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Abstract
The rapid progress of ultraintense laser technology provides a novel route to explore the quantum
vacuum effect in the laboratory. Here, we propose using oblique collisions between an ultraintense
pump laser and an x-ray probe laser to experimentally identify the quantum vacuum effect, where
the change of the refraction properties including the refraction angle of the probe laser is taken as a
detectable signature. The theoretical basis of the proposed scheme are analyzed in details, where a
reasonable estimation of the scheme is given. To verify the proposed scheme, a series of
two-dimensional particle-in-cell (PIC) simulations, with the vacuum polarization effect
self-consistently taken into account, are carried out.

1. Introduction

With the rapid development of ultrashort and ultraintense lasers promoted by the chirped pulse
amplification (CPA) technique [1], upcoming high power laser facilities such as the Extreme Light
Infrastructure [2], Vulcan [3], and SULF [4] are expected to produce laser pulses with unprecedented peak
intensities up to 1023–1025Wcm−2. This opens up a new opportunity for the experimental exploration of
strong field quantum electrodynamics (QED), such as the vacuum polarization phenomenon which has been
studied through strong magnetic field excitation for over 20 years [5–10]. These experiments are considered
to be one of the most important applications of high power laser facilities.

A foreseeable prospect is proposed with the medium-like properties of quantum vacuum routing from
the prediction by Euler and Heisenberg that vacuum can be polarized by electromagnetic (EM) field [11, 12].
Various optical effects excited by ultraintense lasers have aroused people’s interest in theoretical and
experimental exploration such as vacuum diffraction [13], double-slit interference [14], Bragg
Scattering [15], photon splitting and merging [16], high order harmonic generation [17], vacuum
reflection [18, 19], etc [20–22]. Related theoretical researches and methodologies are continuously being
refined like high order corrections [23], vacuum emission picture [24, 25] and etc [20, 26]. It is noted that
certain astronomical systems, such as neutron stars, are surrounded by magnetic fields close to the Schwinger
field. These extremely strong fields lead to significant effects related to vacuum polarization [27, 28], such as
vacuum birefringence [29–31], photon splitting [32], and etc [33, 34]. More importantly, together with the
advancement in modern optical detection system, many of these effects have the potential to be detected in
experiments. For example, the vacuum birefringence effect has recently attracted great research interest [13,
35–38] and the on-going project FOR2783 in Germany aims to achieve the first proof-of-principle XFEL and
birefringence-based experiment [37, 39, 40]. Meanwhile, one may anticipate that the vacuum refraction is
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also one of the basic and critical effects of this vacuum medium [41]. Additionally, it provides an alternative
method for detecting quantum vacuums as the precision of beam angle measurements advances to the
nano-radian scale and further [42, 43]. Some early attempts to study vacuum refraction signals can be found
in [44, 45]. There is further research including an experiment (named DeLLight) which is under
development at Université Paris-Saclay (France) recently [46]. However, a careful theoretical estimation,
simulations and particularly a feasible refraction-based schemes with ultraintense lasers for quantum
vacuum probing, require further exploration.

In this paper, we propose a scheme to explore the quantum vacuum effect on ultraintense laser facilities,
in which an x-ray probe laser is applied to obliquely collide with the ultraintense pump laser, shown
schematically in figure 6(a). The theoretical basis of the scheme is analyzed, where the wavefront expansion
method is used to consider the potential detectable signals in refraction-based experiments, including the
refraction angle, the change of the intensity of the refraction beam and the difference between the direction
of energy propagation and wavefront propagation (called walk-off effect). To verify the proposed scheme, we
carry out a series of two-dimensional (2D) particle-in-cell (PIC) simulations with modeling of the quantum
vacuum polarization effect self-consistently included. The simulation results have confirmed that the
generalized Snell’s and Fresnel’s law can be used as a reasonable description of the refraction of the probe
laser for most of the settings that can be employed experimentally today. A complete simulation shows that
the refraction angle in our scheme is on the order of nrad. This angle, which serves as a detectable signature
of the quantum vacuum, can be measured under realistic parameters in current experiments. We believe
these results can provide an intuitive guidance to the potential experimental scheme based on quantum
vacuum refraction driven by intense laser, while ensuring that important influencing factors are not lost.

2. Theoretical analysis

Vacuum polarization leads to interactions between photons in vacuum. This phenomenon was first
described by Heisenberg and Euler using an QED effective Lagrangian density Leff = Lcl +LHE [11, 47, 48],
where Lcl =−ε0(E2 − c2B2)/2 is the classical Lagrangian density, ε0 is the vacuum permittivity, and LHE is
the effective correction to Lcl. According to the Euler–Lagrange equation for EM fields, this effective
correction further results in QED modified Maxwell’s equations. In these equations, the superposition
principle of EM fields no longer holds and the interaction between them can be included by the nonlinear
polarization vectors P and magnetization vectorsM of quantum vacuum. In the regime of slow-varying
perturbative weak-field, where ω ≪ ωc, E≪ Ecr and B≪ Bcr fulfilled by the state-of-the-art high-intensity
lasers, the leading contribution of P andM are given as [49, 50]:

P≃ 2ξ
[
2
(
E2 − c2B2

)
E+ 7c2 (E ·B)B

]
,

M≃−2ξ c2
[
2
(
E2 − c2B2

)
B− 7(E ·B)E

]
. (1)

The nonlinear coupling parameter of vacuum polarization is given by ξ = 2α2ε20h̄
3/45m4

e c
5 ∼ 1.3× 10−52,

where α is the fine structure constant, ωc =mec2/h̄ is the Compton frequency, the QED critical field
Ecr =m2

e c
3/eh̄≃ 1.32× 1018Vm−1.

