevents/ Lcont =

4.68nb, from which one can estimate a background of 113 M continuum events on

the peak data.

This means that the continuum background will be studied with a sample that is

≈ 7% of the total expected yield, while resonant backgrounds with samples ≈ 4

times the expected yield.

The skimming efficiency, defined as the fraction of the total dataset which survives

the above mentioned cut, is ε(StiffPair) = 15%. The nature of the events selected

by the StiffPairSkim condition can be studied using the Kinetic Boundary parameter

(KB) and the mass of the DiLepton. The KB = p∗(ll)− 0.5 · M
2(ll)−s√
s

represents the

distance from the Kinematic Boundary, i.e. the maximum CM momentum that a

dilepton with mass M(ll) can reach, at a given value of
√
s. Neglecting the experi-

mental resolution, physical values for KB are lower than zero. The red circles in 3.2

Figure 3.2: KB versus M(e+e−), exp67 data Figure 3.3: KB versus M(µ+µ−), exp67 data

and 3.3 indicates the Υ(1S) region, visible in the µµ channel, which is less affected
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by QED backgrounds. The tail at KB = 0 is filled by events where the dilepton

bounces off a photon, i.e. radiative return (ISR) or final state radiation (FSR). After

the loose cut represented by the skimming condition, a set of cuts has been applied

on the single charged and neutral entities reconstructed. The aim of those cut is

the rejection of the fake tracks, noisy clusters or final state radiation photons that

can contribute to create multiple η candidate. The impact of those processes can be

see in the multiplicity of neutral and charged entities in signal montecarlo events.

For η → 3π events two low momentum tracks, two high momentum tracks and one

π0 candidate are expected. Figures 3.4 and 3.5 show the multiplicities measured in

montecarlo signal events after the skimming cuts were applied.

Figure 3.4: Number of low momentum positive tracks compared to the number of negative

tracks, in η → 3π montecarlo events
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Figure 3.5: Number of π0 candidates in η → 3π montecarlo events

3.4.2 Low Momentum tracks: PID and quality selection.

The Belle particle identification system is based on the definition of different stan-

dard likelihood functions. The user can customize these functions by including or

excluding the information from each sub-detector according to the analysis require-

ments. The standard likelihood functions that can be profitably used in this analy-

sis are Lµ, the likelihood function for the muon hypothesis, pe which is the electron

probability, defined as the ratio between the likelihood for the electron hypothesis Le

and the hadronic hypothesis Lhad (pe = Le
Le+Lhad

) and Le itself, which is particularly

useful in distinguishing electrons from pions.

During the analysis we found that all the possible particle-ID algorithm had poor

performances in the low momentum region, where the pions coming from the η decay

can be found. Since this problem is related to the very poor particle ID efficiency of

the default likelihoods in this region is (Fig. 3.6), we decided not to try to perform

any identification on the low momentum tracks, that are all tagged as pions.

Only 26.56% of signal events with η → π+π−π0 exhibits exactly two low momen-

tum tracks (p∗ < 1 GeV/c) of opposite charge, while 57.74 % has greater multiplicity,

up to 10 tracks of both signs; this behavior is mainly due to fake and ghost tracks

in the CDC.

Since the real π± must come from the primary vertex, the low momentum tracks
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Figure 3.6: The standard efficiency in e identification as function of the particle momentum.

The squares represent the e/π fake rate. The box remarks the region where the pions coming

from the η decay can be found

are required to have to have impact parameters |∆z| < 3.0 cm and |∆r| < 0.5 cm.

The impact parameters are the minimum approach distance between the track and

the nominal interaction point measured in the xy plane (∆r) and along the z axis

(∆z).

Fig.3.7 and 3.8 show the impact parameters distribution for both real π and ghost

tracks in signal events. The effect on the number of low momentum tracks of the

selection is shown in Fig.3.9 and 3.10

Table 3.5 summarizes the performance of the impact parameter cuts on ghost

tracks rejection. N(fake π)/N(real π) represents the ratio between the mean num-

ber of fake tracks and the mean number of real tracks per event in signal montecarlo.
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Table 3.5: Ghost tracks rejection performances.

Ratio without cuts with cuts

N(fake π−)/N(real π−) 0.810 0.030

N(fake π+)/N(real π+) 0.874 0.036

Figure 3.7: |∆z| for real π and fake tracks

in signal events.

Figure 3.8: |∆r| for real π and fake tracks

in signal events.

3.4.3 High Momentum leptons: PID and quality selection.

The StiffPairSkim criterion rejects all the non Υ(1S)-like final states, but does not

effects the yield coming from the elastic peak at the the Υ(2S) energy, namely the

peak resulting from the non-radiative Bhabha scattering.

A request on the invariant mass of the lepton pair is ideal in order to rejects those

events, but requires the identification of the two leptons.

