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Abstract 
Beam-based alignment (BBA) for quadrupoles is a rou-

tine process for circular accelerators to steer beam orbit 
through the magnetic centers such that the orbit is unper-
turbed when the strengths of quadrupoles are varied. The 
random errors associated with BBA are well known, but a 
type of systematic error appears to be neglected by the 
community. A standard measurement procedure involves 
variation of the quadrupole gradient. This systematic error 
is introduced when there is a non-zero dipole component 
after quadrupole strength is changed. This dipole compo-
nent can be also interpreted as a shift in the magnetic cen-
ter. The analytical formulas for this error and its amplifica-
tion factor with respect to the magnetic center motion have 
been derived and confirmed with simulations. We demon-
strate the significance of this error, potentially on the order 
of hundreds of microns, through both simulations and re-
cent experimental results at NSLS-II. In addition, a special 
term in this error that is not extractable from orbit meas-
urements alone will be discussed in detail.  

INTRODUCTION 
Beam-based alignment (BBA) for accelerators is a well-

established process in which electron beam is steered to 
pass through the centers of quadrupoles. This alignment is 
performed first during commissioning of an accelerator, 
and repeated afterwards as needed, whenever the electron-
ics of beam position monitors (BPMs) are modified, or ac-
celerator components such as BPMs and quadrupoles are 
physically moved whether intentionally or not. There are 
many varieties of BBA techniques, good summaries of 
which can be found in [1, 2]. Both model-dependent and 
model-independent approaches are available. The latter ap-
pears to be more commonly used when BPMs are located 
close to independently-powered quadrupoles, as they do 
not require precise knowledge on the actual accelerator lat-
tice. When those favorable conditions do not exist, the first 
approach is taken.  

In this paper, we focus on the model-independent BBA 
techniques such as the one implemented at ALS [3]. What 
is common to all these types is that they are all “nulling” 
techniques. The goal is to move around the beam orbit until 
we find a beam position at a quadrupole such that the orbit 
change with variation of quadrupole strength is minimized. 
The main topic of this paper is the systematic error in the 
center estimates these methods provide, when a change in 
the dipole component of the quadrupole, or equivalently, a 
motion of the quadrupole center, accompanies its gradient 
change.  

This systematic error was first noticed and reported by 
ALS in [4]. Their experimental BBA estimates varied sig-
nificantly for different amounts of gradient change. This 
was explained by a simple hypothesis that the dipole com-
ponent was changing nonlinearly with respect to its gradi-
ent. The source of this nonlinear change was attributed to 
the asymmetry of C-shaped magnets common to light 
sources that require photon beam extraction. However, this 
report appeared to have been largely unnoticed by the ac-
celerator community roughly for the last few decades. In 
[1], the authors discussed and derived a formula for this 
systematic error, but were seemingly unaware of [4]. Rea-
sons for this may include that they only analyzed in terms 
of center motion, instead of dipole component variation, 
and more importantly limited the discussions only to linear 
accelerators (linacs), while the earlier report was for a stor-
age ring. It was not obvious whether the same formula 
would apply to circular accelerators, as their derivation in-
volved the trajectory response matrix for a transport line, 
not the closed orbit response matrix for a ring. As a result, 
the relevance and impact of the formula in [1] have not 
been recognized by the circular accelerator community. We 
will mainly use the so-called “bow-tie” method (an exam-
ple data shown in Fig. 1) to demonstrate how serious this 
systematic error can be.  

 
Figure 1: A typical bow-tie plot. From each BPM, a set of 
difference orbit values Δ𝑥𝑥 are obtained by changing quad-
rupole strength. Each cluster of points at 5 discrete 𝑥𝑥 values 
corresponds to a different swing corrector setpoint (Differ-
ent colors indicate different BPMs). Linear fitting to each 
set generates a line for each BPM. The horizontal value of 
the zero-crossing point is 𝑥𝑥bt. 

SYSTEMATIC ERRORS OF BOW-TIE 
MEASUREMENTS 

We derive the formula for the systematic error in the 
bow-tie estimates in the presence of dipole component 
change when the strength of a quadrupole is changed. We 
will refer to this error as SED (Systematic Error induced 
by Dipole component change) for bow-tie measurements. 
There are other sources of systematic errors such as large 
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orbit angles with respect to the magnet central axis and 
large distances between the BPM and the quadrupole being 
measured. But we will ignore them in this paper. 

  
Figure 2: Kicks from a quadrupole at a reference state 𝑄𝑄𝑟𝑟 
(blue solid), and at a gradient-modified state 𝑄𝑄𝑚𝑚 without 
(red dash) and with (green dash-dot) dipole component 
change Δ𝜃𝜃𝑄𝑄. 