2.1. Quantum refraction
According to equation (1), a single (paraxial) laser beam as considered for the probe fulfills both
E2 − c2B2 = 0,E ·B= 0. This makes P,M= 0, so the probe beam can return to be governed by the classical
Maxwell’s Lagrangian, which We call propagating in free vacuum. However, if a strong background pump
field exists simultaneously, the properties of the vacuum are modified significantly by the the polarization of
vacuum P,M, which is called quantum vacuum.

We begin our analysis with a relatively general scenario. Set a strong EM field as the pump field, of
Es,y = Es(r, t)ŷ and Bs,z =−Bs(r, t)ẑ, where Es = cBs. Such a pump field allows both temporal and spatial
variations, and can describe a strong laser field by selecting an appropriate profile distribution. Consider a
laser pulse as a probe beam with, Ep = Ep(r, t)ẑ and Bp = Bp,y(r, t)ŷ−Bp,x(r, t)x̂ propagates through a
quantum vacuum polarized by this strong pump EM field. In this paper, we call the probe wave with the
electric field always in the z direction the S-polarized wave, and the one with E in the x− y plane the
P-polarized wave. Due to the similarity between the two, we give only the analysis of the S-wave in detail, and
present the results of the P-wave when appropriate. Here, r= (x,y,z) is the vector of spatial coordinate, and
Ep ≪ Es. Our theoretical analysis does not rely on the specific modeling of the probe laser. The pump fields
here and in later simulations need to fulfill E2 − c2B2 = 0,E ·B= 0, otherwise the vacuum polarization effect
of the pump field itself may mask the signal we need. By substituting them into equation (1), the quantum
nonlinear polarization and magnetization are obtained as
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Pz = 14ξ c2
(
−EsBp,y +BsEp

)
Bs,

My = 14ξ c
(
EsBp,y −BsEp

)
Es. (2)

Here the other components Py andMz can be neglected for the probe beam propagation, beacause
Py,Mz ∼O(EsE2p)≪ Pz,My ∼O(E2s Ep). According to the QED modified Maxwell’s equation, the
spatial-temporal evolution of Ep can be described by ∂2

t Ep = c2∇2Ep − ∂2
t Pz/ε0 − ∂x∂tMy/ε0. The

behavior near the laser wavefront can be studied by the following asymptotic expansion: Ep =Σnϕnfn
(s) = Σnϕnfn(t−σ(r)), where the lowest order term ϕ0 determines the electric field strength of the wavefront
of the laser. fn usually does not need to be explicitly determined as long as it can make the expansion
converge and f ′n(s) = fn−1(s) is satisfied [51]. s= t−σ(r) is eikonal and defines how the wavefront (surface
s(r, t) = constant or σ(r) = constant) moves in r space. Substituting this series into the evolution equation,
and equating the coefficients of the successive fn to zero, we get,

1− c2 (∇σ)
2
+ cAs (∂xσ)+ c2As (∂xσ)

2
+As + cAs∂xσ = 0, (3)

where As = 14ξE2s /ε0 and∇= (∂x,∂y,∂z). Equation (3) is the important starting point for our analysis of
wavefront and refraction properties. We give a brief derivation and analysis of the formula in appendix A. In
short, although the equation (3) does not depend on the specific form of fn, the expansion coefficients ϕ and
the convergence range do. If the power series expansion (equation (A.6)) is applied, equation (3) is generally
valid under the constraint of short distance. If the high-frequency expansion (equation (A.7)) is applied,
equation (3) is valid at least within the range of the variation scale of the pump field being much larger than
that of the probe. However, in more general cases, it is difficult to give a general valid range in theory, and
using simulations to verify applicability is a more convenient method.

Equation (3) is an anisotropic partial differential equation and can be converted into a set of
characteristic equations as follows

dx

dλ
=−2c2 (∂xσ)+

(
2Asc+ 2Asc

2 (∂xσ)
)
, (4)

dy

dλ
=−2c2

(
∂yσ
)
, (5)

dpx
dλ

=−∂xAs

(
2∂xσ+(∂xσ)

2
+ 1
)
, (6)

dpy
dλ

=−∂yAs

(
2∂xσ+(∂xσ)

2
+ 1
)
. (7)

Equations (4)–(7) are a set of ordinary differential equations where px = ∂xσ, py = ∂yσ represent the
normal direction of wavefront. Substituting the equations (4) and (5) and (∂x (equation (3))) into
dpx
dλ = (∂xpx)

dx
dλ +(∂ypx)

dy
dλ can get equation (6). A similar operation on

dpy
dλ yields equation (7). So,

equations (3)–(7) are self consistent. If we set the initial x,y (and px,py) to be a point on the wavefront, the
curve given by these equations can describe the spatial trajectory of that point as it changes with the
parameter λ. This trajectory actually represents the direction of energy transport. If we drop the second term
in equation (4), the ‘velocity’ of x,y of the new trajectory only depends on the wavefront normal, i.e. the
orthogonal trajectory of the wavefront. The difference between two directions can be referred to as wake-off
angel. Given an initial wavefront, traversing the points on the wavefront to get a cluster of orthogonal
trajectories gives the evolution of the whole wavefront. The difference between the direction of energy and
wavefront propagation comes from the anisotropy introduced by the second term in equation (4).

