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Resumo

As eletrodinamicas nao lineares (NLED) s@o generalizagoes da eletrodindmica de Maxwell
que surgem e encontram aplicacoes em diversos a&mbitos: na gravitacao, no estudo cléssico
do vacuo quantico, nos limites de baixas energias das teorias de cordas, entre outros. Por
causa disto, é importante deduzir a validade empirica destas teorias comparando suas
previsoes com os resultados experimentais correspondentes. Com o objetivo de vincular
os valores acessiveis aos parametros que caracterizam estas teorias, nesta tese sao usadas a
medic¢ao mais precisa da energia de ionizagao do atomo de hidrogénio e a se¢ao de choque
obtida na observagao pioneira do espalhamento féton-foton pela Colaboragao ATLAS em
colisoes ultraperiféricas de fons de chumbo.

A forma como as eletrodinamicas tipo Born-Infeld, uma familia de NLED, modi-
fica o potencial Coulombiano produzido pelo ntcleo do atomo de hidrogénio é calculada.
Usando a teoria de perturbacdo, a correcao da energia do estado fundamental é obtida. E
notéavel que a estrutura da teoria de perturbacao impoe a necessidade de usar a forma com-
pleta da Lagrangiana. Por causa disto, apesar de se comportarem de forma semelhante
no limite de baixas energias, cada eletrodinamica tipo Born-Infeld modifica a energia de
ionizacao de forma particular. Ao comparar com a medicao experimental da energia de
ionizagao, um vinculo para o parametro b que caracteriza estas eletrodinamicas é obtido
da ordem de b > 102V m™L.

As NLED preveem naturalmente a interagdo entre foétons. Assim, a se¢ao de
choque vy — v passa a possuir uma contribuicao devido as corre¢oes nao lineares da
Lagrangiana de Maxwell além da do Modelo Padrao. Na aproximacao de fétons equiva-
lentes, a se¢ao de choque completa Pb Pb — Pb Pb 4+ 4y em colisoes ultraperiféricas de
chumbo ¢é obtida através da convolugao da secao de choque do subprocesso vy — v com

os fluxos de fé6tons produzidos pelos ions. Assim, a comparacao da se¢ao choque completa



com a secao de choque experimental obtida pelo ATLAS permite obter o vinculo mais

preciso dos pardmetros nio lineares a ~ 8 < 2 x 10719GeV ™ ~ 10~*"m? J~1.

Palavras chaves: eletrodinamicas nao lineares, vinculos, energia de ionizagao, atomo de

hidrogénio, espalhamento féton-foton.



Abstract

Nonlinear electrodynamics (NLED) are a generalization of Maxwell’s electrodynamics that
arises and is used in several fields such as: gravitation, classical consequences of the quan-
tum vacuum, low energy limits of string theories etc. Because of this, it is an important
task to evaluate the empirical validity of these theories by comparing their predictions
with the corresponding experimental measurements. In this thesis, the ionization energy
of the hydrogen atom and the photon-photon scattering cross section recently observed
by the ATLAS Collaboration with ultraperipheral collisions of lead ions are used.

The way in which Born-Infeld-like theories, a class of NLED, modify the Cou-
lomb potential produced by the hydrogen atom’s nucleus is calculated. Then, using the
perturbation theory, the first order correction of the ground state energy is derived. It
is remarkable that, although this class of NLED behaves identically in the low energy
limit, each theory produces a slightly different correction. This is due to the framework of
perturbation theory which forces the use of the complete Lagrangian. Comparison with
the measurement of the ionization energy constrains the parameter b, which characterizes
this class of theories, to be b 2> 102!V m™!.

The direct interaction between photons is one of the most striking features of
NLED. Therefore, the cross section for vy — 77 scattering acquires a contribution due
to nonlinear corrections to Maxwell’s Lagrangian besides the Standard Model ones. In
the equivalent photon approximation, the complete scattering cross section for Pb Pb —
Pb Pb + v~ in ultraperipheral collisions is derived through the convolution of the sub-
process cross section 7y — v with the photon fluxes produced by the ions. Com-
parison of the complete cross section with the experimental measurement obtained by
the ATLAS Collaboration yields the most precise constrain for the nonlinear parameters

a~pB<2x10710CGeV 1074 m? J7L



Keywords: nonlinear electrodynamics, constraint, ground state energy, hydrogen atom,

photon-photon scattering.
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Capitulo 1

Introducao

A eletrodindmica cléssica é uma das teorias mais bem sucedidas da histéria da fisica.
A primeira grande unificacao, a da eletricidade, magnetismo e a 6tica culminou com
a publicagao do artigo A Dynamical Theory of the Electromagnetic Field, por Maxwell
em 1865 [1]. Desde sua publicagao, no meio do século XIX, até os dias de hoje, tem
sido a fonte de previsoes notéaveis. O estudo de suas consequéncias e a sua aplicagao a
radiagao emitida pela matéria, serviu como base para o desenvolvimento de novas teorias,
a relatividade especial e a mecanica quantica. Posteriormente, o estudo de sua quantizacao
serviu como modelo para um novo campo da fisica, a teoria quantica de campos. Na sua
versao quantizada, é uma das teorias mais precisas conhecidas, sendo capaz de concordar
com resultados experimentais em até 10 partes por bilhdo [2|. Apesar deste sucesso, a
crescente engenhosidade dos experimentos, tanto para baixas quanto para altas energias,
torna necessario continuar testando a sua versao atual, a eletrodinamica quantica, seja
para concluir que ela continua capaz de acompanhar a precisao dos valores medidos, seja
para descobrir fontes de nova fisica .

Diversas generalizacoes da eletrodindmica de Maxwell sao possiveis. As eletrodi-
namicas de Proca e de Podolsky [3, 4, 5] sdo extensoes que surgem ao quebrar a invarian-
cia de gauge e permitindo equacoes de movimento do campo A* de ordem maior que 2,
respectivamente. Por outro lado, uma classe interessante de eletrodinamicas surgem ao
permitir equacoes de movimento nao lineares, estas teorias sao genericamente chamadas
de eletrodindmicas nao lineares, ou simplesmente NLED. A teoria mais conhecida que

pertence a esta classe ¢ a de Born-Infeld. Com uma Lagrangiana semelhante ao fator de



Lorentz, foi formulada em 1934 com o propésito de sanar a divergéncia da autoenergia
de particulas puntiformes. Em 1936, Heisenberg e Euler incorporaram a eletrodinamica
classica corre¢oes quanticas previstas pela teoria relativistica do elétron de Dirac em uma
Lagrangiana efetiva. A expansao desta Lagrangiana em série de poténcias dos campos
explicita sua nao linearidade.

As NLED possuem diversas propriedades interessantes, sendo as mais notaveis a
previsao do espalhamento entre ondas eletromagnéticas e do fendmeno de birrefringéncia
no vacuo [6, 7]. As NLED oferecem uma forma conveniente de estudar classicamente
corregoes quanticas devido a polarizacao do vicuo. Neste sentido, a Lagrangiana de
Euler-Heisenberg, permite testar as previsoes da eletrodinamica quantica em regimes de
baixas energias, quando comparado & massa do elétron. Ja eletrodinamica de Born-Infeld
é particularmente distinta por surgir em diversos cenarios de teorias de cordas [8, 9]. Além
do mais, NLED tipo Born-Infeld encontram aplicacao no contexto de gravitagao, como
em cenarios alternativos de inflagdo e buracos negros tipo Reissner-Nordstrom [10, 11].

Apesar da riqueza destas teorias, pouco se conhece sobre a sua validade empirica
[12]. Os parametros que, sao introduzidos ao generalizar a eletrodindmica de Maxwell,
precisam ser fixados ou vinculados comparando as previsoes feitas por estas com resultados
experimentais. Este trabalho tem como objetivo contribuir com esta tarefa fazendo uso
tanto da medi¢ao mais precisa da energia de ionizagao do atomo de hidrogénio quanto da
primeira observacao direta do espalhamento féton-foton, feita pela Colaboracao ATLAS
em 2017 [13].

Uma das consequéncias das NLED ¢ a de modificar o potencial Coulombiano.
Por isso, deve modificar, por sua vez, a energia de ligacao do elétron ao nucleo do 4tomo
de hidrogénio. Com o intuito de investigar como a energia de ionizacao do atomo de
hidrogénio é alterado pelas NLED, fazemos uso da teoria de perturbacao independente do
tempo para calcular a primeira ordem de correcao. Apesar do comportamento do potencial
generalizado divergir pouco do potencial Coulombiano nos comprimentos caracteristicos
do atomo, a estrutura da teoria de perturbagao é tal que a Lagrangiana completa da

eletrodinamica deve ser usada. Como consequéncia, cada eletrodinamica tipo Born-Infeld!

1Uma eletrodinamica é dita tipo Born-Infeld se a primeira ordem de correcdo da eletrodindmica de
Maxwell é idéntica & de Born-Infeld. Para mais detalhes ver a Secao 2.2.



corrige a energia de ionizacao de forma distinta.

A natureza nao linear das NLED leva & possibilidade de interagao entre ondas
eletromagnéticas. Como resultado, a quantizagao destas teorias deve introduzir termos
de interagao direta entre fo6tons. Portanto, a amplitude de probabilidade do espalhamento
elastico vy — 77y deve possuir contribuicoes devido & nao linearidade inerente a eletro-
dindmica além das contribuicoes previstas pelo Modelo Padrao. Assim, a modificagao
da secao de choque permite vincular os parametros das corregoes da eletrodinamica de
Maxwell confrontando-a com o resultado experimental obtido pelo ATLAS em colisoes
ultraperiféricas de ions de chumbo. Para isto, calculamos a secao de choque entre um
par fotons devido as correcoes nao lineares. Em seguida, fazendo uso da aproximagao de
fotons equivalentes, os fons de chumbo sao substituidos por seus fluxos equivalentes de f6-
tons. Finalmente, por meio da convolugao dos fluxos e da se¢ao de choque, e restringindo
o espaco de fase aquele do experimento, estimamos como as corre¢oes contribuem para a
secao choque foton-foton em colisoes ultraperiféricas de fons.

A primeira estimativa do parametro b que caracteriza a eletrodinamica de Born-
Infeld foi feita pelos proprios autores. Devido ao desconhecimento, na época, da exis-
téncia de outras particulas, usaram as propriedades do elétron para concluir que b =~
1.2 x 10V m~!. Nos dias de hoje, gracas a descoberta de diversas outras particulas
elementares, nao parece razoavel privilegiar o elétron em detrimento de outras. Quatro
décadas depois, Soff et al, usando medicoes de energias de transi¢ao de &tomos mudnicos,
estimaram que b > 1.7x10*?V m™!. A forma pela qual este vinculo foi derivado foi posteri-
ormente criticado [12|. Mais recentemente, usando a medi¢ao do espalhamento f6ton-foton
do ATLAS, Ellis aperfeicoou em 5 ordens de grandeza o vinculo para b > 4.3 x 10"V m™*
[14].

Apesar do dtomo de hidrogénio nao alcancar as energias necessarias para o es-
tudo preciso de eletrodinamicas nao lineares, constitui um laboratério bastante simples
e facilmente adaptéavel para obter vinculos de NLED. Por outro lado, as energias en-
volvidas no LHC permitem examinar de forma bastante precisa o comportamento das
NLED. De fato, a partir da medicao do espalhamento féton-féton obtemos os vinculos
mais precisos das primeiras corregoes nao lineares da eletrodindmica de Maxwell. Além

disto, devido & dependéncia quadratica da se¢ao de choque do espalhamento entre dois



fotons nos parametros, conseguimos restringir completamente o espago destes parametros.
Como complemento, o impacto que a escolha da distribui¢ao de carga do fon e do fator
de absorcao tem sobre a secao de choque final também ¢é analisada.

Este trabalho esta dividido da seguinte maneira. No Capitulo 2 iniciamos fazendo
uma breve revisao da eletrodinamica de Maxwell. Em seguida, revisamos as principais
propriedades das NLED. Assim, derivamos a forma geral que a Lagrangiana de uma
NLED deve ter e analisamos as consequéncias das primeiras corre¢oes. Como exemplo
de aplicacao classica, estudamos o efeito de birrefringéncia magnética linear ou efeito
Cotton-Mouton. Terminamos o capitulo com uma descricao das principais eletrodinami-
cas tipo Born-Infeld. No Capitulo 3, revisamos os fundamentos da mecanica quantica,
sua aplicacao ao dtomo de hidrogénio e derivamos os resultados relevantes da teoria de
perturbagao independente do tempo. No Capitulo 4, fazendo uso dos resultados obtido no
capitulo anterior, calculamos como a energia de ionizacao é afetada pelas eletrodinamicas
tipo Born-Infeld - eletrodinamicas de Born-Infeld, exponencial e logaritmica. Usando a
medicao mais precisa disponivel para a energia de ionizagao, vinculamos o parametro b
que caracteriza cada uma dessas eletrodinamicas. No Capitulo 5, revisamos os principais
conceitos da teoria quantica de campos. Iniciamos descrevendo o processo de quantizagao
do campo mais simples, o escalar. Baseado nesta apresentagao, usamos o processo de
quantizacao desenvolvido por Gupta e Bleuler para quantizar o campo eletromagnético.
Em seguida, descrevemos os principais resultados da eletrodinamica quéantica. Como apli-
cacao desta, apresentamos as etapas para a obtencao da sec¢ao de choque do espalhamento
elastico foton-foton. Concluimos o capitulo quantizando a Lagrangiana de Maxwell com
corre¢oes nao lineares e deduzimos a se¢ao de choque correspondente. Finalmente, no Ca-
pitulo 6 derivamos, por meio da aproximagao de fo6tons equivalentes, a se¢cao de choque do
espalhamento v a ser medida em colisoes ultraperiféricas de fons. O principal ingrediente
da aproximagao de fotons equivalente é o fator de forma do ion, por isso, apresentamos 4
distribuicoes distintas que sao usadas para fins comparativos. Finalmente, deduzimos a
contribuicao da secao de choque devido as corregoes nao lineares e vinculamos o espago
de fase dos parametros usando o resultado experimental obtido pelo ATLAS. No Capitulo

7 apresentamos as conclusoes.



Capitulo 2

Eletrodinamicas nao lineares e

correcoes nao lineares a Maxwell

Neste capitulo, a forma das eletrodinamicas nao lineares (NLED) abordadas seré definida.
Seré feito um breve resumo da eletrodinamica de Maxwell e das suas principais relagoes
na Secao 2.1. Em seguida, na Secao 2.2 a partir de suposi¢oes basicas, deduziremos a
dependéncia funcional que a Lagrangiana de uma NLED deve possuir e a forma genérica
que a série de poténcias correspondente deve adquirir. As primeiras consequéncias das
corregoes que as NLED trazem a eletrodinamica de Maxwell serao interpretadas por meio
das relacoes constitutivas. Desta forma, passaremos a observar o vacuo classico efeti-
vamente como um meio dielétrico. O fenémeno de birrefringéncia magnética linear, ou
efeito Cotton-Mouton, serd brevemente discutido. Finalmente, listaremos os principais
resultados das eletrodinamicas tipo Born-Infeld relevantes para este trabalho. Algumas
das relacoes derivadas nesta se¢ao servirao como base para o desenvolvimento das secoes a
seguir. As unidades do SI serao usadas nesta sec¢ao, bastando igualar A = ¢ = ¢y = 1 para
obter as relagoes correspondentes em unidades naturais. Da definicao da velocidade da

_1 . . . "
luz no vacuo ¢ = (gop49) " 2 temos que, em unidades naturais, a permeabilidade magnética

é,u():l



2.1 Eletrodinamica de Maxwell

2.1.1 No vacuo classico

A eletrodinamica classica é a teoria que descreve a interagao entre os campos elétrico e
magnético no mundo macroscopico. Sua histéria remonta a antiguidade, quando fenéme-
nos como a polarizagao do ambar por meio de fricgao atrairam a atencao dos fildsofos.
Os resultados modernos se devem ao esforco de varios cientistas, entre os quais podemos
citar Cavendish, Coulomb, Ampére, Faraday, Biot e Savart. Mas é gracas ao trabalho de
Maxwell, corrigindo a lei de Ampére e compilando as equagdes necessarias a sua descri-
¢ao, que a eletrodindmica cléssica adquiriu sua forma atual. Gracgas a notagao vetorial,
podemos resumir a dindmica dos campos elétrico e magnético no vacuo classico em 4

equacoes,

v-E=L (2.1)
€0
V.B=0, (2.2)
0B
OE )
V xB-— EOIUOE = lo])- (24)

onde E e B sao os campos elétrico e magnético, e p e j sao as fontes, a densidades de carga
e de corrente. As equagoes homogéneas de Maxwell, as leis de Gauss para o magnetismo
e de Faraday, podem ser automaticamente satisfeitas escrevendo os campos elétrico e
magnético em termos de fungoes escalares e vetoriais. Devido as simetrias do sistema
de equagodes, conseguimos reduzir os 6 graus de liberdade iniciais para apenas 4. Desta

forma, definimos os potenciais elétrico ¢ e vetor magnético A:

0A

B=VxA.

A principal vantagem da notacao vetorial é a de permitir escrever uma formulacao in-

dependente do sistema de coordenadas, tornando assim mais claras as propriedades dos



campos elétricos e magnéticos. Consequéncias matematicas, como a defini¢ao de potenci-
ais elétricos e magnéticos, e previsoes da teoria, como a propagacao de ondas eletromag-
néticas, sao facilmente obtidas gracas a esta notacao.

Baseando-se em simetrias de fenémenos eletromagnéticos, Einstein propos que a
eletrodinamica deveria obedecer um principio de relatividade semelhante a da mecanica
classica. Em 1905, supondo a invariancia da velocidade de propagacao das ondas ele-
tromagnéticas, apresentou sua teoria da relatividade restrita onde as transformacoes de
Galileu, que conectam referenciais inerciais definidos pela mecéanica Newtoniana, foram
substituidas pelas transformacoes de Lorentz. Assim, dados os sistemas de referéncia S e
S’ com mesmo sistema de coordenadas, cujas origens coincidem no tempo t = t' = 0, se
S’ se move na direcao e sentido de z com velocidade v com relagao a S, suas coordenadas

estao conectadas através das transformagoes

ct' = (ct — Bz), (2.6)
=z,

y' =y,

2 =7 (z = Bet),

onde v = (1 — 62)_% é o fator de Lorentz, 8 = v/c e ¢ a velocidade da luz no vacuo. Estas
relagoes recuperam as transformacoes de Galileu quando a velocidade relativa entre os
referenciais é pequena quando comparada a velocidade da luz. Em particular, podemos
definir um regime nao relativistico, no qual 5 < 0.3 e 7 < 1.05, onde a mecanica New-
toniana pode ser considerada uma boa aproximacgao. No regime relativistico, o tempo
desempenha um papel tao importante quanto o do espaco. A estrutura das transforma-
¢oes de Lorentz (2.6) sugere que podemos agrupar o tempo e as coordenadas espaciais em
um objeto com 4 componentes x* = (ct,x). Objetos deste tipo sao conhecidos como 4-
vetores contravariantes, onde p = 0, 1,2, 3. Desta forma, podemos reescrever (2.6) usando
uma notagao matricial,

o y2i v
at = A" x,

onde a convencao de Einstein foi usada de tal forma que indices repetidos sao somados, e



onde

v 00 —pB
0 10 0

A = ,
0 01 0
B 0 0 v

para um boost ao longo do eixo z. De forma anéloga, podemos reunir em 4-vetores objetos
que se transformam de forma semelhante ao tempo e espaco ao passar de um referencial
inercial para outro. Por este motivo, agrupamos os potenciais elétrico e vetor magnético,
as densidades de carga e de corrente, e os operadores de diferenciacao do tempo e espaco

Cco1mo

A = (%,A) , @7)
j* = (cp.i), (2.8)

o — (%%, —v) | (2.9)

Neste trabalho usamos a métrica de Minkowski com as componentes espaciais
negativas n = diag (1, —1, —1, —1). A métrica permite definir o produto escalar e a norma
dos 4-vetores, x -y = ztn,y" e |x| = x#n,a”, respectivamente. Podemos agrupar
a grandeza z, = 7),x" definindo assim o vetor dual de z*,conhecido como 4-vetores
covariantes.

A luz da relatividade restrita, os campos elétrico e magnético passam a ser vistos
como sendo manifestagoes de uma entidade chamada de campo eletromagnético. Usando
a defini¢ao dos potencias (2.5) como base, o campo eletromagnético pode ser definido

como um tensor antissimétrico através da relagao
Fr = orAY — ov A*. (2.10)

é interessante notar que desta definicao decorre imediatamente que o campo eletromag-
nético é invariante pelas transformacoes A* — A* 4+ 01, chamadas de transformacoes
de gauge. Esta propriedade pode ser usada para demostrar que das 4 componentes do

4-potencial apenas 2 sao independentes [15] (ver Segao 5.3). Em coordenadas cartesianas,



usando (2.9) e (2.7), e comparando com (2.5), obtemos que o tensor campo eletromagné-

tico pode ser escrito como

S i
£ 0 -B. B,
= c (2.11)
LB, 0 -B,
L -B, B, 0

Com o objetivo de mostrar que o campo eletromagnético definido em (2.10), junto com
as propriedades dos 4-vetores, recupera os resultados conhecidos, obtemos a forma como

este se transforma de um sistema de referéncia para outro a partir da sua definicao,
F'™ = A N yFP, (2.12)

Desta forma, para dois referenciais que se conectam através de um boost na direcao z
com velocidade v obtemos que os campos medidos por eles se relacionam através das

expressoes conhecidas [16]

E! =~(E, —vB,), (2.13)
E =~(E,+vB,), (2.14)
E =E, (2.15)
e
B, =~ (Bx n ﬁf) , (2.16)
£,
5= (B,-57). (2.17)
B. = B.. (2.18)

¢ interessante notar que estas transformagoes, e consequentemente a equagao (2.12), sdo

simétricas pela troca simultinea E/¢c — B e B — —E. Aplicando esta troca simultanea



em F* obtemos um tensor linearmente independente chamado de dual,

F,U,V _ c c
)
B Es
By c 0 c
E
B. 2 —% 0

que também pode ser definido a partir de
v — 1 mef p
- _56 afBs

onde €¥*% & o tensor totalmente antissimétrico de Levi-Civital.
Gracas a notagao tensorial, é possivel reescrever as equacoes de movimento do

eletromagnetismo em uma forma covariante por transformacoes de Lorentz,

OuF™ = po”, (2.19)

0uFy + 0y Fos + 95F, = 0.

A primeira descreve como as fontes se acoplam ao campo eletromagnético e recupera as
leis de Gauss e de Ampére-Maxwell. Ja a segunda é uma consequéncia da defini¢ao (2.10)
e recupera as leis de Gauss para o magnetismo e de Faraday. A segunda equagao pode

ser reescrita usando o tensor eletromagnético dual de tal forma a tornar o conjunto de

10 simbolo totalmente antissimétrico de Levi-Civita é definido como €91, =1 €

1, para permutacoes pares de 01...n
€ay..a, = 4 —1, para permutacoes impares de 01...n
0, para indices repetidos

Também definimos que €%'® = —1, seguindo uma prescricio analoga para as permutacoes. Além do

mais, é definido que o simbolo de Levi-Civita possua o mesmo valor em qualquer sistema de coordenadas,

/

EalaQ..‘an - €a1a2~~~an'

Como consequéncia disto, ¢ uma densidade tensorial de peso 1.
O tensor de Levi-Civita é definido a partir do simbolo como

1

7€a1a2...an )
Vinl

Onde 7 é o determinante da métrica 7,,,. No caso especial de Minkowski temos que |n| = 1.

€ajas...an —
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equacoes mais simétrico,

9, Fm = 0. (2.20)

A partir do tensor campo eletromagnético e seu dual, é possivel definir dois inva-
riantes de Lorentz,

1 1 B?
F=—-——F"F, =~ (50E2 - —) , (2.21)
4,&0 2 Ho

1 ~ €0
=-—F"F,, =,/—E-B. 2.22
4pio g Ho ( )

Por serem invariantes, possuem o mesmo valor em qualquer sistema de referéncia inercial.
Propriedades interessantes do sistema podem ser deduzidas a partir deles. Por exemplo,
se em um dado sistema de referéncia existe uma configuracao eletrostatica (F° > 0) ou
magnetostatica (F < 0), entao o invariante G = 0. Devido as transformagoes do campo
eletromagnético (2.12), outro sistema de referéncia observando o mesmo sistema ira medir
uma mistura dos campos elétrico e magnéticos. A invaridncia de GG nestes casos implicara
que os campos elétrico e magnéticos necessariamente deverao ser perpendiculares. A
situacao inversa também é verdadeira, se os campos elétrico e magnético sao transversais
em um sistema de referéncia e F' # 0, é possivel encontrar um sistema de referéncia
puramente eletrostatico ou magnetostatico [17].

Finalmente, a eletrodindmica cléssica satisfaz um principio variacional. Definindo

a densidade Lagrangiana,

»CM = __FMVF;W - A,uj”7 (223)

B2
! (E - M—) ot A (2.24)

através das equagoes de Euler-Lagrange,

oL oL
= 2.2
O 2(0,4,) 0A) (2.25)

recuperamos as duas equagoes inomogéneas de Maxwell. As outras duas equagoes, como
comentado acima, sdo consequéncia da definicdo do tensor eletromagnético (2.10). O

formalismo Lagrangiano tem a vantagem de explicitar as simetrias da teoria. A densi-
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dade Lagrangiana® de Maxwell (2.23) é explicitamente invariante por transformacoes de
Lorentz, propriedade que as equacgoes de movimento correspondentes possuem. Por ou-
tro lado, para que a Lagrangiana seja invariante por transformacoes de gauge, devemos

assumir d,j* = 0, a conservagao da carga elétrica®.

2.1.2 Em meios materiais

Os meios materiais sao constituidos de &tomos, que por sua vez sao constituidos por um nu-
cleo de carga positiva rodeado por uma nuvem de elétrons de carga negativa. Na presenca
de um campo eletromagnético, os meios materiais podem reagir de diversas maneiras e, de
acordo com a sua estrutura, podem ser classificados em certos grupos. Pela forma como
estes reagem a presenca de um campo elétrico, de maneira geral podem ser agrupados em
condutores e isolantes. Os primeiros possuem elétrons fracamente ligados e, na presenca
de um campo elétrico, no caso ideal, se reorganizam até anulé-lo completamente em seu
interior. Uma carga superficial efetiva se forma nestes materiais satisfazendo caracteristi-
cas que os permitem ser tratados como condi¢oes de contorno. Ja o segundo grupo possui
elétrons mais fortemente ligados, tendo assim um movimento mais restrito. Os &tomos
e moléculas destes materiais se esticam e rotacionam na presenca de um campo elétrico
externo devido a tendéncia das cargas positivas serem puxadas na dire¢ao do campo e das
cargas negativas serem puxadas no sentido contrario. Em consequéncia disto, momentos
de dipolo elétrico se formam em seu interior gerando um campo elétrico que se opoe ao ex-
terno, processo este chamado de polarizacao elétrica. A forma como este processo ocorre
é nao linear, sendo assim bastante complexo. Porém, para campos suficientemente fracos,
uma resposta linear do material ao campo elétrico oferece uma boa descri¢ao aproximada
do processo de polarizacao.

Pela forma como os meios materiais reagem a presenca de um campo magnético
podemos classifica-los em trés grandes grupos: os materiais ferromagnéticos, paramagnéti-

cos e diamagnéticos. Estes fendomenos podem ser compreendidos completamente somente

2Com o objetivo de simplificar a nomenclatura, daqui em diante a densidade Lagrangiana seré sim-
plesmente chamada de Lagrangiana.

3Por uma transformagao de gauge A, — A, + 9,4, a Lagrangiana L) adquire um termo extra
JH0u = 0, (j*) — YOuj*. O termo de superficie ndo afeta as equacdes de movimento. Portanto,
para a Lagrangiana ser invariante, devemos restringir as correntes tal que d,j" = 0. Este vinculo ¢
automaticamente satisfeito ao acoplar minimamente o campo eletromagnético a campos de matéria.
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a partir de uma descricao quantica, mas argumentos semiclassicos oferecem uma boa in-
terpretagao qualitativa. Os elétrons que orbitam ao redor dos nicleos que compdem a
matéria agem efetivamente como uma corrente, produzindo assim um momento de dipolo
magnético. Além disto, os elétrons possuem um momento de dipolo magnético intrin-
seco chamado de spin. Por causa disto, um campo magnético externo interagem com a
matéria. O diamagnetismo é um fendémeno presente em todos os materiais mas, por ser
extremamente fraco, é facilmente ofuscado pelos outros tipos de magnetismo. Na presenca
de um campo magnético nao uniforme, a variagao do seu fluxo gera um campo elétrico
que induz uma variagao do momento magnético orbital. Por conservagao de energia, esta
variagao provoca um campo magnético oposto ao campo externo, dando origem a forca
de repulsao que caracteriza os materiais diamagnéticos.

Os atomos ou moléculas que compoem os paramagnetos e ferromagnetos possuem
elétrons desemparelhados, apresentando assim um momento de dipolo magnético liquido
nao nulo. A presenca de um campo magnético externo tende a alinhar os dipolos gerando
por sua vez um campo magnético no mesmo sentido. Desta forma, estes materiais se
caracterizam por serem atraidos por um campo magnético. A diferenca entre os materiais
paramagnéticos e ferromagnéticos esta na forma como seus dipolos interagem entre si. No
primeiro caso, os dipolos interagem fracamente e tendem imediatamente & desordem na
auséncia de um campo externo. Ja no segundo caso, interagem de forma mais intensa e
tendem a formar regioes em que os dipolos ficam alinhados, chamados de dominios. Por
causa disto, ao submeter os materiais ferromagnéticos a um campo magnético, dipolos na
fronteira de um dominio tendem a se alinhar com os do dominio vizinho que estao alinha-
dos com o campo externo. Consequentemente, quando o campo de fundo é desligado, os
ferromagnetos mantém parte da magnetizacao, produzindo os imas permanentes. Assim,
a magnetizacao destes materiais depende da sua histéria. Mais informagoes podem ser
encontradas em [16, 18, 19].

O campo eletromagnético em meios materiais é extremamente complicado em es-
calas microscopicas. Em muitas aplicagoes, porém, é suficiente conhecer o comportamento
médio em escalas macroscopicas, em volumes que contenha uma grande quantidade de
atomos mas pequeno com relacao ao material como um todo. Nestes casos, para descrever

a polarizacao elétrica e magnética nos materiais definimos a densidade de dipolos elétricos,
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ou vetor de polarizacao, P, e a densidade dipolos magnéticos, ou o vetor magnetizacao,
M. Analisando o campo eletromagnético gerado por estas distribui¢oes de dipolos, pode-
mos concluir que é equivalente aquele produzido pelas distribuigoes de carga e correntes

[16, 18],

pp=—V-P,
) OP
JP:Ea
v =V xM.

Com o objetivo de distinguir as distribui¢oes de cargas e correntes devido a polarizagao

do material das que tem qualquer outra origem (livres), fazemos a separagao,

p=ps+pp

J=Jf+ir+ium,

onde f indica as distribuigoes de carga e correntes livres. Com isto, é possivel reescrever

as equagoes (2.1) e (2.4) como

V-D= P (2.26)
oD
H=j —_— 2.27
onde definimos

D =¢E+ P, (2.28)

B
H=— — M, (2.29)

Ho

e chamados de vetor deslocamento elétrico D e campo H. As outras duas equagoes origi-
nais de Maxwell, por nao dependerem das fontes, permanecem inalteradas. A vantagem
de reescrever as equacoes em termos dos campos D e H é que elas dependem apenas das
cargas e correntes que controlamos, nao precisamos nos preocupar com as cargas e Cor-

rentes oriundas do fenémeno de polarizacio. E importante manter em mente que (2.26)
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e (2.27) ndo definem completamente estes campos, de tal forma que podem nao ser nulos

9D _

in (como ¢ nos casos de um magneto e eletreto

em situagoes em que py = 0 e jy =
[16]). Desta forma, nem sempre ha um paralelo 6bvio com os campos fundamentais E
e B. Os campos D e H podem ser tratados matematicamente como os campos E ¢ B
apenas nos casos especiais em que possuam analogos as leis de Gauss para o magnetismo

e de Faraday. Para que isto ocorra, as relagoes

B
V-H:V-(——M):—V'M, (2.30)
Ho
e
1 OH 10 (B 1 oM
D+ —-—= E+P)+—-——(—-—-M) = P——— 2.31
V x + 25 V x (g0E + )+028t<ﬂo ) V x 2 5 (2.31)
devem ser nulas. Desta forma,
V.M =0, (2.32)
e
1 oM
P=——. 2.33
VX 2 ot ( )

Em situac¢oes em que hé simetrias (sistemas esfericamente ou cilindricamente esféricos,
por exemplo), estas relagoes sdo naturalmente satisfeitas e podemos usar as técnicas de-
senvolvidas para deduzir E e B.

Para recuperar os campos E e B a partir de D e H é preciso inverter as relacoes
(2.28) e (2.29), e, para tal, precisamos conhecer a forma dos vetores de polarizacao P e de
magnetizagao M. Em outras palavras, precisamos conhecer como o meio material reage
a presenca E e B. De maneira geral, os vetores P e M podem ser escritos em termos
de séries de poténcias dos campos E e B. No caso de campos eletromagnéticos sufici-
entemente fracos, os materiais paramagnéticos e diamagnéticos possuem uma resposta

aproximadamente linear ao campo, portanto os vetores de polarizacao e magnetizacao
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podem ser corretamente descritos como

P = 8OXE]Ea

M = xnH,

onde as susceptibilidades elétrica xg e magnética x,s sao parametros adimensionais que
caracterizam o meio. Enquanto o primeiro somente assume valores positivos, o segundo
pode assumir valores tanto negativos (no caso de materiais diamagnéticos) como positivos
(materiais paramagnéticos). Desta forma, é possivel inverter facilmente as relagoes para

obter

D =¢E, (2.34)

B = uH, (2.35)

onde e = ¢¢ (14 xg) e i = o (1 + xar) sdo as permissividade e permeabilidade do mate-
rial.

Usando a notagao tensorial é possivel recuperar estes resultados em uma forma
covariante por transformagoes de Lorentz. Definimos os tensores deslocamento elétrico e

polarizagao-magnetizacao [20]:

0 —c¢D, —cD, —cD,
cD, 0 —H, H,
DWW = ,
cD, H, 0 —H,
cD, —-H, H, 0
0 cP, cP, cP,
—cP, 0 -M, M,
M* = ,
—cP, M, 0 —M,

—cP, =M, M, 0

respectivamente. A partir deles podemos escrever as distribui¢oes de carga e correntes
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provenientes da polarizacao do meio material através da relacao
N 2 174
Jo = aMMM 3

onde o indice b indica que sdo cargas e correntes ligadas (bound), e as defini¢oes dos

campos deslocamento elétrico e H, ou relagoes constitutivas, como

1
A (2.36)

A partir desta tltima, recuperamos as equacoes de Maxwell macroscopicas para meios

materiais,

8, D" = jv. (2.37)

E interessante reescrever as condigoes (2.32) e (2.33) em sua forma covariante.
As leis de Gauss para o magnetismo e de Faraday para o campo D"’ pode ser escrita
como

N 1 . - N
OuD" = S0P = 0N = 0, N, (2.38)

onde DM = —3e"PDyg e M = —3"*? M,z sdo os tensores duais a D" e M*,
e podem ser obtidos pelas trocas simultaneas cD — —H e H — D para o primeiro,
ecP - —M e M — P para o segundo. Desta forma, havera total simetria entre as

equagoes de Maxwell no vacuo e na matéria se
O, M" = 0.

Finalmente, uma formulagao Lagrangiana é possivel de tal forma a recuperar

estes resultados. Definindo a Lagrangiana

1 1
L= P E = Auj] + 5P My, (2.39)
1 , B? .
0

obtemos as equacoes macroscopicas inomogéneas de Maxwell a partir da equacao da equa-

¢ao de Euler-Lagrange (2.25). As relagdes constitutivas sdo obtidas através da definigao
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oL

DM = 2.41
oF,,’ (2:41)
ou, equivalentemente,
oL oL
Ehdad E————— 2.42
D=7% ¢ H="38 (2.42)

Para obter as expressoes para a polarizacao e magnetizacao de um sistema a

partir da Lagrangiana que o descreve, substituimos (2.36) em (2.41),

MWZLF#V_ oL ,
Ho aFyu

ou, de forma equivalente, (2.28) e (2.29) em (2.42),

oL

P= 8_E — €0E, (243)
oL B

M=_—-+—. 2.44
B (2.44)

A partir destas expressoes, serd possivel dar uma interpretacao ao vacuo das eletrodi-
namicas nao lineares de um meio dielétrico e obter a partir delas a forma pela qual se

polariza.

2.2 Eletrodinamicas nao lineares

A eletrodinamica de Maxwell é caracterizada por uma série de propriedades. Se trata de
uma teoria relativistica, invariante por transformagoes de gauge do grupo U (1) e possui
equagoes de movimento lineares de segunda ordem no potencial. Abrir mao de uma ou
varias destas propriedades permite desenvolver generalizagoes do eletromagnetismo cléas-
sico. Duas eletrodinamicas conhecidas, a de Proca e a de Podolsky, surgem ao quebrar a
invariancia de gauge - adicionando um termo de massa a Lagrangiana - e permitindo equa-
¢oes de movimento de ordem maior que dois no potencial, respectivamente. A linearidade
das equacoes de movimento é a consequéncia da validacao do principio de superposicao
em regimes macroscopicos com precisao da ordem de 0.1% [18]. Ao permitir equagoes de
movimento nao lineares, surge uma familia de eletrodinamicas genericamente chamadas

de eletrodinamicas nao lineares ou NLED. Alguns fenémenos, que comumente acontecem
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em meios materiais passam a ser previstos por estas eletrodinamicas no vacuo. Este é o
caso da birrefringéncia e do dicroismo de ondas eletromagnéticas, ocorrendo na presenca
de um campo elétrico ou magnético de fundo, além do proprio espalhamento entre ondas
eletromagnéticas (6, 21].

As eletrodindmicas de Heisenberg-Euler e de Born-Infeld sao os exemplos mais
conhecidos de NLED. A primeira é o resultado da tese de doutorado de Euler em 1936 e
parte da investigacao do espalhamento féton-féton previsto por Halpern e Debye a partir
da teoria relativistica do elétron de Dirac [22, 23, 24|. Desta forma, corrige a eletrodi-
namica de Maxwell incorporando, de forma nao perturbativa, os efeitos da polarizacao
do vacuo a um loop. Esta correcao é exata quando devido a um campo eletromagnético
constante de fundo e aproximada para campos de fundo que variam lentamente com rela-
cao ao comprimento de onda de Compton e intensidades muito menores que 10V m=1.
Por outro lado, Born e Infeld propuseram sua teoria em 1934 com o objetivo de corrigir
a divergéncia da autoenergia do elétron impondo um limite superior b para o médulo do
campo elétrico |25, 26]. Para isto, se inspiraram na forma como a relatividade restrita
restringe o valor maximo possivel da velocidade, sendo que a forma da Lagrangiana tem
semelhanca com o fator de Lorentz. Born e Infeld propuseram o valor b ~ 102V m™!
como limite, sendo o campo gerado por um elétron a uma distancia igual ao seu raio
classico 7, = €2 /4megmec?. O elétron era a tnica particula elementar conhecida na época,
hoje em dia nao hé mais razao para privilegia-lo em detrimento de outras. Desta forma,
vincular inferiormente parametro b da teoria continua sendo uma tarefa a ser realizada
nos dias de hoje. A eletrodinamica nao linear de Born-Infeld possui algumas propriedades
interessantes, sendo a unica a nao apresentar o efeito de birrefringéncia no vacuo [27].

As equagbes de movimento das teorias nao lineares devem ser as mesmas em todos
os sistemas de referéncia inerciais. Esta covariancia pelas transformagoes de Lorentz limita
consideravelmente a forma que a Lagrangiana que descreve estas teorias pode assumir.
Os tnicos invariantes relativisticos disponiveis sao F' e GG, definidos pelas equagoes (2.21)
e (2.22). Ao mesmo tempo, como o tensor campo eletromagnético F'*¥ é invariante por
transformacoes de gauge, consequentemente F' e GG também o sao. Assim, ao construir
uma Lagrangiana a partir destes invariantes, asseguramos tanto a invariancia da teoria

por transformacgoes de Lorentz como por transformacoes de gauge. Estamos interessados
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no estudo de teorias que possam ter suas Lagrangianas expressas analiticamente. Desta

forma, podem se expressas em termos de uma expansao em série de MacLaurin,

o
L(F,G)=) e;F'G’. (2.45)
i,j=0

Pela estrutura dos invariantes, a medida que os campos se tornam mais intensos as pecu-
liaridades das correcoes nao lineares de cada teoria passam a dominar. Por outro lado, no
limite de campo fraco as corre¢des devem ser tornar suficientemente pequenas para que a
NLED se comporte efetivamente como a eletrodinamica de Maxwell. Como consequéncia
disto, qualquer coeficiente ¢;; com indices negativos devem ser nulos. Mais ainda, para
recuperar a forma da Lagrangiana classica neste limite, devemos impor que cgg = cg1 = 0
€ Cig — 1.

E possivel restringir ainda mais a forma geral das Lagrangianas se assumimos o
vacuo como sendo invariante por transformacoes C, P e T'. Isto pode ser feito observando
que o invariante G ganha um sinal a cada transformagao de paridade ou temporal devido
ao tensor antissimétrico de Levi-Civita em sua definicao. Desta forma, para recuperar
a invariancia, impomos que todos os coeficientes ¢;; com indice j impar sejam nulos.
Assim, a Lagrangiana que descreve uma NLED genérica deve ser func¢ao do quadrado do

invariante GG, portanto os primeiros termos devem ser da forma
L (F, G2) =F+ 020F2 + 002G2 + 030F3 + C12FG2 + ... (246)

Devido a analiticidade das teorias em questao, a sua expansao (2.46) deve conver-
gir dentro de um raio de convergéncia, o regime de energia caracteristico de cada teoria.
Por causa disto, cada termo deve ser menos relevante que seu predecessor de ordem menor.
Para os propositos deste trabalho, truncamos a série (2.46) mantendo apenas os termos
até segunda ordem nos invariantes. Desta forma, a Lagrangiana que seréd utilizada para

estudar corregoes nao lineares a Maxwell é,

L (F,G?) = F + c5F? 4 cp2G*. (2.47)
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A forma geral que a Lagrangiana com termos de fonte pode assumir é
L=L(FG*) — A" (2.48)

em que a convervagao da carga d,j" = 0 se faz necessaria a fim de recuperar a invariancia
de gauge.
Para obter as equagoes de movimento de uma NLED genérica a partir (2.48)

usamos a equagao de Euler-Lagrange (2.25),

9, (LFFW + LGFW) = 5, (2.49)

onde Lp = g—lﬁ e Lg = % sao as derivadas da Lagrangiana com relagao aos invariantes

F e G, respectivamente. Esta equagao é a generalizagao das leis de Gauss e de Ampére-
Maxwell para as NLED. Devido a defini¢ao do campo eletromagnético F'*, as outras duas
equagoes, a lei de Gauss para o magnetismo e a lei de Faraday, para os campos E e B
continuam validas. A forma de (2.49) é semelhante & das equagoes de Maxwell em meios
materiais. Para interpretar o termo entre parénteses, calculamos o tensor deslocamento

elétrico (2.41) para a Lagrangiana (2.48) obtendo,
DM = LpF™ + L™, (2.50)

sendo este o campo produzido unicamente pelas cargas livres. Com esta definicao, as

equacoes de movimento das NLED podem ser escritas de forma mais compacta,
8,D" = j¥. (2.51)

E importante manter em mente que, de forma anéaloga as equacoes de Maxwell para os
meios materiais, a equagao (2.51) nao define completamente o campo D" é necessario
conhecer como se comporta o divergente do seu dual. Novamente, em casos de simetria
(i.e. carga puntiforme), estas rela¢oes sdo naturalmente satisfeitas e podemos usar as

técnicas desenvolvidas para a eletrodinamica de Maxwell no vacuo®.

