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Materials for single photon sources keep attracting attention owing to the recent development of
quantum information technologies such as computing, communications, cryptography, sensing, and
metrology. However, commercializing such materials is still facing difficulties for solid reproduction
and operations at room temperature because most single photon sources acquire sufficient photon
generation efficiencies only at cryogenic temperatures. Here, we review colloidal quantum dots
synthesized at low cost and showing high fluorescence efficiencies at room temperature. We discuss
the physical and optical characteristics of chemically synthesized colloidal quantum dots, and then

relevant single photon measurements and single photon devices.
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Fig. 1. (Color online) (a) Emission spectrum of CdSe/ZnS quantum dots depending on size [Reprinted with permission
from Ref. 17. Copyright 2021 American Chemical Society]. (b)—(d) TEM images of CdSe/ZnS quantum dots in (b) R,
(¢) G, and (d) B colors depending on size. The inserted images are an electrically driven quantum dots light-emitting
diode devices emitting R, G, and B color images with an emission size of 3.0 x 1.5 mm? [Reprinted with permission
from Ref. 18. Copyright 2022 Royal Society of Chemistry]. (e) This figure shows that colloidal quantum dots can
be used comprehensively from ultraviolet to near-infrared regions. The bottom demonstrates wavelength depending
on material types, and the top demonstrates applied field about wavelength range [Reprinted with permission from
Ref. 19. Copyright 2005 Springer Nature].

2ol & 2ok Qo F20lE At ] Aol &4 9 T2 ol g5t} sfd A= Fig. 3( )9} Zo] 50:50 H &
of Fojet= e A 4R H AEE QY= 7o/ 7] (beam splitter) 2 FH 2] 7 F A= wE 5, 4
A(core/shell) X7} F2 AHEHT FoE A/ AAL2 —‘Hi] o FA} £ A= A=V ](photon counting detector)
F o7} AbetE]+= Zﬂ% Wzsto] sletA o m QFYAIZ| AL, £ 5 JH=E FA7 HAEHE o] =Y HEV = F
HHIAMY B3 & 7R 6t 9T St} [30]. ARS T4 Al Al%>(coincidence) S ZA5}to] 23F AAA 4 (2nd-
A A F20|E OOtX]'Z‘j—‘: oL AL Zukels Fol=t order correlation function, ¢® ())& FLo}= H) AMEH T}
G917} 0] BUHGAT, A0l SALFR IF AN ()= thea ol hehd % Sk (1]

o)

Forthe Halso] 'Rl [30-
F&53HE Slo Aol #rel&7](thiol
E4 HEE AMESHAY 7]Eef de g
H
[e}

O:
it
J
EEl i

@ () = (Bt + 7))
97 = e

¢

A7} T2 W o 2 ZRo|T ofAbES SHAEte = Zhul A7) A n(t)2 ARt o] o= shtel HE7]oA £4
A& oAstEE Ao Wosk Sefsw glek (3335, F B S ek, n(t oy )& AREE4 TG o
2 427]004 249 Bae] 52 guidic. Bae] 58
27497] IS4 A2 bimingo] B et Hd] 4%
III. HBTE 0|25t QA O| Chl Mz} gy 719] bandwidthel ©J5te] 24 binningA|7He A4 H}.
CENE XY 123 2 A binning A7HE 5 Lol 27 $iske] Qur
4oz FAY 4E71S AEUTE dolAst Zo] ATk

ol 485 4 47 24T B g<2>< ) g 1

ofd
N
i o
H‘]
i
s
QO
B
lon
o
=
<
w
=
o
e
P
=
g
2
s}
[os]
=
N
N
X,
N
N
N
Ke)
T

—Q—Ea%ﬁﬂ-%% J(’)}Z]- O%gﬁoo (0) %}:O



Room Temperature Single-Photon Source of Colloidal Quantum Dots — Eunjeong LEE' et al. 1019

(a) ‘Bare’

Counts

100 Non-radiative Auger
recombination

©—| Tyag ~ 10-100 ps
NKOA
- C‘ Light

Charged nanocrystal

Time [s]

lonization via :