We assume the quadrupole whose center is being 
searched has zero length. The center of a thin quadrupole 
is defined to be the magnetic center where 𝐵𝐵𝑦𝑦 = 0 (we only 
consider the horizontal plane, but the vertical case is the 
same except the change in sign for 𝐾𝐾 and Δ𝐾𝐾). For a quad-
rupole with the integrated strength of 𝐾𝐾𝑟𝑟 at a reference state 
𝑄𝑄𝑟𝑟, the horizontal kick 𝜃𝜃𝑥𝑥 from it when displaced can be 
expressed as: 

𝜃𝜃𝑥𝑥 = −𝐾𝐾𝑟𝑟 ⋅ (𝑥𝑥 − 𝑥𝑥𝑐𝑐), (1) 
if 𝐵𝐵𝑦𝑦 = 0 (and hence 𝜃𝜃𝑥𝑥 = 0) at 𝑥𝑥 = 𝑥𝑥𝑐𝑐, where 𝑥𝑥𝑐𝑐 is the 
true magnetic center we aim to extract from the BBA meas-
urement. This line is shown as the blue solid line in Fig. 2. 
If we modify the quadrupole from the reference state to an-
other state 𝑄𝑄𝑚𝑚, with its integrated strength changed by Δ𝐾𝐾, 
but assume there is no dipole component change yet, the 
blue line moves to the red dashed line in Fig. 2: 

𝜃𝜃𝑥𝑥 = −𝐾𝐾𝑚𝑚 ⋅ (𝑥𝑥 − 𝑥𝑥𝑐𝑐), (2) 
where 𝐾𝐾𝑚𝑚 = 𝐾𝐾𝑟𝑟 + Δ𝐾𝐾. Note that 𝜃𝜃𝑥𝑥 is still zero at 𝑥𝑥 = 𝑥𝑥𝑐𝑐. 
Thus, the magnetic center has not moved in this case, and 
the blue and red lines still cross at 𝑥𝑥𝑐𝑐. 

Now suppose this state transition also induces a dipole 
component change Δ𝜃𝜃𝑄𝑄. The red line is simply shifted ver-
tically up to the green dash-dot line as shown in Fig. 2, and 
Eq. (2) changes into: 

𝜃𝜃𝑥𝑥 = −𝐾𝐾𝑚𝑚 ⋅ (𝑥𝑥 − 𝑥𝑥𝑐𝑐) + Δ𝜃𝜃𝑄𝑄 . (3) 
Notice that 𝜃𝜃𝑥𝑥 is no longer zero at 𝑥𝑥𝑐𝑐. The zero-crossing 
point has moved to 𝑥𝑥 = 𝑥𝑥𝑐𝑐 + Δ𝑥𝑥𝑐𝑐. So, the magnetic center 
has moved in this case. A dipole component change with 
its magnetic center fixed is equivalent to a magnetic center 
motion with its dipole component fixed (at zero). 

We may naively think that the bow-tie BBA method 
should tell us the estimate of this magnetic center motion. 
However, this is true only if Δ𝜃𝜃𝑄𝑄 = 0. What the method 
actually yields is the beam position at which the kick im-
parted by the quadrupole in the state 𝑄𝑄𝑟𝑟 is exactly the same 
kick applied in the state 𝑄𝑄𝑚𝑚, as it is only trying to find a 
position that disturbs orbit between the two different states 

by the least amount. Graphically interpreted, the bow-tie 
method attempts to find where the blue and green lines 
cross each other in Fig. 2, denoted by 𝑥𝑥bt, which is shifted 
by Δ𝑥𝑥sys from 𝑥𝑥𝑐𝑐. From Eqs. (1) and (3), we can obtain the 
expression for 𝑥𝑥bt as 

𝑥𝑥bt = 𝑥𝑥𝑐𝑐 + Δ𝑥𝑥sys, (4) 
where 

Δ𝑥𝑥sys =
Δ𝜃𝜃𝑄𝑄
Δ𝐾𝐾

. (5) 

We can further calculate the amplification factor 𝜅𝜅 of the 
quadrupole center motion when seen by the bow-tie BBA 
method: 

𝜅𝜅 ≔
Δ𝑥𝑥sys

Δ𝑥𝑥𝑐𝑐
=
𝐾𝐾𝑚𝑚
Δ𝐾𝐾

= 1 +
𝐾𝐾𝑟𝑟
Δ𝐾𝐾

. (6) 

Since 𝜅𝜅 is determined purely by the measurement setup pa-
rameters, this factor stays constant whether Δ𝜃𝜃𝑄𝑄 is zero or 
not. When Δ𝜃𝜃𝑄𝑄 = 0, no matter what the value of 𝜅𝜅 is, SED 
will be zero, as there is nothing to amplify. To minimize 𝜅𝜅, 
it is preferable to choose |Δ𝐾𝐾| as large as possible. How-
ever, in storage rings, |Δ𝐾𝐾| usually must stay small to avoid 
beam loss due to changes in tunes and/or linear optics. As 
a realistic example, if Δ𝐾𝐾 is only 1% of 𝐾𝐾𝑚𝑚, and the actual 
center motion is 2 𝜇𝜇m, the estimate for 𝑥𝑥bt will shift by 200 
𝜇𝜇m, i.e., an amplification factor of 100. 