4QOutros exemplos sdo aqueles em que o campo elétrico possui apenas uma componente, como nos
casos de um fio ou plano homogeneamente carregado infinito.
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Finalmente, os termos nao lineares da Lagrangiana (2.46) podem ser interpretados
como responsaveis pela origem das propriedades materiais ao vacuo. Esta interpretacao
é reforgada pela eletrodinamica quantica, onde é prevista a constante producao e sub-
sequente aniquilacao de particulas e antiparticulas virtuais no vacuo. Estas flutuacoes
do vacuo quantico se polarizam na presenca de um campo eletromagnético. A partir
da Lagrangiana de Euler-Heisenberg podemos estudar classicamente como a polarizagao
prevista pela QED altera as equagoes de Maxwell. Partindo das equagoes (2.43) e (2.44)

obtemos os vetores de polariza¢do e magnetizagao para (2.47)

B2
P = cy060 (50E2 - —) E + 2¢,- (E - B) B, (2.52)
Ho Ho
Co0 2 32 o
M=—-——=(gF —— |B+2c:— (E-B)E. (2.53)
Ho Ho Ho

Dependendo do campo eletromagnético, o vacuo passa a ser anisotropico e, como con-
sequéncia, sua permissividade e permeabilidade passam a ser grandezas tensoriais. Isto
pode ser observado ao escrever os campos de deslocamento elétrico D e o campo H,
usando (2.52) e (2.53), em termos dos campos elétrico E e magnético B de forma analoga

as equagoes (2.34) e (2.35), obtendo

3
D= E eiEijEj,

ij=1
3
H-= Zéz,ujlej,
ij=1
onde é; é o versor na diregao ¢ e
2 €20 5o €0
€ij =&y (1 + 620€0E — Iu_B ) 51] -+ 2602M_BiBj’ (254)
0 0

1
,u;jl = — <1 + 62050E2 - CﬂB2> 61‘]’ - 2CO2€_OEiEj~
o Ho Ho

sao os tensores de permissividade elétrica e permeabilidade magnética do vacuo devido a

um campo eletromagnético.
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2.2.1 Efeito Cotton-Mouton: birrefringéncia magnética linear

A birrefringéncia em meios materiais ocorre quando o indice de refracao depende da dire-
¢ao da polarizacao da onda eletromagnética. Este fenomeno foi primeiramente observado
no século 17 na calcita, um mineral que devido a sua forte birrefringéncia faz os objetos
vistos através dele aparecerem em dobro. Na primeira metade do século 19, Faraday,
convencido de que a luz era um fendmeno eletromagnético, descobriu que um feixe de
luz polarizado tem sua polarizacao rotacionada ao atravessar um material transparente
permeado por um campo magnético paralelo ao feixe. Este fendmeno ocorre na maior
parte dos materiais dielétricos transparentes [28, 29].

Os efeitos Faraday e Cotton-Mouton sao semelhantes, descrevem anisotropias 6ti-
cas que alguns materiais dielétricos adquirem devido a presenca de um campo magnético.
O primeiro trata da rotacao do plano de polarizacao da onda polarizada em um meio
material devido a um campo magnético paralelo e é quantificado pela diferenca entre os
indices de refracao circulares, sendo também chamado de birrefringéncia magnética cir-
cular. Ja o efeito Cotton-Mouton descreve a rotacao do plano de polarizacao da onda
polarizada em um meio material devido a um campo magnético perpendicular e é quan-
tificado pela diferenca entre os indices de refracao linear, sendo assim também chamado
de birrefringéncia magnética linear [30].

A partir do estudo das consequéncias da teoria de Dirac do elétron relativistico foi
mostrado que esta previa a ocorréncia de fendémenos nao lineares no vacuo. Em particular,
foi previsto a presenca de birrefringéncia no vacuo quando na presenca de um campo
elétrico ou magnético de fundo. Porém, devido a pequena intensidade deste fenomeno,
ainda nao foi medido conclusivamente |31, 32].

Para o estudo do efeito Cotton-Mouton devido a uma eletrodindmica nao linear
em regimes de energias Oticas, usamos a Lagrangiana até segunda ordem nos invariantes
(2.47) e escolhemos um sistema de coordenadas cartesiano tal que o campo magnético
uniforme de fundo aponta na direcao = e a propagagao da onda eletromagnética polarizada
se da na diregao z [6]. Decompomos os campos elétrico e magnético totais em uma parte

que representa o campo de fundo, indicada pelo indice 0, e em outra que representa a
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onda eletromagnética, indicada pelo indice w,

E:Eo.m

B =By + B,.

Com o objetivo de linearizar as expressoes, assumimos que o campo de fundo é muito mais
intenso que a onda eletromagnética, |Bo| > |B,,|. Calculamos os vetores D e H usando os
vetores de polarizac¢ao (2.52) e magnetizac¢ao (2.53) e mantemos apenas os termos lineares
no campo da onda eletromagnética, desprezando os termos puramente devido ao campo

de fundo. Desta forma obtemos

D,, = 0By — ca—2 BYE, + 200" (E,, - By) By,
Ko Ko
B,
H, = —2 - BB, - 2“2 (B, - B,) B,.
Ho Ho Ho

Como todos os campos possuem componentes apenas no plano zy e estamos interessados
em analisar o efeito da birrefringéncia nestas componentes, é 1til reescrever as relagoes

acima em uma notacao matricial bidimensional,

32
1+ (2c00 — cop) 22 0
D, = ¢, (202 20) o . E,,
0 1-— CQOM_S
1 1 — 3¢y 0
H, = — 2 bo . | B.. (2.55)
Ho 0 1— 020%

onde a componente z foi ignorada.

O proximo passo € vincular os campos usando as equagoes de Maxwell. Para isto,
assumimos que a onda eletromagnética seja bem descrita por uma onda plana monocro-
mética com indice de refracao n,

Ew _ Egeiw<%2~r—t)

Y

Bw _ Bgeiw(%é.r_t>.
Notamos que todos os campos associados & onda eletromagnética possuem apenas de-
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pendéncia nas variaveis z e t. Aplicando a lei de Faraday (2.3) nos campos E, e B,

obtemos
0B
Ew - __UJ’
V x T
5 OE,, B _E?Bw
: Dz Ot
~ n o
5 x ZEw) - B, (2.56)

indicando que os campos elétrico e magnético sao perpendiculares entre si e a propagacao

da onda. Aplicando a lei de Ampére-Maxwell para o deslocamento elétrico D e campo H

obtemos,
0D,
H,=——,
V x 5
0 0D,
—(zx H,) = )
g P H) ==

Manipulamos primeiro o termo entre parénteses notando que o efeito do produto vetorial

zx H,, pode ser representado em notagao matricial como

zZxH, = H,.

Em seguida, usando a expressao (2.55) e substituindo o campo magnético da onda eletro-

magnética pela expressao (2.56) obtemos

2
0 —1 1 — 3y 20 0 0 -1
zx H, = - 0o 52 E.,
Ho€ \ 1 0 0 1 — o2 1 0
Ho
BQ
_ i _1+020ﬂ_§ 0 . Ew_
Ho€ 0 —1 +3020u_§
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Desta forma, a lei de Ampére-Maxwell nos da

32 32
n =1+ a0 0 OE, 14 (2c02 — c20) s 0 OE,
- = &0 ’
Ho¢ 0 -1+ 3020% Oz 0 1- Czof—f ot
32 B2
n2 -1+ 02011—(? 0 . Ew _ 1+ (2602 - 620) ll_(o) 0 . Ew,
0 _1+3620P«_((J) 0 1—62()“—3
ou
n2 <]_ — CQOB—g> —1- (2002 - 020) B—g 0
po S . s | Bo=0. (257)
0 n <1 — 3Cgoﬁ) — 1+ CQOﬁ

A equagdo (2.57) s6 pode ser satisfeita se o produto entre o operador e campo
elétrico for nulo. Observamos que existem duas possibilidades para satisfazer esta con-
di¢ao. Para uma onda eletromagnética com polarizacao paralela ao campo magnético de
fundo (na dire¢do ), o indice de refragao deve ser tal que o primeiro autovalor seja nulo.

Igualando a zero e isolando n obtemos

2
1+ (2co2 — ¢20) 5 B?
nﬁ - B2 = ~1 + 2002_07

2
n”%l + 002—0,
Ho
onde usamos o fato que co B3 /g ~ coaBa /o < 1. Da mesma forma, para uma onda

eletromagnética com polarizacao perpendicular ao campo magnético de fundo, o segundo

autovalor deve ser nulo. Resolvendo para o indice de refracao, obtemos

1 B3 2
2 _ A Ho ~1+ 2 BO
’/LJ_ — B2 ~ 620_7
1-— 3020—0 Ho
Ho

2
n ~1+ CQQ—O.
Ho
A dependéncia do indice de refracao na polarizagao da onda caracteriza o efeito de bir-

refringéncia. O efeito de birrefringéncia é quantificado pela diferenca entre os indices de
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refracao ao longo dos eixos paralelo e perpendicular,

Ancy =n| —ny,

Bj
= (co2 — €20) —.
(co2 — c20) o

E importante manter em mente que esta relacao foi obtida apenas levando em conta
termos da Lagrangiana até segunda ordem nos invariantes. Por causa disto, se por um
lado podemos concluir a partir dela que uma teoria eletromagnética nao linear possua
birrefringéncia se coy # o9, por outro lado nao podemos inferir que a teoria nao possua
birrefringéncia no caso em que cpa = c99. De fato, as eletrodinamicas de Born-Infeld,
exponencial e logaritmica (ver se¢do 2.2.2) fazem parte de uma classe de teorias nao
lineares, chamadas tipo Born-Infeld, justamente caracterizadas por ter seus coeficientes
Cog = Coo = ﬁ E bem conhecido que, destas, apenas a propria teoria de Born e Infeld
nao apresenta o fenémeno de birrefringéncia [27].

Finalmente, como as eletrodinamicas nao lineares em consideragao devem satis-
fazer o principio de causalidade, a velocidade de propagacao das ondas eletromagnéticas
devem ser menores ou iguais que c¢. Consequentemente, os indices de refragao devem ser
maiores ou iguais & unidade n > 1. Por consisténcia, deduzimos que os coeficientes cyg €

coe devem necessariamente ser positivos [33, 34].

2.2.2 Eletrodinamicas tipo Born-Infeld

Nesta subsecao listamos algumas das propriedades bésicas das teorias tipo Born-Infeld.
Estas eletrodinamicas sao caracterizadas por possuirem o mesmo comportamento que a
eletrodindmica de Born-Infeld no limite de campos fracos. Isto pode ser notado exami-
nando as expansoes em série de poténcias das Lagrangianas na forma de (2.46). Assim,
além de recuperar a eletrodinamica de Maxwell no limite de campos fracos, as corre¢oes
nao lineares sao idénticas (coeficientes g € cpg). As diferengas entre estas teorias passam
a se manifestar somente em ordens superiores.

A principal motivagao que levou Max Born a construir uma eletrodindmica nao
linear foi a de encontrar uma teoria na qual a autoenergia de uma carga puntiforme fosse

finita. Mais recentemente, foi mostrado por Fradkin e Tseytlin que a Lagrangiana efetiva
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a nivel de arvore para uma teoria de cordas bosonicas ¢ idéntica a de Born-Infeld [8].

As eletrodinamicas tipo Born-Infeld encontram grande parte do seu uso na gra-
vitacao. O acoplamento da teoria eletromagnética de Born-Infeld com a gravitagao de
Einstein foi estudado em [35], pouco tempo depois da NLED ter sido proposta, procu-
rando sanar os infinitos no centro da métrica de Schwarzchild. Como alternativa & inflacao
produzida por um campo escalar, um toy-model, que inclui teorias tipo Born-Infeld, é es-
tudado em [36]. As eletrodinamicas logaritmicas e exponenciais sao aplicadas no estudo de
buracos negros pontuais carregados e no comportamento assimptotico de buracos negros
tipo Reissner-Nordstrom [10, 11]. Mais informagdes sobre as eletrodinamicas logaritmicas

e exponenciais podem ser encontradas em [37, 38].

Eletrodinamica de Born-Infeld

A Lagrangiana proposta por Born e Infeld pode ser escrita como
,CB[ = €0b2 <1 — \/1 — 2X> ,

2 ~ . N . . .
onde X = 60% + 25GT1;4' Nesta expressao, b é um parametro livre que possui unidades de
0

Vm™! e ¢ identificado com o valor superior da intensidade que o campo elétrico pode
assumir. Como foi dito anteriormente, a primeira estimativa do parametro b foi feita

usando as propriedades do elétron dando um limite superior para o campo elétrico da

2

ordem de b = ;% ~ 10*Vm™', onde r, = Treom ™ 10~'°m ¢ o raio classico do elétron.
e €

° recuperando a eletrodinamica de

Esta teoria satisfaz o principio de correspondéncia
Maxwell no limite de campos fracos. Isto pode ser observado expandindo a Lagrangiana
em série de poténcias nos invariantes relativisticos para X < 1,

F? . G? +FG2+ F3
2e0b?  2e0b?  2e3b* 0 2:30%

Lpr~F+

onde o primeiro termo corresponde a Lagrangiana de Maxwell. As eletrodindmicas tipo
Born-Infeld se caracterizam por possuirem os coeficientes dos termos de segunda ordem

1guals a Cop = Cpo = 2e0b2 "

[ . L. ~ . L .

°0O termo principio de correspondéncia é geralmente usado para designar que o comportamento de
um sistema quéntico recupera o comportamento classico no limite de grandes nimeros quanticos. Neste
texto, o termo é usado para indicar a redugao de uma nova teoria a uma teoria prévia.
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A partir da definigdo do tensor deslocamento elétrico (2.50) podemos obter a

dependéncia geral dos vetores D e H nos vetores E e B:

D= LyeE + Lo, | B,
2

PE+ & (E-B)B
Vbt - B (B2 — 2B?) - & (B BY

=& s (258)

H-1,5_ Loy 22,
Ho Ho
1 »¥B-(E-B)E
Ho \/b4—b2 (E? — 2B?) — @ (E-B)2

Como exemplo e para uso posterior, obteremos abaixo o campo elétrico para uma
carga puntiforme de intensidade ¢ no vacuo. O sistema estando em equilibrio e na auséncia
de um campo eletromagnético de fundo todos os campos envolvidos devem ser estaticos.
A simetria esférica do problema indica que nao pode existir um campo magnético e que
o vetor de deslocamento elétrico deve possuir apenas componente radial. Portanto, esta

simetria implica que V x D = 0 permitindo usar as técnicas padroes para resolver a lei

de Gauss,
V-D=¢(r),
obtendo
q .
D= . 2.
el (2.59)

Temos também que o deslocamento elétrico em funcao do campo elétrico é dado pela

equagao (2.58),
V’E
O =BT

Portanto, igualando as equagoes (2.59) e (2.60), o médulo deve ser

D=c¢ (2.60)

q bVE

dr? €0 Vit — B2E2’
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Assim, invertendo esta equacao para o campo elétrico, obtemos

(2.61)

E interessante notar que a teoria introduz um comprimento R fundamental associado a

q
Amepb”

carga g dado por R? = Este comprimento é equivalente & distancia da carga g para
a qual o campo elétrico produzido por ela atinge o valor b na eletrodinamica de Maxwell.
Ao contrario da eletrodinamica de Maxwell, o campo elétrico da carga puntiforme é bem
comportado na origem. Tomando o limite r — 0 desta expressao mostra que o valor

maximo que o campo pode atingir independe da carga e é igual a b. No outro sentido,

q
4mepb?

quando 72 > recuperamos o resultado classico. Se usamos o valor estimado por

Born e Infeld para o parametro b ~ 102V m~! concluimos que para uma carga q = e este
limite é equivalente a r > 10~ m. Mais ainda, mantendo apenas a primeira correcao ao

campo elétrico obtemos

q ¢

~ T — T.
dregr? 128m3e3roh?

A razao entre a correcao e o termo de Maxwell, para as mesmas condi¢oes usadas acima,

b~10Vmteg=cé

62

s < L
32m2edrih?

para r > 10~ m.

Eletrodinamica exponencial

A eletrodinamica exponencial é descrita pela Lagrangiana,
ﬁE = €0b2 (€X — 1) s

_ F G2 o :
onde X = @ T e No limite de campos fracos, ou seja,

F G?

<1
E()b2 * 26(2)64 <5
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esta Lagrangiana pode ser aproximada pelos primeiros termos da série de poténcia nos

invariantes,
F? L G? N FG? L F3
2e0b  2e0b? 230t 6230t

Como pode ser notado, as corregoes de segunda ordem nos invariantes sao idénticas as
da eletrodinamica de Born-Infeld, caracteristica desta familia de teorias eletromagnéticas.
Porém, passa a diferir da mesma a partir dos termos de terceira ordem.

Os vetores de deslocamento elétrico D e campo H assumem a forma geral,

CQ
D = goe* [E+§(E-B) B], (2.62)
(§]
H = ¥ B—l(E B)E
a Moe b? ’
onde

Para obter o vetor de deslocamento elétrico para uma carga puntiforme de inten-
sidade ¢ no vacuo, podemos usar os mesmos argumentos usados no caso da eletrodinamica

de Born-Infeld. Sendo assim, temos também que o deslocamento elétrico é dado por

_ 9 ;
Amr2

Igualando esta expressao com (2.62) obtemos a equagao a ser invertida,

E%E q
€0€2b =
Amr?’

Elevando ao quadrado e acrescentando os fatores necessarios é possivel obter

E? g2 ?
ﬁe%: <_‘1 ) _ (2.63)

deqr?b

Antes de inverter esta expressao, é necessario observar que ela se trata de uma equacao
transcendental cuja solucao é obtida através de métodos graficos, ou métodos perturba-

tivos. Tendo isto em mente, notamos que no limite em que r — 0, o lado direito da
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tende ao infinito. Para o lado esquerdo acompanhar o crescimento, ou o monoémio ou a
poténcia da exponencial devem igualmente tender ao infinito. Como ambos possuem a
mesma expressao, concluimos que o campo elétrico diverge na origem. Isto indica que, por
mais que seja uma eletrodindmica tipo Born-Infeld, os termos de ordem superior da La-
grangiana sao relevantes para garantir a convergéncia do campo elétrico. Por outro lado,
para r — oo, o lado direito tende a zero. Para poténcias positivas, a exponencial tem seu
menor valor igual a 1. Logo, para a expressao permanecer valida o mondémio tende a zero
e portanto £ < b. Expandindo a exponencial em série de Taylor e mantendo apenas o
primeiro termo recuperamos o campo elétrico de Maxwell para a carga puntiforme. J&,

mantendo até o segundo termo da expansao obtemos um polindomio de segunda ordem

E*  E? 2
_— 4 — — L — 07
bt b? (47reor26>

que possui apenas uma solucao que recupera Maxwell,

oD 20 \?
2 P — — —
B = 23 \/1+ (47reor26> '

3
E~_ 9 2 q

~ T — TA‘
dreqr? 128m3edb?r6

para E2,

Assim, obtemos que

resultado idéntico ao de Born-Infeld.
Para inverter a expressao (2.63), usamos a fungao Lambert ou produto logaritmo

W definida pela da relacao z = W (ze”). Assim, aplicando a fun¢ao Lambert em ambos

2
q .
Ep = Wil —— .
p=b [(47?507“%) ]r

E interessante notar que, por mais que o campo elétrico de uma carga puntiforme divirja

lados obtemos,

nesta eletrodinamica, a sua autoenergia converge. Isto pode ser visto calculando a energia
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total do campo elétrico produzido pela carga g,
U=¢ / drE?,

2
— el [ W |
=0 / " [(47r50r2b ’
0 a4
— 47?50172/ drr*W (—4) ,
0 r
(l4

onde, por conveniéncia, definimos a? = 4W‘éob. Fazendo a mudanca de varidveis %4 = ze®

para fazer uso das propriedades da func¢ao Lambert, obtemos

el

U = 7r50b2a3/ dze™ % (z + z_%> )
0

Mudando mais uma vez de variavel z = %u, podemos reescrever a integral como

5 1
4\ 1+ [ 4\1 [ 1
U = weob®a® (—) / due 72171 4 (—) / due ?zi b .
3 0 3 0

Finalmente, reconhecendo a definigao da fungao I' () = fooo dxe*x*~1, temos que a auto-

energia de uma carga puntiforme ¢ na eletrodinamica exponencial é dada por
2l/aNt /5 AN (1
q 2 4 4
U = meob? -] I'(- -] I'(-
o () |(5) 1 (5)+ () ()

3
2
U ~ 5.2meoh? <4quob) . (2.64)

ou

Desta forma vemos que, apesar do campo elétrico nao possuir um valor finito superior
para sua intensidade, ao contrario da eletrodindmica de Maxwell, a autoenergia de uma

carga puntiforme é finita na eletrodinamica exponencial.

Eletrodinamica logaritmica

A eletrodinamica logaritmica pode ser derivada a partir da Lagrangiana,

L1 =—eob®In(1— X),
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G2

Se25T Para o limite de campo fraco, os

onde também fizemos uso da definicao X = 60% +

primeiros termos da expansao em série de poténcia sao dados por,

. F? N G*? +FG2+ F3
260D  2e0b? 230t 3edbt

ﬁL%F

Da mesma forma, as corre¢oes de segunda ordem sao idénticas as de Born-Infeld
e passa a diferir a partir dos termos de terceira ordem nos invariantes. Os vetores de
deslocamento elétrico D e campo H em funcao dos campos elétrico E e magnético B

nesta eletrodinamica assumem a forma geral,

E+%(E-B)B

D= 2.65
=0 60E2_%§ _ c2(E-B)27 ( )
2e0b? 204
€
y_ 1 B-}(E-BE
Ho 4 2E-2 L gp)y

Novamente, para uma carga puntiforme de intensidade ¢ no vacuo, o vetor de desloca-

mento elétrico é dado por

" 4?2
Junto com a equagdo (2.65) temos que o moédulo do campo elétrico pode ser derivado

invertendo a expressao,

E q
80 E2 = 2 Y
1— o Arr
obtendo
FE _ q
1— % Aregr?’
ou

E?  A4meyr?
o+
202 q

E—-1=0.

Resolvendo este polindmio de segunda ordem e mantendo a solugao que recupera Maxwell

no limite r — oo obtemos

47T€0b2 q 2 ~
E; = 449 —r2 | P 2.66
L q \/r _'_ (47T€0b 4 4 ( )




é possivel obter outra expressao para o campo elétrico multiplicando e dividindo a expres-

2
séopor\/r4+2< 1 > +r?,

4mepb
q 2 .
T.
4regr? 2
1+ 1+2 <47T6()7‘2b>

A partir da equagao (2.66) é facilmente observado que, no limite  — 0, o médulo

do campo elétrico converge para E; = v/2b. Além disso, para
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onde novamente obtemos um resultado idéntico ao da NLED de Born-Infeld.

E interessante comparar graficamente o comportamento dos campos elétricos de
uma carga puntiforme devido a cada eletrodindmica. Para isto, tracamos na Figura 2.1
os graficos dos campos elétricos normalizado pelo parametro b em funcao da distancia por

47r6()ﬁ

unidade de raio de Bohr x = é, onde ag = -=%-. Por simplicidade, fazemos - =1

4mepagb

Como esperado, o valor dos campos elétricos das eletrodinamicas de Born-Infeld e loga-
ritmica sao limitados superiormente pelo valor 1 e v/2. O campo elétrico da eletrodiné-
mica exponencial diverge na origem, porém mais lentamente do que na eletrodinamica de

Maxwell. Gragas a este comportamento, a autoenergia de uma carga puntiforme nesta

eletrodinémica ¢é finita (ver equagao (2.64)).
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Figura 2.1: Grafico dos campos elétricos das eletrodinamicas de Maxwell, Born-Infeld, logaritmica e

exponencial. O campo elétrico é normalizado pelo pardmetro b e é plotado em funcao de = em unidades
de raio de Bohr. Por conveniéncia foi feito F&Fb =1
0
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Capitulo 3

Mecanica quantica, atomo de

hidrogénio e teoria de perturbacao

Neste capitulo temos como objetivo apresentar uma expressao para corre¢ao a energia fun-
damental do atomo de hidrogénio. Esta expressao serda usada no Capitulo 4 para vincular
as teorias tipo Born-Infeld. Na primeira se¢ao fazemos um breve resumo dos fundamentos
da mecanica quantica nao relativistica. Na segunda secao, as principais etapas da resolu-
¢ao da equagao de Schrodinger para o atomo de hidrogénio sao apresentadas. A fungao
de onda do estado fundamental é obtida. Finalmente, na ultima secao, usando a teoria
de perturbacao independente do tempo obtemos a expressao para a correcao da energia

de ionizagao.

3.1 Revisao de mecanica quantica

Os primeiros passos em dire¢ao a mecanica quantica sao dados no inicio do século 20 com o
objetivo de descrever os fendémenos para os quais a fisica da época - mecanica Newtoniana,
eletromagnetismo de Maxwell e termodinamica - nao oferecia uma descricao adequada.
Dentre estes fenomenos, podemos citar a radiacao de um corpo negro, o espalhamento
Compton, o efeito fotoelétrico e a estabilidade do atomo de hidrogénio e suas linhas
espectrais. Para tentar explicar este ultimo, Bohr amalgamou principios da fisica classica
com a ideia inovadora de Planck - a emissao e absor¢ao da radiacao pela matéria se da

de forma discreta - para reconciliar o modelo atémico de Rutherford com os resultados
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experimentais. O modelo atomico de Bohr explicava a estabilidade do atomo e, a partir
da interpretacao da emissao de radiacao homogénea como consequéncia da transicao do
elétron de uma Orbita para outra menos energética, recuperava a relacao empirica de
Balmer para as linhas espectrais [39, 40, 41].

Apesar do seu sucesso, o modelo atémico de Bohr recebeu duras criticas. De fato,
este modelo nao respondia alguns questionamentos como o porqué do elétron nao emitir
radiacao ao longo de sua orbita circular, as causas da emissao espontanea de radiacao ou
0 que acontecia com o elétron no intervalo de tempo durante uma transicao entre estados,
entre outros. Posteriormente, Louis de Broglie postulou, em analogia ao comportamento
dual da radiacao eletromagnética, que particulas massivas também deveriam apresentar
um comportamento ondulatorio [42]. O comprimento de onda de uma particula seria
inversamente proporcional ao seu momento. A partir desta ideia, de Broglie mostrou que
as frequéncias acessiveis as ondas estacionarias do elétron ao redor do nucleo oferecia uma
explicacao para os estados discretos acessiveis ao atomo de hidrogénio. Esta hipotese
foi confirmada independentemente por experimentos realizados nos EUA e na Escocia ao
mostrar que um feixe de elétrons apresentava um padrao de difragao ao refletir e espalhar
em redes cristalinas, respectivamente [43, 44].

Ainda assim, existia na época o sentimento de que os varios postulados necessarios
para descrever os fenomenos nao tinham a forma de uma teoria, ou seja, nao surgiam
a partir de primeiros principios fisicos e falhavam ao tentar descrever alguns sistemas,
como é o caso de atomos com varios elétrons. Heisenberg e Schrodinger, com o objetivo
construir uma base fundamental a partir da qual conseguissem derivar o modelo de Bohr
e as linhas espectrais, desenvolveram independentemente em 1925 a mecanica quantica
matricial e em 1926 a mecanica quantica ondulatoria, respectivamente [45]. A primeira
tinha como objetivo recuperar os resultados experimentais unicamente a partir de relagoes
entre entidades mensuraveis e foi formulada usando a recente algebra matricial. Ja, a
segunda, surge como generalizacao do postulado de de Broglie e foi formulada em termos
de uma equacao diferencial de onda. Ambas formulac¢Ges foram mostradas equivalentes e
reunidas por Dirac numa formulagao mais geral em termos de objetos abstratos batizados
de kets e bras [46]. Posteriormente, em 1928, ao incorporar os principios da relatividade

de Einstein & mecanica quantica, Dirac deduziu uma equagao para dinamica relativistica
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do elétron e, a partir desta, previu a existéncia de uma particula idéntica ao elétron mas
com carga oposta [22]. O pésitron, como esta particula ficou conhecida, foi descoberto 4
anos depois, consolidando assim o sucesso da teoria quantica [47].

A mecéanica quantica nao relativistica pode ser formulada usando como base um

conjunto de 5 postulados [45, 48]:

1. Todas as informagoes acessiveis de um sistema, em qualquer instante de tempo ¢,

estao contidas em um vetor do espago de Hilbert |¢ (t));

2. A cada quantidade fisicamente mensuravel O corresponde um operador linear Her-

mitiano O definido no espago de Hilbert;

3. A medicao do observavel O é representado como a aplicacao do operador correspon-
dente no vetor que descreve o sistema O [¢ (¢)). Os tnicos resultados possiveis sdo
os autovalores o0, do operador O. Imediatamente ap6s a medi¢ao, o sistema passa
a se encontrar no autoespacgo cuja base é formada pelos i autovetores linearmente

independentes |0!) associados ao autovalor o,;

4. Se o sistema |9 (t)) assume valores discretos do observavel O, a probabilidade de

medir o autovalor o,, é

onde N indica a degenerescéncia do autovalor o,. Se o sistema assume valores
continuos, a probabilidade do sistema ser encontrado no intervalo o e o + do do

observavel é

WP= () do,

I [ (o) do

onde ¥ (0) = (0|t (1));

5. A evolugao temporal do estado [¢ (t)) do sistema ¢ descrita pela equagao de Schro-
dinger:

L0
tho [ () = H[p (1), (3.1)

onde H é o operador Hamiltoniano correspondente & energia total do sistema.
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Na descrigao Hamiltoniana da mecanica classica, qualquer quantidade fisica O (r, p)
pode ser escrita em termos das variaveis dindmicas fundamentais r e p que caracterizam
o sistema. Para obter o operador correspondente no espaco de Hilbert, fazemos uso do
principio de correspondéncia de Heisenberg e substituimos os operadores Hermitianos cor-
respondentes as posigoes e momentos, O = O (r — R, p — P). Esta receita nem sempre
produz um resultado tnico ou satisfaz o segundo postulado. Um exemplo iconico é o da
quantidade definida por F (r,p) =r - p. A aplicagdo direta da receita gera dois possiveis
operadores correspondentes F; = R -P e Fy, = P - R que, devido & nao comutatividade
dos operadores R e P, nao sao equivalentes. Mais ainda, nem F; nem F, sao Hermitianos
pois F: IT = F,. Uma forma de solucionar este problema é exigir que, além da substituicao
das variaveis dinamicas pelos seus operadores correspondentes, o operador seja simetri-
zado. Assim, escrevendo F (r,p) = 5 (r-p+p-r) obtemos F = ; (R-P+P-R), um

operador devidamente Hermitiano.

3.2 Atomo de hidrogénio

Aplicamos a equagao de Schrodinger a um atomo tipo hidrogénio nao relativistico e sem
spin composto por um nicleo de carga Ze orbitado por um elétron de carga —e. Para en-
contrar as energias acessiveis, escrevemos seu Hamiltoniano, dado pela soma das energias

cinéticas do elétron e do nucleo, e da energia potencial eletrostatica entre eles [45],
P? P? 1 Ze?
HO — e _|_ mn

— 3.2
2m. = 2m, 4reo |Re — R,| (3:2)

onde R., P., R, e P, sao os operadores de posicao e momento do elétron e do niicleo.
Usando como base os autovetores dos operadores de posi¢ao, podemos reescrever a equacao

de Schrodinger para o atomo como,

h

2me

h s 1 Ze?
Aiteg |re — 1y

e

e,
zha\ll (re,rp;t) = (—

) U (re,rp;t). (3.3)

Os indices nos operadores Laplacianos V? e V2 indicam que as derivadas devem ser
aplicadas com relacao as componentes dos vetores r, e r,, respectivamente. Devido ao

fato da energia potencial nao depender explicitamente do tempo, as solugoes sao estados

40



estacionarios. Assim, separando a fungao de onda V (r.,r,;t) como o produto de uma

funcao que dependa unicamente das varidveis espaciais e outra que dependa unicamente

do tempo,
U (re,rp;t) = X (ve,r,) T (1), (3.4)
obtemos
th 0T 1 h o, h 1 Ze?
R — — X. 3.5
T Ot X( 2meve anv” Ameg |re — 1y (3.5)

O lado esquerdo da equagao é uma funcao que depende unicamente do tempo e o lado
direito uma funcao que depende apenas das variaveis espaciais. Por causa disto, dado
um valor arbitrario do tempo, para que a equagao seja valida para quaisquer valores das
varidveis espaciais, as fungoes devem ser iguais a uma constante Epr com unidades de
energia. A equagao diferencial para T (t) é facilmente resolvida, sua solu¢do sendo dada
por
T () = Ae i,

Se substituimos esta solugdo na expressao (3.4) e em seguida na equagao (3.3), temos que
o problema a ser resolvido é o de encontrar os autovalores Er do operador Hamiltoniano
do atomo. Pelo terceiro postulado, estes autovalores correspondem as energias totais
acessiveis.

A equagao diferencial para a fungao espacial X (re,r,),

2
( h v2 _ h V2 1 Z_e) X (re,ry,) = ErX (re, 1), (3.6)

om. ¢ 2m, " 4w lre — 1,

tem como variaveis as posicoes do ntcleo e do elétron a partir de um observador inercial
arbitrario. Fazendo uma mudanga de variaveis (r.,r,) — (R,r) onde R é a posi¢ao do

centro de massa do dtomo e r é o vetor posicao do elétron com relacao ao nucleo,

mnpry + Mele
R=—7——
My + Me

r=r, —ry,
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podemos reescrever (3.6) como

2

( h 2 he 1 Z_eg))_((R,r):ET)_((R,r), (3.7)

onde M = m, +me e pp = (memy,) / (Me +my,) sdo a massa total e reduzida do atomo,
e a funcao X é obtida diretamente a partir da funcdo X pela substituicio das variaveis.
O primeiro termo da equagao (3.7) é a energia cinética do centro de massa do atomo de
hidrogénio que, como nao consideramos forgas externas, deve ser constante. Ja o segundo
termo, descreve a energia cinética do elétron e o terceiro a energia potencial do elétron com
massa reduzida acoplado ao nicleo. A energia total do &tomo deve entao ser composta de
uma energia de translacao do centro de massa mais a energia cinética da massa reduzida,
além da energia potencial entre o niucleo e o elétron. Isto pode visto ao fazermos uma

nova separacao de variaveis,

X (R,r) =veu (R) Y (x).

A partir desta, obtemos duas equagoes diferenciais, uma para o centro de massa,

h
—WV?WCM = FEcueowm,

e outra para o sistema acoplado,

_£v2_ 1 Z_€2
2u " dmeg 1

) b (x) = Bu(r), (3.8)

com o vinculo Er = Ecp + E. A solugao para a primeira equacao diferencial é

iPCM.R

Yeu =€
Sem perda de generalidade, podemos escolher o referencial de centro de massa de tal
forma que pea = 0 e consequentemente Ecy, = 0. E interessante notar que muitas vezes
se faz referéncia a equagao (3.8) quando se fala na equacdo de Schrodinger para o atomo
tipo hidrogénio. Além disto, como a massa do ntcleo é pelo menos 2000 vezes maior que a

do elétron, é comum ver esta equacao escrita usando y = m,.. A partir das caracteristicas
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2

do sistema - massa reduzida p, carga do elétron ;= e constante de Planck /1 - é possivel
. . 2 .

definir um comprimento fundamental ag = ‘”;f%f que se reduz ao raio de Bohr! quando

= Me.

As solugbes da equagao (3.8) sdo bem conhecidas e podem ser escritas como [45]

Ynim (I‘) = Ry (7“) Yim (97 ¢) ) (39)

onde R (r) ¢ a solucao radial e Y (6, ¢) os harmonicos esféricos normalizados. A triade
(n,l,m) de nimeros quanticos caracteriza a nuvem de probabilidade, ou orbital, do elé-
tron. O numero principal pode assumir apenas valores inteiros n = 1,2, 3, ... O ntmero
quantico de momento angular [, dado um valor de n, pode assumir os valores inteiros
[ =0,1,....,n — 1. J& o namero quantico magnético, fixados os ntimeros n e [, pode as-
sumir os valores inteiros m = —[,—l + 1,...,0,... — 1,I. Um quarto nimero quantico
é necessario quando se leva em conta o spin do elétron e surge naturalmente ao usar a
generalizacao relativistica da equacao de Schrodinger, a equacao de Dirac. Para os propo-
sitos deste trabalho, a solucao da equagao de Schrédinger sem correcao relativistica e sem
spin é suficiente, sendo seus autoestados acessiveis completamente caracterizados pelos 3
primeiros nimeros quanticos.

A parte radial da solugao (3.9) é dada em termos dos polindmios associados de

Laguerre L{ (z),

27 —1=0 (2zr\" _ 2, 27
() B (s ()
nag 2n[(n+D)!1” \ nao nag
e os harmonicos esféricos sao dados em termos dos polindémios associados de Legendre

By (),

Njw

20+1(1—m)!
dr (I+m)!

Yim (6,6) = (1) By (cos 8) ™.

Por sua vez, os polinomios associados de Laguerre sao dados em termos dos proprios

!Bohr notou a necessidade de uma nova constante fundamental que produzisse um comprimento
caracteristico do 4tomo de hidrogénio. A fisica classica é incapaz de definir as 6rbitas discretas e definidas
que produzem o espectro do hidrogénio. A introducgdo da constante de Planck na descricao do atomo
permite obter este comprimento caracteristico e da ordem de grandeza que era de se esperar para o
hidrogénio [39].
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polinémios de Laguerre Ly, () pela relagao,

Ly (z) = - = Lo (2),

e estes ultimos pela formula de Rodrigues,

Pi(z)=(1-2%)%

e os polinémios de Legendre P, () pela sua férmula correspondente de Rodrigues,

b

Quando o numero principal é n = 1, a funcao de onda é esfericamente simétrica

e somente pode assumir o estado (1,0,0) dado por,

Z3 _z,
Y100 () = ﬂ_age 0. (3.10)

Quando n = 2, o 4tomo tem 4 estados acessiveis. Para [ = 0 temos 1 estado cuja fungao

de onda é:
Z3 Z z.,
r)=4/——=|—r—2)e2
Y200 (1) 327ra} (ao ) ’
e para [ = 1 temos 3 estados dadas pelos namero quanticos m = —1,0, 1 cujas fungoes de
ondas sao:

Zb Loy 9
g ag
o190 (1) Somal re cos (),
VA Zor—i .
o1 (r) = — Tonas rezag" |sin (0)],
0
A SZori .
or1 (r) = — 647ra5r€2a0 +ig |sin (9)] .
0
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As energias acessiveis aos atomos hidrogenoides obtidas sao dadas pela mesma

relacao derivada por Bohr a partir do seu modelo planetario,

oW Zer \* 1
" 2 \dwegh ) n?’

B Z%a? pc?
a 2 n2’
—1
e zZ?
~ —13.60569 ( 1+ 2¢)  Zev,
My, n?

onde o = €?/4dmeghc é chamada de constante de estrutura fina. A partir das energias
acessiveis, obtemos a energia na forma de radiacao que os elétrons emitem ao transitar

de um estado para outro,

AE =E, — E,,
1 1 1
= §Z2,uc2042 (ﬁ - ﬁ) . (3.11)

Em particular, para n = 1, 2 e 3, recuperamos as séries de linhas espectrais ultravioletas
de Lyman, visiveis de Balmer e infravermelhas de Paschen [41]. Como pode ser notado,
as energias associadas aos atomos tipo hidrogénio dadas pela equagao de Schrédinger
dependem apenas do niimero quantico principal n. Sendo assim, quaisquer dois orbitais
que compartilhem este mesmo niimero possuem a mesma energia. Esta degenerescéncia é
apenas aparente pois experimentos precisos mostram a presenca de linhas espectrais nao
previstas pela equagao (3.11). De fato, esta degenerescéncia ¢ quebrada ao incluir corre-
coes relativisticas devido a velocidade do elétron, a interagoes dos momentos de dipolo

magnético intrinsecos do nicleo e do elétron, e a criagoes de pares no vacuo quantico.

3.3 Teoria de perturbacao independente do tempo

Uma quantidade bastante restrita de sistemas sao completamente solucionaveis pela equa-
¢ao de Schrodinger. Na maioria dos casos se tratam de sistemas bastante simples, como
por exemplo uma particula com movimento limitado dentro de uma caixa, que permitem

isolar e analisar as particularidades do mundo quantico mas que nem sempre tem corres-
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pondente direto no mundo real. Uma curiosa excecao é o oscilador harmonico, um sistema
ubiquo as areas da fisica. Para o atomo de hidrogénio, como visto acima, é possivel obter
a partir de primeiros principios as energias acessiveis e linhas espectrais corresponden-
tes. Porém, para obter solugoes mais precisas, ¢ necessario incluir corregoes que acabam
gerando equagoes diferenciais de dificil resolugao. Como a maioria dos sistemas fisicos
nao possuem solucao analitica exata, foram desenvolvidas diversas técnicas para se obter
solugoes aproximadas. Para o propoésito de estudar as correcoes da energia do estado
fundamental do atomo tipo hidrogénio, a teoria de perturbacao independente do tempo
é suficiente.

