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Abstract We study three aspects of the early-evolutionary
phases in low-mass stars within Eddington-inspired Born—
Infeld (EiBI) gravity, a viable extension of General Relativ-
ity. These aspects are concerned with the Hayashi tracks (i.e.
the effective temperature-luminosity relation); the minimum
mass required to belong to the main sequence; and the max-
imum mass allowed for a fully convective star within the
main sequence. Using analytical models accounting for the
most relevant physics of these processes, we find in all cases
a dependence of these quantities not only on the theory’s
parameter, but also on the star’s central density, a feature
previously found in Palatini f(R) gravity. Using this, we
investigate the evolution of these quantities with the (sign
of the) EiBI parameter, finding a shift in the Hayashi tracks
in opposite directions in the positive/negative branches of it,
and an increase (decrease) for positive (negative) parameter
in the two masses above. We use these results to elaborate
on the chances to seek for traces of new physics in low-mass
stars within this theory, and the limitations and difficulties
faced by this approach.

1 Introduction

Despite the many tests that Einstein’s General Theory of Rel-
ativity (GR) has successfully passed [1], over the last decades
a plethora of modified theories of gravity has been proposed
in order to address its shortcomings [2,3]. These include the
yet undetected dark energy/matter sources needed for the
consistence of the cosmological concordance model [4], or
the existence of space-time singularities at high-energy scales
[5], such as the one at the center of black holes and the Big
Bang singularity. Attempts to modify GR must come along
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with the necessity to comply with its well tested weak-field
limit, while deviations with respect to its predictions must be
searched in those domains where the strength of the gravita-
tional interaction grows large enough, for instance, via gravi-
tational waves out of binary mergers [6], gravitational lensing
and shadows [7], or in the structure of neutron stars [8].

From an astrophysical point of view, neutron stars are suit-
able objects to test modified gravity via the opportunity in the
combination of electromagnetic radiation and gravitational
waves that the newly born field of multimessenger astronomy
offers [9]. Among the open problems in this field, one can
mention the degeneracy of the mass-radius relations due to
the fact that the equation of state at supranuclear densities is
unknown [10], the theoretical difficulties to meet the observa-
tions of neutron stars above two solar masses [11,12], or the
so-called mass gap problem, namely, the existence of objects
above the neutron star mass limit but below the lightest black
hole mass, as manifested in the observation of gravitational
waves from the merging of two objects with 2.6 and 23 M,
respectively [13].

We consider here the alternative path of focusing on other
astrophysical objects for which their internal structure and
equation of state are better known. Even though in such
objects the gravitational interaction is less strong as com-
pared with neutron stars and black holes, modified gravity
effects are able to induce extra terms to the Poisson equation,
see e.g. [14]. This leads to a different stellar structure whose
associated macroscopic features can be tested. As examples,
we highlight the predictions for the time scales and effec-
tive luminosities of both main sequence stars [15] and sub-
stellar objects such as brown dwarfs [16] and giant gaseous
planets [17], lithium abundance and age determination for
white dwarfs and low mass stars (LMS) [18-20], the min-
imum hydrogen burning mass for high-mass brown dwarfs
to belong to the main sequence [21-25], early evolutionary
tracks of LMS [26], and even tests with exoplanets [27-29]
are at our disposal.
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The main aim of the present work is to highlight the most
important phases of the early evolution of LMS, within a suit-
able extension of GR dubbed as Eddington-inspired Born—
Infeld gravity (EiBI) [30]. EiBI gravity belongs to the so-
called Ricci Based Gravities (RBG), a family of viable grav-
itational extensions of GR constructed in terms of scalars out
of contractions of the metric with the (symmetric part of the)
Ricci tensor. RBGs are formulated a la Palatini, that is, tak-
ing metric and affine connection as independent entities. This
fact allows them to yield second-order field equations that do
not propagate additional degrees of freedom beyond the two
polarizations of the gravitational field. This acts as a safe-
guard of (most of) these theories against getting into conflict
with solar system tests and gravitational wave observations
so far, while at the same time offering a workable frame-
work to extract new gravitational physics in the strong-field
regime.

The relative simplicity of the stellar structure equations
of EiBI gravity is a key feature that has allowed the com-
munity to scan its predictions as compared to GR expec-
tations within different types of stars, see e.g. [31-38]. In
particular, on its non-relativistic regime, this theory leads to
a modified Poisson equation with a single extra free param-
eter (for a full account of the theory and its phenomenology
we refer the reader to [39]). In our analysis of the pre-main
sequence evolution of LMS within it, we shall mainly focus
on the paths followed by the contracting star, represented by
Hayashi tracks [40] on the Hertzsprung—Russell (HR) dia-
gram, and the associated limiting masses by the hydrogen
burning as well as the development of a fully convective core,
respectively, at the gateway of the main sequence. To sim-
plify our analysis we shall disregard the deuterium burning
process which happens during the pre-main sequence phase
and in massive brown dwarfs, since the energy generated by
this process is significantly smaller than the one of the hydro-
gen ignition. Another simplification of our analysis lies on
the fact that in order to properly incorporate lithium burning
in the low-mass stars or cooling process of a brown dwarf
object, one needs to use a more realistic model of the electron
degeneracy than the one used in this work, while the choice
of the opacities is always subject to discussion.