Equations (4)–(7) indicate that the propagation of the probe beam depends on the pump field
configuration including field strength As and inhomogeneity∇As. The phase velocity can be calculated from

the definition of s= t−σ(r) as vph = 1/
√

p2x + p2y . As a result, an effective refractive index (RI), here referred

as quantum RI, is given as nqed = c
√

p2x + p2y .

Equations (4)–(7) are sufficient for us to theoretically predict the change in angle during vacuum
refraction. Based on this result, some simple cases can be reduced to concise physical pictures. The first one is
that a probe beam propagates along x̂-axis in a static uniform pump field Es,y(r, t) = Es0 = const,
Bs,z(r, t) = Bs0 = const. Then, p= px, equations (6) and (7) indicate that px remains constant and the RI of
the quantum vacuum can be obtained as

nqed,s0 =
1+As0

1−As0
, (8)
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where As0 = As|Es=Es0 > 0,nqed,s0 > 1. Similarly, for the P-polarized probe beam, nqed,p0 = (1+Ap0)
/(1−Ap0) where Ap0 = 8ξE2s0/ε0. The difference between As0 and Ap0 presents the vacuum birefringence
effect. Secondly, an inhomogeneous pump field can lead to the variation of quantum RI and then the
appearance of the refraction and reflection as the probe beam passing through. Now, we assume a probe
beam propagating along x̂-axis into the quantum vacuum pumped by an EM field of a spatial gradient along
an arbitrary direction, e.g. of an angle θi with respect to x̂-axis. From equations (6) and (7), the component
of p⃗ in the direction perpendicular to θ remains invariant. So, at an arbitrary position (x,y) = (xm,ym) in the

pump field, since nqed = c
√

p2x + p2y , it is expected that there is a local constraint similar to Snell’s formula:

ni sin(θi) =
(
nqed,m +∆nm

)
sin(θi +∆θm) . (9)

Here we have assumed that the local effective RI is the effective RI in static filed

nqed,m =
1+Am

1−Am
, (10)

plus a correction. Substituting the assumption equation (9) into equation (3) gives the final result

∆nm =
∆θ2m

1−Am −Am/cnqed,m
. (11)

Here, Am = As(xm,ym) is calculated by the local pump field Em = Es(xm,ym), and ni the RI at incident point.
∆θm is the deflection angle of the wavefront normal at this point with respect to incident angle θi and
approximately equals to∆θm ≃ arctan(py/px)− θi. It is easy to see that∆nm and then the local deflection
angle∆θm are determined only by the local and initial pump and probe field configuration. This implies that
the direction of the wave front is independent on the transition path and can be determined locally. If the
pump field is smooth or not very strong, e.g. in currently available laboratory condition, the correction
of RI in equation (11) is very small,∆nm ≪ 1, and can be neglected. It should be considered in the case of
the extremely strong pump field or of a long propagation distance, e.g. in astronomic environments. For
example, research [29] investigated the polarized thermal emission from x-ray faint isolated neutron stars
and focused on the impact of vacuum polarization on radiation polarization. Polarization changes are
introduced in the ray propagation path by calculating the accumulated vacuum birefringence effect. Finally,
if the gradient of the pump field is infinite, an interface is formed (as shown by the solid gray line in figure 1).
Refraction reflection can occur at the interface, then equation (9) is reduced to the Snell’s equation.

In the previous paragraph, we have discussed the propagation of the wavefront(px,py). We now focus on
the trajectory of energy propagation given by equations (4) and (5). The difference between them (walk-off
angle) can be obtained as

δθm = θwavefront − θenergy = arctan

(
py
px

)
− arctan

(
−2c2

(
py
)

−2c2 (px)+ (2Asc+ 2Asc2 (px))

)

∼
py
(
2Asc+ 2Asc2 (px)

)
−2c2

(
p2y + p2x

) . (12)

In principle, since equation (12) is of the same order of magnitude as the∆θm, it needs to be considered.
However, the walk-off effect mainly occurs in the interaction between the probe laser and the pump laser. In
the experiment, as the probe laser will eventually leave the pump laser, δθm will gradually turn to 0. We make
a simple estimation of the impact. Walk-off effect cause an offset between the trajectory of the wavefront
normal and the energy, estimated to be δθm · L. Assume the spatial variation scale of the pump field is λP and
then the intensity difference between the two trajectories is about δθm·L

λP
. On the other hand, from

equations (6) and (7), the final angle of the probe laser after transmission depends on the pump field
intensity (or As) on the trajectory. In the experimental configuration where the pump laser and probe laser
collide, the value δθm·L

λP
is significantly less than 1, indicating the walk-off effect can be largely neglected.