A teoria de perturbacao é um método matematico utilizado para se obter solugoes
aproximadas de um sistema que difere ligeiramente de outro para o qual existe uma solugao
exata. O resultado deste método sao correcoes a energia e a funcao de onda da solugao
exata em termos de uma série de poténcias do parametro que caracteriza a diferenca entre
os sistemas. Desta forma, se H é o Hamiltoniano do sistema que desejamos estudar e H
¢ o Hamiltoniano para um sistema semelhante e para o qual possuimos solucoes exatas,

entao escrevemos o primeiro como a soma de duas partes [19],

H = Hy+ H,,

onde H, é chamado de Hamiltoniano da perturbagao ou simplesmente perturbacao. Como
H, deve ser muito menor que Hy, supomos que a perturbagao seja caracterizado por um
parametro adimensional A < 1, podendo entao ser escrito como H, = AWW. Desta forma,

podemos reescrever o Hamiltoniano como

H = Hy+ \W. (3.12)

Temos como objetivo encontrar os autoestados do Hamiltoniano completo e suas

energias correspondentes,

H |¢n) = Ep [¥n) - (3.13)

A suposicao de base da teoria da perturbacao é que os autoestados e as energias podem
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ser expandidos em série de poténcia do parametro A,

[n) = [Un) + Awon) + X [¥2) + ..., (3.14)
E,=E)+ \E} + N*E2 + ...,

onde os primeiros termos sao as solugoes exatas do sistema nao perturbado,
0\ _ 70,0
H, WN> =E, |¢n> :

Ao substituirmos as expansoes (3.14) e o Hamiltoniano completo (3.12) na equagao de

Schrédinger (3.13) obtemos,

(Ho = By) [vn) + M [(Ho = E)) [i,) + (W = E,) [i)]
+ N [(Ho— E) |2y + (W = E)) |[vp) — E* |[¢0)] + ... = 0.

Como monoémios de A de graus distintos sao linearmente independentes, seus coeficientes
devem se anular por separado. O termo de ordem \° ¢ a equacao de Schrédinger para o

sistema nao perturbado e é identicamente nulo. J4 o termo de ordem A!' é dado por
E, |¥n) + En[Yn) = Ho [¥n) + W [t5) .
Realizando o produto interno desta equacao com (1)°| obtemos
B, (Ynltn) + Bu (dnlvn) = (UnlHotn) + (nlWen).

Supomos que o autoestado 1Y) est4 normalizado, portanto sua norma ¢ (¥°]y%) = 1. Por

outro lado, como o Hamiltoniano nao perturbado ¢ Hermitiano, temos que (¢°|Hol) =

(WO Holty) = ED (o)), assim

By = (¢pWay)
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Desta forma, a primeira corre¢do a energia (3.14) é dada por,
Bn e B+ (00 Hy00). (3.15)

A partir da equagao (3.15) podemos estudar como pequenas corre¢oes ao Hamil-
toniano do sistema afeta as energias acessiveis. Este procedimento é usado, por exemplo,
para estudar a estrutura fina do &tomo de hidrogénio (incluindo uma corregao relativistica
a energia cinética do elétron, acoplando o spin do elétron com a sua o6rbita e adicionando
o termo de Darwin que surge na expansao nao relativistica da equagao de Dirac [50]).
No préximo capitulo, usaremos esta expressao para estudar como corregoes a energia po-
tencial eletrostatica, vindas de generaliza¢oes nao lineares da eletrodinamica de Maxwell,

afetam a energia de ionizagao ou do estado fundamental dos atomos tipo hidrogénio.
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Capitulo 4

Vinculos de eletrodinamicas tipo
Born-Infeld a partir da energia de

ionizacao do Atomo de hidrogénio

Neste capitulo, temos como objetivo vincular o parametro que caracteriza as eletrodina-
micas tipo Born-Infeld usando a medi¢ao mais precisa da energia de ionizacao do 4tomo
de hidrogeénio disponivel [51]. Além da propria teoria de Born-Infeld, serdao também ana-
lisadas as eletrodinamicas exponencial e logaritmica. Cada uma delas ir4 modificar o
potencial elétrico de forma particular, recuperando o potencial Coulombiano para dis-
tancias suficientemente grandes (ver Subsecao 2.2.2). Por causa disto, podemos usar os
resultados da teoria de perturbagao, obtidos no capitulo anterior, para deduzir a correcao
da energia do estado fundamental do 4&tomo de hidrogénio causadas por estas eletrodiné-
micas. Como a previsao tedrica do Modelo Padrao esta em concordancia com o resultado
experimental, qualquer correcao da energia potencial de Maxwell deve ser menor do que a
precisao experimental. Consequentemente, o erro experimental, associado a tal precisao,
pode ser usado como vinculo superior para estas correcoes. Os resultados obtidos neste

capitulo foram publicados em [52].
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4.1 Procedimento geral

Como foi visto no Capitulo 3, o Hamiltoniano para um atomo hidrogenoide formado por
um nucleo de carga Ze orbitado por um elétron de carga —e é dado no referencial do

centro de massa por

H=K+ Vyy,
2 . o e . . . P
onde K = £= ¢ a energia cinética, p = 2™ & a massa reduzida do sistema, e Vyr, €
21 ’ Mp+Me ’

a energia potencial especifica para cada eletrodinamica nao linear. No Capitulo 2, foi
observado que, usando a estimativa do parametro b ~ 102V m™! feita por Born e Infeld,
e para distancias r > 107'%m, a correcdo ao campo elétrico devido & eletrodinamica
nao linear é muito menor que o termo de Maxwell. Como o comprimento envolvido no
atomo de hidrogénio é da ordem do raio de Bohr ay ~ 107!, o sistema com potencial
generalizado pode ser considerado como obtido a partir de uma pequena perturbacao do

sistema classico. Assim, reescrevemos o Hamiltoniano como

H:K+VM+VNL—VM,
—— N———

Ho H,

onde V), é a energia potencial da eletrodinamica de Maxwell, Hy é o Hamiltoniano do
atomo de hidrogénio de Schrodinger, e H,, a perturbacao do Hamiltoniano.
Seguindo os procedimentos da teoria de perturbacgao, temos que a primeira ordem

de correcao devido a perturbagao H, ¢ dada por

Elloo = <@Z’(1)00} ﬁp ’¢?00> )
— [ @it ) 5,0,
3
_Z d37“e_%er (r),

3
Tay

onde a funcdo de onda para o estado fundamental (3.10) foi usada, e

Hy, (r) =Vnr (r) = Vi (r),

——c [ [Bun () - B )]
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onde Enp, (1) e Ey (1) s@o os campos elétricos produzidos por uma carga puntiforme
nas eletrodindmicas nao linear e de Maxwell, respectivamente. Devido a simetria radial,

podemos realizar a integral no elemento de angulo sé6lido, portanto

473 [ _22,
Ely = —3/ drre” H,(r). (4.1)
ap Jo

Com o objetivo de tornar as variaveis de integracao adimensionais, expressamos a distancia

radial em unidades de raio de Bohr realizando a mudanca de varidvel r = %y em (4.1),

1 _ = 2,—2y %
Eoo 4/0 dyy“e " H, <Z?/> ) (4.2)
e em
a (e.)
() = ¢ [ 1Bxi )= Bu ()] ar
Dy
fazendo r’ = D,
a a > a a
()= Ge [ o (o) o (G o

Substituindo de volta (4.3) em (4.2) obtemos a expressao

ap€ o > _ Qo ap
Elloo = _47/0 dy/y d:r:y2e 2 |:ENL (?x> — FEy (Exﬂ .

A fim de simplificar a expressao para a corre¢ao da energia ainda sem fazer mencao a uma

eletrodinadmica em particular, invertemos a ordem das integragoes,

ape [ a a v
E'll00 = —4% dx [ENL (%x) — Ey (%x)] /0 dnye_Qy,

0

e integrando em y obtemos,
By = —%/ dr [Ex () = B (o) - e (L4 20+ 27)] . (49)
Z Jo Z Z

Como foi notado no capitulo anterior, a primeira correcao ao campo elétrico de

Maxwell para uma carga puntiforme é proporcional ao inverso da sexta poténcia da dis-
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tancia r~%. Por causa disto, no limite z — oo o integrando de (4.4) apresenta o mesmo

comportamento, decrescendo com z75.

Desta forma, se torna tentador expandir a ex-
pressao do campo elétrico Eyy em série de poténcias até segunda ordem. Porém, esta
aproximagcao falha no limite inferior da integral. Isto ocorre porque os termos que foram
truncados passam a prevalecer quando x — 0. Mais ainda, como no limite x — 0 o fator

1 — e % (1 + 2z 4 22?) possui 0 mesmo comportamento que 3z

, a integral deve divergir
para qualquer termo, vindo da diferenca dos campos elétricos, proporcional a =" para
n > 4. Isto implica que deve ocorrer um delicado cancelamento entre todos os termos da
série para que (4.4) seja convergente. Por causa disto, a forma completa do campo elé-
trico deve ser usada ou, equivalentemente, todos os termos da Lagrangiana que descreve
a eletrodinamica nao linear devem ser levados em conta. Como cada eletrodinamica nao
linear tem suas caracteristicas descritas pelos termos de ordem superior de suas Lagran-
gianas, cada uma deve gerar uma correcao particular a energia de ionizacao do atomo
de hidrogénio. Finalmente, o fato da expressao do campo elétrico generalizado divergir
da de Maxwell para certos valores de x poderia ameacar o uso da teoria de perturbacao.
Para poder justificar o uso deste procedimento, devemos obter resultados que satisfacam
as suposigoes iniciais da teoria da perturbagdo, ou seja Ejy, < EYy, para valores de b

condizentes com os resultados experimentais.

Substituindo na integral o campo elétrico £y, dado por

a Z3e 1
B (77)

= B —2’
drepag ©

podemos resolver o segundo termo

. age [T agp Z3e 1 o 9
Ely = —7/0 d [ENL (F) - pr— P] [1— e (1+ 22+ 22%)],

dmepap 4 dmegal [ ao o ,
e = [, e () [ (2o 2]

—/ da:i2 [1—e™ (14 22+ 227)].
0 .Z’

/

-
T
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Antes de inverter a ordem das integrais, esta correspondia a

oo o 1
T = 4/ dyyZe_Qy/ dr—,
0 Y T

=4 / dyye ™ = / dyye™,
0 0

=I(2) =1
Assim, obtemos que
dmegag dmegal [ ao o )
~ a2 Bl = T ; drEny, (7x> [1—e (1422 +22%)] — 1. (4.5)

Esta sera a expressao de partida para calcular a correcao da energia do estado fundamental

devido as teorias nao lineares.

4.2 FEletrodindmica de Born-Infeld

Para calcular a corre¢ao de primeira ordem a energia de ionizagao de um atomo hidroge-
noide (4.5), manipulamos o campo elétrico para uma carga puntiforme dada pela equagao

(2.61) para obter,

Z 1
Ep; (@13) = ‘ )
Z 4meg a2 4 Ze 2
?SL’ + <47r50b>
Z3e 1

= )
dregat [zt + &4

3 A A . . . ~
onde € =, /#@2% é um parametro adimensional que mede o desvio de Eg; com relagao a
0
Maxwell. Para ter uma estimativa da ordem de grandeza deste parametro, considerando

b=t ~10°Vm! temos que ¢ = 722 ~ 5 x 10773,
TEQTE ao

Substituindo o campo elétrico em (4.5) obtemos

4 ° ]2 (14920 + 22
WsoaoEllOO _/ gl (142x+22%) L (4.6)
0

T 722 vVt + et

Expandindo o integrando e realizando a integral de cada termo individualmente, podemos
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reescrever (4.6) como

_47’(’80&0
Z2e?

onde

L=
0
L=
0
L=
0

Elyw=1 —1,—2I; —2I, — 1,

Estas integrais possuem representacao em termos de funcoes gama e funcoes de MeijerG

53],
()’
1 — ﬁg )
3
I, = —G51
? 16+/272 1
2
3
I, = —G51
’ 16v/272 1
[4 — 63 51
16+/272 o

Q)

—_
(=]

Q)

—_
(=

™

—_
D

| =
N|=
|
=
|
N
(=]
=

Por mais que estas representagoes nao sejam elucidativas, permitem uma solucao exata

para a primeira correcao. E importante notar que, pelo principio de correspondéncia, no

limite em que £ — 0 a corre¢ao & energia também deve tender a zero Ejy, — 0. Por

causa disto, o lado direito de (4.7) ndo deve possuir termos constantes nem poténcias

negativas de €. Isto implica que o termo I; deve ser compensado pelas outras integrais.

Para estudar o comportamento da correcao Ei,, em fungao do parametro &, expandimos
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as integrais I,, em série de poténcias de € em torno de 0 até ordem &3,

4T (5)2 43/2e g2 73/2¢3
I~ =2+ 2y +1n2e% + A + = — s,
2 R T BT Gk
, Amde g2l
g2 + ,
2 r@)’ 8T (3)°
om32e  ,  3p3/2E8

16T (1)

Substituindo de volta em (4.7) e fazendo uso da propriedade da fungao gama I' (n + 1) =

nl' (n) obtemos
dmegag 2€2+ 73
——22 Lo R 38+ —3
2 35 3r(3)

Substituindo a definicao do parametro adimensional €, a correcao a energia é dada por

E1100%2 Z%? B w3 ( Z3e >§
3 (4meg)®adb 3T (%)2 4regab

E interessante notar que o primeiro termo ja foi derivado por Heller e Motz em
1934 [54]. O resultado deles, porém, difere do deste trabalho por um fator Z. Isto é devido
ao fato dos autores considerarem que o campo elétrico produzido por uma carga Ze seja
igual a ZEP! onde EB! ¢ o campo elétrico produzido por uma carga e (ver equagao (9) em
[54]). Como foi visto no capitulo anterior, o campo elétrico deduzido nao é diretamente
proporcional & carga. De fato, se fosse proporcional, o limite superior do campo em um
dado sistema dependeria da intensidade da carga que o produz, sendo igual Zb para uma
carga puntiforme Ze.

Considerando apenas o primeiro termo, a correcao a energia de ionizacao é dada

por
AT

- 48
4872e3a3b (48)

L
By =2

Para os valores estimados pelos autores originais da teoria (b ~ 102V m™! e fazendo
Z = 1), a corre¢ao ¢ da ordem de E},, ~ 107 "eV, justificando assim o uso da teoria de
perturbacao. E interessante notar também que, para os mesmos valores de b ou maiores,

o primeiro termo (4.8) quando comparado com a solugdo exata (4.6) introduz um erro
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relativo menor que 0.02%.

Finalmente, o fato da correcao a energia ser positiva indica que o elétron estéa
mais fracamente ligado ao nucleo. A analise da permissividade elétrica para um sistema
eletrostéatico no limite de campo fraco (2.54) mostra que

IS
€:EQ<1+2—£2E2).

Uma susceptibilidade positiva Q%EQ > 0 indica uma tendéncia do meio a se opor a
formacao de um campo elétrico. Isto pode ser interpretado como havendo um efeito de

blindagem devido a polarizagao do vacuo ao redor do ntcleo.

4.3 Eletrodinamica logaritmica

O procedimento para obter a correcao a energia de ionizacao devido & eletrodindmica
logaritmica é semelhante ao da eletrodinamica de Born-Infeld. Come¢amos manipulando

o campo elétrico (2.66) na forma necessaria para aplicar a equacao (4.5),

ag 4rregh? ag Ze \° ai
i (30) - 22 [ a () - ]
t\z" Ze \/243” o\ ) T 22

b
=— [\/x‘* + 2e4 — 513'2] ,
€
sendo que definimos € = %{?2%. Substituindo em (4.5) obtemos
0

22 62 100 c

4 e
e / do [VaT 267 — 2| 1= e (1420 +22%)] = 1. (49)
0

Fazendo a distribuicao dos termos no integrando, podemos reescrever esta expressao como

1 1 2 2
1
Blo=h =gl -gh—5

47T€0 ap
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onde

Estas integrais novamente possuem representacao em termos de fungoes gama e fungoes

de MeijerG [53],

IS
—
ot

e
[SIE
N
=
N
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e
=

Baseado no caso da eletrodinamica de Born-Infeld, a primeira correcao é da ordem de 2.

Como a integral (4.9) estd sendo multiplicada por um fator ¢~*

, expandimos as fungoes
de MeijerG em poténcias de € em torno de 0 até sexta ordem a fim de determinar todas

as contribuicoes de ordem &2,

3T (-3)° (5 1 2imie | 4yt
~ V4 (2 90 TIn8& — 921 4
o~ ogaye (5 e g2l ot~ iy + 25
(1 1 4 m2e? 2v/2¢°
(Tt ey g

4 3.5 24/2¢6
14%%_ 3 7T18 o T \/3_(€

25T (1) T (%)
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Substituindo de volta em (4.10) obtemos

471'60@0 1 4\/582
7202 100 ™~ 9

. (4.11)

Assim, escrevendo a forma explicita do parametro € temos que a corregao a energia de

ionizagao devido a eletrodinamica logaritmica é,

42  ZPe3
3 48n2elajb’

I
B =

Comparando numericamente a solugdo aproximada (4.11) com a solugao exata
(4.9) da corre¢ao obtemos um erro relativo de 0.02% quando o valor estimado por Born e
Infeld do parametro b é usado. E interessante notar que esta correcao difere daquela pro-
duzida pela eletrodindmica de Born-Infeld. Isto é devido a relevancia da forma completa
do campo elétrico ou, de forma equivalente, a relevancia dos termos de ordem superior

nos invariantes das respectivas Lagrangianas.

4.4 Eletrodinamica exponencial

Agora calculamos a correcao a energia de ionizacao produzida pela eletrodindmica expo-

nencial. O campo elétrico, com argumento modificado, ¢ dado por

Z3e 2
(47?50(1317:62 ) ’
o4
o ()
Z3e

onde mais uma vez € = | / "= Substituindo esta expressao em (4.5) obtemos
0

—WElooz 5—2/0 algc,/W(E [1—e (1422 +22%)] — 1. (4.12)
T

Er (a—ZO:v> = %74

J/
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Nao ¢é possivel obter uma solucao analitica para a integral nem para suas partes. Por causa
disto, é necessario realizar as aproximagcoes possiveis gracas & magnitude do parametro
€ nesta etapa. Sabemos que no limite em que € — 0 a correcao a energia também
deve tender a zero E}y, — 0. Por causa disto, a expansao em série da integral I nao
pode possuir nenhuma poténcia £ tal que n < 1. Além disto, o fator —1 em (4.12)
deve ser cancelado pelo termo proporcional a 2. Também, pelo padrao observado nas
corregoes da energia nos casos das eletrodinamicas de Born-Infeld e logaritmica (Eqs. (4.8)
e (4.11), respectivamente), o primeiro termo da série de poténcias em e é proporcional a
2. Finalmente, como as teorias tipo Born-Infeld preveem uma susceptibilidade elétrica
positiva, indicando assim uma resisténcia a producao de um campo elétrico, a correcao

deve ser positiva. Estas consideragoes nos permite prever que os primeiros termos série

de poténcias da solugao da integral I devem ser

I =¢2—aet,

onde « > 0 é um fator numeérico.

Separamos a integral em suas partes,

I =1, — 1, — 213 — 21,

onde

/Ooodx W<
/Oooda: W<

00 54
:/ dx W(—4>xe2’”,

0 T

oo 4
:/ da W(i)ﬁe”

0 T

O procedimento detalhado para a obtencao da expansao em série destas integrais pode

ser vista no Apéndice A. As solugdes aproximadas até O (%) destas integrais sao dadas



por

}1
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)e

5 1 1 1
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Substituindo de volta obtemos que a integral I é aproximada por

I~¢

2_ﬁ€4
5

Assim, a correcao & energia é dada por

471'80(1,0 £ 2 (413)

7262 100 ~

e substituindo a defini¢ao do parametro € obtemos

VAT
48m23agh

Ely ~ VT

Comparagao numeérica entre a aproximagao (4.13) obtida e a solugao exata (4.12)

mostra um erro relativo de 0.02% usando a estimativa do parametro b feita por Born.

4.5 Vinculo do parametro b para as eletrodinamicas
tipo Born-Infeld

As corregoes de primeira ordem para a energia de ionizagao de um atomo tipo hidrogénio

sao dadas por
AL

Bl = K—25
100 4872e2adb’

onde K = 2, 4v/2/3 e \/7 para as eletrodinamicas de Born-Infeld, logaritmica e exponen-

cial, respectivamente.
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O valor mais preciso da medida da energia de ionizacao do atomo de hidrogénio

pode ser obtido em [51] e é dado em unidades de frequéncia por
v = 3288086856.8 £ 0.7MHz.

E importante notar que este valor foi obtido pelo National Institute of Standards and
Technology (NIST) de forma independente de qualquer modelo. Outros valores disponiveis
na literatura, como o que pode ser encontrado no Particle Data Group [55], assumem a
validade do potencial eletrostatico de Maxwell para poder serem derivados.

Sabemos que o Modelo Padrao é capaz de prever o valor medido experimental-
mente. Desta forma, a correcao a energia devido as eletrodinamicas tipo Born-Infeld
sao limitadas superiormente pela incerteza tedrica. Usando 3o de nivel de confianca,
vinculamos a correcao através de

Ely < 3ho,,

onde h é a constante de Planck. Invertendo esta relagao para o parametro b obtemos que

63

b> K—————
144m23adho,’

onde Z = 1 para o atomo de hidrogénio. Usando os valores disponibilizados pelo CODATA
[56],

e = 1.6021766208 x 107C,
g0 = 8.854187817 x 107 2C2N"1m~2,
ao = 0.52917721067 x 10~ °m,

h = 6.626070040 x 10"*'kgm? s,
temos que o limite inferior para o parametro b é
b>537Tx 10KVm .

Concluimos, portanto, que o parametro das eletrodinamicas tipo Born-Infeld é limi-
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tado inferiormente pelos valores bg; > 1.07 x 102'Vm™! b > 1.01 x 102Vm e
be > 9.52 x 102V m~! para as eletrodinamicas de Born-Infeld, logaritmica e exponen-
cial respectivamente. O parametro adimensional é ¢ < 4 x 107 para todos os casos,
justificando tanto as aproximacoes feitas quanto o uso da teoria de perturbacao.
Quando comparado com a estimativa bg; = 1.2 x 102V m~! feita por Born e
Infeld em 1934 [25], o vinculo obtido usando medigdes da energia de ionizagao do dtomo
de hidrogénio é 1 ordem de grandeza mais forte. Nos anos 70, Soff et al. [57] obtiveram o
valor bgr > 1.7 x 102V m~! comparando energias de transicoes eletronicas e muonicas em
atomos de chumbo g, Pb. Apesar de ter duas ordens de precisao a mais que o resultado
obtido neste trabalho, o procedimento seguido pelos autores é questionavel, uma vez
que nao levaram em conta a perda de simetria esférica, o que torna a inversao entre os
campos D e E mais delicada. Mais recentemente, foi sugerido por Déavila et al. [58|
que o parametro de Born-Infeld poderia ser vinculado através do espectro de magnetares
analisando o efeito de birrefringéncia magnética. Seguindo este procedimento, os autores
chegaram ao vinculo b > 2.0 x 10"V m~!. Finalmente, no final de 2016 foi anunciada a
primeira medicao direta do espalhamento féton-foéton pela colaboracao ATLAS analisando
dados de espalhamento de fons de chumbo [13]. Com base nesta medicao, Ellis et al. [14]
estabeleceram o limite inferior para o parametro de Born-Infeld bp; > 4.3 x 102"V m™1.
O vinculo é 7 ordens de grandeza mais preciso que o obtido com o atomo de hidrogénio.
Isto é principalmente devido ao fato das altas energias envolvidas no LHC, regime no
qual as eletrodindmicas nao lineares manifestam suas caracteristicas. Em contrapartida,
o procedimento para a obtencao do vinculo por meio da energia de ionizacao do atomo de
hidrogénio é muito mais simples e pode facilmente ser generalizado para outras teorias,

como foi o caso das eletrodinamicas logaritmica e exponencial.
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Capitulo 5

Teoria quantica de campos e secao de

choque devido a correcoes nao lineares

Neste e no proximo capitulo temos como objetivo usar a medicao experimental do espa-
lhamento féton-féton obtida no LHC para vincular corregoes nao lineares da eletrodina-
mica de Maxwell. Esta medi¢ao do espalhamento féton-féton foi obtida pela Colaboragao
ATLAS analisando dados de colisoes ultraperiféricas de ions de chumbo acelerados pelo
LHC [13]. O modelo aceito nos dias de hoje para estudar a interagdo entre particulas
elementares aceleradas a altas energias é o Modelo Padrao. Este, por sua vez, é des-
crito na linguagem matemaética da teoria quantica de campos. Neste capitulo, portanto,
introduzimos os conceitos fundamentais da teoria quantica de campos necessarios para
obter a secao de choque da interagao foton-foton devido aos termos de correcao nao li-
near. Esta grandeza serd de fundamental importancia no préximo capitulo para vincular

os parametros que caracterizam estas corregoes.

5.1 Introducao

Os resultados obtidos a partir da antiga teoria quéantica, como as linhas espectrais do
atomo de hidrogénio obtidas por Bohr, foram marcados por recorrer a manipulacoes
matematicas ad-hoc particulares a cada problema e eram justificados pelo fato de conse-
guirem reproduzir as medi¢oes experimentais. As formulagoes desenvolvidas por Heisen-

berg e Schrodinger em meados da década 1920 marcaram o éxito da mecanica quantica
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por formarem uma tnica base tedrica capaz de reproduzir a maior parte dos resultados
anteriores. No final da mesma década, aplicando o formalismo quéntico ao campo eletro-
magnético livre, foi recuperada a ideia proposta por Einstein em 1905 de que os modos
do campo eletromagnético poderiam assumir apenas valores discretos de energia. Desta
forma, a mecéanica quantica seria capaz de descrever corretamente tanto particulas mas-
sivas, como o elétron e o proton, quanto o campo eletromagnético, do qual o féton seria
uma manifestacao [59, 45].

A ideia de que o mundo fisico é constituido por duas entidades fundamentalmente
distintas, particulas e campos, foi reforcada pelo sucesso que Dirac obteve ao descrever a
taxa de emissao espontanea de d&tomos em estados excitados e ao prever teoricamente a
existéncia do poésitron formulando seu famoso mar de elétrons [60]. Porém, foi gragas aos
trabalhos de Jordan, Wigner, Pauli, Heisenberg, Furry e Oppenheimer que mostraram que
particulas poderiam ser descritas por campos, incorporando naturalmente a existéncia de
antiparticulas, que a visao dualista foi abandonada para dar lugar a uma visao puramente
campista [59]. Nesta perspectiva, existiria um campo associado a cada particula perme-
ando o universo e a interacao entre elas seria descrita por acoplamentos entre seus modos.
A teoria quantica de campos passou por altos e baixos ao longo da sua construcao. Ques-
toes como o surgimento de quantidades fisicas infinitas tanto como dificuldades de se obter
previsoes a partir dela tiveram que ser superadas. Nos dias de hoje, a teoria quantica de
campos serve como base para a descrigao das interagoes eletromagnéticas, fraca e forte.
A partir dela conseguimos obter previsoes tanto para secoes de choques como taxas de
decaimento e somos capazes de calcular propriedades fisicas, como o momento anémalo
do elétron, com precisdo sem precedentes [61].

Na Secao 5.2, com o objetivo de discutir os aspectos importantes do processo de
quantizacgao, tratamos o modelo simples de um campo escalar real tipo Klein-Gordon.
Em seguida, na Secao 5.3, discutimos os principais problemas da tentativa de quantizar o
campo eletromagnético de forma analoga ao campo escalar. Para superar estes obstacu-
los, existem diversos caminhos que podem ser seguidos, um dos principais sendo recorrer
ao formalismo de integrais de caminhos. Com o intuito de manter a mesma linha de raci-
ocinio usado na sec¢ao anterior, seguimos o formalismo de quantizacao canénica proposta

por Gupta e Bleuler no qual uma condigao semelhante ao gauge de Lorenz é imposto.
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Finalmente, na Secao 5.6 introduzimos as corre¢oes nao lineares de primeira ordem &
Lagrangiana de Maxwell discutidas no Capitulo 2. Estas correcoes acoplam os modos do
campo eletromagnético permitindo a interacao direta entre os fé6tons. Com o objetivo de
estudar este fenomeno, deduzimos a probabilidade com a qual dois fétons reais interagem,
conectada as medigoes experimentais através das segoes de choque diferenciais e totais.
Neste capitulo usamos a métrica maioritariamente negativa, ou tipo tempo, n =

diag (1, —f) e as unidades naturais tal que h =c=¢y = 1.

5.2 Quantizacao do campo real de Klein-Gordon

O campo escalar real de Klein-Gordon livre ¢ (x,t) é descrito pela equagdo de campo

relativistico dada por [61, 62, 63]

0 2 2 _
(@—V +m)¢(x,t)—0, (5.1)

(0,0" +m?) ¢ (x,t) = 0.

Esta equagao pode ser obtida através do principio variacional a partir da densidade La-

grangiana (ou simplesmente Lagrangiana),

1. 1 1
Lxag=—-¢*—=V¢-Vo— -—m?¢?, (5.2)
2 2 2
1 1
Lra = 50,00"¢ — Sm*¢?.
2 2
O espago é permeado pelo campo ¢ (x,t) onde cada ponto é identificado pelo parametro
x. Assim, a equacao (5.1) pode ser interpretada como descrevendo a dindmica de um
oscilador harménico localizado em x acoplado aos seus vizinhos pelo operador V2. A

Lagrangiana do sistema ¢é entao dada pela soma das densidades Lagrangianas de cada

oscilador e, portanto, pela integral sobre todo o espaco,

LKG:/CZ3£L‘,CK(;.

Se seguimos o esquema de quantizacao usando o principio de correspondéncia de
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Heisenberg em que H (p,q) — H (P, G), elevando as coordenadas a operadores, para uma
tnica particula escalar relativistica de spin 0, obteriamos a equagao de Klein-Gordon (5.1)
como resultado. Nesta prescrigao, a fungao de onda ¢ (x,t) assume o papel de amplitude
de probabilidade. E notério que este procedimento leva a diversas dificuldades. Em
particular, na fisica relativistica, a massa nao é mais conservada mas esta relacionada a

energia através da relagao de dispersao
E?* =p* +m*

Por causa disto, passam a ser permitidos processos em que o numero de particulas, por
sua vez, também nao seja conservado. Portanto, a possibilidade de conversao de massa
em energia nao é compativel com a interpretacao probabilistica da funcao de onda. Mais

ainda, as flutuagoes quanticas sao descritas pela relagao de incerteza de Heisenberg,

AEAt >

| —

Isto implica que, em intervalos de tempo suficientemente pequenos podem existir sistemas
de pares de particula-antiparticula capazes de afetar a dindmica de um sistema antes de
serem novamente aniquilados. Assim, mesmo no caso em que nao haja energia sufici-
ente para produzir particulas de determinada massa, uma teoria quantica relativistica é
intrinsecamente uma teoria de muitas particulas [61].

Por outro lado, o conceito de causalidade introduzido pela relatividade restrita
implica que um evento do espaco-tempo nao pode ter sido a causa de outro evento loca-
lizado fora do cone de luz do primeiro. Isto implica que o propagador de qualquer teoria
relativistica deve ser nulo U (z,x¢) = 0 para distancias no espago-tempo do tipo espago.
A teoria quéntica de uma tunica particula relativistica falha neste quesito pois o propa-
gador entre dois pontos U (z,z¢) = (x| ™" |z) # 0 para distancias tipo espago. Estes
problemas, entre outros, sao resolvidos ao abrir mao da interpretacao probabilistica da
funcao de onda e passar a descrever as particulas como sendo manifestacoes do proprio
campo ¢ (x,t) [61].

Para quantizar o campo de Klein-Gordon, aplicamos o mesmo esquema de quan-

tizagdo nao relativistica ao campo ¢ (x,t). Desta forma, promovemos o proprio campo
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¢ (x,t) e seu momento conjugado a operadores. O momento conjugado pode ser obtido a

partir da Lagrangiana pela relacao

T(x,t) = agg = ¢ (x,1).

Por sua vez, a densidade de Hamiltoniano (ou simplesmente Hamiltoniano) do
campo escalar pode ser obtido a partir da Lagrangiana (5.2) através de uma transformada

de Legendre,

Hie =7 — Lxa, (5.3)
e 1oy, 1 24
=57 + 2V¢ Vo + 5™ o (5.4)

Interpretando de forma semelhante a densidade Lagrangiana, esta densidade Hamiltoni-
ana descreve a energia do oscilador harménico de momento 7 (x,t) e coordenada ¢ (x,t)
localizado no ponto x. Desta forma, a energia total do sistema é dada pela integral sobre

todo espaco desta densidade,

HKG = /d3J]HKG. (55)

Em seguida, em analogia a um sistema de osciladores, promovemos as coordenadas a
operadores, ¢ (x,t) = ¢ (x,t) e m(x,t) = 7 (x,t), e impomos relagoes de comuta¢ao em

tempos iguais

{QB (x, 1), 7 (X, t)} — i (x — %), (5.6)
60, ),6 (<. 0)] = 7 (x.0), 7 (1)) =0,

onde a delta de Kronecker, usual no caso de indices discretos, é substituida pela delta
de Dirac para acomodar os indices continuos das coordenadas espaciais. Desta forma, o

Hamiltoniano também passa a ser um operador,
F 3 1., 1o om? 292
H = d’x §7T +§V¢V¢+7¢ .

Este operador Hamiltoniano define um espago de Hilbert que pode ser construido
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calculando seus autovetores e autovalores. Estes, por sua vez, descrevem os estados e
energias acessiveis ao sistema. Para este fim, fazemos uma mudancga de variaveis das
coordenadas generalizadas ¢ (x,t) e 7 (x,t) para as coordenadas dos modos normais do
sistema gg(p,t) e 7 (p,t). Este procedimento transforma o problema de um sistema de
osciladores acoplados nas coordenadas originais em um sistema de osciladores livres nas
novas coordenadas. Como consequéncia, a energia total do sistema passa a ser dada pela
soma das energias contidas em cada modo. No limite em que as dimensoes do sistema

tendem ao infinito, os modos normais sao obtidos pelas transformacoes de Fourier,

b (x,t) = / (iggq% (p,t) €™, (5.7)

Como as coordenadas originais sao operadores Hermitianos, seus modos devem satisfazer
ot (p,t) = ¢ (—p,t) e 7l (p,t) = 7 (—p,t). Substituindo (5.7) na equacao de movimento

(5.1) obtemos a equagao que descreve cada modo

0? 5\ -
<@ + Ep> o (p,t) =0, (5.8)

onde foi definido E, = /p? + m? para simplificar a relacdo. Resolvendo esta equagao,

obtemos que a solugao geral de (5.8) é dada por

~ 1 ) .

& (p,t) = (ape*“%t + af_pe“%t) , (5.9)
\/2E,

onde foi usado o fato de ¢' (p,t) = ¢ (—p, t). O fator (QEP)_l/2 foi extraido das constantes

de integragao para simplificar a relagao de comutacao entre os operadores a, e dL além

de tornar o produto dp&I)CPp adimensional. Além disto, a introducao deste fator torna o

produto (2E,) "% d3p um invariante relativistico.

Por outro lado, a transformada de Fourier para o momento conjugado é dado por

N - dgp ~ ipX
w(x,t)_/(%)gw(p,t)e , (5.10)

onde os modos 7 (p,t) podem ser obtidos a partir de &(p,t) através da definicao do
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momento conjugado,

7 (p,t) = b (p,t) = —iy| =2 (ape—iEpt —at peiEpt) . (5.11)

Como consequéncia das relagoes de comutagao (5.6), os operadores quS(p, t) e 7 (p,t) sa-

tisfazem as relagoes de comutacao

6 (p.t). 7 (P 0)] =i (2m)’ 6 (p — ). (5.12)

60,06 0.0)] = [7(p,0).7" (B0)] = 0.

E possivel inverter as equacoes (5.9) e (5.11) para obter a expressao dos operadores

ap e &L tal que

- Ep o ¢ i Ept
= — t t tLip
ap 2 ¢ (pv ) =+ \/Eﬂ- (pa )] € )
| B, i »
al, = TPW (p,t) — ﬁﬂ (PJ)] e Pt
L P

Estas expressoes sao semelhantes aos operadores de criagao e aniquilagao introduzidos por
Dirac para resolver algebricamente o oscilador harmonico simples quantizado. As relagoes
de comutagao entre estes operadores podem ser obtidas usando (5.12), sendo por sua vez

também semelhantes aos operadores escada de Dirac,

Substituindo (5.9) em (5.7) e (5.11) em (5.10) para obter a expansao dos opera-

dores é(x, t) e T (x,t) em funcdo dos operadores escada,

) Bp 1 . 4
o (x,t) = /—— (d e P 4 gl e””) , (5.13)
(2m)® \/2E, ¥ P
d3p E - 4
T(x,t) = —i =P (ape " — ale™” 14
7 (x,1) z/ (27r)3 5 (ape ale ), (5.14)
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= _ _ 2 2
onde usamos a notacao p-x = Lt —p-x e E, = y/p? +m?.
Com estas expressoes em maos, reescrevemos o Hamiltoniano usando as coorde-

nadas dos modos,

. 3 ) )
H = / <gﬂ_];3 Bw (p,t) 7 (p,t) + %Eﬁqs (p. 1) ¢ (p, 1)

Esta expressao mostra que os modos do sistema agem como osciladores livres, a energia
total do sistema sendo dada pela soma da energia contida em cada modo. Em seguida,
substituimos (5.9) e (5.11) nesta expressao do Hamiltoniano para obté-lo em termos dos

operadores ap € &L,
A d3p e
H = /WEP [alap + 0 (0)] . (5.15)

A delta de Dirac § (0) — oo que aparece nesta expressao pode ser entendida como a
generalizacao da energia do ponto zero de um oscilador harmonico simples no limite do
continuo. Usando o argumento de que apenas diferengas das energias com relagao ao
vacuo sdo fisicamente relevantes, podemos portanto descarté-lo. E importante manter
em mente que é possivel detectar diferencas da energia do ponto zero, este fenémeno é
conhecido como Efeito Casimir [62]|. Para deduzir os autovalores e autovetores do operador

Hamiltoniano (5.15), ¢ ttil primeiro calcular os comutadores

[ﬁ,ap} — —Epap, (5.16)

[1,4}] = By, (5.17)

que indicam que os operadores ap € dL se comportam de forma anéloga aos operadores
de criagao e aniquilagao do oscilador harmonico. O operador Hamiltoniano é Hermitiano
e positivo definido. Por causa disto, deve existir um estado de minima energia, chamado
vacuo do sistema, tal que

ap 0) =0,

para qualquer p. Como consequéncia de ter descartado a energia do ponto zero, este

estado ¢é caracterizado por possuir energia nula

H10) =0.
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Por outro lado, a acao do operador de criacao sobre o vacuo pode ser visto a partir da

aplicacao do Hamiltoniano,

mostrando que este cria um autoestado do operador Hamiltoniano com energia Ey. Desta
forma, é possivel construir qualquer autovetor do operador Hamiltoniano por meio da

aplicagao sucessiva do operador de criacao,

|p17p27 apn> X &Tpl&LQ&Tpn |O> )

tal que sua energia é dada por

ﬁ|P1>p27 7pn> = (Ep1 + Epz + ...+ E n) |p1ap27 7pn> .

Como em problemas de autovalores a caracteristica importante do autovetor é apenas a
@y PR : : =
sua “direcao”, somos livres para escolher a sua normalizacao. Portanto, escolhemos que

um estado produzido pelo operador de criacao seja definido por

Ip) = ,/zEpaL 0) .

Esta escolha implica que a norma de um vetor,

(pla) = 2E, (27)°6° (p — q) ,

seja invariante sob transformacoes de Lorentz.

A conservagao da energia total dada pelo Hamiltoniano (5.5) é resultante da in-
variancia do sistema por translagoes temporais. A relacao entre quantidades conservadas
e as simetrias continuas de um sistema é consequéncia do teorema de Noether. A agao de
Klein-Gordon ganha um termo de superficie por translagoes temporais e espaciais, por-

tanto nao afetam as equacoes de movimento. Como consequéncia, o teorema de Noether
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estabelece que existe uma corrente conservada tal que sua 4-divergéncia ¢é nula,

0,T" =0, (5.18)
onde

oL
T = 06— 1L,
50,0 ¢ "

é chamado de tensor energia-momento. Supondo que a corrente é nula no infinito x — o0,

podemos integrar (5.18) sobre todo o espago para obter 4 cargas que invariantes no tempo,

P’
dt

0,

onde PV = [ d*zT%. Identificamos a componente zero de P como o Hamiltoniano (5.5).

As outras trés componentes sao interpretadas como o momento fisico do sistema,

P=— / Bar (x,t) Vo (x,1) . (5.19)

Da mesma forma que o Hamiltoniano, este pode ser reescrito em termos dos operadores
de criacao e aniquilagao assumindo a forma

P= /d3pp&;g&p.

Também de forma semelhante, o comutador deste operador com os operadores de criacao
e aniquilacao sao dados por

|:]-Sua’pi| = _pap7

(5.20)
[P,&L} ~ pif,

(5.21)

implicando que os autoestados |p) de energia definida E, também sao autovetores do
operador de momento com autovalor p,

plp)=plp).
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Como de maneira geral, o estado |py, pg, ..., Pn) Possui momento total p; +ps+... +p, €
energia £y, + Ep, + ... + Ep, bem definidos, é natural interpretar as excitacoes do campo
como particulas.

Agora identificamos o comportamento do campo (5.13), que foi elevado & posi¢ao

de operador. Aplicando este operador no vacuo obtemos que

o d3p 1 .
x,t)]0) = —e? |p).
60010 = [ Esgpe e
Ou seja, o operador ngﬁ (x,t) produz uma superposigao de estados de momento. Calculando

a amplitude de probabilidade de encontrar ¢ (x, t) |0) no estado |q) obtemos a onda plana

(a] & (x.t) |0) = '

Portanto, o estado criado pela aplicacao deste operador no vacuo é semelhante ao do
estado de posi¢ao no caso nao relativistico |x), sendo ent@o interpretado como o operador
que cria uma particula localizada em x.

Finalmente, como a equacao de Klein-Gordon para um campo livre é linear,

podemos obter a funcao de Green do operador de Klein-Gordon,

Do (z—y) = / ot (5.22)

tal que
62
(——V2+m2> Dg (x —y) = —i6* (x — y).

A funcao de Green descreve como o sistema reage a um impulso. Uma fonte externa
genérica, por sua vez, pode convenientemente ser descrita como uma distribuicao de im-
pulsos tipo delta de Dirac. Consequentemente, a solucao do sistema linear a presenca de
uma fonte externa j (z) é a soma das solugoes dos impulsos devidamente moldadas, ou

convolucionadas, pela mesma distribuicgao,

o) =i [ d'yDo(o—9)it).
De acordo com as condigoes de contorno que desejamos impor ao sistema, pode-
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mos incorporé-las a fun¢ao de Green (5.22) deformando o percurso de integragao. Isto
pode ser feito deslocando corretamente os polos da parte temporal da integral p° =
+tE, = i\/m para o plano complexo. Por exemplo, a fungao retardada de Green
Dpg (x — ¥), que é caracterizada por permitir que um impulso produzido em y° possa ape-
nas afetar o sistema em tempos posteriores 2 > 3° pode ser obtida deslocando ambos
polos abaixo do eixo real. Isto pode ser realizado acrescentando um pequeno deslocamento
imaginério p°® = +E, —ic = +/p?+ m? — ic. Este efeito pode ser visto diretamente

0

da definigao (5.22), pois se 2° < y° podemos fechar o caminho de integragao com um

semicirculo na parte superior do plano complexo deixando os polos de fora, e neste caso
a integral se anula. A funcao retardada de Green também pode ser obtida a partir do

operador (5.13) pela relagao

Drfw~y) =6 (2"~ ") (0] |4 (2) .6 ()] 10).