Neutral nanocrystal

Auger Neutralization
auto-ionization Thermo-ejection N\
AF-G-

T eps
tunnelling T
J1

Direct
lonized nanocrystal

Fig. 2. (Color online) (a) Blinking that can be seen in measured data. This fluorescence histogram indicates the number
of photons over time when the continuous wave laser is exciting quantum dots under the 0.7 kW /cm? intensity. The
top shows bare CdSe data, and the bottom shows data about CdSe coated with ZnS shells of seven mono layers
thick. (b) Blinking schematics of the process in which radiative and non-radiative decay. A lifetime of radiative decay
emitting light is 10 ns. Non-radiative decay occurs when the binding energy is not used to emit light but is absorbed
by the carriers and the energy level of the other carriers changes. The change in the number of photons when this
process occurs is shown in (a) [Reprinted with permission from Ref. 23. Copyright 2016 Springer Nature].
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Fig. 3. (Color online) Hanbury Brown-Twiss(HBT) interferometer setup and measurement data. (a) A schematic of a
simplified HBT interferometer. (b), (c) are ideal measurement data using the HBT interferometer. Each graph uses a
continuous wave laser (b) and a pulsed laser (c¢) as the excitation light source [Reprinted with permission from Ref. 1.
Copyright 2005 IOPscience].
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Fig. 4. (Color online) (a) The setup structure for utilizing the electroluminescence of colloidal quantum dots (b)
Electroluminescence spectrum according to PMMA layer thickness. All samples received equal exposure to a voltage
of 2.8 V. The thickness of the PMMA layer is 17 nm, 12 nm, 10.4 nm, and 0 nm from top to bottom. The left part(blue
box) represents the background noise, and the middle part(red box) is the wavelength range in which the original field
emission appears. It demonstrates that the background noise is low, and the intensity of the field emission is dominant
when the PMMA layer is at 12 nm [Reprinted with permission from Ref. 38. Copyright 2017 Springer Nature].
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Fig. 5. (Color online) (a) The single-photon source setup using tapered optical fiber (b) The measurement graph of
photon counts of colloidal quantum dots depending on the intensity of excitation laser [Reprinted with permission

from Ref. 43. Copyright 2011 American Chemical Society].
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Fig. 7. (Color online) (a) The illustration of nanolayer structure coupled to a colloidal quantum dot (b) The graph of
second-order correlation coefficients with time delay. The decay lifetime of the photon is expected to be low, around
250 ps, due to the limitations of the measuring device. (¢) The graph of photon decay as a function of time. We
note that the decay experiment has different conditions from that for the second-order correlation coefficient. Cavity
enhancement shows a faster decay lifetime of 680 ps, except for photons attributed to orientation polarization emission
dipoles, which differs significantly from the decay lifetime of a single colloidal quantum dot only, 6.8 ns [Reproduced
with permission from Ref. 45. Copyright 2015 American Chemical Society].
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Fig. 8. (Color online) A design of a nanoantenna and a schematic of experiment setup for utilizing a single photon
source. (a) A design of the metal-dielectric bullseye nanoantenna with geometric parameters: the hole diameter(d),
central cavity diameter(D), grating gap(A), and dielectric thickness(h). An inset figure is an enlarged 3D Lumerical
simulation of the distribution of the electric field when a single photon emitter put into the center of the nanoantenna.
The blue line represents the dielectric covering the metal groove. (b) A schematic diagram explaining the process
of placing quantum dots in the center of the bullseye nanoantenna. (c¢) An illustration of the experimental device
for measuring optical properties. (1) When using an excited laser behind the nanoantenna center, (2), (3) photons
protruding from the front are collected to measure the optical properties [Reproduced with permission from Ref. 48.

Copyright 2024 American Chemical Society].
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Fig. 9. (Color online) Processes using lithography to arrange quantum dots (a) The process illustration explains how
to fix a quantum dot in a waveguide with a hole. (1) The TayOj5 optical integrated circuit is etched with a 35 nm hole,
and (2) spin-coated to make the PMMA layer 135 nm thick. (3) For electron beam lithography, the electron beam is
exposed to the hole, and (4) the dispersed solution with colloidal quantum dots is drop-cast so that the quantum dot
is fixed to the hole. (5) The remaining quantum dots except one in the hole are removed by the lift-off process with
acetone [Reproduced with permission from Ref. 51. Copyright 2022 American Chemical Society]. (b), (¢) Quantum
dot synthesis and process for arranging multiple quantum dots. (b) After growing SiO5 on the synthesized core/shell
quantum dots, colloidal quantum dots are arranged at a desired location using the electrostatic force between SiOq
and the lithography-made template. The template-made process not described in (b) is described in more detail in
(c). (1) PMMA is patterned on a silicon substrate by electron beam lithography. (2) The 20 nm SiOs and (3) a single
polymer electrolyte layer is dip-coated. (4) Quantum dots are selectively arranged when a lift-off process is performed
with acetone and a processed template is placed in a colloidal quantum dot solution [Reproduced with permission
from Ref. 52. Copyright 2008 Optica Publishing Group].
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