This work is organized as follows: in Sect. 2, we intro-
duce the main ingredients of EiBI gravity, and work out its
non-relativistic equations until arriving to the generalized
Lane-Emden equation for a polytropic equation of state, and
set our simplified photospheric model for it and the convec-
tive instability criterion. In Sect. 3, three main aspects of
the early evolution of LMS within this theory are discussed:
(i) its Hayashi tracks, namely, the effective temperature vs
luminosity evolution, (ii) the minimum main sequence mass,
namely, the minimum required mass for a star to stably burn
sufficient hydrogen, and (iii) the maximum fully convective
mass. In all these three cases we discuss the modifications in
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both the positive and negative branches of the EiBI parameter
(which appears unavoidably entangled with the star’s central
density, a common feature to RBGs), with the former being
the most succulent from a physical point of view. Finally,
Sect. 4 contains some closing thoughts about the feasibility
of getting strong bounds on RBG parameters via this proce-
dure.

2 Model and basic equations
2.1 Action and field equations of EiBI gravity

The action of EiBI gravity is given by

1
Skipr = Zfd4x [\/—|ng +eR, (D) — Ay —8]
+Sm(g/w» Ym) (1)

where k2 = 87 G /c4 is Newton’s constant, € is the (length
squared) EiBI parameter, A is related to the asymptotic char-
acter of the solutions (from now on we fix A = 1 to deal with
asymptotically flat solutions), vertical bar denote a determi-
nant, while we reserve the notation of g for the determinant of
the space-time metric g, the latter being a priori indepen-
dent of the affine connection I' = Ffw of the (symmetric)
Ricci tensor Ry, (). As for the matter fields, collectively
labeled by ,,, they only couple to the space-time metric,
but not to the independent connection I', which is consistent
as long as no fermionic fields are present [41].

Since we are working in the Palatini approach, we take
independent variations of the action (1) with respect to metric
and connection in order to obtain the equations of the theory.
These are given by [30]

V=g = V=g (8" — kPer™), @)
V. (vV=44"") =0, 3)
where the covariant derivative is defined for the indepen-
dent connection I' appearing in the action, and we have

in addition used the Jacobi formula. Furthermore, we have
introduced the stress—energy tensor of the matter fields as

Ty = _\/ng gﬁfﬁ and defined a new metric as
quv = guv + € Ryy(D). “4)

Note that g,, is the matrix inverse of ¢"”, i.e., it fulfills
qpaq®’ =3, and differs from q“P 8ua8yvp inside the matter
sources. It is conveniently introduced this way in order to
subsequently rewrite the relation (4) in the algebraic way

9y :g/mQaw (5)
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which can be alternatively rewritten with indices “up” just
by inverting the deformation matrix, Q" . Indeed, plugging
the above expression into Eq. (2) yield the algebraic relation

Q'2@ Y, =8 — ke TH,. (6)

which immediately allows to write the shape of this matrix
for every matter source of interest. Moreover, using these
definitions the metric field equations (2) can be recast as (see
Ref. [39], chapter 2, for details)

RM\(q) = |Q+1/2 (cosr +e2Tm,), )
where the gravitational EiBI Lagrangian can also be
expressed in terms of the deformation matrix as Lo =
|s€21|(12/ i 1. The representation (7) of the EiBI field equations
puts forward the existence of an Einstein frame for this the-
ory, sourced on its right-hand via additional (non-dynamical)
couplings in the matter fields, a common feature of the whole
RBG family [42]. In the non-relativistic limit, all these RBG
theories share a common set of extra pieces to the Poisson
equation with theory-dependent coefficients [43].

2.2 Non-relativistic stellar structure equations

Let us thus head to the non-relativistic limit of the field equa-
tions (7) above. To this end, we set the following ansatz for
the time-independent metric:

ds; = —(1420)dt* + (1 - 2y) dXd¥, (8)

where ® and v are only functions of X. As for the stress—
energy tensor, since the pressure is generally negligible
for non-relativistic stars, we take a relativistic pressureless
fluid, 7" = putu”, where p is the energy density and
g"uyuu, = —1 a unit time-like vector. From Eq. (6), we
can easily find the components of the corresponding defor-
mation matrix and apply them to Eq. (5) to get the metric
components of g,

(1429

V1+«kZep

From this expression it is clear that the time component
depends on the functions X. If one now expands the above
metric up to linear order in ®, ¥, p and their derivatives
as well as the time component of the Ricci tensor, R, =
R, (g), and plugs them into Eq. (4), for a static, spherically
symmetric space-time, one finds

1 d [ ,d® K2 n Kle d 2 dp (10)
——|rr—)=— —— ).
r2dr dr 2 P 4r2dr dr

di* + (1 = 2y)v/ 1 + k2epdidi. (9)

2 _
dsq—

This is the modified Poisson equation [31,43] which can be
rewritten in a more well-known way as

K2 K2€

2 2
where Laplacian operators retain their usual meanings in
terms of the space-time metric g, while the second term corre-
sponds to the EiBI correction. Using the hydrostatic equation
‘2—? =—p! ‘fi—f and integrating it over the radial coordinate
r, the above equation transforms into

dP KIM(r)p k*epdp
—=- - £ (12)
dr 8mr? 4 dr
where the mass function M (r) is defined as
r
M) = / 47 x? pdx. (13)
0

