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Abstract. Some aspects are discussed of the mechanism of color confinement in QCD
by condensation of magnetic monopoles in the vacuum.

1 Introduction

QCD is an S U(3) gauge theory coupled to quarks in the fundamental representation which describes

the strong interaction sector of the Standard Model. The theory has a physical scale Λ ≈ 250 Mev: at

distances smaller than 1
Λ

the perturbative expansion works, and the theory behaves as any other field

theory; at larger distances the quanta of the fundamental fields, quarks and gluons, do not propagate

as a free particles (Colour Confinement).

In nature the ratio of the abundance nq of quarks with respect to that of protons np has an upper

limit
nq

np
≤ 10−27 to be compared to the expectation in the Standard Cosmological Model

nq

np
≈ 10−12;

the ratio of the inclusive cross section σq for production of quarks in hadronic reactions divided by

the total cross section σT has upper limit
σq

σT
≤ 10−15 and should be of the order of unity. The only

natural explanation of such a strong inhibition factor ( 10−15) is that nq and σq are strictly zero due to

some symmetry.

If this is true the transition to quark-gluon plasma is a change of symmetry, hence a real phase

transition and not a cross-over. The transition is observed in lattice simulations [1] [2]. and possibly

in heavy ion collisions at RIHC and CERN.

The symmetry responsible for confinement cannot be a subgroup of the gauge group, since gauge

symmetry is not broken neither below nor above the transition, except in the pure gauge theory ( no

quarks) which is blind to the centre C. Lattice simulations show that the symmetry C is spontaneously

broken below some temperature Tc ( confined phase), and is restored above it. The order parameter is

the Polyakov loop 〈L〉 = 1
V

∫
V d3x〈TrL(�x, t)〉, where

L(�x, t) = P exp(i
∫ t+ 1

T

t
dx4gA4(�x, x4)) (1)

is the parallel transport along the time axis, which at finite temperature T is a closed loop due to the

periodic boundary conditions. It transforms covariantly, and commutes with the centre of the group,

and therefore is zero in the spontaneously broken phase. On the other hand it can be shown that

〈L〉 = exp(− Fq

T ) with Fq the free energy of a static quark, so that when 〈L〉 = 0 Fq = ∞ (confinement).

Numerical simulations show indeed that, for pure gauge theories [ S U(2) , S U(3)], Tc ≈ 200Mev,
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〈L〉 = 0 for T ≤ Tc and 〈L〉 � 0 for T ≥ Tc. However C can not be the symmetry producing

confinement in nature, since it is not a symmetry in presence of quarks. Nor the symmetry can be

chiral symmetry, which is not defined in the quenched case and is broken by the masses of the quarks.

The only way to have an extra symmetry in QCD rests on the degrees of freedom on the boundary

of the physical space (dual variables). This is what happens in many models of statistical mechanics,

like the 2d Ising model [3], the 3d X − Y model [4], the lattice U(1) gauge theory[5] [6]. The nature

of the excitations is determined by the dimensions of space. They are kinks in d = 1 + 1 (Ising),

vortices in d = 2 + 1, monopoles for d = 3 + 1. Monopoles do exist in gauge theories. [7] [8]. The

idea is physically attractive, since monopoles could condense in the vacuum and make of it a dual

superconductor confining chromo-electric charges (quarks) [9] [10].

2 Monopoles

Monopoles as static classical solutions (solitons) do exist in the S U(2) Higgs model.

L = −1

4
�Gμν �Gμν +

1

2
(Dμ�Φ)†(Dμ�Φ) − λ

4
[�Φ�Φ − μ2]2 (2)

The equations for static solutions are: DjG ji = g�Φ ∧ Di�Φ − g�A0 ∧ Di �A0,

DiDi �A0 = g�Φ ∧ D0
�Φ, D0D0

�Φ − DiDi�Φ + λ(�Φ
2 − μ2)�Φ = 0.

If A0 can be gauged away the equations have a monopole solution [7] [8] and read :

DjG ji = g�Φ ∧ Di�Φ, DiDi�Φ + λ(�Φ
2 − μ2)�Φ = 0

If there is no Higgs field, as is the case in QCD, the equations become:

DjG ji = −g�A0 ∧ Di �A0, DiDi �A0 = 0

showing that A4 = iA0 can act as effective Higgs field and allow stable monopole solutions. As

appears from the equations above the solutions correspond to the case λ = 0 [11] [12]. The explicit

form of the solution is, in the hedgehog gauge,

Aa
i = εain

r̂n

gr (1 − K(ξ)) Aa
4
= r̂a

gr J(ξ) ξ = gμr

K(ξ) = ξ
sinh ξ

J(ξ) = ξ coth ξ − 1 Aa
4
(r = ∞) = μr̂a

The field strengths at large distances are

Ba
i ≈r→∞ r̂a r̂i

gr2 Ea
i ≈r→∞ ir̂a r̂i

gr2

1) The unitary gauge in which the magnetic field is abelian is the one in which A4 is diagonal. To

have a monopole A4 must be � 0 at large r.

2) The scale is fixed by the value of |A4| at large distances, which is independent of the direction

since the configuration has finite energy[13]. The mass is M = 4π
g
μ.

3) The configuration is called a dyon and considered electrically charged. In fact the electric field

is imaginary at large distances, like in instantons. The configuration rather describes a tunnelling

between states with different magnetic charge.
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3 Polyakov loops

In the gauge ∂4A4 = 0 , A4(�x) = |A4|σ3

2
the Polyakov line Eq.(1) reads

L(�x) = exp(
igA4(�x)

T ) and 1
N Tr[L(�x)] = cos(

g|A4(�x)|
2T ).