:@(xo—yo) [D(x—y)—D(y—w)]a

onde

D (z—y)=(0]¢(x) ¢ ()]0),
:/ d’p Le—ip(x—y)
(27T)4 2E, ’

¢ a amplitude de propagagao de uma particula criada em y ser aniquilada em x ou (x|y).

Os polos podem ser deslocados de 4 formas distintas. Ao usar a prescri¢ao de
Feynman os polos sdo deslocados de tal forma que p° = + (E, —ig) = + (x/p2 +m?2 — ig).

A fungao de Green correspondente, ou propagador de Feynman, é

Dp(x—y) = 01T {4 (2) 6 (y) } 0},

=0 (" —y")D(x—y)+0(y°—2°)D(y—a),
d'p iem(@y)

Bl / (2m)* p* — m? + i’

onde T'{...} é o operador de ordenamento temporal. O efeito deste operador é retornar

T {QAS () ¢ (y)} — ¢ (x)d(y) se 2° > 4% e & (y) & () se y° > 2°. Para ter uma interpreta-
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¢ao fisica mais completa desta fungao de Green, é mais interessante analisar o caso de um
campo escalar complexo. Ao contrario do caso real onde hé somente um tipo de particula
e o operador gz@(x) tem tanto o papel de cria-las quanto de aniquila-las em um ponto do
espago, um campo escalar complexo descreve dois tipos de particulas de mesma massa.
Nesta situagao, este campo possui uma simetria a mais associada a uma transformacao
de gauge global. A partir desta simetria, o teorema de Noether associa a cada uma destas
particulas uma carga oposta. Neste caso, o operador ngS(x) tem o papel de criar antipar-
ticulas, e aniquilar particulas. O operador adjunto ¢ET () tem o papel oposto. Assim,

temos que a amplitude de propagacao de uma particula entre os pontos y e x é dada por

DY (z—y) = (0| ¢ (x) ¢! (y)|0),

e a amplitude de propagacao de uma antiparticula entre os mesmos pontos é dada por

D™ (x—y) = (0] 6" () & () |0).

O propagador de Feynman para o campo escalar complexo entao é dado por

Dy (x—y) = (01T {6 () ' (1) } 10)

=0 (2" —y) DT (x—y)+ 0O (y —2°) D™ (y — ),
. / d4p ?:e_ip'(x_y)
N (27r)4 p2 —m? +ig’

Assim, quando z° > ¢° temos D (x —y) e no caso em que 3° > z° temos D~ (y — x).

Particulas virtuais participam de etapas intermediarias em processos de espalhamento e
decaimentos. Como estas nao podem ser medidas, o principio de superposicao da me-
canica quantica indica que devemos somar todas as amplitudes que contribuem para o
processo. Em particular, a propagacao de uma particula do ponto y ao ponto x é indistin-
guivel da propagacao de uma antiparticula do ponto x ao ponto y, portanto o propagador
de Feynman tem o papel de incorporar automaticamente estas duas possibilidades na am-
plitude. Este propagador ¢ um componente fundamental das regras de Feynman e surge

naturalmente no teorema de Wick.
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5.3 Quantizacao do campo eletromagnético

O campo de Klein-Gordon desenvolvido na se¢ao anterior, ¢ o campo mais simples de
ser quantizado e serda usado como analogia para o processo de quantizacao do campo
eletromagnético. Como foi visto no Capitulo 2, o campo eletromagnético livre é descrito

em termos do tensor eletromagnético F** pela densidade de Lagrangiana [62, (4]

1
Lor =~ F"F, (5.23)

ou, da definicao F* = " A¥ — 9V A*, em termos do potencial eletromagnético A* por
1
Ly = —3 (0"AY0,A, — 0" AY0,A,). (5.24)

A partir da equagao de Euler-Lagrange obtemos a equacao de movimento para o campo
AH,
0" =0,

ou

0, 0" AV — 09, A" = 0. (5.25)

Tentar quantizar o campo eletromagnético seguindo o mesmo procedimento usado
para o campo escalar partindo da Lagrangiana (5.23) traz diversas dificuldades. O campo
vetorial A* introduz 4 campos escalares reais na teoria, mas nem todas suas componentes
constituem graus de liberdade. Como pode ser visto, a Lagrangiana nao possui compo-

nente 9pA°, portanto o momento conjugado da componente A° ¢ nulo,

9 (A%

™

Isto traz sérios problemas ao tentar impor as relagoes de comutacao para A, Além disso,
a fungao de Green da equagao de movimento (5.25) néo é definida. Ao tentar resolver a

equacao de movimento para uma fonte tipo delta de Dirac no espago dos momentos,

(M*l)lwt Da,, (p) = —idk,
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onde (M1 = —k2nHe + KMk, vemos que nao ¢ possivel inverté-la para obter a funcio
de Green D, (p). Estes problemas surgem porque as componentes do campo A* nao sao
independentes, existem vinculos entre as elas que podem ser impostos escolhendo uma
condi¢ao de gauge especifico.

Como foi comentado no Capitulo 2, o campo eletromagnético F'*¥ ¢é invariante
por transformagoes de gauge A* — A + OM1), portanto a equagao de movimento (5.25)
e a Lagrangiana (5.23) também o sdo. Dentre todas as possibilidades, podemos sempre
escolher uma fungao ¢ de tal forma que 9,A" = 0. Esta escolha é chamada de gauge
ou condi¢ao de Lorenz (sem o t! [65]) e tem a vantagem de desacoplar a equacao de

movimento (5.25) para cada componente,
0,0"AY = 0. (5.26)

A escolha de um gauge permite reduzir o nimero de graus de liberdade. Isto pode ser
observado aplicando a condicao de Lorenz d, A" = 0 a uma solugao genérica da equacao
de movimento (5.26) A” = &“e~?*, implicando que o momento e o vetor de polarizagio
devem ser ortogonais,

eupl' = 0.

Para ver a consequéncia deste vinculo, escolhemos um sistema de coordenadas tal que o
eixo z coincida com a direcao de propagacgao da onda. Para que que o vetor de polarizacao
seja ortogonal ao momento p* = (|p|,0,0, |p|), este deve ter a forma e = N (1,a,b, 1),
onde N é um fator de normalizacao. Vemos assim que a componente longitudinal A3
fixa completamente a componente temporal A°. O gauge de Lorenz, porém, nao fixa
completamente o campo A*. De fato, é possivel realizar mais uma transformacao A" —
AF + OF ) tal que o novo campo continue satisfazendo a condigao de Lorenz 9,A" = 0.
Para isto, restringimos a escolha da fungao A\ aquelas que satisfagam a equacao de onda
9,0\ = 0. Como a equagao de movimento (5.26) fixa a norma do momento p* = 0, entao
a escolha A\ = iBe " satisfaz a equacao de onda, sendo o parametro 3 livre. O efeito

desta nova transformagao de gauge para a solugao de onda plana é
Al/ N Al/ 4 ﬁpuefip-:p — gyefip-z
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ou

AV — gluefip-x

)

onde " = & —(p”. Assim, podemos escolher convenientemente o parametro 5 = —N/ |p|
para que o novo vetor de polarizacao, e consequentemente o campo A*, possua apenas

duas componentes independentes,

" =N(0,a,b,0).

Notamos que, ao contrario da equacao de movimento original, a equagao (5.26)
obtida impondo o gauge de Lorenz pode ser invertida facilmente. A funcao de Green

correspondente ¢ dada por

d4 Y )
D" (z —y) = /%”@ e @y
(2m)" p
e possui uma forma semelhante a fungao de Green para o campo de Klein-Gordon (5.22)
no limite em que a massa tende a zero.
Se a condi¢do de Lorenz nao for imposta, a mesma equagao de movimento (5.26)

pode ser obtida a partir da Lagrangiana original (5.24) adicionando o termo —% (8MA“)2,

ﬁjL\J - _% (3“14”6}“41, - 3MAV3VAM) (auA“)2 ) (5'27)

1
2
possuindo, como consequéncia, a mesma funcao de Green. Além disso, gracas ao termo

adicional, a componente A° passa a possuir um momento conjugado nao nulo,
a0 =—-A"+V.A.

A Lagrangiana (5.27) pode ser manipulada para obter um termo de divergéncia quadri-

dimensional,

1 1
Lir = —50" A 0uAy + 50, (A9, A" — A0, A7) .

Como este nao altera as equagoes de movimento, pode ser descartado. Por causa disto, a
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teoria descrita pela Lagrangiana (5.27) é equivalente aquela obtida através de

1
Ly = —50" A9, Ay, (5.28)
1 A0 A0 1 0 0 1 A7 At 1 % 7

O tensor energia momento é obtido pelo teorema de Noether através da expressao

oL
TH — l/A o uv
8(8MAQ)8 o« =L,

ou

TH = —QRAO A, — ™ L.

Assim, obtemos o Hamiltoniano e o momento do sistema integrando 7% e T sobre todo

0 espaco, respectivamente,

1 .
Hiy = =3 / &z (A“Au + VA" VAM> , (5.29)

pk = / BPrAVA,. (5.30)

A Lagrangiana (5.28) descreve uma teoria diferente da de Maxwell pois recu-
pera as equagoes de movimento mas nao possui as propriedades da condi¢ao de Lorenz
0, A" = 0. Para lembrar disto, usamos o rotulo L. Em particular, nao ¢ mais invariante
de gauge e portanto possui 4 graus de liberdade. Apesar disto, é possivel quantizé-la
e impor uma condi¢ao sobre o espaco dos estados acessiveis ao sistema que, no limite
classico, é equivalente ao gauge de Lorenz. Este procedimento, que sera seguido aqui, foi
desenvolvido por Gupta em 1950 e estendido por Bleuer no mesmo ano |66, 67].

Para quantizar o campo eletromagnético, calculamos primeiro os momentos con-

jugados. Partindo da Lagrangiana (5.28), para cada componente do campo A* obtemos
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Impomos as relagoes de comutacgao entre os campos e os momentos conjugados

A (@), 0,47 ()| = —ind (z — ).

A métrica é inserida para explicitar a covariancia da expressdao. E interessante notar que
o comutador entre as componentes ;4 = v = 0 possui o sinal errado quando comparado
com o campo escalar de Klein-Gordon. Como sera visto, este fato gera sérios problemas
a versao quantizada da teoria, tal como nao permitir a existéncia de um limite inferior
para a energia do sistema.

Desejamos expandir o campo e definir os operadores de criagao e aniquilacao.
Para poder expandir o campo A* em seus modos normais precisamos primeiramente
definir uma base linearmente independente de vetores de polarizacao e (), onde A = 0,
1, 2 e 3. E natural impor uma condicdo de ortonormalidade quadridimensional tal que
et (N e, (N) = ™. Existem diversas opcoes de bases, porém, sem perda de generalidade,
escolhemos os vetores de polarizacao de tal forma que sejam funcao do momento da
sua onda plana correspondente. Em um referencial especifico, escolhemos que dois dos
vetores da base possuam componente temporal nula e suas componentes espaciais sejam

perpendicular ao momento espacial da onda,

EO <1a p) = EO (27 p) = 07

p-c(l,p)=p-c(2,p) =0.

Ambas imposi¢oes implicam que estes vetores de polariza¢ao sao perpendiculares ao 4-

momento,

puet (1,p) = pue” (2,p) = 0. (5.31)

Esta expressao ¢ invariante sob transformacoes de Lorentz e, portanto, valida em qualquer
referencial inercial.
Os vetores restantes * (0,p) e e (3,p) devem formar uma base para o plano

perpendicular aos vetores € (1,p) e € (2,p). O momento p#, a tnica grandeza vetorial
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que caracteriza o sistema, esta contido neste plano perpendicular devido a (5.31). Porém,
como consequéncia da equacao de movimento, possui norma nula p?> = 0. Como os
vetores de polarizagao devem satisfazer a relagao de ortonormalidade, nenhum deles pode
ser paralelo a p*. Por conveniéncia, entdao definimos o vetor n* = (1,0, 0, 0) neste sistema
de referéncia. Desta maneira, associamos o vetor * (0, p) = n* e ortogonalizamos o vetor
p* com relagdo n* para definir o vetor e (3,p) = (p" — nap®nt) /nep®. Ao contrario dos
vetores e (1,p) e e (2,p) em (5.31), os vetores de polarizagao tipo tempo e longitudinal

satisfazem a relacao invariante dada por

puc (0,p) = —pue” (3,p) . (5.32)

Por outro lado, é possivel mostrar que os vetores de polarizagao satisfazem a relacao de

completeza

> (A p)e” (A p) = —n". (5.33)

Com a base definida, expandimos o campo An () de forma anéloga ao campo

escalar,
i dp 1
At (z) = / axnpe” (A, p) e T +al e (N, p)ePT| . (5.34)
; (2m)* \/2E, [ P

A partir desta expressdo, podemos reescrever o Hamiltoniano (5.29) e o momento do

sistema (5.30) em termos dos operadores de cria¢ao e aniquilagao,

~ d3p R X A A ) ) ) )
Hy = /—(2 )3 Ey (—aap&o,p + aipal,p + a;p@Zp + a;pag,p) , (5.35)
s
5L d®p s G L L
P = (27T)3p (—ao,pao,p + a4y pQ1p + Qg pa2p + a37pa3,p> . (5.36)

Estas expressoes mostram que, enquanto as componentes espaciais do campo eletromag-
nético contribuem positivamente, a componente temporal contribui negativamente para a
energia. Por causa disto, podemos criar estados com um ntmero arbitrario de fétons tipo
tempo tornando a energia tao negativa quanto desejarmos, o sistema portanto nao possui

um vacuo estavel. Para resolver este problema devemos restringir os estados acessiveis ao
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sistema de tal forma a limitar inferiormente a energia. Impor uma relagao correspondente
a condigao de Lorenz 0, Ar =0 para o operador campo eletromagnético geraria uma in-
consisténcia na definicao das relagoes de comutacao. No lugar, impomos a condi¢ao mais

fraca de que todo estado acessivel ao sistema deve satisfazer
D ATH () |T) = 0, (5.37)

onde

3
. 43 1 )
Atz =3 / Pl apet (A p)e P, (5.38)

é a parte de frequéncia positiva do campo A, equagao (5.34). O complexo conjugado da
condigao (5.37) é dado por
(0], A7 (x) =0,

e o valor esperado da condi¢ao de Lorenz na forma de operador é, portanto, igual a
(W] 9, A | W) = 0. (5.39)

Esta condigao, por sua vez, indica que o limite classico recupera a condigao de Lorenz
usual. Portanto podemos retirar o rotulo L da Lagrangiana (5.28) para a teoria quantizada
com tal que mantenhamos a condicdo (5.37) sobre os estados.

Todos os estados acessiveis ao sistema devem satisfazer a relagao (5.39). Substi-

tuindo a expansao de frequéncia positiva (5.38) na condigao (5.37) obtemos que

d3p e —ip-x
(A v) =0. 5.40
| o ﬁzpue P)inp|¥) (540

Usando as propriedades da base dadas pelas relagoes (5.31) e (5.32) podemos reescrever

(5.40) como

d3p e —ip-x . .
| s g 09 o — o) 19) =0
P

Como esta expressao deve ser verdadeira para todos os modos, concluimos que os esta-

dos acessiveis sao aqueles em que os operadores de aniquilagao temporal e longitudinal
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satisfazem a relagao

dO,p “I]> = CAl3,p |\I’> )

e seu complexo conjugado

(W] af, = (V] af

Como consequéncia, os valores esperados de energias do Hamiltoniano (5.35) destes esta-

dos acessiveis nao dependem dos fétons tipo tempo nem longitudinal,

d’p f i
5 (0] (@] pi p + @b piing ) 19),

o) = [ s

tornando assim o vacuo bem definido e reduzindo o nimero de graus de liberdade de 4
para 2.

O propagador de Feynman é definido de forma analoga ao caso do campo escalar,

DY (@ =) = (0| T { A (2) 4" (1) } 10).

_ / Ap i ey
(2m)* p? + ie

A condicao de Lorenz foi imposta na teoria quantica de campos através da impo-
si¢ao sobre os estados (5.37). Porém é possivel escolher outras condi¢oes de gauge. Uma
forma de generalizar (5.27) ¢ incluindo o parametro & tal que [62]

1

12
~ 3¢ (04"

1
Lo = =5 (" A9, A, — 9" A0, A,)

E possivel mostrar que, neste caso, o propagador correspondente é dado por

. d'p de~Pev) [ pt'p”
D)= [ Gh a0

Para recuperar a condi¢ao de Lorenz devemos escolher ¢ = 1, também conhecido como

gauge de Feynman. Outras escolhas sao possiveis, como o gauge de Landau £ = 0 que, no
espago conjugado, tem a particularidade de gerar um propagador ortogonal ao momento,
puDY (p) = 0. E interessante que por mais que a forma do propagador do foton dependa

da escolha de gauge, as grandezas fisicamente mensuraveis, como sec¢oes de choque e taxas
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de decaimento, sao independentes da escolha em qualquer ordem da teoria de perturbacao.

5.4 Eletrodinamica quantica

Os campos escalares e eletromagnéticos discutidos nas se¢oes anteriores foram conectados
apenas quadraticamente com seus primeiros vizinhos por meio de termos do tipo ﬁgb- ﬁgb.
Consequentemente, as equagoes de movimento destas teorias sao lineares e acopladas. Por
meio de uma transformacao de coordenadas conveniente, na forma de uma transformada
de Fourier, foi possivel desacoplar estas equacoes de movimento. Assim, a energia total do
sistema pode ser escrita como a soma da energia contida em cada um dos modos do campo.
Como consequéncia do desacoplamento, o estado do sistema permanece estacionério e,
portanto, qualquer distribuicao de modos excitados permanece inalterada com o passar
do tempo. Nao é possivel realizar medidas em modelos com estas caracteristicas, por isso,
sistemas deste tipo, estao desconectados da realidade.

A eletrodindmica quantica (QED) descreve como o campo eletromagnético inte-

rage com o elétron, sua Lagrangiana pode ser escrita como [61]
| - -
Lorp = —ZF“ Fo +v (Y0, —m)v — ey A, (5.41)

onde v (z) ¢ um campo fermionico (ou de Dirac) que descreve o elétron, 1 (x) = ¥ (2)4°,
e e m sao a carga e a massa do elétron, respectivamente, e y* sao as matrizes 4 x 4 de
Dirac. O campo psi ¢ definido de tal forma a tornar o produto psiy invariante por
transformagoes de Lorentz (ver Capitulo 3 em [61]). As matrizes de Dirac podem ser

escritas usando a representacao de Weyl em forma de bloco como

0 o

ot 0

onde o# = (1,0'), 6" = (1,—0") e o' sao as matrizes 2 x 2 de Pauli. Estas matrizes

satisfazem a relagao de anticomutacao
{77} = 29",
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Os dois primeiros termos de (5.41) correspondem as Lagrangianas do campo eletromag-
nético e do campo fermionico livres. O terceiro termo, por ser dado pelo produto de 3
campos, torna as equagoes de movimento nao lineares e produz um acoplamento entre os
modos dos campos eletromagnético e fermionico. A Lagrangiana (5.41) pode ser obtida a
partir do campo livre de Dirac impondo a invariancia de gauge local 1 (z) — e "X ()
[15]. O campo auxiliar A* (x), que por transformacoes de gauge se transforma como
AF () — AF(z) + O*x (x), deve ser acrescentado na forma do termo de interacdo para
manter a invariancia da Lagrangiana. Por outro lado, na auséncia de campo eletromagné-
tico, usando a equagao de Euler-Lagrange recuperamos a equagao de Dirac para o campo

v,
(iv"0,, —m) ¢ (z) = 0. (5.42)

A quantizagdo do campo fermidnico livre segue um procedimento semelhante ao
apresentado para o campo escalar, a principal diferenga sendo que os campos satisfazem
relacoes de anticomutacao ao invés de relacoes de comutagao. Este fato esta diretamente
ligado aos férmions satisfazerem o principio de exclusao de Pauli e, portanto, serem des-
critos pela estatistica de Fermi-Dirac. A quantizacao deste campo foge do escopo deste
trabalho, de forma que apresentamos apenas os principais resultados. Mais informagoes
sobre a quantizagao do campo fermidonico podem ser obtidas em [61]. O campo 1 (x) pode

ser expandido de forma semelhante ao campo ¢ (z) sendo escrito como

7 d3p 1 N —ip-x | 1.5t,.s ip-x
P (x) = / n) VAE, Z (apu (p)e +bv® (p) e ) : (5.43)

s=1

P ¢ p®(p)e®® correspondem as solugoes de frequéncia positiva e

Os fatores v’ (p) e~
negativa da equacao de Dirac, respectivamente. Cada uma delas possuem 2 solucoes
linearmente independente indicadas por s = 1,2 e associadas as duas projecoes de spins
acessiveis aos elétrons. Assim, os campos descritos pela equagao de Dirac possuem spin
1/2. Os operadores aj, e d;f aniquilam e criam férmions, e os operadores Bfo e IS;T aniquilam
e criam antiférmions, respectivamente. Os espinores de base sao normalizados de tal forma

que

u” (p)w’ (p) = 2md"™ e 0" (p)v” (p) = —2md",
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e satisfazem as relagoes completeza

> ut(p)ut (p) =7-p+m,
> vt (p) vt (p) =7-p—m.

Os campos e operadores de criacao e aniquilagio satisfazem as relacoes de anticomutacao®

a tempos iguais dadas por
{va @) ()} = 09 (x = y) dun
[t (@), ()} = {¥] @), () } =

{ar,alsy = {br,bf°) = (2m)% 070 (p — q) .

O propagador de Feynman pode ser escrito como

d4p Z(p‘i‘m) —ip-(z—
SF(x_y):/(27r)4p2—m2+iee P,

(019 (2) ¥ () [0), se 2® > y°
— (04 (y

)i
O 7 {4 (2) % (1) } 10},

) ()]0}, se ¢ > a°

onde T' é o operador de ordenamento temporal e usamos a notagao /p = 7*p, para
simplificar objetos contraidos com as matrizes de Dirac.
O Hamiltoniano da teoria livre de Dirac, em termos dos operadores de criacao e

aniquilagao, é dado por

3
H_/ d E Z(ASATS_FbSst)?

LA relagdo de anticomutagao entre dois operadores ¢ definida como {A, B} = AB + BA.
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e o momento total do sistema por
- d3p FUR
_ o ~s ~ts RN
P —/ (27?)31)2 (apap + bpbp> :

E possivel mostrar usando a equacdo de Dirac livre (5.42) e a equacdo anéloga para 1)

que a corrente j* = 1py*1) é conservada. Como consequéncia, a integral da componente 0

sobre todo o espago nao varia no tempo,

Este operador, quando aplicado sobre um estado, retorna os autovalores +1 para cada
férmion, e —1 para cada antiférmion presente. Portanto, quando aplicado a um estado
genérico, este operador retorna a carga elétrica total do sistema.

Devido & presencga do termo de acoplamento em (5.41), os modos do campo
eletromagnético e do campo de Dirac nao sao mais estacionarios. Como consequéncia
disto, a energia presente em um modo do campo eletromagnético pode excitar modos do
campo de Dirac e vice versa. De maneira geral, a amplitude de probabilidade de um
estado ¢ ser encontrado no estado j pode ser obtida por meio da teoria de perturbacao e
¢ dada por [61]

M (i = j) o< o GI T {e T % i) (5.44)

em que o indice 0 indica os estados da teoria livre? e H; é o Hamiltoniano de interacao
(no caso particular da QED H; = —L; = ety*A,1). Devido a magnitude da carga e,
a exponencial pode ser expandida e truncada de acordo com a precisao desejada. Para
o célculo de amplitudes de processos simples ou de baixa ordem, a expressao (5.44) é
facilmente desenvolvida. Ja para processos mais complexos ou de ordens maiores, a grande
multiplicidade de termos idénticos torna a manipulacao bastante complexa e tediosa.
Entretanto, o céalculo recorrente torna aparente o padrao no qual certas estruturas da
teoria aparecem nas amplitudes de probabilidades. Em virtude disto, é possivel identificar
um dado processo pictorialmente através de grafos chamados de diagramas de Feynman,

cada parte destes diagramas estando associado a uma estrutura da teoria por meio das

20s estados da teoria livre sio construidos de forma anéloga ao campo escalar.
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chamadas regras de Feynman [61]. As regras de Feynman s@o particulares a cada teoria,

sendo que para a QED, no espago dos momentos, sao dadas por:

e Propagador fermionico interno: z%;
e Antiférmion inicial: v° (p);
N . . 7;77#“/ .
e Propagador foténico interno: — e

e Antiférmion final: v* (p);

Vértices: —iev”,;

e Foton inicial: ¢, (p);
e Férmion inicial: u* (p);
e Foton final: €, (p).

Férmion final: @ (p);

As amplitudes devem ser escritas de tal forma a serem escalares de Lorentz e
espinoriais. Cada trago possui seu proprio momento e em cada vértice a conservagao do
momento deve ser imposta. Finalmente, os momentos que nao podem ser fixados em
funcao dos momentos das particulas externas devem ser integrados.

Como exemplo, analisamos um dos diagramas de Feynman associado ao espa-
lhamento Bhabha que consiste na aniquilagao de um par de elétron-pésitron produzindo

um novo par de elétron-positron. Na Figura 5.1 vemos um elétron com momento k e

Figura 5.1: Diagrama de Feynman do processo de aniquilagao e~ (k) e™ (k') — e~ (p) et (p').

um positron com momento &’ iniciais sendo aniquilados e produzindo um féton interno de
momento q. Em sequida, o fé6ton é aniquilado produzindo um novo par de elétron-positron
finais com momentos p e p’, respectivamente. Devido & conservagao do momento em cada
vértice, o momento do foton é fixado pelos momentos iniciais ¢ = k+k’. Usando as regras

de Feynman, deduzimos que a amplitude de probabilidade deste processo é dado por

M (e_e+ — e_e+) =3 (k") (—iey™) u® (k) q;iZungur (p) (—iev”) v ().

88



O processo completo eTe~ — ete™ pode ocorrer de outra forma além da do diagrama
descrito na Figura 5.1. No lugar das particulas iniciais se aniquilarem, o elétron inicial
de momento k pode emitir um féton de momento ¢ e o poésitron inicial de momento £’
pode absorvé-lo. Desta forma o féton interno possui momento dado por ¢ = p — k, onde
p é o momento do elétron final. A amplitude de probabilidade do espalhamento Bhabha

¢ dado, portanto, pela soma dos dois diagramas de Feynman.

5.5 Espalhamento vy — vy previsto pela QED

Como as equagoes de Maxwell incorporam o principio de superposi¢ao dos campos elé-
trico e magnético, elas sao naturalmente lineares. Uma das principais consequéncias desta
propriedade ¢é fazer com que a propagacao de uma onda eletromagnética nao possa ser
modificada pela presenca de outra. A revolugao cientifica do inicio do século X X, que
levou a uma visao quantica e relativistica da natureza, mudou a forma pela qual enten-
demos como a radiacao eletromagnética interage com a matéria. Como consequéncia da
teoria relativistica do elétron, proposta por Dirac no final da década de 1920, Helpern
e Debye observaram a possibilidade da ocorréncia de espalhamento entre fétons [23] no
qual um par de fétons iniciais se aniquilam produzindo um par de particulas virtuais, um
elétron e um positron, que por sua vez se aniquilam produzindo um novo par de fétons
[68]. Este processo é descrito em primeira ordem, na linguagem das regras de Feynman,
pelo diagrama tipo bozr da Figura 5.2.

O espalhamento féton-féton pode ocorrer em qualquer regime de energia. Mesmo
quando o par de fétons nao possui energia suficiente para produzir um par elétron-positron,
o espalhamento ocorre devido a possibilidade virtual de criagao de pares (polariza¢ao do
vacuo) [24]. O primeiro calculo da segao de choque do espalhamento de fotons de baixas
energias, comparadas com a massa do elétron, foi apresentado por H. Euler em 1936 [68].
Para tal, ele deduziu a primeira correcao do Hamiltoniano do campo eletromagnético
devido a equagao de Dirac na auséncia de cargas reais e no limite em que os campos variam
lentamente dentro de um comprimento de onda de Compton. Posteriormente, Heisenberg
e Euler apresentaram a Lagrangiana efetiva que inclui de forma nao perturbativa todas

as correcoes nao-lineares da eletrodindmica de Maxwell no limite de campos constantes
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Figura 5.2: Diagrama de Feynman de ordem zero do espalhamento féton-féton. As principais particulas
que podem compor o loop séo os léptons, quarks ¢ W=,

[24]. Devido a magnitude das se¢oes de choque estimadas, da ordem de 107%b para raios
~ e 1075%p para a luz visivel, a medicao deste processo fugia da capacidade experimental
da época [68].

O espalhamento vy — 7~ previsto pela QED possui 6 diagramas de Feynman
como aquele mostrado na Figura 5.2, correspondendo & combinatoéria de todas as formas
distintas de distribuir os momentos externos ao redor do box. Desses diagramas, 3 diferem
dos restantes pela direcao em que a corrente do loop gira, sendo portanto idénticos. A
partir das regras de Feynman, podemos escrever a amplitude de probabilidade dos 3

diagramas, e somando os 3 diagramas restantes, obtemos que [69]

M (yy = 7)) =€, (k) ey (ko) €5 (p1) €5 (p2) M*™ 7 (i, ko, 1, p2) | (5.45)
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onde

jwap o4 [ dla {m+m o A= tm
M (K1, ko, p1,p2) = 2e /(27T)4Tr v Z—m2' (g—p)? —m?
x P A— p1— p2+m VY A— r— ot k2 +m }
(@—p1—p2)° —m? (q—p1—po+ ko)’ —m?
+2€4/Lq4Tr{7“ AT e A brtm
(2m) ¢* —=m?® " (g —pa)” —m?
o A= b= p2tm . f— pr— pot k2t m }
(@q=p1—p2)° —m2 (q—p1—po+ks)® —m?
+2e4/ﬂTr{fy” AT ™ o A= byt T
(2m)? @?—m? (q—p)° —m?
L A= i+ ka+m 3 A— Di— pat Fa2+m }
! (q—p1+k2)2—m27 (q—p1—p2+k2)2_m2 ’

Xy

X

sendo que o trago surge naturalmente para tornar o loop uma grandeza escalar. Este
tensor de rank-4 diverge no limite superior da integral sobre o momento ¢ do loop. Para

visualizar isto, tomamos o limite ¢ — oo ou, de forma equivalente, k; — 0,

2e
(2m)"

/@2%@)4 Te {7 (4+m)7" (4+m)y" (f+m)y" (f+m)}

M™% (0,0,0,0) =

/(q2 ﬁqnz)zl Te {7 (4+m) v (4 +m)y" (4+m)7" (4+m)}

2¢
(2m)*

2¢t d*q i N .
t oot | s T U3 () em) 3 ()}

+

Os tragos podem ser avaliados usando a identidade [69],

Tr {+* (4+m)y* (4+m)¥" (4+m)y" (4+m)} = 32¢"¢" ¢
=8 (¢ +m?) (¢"¢*n” + ¢* " + P + )

+4 (q2 + m2)2 (nuynaﬁ + nyanﬁu + nyﬁnal/) )
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Desta forma, podemos reescrever M**# (0,0,0,0) como

192¢* hgrq*qP
M 0,0,0,0) = = [ i

2r)* q? —m?)
3264 d4q (e} 1% (0% v v 102 v (03 oV o UV
- = ("™ + "™ + ¢ + ¢ 0’ + ¢ + ¢“ ')
2 2
2m)"J (¢*> —m?)
24e* d*q
+ /“’aﬁ_i_#aﬁy_i_llﬁal’/ .
(T R ) [

As integrais sobre as componentes do momento do loop podem ser simplificadas usando

as identidades [61],

1
/ d*qf (¢*) "¢ = i / d*qf (¢*) ¢,
1
/ d*qf (%) ¢"¢"q*¢" = 5 ("0 + nron® + ) / d*qf (¢*) ¢",

para qualquer funcao f (p®). Portanto, obtemos

4

14e% 864 vV, (6% v av q
MH ﬁ(07070,0): (2 )4 (77” n 5_|_,7u 77,3 +77“677 )/d4q

m (q* —m2)*
16¢e* d*qq?
v, af nee, Br uB, av
— —— (0™ + +77n)/—
(2m)* (¢ — m2)’
24e* dq
+ uva6+uaﬁu+uBaV/ ]
(2m)" (™ ot ) (> —m?)?

Finalmente, completando os quadrados dos integrandos das duas primeiras integrais para

obter poténcias de (¢ — m?), obtemos

1o} 1664 v, O (0% v av d4q
M* 6(0,070,0):—(%)4 (0" + o™ + )/m
8et d*q
+ uv aﬁ+ o Bu+ uB, av m4/ )
)t ("0 + ™ + ) P

Notamos que, como a primeira integral possui a mesma poténcia do momento tanto no
numerador quanto no denominador, diverge entao logaritmicamente.

A amplitude de probabilidade (5.45) esta diretamente associada a segao de choque
e portanto uma quantidade fisicamente mensuravel, o que implica que deve ser invariante

por transformagoes de gauge. Como foi visto na segao 5.3, é possivel realizar uma trans-
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formacao de gauge sem afetar a condicao de Lorenz ¢ - k = 0, implicando que por estas
transformagoes, o vetor de polariza¢ao é modificado por e (k) — e* (k) + Sk*, onde (3 é
uma constante arbitraria. Para que a amplitude (5.45) seja invariante por estas transfor-

macoes de gauge, o tensor M**# necessariamente deve satisfazer
kluM’“’O‘fB = ko, MMP = . =, (5.46)

para todos os momentos dos fotons externos. Notamos facilmente que M*%(0,0,0,0)
nao satisfaz esta propriedade e, portanto, esté associada a quebra da invariancia de gauge.
Desta forma, uma das formas de se recuperar a invaridncia é regularizando a amplitude

subtraindo-a pela sua parte divergente® [69)],
M}%yaﬁ (k’l, k’g,pl,pg) = M/ﬂ/ocﬂ (k?l, kg,pl,pg) — M’uuaﬁ (O, 07 0, O) . (547)

E possivel demonstrar que para que (5.47) satisfaca (5.46), a série de Taylor correspon-
dente nos momentos externos deve iniciar com um termo proporcional a quarta poténcia

nos momentos [61, 69, 72].
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Figura 5.3: Referencial de centro de momento do espalhamento foton-foton.

Com a amplitude de probabilidade regularizada, calculamos a se¢ao de choque

especializando o processo para o sistema de referéncia de centro de momento (ver Figura

3E interessante notar que apesar do procedimento geralmente seguido ser o de regularizar o tensor
M# B [70], & possivel mostrar que o coeficiente da integral divergente é nula [71]. Assim, introduzindo
um cut-off superior para o momento interno, concluimos que o termo é nulo e independente do parametro
de corte.
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5.3). Escolhendo a dire¢do do momento dos fétons iniciais como a dire¢ao do eixo z temos
que,

ki = (w,wl%) e ky = (w, —wl%) ,

e o momento dos fotons finais dados por

p1 = (W,Mﬁ) € P2 = (Cd, _wﬁ)u

de tal forma que k - p = cosf, onde 6 é o angulo entre os fotons finais e o eixo z. A segao

de choque diferencial no centro de momento é dado por [61],

do 1 va 2
- e (k1) ey (Ra) el (pr) €5 (p2) M (K, ko, prypa)| (5.48)
Q) oy,

T 12872w?

Neste ponto, é necessario desenvolver o tensor M ]’é”aﬁ . Porém, uma forma analitica simples
¢ acessivel apenas nos casos limites de baixas e altas energias com relagao a massa do
elétron, w <€ m e w > m, respectivamente. O caso geral foi calculado em 1951 por
Karplus [73]. Para obter a se¢ao de choque total, dada pela integral sobre o angulo s6lido
da secao de choque diferencial, no limite de baixas energias, procedemos por anélise
dimensional. Expandimos o tensor M%*” em (5.48) em série de Taylor nos momentos
externos mantendo apenas o primeiro termo. Como comentado, este termo é proporcional
a quarta poténcia do momento dos fétons. Além disto, as regras de Feynman indicam
que cada vértice acrescenta uma poténcia da carga do elétron & amplitude. Portanto, o
modulo quadrado da amplitude é proporcional a (ew)s. Como a se¢ao de choque deve
ter unidades de area e a tnica grandeza disponivel para construi-la é a massa do elétron,

além das constantes A, ¢ e g, a unica forma possivel é [69]

2 N\ 4 6 2
QED _ € hw e 4
T ¢ (4#50710) <m02> (mc) ’ (5.49)

onde a é uma constante adimensional. Na préxima secao, a secao de choque féton-féton

devido a corregoes quadraticas da Lagrangiana de Maxwell sera derivada. Esta secao
de choque deve ser particularmente valida para a Lagrangiana de Euler-Heisenberg no

limite de baixas energias e deve recuperar (5.49) (ver Equagao (5.64)). Portanto, por
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comparagao, obtemos que
7139

‘= 572025

O espalhamento foton-féton discutido nesta secao é aquela prevista pela Lagran-
giana da QED, na qual o elétron é acoplado minimamente ao campo eletromagnético. O
Modelo Padrao prevé o acoplamento de diversas particulas elementares carregadas com o
campo eletromagnético, como os demais léptons, os quarks e os bosons W. Porém, como a
secao de choque no limite de baixas energias é proporcional ao inverso da oitava poténcia
da massa, a contribuicao do elétron é predominante em comparagao as outras particulas
mais massivas. Para obter o espalhamento foton-féton completo estas particulas interme-

diarias devem ser levadas em conta.

5.6 Secao de choque vy — ~v devido a corregcoes nao
lineares da eletrodinamica de Maxwell

Como foi observado no Capitulo 2, as eletrodinamicas nao lineares generalizam a eletrodi-
namica de Maxwell tornando as equacoes de movimento nao lineares. Em primeira ordem
de aproximacao, as correcoes nao lineares sao parametrizadas pelos invariantes F? e G?

(ver Equagoes (2.21) e (2.22)),
Lyr = F +4aF? + 4BG?, (5.50)

Sao os parametros livres « e 3, com unidades de energia ao inverso da quarta poténcia,
que desejamos vincular superiormente usando a medigao obtida pela Colaboragao ATLAS.
Estas teorias recuperam naturalmente a eletrodinamica de Maxwell no limite em que
a, B — 0.

Com o objetivo de obté-las em uma forma mais conveniente, expandimos as

corregoes usando a definicao do tensor campo eletromagnético em termos do potencial
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Frv = rAY — 7 AP,

4aF? = a [(0"AY) (8,4,) (0% A®) (9. As)
—2(0"A") (9,A,) (07 A7) (9544
+ (0" AY) (0,A,) (0°A%) (05A4)] , (5.51)

ABG? = G927 (9, 45) (9,A,) (8, A5) (9,4, (5.52)

Como pode ser visto, estes termos sao formados por produtos quérticos do campos. Por-
tanto, as equacoes de movimento da teoria nao sao lineares e nao podem ser desacopladas
através de uma simples mudanca de coordenadas. Consequentemente passa a haver uma

interacao entre os modos do campo eletromagnético como mostrado na Figura 5.4.

Y 4

Y Y

Figura 5.4: Diagrama de Feynman para a interacio entre 4 fotons devido a Lagrangiana 5.50.

Colocando o produto dos campos em (5.51) em evidéncia e usando indices gené-

ricos, podemos reescrevé-lo como

4aF2 = 7;12“@8 (azu Aa2) (aa3Aa4) (aa5Aa6) (8117’4‘18) )

ai...ag a1a2a3a40506a708

onde b " = 5 ¢ uma matriz com 8 indices definida em termos de produtos

de métricas,

7;12..118 = (na1a3na2a4na5a7na6as o 2,'7@1@3,'7@2&477@5@877@6@7 + na1a4na2a3na5asnaaa7) , (553)

de tal forma a recuperar a expressao original. Da mesma forma, o termo (5.52) pode ser
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escrito de maneira semelhante,

45G2 = 7?;12.“(18 (aalAaz) (aasAtM) (aasA%) (aa7Aa8) !

onde, por sua vez, vy " = e 20T também ¢ uma matriz com 8 indices, porém

definida pelo produto de tensores de Levi-Civita,

ai..ag — a1a2a3a4 ~a5a6a708
”}/Gg = BE £ .

O proximo passo é obter as simetrias das matrizes 7. Analisamos primeiro a
matriz yz5 . Observando as duas primeiras métricas de cada termo em (5.53), notamos
que trocar simultaneamente os indices a; <+ ag e as <> a4, gragas a simetria da métrica,
nao altera a matriz. Pelo mesmo procedimento, observando as duas tltimas métricas de
cada termo, notamos que 755 * também ¢é invariante pela troca simultanea dos indices
as <> a7 e ag <> ag. Por sua vez, a matriz 7?;2‘““8, formada pelo produto dos tensores
antissimétricos, também possui estas simetrias gragas as propriedades do tensor de Levi-
Civita. Esta matriz, porém, possui uma simetria a mais ja que é possivel trocar um tensor
de Levi-Civita pelo outro permutando os indices a; <> a;44 parat =1, 2, 3 e 4.

Com o intuito de simplificar a notagao tanto quanto explicitar estas simetrias,
criamos a notagao de bloco tal que A;; = a;a;. Desta forma, as matrizes gama podem ser

reescritas como

(102030405060708 A12A34As56A78
Tr2,G2 7 — Vp2.g2 :

As permutacoes pelas quais as matrizes gama sao invariantes podem ser obtidas facilmente
pela permutagao dos blocos, por exemplo Ay <> Az ou Az <> Azg. Portanto, para
explicitar estas simetrias, usamos a notacao de colchetes:

A12A34As56A78 [A12A34][As6A78]
P)/F27G2 — ’YF2702 .

. [A12As][AseA R - .
Lembramos que a matriz ’yézm sallAs6478] 0 mbém ¢ simétrica pela permutacao simultanea

de A12 e A56 e A34 <~ A78.