It should be noted that a common property of Palatini the-
ories of gravity fulfilled by the EiBI one is that since the
new dynamics is sourced by the stress—energy tensor of the
matter fields, in vacuum, 7#, = 0 the theory boils down to
GR plus a cosmological constant term (as long as A # 1).
This means that the theory does not propagate extra degrees
of freedom beyond the two polarizations of the gravitational
field travelling at the speed of light [44]. Since there are no
other fields contributing to the asymptotic mass of the space-
time, one can safely define the mass function above in a
similar fashion as in GR itself, and the modifications to the
shape of such a function will pop up via the corrections to
the local energy density by EiBI-effects. The solutions of the
hydrostatic equilibrium equations (12) and (13), equipped
with an equation of state (given in Sect. 2.3), provide the
main ingredient from the gravitational sector for the inter-
nal and external features of a LMS on its early evolutionary
stages. As shall be discussed later, they also contribute to the
description of the boundary region between the star’s interior
and its photosphere, and have an impact on the photospheric
quantities.

2.3 Polytropic stars

It is now time to move to the matter description of LMS. Our
simplified model assumes a fully convective interior, from
the center up to the photosphere. Such objects are typically
well described by a polytropic equation of state which in a
general case takes the form

n+l

p=Kpm, (14)
where n is the polytropic index, while K is the degenerate

parameter which carries the information about the micro-
scopic features of the fluid, such as e.g. electron degeneracy,
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Coulomb force, and ionization. Let us introduce the follow- T = K 0 L!/ g (22)
ing dimensionless variables Nakp

p=pb". P=pb"t r=rck, (15)

where p. and p. are the star’s central density and pressure,
respectively, while 7, is defined via the expression

2n+ DHKpl"!

K2p2 2

2 _ 2(n+ 1) pc i

c —

(16)

These variables allow to rewrite the hydrostatic equilibrium
equation (10) in a more suitable form under the modified
Lane-Emden equation

d Zde n—1 _ _£2pn
g{f £[1+a9 ]}_ £26". (17)

In this equation the EiBI corrections are encapsulated into
the single dimensionless parameter

€en

25
2rg

o =

(18)

which depends not only on the polytropic parameters (as hap-
pens in GR) but also on the star’s central energy density p,, as
given by Eq. (16). This dependence on the local density of the
matter sources is a general feature of Palatini theories of grav-
ity (at least for the RBG family), caused by the particular way
the matter fields source the new gravitational dynamics [45],
and strongly departs from what happens in other theories of
gravity, including GR itself. This implies that astrophysical
constraints on EiBI gravity (and on the whole RBG family)
parameter requires further information on the star’s central
density, as we shall see later. Additionally, this parameter
of Eq. (18) is the one that indeed appears in all the modi-
fied equations and, as a consequence, the constrains that one
could set to the EiBI parameter by early-track stellar evolu-
tion will be unavoidably biased by the guess/assumption on
the central density of the object under study. This implies a
limitation on the comparison of bounds found for other com-
pact (stellar or not) objects within this theory [31-38], unless
more reliable methods are found in the future to fix the star’s
central density.

The generalized Lane—-Emden equation (17) can be used to
rewrite the mass function (13) as well as other relevant stellar
features such as radius, central density and temperature in
terms of its solutions:

M = 47r,0cr3a)n, (19)
R =y, (£>”MH, (20)
G
3M
Pe =y (m) , 2D

@ Springer

where kp is Boltzmann’s constant, N4 the Avogadro number
and p the mean molecular weight, while the central temper-
ature is defined as T = NIZ 5 pe/™ The three remaining con-
stants, @y, ¥», and §,,, come from the evaluation of the corre-
sponding solution of the generalized Lane—~Emden equation

(17) at the star’s surface, &g, via the expressions

[ a0 ] T e do
wp = [—s £<1+a9 )}_[—g £L_5R, 23)

n

3

1 n 1
Yo = (4m)=3(n+ 1)37 w; " &R, (24)
&R _ &R
3 [ﬁ (1 +a9”_1):| B _3ﬁ’ ’ >
d& d& le=&p

where the last equalities come from applying the boundary
condition of the surface, i.e., 8(£g) = 0.

In general, analytic solutions to the generalized Lane—
Emden equation (17) are not possible, so one has to resort to
a numerical resolution procedure. For the sake of this work,
let us take the value of the polytropic index n = 3/2, which is
the one suitable to describe the convective interior of a LMS.
In such a case, one can approximate the central behaviour of
the solution of the Lane-Emden equation (17) by

8y = —

£ £

where the initial conditions 8(0) = 1 and 6’(0) = 0 have
been applied. This result will prove its usefulness later.