Equation (5) can be also derived from closed orbit dis-
tortion analysis, including the effect of beta and phase beat 
caused by the quadrupole strength change [5]. However, 
this simple formula is true only if the BPM and the quad-
rupole are at the same location. Fortunately, this equality 
holds approximately at a BPM elsewhere, as long as the 
phase advance between them is not close to 90o or 270o and 
the conditions of 2𝜋𝜋 ⋅ Δ𝜈𝜈 ≪ 1 and 2𝜋𝜋 ⋅ Δ𝜈𝜈/sin(2𝜋𝜋𝜈𝜈(𝑟𝑟)) ≪
1 are satisfied where Δ𝜈𝜈 is the tune change and 𝜈𝜈(𝑟𝑟) is the 
tune at the reference state. 

UNOBSERVABLE PART OF SED 
SED would not be a huge problem if we could estimate 

it from the measurement data, thereby allowing us to re-
cover the true magnetic center after subtracting this error 
from 𝑥𝑥bt. Here we will present an argument that this is im-
possible with bow-tie measurements alone. 

In general, any dipole component change can be de-
scribed with a polynomial of Δ𝐾𝐾: Δ𝜃𝜃𝑄𝑄 = Σ𝑖𝑖=1∞ 𝑝𝑝𝑖𝑖 ⋅ (Δ𝐾𝐾)𝑖𝑖. 
Then, Eq. (4) can be expressed as (see [5] for details): 

𝑥𝑥bt = 𝑥𝑥𝑐𝑐 + 𝑝𝑝1 + �𝑝𝑝𝑖𝑖+1 ⋅ (Δ𝐾𝐾)𝑖𝑖
∞

𝑖𝑖=1

. (7) 

This expression tells us that the value of 𝑥𝑥bt can depend on 
the value of Δ𝐾𝐾 we arbitrarily choose in the case of non-
zero dipole component change. This was first observed at 
ALS [4], and has been recently re-discovered at NSLS-II. 

Note that the polynomial summation term is the only dy-
namic part in Eq. (7) and non-zero only if at least one of 
the coefficients 𝑝𝑝𝑖𝑖(𝑖𝑖 ≥ 2) is non-zero. In other words, the 
variation of 𝑥𝑥bt with Δ𝐾𝐾 is detectable only if the dipole 
component change is a nonlinear function of Δ𝐾𝐾. If Δ𝜃𝜃𝑄𝑄 
changes linearly with Δ𝐾𝐾, the value of Δ𝐾𝐾 we select does 
not affect 𝑥𝑥bt. This characteristic has a major ramification. 
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As the most problematic case, suppose Δ𝜃𝜃𝑄𝑄 is purely lin-
ear with respect to Δ𝐾𝐾. Then for any Δ𝐾𝐾, a bow-tie meas-
urement would produce the same estimate, which can lead 
us to naively conclude we are obtaining the value of 𝑥𝑥𝑐𝑐. In 
truth, however, we are only getting the value of 𝑥𝑥𝑐𝑐 + 𝑝𝑝1. To 
the best of our knowledge, there appears to be no way to 
extract the value of 𝑝𝑝1 from bow-tie measurements alone 
and would need direct magnetic field measurements to ac-
quire such information. 