Usando esta notacao e colocando em evidéncia o produto dos campos tanto vindos

97



do termo F? quanto de G?, a Lagrangiana (5.50) pode ser escrita como

Lyp = F 4 Al dnsl (5, A,) (00 Aas) (us Aas) (Oar Ads) (5.54)
onde reunimos em uma tGnica matriz 8 dimensional ~A24sallAseAzs] = fyﬁ”AMHA%Am] +

,V[Gz‘\212A34] [As6A7s] _

Amplitude de probabilidade

A inclusao das correcoes nao lineares afeta os estados e as energias da teoria livre. Porém,
supomos que os parametros « e 3 sao tais que a presenca destas corre¢oes nao os modificam
consideravelmente, justificando assim um estudo perturbativo da teoria interagente. Esta
suposicao serd justificada quando estes parametros forem vinculados pelo experimento.
Temos como objetivo derivar a se¢ao de choque do espalhamento féton-féton em
primeira ordem. Esta grandeza é proporcional a probabilidade de interagao entre os fo-
tons, que por sua vez é dada pelo moédulo quadrado da amplitude de probabilidade. Neste
contexto, calculamos M (k’i, kg—w’fz pg), a amplitude de probabilidade de interagao en-
tre dois fotons iniciais livres de momentos {ki, ks} e polarizagoes {i, j} produzindo dois
fotons finais de momentos {p1, p2}, e polarizagdes {m,n}. A amplitude de probabilidade

é obtida em série de poténcias a partir da expressao [61]

(2m)" 6" (ks + ka — p1 — pa) iM (K}, kb—=pT", P5) = o (PY'P5I T {e—if d“w’“} kik3),

(5.55)
onde H; = H — Ho é o Hamiltoniano de interacao e os subindice 0 indicam os autoestados
da teoria livre. Esta expressao nos permite obter a amplitude de probabilidade em termos
de uma série de poténcias expandindo a exponencial dentro do operador de ordenamento
temporal. O primeiro termo da exponencial é a identidade e descreve a situacao em que
as particulas nao apresentam interagao. Além disso, como o Hamiltoniano de interacao é
proporcional aos parametros « e 3, podemos truncar a série de acordo com a precisao de-

sejada. Para o proposito deste trabalho, é suficiente manter a primeira ordem de corre¢ao
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ou correcao a nivel de arvore. Assim, temos que
m_.n —i [ dAaH,; i1,J . m_.n 11,7
(PP T {7 i) ~ —@/d4wo<p1 P3| T {H:} [kikd), (5.56)

onde a identidade foi descartada para levar em conta apenas a probabilidade em que ha
interacgao.

No formalismo canoénico, o objeto fundamental da teoria é o Hamiltoniano. Para
teorias em que os termos de interagao nao dependem das derivadas do campo, a relagao
entre o Hamiltoniano de interacao e a Lagrangiana de interacao ¢ dada simplesmente por
Hint = —Line. Como pode ser visto em (5.54), o modelo em questdao possui derivadas
do campo na Lagrangiana de interagao. Devido a isto, a obtencao da Hamiltoniana de
interacao por meio de uma transformada de Legendre introduz termos nao covariantes.
Pode ser mostrado que estes termos nao covariantes sao compensados por termos que
surgem ao calcular contragoes entre os campos ao aplicar o teorema de Wick [74, 75].
Sendo assim, podemos usar a relacao H;,y = —Lin:, ignorando os termos que surgem na
transformada de Legendre, se ignorarmos os termos que surgem das contragoes. Lem-
brando de compensar os fatores numéricos e a delta de Dirac presentes no lado esquerdo

de (5.55), a amplitude de probabilidade em termos da Lagrangiana de interagao é
M =iy Ar2 sl Aso Ars) / d'z, (prpl| T <8a1A@@%AM(‘?%A%@MA%> Kik}),. (5.57)

Para manipular o operador de ordenamento temporal atuando sobre os campos
fazemos uso do teorema de Wick [61]. Segundo este, um produto de campos em ordena-
mento temporal é equivalente & soma do mesmo produto mais todas as possiveis contra-
¢oes entre os campos em ordenamento normal. Por sua vez, o ordenamento temporal de
campos ¢ definido posicionando os operadores de aniquilagao a direita dos operadores de

criacao. Ja a contragao entre os campos é um nimero complexo definido pela expressao

~

C (Au(@) g (1)) = © (2° =) |42 (1), 45 ()] +© (4 — 2°) |4} (). 47 (@)]
(5.58)
onde os indices 4+ e — indicam as partes de frequéncia positiva e negativa que possuem os

operadores de aniquilacao e criacao, respectivamente. Desta forma, o produto temporal

99



¢ da forma

onde N () indica ordenamento normal. Esta expressdo possui 1 termo sem campos con-
traidos, 6 termos com dois campos contraidos e 3 termos com os 4 campos contraidos
aos pares. Nem todos os termos desta expressao contribuem para o espalhamento dos
fotons iniciais. De fato, podemos ver na expressao (5.57) que os termos que possuem 4
campos contraidos sao proporcionais ao produto g <p§”p§|k§k§>0, que é diferente de zero
se e somente se os fotons iniciais forem iguais aos finais. Portanto, podemos concluir
que contribuem somente para o caso em que nao ha interagao. De maneira semelhante,
os termos que possuem apenas dois campos contraidos também nao contribuem. Assim,

mantemos apenas o primeiro termo,

Para manipular o produto normalmente ordenado devemos expressar os campos

em termos de suas partes + e —,
0, A, =0, A +0,A,.

Desta forma, o produto dos campos gera 16 termos em ordem normal. Da equacgao (5.57)
notamos que se introduzimos um numero desigual de operadores de criagao e aniquilacao,
através da comutacao sucessiva conseguimos aniquilar o vacuo. Portanto, a equacao
(5.57) é diferente de zero somente para os 6 produtos que possuem o mesmo ntmero de

operadores de criagao e aniquilagao. Desta forma, os termos relevantes do produto normal
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sao

~

T <8a1Aa2 Os A, Doy Au aMAaS) = 0y A, Day Ay 0ny A 0, A

+ Ou, Ay, 0us Ay, Oay At 00y AL,
+ 0a, Ay, 00, Ay Oay A 00y AL,
+ Oug Ay Oar A Oy A, D AL,
+ Oay Ay, 0ar Ay Oy A, 0us AL
+ Oy Ay Ous A Oy Ay Oar Ay

Este resultado pode ser simplificado se notamos que todos os termos podem ser obtidos a
partir do primeiro pela permutagao correta dos indices. Por exemplo, obtemos o segundo
termo permutando os indices a3 <+ a5 e ay <> ag. Esta permutacao pode ser reescrita de
forma mais compacta usando a notacao de bloco proposta anteriormente como Agy <> Asg.
Os outros termos sao obtidos de forma semelhante. Como operadores de criacao comutam
entre si, 0 mesmo ocorrendo entre os operadores de aniquilagao, se permutamos os indices
em bloco do primeiro termo de todas as formas possiveis obtemos 4 vezes a expressao

anterior. Portanto escrevemos,

o o o o 1 _ _
T <aa1 Aa2 a(13 Aa4 aaf Aaa aa? Aas) = Z PA12A34A56A78 aal Aa2 aa?, Aa4 aas A:ﬁ aa7 Ai_g )

onde Py, a4, 45545 indica que devemos adicionar todas as permutagao possiveis dos indices

em bloco da expressdo a sua direita. Substituindo de volta em (5.57) obtemos

?

M=y

7[A12A34][A56A78]PA12A34A56A73 /d4'le 0 <p§”'pg| aalA;QaGSA(; aGSA;_ aa7A(—1i_ ‘kzlkj?>0 :

4 6 8

Para resolver o produto interno dos estados com os campos intermediérios, ex-

pandimos ambos em termos dos operadores de criacao e aniquilacao,

|kz1kj2>0 Y, 2Ek12Ek2aZ,k1a;r',k2 ’0> )
()<pr§| = /2Ey, 2F,, (0] Am,p1 An,pss
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e as partes de frequéncia positiva e negativa do campo como,

d? a; ,
aaiA;; (aj) = _ZZ / —quEaJ‘ (Q7 )‘) akqe_lq‘:a

. d? a iga
Ou, Ay, () :22/% fas €q; (q,/\)ai\qeq .

Desta forma, a amplitude de espalhamento é dada por

Z [A12A34][As6A78]
M = Z'}/ PA12A34A56A78

> Z /d4 / d3q1d3q2d3q3d3q4 \/2Ek12Ek22Ep1 2Ep2 ei(q1+q2—q3—q4)x
(2m)"? V2Eq2E,2F4,2E,,

A1,A2,A3,M4
X Qla; Q2a33as Q4arCy (15 A1) €a, (G2, A2) €ag (43, A3) Eag (q4, As)

t t Pt
X (O] iy Gy 0, q, By gy O a3 BA0.00 B ey Ly |0) -

Usamos as relacdes de comutacao entre os operadores a e al para “aniquilar” o vécuo.
O resultado desta manipulacao é conectar os momentos dos fétons iniciais k; e ky com
os momentos qs e q4 do vértice de interacao associados aos operadores de aniquilagao
@) q30x,qs- O Mesmo processo ocorre entre os fotons finais e os operadores criagao associ-
ados ao vértice, produzindo um total de 4 termos. As polarizacoes dos fo6tons acompanham

seus respectivos momentos. Este processo tem como resultado

<O| amvpl an:pQCLT)\l,qlaiquaAB,q3aA47q4aI,k1 a;,kg |O>
(2m)"2 MmN IR (g — pr) 0% (qp — Pa) 0% (a5 — ki) 6° (qu — ko)

(2m)'2 gMngrem s igAI 63 (qy — pa) 0% (g2 — p1) 6° (g3 — ki) 6° (qs — ko)

+
+(2m) 2 g GG (qr — p1) 0 (a2 — p2) 0° (a3 — ko) 8% (qs — k)

+ (271')12 5A1n5>\2m5)\3j6)\4i53 (Q1 — pg) 53 (qg — pl) (53 <C13 — k2) 53 (q4 — kl) .

Substituimos de volta na expressao da amplitude e usamos tanto as delta de
Dirac quanto de Kronecker para resolver as integrais e a somatorias. A integral em d*z
gera a delta de Dirac que impoe a conservagao do momento total no vértice de interacao

multiplicado por um fator (27?)4. Este fator numérico, a unidade imaginaria ¢ e a delta
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de Dirac, sdo os mesmos que aparecem no lado esquerdo da equagao (5.55). Assim, a

expressao correta para a amplitude de probabilidade de espalhamento é dada por

1
M= ZV[AIQAM”A%A?S]PA12A34A56A78

X [p1a1p2a3 k1a5 k2a7€;2 (p17 m) 624 (P2> n) €ag (kla Z) €ag (k27 .7)
+ P1asP2a, klas k207524 (pla m) 522 (pZ’ n) €ag (klw Z) Cas (kﬂv ])
+ P1aiP2a; k1a7k2a5522 (pla m) 824 (]92; n) €asg (kh Z) €ag <k27 .])

+ p1a3p2a1k1a7k2a5524 (pla m) 822 (p?; Tl) €ag (lﬁ, 2) €ag <k27]>:| .

Como os quatro termos sao idénticos a menos de uma permutacao dos indices em bloco e
o operador de permutagao P ¢ naturalmente invariante pela permutacoes dos seus indices,

renomeamos os indices dos quatro termos para obter,

M :,Y[A12A34}[A56A78]PA12A34A56A78 (pg*)AIQ (plg*)A34 (kg)ASG (k:/E)A'?éB ’

onde (pe*), , indica pq,e;, (p,A), e A & a polarizacio desejada para o féton. No caso de
expansao desta expressao, o operador de permutagao embaralharia os indices dos momen-
tos e vetores de polarizacao para em seguida serem contraidos com os da matriz v. Como
os indices sao mudos, este procedimento é equivalente a embaralhar os indices da matriz
gama de todas as formas possiveis para em seguida contrai-las com o produto de momen-
tos e vetores de polarizagao. Esta alternativa tem a vantagem de usufruir das simetrias
dos indices da matriz gama. Portanto, reescrevemos a amplitude de probabilidade em

uma forma equivalente dada por

M (kzi’ ké—)pgn, pg) = (pE*)A12 (pIE*)A34 (kE)Aw (k/€>A7s PA12A34A56A787[A12A34][A%Am}'

(5.59)

Desta expressao conseguimos extrair a regra de Feynman para o vértice,

M (klla k%_>p;n7 pg) - 822 (p> A1) 824 (pla )‘2) €ag (kv >\3) €as (k/a )\4) Ma2a4a6a87
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onde o tensor de rank 4 associado ao vértice é dado por

asaqagas / / A12A34][As6 A7
Dpezaatets _palpagkaska7PA12A34A56A787[ 12454l Aso 8]'

Moédulo quadrado da amplitude e secao de choque

Obtida a amplitude do processo, calculamos o seu modulo quadrado para obter a pro-
babilidade de interagao entre os fétons iniciais e finais com momentos bem definidos. O
detector ATLAS usado para realizar a medi¢ao do espalhamento féton-foton nao dife-
rencia fotons finais com polarizagoes distintas [13]. Portanto iremos calcular a média da
probabilidade da interagao ocorrer sobre as duas possiveis polarizagoes dos foétons iniciais
e somar sobre as polariza¢oes dos fotons produzidos. Desta forma, a probabilidade da
interacao pode ser escrita como
1 2 o 2
P (ki,ko—p1,P2) = 1 Z ‘M (kllak%%PZn:PSH . (5.60)

i7j7m7n:1

Substituindo (5.59) em (5.60) obtemos

1 2
_ 2 * * * *
P = Z gi,ag €i,ba 6j,a4 €4,b4Em,a6 €m7b6 €n,as En,bs

i’j7m7n:1
/ / [A12A34][A56A7s]
X Pa1 Py, kas ka7PA12A34A56A787 ’
/ ’ [B12B34][Bse Brs]
X Dby Pp, kbs kb7 P312334B563787 :

A soma sobre as polarizagoes pode ser computada usando a relagao de completeza (5.33)

de tal forma que

2

* * * * _
E , €i,a954,02€§,04€4,04Em,a6Em bsEn,a8€n bs = MazbaasbsTlagbeTNagbs -
%,7,m,n=1
A manipulagao da expressao da probabilidade P requer permutar as matrizes
gama, contrair com os respectivos momentos e finalmente com as métricas. Devido ao
fato deste calculo ser longo e entediante, o procedimento foi relegado ao Apéndice B. Em

termos das variaveis de Mandelstam, mostramos que a probabilidade de interacao pode
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ser escrita em uma forma invariante por transformagoes de Lorentz,
P (ki ko—p1,p2) =2 [(a — B)* +2(a® + 5)] (s* + ' + ). (5.61)

Sendo que usamos as variaveis de Mandelstam definidas como

s=(k+k)?,
tE(k_p)27
uE(l{j—p/)27

e a soma deles, para o caso de particulas sem massa, corresponde a

s+t+u=0.

E interessante notar que a probabilidade de interacdo (5.61) é simétrica por a ¢ 3,
indicando que é impossivel distinguir a contribuicao das correcoes nao lineares devido aos

termos F? e G? no caso despolarizado.

R~
s
Zard
k=(w,wk)
> <
r- k' == 0) (Dk
/®l®¢"" ( )
&
e

Figura 5.5: Referencial de centro de momento do espalhamento foton-foton.

Especializamos a expressao (5.61) para o centro de momento do espalhamento
descrito na Figura 5.5. Neste sistema de referéncia, escolhemos a propagacao dos fétons

iniciais ao longo do eixo z, seus momentos podem ser escritos como
EH = (w,wk) e KM= (w, —wk) ,
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onde w representa a energia dos fétons iniciais. Devido & conservagao de energia e mo-

mento, o momento dos fétons finais sao dados por,

plu = (W,wﬁ) € plu = (wu —(.Uﬁ> )
tal que i - p = cos . Portanto, as varidveis de Mandelstam assumem as formas

s = 4w”,
t = —2w? (1 — cosb),

u = —2w? (1 + cosb).

Em termos da massa invariante do sistema de difétons definido como m., = /s, estas

quantidades podem ser escritas como

u= —ém% (14 cosf).

Desta forma, a probabilidade de espalhamento é dada por

P —é %(O&—ﬁ)Q—F (o® + %) (cos2€+7)2m§

on

A secao de choque diferencial é proporcional a probabilidade espalhamento. No
caso de um espalhamento 2 — 2 no qual todas as particulas possuem a mesma massa, a
distribuicao da se¢ao de choque por unidade de angulo s6lido no referencial de centro de

momento é dada por [61]

do P (my,y,cosb)
) oy 64m2m2.

Y

Portanto, para o espalhamento vy — ~v temos que a se¢ao de choque diferencial é dada

por
d 1 20 + 7)*> mS
(dg) N {5 (a - B)2 i (a2 * ﬁQ)} o 5127r2) mw' (5-62)

CcM

Para obter a se¢ao de choque total, integramos sobre o angulo solido. Devido a simetria
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do processo, a metade do angulo solido, correspondente ao intervalo 0 < 6 < 7, gera o
mesmo espalhamento que a segunda metade. Para evitar esta dupla contagem, integramos

apenas no primeiro intervalo obtendo

7 [1
oen = - |5 (0 - B)? + (o2 + %) | mS,. (5.63)

As expressoes (5.62) e (5.63) nos permite calcular as se¢oes de choque diferencial
e total do espalhamento vy — ~7v a nivel de arvore e no referencial de centro de momento
devido as corregoes nao lineares da Lagrangiana de Maxwell dada por (5.50).

A titulo de completeza é interessante aplicar estes resultados para as principais
Lagrangianas da literatura. No caso da Lagrangiana de Euler-Heisenberg, podemos recu-
perar os primeiros termos de corregao escolhendo

2 o 7 o?

= Hmt ¢ P o

recuperando os resultados conhecidos

do 139 af (cos20 + 7)? ms,
d) oy 16200m8 51272 ’

7 139 ot

Low @ 5.64
407 16200 mg 77 (564)

ocM =

onde m, é a massa do elétron e « é a constante de estrutura fina.
Por outro lado, para as teorias tipo Born-Infeld, devemos escolher os parametros
tal que

a:ﬁ:i_

Assim, obtemos que a secao de choque diferencial para a primeira correcao devido a estas

teorias é dada

dO_ 1 1 2 6
(m) " = 163502 b (cos20 +T7)"m,,
e a se¢ao de choque total por

701
o = ——M_ ..
CM T 1980m bt Y
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No proximo capitulo, a expressao (5.62) sera de fundamental importancia para
acrescentar ao espalhamento vy — v previsto pelo Modelo Padrao a contribui¢ao devido

a corregoes nao lineares da eletrodinamica de Maxwell.
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Capitulo 6

Vinculo de Correcoes Nao Lineares da
Eletrodinamica de Maxwell usando o

Espalhamento vy — vy

6.1 Introducao

O espalhamento foéton-féton participa de estagios intermediarios em corre¢oes de ordem
superior de vérios processos. Desta forma, ele ja foi precisamente medido, porém de forma
indireta, por integrar os diagramas de ordem a® que corrigem o momento de dipolo mag-
nético andémalo tanto do elétron como do muon |76, 77]. Dois processos semelhantes bem
conhecidos sao o espalhamento Delbriick e o fenémeno de birrefringéncia. O espalha-
mento Delbriick, no qual um féton é espalhado elasticamente pelo potencial Coulombiano
produzido por um ntcleo atémico, ja foi medido [78]. O efeito de birrefringéncia, no qual
um foton é dividido em dois na presenga de um campo eletromagnético de fundo, foi
recentemente tratado pelos grupos PVLAS e BMV! [31, 32]. Medigoes de birrefringén-
cia linear magnética foram realizadas pelo PVLAS, mas sao compativeis com o zero. O
fenomeno de birrefringéncia e o espalhamento Delbriick se diferenciam do espalhamento
foton-foton mostrado da Figura 5.2 pelo fato de, respectivamente, um e dois dos fotons

que participam do processo serem virtuais e associados a uma fonte externa. Por outro

'PVLAS e BMV sio as siglas para Polarizzazione del Vuoto con Laser e Biréfringence Magnetique du
Vide, respectivamente.
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lado, colisoes inelasticas de pares de fotons foram observadas e sao comumente usadas
para produzir particulas como elétrons, mtions e W entre outras [79, 80, 81, 82].

Desde sua previsao, diversos mecanismos foram propostos para detectar direta-
mente o espalhamento féton-féton, porém sem sucesso. Exemplos destes sao o uso de
lasers de alta intensidade [83], lasers aprimorados por espalhamento Compton [84] e aco-
plamento de modos gerados dentro de guias de onda [85]. Uma forma de gerar f6tons
de alta energia é por meio de particulas carregadas ultrarrelativisticas. A partir destas é
possivel produzir as colisoes inelasticas de fotons comentadas anteriormente. Neste am-
bito, o CMS analisou dados de espalhamento de prétons buscando encontrar sinais do
espalhamento foton-féton mas somente conseguiu impor um limite superior para a sua
se¢@o de choque [86]. Em 2013, d’Enterria e Silveira propuseram que o uso de fons de
chumbo em colisdes ultraperiféricas nas energias do LHC permitiria obter a luminosida-
des necessaria para tornar o fendmeno observéavel [87]. A vantagem de usar os ions de
chumbo, quando comparado aos protons, estd no fato de que a escala da luminosidade
da radiacao produzida ¢ dada por um fator Z* ~ 108, onde Z = 82 é o niimero atoémico.
Como consequéncia, em 2016 o ATLAS anuncia a primeira observacao direta do espa-
lhamento vy — 77y medindo uma segao de choque o2/ 45 = 70 & 24(estat.)£17(sist.)nb
através da analise de dados de colisoes de fons de chumbo acelerados no LHC com energias
invariantes entre pares de ntcleons \/syy = 5.02TeV [13].

Neste capitulo temos como objetivo final vincular os parametros « e [ das corre-
¢oes nao lineares a Lagrangiana de Maxwell (5.50) usando o resultado experimental obtido
pelo ATLAS. Os resultados obtidos estao publicados em [88]. Na Segao 6.2 revisamos o
método da aproximacao de fétons equivalentes. Por meio deste, os ions ultrarrelativisti-
cos em colisoes ultraperiféricas sao vistos como fontes de fétons de altas energias. Este
método tem as vantagens de simplificar a deducao tedrica da secao de choque total e de
incorporar facilmente o fator de absorcao, limitando o espaco de fase a colisoes ultraperifé-
ricas. O fator de forma do fon é o ingrediente principal do niimero de fétons equivalentes.
Assim, na Segao 6.3 descrevemos 4 distribuigoes de carga distintas que serao usadas e seus
fatores de forma correspondentes. Na Secao 6.4, os cortes usados na anélise dos dados
do ATLAS sao descritos e calculamos numericamente a previsao da se¢oes choque pelo

Modelo Padrao para a o espalhamento Pb+ Pb — Pb+ Pb+ v para cada distribuicao
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de carga. Finalmente, na Secao 6.5, incorporamos a amplitude de probabilidade para o
espalhamento foton-foton devido as corre¢oes nao lineares e vinculamos os parametros «
e 4. Como aplicacao vinculamos o parametros b de Born-Infeld e finalizamos com alguns

comentarios.

6.2 Aproximacao de fé6tons equivalentes

As colisoes ultraperiféricas (UPC) entre pares de fons sdo caracterizadas por ocorrerem
com parametro de impacto maior que a soma de seus raios. Em colisoes de fons podem
ocorrer interagoes tanto eletromagnética (féton-foton e fotonuclear) como forte. Portanto,
a vantagem de tratar com UPC esta na diminui¢ao de processos ligados a interagao forte,
reduzindo a producao de fétons por meio de outros mecanismos que nao sejam puramente
eletromagnéticos. Experimentalmente, processos devido & interacao forte possuem secoes
de choque da ordem de barns e sao distinguiveis devido & sua multiplicidade, permitindo
descarté-los facilmente [89]. Teoricamente, a exclusao destes processos é levado em conta

por meio do fator de absorcao de tal forma a incluir apenas UPC.

Figura 6.1: Plano transversal do campo elétrico de uma particula carregada com velocidade constante.
As curvas indicam a mesma equipotencial para velocidades distintas da particula. A curva circular indica
o caso v/c = 0, a curva intermediaria v/c = 0.7 e a curva mais alongada v/c = 0.95. A medida que a
velocidade da particula aumenta, a componente paralela ao movimento diminui devido a contragao de
Lorentz, enquanto a componente perpendicular é enaltecida.
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Particulas carregadas aceleradas a altas energias tem seu campo contraido na
diregdo do movimento e amplificado no plano perpendicular como visto na Figura 6.1.
Quando a velocidade da particula v = ¢, o campo eletromagnético se comporta como uma
onda plana que acompanha a carga. Um observador a um parametro de impacto b da
trajetoria da carga sente um pulso eletromagnético de duracao At ~ %, onde 7y é o fator de
Lorentz da particula e ¢ a velocidade da luz [18]. Quando fons se espalham em UPC seus
campos eletromagnéticos interagem entre si. Assim, o espalhamento foton-foton ocorre
pela interacao de fétons produzidos pelos fons, como mostrado na Figura 6.2. Devido a
conservacao de energia-momento dos fons, o momento dos fotons deve ser negativo ¢* < 0,
possuindo massa nao nula e virtualidade Q? = —¢? > 0. Por causa disto, estes fotons
massivos podem ter tanto polarizagdo transversal como escalar ou longitudinal [90]. Desta
forma, a secao de choque total ird depender das secoes de choque do subprocesso devido
a fotons em ambas polarizacgoes.

O fon possui um comprimento caracteristico bem definido descrito pelo seu raio
R=12A3fm~7 .1fm, onde A = 208 é o ntimero de nucleons do ion de chumbo. Devido
a borda bem definida do ion, o seu fator de forma, definido pela transformada de Fourier

da distribuicao de carga,
F(-q*) = / d’rp (r) ",

¢ aproximadamente 1 até valores de —¢? ~ %, apos o qual decresce rapidamente |90,
91, 92] (ver Figura 6.5). A distribui¢do de carga é normalizada, portanto [ drp(r) = 1.
Como a amplitude de probabilidade do espalhamento possui um fator de forma para cada
vértice de acoplamento entre os fons e os fétons, a regiao relevante para a secao de choque

correspondente é restrita a momentos transferidos

1
_qu S, ﬁ) (61)

onde 1 e 2 indica o féton produzido por cada ion. Acima deste valor, a secao de choque é
desprezivel. Além disto, o propagador associado a cada féton possui um polo em qu =0,
tornando a regiao de integragao dos momentos dos fétons mais relevante em torno dele.
Por este motivo, a virtualidade é predominantemente baixa e os fo6tons emitidos pelos ions

sao ditos quase-reais.
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Pb

Pb

Figura 6.2: Interagao féton-féton produzido em espalhamentos ultraperiféricos de fons de chumbo. O
circulo maior cinza indica todas as possiveis interacoes entre os 4 fotons. No termo que lidera a expansao
perturbativa, a interacao é descrita pelo diagrama da Figura 5.2.

A amplitude de espalhamento total entre fétons virtuais pode ser separada de
acordo com as polarizagoes dos fotons iniciais. Desta forma, a secao de choque possui
contribui¢oes devido a fétons iniciais unicamente com polarizagao transversal e contri-
buigoes devido a fotons iniciais com polarizagao escalar [90]. E possivel mostrar que as
contribuigoes a secao de choque vinda de fétons com polarizagao escalar sao proporcionais
a ¢? no limite em que ¢*> — 0, portanto sao nulos na origem og (w, ¢* = 0) = 0. Por outro
lado, a secao de choque puramente transversal se aproxima, no mesmo limite, da secao de
choque do processo em que os fotons sao reais or (w, ¢> = 0) = 0., (w). O comportamento
das secoes de choque, do fator de forma e a presenga do polo nos propagadores dos foétons,

nos permite definir um parametro de cutoff A, = + na integragio dos momentos de tal

R
forma que a secao de choque é desprezivel para valores —g¢? > A?Y e bem aproximada pela
secao de choque para de fotons reais para valores —¢? < A% [90]. Assim, esta condigao

permite escrever a se¢ao de choque total como
o (PbPb — PbPb+ vv) = /crW (w1, ws) dn (wy,ws),

onde dn (w;,ws) é a distribui¢ao de fétons com energias wy e we produzidos pelos ions e
04y (w1, ws) € a secao de choque foton-foton cujos fotons incidentes sao reais [92]. No caso
geral, a distribui¢ao dn (w1, ws) nado se fatoriza no produto de distribuig¢oes de fotons de
cada nucleo. De fato, baseando-se na Figura 6.2, a emissao de um féton pelo primeiro

fon ¢ fungao do momento do féton emitido pelo segundo fon. Porém, para momentos
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@ < Af/ e UPC, podemos aproximar a distribui¢ao total como o produto das distribuicoes
individuais [90, 93].

Da cinematica do sistema, no referencial em que o fon se move ao longo do eixo
z com velocidade v, o momento transferido ao féton ¢ dado por ¢* = (w,q 1,q, = %)

Assim, a virtualidade deste foéton é

2
w
Q2:¥+qi7

onde o fator de Lorentz do fon é dado por 72 = 1 —v? = A}/}f - ~ 3000 no referencial
do laboratorio para o LHC, onde os fons possuem energia de massa invariante nicleon-
nicleon /syy = 5.02TeV. Portanto, a condigao (6.1) implica que a energia dos fotons

estao limitados superiormente a wya.x =~ % ~ 80GeV e o momento transverso a q; <

% ~ 30MeV. Estes resultados podem ser entendidos como sendo fruto do efeito de
coeréncia dos nucleons do fons e da contracao de Lorentz experimentado pelo campo
eletromagnético. Os campos eletromagnéticos produzidos por cada proton interferem
construtivamente enquanto possuirem comprimento de onda da ordem ou maior do que o
raio do nucleo, nao discernindo a sua estrutura. Comprimentos de onda menores passam a,
interferir destrutivamente, reduzindo consideravelmente o fluxo de fétons de altas energias
com relagao ao caso anterior. Por outro lado, acelerar o fon a velocidades proximas a da
luz faz com que seu campo elétrico se concentre no plano perpendicular ao seu movimento.
Portanto, o fluxo de energia do campo eletromagnético que acompanha o fon, descrito pelo
vetor de Poynting, é praticamente paralelo a trajetéoria. Como consequéncia, o momento
transverso dos fotons é desprezivel quando comparado a sua energia. Para todos os efeitos,
consideraremos a propagagao dos fotons como sendo paralelos ao feixe [94].

A aproximagao de fotons equivalentes se caracteriza por substituir a secao de
choque foton-foton completa (levando em conta todas as polarizagoes do féton massivo)
pela secao de choque entre fotons reais, e por supor que o momento dos fétons emitidos

é paralelo ao feixe de ions.

A intensidade da interacao eletromagnética entre particulas com carga Zie e Zse
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¢ caracterizado pelo parametro adimensional de Sommerfeld [95]

212262
no= 5
(Y
21 Zy

137

Para os casos em que 1 < 1 (elétrons e protons), devido a interagao ser fraca, as particulas
trocam poucos fotons. Portanto, a distribuicao de probabilidade de emissao de fotons
deve ser obtida analisando o vértice de acoplamento entre a particula e o féton a nivel de
arvore. Ja, no caso em que > 1 (n =49 no caso do Pb), a interagao eletromagnética é
suficientemente forte para que diversos fotons sejam trocados entre os fons. Desta forma,
a distribuigao pode ser calculada no regime semicléssico [96, 95|. Para derivar a forma da
distribuigao de fotons dn (wq,ws) calculamos inicialmente, a partir do vetor de Poynting,

% produzido por um

o fluxo de energia por unidade de area e unidade de frequéncia
fon ultrarrelativistico. Para isto, calculamos o campo eletromagnético produzido por um
ion de carga Ze e distribuigao de carga normalizada e esfericamente simétrica p (r) com
velocidade constante v. No referencial de repouso e com origem no centro da distribuicao,
o campo elétrico é dado pela Lei de Coulomb,

Ze r—r
E (r) = E /d37",p (I',) |—3

r—r/|

Introduzimos o fator de forma correspondente usando a relagao

d3 2\ iqr’
p) = | o F (e

obtendo

Ze [ d%q or—1
E _ - F(— 2 d3 /_iq-r -
(r> 47 / (27'(')3 ( q ) / re ‘I' o I./‘3

I,/

Simplificamos esta expressao usando a identidade IF—I‘* = V,,— e realizando uma

r—r’ [r—r|

integracao por partes. Assim, o campo elétrico em funcao do fator de forma pode ser

escrito como

— _iZe d’q a2 T
E(r)=—iZ /(27r)3q2F( q°) . (6.2)

O campo elétrico gerado pela mesma distribui¢ao de carga p (r) em movimento
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uniforme com velocidade v pode ser obtido a partir da equacdo (6.2) realizando uma
transformacao de Lorentz. Escolhemos o observador inercial S’ como sendo aquele que
estd em repouso com relagao a distribuigao. O observador S estd em movimento uniforme
com velocidade —v com relagao a S’, sua origem coincide com a de S” em t =t/ = 0.
Escolhemos também que os eixos dos sistemas de coordenadas sejam paralelos e tal que
v aponte na dire¢do z. Para encontrar o campo elétrico observado no referencial S,

expressamos as coordenadas de S’ em func¢ao das coordenadas de S usando (2.6),

" = v(ct—B2),
¥ = z,
vo=

2 = ~v(z—Bct).

O campo elétrico em S em funcao do campo elétrico de S’ é obtido usando as equacoes

(2.14)

Ex = nyglm
vy ’}/Eg//a
z = E27

e o campo magnético através de (2.17)

B, = —wE, =—vE,,
B, = ~wE, =vE,,
B,

= 0.
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Assim, o campo elétrico no referencial S tem suas componentes dadas por

d*q q -
E, = —iZey | —=2=F (—¢?) 9T, 6.3
P)// (27‘(’)3 q2 ( q ) ( )
d*q q :
E, = —iZe 2F (=g elar, 6.4
. dgq q: 2 3
E, = —iZe | —L2F (—¢%) 9T, 6.5
/ (27) ¢ (=) (6.5)

Para um observador no referencial S medindo o campo elétrico no ponto (b, by, 0) temos

que

r = (x,y,”y(z—vt)),

(by, by, —yvt) .

J& o campo magnético é sempre perpendicular a trajetoria do fon e é dado por

B, =vxE. (6.6)

Como pode ser observado das equagoes (6.3), (6.4) e (6.5), as componentes perpendicu-
lares a trajetoéria, F, e E,, sao intensificadas por um fator v quando comparadas com a
componente longitudinal F,.

Com o objetivo de visualizar melhor as consequéncias da contracao do espago,
olhamos para as equagoes correspondentes a uma distribui¢ao de carga puntiforme F' (—¢?) =

1 dadas por [18]

1 qyb
E, - — ,
A1 (b2+’)/2212t2)3/2
A7 (b2+72v2t2)3/2

Notamos que o instante de maior intensidade do campo elétrico é ¢ = 0 e que o intervalo
de tempo relevante em que a interagao ocorre é da ordem de At ~ % Portanto, a medida
que v — ¢, o intervalo de interacao se torna menor ocorrendo efetivamente no instante

t = 0. Além disso, notamos que o campo elétrico longitudinal se torna desprezivel e o
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campo perpendicular é amplificado pelo fator de Lorentz. Desta forma, recuperamos o
comportamento descrito na Figura 6.1. Como estamos interessados no comportamento
do campo elétrico de uma distribuicao de carga ultrarrelativistica, a seguir desprezamos

a componente z do campo elétrico, sendo assim dado por

_ ; d3q q 2\ _iqy-b_—iyq,vt
E, (r,t) = —iZey s F (—¢°) e Pe . (6.7)
(2m)° ¢q

O vetor de Poynting associado ao campo eletromagnético do fon ¢ dado por
S = E; x B,. Ao desprezar a componente z do campo elétrico, estamos mantendo
apenas a componente S, do vetor de Poynting. Portanto, o seu médulo indica o fluxo de

energia por unidade de area perpendicular & trajetéria e por unidade de tempo,

au
d?bdt

=v[E, (b,t)],

onde (6.6) foi usado e o elemento de area dA = d?b ¢ parametrizado em termos do
parametro de impacto. Podemos relacionar o fluxo de energia por unidade de tempo com
o fluxo correspondente por unidade de frequéncia fazendo uso do teorema de Parseval,

pois este conecta os modulos quadrados no espaco do tempo e das frequéncias,

o0 1 o0
/ |El(b,t)|2dt:%/0 IE, (b,w)|? dw.

oo

Obtemos consequentemente que

dfb% = % EL (b,w)]?. (6.8)

A probabilidade de interagao de uma particula a projetada aleatoriamente sobre
um anteparo fino composto por particulas 8 com distribui¢ao superficial ng é dada por
P = ngo,g, onde 0,5 ¢ a segdo de choque entre as particulas [97]. Para relacionar o
fluxo por unidade de frequéncia (6.8) com a probabilidade de interagdo supomos um
experimento em que a secao de choque para a interacao entre um féton de energia w e
uma particula « de energia E seja dada por 0., (w, E). Reconhecemos a distribuicao

superficial de fétons, ou niimero equivalente de f6tons, com energia entre w e w+ dw como
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sendo dada pela distribuicao de energia no mesmo intervalo dividida pela energia de um

foton nessa mesma energia,

1 dU

N - - @
(w,b)dw = 5 i

dw, (6.9)

Portanto, a probabilidade da particula « interagir com uma distribuicao superficial de

fotons de qualquer energia produzida por um fon ultrarrelativistico é dada por

00 1 U
P(bE) = E)—-2_4
(b, B) AUM%)MMM%

e a se¢ao de choque total por

o 1 dU
2
O-’yoz (E) = /d b/o O-'yoz (W,E) %mdw,

sendo que integramos sobre a area onde a distribuicao de fétons estéd contida. Desta
forma, se reconhecemos a particula o = v como sendo também um féton fazendo parte

de uma distribuicao produzida por outro ion, entao a secao de choque total sera dada por

o (Pbe — Pbe’y’y) = /d2b1d2b2dwlda}252 (bl,bg)

X N (wi,b1) N (wa,b2) 0y (/577 = VAwiws) ,  (6.10)

onde S? (by,by) ¢ chamado de fator de absor¢ao e foi introduzido de forma ad-hoc. As
energias em (6.10) sdo aquelas medidas no referencial do laboratorio. Para calcular a
se¢ao de choque vy — 7y produzida pelos fons em UPC, devemos restringir os valores
dos parametros de impacto de tal forma que |b; — by| 2 2R (ver Figura 6.3). Assim, o
papel do fator de absorcao ¢ limitar o espago dos parametros de impacto para excluir a
possibilidade de ocorrer interagoes fortes entre os niicleons. Como primeira aproximagao,
podemos tratar os fons como esferas macicas de tal forma que podemos descrever o fator de
absorgao como S? (by, by) = O (|b; — by| — 2R), onde O (x) é a fungao escada de Heaviside
[98]. Uma das vantagens da abordagem semiclassica do numero de fotons equivalentes é
a facil inclusao do fator de absorcao.

Para obter o niimero equivalente de fotons N (w, b) em fungao do fator de forma
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do fon devemos calcular a transformada de Fourier do campo elétrico (6.7) e substituir

em (6.8). Assim,

B (huw) — / dte“'E, (b,1).

d*q qu : [ ,
= —iJe — F (— 2 e“li'b /dtez(w—'yqu)t :
7/ (27’1’)3 q2 ( q )

Para calcular o moédulo do campo elétrico, notamos que este é paralelo ao versor b no

ponto de observagao, logo multiplicando escalarmente ambos lados por este obtemos

2 w?
iZe [ d? F (“h - _21,2> ,
E, (bw) = ——— qé g cosf ; glarbeost
v (27T) qi_ + fy(;v2

Ze [ d F (-ﬁ - 3—1) 2

iZe v ,

= - / 1L ¢t - / df cos fe'1-0 <5
0 0

241 2
v (27) 0t + 55
A integral em df representa uma funcao de Bessel do primeiro tipo, portanto
2

2 w
iZe [ dq. F<_qL_W> ,
E (bw)=— / 2 2miJ b).

J_( ) v o (27T)2q1_ qi i WUQJ% 1 (QJ_ )

Fazendo a mudanca de variavel

u

q. = Ev
du
dC_IJ_ = ?a

podemos reescrever o moédulo do campo elétrico como

0o v _ 2
Ze b2 B2
B, (bw) = 27rvb/0 duJy (u) u? ( ) (6.11)
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onde x = g—‘; Finalmente, substituindo (6.11) e (6.8) em (6.9) obtemos o nimero de f6tons

equivalentes como

N (w,b) = =——=¢ (x,b)*, (6.12)

onde fizemos v = ¢ para o ion ultrarrelativistico, e

¢ (z,b) = /000 duJy (u)u2F <_z_22 _ i_j)

u? + 22

O nuamero de fotons equivalentes (6.12) é proporcional ao quadrado do numero
atomico Z2 ~ 10*, portanto a segao de choque total (6.10) ¢ amplificado por um fator Z*4 ~
10® com relagao a secao de choque em colisdes de protons. Devido a extensa distribuicao
espacial dos fons, os foétons emitidos sao limitados superiormente a wimax ~ % ~ 80GeV,
enquanto wma, ~ 1500GeV para o proton, ambos nas energias acessiveis no LHC. Porém,
como a secao de choque féton-féton diminui com o quadrado da massa invariante dos
fotons m;vz a partir de m.., ~ 3m 73], onde m é a massa das particulas que compoem o
loop, o intenso fluxo de fétons mais brandos favorece o uso de colisdes entre ions pesados

[87].

1 2

Figura 6.3: Secdo perpendicular ao feixe dos fons. Parametros de impacto envolvidos na descricio da
aproximagao de fétons equivalentes.

E interessante reescrever a se¢ao de choque (6.10) em termos do vetor b = b; —by
com origem no fon 2 e final no fon 1, e do vetor com origem no ponto médio b, =

(b1 + bg) /2, como indicados na Figura 6.3. Desta forma, integrando sobre a distribuigao
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angular de b obtemos

o (PbPb — PbPbyy) = 27r/ db/dzbcdwldwgb
2R

X N (wi,b1) N (wa, b2) 0y (/577 = VAwiws) , (6.13)

onde

b 2

by = (bm+§) + b2,
b 2

by = \/<bcy—§) + b2,

A vantagem de usar este conjunto de variaveis é dele satisfazer automaticamente a con-

digao do fator de absor¢ao integrando na variavel b somente a partir de 2R.