2.4 Simple photospheric model

As already mentioned, the model described above holds up
to the photosphere, which is the outer, luminous layer that
delimits the star. It is formally defined as the radius for which
the so-called optical depth equals the value 2/3 (see e.g. [46]),
that is'

T(r) = /Oolcop,odr = %, 27

Yph

! It should be stressed that when one attempts, using the standard ten-
sorial approach, to match an internal fluid with a polytropic equations of
state of the form (14) to an external vacuum (Schwarzschild) solution,
the particular way the matter sources the new gravitational corrections
in Palatini theories of gravity of both f(R) [47] and EiBI types [31],
curvature divergences may potentially appear at such a surface, thus
questioning the viability of these theories. However, a re-assessment of
this problem using the formalism of tensorial distributions within f(R)
gravity [48] shows that the problematic range of polytropic indices get
shifted beyond the region of physical interest. Though a similar anal-
ysis for EiBI gravity has not been carried out yet, we expect similar
conclusions to be reached there.
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where k,, is dubbed as the opacity, a phenomenological
quantity playing a key role in the characterization of the star.
Later on, we shall use various opacity models, depending on
the physical features of the material filling the star. The pho-
tosphere is so close to the surface of the star that its radius, rph,
can be well approximated by the star’s radius, R. The pho-
tospheric temperature, often called “effective temperature”,
is the one appearing in the Stefan—Boltzmann equation

L =4noR*Tl, (28)

where o is the Stefan—Boltzmann constant and L the lumi-
nosity. Therefore, we shall assume the star to radiate its
energy as a black body with a temperature T.

The hydrostatic equilibrium equation (12) can be conve-
niently rewritten in the following way

K2ep’
p=- <g+ 1 ) (29)

where primes indicate radial derivatives, while g is the sur-
face gravity defined as

_ K2M(r) K2M
~ 8ar? 87 R?

= const. 30)

Taking up to two derivatives in the equation above and using
the definition (13), one can combine the resulting expressions
to find

. M)

T 2m GD

so that Eq. (29) evaluated in the photospheric region
becomes

;o €
Pon = —P8 (1 - ﬁ) , (32)
where in this equation we have set units k> = 87G (and
assumed ¢ = 1 from now on). This equation can be integrated
with the help of (27), providing the photospheric pressure
as

2
pon = —— R (33)

It is clear now that the most relevant element of the photo-
sphere’s modelling is its opacity. Depending on the physical
conditions, mainly contained within the pressure and temper-
ature regimes of the considered stages of the stellar evolution,
we shall use different analytical expressions, which approx-
imately reflect how opaque matter is to the electromagnetic
radiation.

2.5 Convective instability: modified Schwarzschild
criterion

Another crucial information in the description of stellar
interiors is how the energy is transported through different
regions of a star. Since our LMS is modelled by a fully con-
vective sphere enveloped by a radiative photosphere, one
needs a formal criterion encapsulating the physical condi-
tions responsible for any of those energy transports. This is
given by the so-called Schwarzschild criterion, turning out to
be dependent on the underlying theory of gravity, as shown in
[19]. Therefore, the heat is transported via radiative processes
when the temperature gradient is smaller than the adiabatic
one

grad,,, < grad,,, (34)

where these operators corresponds to gradients of tempera-
ture computed with respect to coordinates of the metric g. For
the rest of our setup we shall model the photosphere’s matter
as an ideal, monoatomic gas, for which it can be shown that
the adiabatic gradient has a constant value, V.4 = 0.4 [46].
On the other hand, the radiative gradient is defined as

d dInT (35)
ra = .
g rad d ln P rad

To find its form and dependence on EiBI gravity parame-
ter, we need to analyze the radiative heat transport equation,
which is given by

or 3 kel

= 36
am 64m2a riT3 (36)

where k. is the radiative or/and conductive opacity, [/ the
local luminosity, while @ = 7.57 x IO_ISCHT%K4 represents
the radiation density constant. Combining the above expres-
sion with the modified hydrostatic equilibrium equation (12)

differentiated with respect to the mass, one gets

-1
oT 3icre | Gm  «2ep
S AT [ . 37
oP  l6mr2aT? < r2 + 4 7

Using this result into the definition (35) provides the radiative
temperature gradient for EiBI gravity as

gradraa’ =

3krel p ( € >—1 ’ (38)

167wr2aT3 \" 72

and therefore, depending on the value of the EiBI parameter
€, this modification has a (des-)stabilizing effect, altering a
radiative region development.

@ Springer
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3 Early evolution of low-mass stars

With the formalism developed in the previous section, we are
ready to study the early evolution of a LMS within EiBI grav-
ity. When the baby proto-star approaches the main sequence,
it is a luminous but otherwise cold (sub-) stellar object. Sim-
ilarly as for the later phases, such an object can be accom-
modated on the HR diagram; thus, it can be found on the
right-hand side part of the evolutionary diagram, above the
main sequence band. The evolutionary path that it follows is
called a Hayashi track [40], described by a relation between
the effective temperature, luminosity, mass, and metallicity,
where the last one is responsible for the shape of the curve.
However, since we are dealing with a toy-model description
to understand the new features brought by the gravitational
corrections of the EiBI gravity, that aspect will not be appar-
ent in our subsequent analysis.