Concerning the leptons, the default likelihood functions can be used but they must

be adapted to to this particular analysis. The information from the TOF and the

Cerenkov counter are removed from the Likelihood definition since the Υ(1S) decay

products have a typical momentum that is far above the detectors’ capability.

The primary source of information for the particle ID remains the ratio RECL =

EECL/p, where EECL is the energy deposited in the calorimeter by the particle and

p is the magnitude of its momentum in the laboratory frame, measured by the track-

ing system. This ratio is expected to be RECL << 1 for muons and RECL ≈ 1 for

electrons.

The RECL ratio has been studied as function of the position of the ECL cluster to
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Figure 3.9: Low momentum tracks: N+ vs

N− without cut.

Figure 3.10: Low momentum tracks: N+ vs

N− with cut on ∆z at 3.0 cm and ∆r at 0.5

cm.

investigate the possibility of impose some acceptance cut and improve the likelihood-

based particle ID, or even avoid it using directly the ECL signal. Figure 3.11 and

3.12 shows the RECL measured in montecarlo events.

Figure 3.11: Muon EECL/p in montecarlo events as function of the polar angle of the

incident track.
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Figure 3.12: Electron EECL/p in montecarlo events as function of the polar angle of the

incident track.

In figure 3.12 it’s clearly visible the junction between the endcaps and the barrel

regions, together with the barrel junction at θ = π/2. The optimization of the RECL

measurement requires the exclusion of the forward endcap region, with a ≈ 30%

loose of efficiency in signal events. In order to keep the reconstruction efficiency as

high as possible, no acceptance cuts has been imposed, and the identification of the

lepton has been made with the Likelihood functions, deprived of the TOF and ACC

information.

A tracks is then labeled as leptons if at least one of these two conditions is satisfied:

• Lmu > Lµ,cut;

• p = Le/(Le + Lhad) is above pcut.

Four different cuts values for pcut and Lµ,cut have been studied: 0.1, 0.2, 0.6, and

0.8, as suggested by the Belle Particle Identification Group. The cut value of 0.2

has been chosen for both electrons ad muons.

If a track has both p and Lµ greater than the cut level, then it is identified as electron

or muon according to which value is larger: if Lµ > p the identification is muon, else

electron.

The misidentification rate for the single track is 1.5 · 10−5 for both e and µ. After

the particle ID definition other simple request can applied on the leptons:

• 9.0 < M(ll) < 9.8: the Di-Lepton must have invariant mass in the Υ(1S)

region
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• The two leptons must have the same particle ID.

3.4.4 Photons: quality cuts and final state radiation reconstruction

Final state radiation photons or photons from bremsstrahlung are responsible for a

bad Υ(1S) invariant mass and momentum reconstruction and increase the combina-

torial background in the η and π0 reconstruction. Furthermore the reconstruction of

final state radiation photons reduces the background from doubly or single radiative

bhabha events, which is expected to be a large background source while detecting

η → γγ

Since the radiative photons are emitted primary along the direction of emitting lep-

ton’s momentum, an ECL cluster is tagged as FSR photon if it lays in a cone of 200

mrad from a high momentum tracks. The momentum of these photons will be then

added to the lepton momentum in the Υ(1S) reconstruction phase.

The selected opening angle allows to keep the percentage of photons from η → γγ

decay tagged as final state radiation under 2%

Table 3.6 shows the tagging efficiency of this criterion, calculated using the monte-

carlo truth information. The efficiency is lower in the electron case than the muon

case since the electromagnetic shower created by an electron have a larger shape

than the one created by a muon; this means that the ECL clusters due to final state

radiation may be easily included in the electron shower, while this doesn’t happen

for the muons, since a more compact shower allows the reconstruction of separated

clusters near the track direction.

Table 3.6: Final state radiation selection efficiencies.

Photon source Lepton Selected fraction

Signal e 1.1%

Signal µ 1.57%

Final state Radiation e 17.23%

Final state Radiation µ 27.69%

Bremsstrahlung e 6.54%

Bremsstrahlung µ 3.18%

The remaining neutral entities reconstructed in the calorimeter must pass a fur-

ther selection in order to be positively tagged as photons. This selection procedure
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was originally developed by Mauro Verzetti in his search for the Υ(2S)→ γηb tran-

sition [17], and requires:

• The ECL cluster must not match with a charged track in the CDC

• E9/E25 ratio between 0.9 and 1. This parameter is the ratio between the

energy deposited in a 3x3 cluster around the most energetic crystal and a the

energy deposited in the 5x5 cluster. Photons with E < 1 GeV are expected to

generate a very compact shower that remains almost completely enclosed in

the 3x3 cluster

• Shower’s width less than 5.8 cm, since neutral hadrons are expected to generate

showers wider than the photons’ ones.

Please note that final state radiation photons are identified and removed without

any quality requirement on the ECL signal.