Podemos também reescrever as energias dos fétons em termos da energia invari-
ante do sistema m., = /s, e da rapidez do sistema de fétons Y. Em colisoes, a rapidez
de uma particula (ou de um sistema) é uma medida do angulo que esta faz com relagao

ao feixe. E definida em termos da energia e do momento longitudinal pela relacdo

1 (E+P,
s "\ EZP )

No referencial do laboratério temos que a massa invariante do sistema é dada por m.,, =

Y

/54y = V4wiwy. J& a energia do sistema de fétons é dada pela soma das energias de cada

foton E., = w; +ws e seu momento ao longo do eixo z é dado por P, = w; —wy. Portanto,

m u = z1In (wq/woy nergi btons wy = T2%eY e wy = T22e™Y . Usando
temos que Y ;l , € as energias dos fotons 5 5

estas relagoes, a se¢ao de choque total (6.13) pode ser escrita como

o (PbPb — PbPbyy) = ﬂ-/2R db/decdmdeme

x N (%ey, b) N (%e”, b2) e (o) (6.14)

Com o objetivo de isolar o processo de interesse de outros e para maximizar a
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eficiéncia dos componentes do detector, varios cortes sao impostos durante a medicao e
a analise dos dados. No caso do espalhamento foton-foton, estes cortes descartam fotons
com certas caracteristicas e, portanto, nao contribuindo para a sec¢ao de choque total.
Para prever teoricamente o resultado experimental obtido por um detector de particulas
devemos, entao, conseguir incluir estes cortes nas varidveis dinamicas, restringindo espago
de fase no qual estamos integrando. Os principais cortes implementados pelo ATLAS sao
no momento transverso dos fétons finais, nas suas rapidez e na energia invariante do sis-
tema de fotons produzido [13]. Para incluir um corte no momento transversal é necessério
incluir a informacao da distribuicao angular do espalhamento 7. Para isto, substitui-
mos a se¢do de choque total pela secdo de choque diferencial 0., (m4,) = [ Wdz,
onde z = cosf parametriza o angulo com relagao ao feixe no referencial de centro de
momento. Pela simetria do sistema, o intervalo de integragao da variavel z deve ser [0, 1],
caso contrario haveria dupla uma contagem dos estados finais. Em seguida, realizamos
uma mudanca de varidveis para o momento transverso. Para isto, expressamos z como a
razao entre o momento longitudinal e o momento total, e estes em termos do momento

transverso p; e a massa invariante,

Pz
z = =,
p

\ m%v—élp%

My ’

4 d

dr — — Dt Dt

Moy 12 2
7Y m'y’y_4pt

Assim, a secao de choque total pode ser escrita como

bpy
/ 2
m?y'y - 4p t

doyy (mW% 1— ()

o (PbPb — PbPbyy) = 4w /2R db/decdedept

My

x N (Mey, b1> N <%6_Y, b2> ) . (6.15)

2 2 dz

Nesta integral, os valores acessiveis ao moédulo do momento transverso estao no intervalo

0 < pr <my,/2. O sinal negativo do elemento dz é compensado pela inversao dos limites
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0 Moy /2

de integragao fol T Jimge 7 T o

Finalmente, fazemos uma mudanca de varidveis para incluir as rapidez dos fétons
individuais no referencial do laboratério. Para isto, relacionamos as variaveis m,, e Y
com as rapidez y; e yo. Comecamos relacionando as rapidez no referencial do laboratério

com as rapidez do referencial de centro de momento dos fétons ¢, e .. Da definicao da

N 1 (@i‘i‘ﬁzi)
Vi==-In{ ——),
2 Wi — Pzi

onde w; e p,; sao a energia e o momento longitudinal dos fétons emitidos no referencial

rapidez temos que

de centro de momento, onde ¢ = 1,2. Neste referencial temos que W = Wy € P90 = —P.1,
portanto o = —y;. O referencial de centro de momento se move com velocidade
P
6 = Ez Y
vy

ao longo do eixo z no referencial do laboratorio. A energia e o momento longitudinal se

transformam como as componentes de 4-vetores, por isso temos que

wi =7 (wz‘ - 529%%') )

Pzi = (P2 — Pwi),

onde w; e p,; sao a energia e o momento longitudinal dos fétons emitidos no referencial

do laboratorio. Portanto, obtemos que

1 i + Dz 1 E P,
2 Wi = Pzi 2 E’Y’Y_PZ
ou
Yi =i+ Y.

Como consequéncia desta relagao, a diferenca entre as rapidez de duas particulas pro-
duzidas numa colisao é invariante por transformacoes de Lorentz ao longo do feixe,

Yo — Y1 = Y2 — Y1. Por outro lado,
Y=< (yi+y2). (6.16)
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Usando novamente a definicao da rapidez, expressamos 7, e ; em funcao da
massa invariante e do momento transverso,

1 Moy + \/ m?w - 4p?

Yi = i§ In )
My — /M2, — 4D}

onde o sinal é positivo para 7; e negativo para y,. Portanto, a diferenga entre as rapidez

Moy + /M2, — 4p7
In

— 2 _ Ap2
My mz2., — 4p;

é dada por

1 —Y2 =

Em seguida, invertemos esta equacao isolando a massa invariante,

My = 2p; cosh (yl ; y2> . (6.17)

Usando as expressoes (6.16) e (6.17) podemos escrever o elemento de area dYdm.,, em
funcao de dy,dys,
dYdm.., = |J| dyidys,

onde o Jacobiano é dado por

ay oy
0 0
J = Y1 Y2
Omyy  Omay
oy Oy

Desta forma obtemos que

dY dm.., = p,sinh (M) dy,dys.

Usando este elemento de area e as equagoes (6.16) e (6.17) escrevemos a segao de choque

total (6.15) em sua forma final,
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[e.e]

o (PbPb — PbPb+ ~vv) = 47 /2R db/d2bcdptdy1dygbpt

x N (pt cosh (y1 g y2> eé(ylﬂ’?),bl) N (pt cosh <%) eé(yﬁyz)?bQ)

o, (oprcosh (52 Lt (152
dz )

(6.18)

A partir da equagao (6.18) serdo calculados numericamente as se¢oes de choque do espa-
lhamento féton-foton em UPC de ions de chumbo. Os diferentes processos de interagao
entre os fotons produzidos pelos fons sao descritos pela secao de choque diferencial. A
forma pela qual a distribuigao espacial de carga dos fons, codificada no fator de forma,

modifica a producgao de fétons é descrita pelo nimero de fétons equivalentes.

6.3 Fatores de Forma

O principal ingrediente do nimero de foétons equivalentes (6.12) é o fator de forma do fon.
A principal forma de se obter informagao experimental sobre a distribuicao de carga do
nicleo é bombardeando-o com particulas (por exemplo elétrons ou miions) e estudando
a distribuicao angular resultante. Diversas parametrizagoes e os valores correspondentes
dos seus pardmetros obtidos experimentalmente podem ser encontradas em [99|. Para
momentos pequenos transferidos aos projéteis pelo nucleo, os resultados experimentais
sao bem conhecidos e todas as distribuicoes devem recupera-los. E necessario aumentar a
energia do feixe de particulas incidente para que o comprimento de onda correspondente
seja da ordem dos comprimentos das estruturas que desejamos observar. Porém, energias
suficientemente altas podem provocar processos inelasticos e, em particular, quebrar o
nucleo. Esta limitagao torna o conhecimento do fator de forma pouco preciso para valores
grandes de ¢?. Consequentemente, uma grande incerteza tedrica ¢ introduzida pela escolha
das diversas parametrizacoes possiveis. Devido a isto, a incerteza teérica propagada para
a se¢do de choque total é estimada em 20 [87].

Com o objetivo de estudar o impacto da escolha do fator de forma nas secoes

de choque totais, fazemos uso de 4 distribui¢oes de carga distintas cujos graficos sao
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Figura 6.4: Grafico normalizado das 4 distribui¢oes de cargas usadas para descrever o fon de chumbo.
mostrados na Figura 6.4. A distribui¢do de carga tipo Yukawa [89], dada por

A2 e—rA

C4m or

p(r)

tem seu fator de forma correspondente dado por

A2

)= 5

O parametro A é obtido de tal forma a recuperar \/W = \/g = 5.5016fm, para o
chumbo, sendo igual a A = 0.088GeV [98]. E considerado um modelo bastante simples e
bastante irreal de distribuicao de carga. Porém, possui a vantagem de permitir obter o
niamero de fotons equivalente (6.12) de forma analitica. A fungdo ¢ (w, b) correspondente

¢ dada por

2 2
¢ (w,b) = le (b_w) - (c—d> +AN2K | b (E) + A2,
v Y Y ol

onde K (z) é a fungao de Bessel modificada tipo 1.
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A distribuicao de carga de Fermi com dois parametros [100] é dada por

Po
r—c )

p\r)=—7=
(r) l1+ew

onde pg deve ser escolhido de tal forma a normalizar a distribui¢do, os parametros ¢ =
6.642fm e a = 0.549fm descrevem o raio de meia densidade e a espessura da superficie
da distribuigao [99], respectivamente. Resultados experimentais mostram que estes dois
parametros sao necessarios para descrever corretamente a distribuigao de carga nuclear
[101]. Portanto, se trata de uma distribui¢do de carga mais realista quando comparada a
de Yukawa, que possui apenas um parametro, e sera usada como padrao para comparagao.
A complexidade desta distribuicao nao torna possivel obter um fator de forma analitico.
Porém, ¢ possivel obté-lo em termos de uma série [102] sendo bem aproximado pelos seus

dois primeiros termos,

42 pya 8mpoate

wga cosh (wqa) sin (qc) — ge cos (gc) sinh (7qa)| + —.
[7q (mqa) sin (ge) — gccos (ge) sinh (mqa)] (0 + g2a?)

F(—¢*) = ——F———
(=) q? sinh (7qa)
Duas outras distribuicoes bastante usadas na literatura sao as de uma esfera
carregada homogeneamente [91] e a Gaussiana [103]. A primeira, para uma esfera de raio

R = 7.1fm é dada pela expressao

B 3
 47R3

p(r) OR-71).

Esta distribuicao é obtida a partir da distribuicao de Fermi no caso limite em que a
espessura da superficie é nula, a — 0. O fator de forma correspondente pode ser obtido

analiticamente e é dado por
J1(qR)
g’

F(-¢*) =3

sendo j; () a fun¢ao de Bessel esférica do primeiro tipo. Ja a distribuigdo Gaussiana é
descrita pela expressao
Qo QR

p(?‘)ZW
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e tem um fator de forma dado por

R

]
=
Q
o

onde )y = 0.060GeV para o chumbo [103].

Os fatores de forma foram tragados na Figura 6.5. Notamos que eles decrescem
rapidamente para ¢ ~ 0.05GeV ~ %, como foi comentado acima. E possivel observar
também que o fator de forma tipo Yukawa superestima os valores, sendo por isso, con-

siderado irreal. E interessante notar também o comportamento oscilatorio dos fatores

de forma de Fermi e da esfera homogeneamente carregada. Isto caracteriza o padrao de

difracao gerado por distribui¢oes com bordas bem definidas.
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Figura 6.5: Fatores de forma correspondente as distribuigoes de carga da Figura 6.4. Notamos que
decrescem rapidamente em torno de ¢ ~ 0.05GeV ~ %

7+ A distribuicdo de Yukawa tem a vantagem de

permitir uma expressao analitica para o namero de fétons equivalentes, porém é bastante irrealista ao
superestimar o fator de forma. A oscilacdo dos fatores de forma das distribui¢cbes de Fermi e da esfera
uniformemente carregada é causada pela parametrizacdo de uma superficie bem definida.
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6.4 Secao de choque do espalhamento elastico vy — vy
previsto pelo Modelo Padrao

Grande parte dos processos interessantes possuem secoes de choque muito pequenas. A
baixa probabilidade de ocorréncia destes processos os torna bastante raros. Uma das
formas de ampliar o ntimero de eventos interessantes é aumentando o nimero de colisoes
que os produzem, sendo a outra forma aumentar o tempo de duracao do experimento.
No LHC, aglomerados de particulas se cruzam numa taxa de 4 x 107 vezes por segundo,
cada uma delas produzindo varias colisoes. Porém, a taxa que o LHC consegue registrar
dados é de apenas 400 eventos por segundo. E o papel dos gatilhos, ou triggers, de
reduzir o ntimero de eventos totais para os 400 por segundo removendo os eventos de
menor interesse. Estes gatilhos sao organizados em niveis, os eventos selecionados por
um alimentando o préximo. Através de algoritmos implementados tanto no hardware
do detector quanto em clusters de computadores, particulas sao reconstruidas a partir
dos sinais detectados pelo ATLAS. Desta forma, apenas os eventos que satisfazem uma
lista de critérios sao mantidos. Mais informacoes sobre os componentes do ATLAS e a
reconstrugao de eventos, entre outros, podem ser encontradas em [104].

A posterior analise dos dados armazenados, com o fim de estudar um processo
especifico, é feita de tal forma a remover processos que possuam estados finais semelhantes.
Desta forma, o background é reduzido usando uma série de cortes nas variaveis dinamicas
para limpar o sinal e isolar o processo de interesse. Geradores de eventos, baseados em
algoritmos tipo Monte Carlo, reproduzem o processo de estudo e o background produzido?.
Os cortes sao otimizados aplicando-os nos eventos simulados de tal forma a reduzir o
background afetando o menos possivel o sinal para, em seguida, aplica-los aos eventos
medidos.

O ATLAS analisou 480ub~—! de dados coletados em 2015 a partir dos quais foi
observado o espalhamento vy — 77 e deduzido uma segao de choque total [13]

oM TEAS — 70 4+ 24(estat.) 4 17(sist.) nb. (6.19)

7Y

2Em seguida, estes eventos passam por uma simulacdo do detector. Este geralmente é feito usando o
Geantj [105].
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A maior parte do erro sistematico é devido as incertezas associadas a identificagao e
reconstrucao dos fotons. Os fotons que foram selecionados devem possuir momento trans-
verso p; > 3GeV, massa invariante do sistema de fotons m.,, > 6GeV e rapidez |y| < 2.37,
excluindo a regiao de transi¢ao do calorimetro eletromagnético 1.37 < |y| < 1.52. Outros
cortes foram aplicados no momento transverso do sistema de fotons p;” < 2GeV e na
acoplanariedade® 1 — A¢ < 0.01. A descricao teérica nao prevé a presenca de acoplana-
riedade e, devido a suposicao dos fotons emitidos pelos fons serem paralelos ao feixe, o
momento transverso do sistema ¢é nulo. Portanto, a reducao da se¢ao choque total devido
a estes cortes foi estimado em 15% analisando o impacto no sinal simulado resumido na
Tabela 1 em [13].

O Modelo Padrao prevé o espalhamento de fé6tons, em primeira ordem, através de
um loop de particulas carregadas como mostrado na Figura 5.2. As principais particulas
que podem compor o loop sdo os léptons, quarks e os bosons W=*. Além do diagrama
box, o mecanismo VDM-Regge [98], no qual fétons oscilam em mésons vetoriais virtuais,
contribui para o espalhamento dentro do regime de energia do LHC. Porém, como foi
visto, a distribuicao de fétons produzidos pelos ions é limitada superiormente a Wy, ~
80GeV. Por causa disto, as particulas cujas massas sejam iguais ou superiores a 2wy
sao desprezadas: o quark t e os bésons W*. Por outro lado, os fétons produzidos pelo
mecanismo VDM-Regge sao bastante frontais, sendo a rapidez predominante em torno
de |y| = 5 (ou 0.77° com relagao ao feixe), fugindo assim dos detectores do ATLAS.
Além disto, este processo é completamente suprimido pelo corte no momento transverso
pr > 3GeV imposto nos fotons detectados [106].

As se¢oes de choque total 0., (m,,) e diferencial % (M4, z) sao obtidas nu-
mericamente usando os pacotes FeynArts, FormCalc e LoopTools [107, 108]. A segdo
de choque total é mostrada na Figura 6.6. Notamos a presenca de um pico em torno de
M. = 3m, devido ao loop de elétron-positron apds o qual a secao de choque decresce com
o inverso da massa invariante [73]. O pico devido ao loop de muons é 0., (3m,,) ~ 0.5ub,
trés ordens de grandeza menor. A secao de choque diferencial é apresentada na Figura

6.7 e mostra que os fétons sao produzidos predominantemente ao longo do feixe.

3A acoplanariedade mede o a4ngulo entre os planos formados por cada particula produzida e o feixe.
A acoplanariedade é nula se os dois fétons forem produzidos no mesmo plano.
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Figura 6.6: Secdo de choque total o.,. Notamos o pico ao redor de my, ~ 3m,. devido ao loop de
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Figura 6.7: Segdo de choque diferencial dz;” para m.., = 100MeV. Notamos que os fotons se concen-

tram ao redor de dngulos pequenos com relagao ao feixe.
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Modelo Com Absorcao | Sem Absorc¢ao

Yukawa 42 + 8nb 52 + 10nb
Fermi 2P, Gaussiana, Esfera 38 + 8nb 45 + 9nb

Tabela 6.1: Secdes de choque previstas pelo Modelo Padrio para o espalhamento vy — vy em colisdes
fons de chumbo com energia /syny = 5.02TeV no LHC. Os valores das se¢bes de choque para cada
distribuigdo de carga do ion sdo dados tanto no caso em que a colisdo é ultraperiférica (com absorgao)
quanto no caso em que nao ha restricao no pardmetro de impacto. Neste segundo caso processos devido
a interacao forte nao foram levados em conta.

Na Tabela 6.1 mostramos os resultados obtidos numericamente para a secao de
choque total (6.18) previsto pelo Modelo Padrao. Apresentamos os resultados obtidos
usando as 4 distribuicoes de carga apresentadas na se¢ao anterior, tanto no caso em que o
fator de absorcao é incluido quanto no caso em que integramos o parametro de impacto b
sobre todos os valores. E possivel notar que a auséncia do fator de absorcao superestimaria
a secao de choque em 20%. Isto é devido & integracao sobre um espago de fase maior.
Vale ressaltar que as distribuigoes de Fermi, Gaussiana e de uma esfera macica diferem
em no méaximo 0.1%. Por outro lado, a distribuicao de Yukawa é, em ambos casos, 10%
maior que o obtido com a distribuicao de Fermi. As incertezas tedricas sao principalmente
devidas a incerteza do fator de forma e correspondem a 20% do valor da secao de choque
[87]. Os valores obtidos estdo de acordo, dentro da incerteza, com o valor experimental
obtido pela Colaboracao ATLAS. Quando comparado com os valores de referéncia citados
em [13], 0 = 45+ 9nb [87] e 0 = 49 £ 10nb, o resultado obtido com a distribui¢ao de
Fermi o = 38 + 8nb é compativel mas ligeiramente menor. Uma possibilidade que leva a
esta discrepancia é a dos autores citados nao terem levado em conta o gap de transicao
do calorimetro.

A Colabora¢ao ATLAS tem como projeto futuro medir novamente o espalhamento
vy — 77, porém com rapidez ampliada |y| < 4. Assim, fazemos as previsoes da se¢oes
de choque com espaco de fase ampliado. Nesta situagao, obtemos para a distribuicao de
Yukawa uma secao de choque total oy = 52 + 10nb. J&, para as demais distribuigoes,
que inclui o caso realista do modelo de Fermi com 2 parametros, obtemos que a segao
de choque prevista é de opgr = 45 £+ 9nb. O aumento considerdvel da se¢ao de choque
é devido a grande concentracao de fotons espalhados ao longo do feixe, como pode ser

observado na Figura 6.7.
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6.5 Vinculo dos parametros o e S das correcoes nao
lineares de Maxwell

Com o objetivo de vincular os parametros o e 8 das corregoes nao lineares a Lagrangi-
ana de Maxwell (5.50), incluimos a contribui¢ao ao espalhamento foton-foton devido as
correcoes escrevendo a amplitude total como a soma da amplitude prevista pelo Modelo

Padrao e da amplitude das corregdes nao lineares (5.59),
M (yy = 77) = Murp + Mur.

Assim, a secao de choque diferencial completa tem contribuigoes tanto das segoes de
choque diferenciais devido unicamente ao Modelo Padrao e as correcoes nao lineares como

de um termo de interferéncia,

do, _ dol!P N dollF N da%' (6.20)
dz dz dz dz

Como a amplitude de probabilidade devido as corre¢oes é dada por uma combinacao linear
dos parametros « e [, o termo de interferéncia da secao de choque também deve sé-lo.

Portanto, fatoramos os parametros e reescrevemos o termo de interferéncia como

d0§7 da% N 6d05
dz dz

do®.,
Z e —1, primeiramente usamos

onde o3, e crﬁ possuem unidade de GeV?. Para obter doy B

o pacote FeynRules [109] para obter a amplitude de probabilidade My, (a, ). Em se-
guida, usando os pacotes FeynArts, FormCalc e LoopTools, calculamos a se¢ao de choque

diferencial devido ao termo de interferéncia 2 Re [Myp MY (, 8)] fazendo 5 = 0 para

obter . Fatoramos também os parametros da secao de choque

d

devido as corregoes nao lineares, dada pela equagao (5.62),

doNL 1 do®8
7Y 2 2 2 Y

Y |2 _ — 21
7 2(a B)+(a —{—ﬁ) 7, (6.21)

134



Modelo onr (GeVO) | G, (GeV?) | G5 (GeV?)

Yukawa 3.2x10% | —4.9x10% | —1.1 x 10°
Fermi 2P, Gaussiana, Esfera || 2.5 x 102! | —4.1 x 10% | —9.3 x 10®

Tabela 6.2: Valores numéricos das constantes de proporcionalidade das secdes de choque totais devido
as correcoes nao lineares.

onde ;
do 5 mS
i 9 2 6 Y )
5 =0 oo

A segao de choque completa (6.18) é linear nas se¢oes de choque diferenciais,

portanto ¢ dada pela soma das se¢oes de choque devido a cada termo de (6.20),
0'(Pbe—>Pbe—|—’y’y):UMP+U]+UNL, (622)

onde os valores usados de o,;p correspondem aqueles obtidos com fator de absor¢ao dados
na Tabela 6.1. Explicitando os parametros, vinculamos « e § impondo que a secao de
choque total (6.22) deva ser compativel com a se¢ao de choque medida pelo ATLAS
oarras = 70 & 29nb, onde as incertezas estatisticas e sistemaéticas foram adicionadas em

quadratura. Assim, temos que

1
5 (Od — 5)2 + (042 + 52> ONL + Q0q + ﬁ&g = 0ATLAS — OMP, (623)
—_——

o1

onde G, 0a, 05 sd0 as se¢oes de choque totais calculadas usando (6.18) devido as segdes

o8 do% dof . -
‘;l” , e Z;V, respectivamente. Seus valores sao dados na Tabela

de choque diferenciais
6.2 para cada distribuicao de carga.
A diferenca entre as se¢oes de choque obtida pelo ATLAS e prevista pelo Modelo

Padrao é igual a

28 + 30nb, Yukawa
TATLAS — OMP = . (6.24)
32 + 30nb, Fermi 2P, Gaussiana, Esfera

Analisamos primeiramente a relevancia do termo de interferéncia o;. Para isto,
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expandimos a expressao (6.23) obtendo a equagao de uma elipse,

3_ ~ 3_ _ o
§0NLOé2 —onraf + 501\@52 + 0o + 0/35 = 0ATLAS — OMP- (625)

Como coeficientes que multiplicam «o? e 3% sao idénticos, o termo —a&yza/3 rotaciona a
elipse fazendo com que seu eixo maior realize um angulo de rad com o eixo a. Eliminamos

o termo cruzado rotacionando o eixo a8 em 45° usando as relagoes

2
o — \/7—(0[_6)7
V2
g — 7(04+5)7
de tal forma a obter
5NL052 + 25—NL62 + Oé<5'a + 5’5) + (5’5 — 5’a) = OATLAS — OMP- (626)

O efeito dos mondémios é o de deslocar o centro da elipse e modificar o comprimento dos

eixos. Para observar isto, usamos a identidade

D\? E\? D? E?
2 2 _ — — = =
Ao+ Cp +Da+E,6’—A<a+2A> —1—0(5—1- ) 1A 10

para reescrever (6.26) como

N2 NS

0at0p 03—0a
<0‘+ 2% ) (5+—4a ) Go+05)° (65— 05a)
= Ak gUATLAS_O'MP‘i‘(a—'_ ) +(’8 a)~

( 1 )2 ( 1 )2 donr, 8o0NL
ont VIonT

Usando os valores da Tabela 6.2 dos parametros ,, 0g ¢ o, referentes a distribuicao de

Fermi, temos que o termo de correcao no lado direito da equacao é

2 __ 2
(00 £03)° (98 = 00)” 1 g 10-1GeV?,
4o nr, 80N

representando uma correcao de menos de 0.001% com relacao a oarras — opp = 32nb.

Por outro lado, quando os deslocamentos d, do centro da elipse ao longo do eixo « e dg
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ao longo do eixo [,

Oa + 0p
da - T 4=
QO'NL
o5 — O,
dg = L2
40'NL

sao comparados com os comprimentos de seus respectivos eixos,

OATLAS — OMP
Ta = — s
ONL
- OATLAS — OMP
A 2oNL

estes representam uma correcao de apenas 0.2% e 0.07%, respectivamente. Para todos
os efeitos, a presenga do termo de interferéncia é desprezivel com relacdo aos termos
principais e irrelevante com relagao as incertezas tedricas envolvidas.

Como foi observado na discussao do efeito Cotton-Mouton na Subsecao 2.2.1,
valores negativos dos parametros a e § levam a violagao da causalidade, podendo assumir,
portanto, somente valores positivos. Desta forma, usando 30 de nivel de confianga na
diferenga entre as se¢oes de choque (6.24), vinculamos os parametros a e [ através da

expressao (6.25)

3 5 3. 118nb, Yukawa

SoNLQ —onpaf+ SonL B < : (6.27)
2 2 122nb, Fermi 2P, Gaussiana, Esfera

cujo grafico é mostrado na Figura 6.8.

Nesta figura, o vinculo obtido usando as distribui¢oes de Fermi com 2 parametros,
Gaussiana e de uma esfera homogeneamente carregada sao representadas pela drea mais
extensa. A distribuicao de Yukawa restringe mais fortemente os vinculos. Isto é devido
ao fato de superestimar a segao de choque total (Tabela 6.1) sobrando uma parcela menor
de contribuigao a ser atribuida as correges nao lineares (Equacao (6.24)). A reta o = 3
indica os valores referentes as teorias tipo Born-Infeld. Valores superiores para casos
especificos sao mostrados na Tabela 6.5.

E interessante notar que somos capazes de limitar completamente uma regiao

finita do espaco de fase com apenas uma medigao experimental. Isto é possivel gracas
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Figura 6.8: Espago de fase acessivel aos parametros a e 3. A regido mais extensa representa o vinculo
obtido usando os modelos de Fermi com 2 parametros, Gaussiana e a de uma esfera uniformemente
carregada para a distribuicao de carga do fon. J& a area mais restrita representa o vinculo obtido com a
distribuicao de Yukawa. A reta o = [ representa os pontos referente as teorias tipo Born-Infeld.

a dependéncia quadratica da segdo de choque nao linear (6.21) nos parametros a e (3.
Observe que isto nem sempre ocorre. De fato, experimentos que medem o efeito Lamb
Shift ou a birrefringéncia magnética linear restringem apenas parte do espago de fase [33].

Finalmente, usamos os valores superiores referente as teorias tipo Born-Infeld

da Tabela 6.5 para vincular o parametro b da teoria de Born-Infeld. Nesta teoria os

parametros sao dados por a = 3 = #. Portanto, o parametro b é limitado inferiormente
a by = 3.0 x 10*GeV? =~ 1.3 x 10®V m™!, para a distribuicio de Yukawa, e brgr =

2.8 x 10°GeV? ~ 1.2 x 102V m™! para as distribuicoes de Fermi, Gaussiana e da esfera

Modelo a=p(GeV ) | B=0(GeV™?
Yukawa, 1.4 x 10719 1.6 x 10710
Fermi 2P, Gaussiana, Esfera 1.6 x 10710 1.8 x 10710

Tabela 6.3: Valores superiores dos vinculos para teorias tipo Born-Infeld e o valor de o no
caso em que 5 = 0. Pela simetria da equacao (6.27), este tltimo caso também corresponde
ao valor de 8 no caso em que o = 0.
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homogeneamente carregada. Uma massa caracteristica para a teoria de Born-Infeld pode
ser definida como M = v/b. A partir dos vinculos obtidos temos que esta massa ¢ limitada
inferiormente a M 2 170GeV, compativel com o resultado obtido em [14]. Os vinculos
obtidos a partir do espalhamento foton-féton medido pela Colaboracao ATLAS sao os
mais precisos até o momento. Quando comparamos o vinculo obtido para o parametro de
Born-Infeld usando medicoes da energia de ionizacao do hidrogénio by > 1.07x10*'V m™1,
correspondente a a = # < 8.1x10*GeV ~* obtemos uma precisao de 14 ordens de grandeza
a mais. Obtemos 12 ordens de grandeza de precisao quando comparado ao vinculo do
parametro de Born-Infeld obtido em [57].

A primeira medicao direta do espalhamento foton-foton é sem divida um marco
na histéria e um grande passo no ambito de testes da QED. Este acontecimento permite
derivar os vinculos mais precisos até o presente momento para corregoes nao lineares.
Além disso, permite colaborar com novos vinculos para modelos além do Modelo Padrao
que introduzem novas particulas. Este é o caso de particulas tipo-axions [110, 111]. Nao
obstante, a incerteza de 40% nas medi¢oes ¢ um obstéculo a ser superado.

Futuros experimentos realizados em escalas de energias maiores e com precisao
aprimorada irao impor uma anélise tedrica mais sofisticada. No ambito de corre¢oes nao
lineares a Maxwell, para obter vinculos mais precisos sera necessario incluir corre¢oes de

ordem maior na Lagrangiana de Maxwell.
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Capitulo 7

Conclusao

Nesta tese, o valor experimental da energia de ionizagao do &tomo de hidrogénio e a se¢ao
de choque da primeira observacao do espalhamento eléstico v+ foram usadas para vincular
os parametros de generalizagoes nao lineares da eletrodinamica de Maxwell. Para vincular
o parametro b que caracteriza as eletrodinamicas tipo Born-Infeld, foi investigado como
estas modificam o potencial Coulombiano produzido pelo ntcleo do atomo de hidrogénio.
Usando a teoria de perturbacao independente do tempo, a primeira correcao a energia de
ionizacao foi calculada. Devido a estrutura da teoria da perturbacao, foi necessario levar
em conta a Lagrangiana completa de cada uma das teorias. Como consequéncia disto,
cada teoria corrige de forma distinta a energia de ionizacao apesar de possuirem o mesmo
comportamento no limite de baixas energias. Estas correcoes tem como resultado diminuir
a energia de ligacao entre o elétron e o nucleo, resultado compativel com a interpretagao
classica da polarizagao do vacuo estar blindando o ntcleo.

Os vinculos obtidos para as eletrodinamicas de Born-Infeld, exponencial e loga-
ritmica foram bp; > 1.07 x 102!Vm™!, b; > 6.76 x 10°°Vm~"' e b, > 6.34 x 102V m™!,
respectivamente [52]. Quando comparado com a estimativa feita por Born e Infeld - pri-
vilegiando as propriedades do elétron -, ganhamos uma ordem de grandeza de precisao.
Por outro lado, quando comparado com o vinculo obtido por Soff et al, o vinculo deles é
mais preciso por uma ordem de grandeza [57]. Porém, como foi notado recentemente, a
derivagao deste vinculo por estes autores é questionéavel [12]. Finalmente, apesar do vin-
culo para a teoria de Born-Infeld usando medigoes do espalhamento féton-foton produzir

6 ordens de grandeza a mais de precisao, o procedimento teérico, usando o &tomo de hi-
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drogénio, ¢ muito mais simples. Além disto, tem a vantagem de ser facilmente adaptavel
a outras generalizagoes da eletrodinamica de Maxwell.

A observacao do espalhamento fo6ton-foton, por se tratar de um experimento que
explora regimes de altas energias, onde a teoria classica passa a divergir da teoria mais
completa, permitiu vincular correcoes nao lineares da eletrodinamica de Maxwell de forma
bastante precisa. Para calcular a secao de choque elastica vy medida pela Colaboragao
ATLAS em colisoes ultraperiféricas de ifons de chumbo, fizemos uso da aproximagao de
fotons equivalentes. Desta forma, os fons foram tratados como fontes de fétons energéti-
cos descritos por uma distribuicao ou ntamero de fétons equivalentes. A secao de choque
entre dois dos fotons emitidos pelos fons possui contribui¢oes tanto daquelas vindas do
Modelo Padrao - em primeira ordem através de um loop de particulas carregadas - como
das corregoes nao lineares da Lagrangiana de Maxwell. Assim, a convolugao do nimero
de fotons equivalente com esta secao de choque, impondo os cortes necessarios, é igual
a secao de choque v em colisoes ultraperiféricas. Desta forma, ao comparar esta secao
de choque com aquela obtida experimentalmente pelo ATLAS, foi possivel vincular os
parametros « e [ que caracterizam as corregoes nao lineares. Como a se¢ao de choque
elastica para um par de fétons devido as corregoes nao lineares tem uma dependéncia
quadratica nos parametros, foi possivel restringir completamente o espago de fase corres-
pondente. Além disto, os vinculos foram obtidos usando 4 distribui¢oes de carga do fon
de chumbo distintas. Como resultado particular, recuperamos o vinculo obtido em [14]
para o parametro de Born-Infeld.

Os parametros a e 3 foram vinculados de tal forma que a ~ § < 2x10719GeV ™ ~
10~%"m?3 J~! [88]. Até o presente momento sdo os vinculos mais precisos para as corregoes
nao lineares da eletrodinamica de Maxwell. Quando comparado com o vinculo da eletro-
dindmica de Born-Infeld obtido em [57], obtemos uma precisao de 12 ordens de grandeza
a mais. Por outro lado, de resultados obtidos a partir de experimentos de baixas energias
que medem o fenémeno de birrefringéncia e do Lamb Shift [33], obtemos um aumento da
precisao de até 20 ordens de grandeza.

Futuras analises, que aproveitem os esquemas desenvolvidos neste trabalho, po-
dem ser realizadas. Em particular, o espalhamento féton-féton deve se capaz de vincular

de forma precisa outros tipos de generalizacoes da eletrodinamica de Maxwell que ma-
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nifestem seus efeitos em regimes de altas energias como, por exemplo, a eletrodindmica
de Podolsky. Além disto, devido a crescente precisao experimental e energias envolvidas,
corregoes next-to-leading order devem ser estudadas. Finalmente, particulas ainda nao
detectadas que se acoplem ao féton devem contribuir para o espalhamento féton-foton.
Desta forma, o espalhamento féton-féton se torna uma forma elegante de sondar o vacuo
quantico. A exemplo de particulas tipo axions [110, 111], a medi¢ao do ATLAS permite

impor vinculos sobre teorias nas quais novas particulas carregadas sejam previstas.
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Apéndice A

Solucao aproximada das integrais da

eletrodinamica exponencial

Neste apéndice, obtemos uma solugao aproximada para as integrais que surgem no Capi-
tulo 4 ao aplicar a teoria de perturbacao para encontrar a correcao a energia de ionizagao
do atomo de hidrogénio na eletrodinamica exponencial. A expressao que desejamos cal-
cular é

I =1, — 1, — 213 — 21,

onde

/ dry | W
0
/ dry | W <
0
0o 4
/ dxy | W <€—4> re 2
0 x
/ dry | W

A fungao W (z) é chamada de fungdo Lambert ou produto logaritmo e é definida pela

| |
8
A~

()

3
N
H m
,;>
\_/

&
no

o
b
8

relacdo W (ze*) = z. Ela ¢ monotonicamente crescente para valores positivos de seu

argumento, sendo W (0) = 0 na origem.
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A.1 Integral I

Analisamos a integral

= /dm

Usando as propriedades da fun¢ao W de Lambert, a seguinte substitui¢ao é padrao,

QU
S
I
|
= M
/N
Q|
ot
+
Q|
NI
N——
ml
(e

Como todas as outras integrais lidam com a mesma funcao de Lambert, a mesma substi-

tuicao sera usada repetidamente. Assim,

onde foram usadas a definigdo da fungao gama I'(z) = fooo r*te *dx e a propriedade

I'(z+1)=2I(2).

A.2 Integral I

Analisamos a integral dada por

0 4
I = / dry | W (—4) e 2,
0 T
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Devido & presenca da exponencial e~* nesta e nas proximas variaveis, a substituicao de
variavel ;—i = ue" vai dar origem a uma exponencial de outra exponencial. Isto dificulta a
obtengao de uma solugao analitica e por causa disto é necessario seguir por aproximacao.
A expansao em série de poténcias da fungao Lambert W em torno da origem é

3
W(x)zzz—x2+§x3—...,

o g2 18 p5el0
w<_> _& _le s

2 226 810

Isto mostra que para x > ¢, é possivel truncar esta série. Como o parametro é pelo menos
da ordem € ~ 10™* < 1, entao o primeiro termo da expansao constitui uma excelente
aproximacgao para a série no intervalo [1,00). Mais ainda, como queremos calcular apenas
corregoes até O (1), a série pode ser truncado a partir do segundo termo. Desta forma,
para poder fazer uso desta aproximacao, separamos a integral em dois dois intervalos, de
[0,1] e de [1,00). Este procedimento também sera usado as outras 2 integrais restantes.

Assim, temos que

Resolvemos primeiro a integral B,
o) e—2m
By = de—-—,
1 x

o0
:2/ doex e,
2

=20 (_17 2) )

onde I' (z,x) = fyoo dyy*~te™¥ é a funcao gama incompleta. Finalmente, fazendo uso da
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propriedade I' (s + 1,x) = sI' (s, x) 4+ z°¢~* reescrevemos By como

1

Para resolver a integral A,, é feita a substituicao de variavel,

/N
2I
NI
-+
2I
PN
N——
ml
S

Assim, temos que

A2:—

Q

onde aproximamos W () a &' e expandimos em séries de poténcias a exponencial de
exponencial. Mantemos o termo e~ pois assegura a convergéncia da integral no limite
u — oo quando n = 0. Poderiamos supor que somente os termos n = 0,1,2 e 3 devem
contribuir para a solugao pois assim gerariam corregoes até ordem 4. Porém, devido a
dependéncia do limite inferior, h4 uma contribuicao da ordem de €2 para todos os valores

de n. Retirando todos os termos que nao dependam de u de dentro da integral obtemos,

> _2” > n n— n
A= e [ e

4

n=0 ’
= (=2)" 1 1
- Z}nzo: ( n!) ghel™n {54 Bins (”Z 54) + Einss ("Z 54)] ;
= (—2)" 1 1
— E ( {56Ein1 (n—i— 54) + % Einss (n—i— 54” ,
£~ dnl 7 4 i 4

onde Ei, (z) = floo e~ /t"dt é a fungdo exponencial integral. Expandindo as fungoes
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integrais e mantendo somente as poténcias de € relevantes, obtemos

~ = (_2)n 4 = 2)n g,n n—>5 1—n ntl
A2~n§:0 o | O +nz o (2R T (e
EOO: (_2)71 4 2 3_n n—5 1—n 1
e 22 P} 1 4 F n+
— 4n)! n—l6 * (1+n) 4 c ’

onde fica claro que para todos os valores de n obtemos correcoes de 2. Para n = 0
obtemos uma correcao de ordem e. Para n = 1, os dois termos divergem por separado

mas juntos se compensam. Isto pode ser visto expandindo a funcao I' (ITT") em torno de

n =1,
1—n 4
r = — O(n-—1
( 1 > a1 +0(n—1).
Assim, calculando os termos n = 0, 1, a série proporcional a €2 e as correcoes de ordem
g3 e et
1 1. ¢
Ay = —T —e? —vg—14+-In— )&
2 \/5()5 5+<27E +2n2)5
n=0 n=1
%) n 3 n
2 (=2) 1 (—2) 3_n N\ _nt1
2 1 T
te > <n_1)+; ymll CER +n) T 1

Uma situagao semelhante ocorre nas proximas duas integrais. Finalmente, calculando as

somatorias restantes temos que,

1 1 1 1 4
A2:7 ()8—5 +<§’}/E—1+§1H%)52
+ €2 ! 1+2 2Fi(—2) +1In4 | + Lol 3 VI
2 s Va3t \ 1 3

V2. (1 5 1 1 1 1 o
=271 (= NE—3— = 4+ -In8*—2Ei(-2 o) X
5 (4)5+(27E 3 62+2 n8&e i( )) \/_34 ( )s + £

Desta forma, a solucao aproximada da integral I, ¢ dada pela soma das integrais Ay +c2Bs,

V2 (1 5 1 1 1 VT
L~=—"T (= —vg —3+ -In8*—2Ei(-2) —2I'(0,2) | € L= )+
2R (4>5+<27E 3+2 n8e i(—2) (0, ))8-}-\/_ 3 < 4)5+ 3¢

31
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A.3 Integral I3

Analisamos a integral

e 54 —2x
I3 = degy|W | — e ™z
0 x

A resolugao desta integral segue passos semelhantes a anterior. Separamos a
integral nos intervalos de [0,1] e de [1,00). Em seguida, aproximamos a fungao Lambert

pelo seu primeiro termo da expansao em série de poténcias no segundo intervalo,

! gt o0 gt
I3 = / day | W (—4)1156_296 +/ dxy | W (—4) ey,
0 x 1 x
1 4 0o —2z
z/ dm W (5—4)%3_2“: + 52/ dxe .
0 T 1 z
N ~ _ N’
As

B3

Para resolver Bs, manipulamos para obter a forma da representacao da funcao

gama incompleta,

Bgz/ dex’te™®,
2
r'(,2).

Para a integral Az, realizamos a substituicao de variaveis padrao,
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obtendo

onde foi expandida a segunda exponencial em série de poténcias. A integral em u tem

novamente solugao termos da funcao exponencial integral,
(2" g (P2, : n+2
:ZZ o g'e™" |e" Ein 1 ¢ + Ein g 1 ¢ ,

~(=2)" [ 60 (N+2 4 2 1o n+2 ,
:Z ™ [5 E12< 1 5)—1—5 Eiz 4 1 ¢ .