A stellar object will leave its Hayashi track when any of
the following processes happens:

e Radiative core development: Since the luminosity
decreases as the baby star follows the Hayashi track down
but the effective temperature remains almost constant,
this means that, from the Stefan—Boltzmann law, the star
is contracting. Therefore, it may happen that the star’s
interior becomes radiative, as a consequence of increas-
ing its interior temperature. In such a situation, it will
reach a minimum and follow an almost horizontal line
before getting to the main sequence, moving to higher
effective temperatures. This stage of the early evolution
is called a Henyey track [49-51], and it will not be stud-
ied here; however, in Sect. 3.3 we shall discuss in detail
the onset of the radiative core development as a bound-
ary condition of the fully convective star on the main
sequence.

e Hydrogen ignition: When the central temperature and
pressure increase, the conditions present in the stellar
core can become sufficient to ignite hydrogen and stop
further gravitational contraction. If the process is stable,
in other words, when the energy radiated away through
the photosphere is balanced by energy produced by the
hydrogen burning in the core, the star has evolved to
the next stage of the stellar evolution, that is, the main
sequence phase, which we analyze in Sect. 3.2.

e Contraction stops at the onset of electronic degeneracy:
This process will happen when none of the above ones
takes place — that is, the interior of such an object is too
cold to start hydrogen burning. Apart from the light ele-
ments burnt in the initial phase, those objects do not pos-
sess any source of energy production in their cores and,
therefore, they will cool down with time when electron
degeneracy pressure balances the gravitational contrac-
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tion [52]. Such objects are called brown dwarfs, and will
be discussed somewhere else in detail.

3.1 Hayashi tracks

In what follows, we will now focus on a simple description
of the Hayashi tracks in EiBI gravity. As mentioned before,
the objects following this stage of the evolution are fully
convective, and we shall also assume that their interiors are
made of a fully ionized monatomic gas with temperature
T and mean molecular weight . In such a situation, the
equation of state can still be formally recast as polytropic
(14):

p=KT'"", (39)

where the polytropic constant K is related to the degenerate
one by

B Nak —(n+1)
K = ( A B) K" (40)
nw

Note that in the relation (39) we have used the ideal gas law
given by

_
NakpT’

p (41)

It is worth stressing that K depends on the theory of gravity,
since it can be expressed with respect to the solution of the
modified Lane-Emden equation (17) via

1-1 53
M “nwRn"", 42)

4 "G
K = n+1 _
[sR (=6, (ER)" 1} n+1

Note also that the equation of state (39) is valid up to the
photosphere, since above the interior-photosphere boundary
the energy transport is ruled by radiative processes instead.
In such a region, we shall use a simplified relation for the
absorption law, given by the Kramer formula:

Kabs = kop' T . (43)

For cold stars, whose effective temperatures lie inside the
range 3000 < T < 6000 K, the surface layer is dominated
by H™ opacity [46]. Considering the hydrogen mass fraction
as X = 0.7, the opacity is given by

Ky- = K(),O% 7% cm? g™ !, 44)

with kg ~ 2.5 x 10731 (T%)z)’ where the metal mass frac-

tion Z (or metallicity) is an important element in the stel-
lar modelling. Its value is typically taken within the range
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0.001 < Z < 0.03 [53]; as an example, the solar metallicity
is Z = 0.02. Since that region can be also modelled as an
ideal gas, the opacity (44) can be expressed as

Kp- = Kgp% 785 em?g !, (45)

1
where we have redefined x; = ko (ﬁ)z ~ 1.371 x

107337 u% Particularizing the relation (27) to H™ opacity,
one finds that the photospheric pressure is

€
2g(“ﬁ)

3iy- (40

Pph =

Applying the solution of the modified Lane—Emden (17) for
n = 3/2 to the above expression, the Stefan—Boltzmann
law (28) and the opacity expression (45), the photospheric
pressure above takes the form

(47)

M 2/3
ppn = 8.11279 x 1014[ p ] ,

ﬁLT4'SZ

where we have redefined the brackets appearing in Eq. (46)
as

2a
For simplicity, we have removed the sub-indices n appearing
in the relations (23) and from now on we will understand
them as their values for n = 3/2.

The above photospheric pressure must be matched to the
pressure of the ideal gas given by the relation (39) evaluated
at the photosphere. The latter yields, after using the Stefan—
Boltzmann law (28), the effective temperature under the form

51r3/217,,2 \ /11
wL>“Mp
—"h> : (49)

— -6
Terr = 9.1960 x 10 ( “ogs

which after using the derived photospheric pressure (47) pro-
vides the result

1

102
Ty = 2482105 L M
Lo Mg

where we have re-scaled both mass and luminosity to their
solar values, {Mq, Lg}. Let us notice that the numerical
value in the above expression is too low; it should be almost
a twofold larger. The reason of this reduced value lies in the

|~

P
Z5 (J=FET
(50)

&

simplifications we have made, mainly related to the photo-
spheric modelling. Notwithstanding, this analytical formula
allows us to track down the modifications introduced by EiBI
gravity to the early stage of the stellar evolution. Therefore,
for a given star with mass M, uniform mean molecular weight
., and metallicity Z, the above expression gives the corre-
sponding Hayashi track. These almost vertical lines are evo-
lutionary tracks of infant stars with masses supposedly below
~ 0.5M¢, though such a limiting mass also depends on the
theory of gravity. Its shape and position on the HR diagram
depend not only on the metallicity, but also on the theory
of gravity, which in the present case is encapsulated in the
parameter B appearing in Eq. (48) but also through the solu-
tions of the extended Lane—Emden equation (17). Note that,
in addition to the phenomenological parameters above, and
as discussed in the previous section, in EiBI gravity one has to
face the fundamental feature of this theory that the new grav-
itational dynamics includes a contribution from the energy
density (here encapsulated in the star’s central density), as
Eq. (18) tells us. Therefore, the usefulness of the crude mod-
elling employed here, rather than providing a robust and reli-
able model of the early evolution of these stars, is to seek
the expected modifications of these gravitational theories to
GR predictions on an equal-footing. Besides the necessary
amendments and upgrades to this model, more reliable pre-
dictions on the physics of these stars would require to go to
full numerical simulations (using e.g. MESA [54]), which is
beyond the scope of this work.