This problem is illustrated with the simulation results of 
ELEGANT [6] using the NSLS-II lattice and one of the 
QM2A family magnets as an example. As shown in Fig. 3a, 
four different hypothetical hysteresis branches of Δ𝜃𝜃𝑄𝑄 vs. 
Δ𝐾𝐾 were considered. The simulated (circles) and analytical 
(solid curves) values of 𝑦𝑦bt for each branch are shown in 
Fig. 3b. The colors of the circles and curves in Fig. 3b 
match the colors of the different branches in Fig. 3a. For 
the blue Δ𝜃𝜃𝑄𝑄 curve, there was no linear part (𝑝𝑝1 = 0) and 
nonlinear part. The medians of the 𝑦𝑦bt estimates (from 180 
BPMs) for all the Δ𝐾𝐾 values stayed constant, close to 𝑦𝑦𝑐𝑐 
(the true center value of +5 𝜇𝜇m in this example), as ex-
pected. The error bars are also plotted, but too small to be 
distinguishable. The black Δ𝜃𝜃𝑄𝑄 curve was the sum of the 
blue curve and 2 periods of a sinusoidal wave. The median 
𝑦𝑦bt values varied with Δ𝐾𝐾 due to the nonlinearity of the 
Δ𝜃𝜃𝑄𝑄 curve, but oscillated around 𝑦𝑦𝑐𝑐, because the linear part 
was still zero. In contrast, the red Δ𝜃𝜃𝑄𝑄 curve had a linear 
slope of 𝑝𝑝1 = 200 𝜇𝜇m without any nonlinearity, while the 
magenta curve had an additional sinusoidal modulation on 
top of the red curve. The resulting 𝑦𝑦bt values were simply 
shifted by 𝑝𝑝1, as Eq. (7) predicted. These results demon-
strate that, without having the information in Fig. 3a, we 
cannot determine how far the 𝑦𝑦bt value is from 𝑦𝑦𝑐𝑐. 

 
Figure 3: (a) Different hypothetical hysteresis curves Δ𝜃𝜃𝑄𝑄 
vs. Δ𝐾𝐾 for QM2A. (b) Comparison between simulated and 
analytically predicted 𝑦𝑦bt for each hysteresis curve. 

The magnitude of 𝑝𝑝1 can be substantial in practice. For 
example, our NSLS-II magnetic field measurements of 
QM2A quadrupole family suggest it could add as much as 
200 𝜇𝜇m unobservable offset to 𝑥𝑥𝑐𝑐, if the range of 𝐾𝐾 used 
for bow-tie measurements is between 0.35 and 0.40 m−1, 
where the dipole component varies by up to 10 𝜇𝜇rad. 

EXPERIMENTS 
At NSLS-II we have recently discovered that measured 

𝑥𝑥bt values have strong dependence on the Δ𝐾𝐾 values. This 
triggered the investigation that resulted in the work pre-
sented in this paper. The estimate differences ranged from 
200 to 500 𝜇𝜇m, an example of which is shown in Fig. 4. 

The pair of BPM C04-P3 and quadrupole QM2G4C04A 
was used for this experiment. Eight different hysteresis cy-
cles between Δ𝐾𝐾 = −3 × 10−2 and +5 × 10−2 m−1 are 
shown. The importance of 𝑥𝑥bt dependence on not only the 
values of Δ𝐾𝐾 themselves but also the hysteresis loops is 
evident. Even when the same quadrupole and the same Δ𝐾𝐾 
value was used, different hysteresis loops apparently in-
duce different dipole component changes. This clearly 
demonstrates the need for magnetic field measurements 
that follow exactly the same hysteresis loop as would be 
used in a bow-tie BBA measurement. 

 
Figure 4: Hysteresis cycle dependence of experimental 𝑥𝑥bt 
for C04P3 BPM. (a) A cycle between Δ𝐾𝐾 = −3 × 10−2 
and +4 × 10−2 m−1 in red. The rest of the colors corre-
spond to cycles between Δ𝐾𝐾 = 0 and the respective maxi-
mum Δ𝐾𝐾 values (up to +5 × 10−2 m−1). Black star is the 
reference state. (b) 𝑥𝑥bt estimates that correspond to the hys-
teresis loops in (a) with the same colors. 

CONCLUSION 
We have derived a simple, but accurate, formula for SED 

in the standard bow-tie BBA measurement technique for 
ring accelerators. The formula for the error amplification 
factor with respect to the amount of magnetic center mo-
tion during its gradient variation was also derived from this 
SED formula. Even a miniscule magnetic center movement 
of 1 𝜇𝜇m after its strength change can easily result in SED 
on the orders of hundreds of microns for rings if experi-
mental parameters are not carefully chosen. 

If the dipole component changes nonlinearly with re-
spect to the quadrupole strength change, BBA estimates 
will vary and thus the existence of the dipole component 
change is detectable from orbit data acquired during BBA 
measurements. However, if the dipole component change 
is linear, BBA estimates will stay constant, which makes it 
indistinguishable from the case when there is no dipole 
component change. At the moment, the only way to solve 
this issue is to have an independent magnetic field meas-
urement data for dipole components. Furthermore, this 
field measurement must be carried out while following the 
hysteresis curve that would be followed during a BBA 
measurement. 

All the BBA techniques used for circular accelerators 
that belong to the same family as the bow-tie method are 
likely to suffer from SED and the same mitigations should 
work and be utilized, if possible, to minimize the impact of 
SED. 
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