Other not-signal photons are excluded via cuts on their energy, since it’s possi-

ble to select an energy window in which a photon must lay if it comes from a real

π0 or η decay (Fig. 3.13 and Fig.3.14).

Figure 3.13: Ecm for γ in signal events with

η → π+π−π0.

Figure 3.14: Ecm for γ in signal events with

η → γγ.

For the 3-pions channel analysis we select only photons with energy in the labo-

ratory frame greater than 57 MeV/c, in order to reject the clusters due to the beam

background, and energy in the center of the mass frame less than 220 MeV/c which

is the kinematic limit for this transition.

In searching η → γγ the photons are required to have energy in the center of mass

between 180 MeV/c and 360 MeV/c
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The performances of these selection procedure are summarized in tables 3.7 and 3.8,

where percentages are calculated on detected neutral entities that are not tagged as

radiative photons.

Table 3.7: Radiative photons rejection efficiencies and expected counts per event of each

kind of photon in η → γγ.

Nature ECL cuts ECL + Energy cut Counts before cuts Counts after cuts

Signal 95.58% 93.55% 1.15 1.07

FSR 57.63% 13.81% 0.04 0.005

Bremsstrahlung 66.10% 5.34% 0.09 0.004

Beam/other 85.80% 2.72% 3.23 0.09

Table 3.8: Radiative photons rejection efficiencies and expected counts per event of each

kind of photon in η → π−π+π0.

Nature ECL cuts ECL + Energy cut Counts before cuts Counts after cuts

Signal 93.13% 77.88% 1.13 0.88

FSR 57.60% 30.02% 0.04 0.01

Bremsstrahlung 68.81% 9.72% 0.09 0.009

Beam/other 86.94% 15.52% 3.21 0.48
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3.5 Best candidate selection

The quality cuts provide a list of photons and charged tracks that are compatible

with the event topology and that meet some quality standards. Although the track

multiplicity has been already reduced, additional cuts can be imposed to reduce the

number of η candidates per event in both signal and background channels. At the

end of this procedure, called best candidates selection, the maximum number of η

candidates per event will be reduced to one.

3.5.1 The best π0 candidate

Figures 3.15 and 3.16 illustrate the number of reconstructed neutral pions (i.e. the

number of γγ pairs with invariant mass within 10 MeV/c2 from the nominal π0

mass) in η → π+π−π0 MC events, with no cuts applied and with all the photon cuts

imposed so far applied. Clearly a further selection is required in order to select the

best π0 candidate

Figure 3.15: Number of reconstructed π0’s

in signal MC, if all ECL clusters are used.

Figure 3.16: Number of π0’s reconstructed

in signal MC, if only good photons are used.

The π0 selection criterion is very simple: if an event exhibits more than one γγ

pair that passed all the cuts so far, the one with invariant mass closer to the real

value of M(π0) = 0.139 GeV/c2 is selected as π0 coming from η decay.

3.5.2 The best π+π− pair candidate

Further cuts are meant to suppress the fraction of π0π0 events with pair conversion

into the detector of one of the four photons in the final state. The observable used

to reject those events is the opening angle between the two charged pion candidates.
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Figure 3.17: cos(θ∗ππ) distribution.

A π+π− candidate is required to meet the condition cos(θ∗ππ) < 0.6 in order to

be accepted as coming from the η decay.

After this selection only events with one π+π− candidate, i.e. the events with

exactly one low momentum track for each sign are selected for further analysis.

This choice is motivated by the will of keeping as high as possible the purity of the

selected events: the inclusion of events with more than two low momentum tracks

produces a little increase in efficiency, but also a significant loss in purity. Moreover

the best π+π− selection in events with more than one dipion candidate requires the

introduction of further selection criteria (such as the π+π− momentum or mass) that

are strongly correlated with the η candidate mass.

The efficiency after this selection is 35%, dominated by acceptance loss and the cuts

on the impact parameter of the low momentum tracks. Analyzing the η → 3π MC

sample truth it has been possible to calculate that little fraction (1.57%) of the se-

lected π+π− is due, at this stage, to accidental ghost tracks.

3.5.3 The best η → γγ candidate

The η → γγ candidate is selected among photon pairs passing the basic photon

selection described above, with the suitable energy cut. The combinatorial back-

ground from signal itself creates more than just one η candidate per event, so the

first goal is to select the right γγ candidate in signal events.

Figure 3.18 shows the γγ opening angle between for both real and fake η’s (re-

constructed from radiative or beam photons). The real η are identified with the

montecarlo truth information.
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It can be clearly seen that there are no real η with opening angle between the two

γ’s with a cosine greater than -0.88. This feature is due to the two bodies nature of

the Υ(2S) decay: the η is constrained to have a momentum of pη = 0.129 GeV/c,

and the γ’s in the η frame have pγ = M(η)/2. The effect of the combination between

those two constrains is to reduces the possible values of θ∗(γγ).