Therefore, for the sake of our computations, we shall take
in what remains of the paper a reference central density of

pe ~ 103 g/em®. (51)

According to the discussion above, bounds on « (or, for the
sake of the argument, on 8 via (48) would be translated on
bounds on € using Eq. (18) (after choosing a polytropic index
n and constant K'). Such uncertainties on phenomenological
quantities render such bounds on € as much more unreliable
than those obtained, for instance, in particle physics exper-
iments [55]. Consequently, we shall refrain ourselves from
getting to any deep conclusion on the practical consequences
from observations of the analysis below. Having said this, as
presented in Fig. 1, EiBI gravity shifts the tracks in oppo-
site ways depending on the sign of the theory’s parameter
¢, either in the direction of the forbidden zone (for € > 0),
which lies in the region of lower temperatures, or against it
(for € < 0), the size of such corrections encapsulated on the
size of « in this plot. Let us also point out that in this plot
we have chosen a value of « = 0.1, since this is the upper
bound compatible with the minimum main sequence mass
observations, which we describe in the next section.
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Fig. 1 The piece of the HR diagram representing shifted Hayashi
tracks by the modifications introduced by EiBI gravity model in loga-
rithmic scale. The curves are given by the Eq. (50) taking M /Mo = 1/2,
for some chosen values of the parameter « defined in Eq. (18) as com-
pared to the GR/Newtonian curve, « = 0

3.2 Minimum main sequence mass

Using the ingredients introduced in the previous section, we
are now capable to compute the minimum main sequence
mass (MMSM). This is the minimal mass required by a star to
ignite sufficiently stable thermonuclear reactions in its inte-
rior to compensate photospheric energy losses. Even though
the central temperature can be sufficient to start the p-p chain,
itis not necessarily enough to complete it. The thermonuclear
rates depend mainly on the temperature and density, in such a
way that the energy generation rate can be well approximated
by power laws of the form (see [52] for details)

) ) T s P u—1
e (1) 2)

where the two exponents can be phenomenologically fitted
as s ~ 6.31 and u ~ 2.28 at the transition mass of the core,
while the function

=6 T pg_l ergs g_ls_l, (53)

with &y & 3.4 x 107 in suitable units. The corresponding
luminosity of the hydrogen burning is found as

R 2
L,y = fé,,p M =47Técr3pc/ g (v+¥5) £2dg,  (54)
0

where we have used the fact that (T'/T,.) = (p/pc)*/3 along
the adiabatic core. The last integral can be easily computed by
using the approximation (26) and the definition (19), which
yields the result
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rp = w3/2(2s + 3u)3/2 Cel (55)
In this approximation, we have taken into account the fact
that most of the hydrogen burning will be produced in a
region near to the core of the star. Now, considering that
the fraction of hydrogen in a high-mass brown dwarf is of
75%, and that the number of barions per electron can be
approximated to p, = 1.143, besides setting the following
degenerate polytropic constant

3 2 2/3h
P ﬂs)/3 & <1 N “_d), (56)
Smemy;” e n

where 7 is the reduced Plank constant, m, is the electron
mass and m g is the proton mass. Then, the luminosity (55)
can be recast as

85'49 (1+ 06)3/2 1197 nlO.lS
)/16‘4660 (g + n)16.46 ’
(57

Ly, =154x10"Lg

where we have defined here, by convenience, M_; =
M/(0.1Mp). In order to find the MMSM we need to equal
this hydrogen burning luminosity to the one of the photo-
sphere. For the purpose of computing the latter, we take
Eq. (46) and assume again that the components of the stellar
atmosphere behave as ideal gas, that is

€
_ 2g <;K;JF) ) (58)

PpnkpTpn
pwm

This equation will allow us to get a relation between p,, and
M, but before going that way, let us first rewrite the surface
gravity g defined in Eq. (30) as

G3 MS /3
8= W’ (59
and consider that the photospheric temperature can be found
from the matching of the specific entropies of the gas/metallic
phases there, which yields [52]

1.8 x 10%2-,;‘2

Tpn = 1.545 (60)
n
Replacing the above two equations into (58), we find
109211 37117 0.70
ppn = 2957 x 10751 (e P) (61)

(v KO (ki) 70
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Inserting this result back to Eq. (60), the photospheric tem-
perature becomes

G089 y40-49 (MmHIB)OSO

T,n = 2.254 x 10* .
" 19 (7 K)O (k)00

(62)

Therefore, the photospheric luminosity, given by L,;, =
47 R0 T;h, can be expressed in terms of the star mass, M,
as follows

131118
MZ-{'B
118
7999037 (g + 7)037c L]

Ly =0.534Lg (63)

where we have defined the quantity x_» = xg/(1072 cm?

g~ 1. Finally, equalling the hydrogen burning luminosity (57)
with the photospheric one (63), we find the following expres-
sion