Here we will consider for the sake of simplicity a gauge theory with gauge group S U(2): the

extension to the case of generic group is straightforward.

At vanishing temperature T 
 Λ the time extension of the system is much larger than the correla-

tion length 1
Λ

. We can divide it e.g. into two parts, both much larger than the correlation length. The

Polyakov line L will be the ordered product of the parallel transports across the two parts L = L1L2

The boundary configuration between the two parts is irrelevant if the extensions are both � 1
Λ

, so

we can take it periodic and L1 , L2 as Polyakov lines, both at vanishing T . Since the two regions

of times which are support of L1, L2 are uncorrelated, we get then that 〈L〉 ≈ 〈L〉2, implying that, if

〈L〉 has not the trivial value 1, at zero T 〈L〉 = 0. This argument extends to the general case what is

true in pure gauge theory because of the invariance under the centre C of the group. Indeed, since

the Hilbert space is invariant under C , L = CL, 〈L〉 = exp(iπ) × 〈L〉 = 0 and, as for the spectrum,

0 = 〈L〉 = ∫ 1

−1
d cos(x) f (cos(x)) :

f is an odd function of cos(x).

Since at the deconfining transition T ≈ Λ we can conclude for the spatial average

〈cos(
g|A4(�x)|

2Λ
)〉V = 0 (3)

If we assume that monopoles, as quanta of the dual fields have all the same mass M = 4π
g
μ, and

hence the same size and Aa
4
(r = ∞), since for a dilute gas of monopoles the average in Eq.(3) is

dominated by large distances and there is no confinement, we get

μg

2Λ
= 2kπ (4)

The size of the monopoles is substantially smaller than 1
Λ

and their mass M � Λ. To have confinement

monopoles should not be dilute, or the average distance between monopoles should be larger but

not too much compared to their size. The simplest model which can give an idea of the orders of

magnitude is a gas of non interacting monopoles and anti-monopoles, with density ρ, and with the

additional simplification that the field A4(�x) around one monopole is that corresponding to an isolated

monopole up to the distance of the nearest one.

With these simplifying assumptions the average Eq.(3) can be computed using the explicit solution

of Section 2, and with it the distribution f (cos(x)) of the Polyakov loop[14]. The result is

〈L〉 =
∫

dVP(V)
1

V

∫
dV ′ cos[π(coth ξ′ − 1

ξ′
)] (5)

with P(V) = 2ρ exp(−2ρV) the probability that in a sphere of volume V centred on a monopole there

is no monopole (and no anti-monopole whence the factor 2 ). Explicitly

〈L〉 = 3A
∫ ∞

0
dξξ2 (−)Ei(−Aξ3) cos[π(coth ξ − 1

ξ
)] . A = 8π

3
1

(gμ)3 ρ =
ρ

3π2Λ3

is the number of monopoles plus anti-monopoles in a volume of the size of a monopole.

In Eq.(5) the argument of the cosine ranges from 0 at ξ = 0 to π as ξ → ∞: at short distances

the model is credible, at large distances the details of the multi-monopole configuration are important,

but the factor A in front of the result comes from the normalization, which is affected by both regions.
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The distribution in z = cos θ , θ = π[coth ξ − 1
ξ
] reads f (z) =

3ABξ2Ei(−Aξ3)

π( 1

ξ2
− 1

sinh2 ξ
) sin[π(coth ξ− 1

ξ )]
, it can be fitted

to the lattice data, and A, B can be determined. The factor B in front is allowed to correct for the

normalisation, which can be determined from the region z ≥ 0, which is more credible. A reasonable

agreement is found for B ≈ 2.3 A ≈ .02. If monopoles condense their density ρ is related to the

vev < Φ2 >= M2

λ
, as ρ = M < Φ2 >= M3

λ
with M = 4π

g
μ the known mass of the monopole and λ

the coupling of the quartic term in the effective lagrangean. From the determination of A the ratio

η = 1
g2λ

between the magnetic coupling constant 1
g

and the quartic coupling λ can be extracted, getting

gλ
1
2 = 2

3
(4π)2

Ag4 , indicating a value larger than
√

2, i.e. a type II superconductor.

4 Discussion

Monopole dominance[17] and an approach based on symmetry [6] [15, 16], strongly support

monopole condensation in the vacuum as mechanism of colour confinement. A revival of this idea

recently came from the study of instantons with non-trivial holonomy, named calorons, [18] [19],

which prove to have monopoles as constituents.

Lattice configurations contain monopoles which propagate on distances of the order of the lattice

spacing, which can be considered as fluctuations, and monopoles which propagate on distances of the

order of the correlation length and larger, which can be considered as stable, and which can condense.

To have stable monopoles a Higgs fleld is needed. In QCD there is no fundamental Higgs field, but the

euclidean time component of the gauge field, A4 can act as an effective Higgs field. Stable monopoles

result, which have a definite form and a scale which is determined by holonomy, i.e. by the value of

A4 at large distances. The Polyakov line Eq.(1) plays then a fundamental role in confinement, even in

systems with quarks, where there is no invariance under the centre C of the gauge group, being related

to the existence of stable monopoles which have to produce dual superconductivity.

An attempt to describe the monopoles as constituents of calorons forming a gas proves to be

unviable in the non-perturbative region, relevant to physics[19]. We have sketched a much simpler

approach treating monopoles as independent particle. The model is better than it looks at first sight,

since magnetic charges are shielded by condensation in the confined phase.

A detailed presentation and the extension to finite temperature will be presented in Ref.[14].
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