Only events with cos(θ∗γγ) > −0.88 are selected for further analysis.

Figure 3.18: cos(θ∗γγ) for real η.
Figure 3.19: cos(θ∗γγ) for fake η in signal

events.

This cut, combined with the photon selection which includes the cut on the clus-

ter energy in the CM frame, significantly reduced the number of η → γγ candidates

per event in the signal sample.

The contamination from fake η is, at this stage, 10.41%, while the efficiency in

detecting a signal event η → γγ is 50.58%, to be compared with an upper limit set

by acceptance constraints of 54.33%.

Events with more than one η → γγ candidate, representing the 0.5% of the selected

events, are discarded.
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3.6 Kinematic fit and final cuts

3.6.1 Kinematic fit

After the best candidates selection, the η candidate is searched in π+π−π0 if the

event shows:

• 1 di-lepton candidate

• 1 good π+π− candidate

• 1 good π0 candidate

While for the η → γγ the requests are:

• 1 good di-lepton candidate

• no good π+π− candidate

• 1 good η → γγ candidate

The request on the number of good π+π− candidates makes the two analyses com-

pletely orthogonal, and no cross-feed is expected.

In order to improve the resolution on the η mass distribution a kinematic fit proce-

dure has been applied to the selected candidates.

The kinematic fit is a technique that allows to introduce constrains in an event re-

construction changing the momentum of the involved particle in order to meet them.

Different kind of constrains can be imposed, usually invariant masses, vertices’s po-

sition or momentum and energy conservation.

For this analysis different fitting procedures has been tested with different constrains,

using the KFitter package developed by J. Tanaka and, in particular, the kmassfitter

class. Since this module provides only vertices’s position and invariant mass con-

strains, the best choice is to perform a two-step kinematic fit with mass constrain.

The first fit constrains the leptonic tracks and the final state radiation photons to

have the total invariant mass of the Υ(1S) resonance, allowing the creation of an

Υ(1S) candidate.

The second steps consist in a fit applied to the Υ(1S) candidate and the η candidate,

with a mass constrain at the Υ(2S) mass value.
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In figures 3.20 and 3.21 is shown the mass distribution of the reconstructed η → 3π

and η → γγ from signal Montecarlo before and after the fitting procedure:

Figure 3.20: η → 2γ mass before and after

the kinematic fits.

Figure 3.21: η → 3π mass before and after

the kinematic fits.

The mass distribution width is improved by a factor 3 in η → 3π events and a

factor 7 in η → 2γ. Further cuts will be now imposed in order to reject the residual

background.

3.6.2 η → π+π−π0 final cuts

The more conspicuous background that passes the first selection is, while detecting

the η → 3π mode, due to the Υ(2S)→ π+π−Υ(1S) transition. These events can be

easily discarded introducing the ∆M parameter defined as the difference between

the invariant mass of all the charged tracks in the event and the l+l− pair, which at

this stage is constrained to be equal to the Υ(1S) mass.

∆M = M(Υ(1S), π+, π+)−M(Υ(1S))

Since in Υ(2S)→ π+π−Υ(1S) events M(Υ(1S), π+, π+) = M(Υ(2S)), this observ-

able has well defined theoretical value of ∆M = 0.563 GeV/c2 for this background.

The ∆M distribution for signal and π+π− background is shown in figure 3.22

The request of ∆M < 0.44 GeV/c2 discards the 0.89% of the signal events and

the 99.92% of the π+π− background yield.

The second and last cut exploits the χ2 of the second kinematic fit which is di-

rectly provided by the KFitter software. The χ2 of a kinematic fit is related to the

changes imposed to the tracks; if the topology of the event has been greatly changed
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Figure 3.22: Normalized ∆M distribution for η → 3π and Υ(2S)→ π+π−Υ(1S).

in order to fit the constrains, the corresponded chi2 will have an higher value com-

pared to an event that already fits the constrains.

The cut has been optimized separately for the two Υ(1S) decay mode since the

continuum background is more present in the e+e− channel than in the µ+µ− one.

The two χ2 distributions are shown in fig. 3.23 and 3.24.

Figure 3.23: Normalized distribution of the

KFitter χ2 in e+e− events. The green

histogram represents the signal distribution,

while the black one represents the background

one.

Figure 3.24: Normalized distribution of the

KFitter χ2 in µ+µ− events. The green

histogram represents the signal distribution,

while the black one represents the background

one.

Maximizing the correspondent figures of merit, an upper limit of χ2 < 55 in µµ

events and χ2 < 70 in ee events is imposed.

Table 3.9 and 3.10 summarizes the step-by-step efficiencies in η → π+π−π0 selection.
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Table 3.9: Final efficiencies in η → π+π−π0 selection,with Υ(1S)→ e+e−.