)/1'51600'09(Old + n)].SlﬂO.ll

MMMSM — 0.227
! (o + 1)0-145051 133,011

, (64)

where the EiBI dependences enter in this expression both via
the coefficient « in Egs. (18) and Eq. (48) and via the param-
eters {w, y, §} obtained from the resolution of the extended
Lane-Emden equation (17). This is the MMSM for EiBI
gravity under the assumptions and simplifications above. In
order to compute it for different values of the EiBI parame-
ter, the main obstacle here is the fact that o depends on the
central density of the star, as can be seen from Eqs. (16) and
(18). Therefore, for the sake of our calculations we shall take
the maximal value for the central density of p. ~ 10° g/cm?
[52], which allow us to compute the MMSM and thus set
bounds on the size of « as coming from observational con-
straints. In Table 1 we actually compute the set of {y, w, §}
values for several choices of the parameter « in order to find
the corresponding MMSM. For « = 0 (GR case) we get
MMMSM ~ (0.084 M, which is somewhat halfway between
other analytical calculations [52] and the results of numerical
simulations [56]. For non-vanishing values of «, this table
shows that for positive (negative) o the MMSM is larger
(smaller). Thus, the positive branch of « is the most inter-
esting one for our purposes, since it allow us to constrain its
size via comparison with the observations of the less massive
main-sequence stars ever observed, which corresponds to the
0.0930 £ 0.0008 M, of the M-dwarf star G1 866C [57]. This
way, in Fig. 2 we numerically depict the evolution of the
MMSM with @ > 0. Our results within our simplified model
points that near values of the parameter « 2 0.1 the model
is likely to run into conflict with observations, therefore set-
ting a bound to the combination of the EiBI parameter and
the star’s central density, the latter to be estimated by other
means. On the other hand, in the negative branch we run
into a problem related to the fact that when the parameter

Table 1 The MMSM (in units of solar masses) computed with Eq. (64)
for several values of the parameter « defined in (18), including the inter-
mediate values of the parameters {y, w, §} obtained from the resolution
of the extended Lane—Emden equation (17)

a V32 w32 832 MMSM/ Mg
0.100 2.49 3.01 5.74 0.0933
0.010 2.37 2.74 5.96 0.0852
0.001 2.36 2.72 5.99 0.0845
0 (GR) 2.36 2.71 5.99 0.0844
—0.001 2.36 2.71 5.99 0.0843
—0.003 2.35 2.69 6.03 0.0837
MMSM/M,

0.092
0.090
0.088|

0.086

0.084 F

0.082}

S S S S R S S S S
0.02 0.04 0.06 0.08 0.10

Fig. 2 The evolution of the MMSM (in units of solar masses) with
the parameter . The range in this plot goes from « € (—0.003, 0.10),

with the lower bound given by a well-defined solution of the extended
Lane-Emden equation (17)

reaches @ < —0.003 there are non-physical solutions, since
below that value the sign would change in the bracket of the
extended Lane—Emden equation (17). Let us however note
that, due to the same reasons stated above, this feature does
depend on the star’s central density, hence for a less dense
or a denser core we would deal with different singular val-
ues of the parameter and, therefore, we do not extract any
conclusion on the limit of validity of this branch within the
formalism presented here.

3.3 Fully convective stars on the main sequence and
radiative core development

We will now focus on the final parts of the Hayashi tracks.
Recalling that during this evolutionary phase the proto-star
is fully convective, it might happen that the inner tempera-
ture increases enough to satisfy the conditions for radiative
core development and, therefore, the object can have much
more complex structure than the one we consider. Because
of that, as discussed in Sect. 3, the star can either enter the
Henyey evolutionary phase, represented by the almost hori-
zontal to the main sequence lines, or it can stop contracting

@ Springer
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on the onset of the radiative core development as the nuclear
processes start balancing the gravitational attraction. In the
last situation, which is our concern now, the star begins its
main sequence evolutionary phase, being however still fully
convective. Using the previous results found in this paper, we
can obtain the Maximum Fully Convective Mass (MFCM)
of a star on the main sequence.

In order to determine when the radiative processes take
over in the core, one needs to analyze the Schwarzschild
criterion, which tells us that the radiative processes start when
Vad = Vyqq. In our simplified modelling above we assumed
that the star is made of an ideal, monoatomic gas, providing
that V,4 = 0.4, while the radiative temperature gradient was
already derived in Eq. (38). Applying the homology law,
together with Eqgs. (39) and (40), we can express the latter
as

LES(—0")k,

— 69
gradmd =5.21177 x 10 m,

(65)

where L is the local luminosity (here evaluated at the core).
Substituting the central temperature from (22) and subse-
quently the Stefan-Boltzmann law, the above expression
yields

L\ 125 $10.83 (_9/)217 Ko
_ 13 =
grad,,, = 8.99 x 10 (L ) ST

©
(66)

Equaling this result with V,; = 0.4 one finds the maximum
luminosity for a fully convective star on the onset of the
radiative core development

‘30.851.87M6.8 7038 a4

L =2.0827 x 10°Lg M4,
173,087 —1
%-8.67 (_9/) K

(67)

Now, by equaling this luminosity to the one of the hydrogen
burning given by Eq. (63) yields the MFCM

,30'11)/2‘17MO‘90T0'110)O‘13(O{d + n)2.17
0.20 0.23 0.11°
(a+1) 50.48,71.3451.14 (=0 Kg
(68)