However, for experiments with longer interaction distances, such as PVLAS [6], which utilize strong
magnetic fields to induce vacuum polarization, the effective distance L over 104 m could lead to an
accumulation of the walk-off effect. There, given some special setups or designs, it is worthwhile to further
explore this phenomenon. Experimental methods of detecting the deflection angle of the probe is usually
based on interference technique which involves the information of both the refraction angle and the intensity
of the electric field. In general cases, the evolution of the intensity requires additional introduction of the
corresponding equation of f−1 term in the wavefront expansion method. We are going to adopt a more
intuitive approach below.
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Figure 1. (a) Schematic of refraction and reflection occurring during the transition of the probe from free vacuum to quantum
vacuum. Quantum vacuum (gray-colored region) is pumped by a strong EM field and probed by a relatively weak laser pulse (red
beam) incident from free into quantum vacuum. Free vacuum here is referred as the vacuum without pump field. (b) PIC result:
no refraction and reflection of the probe photon beam happens when it propagates in free vacuum. (c) and (d) PIC results: as
transiting into quantum vacuum (regions colored by light red and green) pumped by static field Es,Bs, both S- and P- polarized
probe beams reflect and refract similarly with classical optics which can be described by Snell’s law. In (b)–(d), the free vacuum is
the region colored by gray and the interface is indicated by the solid gray line. The incident direction and position of the probe
beam is by green line with an arrow. The detail of the PIC configuration is discussed in section 3.

2.2. Intensity of refracted and reflected light
In general, refraction and reflection happens during a transition process where the RI varies, for example,
when passing through an interface of free and quantum vacuum. Therefore, the reflection and refraction can
be analyzed in more details with the boundary conditions of the EM fields by the QED modified Maxwell’s
equations: en × (E2 −E1) = 0, en × (H2 −H1) = 0, en · (D2 −D1) = 0 and en · (B2 −B1) = 0, where
H= B/µ0 −M and D= ε0E+P. The angles of reflection θr and refraction θt can be calculated by the Snell’s
law approximately with the incident angle θi as

θr = θi , (13)

θt = arcsin
(
sinθi/nqed,s

)
, (14)

where, nqed,s is the quantum RI for S-polarized probe pulse. We dropm in equation (10) for convenience. All
angles are relative to the normal of the interface at the point of incidence.

From the geometry on the interface of quantum and free vacuum, the amplitudes of magnetic (B) and
electric (E) fields of incidence(i), reflection(r) and refraction(t) are related by

Bi

µ0
cosθi −

Br

µ0
cosθr =

Bt

µ0
cosθt − |My|cosθi (15)

Ei + Er = Et (16)

whereMy =−14ξ c2[EsBt cos(θi − θt)+BsEt]Es is obtained by substituting EM fields in quantum vacuum in
equation (1). It is worth mentioning thatMz =−14ξ c2[EsBt cos(θi − θt)+BsEt]Et ≪My is ignored since
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Et ≪ Es. By combining equations (15) and (16), the reflectivity and transmittance can be derived in form of
Fresnel equations

Rs,r =
Er
Ei

=
cosθi −Cs

cosθi +Cs
, (17)

Rs,t =
Et
Ei

=
2cosθi

cosθi +Cs
, (18)

where Bi = Ei/c, Br = Er/c and Bt = nqed,sEt/c are applied, Cs = nqed cosθt − nqed,s
14ξ E2s
ε0

cosθi − 14ξ E2s
ε0

cosθi. Bewared that Rs,r < 0 implies that there is a half wave loss from the reflected wave.
For a P-polarized probe laser, the relationship of EM fields of incidence, reflection and refraction is

expressed as

Ei cos(θi)− Er cos(θr) = Et cos(θt) (19)

Bi

µ0
+

Br

µ0
=

Bt

µ0
− |Mz| (20)

whereMz = 8ξ cE2s [Et cos(θi − θt)+ cBt]. Similarly, the reflectivity and transmittance can also be obtained by

Rp,r =
Er
Ei

=
Cp cosθi − cosθt
Cp cosθi + cosθt

Rp,t =
Et
Ei

=
2cosθi

Cp cosθi + cosθt
(21)

where Cp = nqed,p(1− 8ξ E2s
ε0

)− 8ξ E2s
ε0

cos(θi − θt).

3. PIC simulation results

In this section we carry out self-consistent simulations to discuss the vacuum refractive behavior under
pump fields with different characteristics. To make theoretical estimation intuitive and understandable, and
more importantly to check the valid range of our theoretical estimation, we would like to start from an ideal
configuration and gradually bring the pump field closer to a real strong laser.

The basic simulation geometry of the pump and probe field is shown in figures 1(c) and (d). The probe
beam propagates along x̂ axis and intersects the boundary of the pump field with angle θi. The simulation
box has a size of 30µm× 40µm, and a resolution of 1µm/50 was utilized in both directions. The probe laser
pulse is assumed as paraxial gaussian beam with strength ap = e|Ep|/meω0c= e|Bs|/meω0 = 1, ω0 is the laser
frequency and the wavelength is λp = λ0 = 2π c/ω0 = 1µm. The peak intensity Ip = 1.38× 1018Wcm−2.
The temporal profile is also Gaussian with the duration τ = 5.6fs and the laser is focused at the center x= 0
with the waist rp = 4λ0. The amplitude of the pump field is as = 1000. Because ap ≪ as, the effect of the
probe laser acts on the pump field can be neglected. The nonlinear parameter ξ is artificially increased to be
8.6× 10−45 in order to more clearly display the reflection and refraction caused by vacuum polarization in
our simulations [52]. The rationality of this operation and some implementation details of our simulation
program are shown in appendix B.