Channel Candidate selection ∆M cut χ2 cut Expected counts

Signal 9.75% 9.65% 7.59% 13.8

Υ(2S)→ π0π0Υ(1S) 0.0074% 0.0041% 0.0017% 6.12

Υ(2S)→ π+π−Υ(1S) 4.96% 0.006% 0.0005% 3.16

χbj cascade 0.004% 0.0012% 0.0006% 0.6

Continuum 0.0030% 0.0003% 0.0001% 113

Table 3.10: Final efficiencies in η → π+π−π0 selection,with Υ(1S)→ µ+µ−.

Channel Candidate selection ∆M cut χ2 cut Expected counts

Signal 11.29% 11.19% 8.55% 15.55

Υ(2S)→ π0π0Υ(1S) 0.006% 0.0028% 0.00073% 2.6

Υ(2S)→ π+π−Υ(1S) 5.61% 0.006% 0.0003% 2.1

χbj cascade 0.005% 0.0008% 0.0003% 0.29

Continuum 0.0002% 0.00007% < 0.00002% ¡22

3.6.3 η → γγ final cuts

When dealing with the search for η into a γ pair and the Υ(1S) into e+e−, the pri-

mary background source is expected to be the bhabha scattering. The non radiative

bhabha e+e− are rejected by the skim cut on the invariant mass of the dilepton, but

single or double radiative events may exhibit the correct invariant mass and lepton

momenta. Thus a further bhabha veto is imposed, following what has been already

done by CLEO [8], rejecting events with the e− in the forward detector region. In

figure 3.25 and 3.26 is shown the cosine in the CM frame of the polar angle of the

positive lepton compared to the negative one, for both electrons and muons. The

data are taken from a sub-sample of the experiment 67. In the muon plot a semi-

circular structure due to cosmic rays passing trough the interaction region can be

clearly seen.

For electrons, events with cos(θ∗e−) > 0.5 are rejected; for muons no asymmetric

cuts on the angular distribution has been applied. The efficiency of this cut for

continuum events is 30%, while for signal events is 80%. In analogy with the η → 3π
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Figure 3.25: e+ cos(θ∗) compared to e+

cos(θ∗), in events from exp67.

Figure 3.26: µ+ cos(θ∗) compared to µ+

cos(θ∗), in events from exp67.

analysis, the second cut is then applied on the kinematic fit χ2; figures 3.27 and 3.28

show the χ2 distributions in the two leptonic channels. The contribution coming

from continuum is shown in red, while the black distribution represents the sum of

all background sources.

Figure 3.27: KFitter χ2 in e+e− events. The

green histogram represents the signal distribu-

tion, while the black one represents the back-

ground one.

Figure 3.28: KFitter χ2 in µ+µ− events. The

green histogram represents the signal distribu-

tion, while the black one represents the back-

ground one.

The maximization of the figure of merit suggests to require χ2 < 9.5 in ee and

χ2 < 11.5 in µµ events. Since signal events must be closed the total energy in the

CM frame must coincide with
√
s and the total momentum must be compatible with

0. The second cut imposed is on the total momentum in the center of mass: in figure

3.29 and 3.30 is shown the momentum distribution.

The chosen cut value are p∗ < 0.07 GeV/c in e+e− events and p∗ < 0.10 GeV/c

56



3.6. Kinematic fit and final cuts

Figure 3.29: Total momentum in CM in e+e−

events. The green histogram represents the

signal distribution, while the black one repre-

sents the background one.

Figure 3.30: Total momentum in CM in

µ+µ− events. The green histogram represents

the signal distribution, while the black one

represents the background one.

in the µ+µ− ones. Table 3.11 summarizes the step by step efficiencies in η → γγ

selection when the Υ(1S) is searched in e+e− mode. The µ+µ− mode efficiencies are

summarized in table 3.12 For both the Υ(1S) decay modes the main contribution

Table 3.11: Final efficiencies in η → γγ selection,with Υ(1S)→ e+e−.

Channel Candidate selection bhabha cut χ2 cut ptot cut Expected counts

Signal 41.19% 32.97% 22.98% 9.64% 30.0

Υ(2S)→ π0π0Υ(1S) 1.37% 1.02% 0.012% 0.0002% 0.72

Υ(2S)→ π+π−Υ(1S) 0.02% 0.003% < 0.00004% < 0.00004% 0.29

χbj cascade 0.046% 0.036% 0.0036% < 0.0001% 0.09

Continuum 0.068% 0.02% 0.003% 0.0001% 113

is expected to come from the continuum processes.
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Table 3.12: Final efficiencies in η → γγ selection,with Υ(1S)→ µ+µ−.