Em seguida expandimos as fungoes exponencial integral em série de poténcias. E im-

portante notar que o termo n = 0 de cada série diverge por separado mas, como no caso
anterior, o limite da soma dos dois é bem comportado. Mais uma vez, temos contribui¢oes

de ordem &? para todos os valores de n. Assim, temos

n=0

1 et = (—2)"1 1 1 VT
=-(2—vg—In—)&*+¢ - —= )& — =&

fl( e n2) . ~ nl n V2341 4 2

n=0

1 5 1 1 1 VT
— - v __1 84 E -9 2 - - 3 vV~ 4

(2 17p g8+ Ei( ))5 NoEH ( 4) 2

Finalmente, adicionando as integrais As + B3 obtemos,

1 5 1 - 1 1 NG
I3~ (5 — 1] In8* 4 Ei (—2) + T (0, 2)) g2 — EF (——) g3 — X ¢t
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A.4 Integral I,

Analisamos a integral

oo e4
I, = / dxy | W (—4>62Iaz2.
0 x

Mais uma vez fazemos a separa¢ao da integral nos intervalos de [0, 1] e de [1,00) e apro-
ximamos a funcao Lambert pelo primeiro termo de sua expansao em série de poténcias

no segundo intervalo,

€ _5 _1\ _u
dx:—zl u i 4u1)e 4,
obtendo assim,
3 W(€4>
€ _5 _1 3u Te 1
A4__Z (u 14 4>e 1w e
oo
3 o]
9 _5 _1 _3u  _ e 14
~ w4y Ti)e 1 2eu” %e 7
4 Ja
oo
63 (—2)” n e _n+5 _ n4l (n s)u
:ZE | £ U 4 4 u 4 e 4
n
n=0 et
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Escrevendo a solugao da integral em termos de fungoes exponencial integral,

e - (_2)” n_—1l-n | 4 ; +3
A4:ZZ e [5 Elni—l( 1 )+E1n+5(

2 (=2)" [ e n+3 n+3
:Z 1) 15 ElnTH 1 +€ E1n+5 1 €

n+3

i

= (2" 3 o] L x (-2)" ns
A4N; ™ n—lg —0—0(5) —i—; ™ 272 34n)* T
= (=2)" 1 1 1 T
_ 2 |l ) I I A
6;:0 n! n—|—1+2\/§3§ ( 4>€+267

1 1\ , 1 1\ , ﬁ4
( 2€2+2>€ +2\/§3% ( 4>5+25

Finalmente, adicionando A4 + 2B, obtemos

A.5 Solucao da integral [

A integral I é dada por
I =1 — 1, —2I3— 214,

L=2r(-
2 \4

onde /s <1>

1 5 1 1
ILi=(=—2~vp—-In8*+Ei(=2)+T11(0,2
1= (5= o= s+ BRI T0.2) 2 -
1 1
[4— 2 ( )8+\/_4
2\/_34 2
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V23
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Substituindo de volta na expressao obtemos que a integral I possui como solugao aproxi-
mada,

I~¢

Q_ﬁg4
5
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Apéndice B

Computacao da probabilidade de

interacao vy — vy

Nesta apéndice calculamos a probabilidade de interagao vy — 7 necessaria para obter
as segoes de choque diferencial e total devido as corregoes nao lineares do Capitulo 5. A
probabilidade de interagao média sobre as polarizacoes dos fétons iniciais e somada sobre

as polarizacoes finais é dada por

1
P = 117(1252 NaybsMasbs nasbg
n

[A12A34][As6A7s]

J/

/ /
X ?alpagkas kja7PA12A34A56A787
vV

I

[312334][356378].

4

/ /
X ?hpbgkbs k‘b7PBl2BS4B5GB78’Y
vV

17

Notamos que o termo [ é idéntico ao termo I, bastando trocar o rétulo dos indices a <> b.

Fazendo uso das simetrias, temos que o resultado do operador de permutacao P
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sobre a matriz gama em [ é

[A12A34][As6A78]
PA12A34A56A78 i

_ 4,7[14121434“14561478] + 4,}/[14121456][14341478}
+ 4,-)/[A12A78][A34A56] + 47[A56A78][A12A34]

+ 4,7[14341478][14561412} + 47[14561434”14121478].

Expandindo a matriz gama usando sua definicao ~[24sallAseA7s] = yﬁmAMHASGAm] +

Ao Asa][Ass A ) . .. )
’ygzm sallAseAms] o fa7endo uso da simetria adicional da matriz Va2 obtemos

P (A12, A34, A567 A78) ,7[A12A34}[A56A78]

_ 47%121434“14561478] + 4,}/1[[;42121456][14341478}

+ 471[;‘;121478][14341456] + 475{2561478”1412‘434]

+ 4,}/;42341478][1412A56] + 471[;2341456][14121478]

+ 87[54212A34HA56A78] + 8,}/532121456][%134%178} 4+ 87[6?212/'178”14341456].

z / /
Para obter I, contraimos estes 9 termos pelos momentos pq,pj,ka;k,, usando as

defini¢oes das matrizes gama,

[A12A34HA56A78] — ai1as,,a2a4 ,,a5a7 ,.a4608 aijasz, ,a2a4 ,,a5a8 ,,aga7T aiaq4 ,a2a3,,a5a8 ,.a6a7
P2 = o (n™ @ tan e Tytets — 2t e panIsasneaT i da s pasas paear)
€
[A12A34][As6A78] _ a1a2a3a4 506474
s :ﬁ€1234€5678_

E mais facil manipular o produto de tensores de Levi-Civita usando uma notacao matricial,

portanto usamos a identidade para expressa-lo em termos de um determinante,

aias a1a6 aiar aias
n n n n
azas aszag aszar aszas
ajaza3a4 ~a5a6a7a8 __ 77 77 n 77
£ £ = —
asas asag aszar asas
n n n n
aqas a4qa6 aqar asas
n n n n




Assim, temos

1. o primeiro termo,

4,}/;‘42121434][14561478]]?(11],);3 kas k:(/l7

=da[(p-p) (k- K)n=*n —2(p-p/) n™ " k=K + p™p k"] ;
2. o segundo termo,

47;42121456][14341478]]?(11])/ koL

az'’as"Vary

— 406 [(p . k) (p/ . k/> nagaﬁn(mag _ 2 (p . k) nazagp/agk/a4 +pa6ka2p/a8k/a4] .
vemos que conseguimos facilmente o segundo termo a partir do primeiro trocando
k <> p' e ag <> ay. Usamos esta simetria para os proximos termos.

3. o terceiro termo,

4%”A78”A34A56]pa1p;3 kas k.

=dal(p-K) (k- p)n=®n™ =2 (p- k) n™*k*p + p*™ k" k*p"e];
onde foi realizada a troca k' <» p’ e ag <+ a4 no primeiro termo.

4. o quarto termo,

47}@56A78][A12A34]pa1p;3 kas ki,

=dal(p-p) (k- K)n=en™® = 2(k - K)nte®php + p"p k= k]

onde trocamos k <> p e k' <> p/, e as <> ag € a4 <> ag no primeiro termo.

5. o quinto termo,

47%34A78][A56A12]pa1p/ ok

az'’asVay

=dal(p- k) (p - K)n™on™® = 2(p" - k) ™ p k™ + p*p" Tk k]
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onde trocamos p’ <> k e ay <+ ag no quarto termo.

6. o sexto termo,

AsgAsz4][A12A
471[[7256 34][A12 78]pa1p2137€a5/€é7

=dal(p-K) (k- p)n=en™ =2 (k- p') n*p™k'® + p™ k" k" p"e];

onde trocamos k' <+ p’ e a4 <> ag no primeiro termo.

7. o sétimo termo,

87[54212A34][A56A7s]pa1p;3 kas k{w = 8BeM20304 6asaaa7a8pmp;3 ka, k(’w’
na1a5 nalaa na1a7 nalas
,’7a2a5 nazag 771126L7 na2a8
- _3 ! ko k!
B 77@3a5 77a3a6 ?7a3a7 77“3(18 palpag 45 ar?
,r]a4a5 na4a6 7]a4a7 na408
p . k pa'G p . k', pas
ka2 ,r]azas k/az ,,,]agag
= -8
ﬁ p/ ke p/a6 p/ K p/(lg
ka4 na4a6 k/a4 7,’&4(18
8. O oitavo termo,
87[C212A56][A34A78]pa1p/a3 Ko, k:n =  8fcMtstsazataras), ka5pf13 k:w?
nalag, na1a4 77CL16L7 nalas
77(12(13 7,](12(14 77(12(17 77(12‘18
— —86 palkasp;3k;77
,r]a5a3 na5a4 na5a7 nasas
nagag na5a4 naecw nULSULS
p- p/ pa4 D - k' pas
p/a2 17(12(14 k/ag ,',]agag

Pk ke kK koS

a4a6 lag agas
7 ke
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vemos que obtivemos um termo semelhante ao sétimo a menos da troca k < p' e

as <> ag. Usamos isto para obter o préximo termo.

9. O nono termo,

87[6;142121478][14341456]

Par D kas ki, = =88

p-k o p*
[RR——

K-k ke
Jos  posas

onde trocamos a4 <> ag e p’ <+ k' no sétimo termo.

Adicionando estes 9 termos obtemos a expressao I,

I =8{a[(p-p) (k- K)nrenyrs —
+af(p-k)(p' - K)nr2tenres

+al(p- k) (p' - k)n2espeace

p-k p* p-k
kaz nagaﬁ k/az
_6 /. lag N
pokope pk
ka4 ,,7(14(16 k1a4

p*®

asasg

n
p

asag
n

/ag

o (p . k?) nagaa k/a4p/ag _

_ (p i /{Zl) nazag ka4p/a6 o (p/ . ]{3) na4a6 k/agpag + k/ag ka4p/a6pa8]

p-p p“

B 6 p/a2 ,'70,20,4
p -k ko

p/(lG na4a5

(p . p/) na2a4 k/aG kas
(p/ . A’}/) na4a8 k,agpas + kag k/a4pa6pla8]

p-k p*
k/az ,,,]ag asg
k-k ko
klaa nagag

p-p
plag
p/ k!

/ag

p

a4

D

asaq
n

k/a4

ajasg

n

p-k o p*
ka2 nagae

k, . k,/ k,/a(;
kag 77aeag

Em seguida, contraimos esta expressao com o produto de métrica n para obter

. (k,’ X k’/) nagasp/azpcm + p/azpa4 k,’ab‘ ka8]

p-p

/a2

p

ok

/ag
p

77[ =38 {Oz [(p : p/) (k ’ k/) MbobaTlbgbs — (p ’ p/) nb2b4k1/)6k5bs - (k ’ k,) nbabspézpm +pgygpb4k£6kbs}

ta [(p ’ k) (p/ ’ k,) Mbobe TIbabs — (p ’ k) TTbobs k24p;}8 - (p/ ) k/) nb4b8kb2pb6 + ka kl,;4pb6p;;8}

+« |:(p ' k/) (p/ ' k) Noobg Moabg — (p : kl) nbzbsklh;p;)(; - (p/ ' k) nb4b6kll)2pbg + k£2kb4pbgp;;6i|

Pk Do
kb2 Mbabs
_6 Ik /
p Dy
kb4 Mlb4bg

p- K
k;l’)2
p/ k!

ks,

4

DPog
Tlbabs
/

Dy

Tbabg

p-r
_3 PZQ Mbaby
Pk ky,
Pis Tlbabs
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Pk pug
k 1/72 Tlbabs

koK
kl,n; Tlbgbs

Pk Do
Kby Mbsbe

kKK
Kbs  Nbsbs

p-p
Db,
p/ K

/
Dy

a4
p
a2a4
N
k/a4

asasg
n

Dby

Mboby

/
k by

Tbabg )



Como observado, para obter II a partir de I, basta fazer a troca a <> b,

[] — 8 {O{ [(p .p/) (k k/) boby bﬁbg _ (p .p/) nb2b4klbek_bg _ (k . k/) nbﬁbgp/bszM +p/b2pb4k/b6kb8]
+ o |:(p . k,) (p k) babg b4b8 _ (p . k) nb2b6k/b4p/b8 _ (p/ . k/) b4b8kb2pb6 + kb2k/b4 Ib8i|

+ a |:(p kl) <p k,) beg b4b6 _ (p . k,) nbzbgk,b4p/b6 _ (p/ . k,) b4b6k'/b2pb8 _|_ k,/bzk,b4 /b(, i|

p-k p* p-k o p p-p o pok P p-k po p-p ph

_6 kbz ,r]bgbe k/bg nbgbg B 6 p/bg nb2b4 k./bz nbgbg B 6 kbg nbgb@ plbz ,r’b2b4
p/ k p/bﬁ p/ K p/bs p/ k kb4 kK kbg kK k/bG p/ kK /{J/b4

kb4 ,’7b4b6 klb4 ,',]b4b8 plb6 ,’,’b4b6 k/bﬁ nbﬁbg k,bg ,I,/bﬁbg p/bg 77b4bg

Finalmente, multiplicamos a expressao nl por /1 e contraimos os indices. Iremos
multiplicar termo por termo (o indice i em 7/; indicara o i-ésimo termo da expressao nl,
assim, nl; x I1; &€ o produto do i-ésimo termo da expressao nl vezes o j-ésimo termo da

6
expressao 11, o resultado final pode ser escrito como ) nl; x I1;). Notamos que como
i

n[be‘*biS = I[b2b4b6b8, entao nl; >< Il; = nl; x [[ Portanto o resultado final pode ser

escrito como E nl; x 11; 277[ x I1; + 2 Z nl; x 11, diminuindo o nimero de
i,0=1 1<j=1
termos a ser computado de 36 para 21.

B.1 Calculo dos 21 termos

Quando possivel usamos o dicionério

A = p-k B=p-k
= p/'k> F:pl'k/7

G =pp eH=k K.

para aliviar a notacao e simplificar os calculos.
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Calculo do termo nl; x I

ol x IT,
6402

= [(p ’ p,) (k ’ k,) Mboby Tlbgbs — (p : p/) nb2b4kéakb8 - (k ’ k,) ,r/b6b8p§72pb4 +pg>2pb4kl,;6kbs}
% [( ) (]{7 ]{7 ) boby babs o (p . p/) nb2b4k’/b6k’b8 - (k . k/) nbﬁbgp/b2pb4 +p/b2pb4k/b6kb8:|

- [(p ’ p,) (k ’ k,) 7717217477176178] {( ) (k k/) b2b1 b6b8
. (p . pl) nb2b4 kbg k/b6 o (k . k/ nbgbgp/bzplm 4 pb4p/b2 kbs k/b6}
P 1) Moapiknsking ) { (0 - 1) (- K') p20enets

)
(
baby kbg k/b6 o (k’ k’/) bgbs /bgpb4 + pb4p/b2 ]Cbs klba}
(p-
)

/

—(p-p

boby, bebs

—[(

)

[ nb6bspb4pb2] { 77 n
)

<p p baby kbg k/b6 _ ( kl 77b6b8p/b2pb4 + pb4p/b2 kbg k,/bg }
+ [oah, kot ] { (0 - 1) (- ) 20et

—(p- p’) nb2b4 ks /b (k - k/) nbebsp/bzplu + pb4p/62 JRE k/be} ’

=9(p-p) (k-K) + (- p) (k- k)
—3(p-p)’ (k- k) +3(p-p) Kk
=3(p#)" (k K)"+3 (k) pp”
_ (p . p/)Q ka/Z . (k . k')2p2p2 +p2p/2/€2]€2,

77[1 X IIl

— . )2 . 2
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Calculo do termo nly x I,

77[2 X [IQ
6402

= [(p ’ k) (p/ ’ k,) Mbobe Tlbabs — (p ’ k) TTbobs k;)4p;)8 - (p/ : k,) nb4b8kb2pb6 + kbg kl/;4pb6p;;8}
X [(p . k;) (p’ . k’) nbzbenbws _ (p . k’) nb2bek/b4p/bs _ (p’ . k’) nb4bskb2pb6 + kbgk/b4pb6p/b8i| ’

esta expressao ¢ idéntica & 1 a menos da troca p’ <+ k, assim,

7]]2 X ]]2

640[2 :4(p'k)2<p/‘k‘/>2’

Calculo do termo nls5 x I3

77[3 X [[3
6402

=[P &) (V- ]) Woabs st — (P - K) b RioaDhy — (0 ) Mhsts K, P + Ky, Koy Do Dl
% |:(p . k_/) <p/ . k) nbzbg,r]b4b6 - (p . k/) T]b2b8kb4p,b6 o (p/ . k) nb4b6k,b2pb8 + k/bgkb4p/bﬁpbgj| ,

esta expressao ¢ idéntica & 1 a menos da troca p’ <+ k', assim,

77]3 X []3

o AR k)

Calculo do termo nly x 11,

p-k py P k' Dbs p-k pbs p-k pbs

77]4 x 11y . kb2 Mbabs k;)g Mbabs kb 77b2b6 kP2 anbg
648 ek o, R p ([l el |

kb4 by bg klly4 Tbybs s 7764b6 /s nb4b8
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Expandindo em cofatores usando a segunda coluna para o primeiro determinante, e a

quarta coluna para o segundo determinante,

nly x I,
6432
Koy Ky, Tbabs A B py
=9 "P| C F pp | Tas| C F  pp
Koy Kb, Thabs Koy Kb, Thabs
A B py A B py
~Dbg | Koy Kby Toans | Toate | Ky Kpy o
Koy Ky, Mbabs ¢ F p,
kb2 pbabs fba A o B
xS =p*| ¢ pte P o|+0"*| C p F
ki qppabs s ki qpbabs s
A ph opk A p B
_p’bs fb2 pbabe grbe +nb4bs kb2 pb2be b
kb pbabs  sbs C P F
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Multiplicando pelos 4-vetores e métricas em evidéncia,

nly x I,
643
Koy Ky, Moot
=1 C F p " P
Kby Ky, Mbabs
A pbe

+p/b8pb6 k,bg nbgb@

k.b4 nb4b6
A B pbs

+| C F  p, — D" s
kb4 kl/>4 Tlbybs

A pbs

1bg
_p anbG kbz anbﬁ

kb4 nb4be
A B pbs
b
+ | K, kl’n Nbobs pgng
kb4 kl,u Tlbybs
A phe
_'_p/bsp;)G k,bg anbG
kb4 nb4b6
A B pbs
b
L Ky K, Muabe | | TP et
C F p,
I

nbgbe k/bg A pbe B
pr F | =1"m| ¢ p F
,’,’b4b6 klb4 k.b4 ,’7b4b6 klb4
A p B
_ 7]b4b8pb6 b2 nb2b6 /b2
Cc ph F
,,,]bgbﬁ k/bg A pb6 B
pr F |0 | C O p F
,’7b4b6 k/b4 kb4 ,’7b4b6 k:/b4
A p B
+ 0" g | K2 mb2be frbe
c ph F
,,,]b2b6 k,/bz A pb6 B
p,bG Ja o 77b2b8p;7 S C p/bﬁ I
77b4b6 k/b4 kb4 T]b4b6 klb4
A p B
. nb4b8p§)6 kbg anbe k/bQ
cC pbs F
,r/bgbg k,/bg A pb6 B
plbe F + nb2b8 nb4b6 C p/be F
7]64176 k/b4 kb4 7]b4b6 k/b4
p B A p B
77b2 bg k/bg + nb4b8 nb4b6 kbg nbg bg k/bg
77b4b6 k/b4 C p/b6 F

O produto de um escalar por um determinante multiplica todas as componentes de uma

de suas linhas ou colunas. Escolhemos a linha ou coluna que contenha o mesmo indice
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para realizar o produto e em seguida a contragao,

77]4 X ]]4
6432

k‘b2 kéQ Tbobs ka pb2 kle A 0 B
=|c F p, |3p*|C G F |=-0""]Cc & F
kb4 k:;u Mbabs kb4 pb4 klb4 kb4 pb4 k/b4

A 0 B A 0 B

+p/b8 Lb2 pbz k2 | — nb4b8 kb2 pbz L2

R phe g cC G F
A B Dbg kbg 4 k/bQ A Db, B
+lc F g |§-PElC op, Fo|H0"| C op, F
kb4 k;u Tbabs kb4 52;1 k/b4 kb4 51?; k/b4

A Db, B A Db, B

_ p’bB Kbz 4 R |+ 7754178 kb2 4 b2

Kot kM C p, F
A B py Kbz pfbz flb2 A G B
| ko K e |4P®] C 0 F |=0™*| C 0 F
kb4 kl/>4 Mbybs kb4 p/b4 k,b4 kb4 p/b4 k/b4

A G p¥ A G B

+p/b8 kbg plbg k/bz _ /r’b4b8 k,bg /ba k,/bz

kb4 p/b4 k/b4 O O F
A B py T A p, B
+ kbz kI/Jg Mbabs _pb8 C p?m F +nb2b8 C p;m F
c F R4 g B4 ko

3

A p, B A ph
_p/bS kbg 511;2 k./bz _'_ kbg nbzbg
k,b4 4 k,lb4 C p/bg
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Multiplicando pelos determinantes em evidéncia,

nly x I,
6437
kb2 k;}g Tbabg kb2 pr k2 kbz kjllyg Tlb2bg
= C F p, ||C G F |- C F yp
Koy, Ky, Moavs || K b phi R Ko, Ky, Mbabs
kbz kllyg Mbabs A 0 B ka k’é2 Tbobs
+p"| ¢ F D R L e D
ko, Kb, Mas || KM opP K Foy, Ky, Mbabs
A B pbg ]{? b2 4 k/bQ A B pbg
- ¢ F D c p, F |+ s o F Dl
ko, K 1/34 babg ki 624 k' ko, K 1/34 TTb4bs
2
A B py A p, B A B py
_p/bs C F pg)s K2 o4 k2 |+ 77174178 C F pg)s
Koy ki, o || kPG K Koo Kb, Thab
A B py kb2 plt2 |t A B py
—l—PbS kbz kéz Mbobg C 0 F - 77b2b8 kbz k:;)z Tbobg
k ba k 2;4 Tlbybg k ba b /b k 7ba k by k ;)4 Mbybg
A B py A G p-k A B py
_|_p’b8 kbz k;m Mbobs b2 p/bg k02 _ nb4b8 ka k{;Q by
ko, Ky, Moas || KM PP K Koy Ky, Mbabs
A B py || k2 &2 K™ A B py
_pb8 kb2 kll)g Tbabs ¢ p;)4 Fo+ an . kb2 kll)g Tbabs
C F pgg kbt 4 ks C F pgg
A B py A p, B A B py A
-Pp s kb2 kég Tbobg k b2 622 k P+ kb2 kll)g Mbabs k b2
C F p, ||k 4 k™ c F p, || C

174

A

0

¢ d

Jibs

A
k2

p

by

0

pP

B
F
k/b4

B
k/bg

¢ G F

A
C
2
A
k2
C

Do,

/

Dy,

Oyt

Dby
4

/

Dy,

B
F
k/b4

k,/bg

A G B

C

kb4 P

0

/b4

F
k/b4

A G B

kb2
C

A Dby
C
ks
pP

77bgbg

/b,
'’

p

lbz

0

B
F

B

k/bz
F

k/bg
F

4 k,/b4



Contraindo os 4-vetores com as colunas que contém o mesmo indice,

nly x I
64,32
ko, kb, Do, || K% p%2 K™ ko, kp, 4 || A 0 B
=|C F G||C G F |-|C F p2||C G F
Koy ki, po, || Kb pbr ks ko, ki, & || kM ophr k™
kv, K, D), || A 0 B ko, ki, &' || A 0 B
+ C F 0 kb2 pbz g2 | —| O F pP || k2 pbr k2
ko, Ky, Dh, || Kb phr K™ ko, ky, 4 || C G F
A B 0 kb2o4 0 kb A B p> my, B
- C F G ¢ p, F |T|C F P2 C p, F
kv, kb, e, || K% 0yt K™ ko, Ky, O0p || KMoyt ks
A B G A p, B A B p™ A p, B
—|C F o0 ||k2 4 K™ || C F oph||k2 4 k"
ko, ki, Dh, || Kb ot K™ ko, ky, 4 || C p, F
A B 0 kb2 pltz frbe A B p”» A G B
+| &y ki po, || C 0O F ko, K, 4 || C 0 F
kv, Kh, Do, || Kbopt KM ko, Ky, 62 || Kbopte kM
A B G|l A G B A B ph|| A G B
| ke Ky, omh, || K PP K2 ko, Ky, Opt || K pt K™
ko, ki, Db, || Kb pP ks ko, ky, 4 || C 0 F
A B 0 || k2 o2 k™ A B p2 || A p, B
= | kv, Ky, Do, C py,, F |t|ky Kk, 4 c p, F
C F G ||k 4 KM C F p% ||k 4 g™
A B G A p, B A B py A p* B

- kbg kllyz pE)Q
C F 0

K282 KP4 ke Kp Meaps || KP2omtte K2

kbe 4

klb4
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Juntamos alguns termos invertendo a ordem de alguns produtos de determinantes e re-

nomeando indices, obtemos

77[4 X [[4
6432

ko, ki, pu || K% pP K2 A B G||A G B

= C F G C G F |+|ky, ky p,||E> p» k¥
kb4 k;hl pb4 k,b4 pb4 k/b4 kb4 ka p;,4 k,b4 p/b4 k/b4
ko, ki, 4 || A 0 B A B GI|| A m B

-4l C F p2 || C G F |4/ C F 0 ||[k= 4 K=
ko, ki, & || kM ophr KM ko, ki, pp, || K 0pr ks
A B p» A pm, B A B p A m, B

+2| ¢ F p || C p,, F |+2|C F pb ||k 4 K@
ko, Ky, O || KM oyt ks ko, Ky, 4 || C p, F

Calculando o produto dos determinantes,

77[4 X II4
643

= 2A°F? —4ABCF — 4AFGH + 2B*C? — 4BCGH + 2G*H?
+2A%F? —4ABCF — 4AFGH +2B*C? — 4BCGH + 2G*H?
— 8A?F? + 16ABCF + 8GHAF — 8B*C? + SGHBC
— 8A?F? + 16 ABCF + 8GHAF — 8B*C* + SGHBC
—4BCGH — 4AFGH
+8(BC — AF)?
+4A%F? —8ABCF — AGHAF + 4B*C? — AGHBC

77[4 X [[4

6432 = 4G°H,
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nly X Iy SN2 (. 2
64—52—4(}9 ) (k-K)".
Calculo do termo nl; x I1;

Esta expressao é idéntica a nly X [I; a menos da troca p' <> k (e dos indices mudos

by <> bg). Logo,

p? pu K b ||pp P op K phe

n [5 I I5 B pg ) Noobs k{/j . Mbybe p/bz nb2b4 k/bg nbz bs
64 ok ke koK ke || Pk KM kK RS

Dhs  Moabs  Kug  Tegps || PP mPibe ke pPets

= 4(p- k)’ K).

Calculo do termo nlg x I

Esta esta expressao ¢ idéntica a nly x 1, a menos da troca p’ <> k' (e dos indices mudos

by <> bg). Logo,

p-k pg pp oy || Pk P opep P

77[6 X IIG o kbz Tbabg pgag Tboby kbg anbG p,b2 Ub2b4
64ﬁ2 k. k! k(/% p/ Lk k;m kK k/bﬁ p/ K k/b4 ’

kv Thebs  Dhy  Meabs || K" mPets pts gt

= 4K (k)"
Calculo do termo nly x 11

77[1 X IIQ
64a?

= [(p- ') (k&) Doopu s — (0 D) Moava kg kvg — (k= k') ogbs D, Pbs + Dy Dby ki K|
x [(p- k) (p - k) n=PonPsts — (p - k) nPo kP p™ — (p - k') PP kP2pe + kP kPepPep™s] |

177



= [(p ’ p/) (k ’ k/) 77b2b47756b8] {(p ' k) (p/ ’ kl) nb2b67]b4b8
_ <p . /{) 77b2b6 k/b4p/bg - ( ) ﬁb4b8 kbgpb(; + kbg k/b4pb6p/b8
(

= [0 0) oavikigking ] { (0 k) (' - K') mP2bongPets
o <p . k) nb2b6k1b4p/bg o (pl k/ nb4b8 kbgpba + kbg k/b4pb6p,b8

babe . babs

)
(p-k )n
/) babg k,bgpbﬁ _'_ kbg k/b4pb6p,b8

— [(k - &) NogosPh, P00 ] 4 7
ke

_ <p . k) beGk/lM /bg _ (

+ [hposkn e ] {(p - k) (p - k') mP2bonbabs

_ (p . k) 77bzbe k/b4p/bg . (p/ . k,) nb4bg kbzpbﬁ + kbg k/b4pb6p/b8

7’]]1 X ]]2

= 0 ) (kK + (0 R K)o (0 K (0 )’

—2(p- k)@ k) () (k- k) =2(p- k) (p- k) (- k) (- ) ,
Calculo do termo nl; x I3

77[1 X I[g
6402

= [(p ’ p/) (k ’ k/) MbobaTlbgbs — (p : p/) nbzb4k26kbs - (k ’ k/) nb6b8p;)2pb4 +p§72pb4kl,76kbs}
|:(p k/) (p k) bobg b4b6 _ (p . k/) ,rlbgbgkb4p/b6 . (p/ . k) b4b6k/b2pb8 + k/bgk_b4 /be j|

= [(p- ) (k- k') Mo tiogr] L (0 - K) (0 - k) 200y
. <p . k/) nbgbgkl)4p/b6 _ <p/ . k nb4b@k/b2pb8 _|_ k/bzkb4p/b6pbg

)
(0 - ') oavikig R ] { (P~ &) (0 - k) ™5™
(p k/ begkb4 /b(, _ (p/ k,) nb4b(,k/b2pbg + k,/kab4p/b(,pb8
(
)N

nbﬁbspbgpr { b ) ( )77b2b877b4b6

bgbgkb4 /bg _ ( k

)N
(p k/) babg k/bg bsg _|_ k/bg k,b4p/b6pbg
+ [Phopo kg kins | { (0 ) (1 - ) mP2bep™ste

— (p . ]{;/) 77b2bsk,b4p’bﬁ _ (p/ . k‘) 77b4b6k/b2pb8 + k/bzkb4p/b6pbs
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77[1 X I[g

o = @) EE) 0K (R (oK) (R

—2(p-k) (- K)(p-p) (k-K)=2(p- k) (p- k) (0" k) (p"- ),
Calculo do termo nl, x I3

7]]2 X ]]3
6402

= [(0- k) (@ F') Moopsbavs — (- k) ooty Dy — (0 K') Mabs Koo Pog + Kooy ity Db D
% [(p i k/) (p k) bobg b4b6 o (p X k/) 77b2b8k64p/b6 o (p/ . k) b4b6k/b2pb8 i k/bgk,b4 /bﬁ ]

= (0 k) (0" k) Moo ioan] L (0 K) (0 K)oy
_ (p X k/) anbgkb4p/bG _ (p/ k,) nb4b6k/b2pbg + k/b2k1)4p/b(,pb3
— [0+ &) Massht, 1] { (0 - K) (0 - K) 2ot
. <p . k/) nbgbgkb4p/b6 _ ( k) nb4b6k/b2pb8 _|_ k/bzk,b4p/b6pbg
(p- k) (0 k) nen™e
)

b4b@ k,/prbg + k,/bQ k,b4p/bbpb8

[(p K’ )nb4bgkb2pbﬁ] {
. (p . kl) nbgbgkb4p/bg o ( k’
+ (Ko ki, Dol | { (- &) (0 - ) 120100

o (p . k/> 77b2b8 kb4p/b6 _ (p/ . ]f) ,’,]b4b6 k/bzpbg _|_ k/bz kb4p/b6pb8

7]]2 X I]g

= ) K R R (o ) )

2R K @-) (k) =20 K) (- k) (0-2) (k- K,
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Calculo do termo nl; x 11,

nl, x I,
64af
= [(p ’ p/) (k ’ kl) Mboby Tlbgbs — (p ’ p/> 7]b2b4k£6kb8 - (k ’ k/) nbebspg)gpm _'_p;)gpbz;kl/;(;kbg}
p-k p p-k o p
k,bz ,r]be(j k,/bz anbg

X

p/ iy p/bﬁ p/ k! p/bg
kb4 77174176 k/b4 nb4b8

p-k p* pk o p

kbg nbzbg k/bz ,r]bgbg

=) (k- k) Moyp ot
p/ . k p/b6 p/ . k/ p/bg
kb4 le4bﬁ k/b4 77174178
p-k p p-k o p®

kbg nbzbs k/bg nbzbg
- (p : pl) Mboby ké)g kbs
p/ -k p/bﬁ p/ k! p/bg

ba babe 1by babg
K om K™

p-k p
kbz ,'7172 b6 k/bQ nbgbg

- (k ’ k/) nb6b8p22pb4
p/ k p’bs p/ K p/bs

kb4 ,’7541)6 k:/b4 ,',]b4b8

p-k p* op-k o p
k,bg ’r]b2b6 k,/bg nbgbg
+ pg)gpbzl k’lg)ﬁ ka b

p/ k p/ 6 p/ K p/bg

kb4 T]b4b6 k/b4 T]b4b8
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p-k p, p-k  p®

kb nbb ]{?I4 5b8
(p-p) (koK) 0T
Pk p, Pk Pt

ba ba by bybg
k S n

p-k p-k pk pk
kb4 kl/)4 kl/)4 kb4

_<pp/) / / / / / /
pok p ek p B P Ey
kb4 k/b4 k/b4 kb4

k opy p-K  p”
Ly | VR e PR P’
p’~/{: pgg p/'l{?l p/bg

p-k pk pk pk
p-k pk p-K Pk
pok pkK pek Pk
p-k p-k pk pk

p-k p p K p
Kby s Kb, 0P
=(p-p) (kK)o
Pk p, Pk P

kb4 5;)’;1 k/b4 7764178

= (p-p)(k-F) :

77]1 X II4
64af
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Calculo do termo nl; x II;

nly x I
64af

= [(p ’ p/) (k ’ kl) Mboby Tlbgbs — (p ’ p/> 7]b2b4k£6kb8 - (k ’ k/) nbebspg)gpm _'_p;)gpbz;kl/;(;kbg}

=(p-p) (k- E) Doy, Mbobs

- (p : p/) Tboby kll)ﬁ kbs

- (k ’ k/) nbebsPZQPm

p-p
plbg
X
Pk
p/b(;
pk P
k,/bg ,r]bzbg
k-k kb
k/be 77b@bg
p-p P opek ph
p/b2 nb2b4 k/bg ,r]bgbs
Pk K kK ks
p/b6 77b4b6 k/bG ,',]bgbg
p-p pop ko
p/b2 77b2b4 k/b2 77172178
Pk K kK ks
p/bﬁ ,',]b4b6 klbe 77b6b8
p-p
p/b2
+ pg)zpbél k;}ﬁ ka
Pk
plb(;
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ph

nb2b4

s

nb4b6

ph

nb2b4

s

Ub4b6

p-K
k/bQ
k- K
k/bg

p-k
k,/bg
k- K
k/bs

ph

nbgbg

s

nbebs

ph

anbs

ks

beb
6%




p-p D, p-K P
p/b2 4 [0 anbs

=@p-p)(k-F)
Pk ky, koK ks

pg)g nb2b8 kll)g 4
p-p P pk p-k
p;hl 4 ]{Z;M k‘b4
ook ok kK0
R O | T ¥

—(p-p)

p-p 0 p-kK p
/bg

0 p-p p-K p

(ke K)
-k p-k k-k kb

Phs  Pos Ky 4
p-p 0 pk p-k
0 p-p Pk p-k
-k p-k k-K 0
p-kK p-k 0 kK

= —2GH (BC — GH)
+GH (BC + AF — GH)
+GH (BC + AF — GH)
+ A?’F? —2ABCF — 2AFGH + B*C* —2BCGH + G*H?,

= G*H? + A*F? + B2C? — 2ABCF — 2BCGH,

77[1 X [I5

6lag P P (kK 4+ (k) W K) + (oK) (0 k)

—2(p-k)(p- K@ K@ -K)=20-F)@ k) (p-p)(k-K),
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Calculo do termo nl; x Il

nly x 11

64af

= [(p ’ p/) (k ’ k/) Mboby Tlbgbs — (p ’ p/> 7]b2b4k26kb8 - (k ’ k/) nbebspg)gpm +p§)2pb4kl/)6kb8:|

=(p-p) (k- E) Doyby Mbobs

p-k p*
kbg ,’,Ibg b6

k. k/ k/b6
kbg 771761?8

— (- 1) Mot o Ko

- (k’ ) k,) nbgbgpégpm
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p-k ph
kbz ,r]be(j
X
koK K
kbg ,,,]bﬁbg
p-v P
p/bz nb2b4
p/ K k‘/b4
plbg nb4bg
p-k p p-p ph
kbg anb(j p/b2 ,r]bzb4
kK k/b6 p/ k! k/b4
k,bg nb(;bg p/bg ,'7174178
p-k po p-p p
kbz nbzbs p/bg nbgb4
kK k/b()‘ p/ kK klb4
kbg nbgbg p/bg 'f]b4b8
p-k  pP
Jb2 nb2b6
+ pg)zpbél kl/)g ka
koK K
kbg ,r]bsbs

p-p

/bQ

p

p/‘k/

/bg

p

p-p

1bg

p
p/_k,l

/bs

p

ph

nb2b4

k/b4

nb4b8

p

n62b4

k/b4

T]b4bg




p-k p pp pn

k 4
= p) (k)| e B
ek K, p ok kY

kbg 4 p/bg nb4 bg

p-k pk p-p ph
k‘b4 k;m pfm 4
kK0 oK KM
0 k-k p-k k™

—(p-p)

pk p pp 0
vk p, 0 pp
k-K Kk, p-K p-¥
kbg 4 p/bg pbg

— (k)

pk pk pp 0
pk K 0 pop
k-K 0 p-kK pkK
0 k-k p-k pk

= —2GH (AF — GH)
+GH (BC + AF — GH)
+GH (BC + AF — GH)

+ A’F? —2ABCF — 2AFGH + B*C? —2BCGH + G*H?,
= G?H? + A*F? + B2C? — 2ABCF — 2AFGH,
I x 11,
~ et =P R () (KD R

—2(p-k)(p- K@ -R) @ -K)=20-k) @ -F)@-p)(k-K),
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Calculo do termo nly, x 11,

7’][2 X [I4
64af

= [(p ’ k) (pl ’ kl) Tb2be TIbabs — (p ’ k) szbekzlmpés - (p/ ’ k/) 77b4bskb2pb6 + kbzk;upbep;;g}

= (p ' k) (p/ ’ kI) Mbobe TIbabs

- (p : k) Mb2bg k;)4p;)s

- (p/ : k/) Tbybs kb2pb6

+ ka k£4pb6p;)8
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p-k p p-k o p
k,bz ,r]bzb(j k,/bg anbg
Tk e pew g
kb4 nb4b6 k/b4 77b4bg
pk o p
k/bg 77b2b8
LK s
Jt pbabs
p-k  p
k/bz nbgbg
K
k/b4 nb4b8
p-k p* op-k p
k,bg 77b2b6 k,/bg nbgbg
Pk opop R p |
kb4 T]b4b6 k/b4 T]b4b8




p-k p* pk o py, p-k po pk p-p
k 4 k! k 4 k! !
_ (p . k) (p/ ) k/) be bs Mbabg _ (p ) k’) bs bg Dy
p/ -k p/b6 p/ k! pg . p/ -k p/b6 p/ Lk 0
k’b4 T]b4b6 k/b4 4 Lk k/bG 0 p/ iy
p-k 0 p-k p» p-k 0 pk p-ypf
0 p-k k-K kbe 0 p-k k-KE 9k
— (k) +
p’-k p_p/ p’-k}' p/bg pl'k} p_p/ p'-k’ 0
Kos Doy Ky, 4 k- p-kE 0 p-F

— —2AF (BC — AF)
+ AF (BC — AF + GH)
+ AF (BC — AF + GH)

+ A*F? —2ABCF — 2AFGH + B*C* - 2BCGH + G*H?,
=G?H* + A*F? + B*C? - 2ABCF — 2BCGH,

77]2 X I]4

6408 (p-p) (kK + @ -k)@ K+ @ k)@ k)

~20p k) (oK) () 0 K) =2 (- K) (- ) (0 ) (kK

Calculo do termo nls x II;

7’][2 X 115
64af

= [(p ’ k) (pl ’ k/) Tb2be Tlbabs — (p ’ k) nb2b6kllj4p§)8 - (pl ’ k/) 77b4bskb2pb6 + kbzké4pbepég}

p-p  ph ps

/b b2b
2 7]24

p -k kb

p-k p
k/bz lezbg
k-k kb

1bg J!b6 nbabs

ple pPabe
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= (p ' k) (p/ ’ kl) Mbobe TIbabs

p-p

/b2

lba

ph

baby

kb

babe

- (p : k) nbzbﬁkl/upgg

— (0" k) Mg Ky D

p-k
k,/bz
k-K
k/be

le

p
Pk

1be

p

+ kb2 k£4pb6p;)8
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nb2b4

s

nb4b6

p-k
k/bz nbgbs
koK kbs
k/b(; ,,,]bgbg
p-k  p*
k/bg nbgbg
kK kb
klbﬁ 77b6b8
p-p
p/b2 ,,,]bgb4
p/ k kb4
plb6 nb4b6

p- K
k/bg
k- K
k/b(}

ph

anbs
e

beb
nPevs




=(p- k)@ -F)

p-p py p-k p
p;)G Nbebs kl/>6 511:3
Pk ky kK kb
p/bG 5;)7: k/bG 77176178
p-p p-k p-k p-p
_<pk> / / / /
vk kK kK pok
p/b6 k/b(; k./ba /bg
p-p py p-k p™
Pk ky K-k kb
— (k)
ok ky K-k kb
p-p py p-k p™
p-p p-K
Pk kK
vk koK
p-p p-K
G pbs B pbs
b
— AF p;)g anbS ki{)ﬁ 5b:
C kg, H k%
p/b6 7726 kle ,r]bgbs
8
_T]IQ X [[5 -
6408
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p-K
k- K
k-K
p-K




Calculo do termo nly x Il

7’][2 X [I6

64af

= [(p ’ k) (pl ’ k/) Tb2be TIbabs — (p ’ k) szbekzlmpés - (p/ ’ k/) 77b4bskb2pb6 + kb2k24pbep28}

= (p ' k) (p/ ’ kI) Mbobe TIbabs

p-k pe p-p P
y kbz ,r]beG p/bQ nb2b4
k- k?/ k;/bﬁ p/ . k’/ k’/b4
kbg ,',]b(;bg p/bg 77b4bg
p-k p* p-p p™
kbg ,rlbgbg p/bz nb2b4
k. k/ k/b6 p/ . k’/ k’/b4
kbg 771761?8 p/bg nb4bg
p-k p p-p ph
kbg lezb@ p/b2 ,r]bzb4
- (p : k) nb2b6k124pg)g
kK k/b6 p/ k! k‘lb4
k,bg nbf;bg p/bg ,'7174178
p-k po p-p P
kbz nbzbs p/bg nb2b4
- (p/ ’ k,) 77b4b8k'b2pb6
kK k/b@ p/ kK klb4
kbg nbgbg p/bg 'f]b4b8
p-k p p-p p™
k,bg ’r]b2b6 plbg nbgb4
+ kb2 kl/)4pb6pg)g
k A k/ k/b@ p/ . k/ k/b4
kbg ,r]bsbs p/bs ,'71)4178

190




=(p- k)@ -F)

p-k p, pp pn
kbg 4 p/bg nb2b4
koK K, p ok KM
kb4 Mb4bo p;)4 4
p-k p, pp p-¥
kbz 4 p/bg klbg
—(p-k)
k-k K, pk 0
p/-k’ p;u O p/_k/
p-k 0 p-p pn
0 p-k pk k»
— (k) P P

= 2AF (AF — GH)

77[2 X [I6

64a

]f'k/ pk/ p/-k' k/b4

ko, po Py, 4

p-k
0

+ AF (BC — AF + GH)

+ AF (BC — AF + GH)

0 p-p p-K
p-k p-k k-K

k- p-k' p-kK 0
p/.k pp/ O p/'k/

+ A?’F? - 2ABCF — 2AFGH + B*C* —2BCGH + G*H?,

= G?H? + A’F? + B>C? - 2AFGH — 2BCGH,

=) (k- K+ @ k)W k) + @ K@ k)