Firstly, the pump field is configured to be uniform with a sharp boundary separating the free and
quantum vacuum. There are two reasons for this setting: 1. We are very familiar with the physical picture,
light refracts and changes in intensity at the surface (hard boundary) of a uniform medium. By analogy, it is
also the simplest and purest (without other effects) case in which vacuum refraction occurs. 2. There will be
no hard boundaries under currently available laboratory conditions. The experimental scheme bases on
intense lasers which satisfy the premise ω ≪ ωc of our theory. So although the hard boundary breaks this
assumption, we can still consider only the leading order contribution to the vacuum refraction and ignore
the higher-order corrections [23]. It’s natural for us to study this situation first, and then gradually make the
pump field more complex to highlight the different core influencing factors respectively.

In current case, as shown in figures 1(c), (d) and 2, the theoretical predictions from equation (9) agree
well with PIC results for both S- and P-polarized probe beam. For example, in the case with S-polarized
probe beam, the angles of reflection and refraction are θr,s = π − θi + arctan(ky,r/kx,r) = 1.091 rad≃ θi and
θt,s = θi − arctan(ky,t/kx,t) = 0.749 rad≃ sinθi/nqed,s0, respectively. The normalized peak intensity of
electric field of refraction and reflection from PIC are |Ẽz,t,s|PIC = 0.7367 and |Ẽz,r,s|PIC = 0.2636, while the
theoretical predictions from equation (18) gives |Ẽz,t,s|theo. = 0.7173 and |Ẽz,r,s|theo. = 0.2826, respectively.
For P-polarized case, |Ẽz,t,p|PIC = 0.8146 and |Ẽz,r,p|PIC = 0.1859 corresponds to the theoretical predictions
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Figure 2. PIC results: (a) and (b): distribution of absolute value of transmitted and reflected electric and magnetic field of the

probe beam, calculated as |F̃t|=
√

F2y,t + F2x,t and |F̃r|=
√

F2y,r + F2x,r, where F̃ presents either Ẽ or B̃ normalized bymecω0/e or

meω0/e, respectively. (c) Transmitted (blue) and reflected (red) electric field shows the half wave loss. (d)–(f) With P-polarized
probe beam, it gives the similar results respectively. The PIC configuration is the same as figures 1(c) and (d).

from equation (21) as |Ẽz,t,p|theo. = 0.832 and |Ẽz,r,p|theo. = 0.1662, respectively. The half wave loss of the
reflected pulse is shown in figure 2(c) for S-polarized case and in (f) for P-polarized case, same as what
classical optics predicts. This result may have potential application prospects.

As seen from equations (18) and (21), the reflection and refraction mainly depends on the incident angle
θi and pump field strength as. Therefore, a series of 2D simulations have been performed both for S-polarized
and P-polarized probe lasers as shown in figure 3 where θr = θi is always satisfied. It shows that the larger
incident angle leads to the larger refractive angle and reflectivity, but smaller transmittance. Refractive angle,
refractivity and transmittance decreasing with as presents the fact that stronger pump field results in the
lower phase velocity of probe beam. It can be understood that higher intensity EM field can pump higher
density of quantum fluctuation and then can promise the better detectable signal in experiments.

Secondly, previous works have used RI derived from a uniform static EM field, similar to equation (10).
Since the strong pump field is provided by the high-power laser pulse in experiment, the probe laser
experience the periodic variation of the ‘vacuum medium’ while crossing by. As mentioned in [53], it is
necessary to correct the quantum RI and the light cone condition [54] if the spatiotemporal variation of the
pump field is considered self-consistently in mathematics. Although equations (3)–(7) and the derived
generalized Snell’s formula are applicable to pump fields with temporal and spatial variations, their valid
range still needs to be verified through simulation. So, we perform the simulation where the pump field
varies with time, see figure 4. Based on the previous pump field setup, time modulation is added to the
uniform electric field. In order to help guide experiments related to refraction, we gradually increased the
oscillation frequency of the pump field. We present a complete comparison of theoretically predicted
wavefronts and the simulation results in figure 4. Figures 4(a)–(d) correspond to pump fields with oscillation
frequencies 0,ω0/20,ω0/10,ω0/4, respectively. The black circles in the figure 4 show the wavefront calculated
from theoretical prediction, which is in good agreement with the simulation results.

Thirdly, we are going to study the cases where there is spatial variation in the pump field. Here we
perform simulations using a quarter-cycle laser field configuration Es = E0 cos(π x/2w0) with a step
boundary at x= 0, as shown in figure 5(a). We vary w0 by three different values w0 = 1,2,4µm which is
equivalent to controlling the wavelength of the probe laser relative to the pump laser. The probe beam is
incident with an angle θi with respect to the boundary. The other parameters are the same as above in
figure 2. The trajectory of the probe beam in xy-plane is plotted for each value of w0 in figure 5(a) and
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Figure 3. Study of how the deflection and refraction angles, and the reflectivity and transmittance of the probe beam depends on
the incident angle θi (in (a) and (b)) and pump field strength as (in (c) and (d)). Dash and solid lines in each plot presents
theoretical predictions for S- and P-polarized probe lasers while blue and orange stars or circles correspond to the simulation
results, respectively. Red and black lines indicate the refracted and reflected beams respectively. In (a) and (b) the angle θi is varied
as 0.820,0.896,0.983,1.081,1.249rad while as = 1000. In (c) and (d) as varies as 600,800,1000,1100 while θi = 1.081rad.