Channel Prel. Sel. χ2 cut ptot cut Exp. counts

Signal 48.46% 35.19% 29.07% 90.69

Υ(2S)→ π0π0Υ(1S) 1.62% 0.020% 0.0016% 5.7

Υ(2S)→ π+π−Υ(1S) 0.034% 0.0058% 0.0002% 1.44

χbj cascade 0.093% 0.014% < 0.0001% 0

Continuum 0.0053% 0.001% 0.00004% 50

3.7 Fitting procedures on the montecarlo sample

The final fit is performed on the invariant mass of the η candidate; figures 3.31 and

3.32 show the invariant mass distribution for the η → γγ in the two considered

Υ(1S) decay modes, while the η → γγ case is shown in fig. 3.33 and 3.34

Figure 3.31: M(γγ) in events with e+e− pair.
Figure 3.32: M(γγ) in events with µ+µ−

pair.

The signal can be fitted with a bifurcated Gaussian, and the background with a

crystal ball function. Table 3.14 summarizes the fit parameters used for the η → γγ

channels, the fit range is [0.51, 0.565] GeV/c2.

Table 3.14 summarizes the fit parameters used for the η → 3π channels, the fit

range is [0.41, 0.565] GeV/c2. The signal is fitted with a bifurcated Gaussian and

the background distribution with a single Gaussian.
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Table 3.13: Fit summary

Channel Signal fit fit χ2/Dof

Υ(1S)→ µ+µ− µ = 0.548, σ1 = 0.001, σ2 = 0.004 0.125

Υ(1S)→ e+e− µ = 0.547, σ1 = 0.001, σ2 = 0.004 0.039

Channel Background fit fit χ2/Dof

Υ(1S)→ µ+µ− µ = 0.560, σ = 0.002, α = 0.787 0.277

Υ(1S)→ e+e− µ = 0.562, σ = 0.001, α = 0.187 0.267

Figure 3.33: M(π+π−π0) in events with

e+e− pair.

Figure 3.34: M(π+π−π0) in events with

µ+µ− pair.

The fit of the sum of all the four channels has been performed: figure 3.35

shows the fit on a wide range, while a close-up of the signal region is shown, with a

different binning, in figure 3.36. The signal is fitted with a bifurcated Gaussian and

the background with a crystal ball function.

The global efficiency on the η reconstruction is εη = (15.24 ± 0.04)% Assuming

160 millions of Υ(2S), the final counts in the signal box are Nsgn = 116± 10.77 and

Nbkg = 51± 7.1, with a significance
Nsgn√
Nbkg

= 16.5
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Table 3.14: Fit summary

Channel Signal fit fit χ2/Dof

Υ(1S)→ µ+µ− µ = 0.547, σ1 = 0.001, σ2 = 0.004 0.125

Υ(1S)→ e+e− µ = 0.547, σ1 = 0.002, σ2 = 0.01) 0.088

Channel Background fit fit χ2/Dof

Υ(1S)→ µ+µ− µ = 0.560, σ = 0.002, α = 0.787 0.277

Υ(1S)→ e+e− µ = 0.523, σ = 0.022, 0.135

Figure 3.35: Mass distribution of the η candidates from all the four final states.

Figure 3.36: Mass distribution of the η candidates from all the four final states, signal

region close-up.
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Data studies

In this chapter the analysis performed on the data sample will be presented. A

control sample of Υ(2S)→ π+π−Υ(1S) events will be defined in order to check the

montecarlo normalization and quote the R = B(Υ(2S)→ηΥ(1S))
B(Υ(2S)→π+π−Υ(1S)) ratio. Usign this

ratio the uncertainties on the number of Υ(2S) candidates, together with the data

recording inefficiencies, are excluded.

The sidebands in M(η) distribution will be defined and analyzed in order to test

the background simulation and normalization. A series of checks on the angular

distribution of the events in the signal box is the last control performed before fit

the M(η) distribution.

4.1 Υ(2S)→ π+π−Υ(1S) control sample

The Υ(2S)→ π+π−Υ(1S) background is selected as normalization sample, in order

to be able to quote the ratio R = B(Υ(2S)→ηΥ(1S))
B(Υ(2S)→π+π−Υ(1S)) .

This particular channel has been chosen since it has an high statistics, negligible

background sources and a well known branching ratio B = 0.181± 0.4.

The selection criteria used are:

• No good η candidates

• Exactly 2 low momentum track

• |∆z| < 3 cm

• |∆r| < 0.5 cm
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• cos(θ∗π+π−) < 0.6 for γ conversion suppression

The efficiency for this selection, calculated from montecarlo events, is (42.44±0.01)%

in the µµ channel and (36.47± 0.01)% in the ee one, while the background yield is

negligible. The global efficiency is εππ = (39.45± 0.01)%

Figures 4.1 and 4.2 show the agreement between the MonteCarlo simulation and

the data from the whole Υ(2S) sample.

Figure 4.1: M(π+π−) in ee events Figure 4.2: M(π+π−) in µµ events

The signal distributions are compatible with the expected branching ratios and

efficiencies.
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4.2 Sidebands analysis

The signal band is defined by the condition 0.540 GeV/c2 < M(γγ) < 0.552 GeV/c2

in η → 2γ events and 0.540 GeV/c2 < M(π+π−π0) < 0.555 GeV/c2 in η → 3π.