M_; =191

where similar comments as on the sources of EiBI correc-
tions of the MMSM above apply here. To make quantitative
estimates of this mass, let us first assume the usual values for
LMS as g = 4.82,n = 9.4, u = 0.618 and T = 4000 K.
In addition, we have to set the opacity, keeping the Kramers’
form written in Eq. (43) withi = 1 and j = —4.5; there are
the total bound-free and the free-free opacities (see e.g. [46]
for details)

@ Springer

Table 2 Numerical values for the MFCM (in solar mass units), using
the total bound-free and the free-free opacities, defined in Egs. (69) and
(70), respectively, for different values of the composite EiBI parameter
« appearing in Eq. (18)

o My /Mo Myp/Mo
0.100 0.108 0.225
0.010 0.0994 0.207
0.001 0.0985 0.205
0.000 0.0984 0.205
—0.001 0.0983 0.204
—0.003 0.0976 0.203

MFCM

0z}

020}

o8}

o6f — MyilMo
o4f MilMo
o2}

o0

‘ 0w 00t 006 008 010 %

Fig. 3 The dependence of the (normalized) MFCM, for both opacity
models (69) and (70), on the parameter o € (—0.003, 0.10)

Z(I+X) 5, 4
———‘cmg

kx4 x 105, : (69)

X+a+X) 5,
——cm“g .

ff 22
~ 4 x 10
0 H* Nakp

(70)
Once everything is settled, in Table 2 we calculate the
MFCM for several values of the parameter « for both
opacity models. Similarly as with the MMSM above, the
MFCM increases (decreases) with positive (negative) grav-
itational parameter (note that the parameters {w, y, é} are
those appearing in Table 1). In addition, in Fig. 3 we depict
the evolution with « of the two MFCM masses, correspond-
ing to each opacity. In both table and plot it is clearly seen that
the choice of the opacity model significantly affects (roughly
a factor two) the value of the MFCM. As for the negative
branch, we find the same feature as with the MMSM, namely,
the fact that fora < —0.003 the extended Lane—-Emden equa-
tion (17) fails to provide a non-singular solution and, as such,
those values are disregarded in our analysis of the MFCM.

4 Discussion and conclusion

In this work we have discussed several aspects of the early
evolutionary phases of low-mass stars within an extension
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of GR dubbed as Eddington-inspired Born—Infeld gravity.
Such an extension is governed by a single parameter which
manifests, in the stellar structure equations of non-relativistic
stars, as an extra piece to the Poisson (Lane—Emden) equation
when a polytropic equation of state is considered. Supple-
mented with a simplified photospheric model, and equipped
with a criterion for convective instability, we investigated
three features of such an early evolution of LMS.

The first feature deals with the effective temperature-
luminosity relations in the evolutionary path of a proto-star,
the so-called Hayashi tracks. We have shown that positive
(negative) values of the EiBI parameter shift the correspond-
ing Hayashi track in the sense of larger (smaller) effective
temperature for a fixed luminosity. The second feature is
the minimum required mass for a star to stably burn enough
hydrogen to compensate photospheric losses, allowing it to
belong to the main sequence. In this case, positive (nega-
tive) values of the EiBI parameter yield larger (smaller) min-
imum main-sequence masses, the former allowing to place
constraints on the parameter o appearing in Eq. (18) via
comparison with the lowest-mass main-sequence stars every
observed. This poses a difficulty for this theory, since such
constraints act upon a combination of the EiBI parameter
and the star’s central density. This dependence of the stellar
features not only on global quantities (such as the total mass)
but also on local ones is a common feature of the RBG fam-
ily, therefore forcing us to live with it. The immediate conse-
quence is the difficulty to set strong bounds on the underlying
parameter of this theory — € — since it is unavoidably entan-
gled with the parameters of the astrophysical modelling, thus
requiring an upgrade of such a modelling and, beyond that, a
full account of this problem via numerical simulations. The
third feature deals with the development of a radiative core
at the end of the Hayashi track, entering the main-sequence
phase while still being fully convective. We found the maxi-
mum value of the mass for this to happen, again observing an
increase (decrease) of this mass with positive (negative) EiBI
parameter. Note, however, that for all these three features the
main astrophysical ingredient determining their absolute val-
ues is the opacity, whose modelling is always a delicate issue.
Its influence is obvious in the last feature (the MFCM), where
two different models of opacities (bound-free and free-free
ones) result in up to a factor two in the absolute value of this
quantity.

The results found in this work highlight the viability of
using metric-affine gravities of the RBG type to study modi-
fications to the stellar model predictions of GR, in particular,
within the non-relativistic regime. This is so because in such
a regime, RBG modifications to the usual Poisson equation
typically occur via a single additional parameter [43], allow-
ing to study the phenomenology of several types of stars,
particularly low-mass stars, without ruining the consistence
of the theory with weak-field limit observations. As men-

tioned above, the main bottleneck in order to place observa-
tional constraints upon any such theories is the determination
of the central density, which up to now we have been only
able to fix by taking its assumed values within GR, though
more reliable theoretical procedures to deal with this issue are
being investigated. We are also working in other aspects of
non-relativistic objects and low-mass stars in different RBGs,
and we hope to report on this soon.
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