—2(p-k)( - K)(p-p)(k-K)=2(-K)@ k) (p-D)(k-K),
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Calculo do termo nl5 x I,

7’][3 X [I4
64af

= [(p ’ kl) (p/ ’ k) Mbobg Tlbabg — (p ’ k/) szbskb4p§)6 - (p/ ’ k) nb4b6kll)2pbs + kll)gkb4pbgp;;6}

= (p ' k/) (pl ' k) Mbobg Tbabe

p-k p
k b n babe

Pk pt
kb4 7,Ib4 be

- (p : k/) nbzbsk‘b4pg)6

- (p/ ’ k) Mbabg kggpbs

+ kg)g kb4pb8p;)6
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Kb

Jbs

n

Ui

n

n

p-k p
kb2

babe

p/ . k, p/bg
b

babe

p-k p

babe

p/ . k p/bﬁ

babs

p-K

k_/bz

p/‘k/

k/b4

p-K
k,/bg
p/ . k,l
k/b4

Ui

n

p

n

p

Ui

b
p 8
babg
/bg

p
babs

bs
babg
/bg

babg




p-k

k

=K@ k)| "
Pk

kba
— (k)

A pb4 B

— BC kbs Tbbs kgg
C pg4 F
kb4 kM

— 2BC (BC — AF)

Pvy P~ k'
Tbabg klljg
p§74 p/ k!
4 kM
p-k e,
k-E Ky,
Pk p,
kb 4
p's
4
— B
p/bg
77b4bg

pP p-k p-p p-k p®
4 B (p ' k-’) kbg p/bg k’ll)g 4
1bg p/ . k 0 p/ . k,/ p/bg
nbabs 0 -k k-k kb
p-k 0 pk pp pk 0
0 p-K N k-K p-kK 0 p-K
p'-k’ pp/ pl'k} 0 p’-k?l p_p/ ’
ke pha 0 9Pk kK p-k
A G B p*
kbg pgs kzg 4
cC 0 F pbs
0 C H kb
A p, B 0 A G B 0
ol H oKW 0 B \HF 0B
C p, F G c o0 F G|
B4 kb pha 0 C H A

+ BC (AF — BC + GH)

+ BC (AF — BC + GH)

+ A?’F? —2ABCF — 2AFGH + B*C? - 2BCGH + G*H?,

= G?H* + A’F? + B>*C* - 2AFGH — 2ABCF,

77]3 x 11y
64af

= p) kK +@ k)@ K+ )@ k)

=20 R) @K @) (k-K) =20 k) (- K) (- F) (- K,

193



Calculo do termo nl3 x II;

7’][3 X [I5

64af

= [(p ’ kl) (p/ ’ k) Mbobg Tlbabg — (p ’ k/) szbskb4p§)6 - (p/ ’ k) nb4b6kll)2pbs + kll)gkb4pb8p;)6i|

= (p ' k/) (pl ' k) Mbobg Tbabe

p-p P p-¥
p/b2 ,',]b2174 k/bz
Pk kM kK
plb6 le4bﬁ k/be
p-p
, s
- (p -k ) nbzbskbz;pb(;
Pk
p/b6
py
, ;P
- (p ’ k) nb4b6kb2pb8
Pk
p/b6

+ kll)g kb4pb8p;)5
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p-p ™
p/bz ,r]bzb4
X
p -k kb
p/b6 ,,,’b4b6
pek ph
k_lbg ,r]bzbs
koK kb
k,/bﬁ /’f/b6b8
p-kp*
k/bQ ,,,,bgbs
koK kb
klbﬁ T’babg
p-p P
p/b2 ,,,Ibgb4
Pk kb
p/b(; nb4b6

p-K
k/bz
k- K
k/bﬁ

p-k
k/bg
k- K
k/bs

p
n

bs

babg

kb

n

p

n
k

Ui

bebs

bs

babg

bs

bebs




p-v e, p-kK p®
p;) Mg bs kl/) 4
_ Y ’ 8 8 _ L
= -k S | TR
-k ke k-K Ok
p'bﬁ 4 J'b6 nbabs
pp s pk 0 pp pk
Wk Pk ko 0 pek N kK kK
J— p .
Pk ky k-K p-k p-k 0
p/be 4 k/b(; pb6 O p/ . k
G m, B pP G A B ph
— BC p?)g Tlbebs kgg 4 _B pég kb8 kzg 4
C ky H kbs C 0 H kb
p/b6 4 k/bg 77be.bg 0 cC F p/be
G pbg B
o F kl’% 0
C ky H
p/be 4 k/bﬁ
=2BC (BC — GH)
+ BC (AF — BC + GH)
+ BC (AF — BC +GH)

77]3 X I]5
64af

+ A?’F? —2ABCF — 2AFGH + B*C? - 2BCGH + G*H?,

—2(p-k)@ - K)p-p)(k-K)=2@p-K)@ k) (p-p)k-F).
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p-p p-k p ¥
kl’)s
kK

Phe Ko
p-k 0
O p/ . k p/ . k/ p

0

p- K

p-k
0
kK p-k

p/.k/ p.p/

0
B
A

be

o Q = @

= G*H* + A’F? + B>C* - 2AFGH — 2BCGH,

= p) kK +@ k)@ K+ )@ k)

p
4

Kb

bs

/bG

Q = T ©




Calculo do termo nl3 x Il

7’][3 X [I6
64af

= [(p ’ kl) (p/ ’ k) Mbobg Tlbabg — (p ’ k/) szbskb4p§)6 - (p/ ’ k) nb4b6kll)2pbs + kll)gkb4pb8p;)6i|

= (p ' k/) (pl ' k) Mbobg Tbabe

- (p ’ kl) nbzbskbzipga

- (p/ ’ k) 77b4b6k1,72pb8

p-k p*
kbg ,’,Ibg b6

k k/ k/bﬁ
kbg 771761?8

p-p P
p/bz nb2b4
p/ kK k‘/b4
plbg nb4bg
p-k  p
k.bz nbzb@
k- /-CI /-Clb6
k,bg ,’,Ibabg
p-k  p
kbg nbgbe
Lk k,/b@
kbg nbﬁbg

+ kl/)Q kb4pb8pg)6
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p-k  p
kbz ,r]beG
X
koK ko
kbg ,',]b(;bg
p-v
p/bg nb2b4
p/ kK k/b4
p/bg 77b4b8
p-y
p/bg 77l72b4
p/ K ]{;/b4
plbg ,’7b4b8
p-k  p%
k,bg ’r]b2b6
Lk k/be
kbg ,r]bsbs

p-p

/bQ

p
p/‘k,/

/bg

p

p-p
plbg
p/ . k,/

/bs

p
babs

n
k

n

p

n

by

/b4

babg

by

baby

k/b4

Ui

babg




p-k p* o op-p Db p-k pp pp pok
ky ybe o Nbgb ks, o v ey
— / / 8 bs bs 608 _ Y s b e .
R ok kp kK k) L K o ke E
p . Sk
Jcbs T]bebs p/bs (S;)’: L:bs p/bs p/bs Jobs
p-k po, p-p P p-k pp pp pk
kek' Ky, v kK™ kK p-k oK kK
_(p’.k) 4 n |
R Oy A L R Y Y N
p-k po, p-p p™ p-k pp pp p-k
I x IT
_%: (p-p) (k- k) + k)W K+ k) (0 k)
20 k) (- K)@ -k K)=20@-K) @ - k) (p-D) (k- F),
_nl XAl
6408
I x II
- 77(14_@56 = (-0 (k- )+ k) WK+ k) (k)
—2(p- k) K) (o) (k- K)=2(p- k)@ k) (p-p) (k- k),
I3 < I1
- % = (-0 (k- k) + (- k)W K + (- k) (- )’
~2(p- k) (0 K) (- p) (k- K) = 2(p k) (- K) (0 - ) (0 - &),
Iy x I1
oty =P B 0 R R (oK) (R

—2(p-k)@-K)(p-p)k-E)=2(- k)@ k) (p-p) (k- K).

ol x Iy _
6daf
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Calculo do termo nly x II;

Pk D

nly x 115 Ky, Mbobe
6452 Pk,
Kby s

Expandindo em cofatores, os dois determinantes em termos da segunda coluna,

Pk pu
kzlyz Tbobs

Pk D
]fz,M Mbabs

pp P opek
plbg nbzb4 k/bg

ok kM kK
p/b6 ,',]b4 bg k/b@

p

Ui

bs

babg

ks

n

bebs

Koy, Kby Tbobs p-k p-K py
=9 "Ps| Pk Pk py |t | Pk DK
Ko, Ky, Thabs Ko, Ky, s
pk p- k' pu p-k p-k  pu
Dho | Kuy, ki, Mabs | T abe | Kby Kb Thobs
ko, Ky, Mbabs Pk ok p,
pr ko p-p p-kph
R IR I R T L /i (R0 R S
plb5 k/bG 77b@bg p/bs k/bG anbs
p-p p-K p® p-p p-k
_Jcba Pt ke babs | 4 nb4b6 pz kb
Pl b bebs vk koK
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Realizando o produto e distribuindo os 4-vetores e as métricas,

ka kll)2 anbS p/bg k/bQ ,,7b2b8 p- pl p- kl pbg
=y -k p-K pgs pb4pb6 ook koK ks |- 7762b4pb6 ook kK Lbs
kb4 k:g,4 77b4 bs p/bﬁ k,lb(; ,’,Ibs bs plb6 k/ba ,',]bg bg

bs bs

p-p p-k p p-p p-K p
+kb4pb6 p/b2 k,/bg ,r/bgbg _ fr]b4b6pb6 p/bg k,/bg ,’,Ibgbg

p/bﬁ k/ba nb@bg pl . k, k . k/ kbg
Pk DK P K s by pK
ok K py, —pb477b21;6 Pk k-kK kb |+ 77b2b47]b2b6 ok k-k kb
kb4 kl/)4 T}b4b8 p/bg k/bﬁ ,',}bﬁbg p/bﬁ klb@ 77b6b8
p-p p-k o p» p-p p-k p®
_kb4 Mbabs p/b2 k/bZ 77b2b8 + 77b4b6 Mbabs p/b2 k/b2 anbB
plbs k/b(; nb@bg p/ . k k A k/ kbg
p . k, p . k,/ pbg p/bg klbg ,’,Ibzbg p . p/ p . k/ pbg
S T A L I T T T N et VY
kb4 k:[/M 77[)4 b p/b6 k/bg T]bﬁ bs p/b6 k,/bg ,',]bﬁ bg

bs bS

p-p p-k p p-p p-k p
+kb4p;)6 p/b2 k,/bg ,r/bzbg _ 77b4b6p;)6 plb2 k/bg ,r]bgbg

p/ba kb6 nbesbs p’ kok-k kb
D- k p- k' DPbg p/b2 k’bQ nb2b8 p- p/ p- k' pbg
+ kb? kll?z Tl bs _pb4nb4bﬁ p/ 'k koK k™ + 77b2b477b4b6 p, k koK kb
p/ -k p/ k! pg)s p/b6 k/bﬁ nbﬁbg p/bﬁ k/bﬁ anbS

bs b8

p-p p-k p p-p p-k p
- kb4 Tbabg p/b2 k/bz an s + nb4 be Tlbabg p/b2 k,/bz an bs

p/b5 k/bg ,,,’b(;bg p/ . k. k . k/ kbg
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Contraindo o 4-vetor (com indice bg), e distribuindo o determinante em evidéncia,

ko, Ky, M || P2 K Pt kv, ki, s || DD DK

=" pk oK |0k kKRS | ek K || Pk kK
ko, ki, Mows || p0 p-K o p™ ko, ki, Moas || PP DK

kv, ki, s || PP p-K pf kv, Ky, Taps || DD DK pP
R A I L A P A A I L
Ko, Ky, Meaes || DD DK p's Ko, Ky, Moaes || DKk KK kb

p-k p-kK o ope || PP KR gl p-k pk pe || 00 pK P

el I T T A U 0 N R O U B IV R A R R
koo Kb b || Ph Kb, O koo Kb s || Ph Kb, 01

k p K py || p0 p-K o p® p-k pk py || p-k p®

o Ty A L e R I N U I L
koo Ky, b || Ph, Kb, O kow kb, Mo || Pk kKK
p-k pk o || P K b p-k pk py || pp pk p®
Sl B S A O I "R Y T Bl T S A SO I I R T
Koo Kb, Thbabs 0 p-K p" Koo Kb, Tbabs 0 p -k p"

p-k p-k py ||pp p-k p® p-k pk py || DD p-kK Pt

S T A O A S L C
Koo Kb, Tbabs 0 p-K p" Koy kb, Thabs || Pk K-KOEDS
Pk s pek po K pyg p-r pK P pk o pE py

—p" | Pk kK kb ko, Kb s [T Dk kR R[] Ry Kb T
P kb 08 || Pk DK P B ko S || Pk P K P

p-p p-k p® ||k pk by p-k pk py || p-kK Pt

S I L e I o e B S | B

Phy Kb G || Pk DK b Pk ook ph || Pk RK R

200




Contraindo o 4-vetor (com indice by),

kbz kllyg Tlbabs p/bQ k/bz 77b2b8 kb2 kl’?g Mbabs p- p, p- K pbg
— p’~k p/_k/ pgs p"k kK kbg —p'~k p/_k/ pgs p'~k kK kbg
pk pk py || PP p kP Kok &2 || pep) pok p
ko, Ky, M || PP DK p™ ko, Kh,o s || Do poK pf®
+ p/ k p/ . k‘/ pgs p/b2 k‘/b2 77bgbg _ p/ iy p/ . k‘l p/b8 p/bg k’bQ 77beg
0  k-k  kpy p-p p-k ph pk p-k Dy p -k k-k kb
p . k. p . k,/ pbg p/b2 k,/bg ,rlbgbg p . k, p . k,/ pb8 o p . kJ pbg
— p/ -k p/ K ng p/ kokK kbg + p/ -k p/ k! pgs p/ kokK k.bg
pk pk pe || B, K, 0 Ko kP o p, Ky, O
p-k p-k py||pp pK p® p-k pk py ||pp pkK p®
_ p/ iy p/ . k‘/ pgs p/bz k/bz 77bgbg + p/ iy p/ A /{3/ pgg p/bQ k,/b2 anbS
0 kK k|| p), ki, O Koy kb, Tans || Pk kKK
p- k p- k! Db p/bg J'b2 nbgbg D k p- k! Db p- p/ p- % pbg
+ k)bQ kll)g Mbobg p' -k k- k)l ]{?bs - kbz ]{31/72 Nbabg p’ -k k- ]{?/ kbs
p- k p- k! Db 0 p/ K p/bg /{:b2 k/bg 522 0 p/ kK p/bg
p-k pk pe || PP pK P pk pk py ||pD pk P
+ kbz kll;g Tlb2bs p/b2 k,b2 77b2b8 - kbz kl/)g b2 bs p/b2 k/bg 77b2b8
0 kK ke 0 p -k p" pek Pk p -k k-kE kb
/ba k/bz babg -k .~ / k! bs k .~
p n p p Desg p-p D p p p Puos
—p -k k-K kb kp, Ky,  hobs |T| D -k KoK kbs k. Ko, Mhobs
p- p/ p- k! pbg p/ -k p/ kK pgg p/b2 k‘/b2 anbg p/ iy p/ .~ pgg
pr pk || pok pk p-k pk oy ||pD p K P
o p/b2 k/bQ 77be8 kbz kég Tbobs +4 kbz kllzg Mbobs p,b2 kle 77b2b8
p/ kokk kbg p/ -k p/ Lk pgs p/ k p/ .~ pzs p/ kokK kbg
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Usando o dicionario para simplificar a notagao,

ko, Ky, M || PP2OKT2 Pl ko, K, s || G B p™
=lc F p||C H W |-|C F p, ||C H K
A B py G B p* K2 kP 52 || G B p*
ko, ki, s || G B p™ ko, Ky, s || G B p"
+ COF o || P KR g = O F ph || KT o
0 H &y || G B p A B ps || ¢ H K
A B py || D" Kot A B py|| G B p*
- C F pgs C H &k |+| C F pgs C H kb
A B py || th, M, o R A
A B py G B pb A B py G B pb
- C F pgs p/b2 k/bg nbg bs + C F pgs p/bg k,/bg nbg bs
0 H ky || ph, ki, 6 ko, Ky, s || C H K™
A B oy || D K gt A B p ||G B p*
| kb, Ky, Moobs C H k* |—=|ky Kk, D || C H k'
A B py 0 F p kb2 ke 5 0 F pbs
A B py G B pb A B py G B p
1 ko, K, Meavs || P K 0P | = Ry K Mg || P2 K2 P20
0 H ky 0 F pts C F p, C H k»
P ok sl A By G B p* || A B p,
- C H k¥ ko, Ky, meps |t C H kbs Koy ki, Mbobs
G B pb C F p, pltz k2 pbabs C F p
G B pb A B py A B py G B pb
=P K Pk Ky, e | T A Ky K, e || PR P2
C H kb C F p, C F p C H kb
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Simplificando a expressao,

A B py || G B p*®
kbz k;u an bs p/bg k/bg ,r]bz bg
0 H Kk, 0 F phs

A B p || G B po A B p ||G B p*

| C F ph || K o ke, Ky, mes || COH R

0 H ki || 0h, Kk, K2 kg2 || 0 F pts
-0 =0

Calculando cada produto de determinantes,

= A*F? —2ABCF + B*C* - 2BCGH + G*H?,

77]4 X ]]5

o1 KPR =200 k) (- K) (- k) (0 K)

+ B k) =2 k)@ k) (p- 1) (kK )+ ()’ (k- K

Calculo do termo nly x Il

p-k e Pk py || Pk P opep pM

77[4 x g . kb2 Tbobg k;)g Tlbobs kb2 Ub2b6 p/b2 77b2b4
6452 p/ -k pZG p/ k! pzs kK k/bﬁ p/ k! k,/b4 ’

Koo Moabs Kb, Mhavs || K" pPts o plts Pt
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Expandindo em cofatores com relagao a quarta coluna,

Koy Mbobe K,

= _pbg p/ * k pgﬁ p/ * k/ + nbgbg
kb4 Mbabe kgu;

pk pg poF

/ /
“DPos | Kby Mot Ky,

/
kb4 Mbabe k by

kbg nbg be p/bg

% _pb4 L.k k' ok |+ 77172174

kbg ,r]bﬁ bs plbg

p-k

-
_k/bzl k,bg anbﬁ p/
p/

pk p pK
p/ k pg) . p/ K
kb4 s kl/>4
pk p pF
_'_ nb4 b8 kbg 7762 b(} ké2
p/ k pg . p/ k!
p-k po p-y
k- k’/ k’/b6 p/ . k/
kbg nbﬁbg plbg
P pp pk p*
B
bs Lk k/be

kbg nba bg
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Multiplicando cada termo da primeira linha pela segunda linha e distribuindo o 4-vetor

em evidéncia,

koo obs Ky, T p-k p* p-p
=k pp, P K [P kK K g K =0 e | kK K p K
kb4 M, b kl/;4 kbg nbg bs p/bg kbg nbg bs p/bg
p-k p* p-yf p-k p* opp
e Dos | kb2 phebe g2 | — 77b4 bs Do | kP2 pb2be
Jbs  qebs s koK kY oK
p-k by p K kb2 oopPete pt p-k p py
H Pk g PR P e | B KR p K| A0 g | kK K K
kb4 b, be kzé)4 kbg /r]bﬁ bs p/bg kbs nb@ bs p/bg
p-k p* p-yf p-k p* pyp
iy S Mhabs | kP2 mb2be  pz | 4 T]b4 bs Mhabs | k%2 pb2be plt
ks pbebs b koK kP ok
pk oy poK ke oPebe pfte p-k p* opyf
T A R Y O el I O O R
kb4 77641)6 1/74 k,bg ,’7b6b8 p/bg kbg ,’7b6b8 p/bg
p-k p* p-yf p-k p* pp
+ k") U kb2 phebe g2 | — nPibs Ll Kb pbabe b
ks pbebs b koK kP ok
p-k b p-K I p-k p p-p
FO1 ko ane Kb, | P s | KoK KPP K A0 0 | kK K pf K
Pk p, PF kbs o pbebs o pfts kbs o pbebs o pfts
p-k p* p-p p-k p* p-p
— k/b477b4b8 kb2 phbe  pybe +77b4b877b4b8 b2 pbabe b
ks pbebs b koK kY ok
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Contraindo os 4-vetores com os determinantes e distribuindo os determinantes em evidén-

cia,
Ko, Mhove Ky, kb2 ph2be b2 Ko,  Mbobe K, p-k p* p-p
_ pb4 p/ ke pZG p/ .y L.k ke p/ k! 77b2b4 p/ ke pZG p/ K L.k k'be p/ k!
Ko, Moaps Ky, p-k p* p-p Koy Moavs Ky, p-k p* p-p
Ko, b Kb, || Pk D% pep Ko,  Thope Kb, || Dok P p-pf
+k/b4 p/ ke p?)G p/ . k/ kbg 77bgbe. p/b2 _pb4 p/ k pg)G p/ . k/ kbg nbgb(; p/bg
Ko, Mowe Ky, p-k p* p-p Ko, s Ko, k-kK Kb p -k
pk p pK kb2 ph2be b2 pk p p K || pk p* opyp
_pb4 p/ k p/b6 p/ k! L.k k' p/ K +77b2b4 p/ k pge p/ k! L.k kb p/ K
Kby Mbabs K, ko, 0 Dy, Ko Moabe Kb, ko, 6 D,
pk p p K ||pk po p-p p-k p p K || pk p* pyp
_J/ba vk i oK kb2 nbgbe p/b2 +5Z;1 ok p,be oK Lb2 nb2b6 p/bg
kb4 Mb4bs kllu ka 525 pZQ kb4 Mb4bs k;u k-k kY p/ K
pk p poK || k2 opibe phe pk p p K || pk p* pyp
+pb4 ka Mabe kllag E-k k' p/ k! —77b264 kbg Mhabe kl,n L.k kb p/ K
Ko,  Nbavs Ky, Pk p 0 Ko,  Mbave ki, Pk p' 0
pk p pK || pk p pp pk ps pK || pk p* p-p
+k b kbz Tbobg ]{322 k b2 an be p/b2 P s kb2 Nbabg kllvz ka T]bQ be p/b2
kb4 Tbabg k£4 pl -k p/b6 0 kb4 TTb4bs kl/;4 k- kKM p/ -k
p-k p peE || k2 phe ph pk p p K || pk p* opyp
_pb4 kbz Tbobe kg)g koK kM p/ K +nb2b4 ka Mbabs kgg koK ke p/ K
Vok opy, K| ke 00 D, (R A N I I R L
pk p p K ||pk po p-p pk p pK || pk p* pyp
— k/b4 kbg an b k:(I)Q kbg ,r}bz be p/bQ +4 ka ,’762 be kéQ kbz ,r]bg be p/bQ
R A A Pk ph, PR RR R p K
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Contraindo os 4-vetores com os determinantes,

Kby Toabe Kb, kb2 pPbe pfte kv, s ki, || Dok P p-p
=|\p-k p, DK ||kF K oK || Pk Py, DK || kK k' p K
pok e peR || pkopopep || KRS K || pek P pep

ko,  oobs Ky, || Pk P pepf Ko, Thos Ky, p-k p pp

+ p/ 3 k’ p;76 p/ . k‘/ k,bQ 77b2b6 p/b2 _ p/ . k p;m p/ X k/ k,bg nbgbe p/bg

k-kK K, 0 p-k p p-p p-k p, p-k || kK K pk

bobg /bo be

p-k py p-K kb2 p p-k ps pK || p-k p* p-p
— p/ -k pg)s p/ K kK /{Zle p/ K|+ p/ ck pgﬁ p/ K kK klb6 p/ K
p-k py p-k ko, 6 D), Koo kM ko, 0 1,

pk p pK ||pk p* p-p p-k p pK || pk p* p-p
babg

_ p/ i ]{ péﬁ p/ A k/ kbg n p/b2 + p/ X k‘ pg‘s p/ . k,/ k,bz ﬂb"’bG p/b2
k-k k0 ko, G D), Kby Thave K, k-kK Kb p ok
p-k py poK || kb2 phbe pt2 p-k py pK || pk p* op-p
+ kbz Tbobg kéz k - k‘/ k’/bﬁ p/ . k/ - kb2 Tbobg kl/>2 k- k‘l k/b6 p/ . k?/
p- k D D 2 p/ iy p/b6 0 R (525 L'b2 p/ ke p/66 0

pk pu pK || pk po p-p p-k p p K || pk p* pop

| kb Mhabe Ky, Kbophte p = Ky Mg K, kb2 pPebe plte
k-K Ky, 0 p -k pP 0 p -k pbt oK || kK K% Pk
O I R R p-k p* pp || ok o, pF

IR A I L O A T ol I 0 O L 0 O | R PR R
p-k p pep ||k p, PF Kboopebe g2 Wk oy K
p-k p* pp || pk o DK p-k p pK || pk po o p-y

L e Ko, Noope K, | TA] Kby eabe K, e
k-k' K% oK ||p-k Py, DK Pk opy, PoK | KK k' pl K
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Simplificando a notagao usando o dicionéario,

Kby Moops Ky,
=1 C p F
A m, B
Kby hoabs
T O py,
H oK,
A peg

—| C
A prg

A

—| C

H

A p B
| Kby Mogve Kb,
A p, B
A pg

T Kby Mbabs
HoK,
kb2 ppabi
~| B K
A pbe

A phe

— | k2 pppebo
H o kb

kb an be p b2 kb2 Mb2be kllyg A pr G
H kv F |-|C p, F||HK® F
A pv G Koo kK| A p G
kll)g A pr G k?b2 77b2 be kll)g A pr G
F kbg nbg bg p/b2 _ C pg)G F kbg nbg bg p/b2
0l A p @ A po, BI|H ke F
B bz pb2be  pfba A py B A pb G
FI|H ¥ F |+|C p,, F || H k% F
B || ke, &° b} K252 kP Ry, 6 pi,
s C A ps @ A p, B A pb
pg F k,bg nbz bg plbg _'_ C p/b F k,bg nbg bg
6 6
k.l,76 O ka (sll))g pg)g ka 77b2 be kll)z H k/bG
kbg 77b2 b(} p/b2 A pb6 B A pbs G
H k’/bﬁ F - kbz Tbobg ké2 H k b F
C p/bg O kbg 5;))5 k/bg C p/bg O
B A ps @ A p B A ps @
kll)2 kbg nbg bg plbz _ ka T]bgb{s kI/)2 kbg nbg bg p/b2
0 C  p't 0 p  F H k% F
P2 A p B A pv G || A p, B
F kbz Tbobe kll)g +| H K" F kb2 Mbabg k 1/)2
G C p;m F kbz ,r,bg bg p/b2 C p;)6 F
G || A p B A py B || A p
P | Koy Megbe Kb, [T 4| Koy Megne Ky, || K2 P
F C p, F C p F H k"

208

G

/bo

p
F

G

/b
'

F



Juntando os termos e simplificando a expressao,

A py Bl A p* G
= | ko Moops Ky, || K b2 ppb2be /b2
H K, 0|l C p* 0

A p, BI|A P G| | A o G|lAmpC

= | Kby Moovs K, H Kb F ||k phbe e C op, F

O A ko O° ph || H K, 0
=0

-0
Calculando os produtos de determinantes obtemos,

= A’F? - 2ABCF + B*C? —2AFGH + G*H".

T =@ B K =20 D) (oK) (7 ) ()
+p- K @R =20k K (o) (k- K) + (pep) (k- K)

Calculo do termo nl; x I

p || -k P pep P

b bab /b bab
Mbybs kb2 n26 2 7]24

p-p py Pk
nls x Il Phy  Moabs Ky,

/

6462 o p/ k kb4 k- k kbs L.k k' P L L/ba
k,bg nbsbg p/bg ,’7b4b8

/ /
Pog  Thbabg k be  lbebs
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Expandindo em cofatores, usando a quarta coluna do primeiro determinante, e segunda

coluna do segundo determinante,

Doy Mhobs Ko, p-v e, p-F
=9 "Dos| Pk ky Ek-E | FtMws|p -k ky k-F
Phs  Moabs K Phe  Mhabs Ky
p-p b pK pp oy pF
—Fos | Dby Moobs  Kh, | T eebs | Dy, Mewbs Kb,
pgﬁ Mbabe k:gG Pk ky, k-K
kb pte et p-k p-p P
| kK p K KM |0 kK K k™
Jhs  pibs pbabs Jbs  plbs pbabs
p-k p-p p™ p-k p-p p™
— ks | b2 Pt pbeba |+ nPebs | b2 P2 phebs
kb plts pbabs k-K p-k k™
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Multiplicando cada termo da primeira linha pela segunda linha e distribuindo o 4-vetor

em evidéncia,

Dhy  Thobs Ky, kb pr bt p-k pp M
=10k ky koK | Q"D | kK p K K| =0 | kK K K
pg 77b4b6 k,{) kbg p/bg nb4b8 kbg p/bg ,’,Ib4bg
6 6
p-k p-p pn p-k p-p pn
—f-k/prbg kbg p/b2 7]bzb4 o anbspbg kbg p/bg nb2b4
k,bg p/bg T]b4b8 k. k, p/ . ]{?/ /{:/b“
pr pe Pk kbeoopt et p-k p-p P
+ p/ k kb4 L.k _pbﬁnbgbg L.k p/ K k?/b4 + nb2b677b258 L.k p/ K ]{}/b4
Py Toabe Ky Rbeooplte gt Rbeooplte o gphts
6 6
p-k p-p pn p-k p-p pn
—K g | kP2 pte et | | kP pte el
kbg p/bg ,r]b4b3 k . k/ p/ . k/ k/b4
pr b pok Kteopt et p-k opp P
| Ph M Kby [P ke | kR R R =k | kK K R
pé nb4b(, l/, k,bg p/bg 77b4b8 k,bg p/bg nb4b8
6 6
p-k p-p p" p-k p-p pn
+I€/b6 kbg kbz p/bz nb2b4 o nb6b8 kbg kbg p/bg 77l72b4
kbg p/bs T]b4b8 k- k/ p/ . kl k/b4
pr pe Pk kbeoopt et p-k p-p ph
+ pZQ Tboby kll)g _pb677bsbs k-K Pl Kk + nb2b677b6bs k-K p/ KK
p/ . k, kb4 k, . k,/ k,bg p/bg ,r]b4b8 kbg p/bg ,r,b4b8
p-k p-p p™ p-k p-p p™
_k/bﬁ anbS kbg p/b2 nbgb4 _|_ nb6b8 nb6b8 kbg p/b2 ,’,Ibgb4
bybg k- ]{}/ p/ . k}/ k’/b4

k,bs p/ bs n
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Contraindo os 4-vetores com os determinantes e distribuindo os determinantes em evidén-

cia,
Dhy Moty K, kb pte pbebs Phy  Mhobs Kb, || Pk p-p p™
=p" | Pk ke, koK || kK K KM |0k ke, kK[| kK p K ™
Do Mhs Ky || Pk p-p p™ Do Moawe Ky, || Pk p-p p™
Phy  Mhobs Kb, || Dk p-p p™ Phy  Moobs Ky, || Pk p-p p™
_|_k/b6 p/ ke kb4 k- k/ kbg p/b2 77bgb4 _pr p/ k kb4 k- k/ kbg p/bg nb2b4
Phy  Mhibs kg || Pk p-p p™ Doy Moubs Ky || KK Pk KM
pp pe, poK || kP2 pPtr phbs pp v pK||pk p-p ph
P Pk ke koK || kKPR KU |0 ok Ky, kK[| KK PR R
b
pgﬁ nb4b6 ké}g ka pg?z 5b3 pé)(; /r/b4b6 k{)@ kb? pg)g 523
pp pu pK||pk pp P pp b, pK||pk p-p ph
—k/b6 p/ k kb4 k- k/ kbg p/bg nb2b4 +(5ll))§ p/ k kb4 k- ]f, kbg p/b2 nb2b4
Phe  Moave Kb || ke DPh,  Op Ph  Mhave Kb || KoK Pk K
p-p pe, p-k || K2 ptr gt pp p pK || pk pp ph
oA I O R T e e I L A A S
sz Mbabs kl/’b 0 p, -k k'b4 ng Tbabg kll)() 0 p/ -k kb4
pr b pK||pk pp P pp p pK||pk pp pn
be be
R A A | I A R B P O Ktrpte gt
p;)g Mbabg kéﬁ 0 p/-k} ks pgﬁ Mbabs kll;a k- k' p/'k/ k'
p-p pe, poK || k2 pP gl pp p, pK||pk pp ph
— pgz Moy kl/)g k. k/ p/ . k./ k./b4 + pg2 Nbabs k,;)2 k- k’/ p/ . k/ k/b4
p/ k kb4 Lk p- k P .pl pb4 p/ k kb4 Lk kbg p/b2 nb2b4
pp v, pK||pk p-p ph pp p pK || pk pp ph
= Dby b K, Kb pte gt (ALl gy, Ky, kb2 plhz pbabe
Pk o ky, kK || kK p kK Kb ok ky kK || kK pokK Kb
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Contraindo os 4-vetores com os determinantes,

p?)g Tboby kllyg kb2 p,b2 77b2b4 p?)g Tbobs k’;}g p- k p- p/ pb4
=k ky, kK || kK PR KM =gk ke, koK || kK K K
pY pu p k|| pk pp p» phr &2 K™ || pek o pep P
Doy Mosbe Kb, || Pk p-p p™ Dy Moobs K, p-k p-p p™
+ pl . k kb4 k, . k,/ k,bz p/b2 nb2b4 _ p/ . k, kb4 k, . k,/ k,bg p/bg nbgb4
p/ . k, kl,)4 0 p- ]i) p- p/ pb4 p- p/ pb4 D - k/ k} . k/ p/ . k,/ k/b4
-, k! Loz 1ba babs ) K -k .p pha
PP Do P P2 PP Do P p pp p
ok ke kK || kK K KU ||k ke, kK || koK p K KM
pp pu p k|| ke Py, O ph 6 KM kv, 1), O
pp p pK || pk pp pn pp pu pK||pk pp pn
_ p/ X k’ kb4 k’ 5 k/ kbg p/bz 77b2b4 + p/ X k’ kb4 k’ X k’/ kb2 p/b2 nb2b4
ok K, 0 ko, Dy, O Py, Mo kb, || koK Pk KM
p-p pe pok || kb2 pltr ophbs pp p p K || pk pp ph
Py, Meabs K, E-K o -k kb |- Py, Moabs K, k-k p K K"
p- p/ Do D k' 0 P/ ke k‘b4 p/b2 5{12 k/bg 0 p/ ke kb4
pp b pK||pk pp p pp p, pK||pk p-p ph
TPy, M Ky, kb2 ptz pbba | — Py, Moobs K, kb2 ph2 b
Pk K, 0 0 ok kb Pk ke koK || kK ook kM
p-p pe, poK || kP2 pPtr phbs pp p pK||pk pp ph
— pZQ 77b2b4 kll)g k} . kl p/ . k’/ k’/b4 + p;)Q 77b2b4 kég ]{3 . ]{3/ p/ . k‘l klb4
p/ X ]{ kb4 ]C . ]{/ p- k p- p/ pb4 p/ . k’ kb4 k’ . k’/ kbg p/b2 nb2b4
pp b, pK||pk p-p ph pp p, pK||pk pp p
= Dby, b Ky, Kb pt gt (Al gy, Ky, kb2 ophe pPebe
ok ke koK || kK ok kM ok ok kK || kK Pk K
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Usando o dicionario para simplificar a notagao,

pZQ Mboba kllyg kb2 p/bQ nb2b4 ng Mhobs kll)g A G pb4
=1 C Kk, H H F k" |—-|C k, H H F k™
G pm DBl A G ph p &2 kK™ || B G p"
Dby Mhabs Ko, A G pn Py, Mooy K, A G pn
+1| C kb4 H b2 p/b2 77b2b4 — | C kb4 H kb2 p/bg 77bzb4
Fook, 0 A G p m, B H F k"™
G py, B || k2 ph2 pbba G m, B A G pn
-1 C k, H H F K" |+| C k, H H F k™
G po, B | ky b, & Proo KR ke, D, O
G m Bl A G p™ G m, B A G pn
— | C kb4 H kb2 p/bz 77b2b4 + C kb4 H k,bg p/b2 nb2b4
F ok, 0| ky p, 0 Py, Mo Ky, || H F k™
G m, B kb2 pfbz pbeba G m B A G p
1 Dby Mhbs Kp, || H OF K™ | = | ph, s, ki, || H OF K™
G m, B 0 C kb ptr G k|| 0 C k™
G m, B A G pn G m, B A G pn
R O I S A Lol el I S W N I P e
F ok 0 0 C k™ C k, H H F k™
G m, B kb2 plbz et G m, B A G phn
- pZQ Mboby kll)z H F k’/b4 + ng Mboby kjiz H F k‘/b“
C 'k H||l A G p C  ky, H || k2 pb2 phb
G m, B A G pn G m, B A G pn
_ pZQ Nbaby kll)z ka p/bg 77bzb4 +4 pZQ Moy kll)z kbg p/bg 77bgb4
C k, H H F k™ C k, H H F k™
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Juntando os termos e simplificando a expressao,

G m Bl A G p

/bo boby

o pg}z Tbaby kl’)g kb2 p n
F ok, 0 0 C k™

G m, B A G pn G m, B A G p™
_ O kb4 H k.bg p/bg nbg b4 _ p;m ,r/b2 ba ké2 H F k,/b4
F ok, 0 ||k, p, & P2 kK20 C kM

Vv vV
=0 =0

Calculando o produto dos determinantes,

= A’F? - 2AFGH + B*C* - 2BCGH + G*H*.

— p/‘k,F:p,'k/,

nls x 11
6432

=(p- k@K =20 k)@ K)p-p) (k- k)
+ (0 K) @R =20 K) k) (- p) (R K) + (- p) (kK

B.2 Resumo dos termos

Os 21 termos calculados sao resumidos a seguir.

1.
77[1)([[1 ) N2
i s SR Lk
2.
nIQX[]Z 2 / N2
1o (p- k)" (- K)
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nls X I3

PR (p- k) (0 k).

nly x 11,

iz (p-0')" (k- k)"

77[5 X I[5

oz A k0K

77[6 X [IG

o A K0 k)

77[164><a2[[2 _ (p X p/)2 (k‘ . ]{3')2 + (p . k)Z (p/ . k/)2 + (p . k/)2 (p/ . k:)2

=2(p- k)W k) (p-p) (k-K)=2(p-k) (p- k) (0" k) (0" K),
n[zs:a%[[g =0 (kK + k) 0K+ (0 K) (R)

—2(p- k) (- K)(p-p) (k- K) =20 k) (p- k)@ k) (P - K),
77]24Xa2113 _ (p .p/)Q (k . k/)2 + (p . k)2 (p/ . k/)2 + (p ) k,)2 (p, ) k)2

=20 k) K)(p-p)(k-K) =20 k)@ k) (p-p) (k- K),

nhx 11,
6408
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11.

12.

13.

14.

15.

16.

e = ) (K 4 (e K (-
=2 k) k)@ R0 K) —2(p-
B nlé4>;él6 =) (kK + k) @K+ (-
=2 k) (p-K) (W' R) (0 K) = 2(p-
) 77124);;]4 = (- 0) (k- K) + (0B 0 )’ + (-
2R K) W -R) (- E) = 2(p-

nly x Ils

T 6dap
i ’7[;4>;é'16 =(-p) (kK + @ k)@ K+
_2(p'k)(p/'k,)(p'pl)(k-k’)_2(p,
B nlg4>;ﬁ[[4 — (0P (k- K) 4 -k K) + (p-

—2(p-k) (- K)(p-p)(k-K)—2(p-
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k:’)2 (- k)Q

K) (' k) (p-p') (k-

k,/)Z (p, ) /{Z)2

B) (@ k) (- p) (k-

k/)? (p/ . k>2

KW k) (p-p) (k-

k,/)Q (p, ) ]{,‘)2

)@ k) (p-p) (k-

k/)2 (p, ) ]{J)2

k) (- k)@ k) (@'

K,



17.

18.

19.

20.

21.

77]3 X II5
64af

77]4 X []5
643

77]4 X II6
647

-0 (kK +p k@WK + @ K@ k)

—2(p- k)@ K)(p-p)(k-K) =2 K) @ k) (- ) (k-F).

T]Ig X ]IG .
64ap

=k K =2 k)@ K) @ k)@ K

+B2( k) =2 K) (k) (p-p) (k- K)+ (p- ) (k- K,

= k)W K =20k @K@ k)@ K

+ K@k =20 k)@ K)p-p) kK + (- p) (k- K)?,

7][5 X [[6
6432

= k)W K =2k @ -K)(p-p) (k- K)

+ K@ k=20 K) @ k) pp) (kK + (- p) (k- K).

B.3 Soma dos 21 termos e probabilidade de interacao

Finalmente, adicionamos todos os termos seguindo a relacao

P

6 6
1 1
ZE, (1% IID), x 1T+ 5 > (I x II), % 11,

i=1 1<j=1
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obtemos

P =64 (o> + 57) [10(p - 7)* (k- K)* +10(p- k)* (0 - K)? +10(p- k) (0 - £’
8- k)(p-K)(P k) (k) =8p-k) @ -K)(p-p) (k- k) =8 - k)@ k) (p-p) (k- k)]
— 640 |12 (p- ) (k- K +12(p- k) (0 - K)° +12(p- 1) (0 - )°

—16(p-k)(p-K) (' k) (0" -K) = 16(p-k) (0" k') (p-p) (k- k) =16 (p- k') (0" k) (p- ) (k- k)]
Para escrever esta expressao em termos das variaveis de Mandelstam, definimos

s = (k+K)Y=@m+p),

= 2k-K =2p-9,

ou

t

p~]§ = p/~l{j/:—§’
u

-k/ = /-k:——'
p p 5

onde k e k' sdo os momentos dos fotons iniciais e p e p’ 0os momentos dos fétons finais.

Substituindo estas relagoes na probabilidade de interacao, temos que
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P = (a2 + 52) (1054 + 10t* 4+ 10u* — 8t2u® — 8t%s* — 8u232)

—2ap (634 + 6t* + 6ut — 8t%u® — 8t%5% — 8u232) .
Manipulando esta expressao, podemos reescrevé-la como

P=4(a—B)Y>[(s—t—u)(s+t—u)(s—t+u)(s+t+u)

+2(a—B)° (s"+ it +ut) +4(a® + 87 (s + 1+ ut).
Porém, como para os fétons a soma das variaveis de Mandelstam é nula,
s+t+u=0,
o primeiro termo ¢é nulo e a probabilidade de interacao é dada por

P:2[(a—6)2+2(a2+ﬂ2)] (s*+¢* +ub).
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