In figures 4.3,4.4, 4.6, 4.5 the M(η) distribution in the sidebands as can be seen in

the full data sample and in Montecarlo events, for the four different possible final

states, are compared.

Figure 4.3: η → 2γ candidate mass in ee

events

Figure 4.4: η → 2γ candidate mass in µµ

events

Figure 4.5: η → 3π candidate mass in ee

events

Figure 4.6: η → 3π candidate mass in µµ

events

63



CHAPTER 4. Data studies

Table 4.1 summarizes the counts in the sidebands for Montecarlo and data, as-

suming 160 Millions of Υ(2S). Poissonian errors are understood.

Table 4.1: Counts in the sidebands, in MC and data

DATA L. sideband MC L. sideband DATA R. sideband MC R. sideband

η → 3π Υ(1S)→ e+e− 70 64 10 16

η → 3π Υ(1S)→ µ+µ− 28 21 4 2

η → 2γ Υ(1S)→ e+e− 16 5 51 50

η → 2γ Υ(1S)→ µ+µ− 18 11 31 37

All the measured yields are compatible, within the errors, with the expected ones

calculated from the montecarlo and continuum sample analysis.

4.3 Signal box checks

A check on the data in the signal box has been performed in order to exclude the

introduction, during the analysis procedure, of bias or correlation. Those checks are

performed on observables measured in the η candidate frame. The corresponded

boost obviously can not be extracted from the η momentum itself, so the two body

nature of the searched decay is exploited, defining the η frame boost as the oppo-

site of the Υ(1S) candidate boost; note that the cuts applied to the dileptons are

completely uncorrelated to the cuts applied in the γ’s or the low momentum tracks

selection.

Concerning the η → γγ mode, the angular distribution of the two gammas with

respect to the Υ(1S) boost direction, measured in the η frame, has been considered.

Figure 4.7 shows the distributions obtained from the e+e− events in real data, after

all the cuts has been applied, while fig. 4.8 shows the same observable in µ+µ−

events.
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Figure 4.7: Direction of the γ’s coming

from the candidate η decay with respect

to the DiElectron boost direction, in the

η frame

Figure 4.8: Direction of the γ’s coming

from the candidate η decay with respect

to the DiMuon boost direction, in the η

frame

The η → π+π−π0 events has been checked looking at the distribution, in the η

frame, of the two charged pions energies. Figure 4.9 and 4.10 show those distribution

in events with DiMuon and DiElectron.

Figure 4.9: π+ momentum compared to

π− momentum, in the η frame, in ee

events

Figure 4.10: π+ momentum compared to

π− momentum, in the η frame, in µµ

events

No significant deviances from the expected distributions are visible.

The EVTGEN model used to simulate the Υ(2S) decay has been checked com-

paring the angular distribution of the η candidate obtained from real data in the

signal box region with the Montecarlo generation.
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Figure 4.11: Angular distribution of the

η → 3π candidates in the signal box, in

ee events. Signal montecarlo is compared

with real data

Figure 4.12: Angular distribution of the

η → 3π candidates in the signal box, in

µµ events. Signal montecarlo is compared

with real data

Figure 4.13: Angular distribution of the

η → 2γ candidates in the signal box, in

ee events. Signal montecarlo is compared

with real data

Figure 4.14: Angular distribution of the

η → 2γ candidates in the signal box, in

µµ events. Signal montecarlo is compared

with real data

The angular distribution of the leptons coming from the Υ(1S) has been checked,

since it is directly involved in the bhabha veto cut and a mismodelling can represent

a major source of systematics errors in the efficiency estimation.

Figure 4.15 and 4.16 shows the distribution obtained, in the signal box region,

from real data compared with the montecarlo prediction. The bhabha veto (events

with cos(θ∗e−) > 0.5 are discarded) is responsible for the absence of events in the

cos(θ∗e+) < −0.5 region in plot 4.15.

66



4.4. Fit on signal and Branching ratio estimation

Figure 4.15: Angular distribution of the

e+ candidates in the signal box. Signal

montecarlo is compared with real data

Figure 4.16: Angular distribution of the

µ+ candidates in the signal box. Signal

montecarlo is compared with real data

4.4 Fit on signal and Branching ratio estimation

The Mass distribution obtained from real data can be fitted with a bifurcated Gaus-

sian and the background with a crystal ball function.

Figure 4.17: Final fit on the η invariant mass, detected in all the four final states

The parameters of the fitting functions are µ = 0.5475; σ1 = 0.0018; σ2 = 0.005

for the bifurcated Gaussian and µ = 0.586; σ = 0.002; n = 2.44; α = 0.174 for the

crystal ball.

The estimated yields in the signal box are Nsgn = 259.39 ± 32.56 and Nbkg =
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76.57± 17.88.