Figure 4. Field ditribution of the probe laser when it propgates in a time varing pump filed. (a)–(d) correspond to the the pump
field Es = E0cos(ωt) with ω = 0,ω0/20,ω0/10,ω0/4, respectively. We take the points with an electric field intensity of 0 as the
wavefront of the probe laser (white area). The black circle represents the theoretical wavefront calculated from equations(6)
and (7).

compared with the theoretical prediction given by the full description in equations (4)–(7) and by the Snell’s
formula in equation (14). The difference between the two theories is very small. And the outgoing beams
remain parallel in all three w0 values. This is consistent with the prediction in equation (12). The short
wavelength of the pump field, comparable to that of probe beam, does not add additional corrections to
analytical results, especially RI, which is different from [53]. Hence, Snell’s formula in equation (14) is still a
good approximation as expected in section 2.

Furthermore, in real experiments, the relative size of the probe laser to that of the pump field is another
critical factor that may have a significant impact. We configure our simulations with a spatial Gaussian
profile Es = E0 exp(−r2/w2

0), as shown in figure 5(b), to study this factor. w0 is the RMS size of the field. A
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Figure 5. (a) Theoretical (dashed and solid lines) and numerical (triangle) results of transverse offset of the probe beam while
passing through quantum vacuum pumped by a quarter-cycle laser pulse (grey region), Es = E0 cos(π x/2w0), 0< x< w0. The
probe beam is incident with an angle θi. Three dashed vertical lines show the positions where the field drops to 0 for three
different values of w0 = 1,2,4µm. The results for the three cases are indicated by different colors: red, blue and black respectively.
Since the left and right boundary of the pump field is parallel, the outgoing direction of the probe beam is also parallel to the
incident and thus refraction gives a transverse offset∆y. (b) A Gaussian laser pulse (red–blue color map) is incident from left at
y= 3λ0 and refracted as passing through quantum vacuum (blue region) pumped by a spatial Gaussian field. The solid red line
shows the trajectory of the probe beam as propagating in free vacuum. The numerical trajectory (black line with stars) from PIC
agrees well with the theoretical prediction (orange line with arrow). (c) and (d) k-space of the probe beam as propagating through
the free and quantum vacuum after t= 10T0.

tightly focused Gaussian probe laser pulse of spotsize 1µm propagates from left and begins to deflect when
the local pump field strength Es is sufficient to give a large quantum RI. As it passes through, the probe beam
is significantly refracted with an angle∆θ as shown in figure 5(d). In principle, the theory presented in
section 2 allows us to treat the different points on the wavefront of the probe beam as independently
propagating rays. The inhomogeneous field results in varying deflection angles at different points, leading to
a distorted pulse wavefront. It may also result in a deviation of the PIC trajectory from the theoretical
prediction calculated from equation (12). However, it should be very small and can be neglected if the
crossing section is relatively small. The trajectory from PIC agrees well with the theoretical prediction as
shown in figure 5(b) and only a slight pulse wavefront distortion is observed as shown in figure 5(d). Because
the above two simulation parameters, such as wavelength of 1µm and spotsize of 3µm, are close to the real
parameters of modern ultraintense laser facilities [2–4], these results confirm that our analytical results give
reasonable predictions over a wide range of experimental parameter regime.

4. Exploration of quantum vacuum properties using ultraintense laser and x-ray

Now we demonstrate a feasible experimental setup by 2D PIC simulations where a soft x-ray pulse is used as
the probe and a high intensity laser pulse as the pump. It is expected that the deflection of propagation
direction and the change of intensity can be used as detectable signals. The simulation scheme is shown in
figure 6(a). From the above analysis, we can easily see that if two laser beams collide head-on, due to the
symmetry in geometric, the propagation direction of the probe laser is collinear with the gradient direction
of the pump laser intensity, making it difficult to generate refraction. So we let the two pulses collide at angle
θc. The pump laser is polarized in ŷ direction with peak intensity Is = 1.99× 1024Wcm−2 or
as = eEy/meω0c= 1200, wavelength λ0 = 1µm, 16th-order super-Gaussian temporal and spatial profile with
duration τs = 10fs and focus radius rs = 4λ0. It is incident from the right boundary with an angle of
θc = 0.489rad into the 4λ0 × 6λ0 simulation box consisting of 2000× 2500 cells. After time delay of 4T0,
where T0 = λ0/c, the S-polarized x-ray probe beam with wavelength λp = 0.1λ0, intensity Ip = 1.38
×1018Wcm−2 ≪ Is or ap = eEz/2πmeT0c= 1, focus radius rp = 3λp and Gaussian temporal profile of RMS
duration τp = 5fs is incident from the left boundary at y= 0.5λ0. It crosses the pump field from side
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Figure 6. (a) Schematic of the x-ray-laser collision scheme for exploring vacuum polarization. A short x-ray pulse as a probe
beam collides with laser pulse as pump field with an angle. (b) The quantum vacuum shows a spatial and temporal distribution
depending on the strong pump field. (c)–(e) Field distribution of probe and pump laser pulse at three different time t= 5T0, 7T0

and 8T0. The refraction effect can clearly shown in k-space in (f)–(h) respectively. Here, amplitude of the reflected beam is too
small to be seen here.

similarly as shown in figure 5(b). Note that ξ = 8.6× 10−45 remains in simulation for clarity of
demonstration, but all explicit values given below have been rescaled back to real-world physical values.

The distribution of quantum RI calculated with the help of equation (10) is shown in figure 6(b), and
indicates that the structure of quantum vacuum totally depends on the pump field. While colliding with the
pump laser at an angle, the x-ray pulse traverses obliquely over the quantum vacuum with nqed > 1, and can
be expected to be deflected away from its initial propagation path. The electric field distributions of pump
laser (Ey) and probe x-ray (Ez) at t= 5T0,7T0,8T0 are shown in figures 6(c)–(e) respectively. The
corresponding K-space distributions of x-ray probe are also presented in figures 6(f)–(h) respectively. The
deflection angle is ϕ = 0.239× 1.52× 10−8 rad and the strength of probe x-ray is reduced to
ap,f = 0.77× 1.52× 10−8 after passing through at 8T0, corresponding the theoretical predictions of
ϕ = 0.196× 1.52× 10−8 rad and ap,f = 0.64× 1.52× 10−8 by equations (9)–(18). The small difference
comes from the spatial and temporal field distribution. The dependence of the deflection angle on the
collision angle and pump field strength is studied as shown in figure 7. The deflection angle ϕ increases with
as and decreases with θc, which can be scaled approximately with Snell’s law in equation (9) as
ϕ ∼ θi − arcsin(cosθc/nqed), where θi = π/2− θc.

Under the real experimental conditions, the simple scaling law for estimating refractive angle can be
given as ϕ ≈ 2.52× 10−9 · (Is/[1.38× 1024Wcm−2]) rad. Assuming the intensity of the pump laser is
Is = 1.38× 1024Wcm−2(as = 1000), where the condition of Is ≪ Icr is satisfied and other parameters of
lasers are the same as those in figure 6, the deflection angle of the probe x-ray is estimated to be ϕ ∼ 2 nrad
after passing through. This small deflection is enough to realize interferometric measurement by changing
the interference fringe. The state-of-art interferometry, which proposed for the ultra precise measurement of
the small laser angular deflection, can provide the resolution on the single nrad-level and extremely robust
and insensitive to the most common disturbances [42, 43].
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Figure 7. The deflection angle of the x-ray probe varying with (a) different intensities of pump laser as, where the collision angle
between the pump laser and the probe x-ray is fixed as θc = 0.489rad, (b) different θc , where as = 1200 is fixed.

5. Conclusion

In summary, we have examined the possibility of detecting the vacuum polarization effect based on vacuum
refraction and strong lasers. We propose a scheme to explore the quantum vacuum effect on ultraintense
laser facilities, in which an x-ray probe laser is applied to obliquely collide with the ultraintense pump laser.
The theoretical basis of the scheme is analyzed, where the evolution of the wavefront, intensity, and
refraction angle of the probe laser are given. In particular, the refraction angle, which can be served as a
detectable signal of the quantum vacuum effect and can be measured under realistic parameters in current
experiments. To verify the proposed scheme, a series of 2D PIC simulations, with the vacuum polarization
effect self-consistently taken into account, are carried out. The simulation results have confirmed that the
generalized Snell’s and Fresnel’s law can be used as a reasonable description of the refraction of the probe
laser for most of the settings that can be employed experimentally today.
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Appendix A.Wavefront expansion

According to the QED modified Maxwell’s equation, the evolution of E can be obtained by

∂2
t E− c2∇2E=−êz∂2

t Pz/ε0 − êz∂x∂tMy/ε0

=−êz∂2
t

(
AsBy −AsEz

)
− êz∂x∂t

(
AsEz −AsBy

)
.

(A.1)

using−∂tB=∇×E, the S-wave propagates in the x,y plane and is uniform along the z direction, we have
∂tBy = ∂xBz. Then in z direction, the evolution of E turns to

∂2
t Ez − c2∇2Ez = As ·

[
c(∂x∂tEz)− c2

(
∂x∂tBy

)
− ∂2

t Ez + ∂2
t By

]
+(∂xAs)

(
∂tEz + ∂tBy

)
+(∂tAs)

(
∂xEz + ∂xBy + 2∂tEz + 2∂tBy

)
+ Ez

(
∂x∂tAs + ∂2

t As

)
+By

(
∂x∂tAs + ∂2

t As

)
.

(A.2)

The right hand of equation (A.2) consists of three lines, and we discuss their results in wavefront
expansion separately. The first line is represented by Asc(∂x∂tEz) which does not contain a derivative of As.
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Substitute it into Ez =Σ∞
n=0ϕnfn(s) = Σnϕnfn(t−σ(r)) and we get

c
∑
n

ϕnfn−2 (−∂xσ)As + ∂xϕnfn−1As +ϕnfn−1∂xAs. (A.3)

Similarly, substitute the second line represented by (∂tAs)∂xEz which contains the first derivative of As to get∑
n

(∂tAs) [ϕnfn−1 (−∂xσ)+ (∂xϕn) fn] , (A.4)

and substitute the third line represented by Ez∂x∂tAs which contains the second derivative of As to get

(∂x∂tAs)Σnϕnfn (t−σ (r)) . (A.5)

Generally speaking, we should first equate the coefficient of f−2 to 0 to get the equation about σ that is
equation (3). Solving for equation (3) determines the evolution of the wavefront. Then, equating the
coefficient of f−1 leads to the equation about ϕ0 and σ, thus can determine the ϕ0. The subsequent
coefficients determines ϕ1,ϕ2, . . ., but ϕ0 is the main quantity that determines the intensity of wavefront.