The B(Υ(2S)→ Υ(1S)η) can be calculated as

B(Υ(2S)→ Υ(1S)η) =
R ∗ B(Υ(2S)→ Υ(1S)π+π−)

B(η → γγ) + B(η → π+π−π0)

Where R =
Nsgnεππ
Nππεη

= 0.00133 ± 0.00017(stat.) and the number of π−π+ events is

Nππ = 504428± 710

The estimated branching ratio for the searched transition is then

B(Υ(2S)→ Υ(1S)η) = (3.90± 0.47) · 10−4

Where the error is statistics.

4.5 Conclusions

We obtained a preliminary measurement of the branching fraction of the rare hadronic

transition Υ(2S) → ηΥ(1S), with the exclusive reconstruction of the final state.

This result is about greater than the prediction of Ref . [10], below the value ex-

tracted from Ref. [11] and less than half the value predicted by scaling from the

ψ(2S)→ J/ψη branching fraction [8].

A referred paper in in preparation, where the analysis on the possible sources of sys-

tematic errors will be included anc an improved result, based on the simultaneous

fit of the four indipendent final states will be presented.
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Appendix

5.1 Radiative processes

The non resonant e+e− → l+l−nγ process, the radiative Bhabha scattering, is one

of the main sorces of background in the study of events with leptons and photons in

the final state.

The e+e−Bhabha scattering at
√
s ≈ 10 GeV/c2 is completely dominated by the

electromagnetic interaction. At the tree level it can proceed in the t − channel if

the final state doesn’t contains electrons (such as in the e+e− → µ+µ− process) or

in both t and s− channel if the final state consists in an e+e− pair.

The first order correction to these amplitudes is represented by processes with an

extra photon that can be emitted both in the initial or the final state. At the second

order events with two extra photons can be considered. If photons are emitted by

the leptons in the initial state the process is called ”Initial State Radiation” (ISR).

The Final State Radiation (FSR) consists in the photon emission by the final state

particles. Since the momentum must be conserved the photon emission by a lepton

implies the reduction of the lepton’s momentum.

5.1.1 Initial state radiation

If the emission occurs from the colliding leptons in the initial state the consequent

reduction of one lepton’s momentum have as consequence a reduction of the total

energy in the center of mass:
√
s′ =

√
s − Eγ . Therefore an high luminosity e+e−

collider can provides, considering the ISR processes, a complete
√
s spectrum up to

the nominal value. The differential cross section for the production via initial state
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radiation of a general final state can be expressed as a modification of the non-ISR

cross section σ0 [18]:

σISR(s, x)

dxdcosθ
=

2α

πx

(1− x+ x2/2)sin2θ

(sin2θ +me
2/E2cos2θ)2

· σ0(s(1− x))

Where s = 4E2, E is the beam energy in the center of mass frame and x = Eγ/E is

the fraction of the beam energy carried by the emitted photon.

The angular distribution of the photon with respect to the lepton that emitted it is

strongly peaked at low angles.

The tipical efficiency for the reconstruction of an ISR photon is ≈ 10%.

5.1.2 Final state radiation

If the photon emission happens in the final state one or both the leptons will have

a reduced momentum without other conseguences. The final state radiation can be

detected in all the final states with charged particle, in particular in the Υ(1S) →

l+l− dacay.

5.2 The Kinematic fit

The kinematic fit is a procedure that allows to determinate the best estimation for

a set of given parameters, tipically the componentes of the 3-momenta of a group of

particles, having imposed some constrains. The most common constrains are the four

components of the total 4-momentum, the vertex position or an invariant mass value.

Consider a set of n measured values αm with a coviariance matrix V . Let α0 be the

array containg the best estimation for the αm parameters in presence of a set η of

constrains that can be represented by k equations fi(α0, η) = 0.

The minimization of the quantity

χ2 = (αm − α0)TV −1(αm − α0)

with the constrains

fi(α, η) = 0

gives the best estimation values α0 of the αm measured variables.
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5.2. The Kinematic fit

This problem is a vinculated optimization problem, and can be threated with the

Lagrange multipliers method. It consists in minimization the non vincolated func-

tion

χ2
NV = (αm − α0)TV −1(αm − α0) + 2λT f(α0, η)

Where λ is an array of k unkonw parameters, one for each fi(α0, η), called Lagrange

multiplicators. This method essentially turns the minimization of an n variables

equation with k contrains in the miniziation of an equation with n+k variables and

no constrains.

Usually before proceed in the minimization the constrain function are linarized

around an appropriate point αp: f(αp, η) +
df(αp,η)
dα (α − αp) = 0. The χ2

NV can

then be minimized obtainig the α0 set of parameters representing the best estima-

tion of the initial αm parameters.

The final value of the χ2 function itself can be used, after the fit procedure, as

estimator of the fit goodness.
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