We can note that since the original equation is a second order derivative equation, f−2 = f ′ ′0 means that
the corresponding coefficient equation (3) does not contain the derivative of As. This indicates that
equation (3) retains its form in general temporal and spatial nonuniform situations. For the scope of
application of equation (3), it requires the convergence of the series of the wavefront expansion. However,
the form that fn takes usually depends on the particular problem, and there is no universally applicable
assumption. For example, Ez can be chosen as the expansion form of a power series:

Ez =

ϕ0H(s)+ϕ1s+ . . .ϕn
1

n!
sn + . . .,s> 0

0 ,s< 0
(A.6)

where H(s) is Heaviside function. Ez = 0 if s< 0 indicate that there is no electric field in front of the
wavefront (s= 0). If Ez takes the form of equation (A.6), then the convergence of the above process holds
only for very small s, which only reflects the behavior of the wavefront propagating a small distance. This is
sufficient for simple situations, such as the case of the uniform pump field in figure 1, where the wavefront
begins to propagate in a straight line after crossing a very small distance from the boundary. However, for
more complex pump fields with spatial and temporal variations, the assumption of this power series
becomes no longer convenient for larger s. If the frequency of probe laser is high, the typical temporal and
spatial scales are 1/ω, c/ω, another commonly used expansion series is

Ez =
∞∑
n=0

ϕn (x)
e−iωs

(−iω)n
. (A.7)

Thus a simple estimate of magnitude is fn−1 ∼ ∂tfn(t−σ)∼ iωfn. By comparing the terms ϕnfn−2(−∂xσ)As

and ϕnfn−1∂xAs in equation (A.3), we can get the conclusion equation (3) is acceptable until

(ϕnfn−1∂xAs)/(ϕnfn−2(−∂xσ)As)∼ c/ω
As/(∂xAs)

< 1. This means that under the condition that the variation
scale of the pump field is much larger than that of the probe, the equation (3) can be applied in a longer
wavefront evolution region. For cases where this condition is not satisfied, it is necessary to rely on the more
refined assumption of fn.

Appendix B. Simulationmethod

This section includes an explanation of the implementation of the simulation code and some of the
operations used in simulations.

PIC program, EPOCH, is an open source program capable of simulating the evolution of EM fields and
EM-plasma interactions. It is characterized by user-friendly interaction, reasonable boundary processing and
massively parallel computation. Based on the EPOCH framework, the original EM field evolution has been
modified from Maxwell’s equations to vacuum-polarization-corrected nonlinear Maxwell’s equations. More
specifically, the modified Maxwell’s equations comes from the low-frequency, weak-field limit of the
Heisenberg–Euler theory, i.e. leading-order contribution equation (1). This code can directly calculate the
macroscopic EM field in both near field and far field, and thus help conveniently deal with problems related
to the coherence information of photons [14, 15].

12



New J. Phys. 26 (2024) 023008 J Wang et al

The algorithm we used comes from [52] which is based on the Yee algorithm (a standard second-order
fine difference time-domain method). As in the modified Maxwell’s equation, the development of EM fields
requires the knowledge of future quantities. Therefore, the explicit method the standard Yee algorithm
advances EM fields has to be modified. The algorithm we use adds an iteration loop to get a converged result,
which is equivalent to an implicit algorithm.

There are two simulation details that need to be mentioned here:
Firstly, there are two forms of adding EM fields in the simulation. The first one is achieved by giving

time-dependent value of the boundary EM field, thus realizing the incident laser at the simulated boundary.
The pump laser in the collision scenario and all probe lasers and are set in this way. Since in the program, all
these EM fields evolutions are based on corrected Maxwell’s equations, this guarantees EM fields
self-consistency during the evolution. The field value of the boundary-incident laser is set in accordance with
the theoretical value of the free vacuum theory. For example, the incident probe laser adopts the form of
leading-order paraxial Gaussian beam, thus fulfilling E2 −B2,E ·B= 0. The second method is to directly add
additional EM fields to the program based on arbitrary time and space distribution functions. This part of
the EM field is independent from the self-consistent EM field in the first method in computer memory. This
EM field only plays a role in calculating the corresponding polarization vector P,M in the algorithm, and
does not evolve according to Maxwell’s equations. This allows us to set the background field very freely,
which is reasonable and convenient for exploring the propagation properties of probe laser in different forms
of strong background fields. In more practical simulations such as two laser collision case, the pump laser is
given in the first method.

Secondly, to demonstrate the vacuum polarization effect within a limited simulation time, we have
artificially increased the nonlinear parameter ξ in equation (1). The physical significance of the results
remains unaffected by this. Instead, it is merely a proportional adjustment of a constant aimed at
emphasizing the effects with greater clarity. This is because the real physical parameter ξ is very small, the
effect of vacuum polarization can only consider the part that is proportional to ξ. We provide here a relatively
general proof here(in Gaussian units). We denote the pump field as Es,Bs, probe field as Ep,Bp. Assume that
Es0,Bs0 is the typical amplitude of the pump field, E0 is the typical amplitude of the probe field and the typical
scale of the EM field is described by x0 = 2π/k, t0 = 2π/ω. Then, the physical quantity we are concerned
about is the electric field of probe laser which can be written as a general form: Ep = E0 · f(ξ,Es0,Bs0,k,ω,x, t).
According to the dimensional analysis (or Buckingham Π theorem, choose Es0,x0, t0 as the basic units and
convert all independent variables in f into dimensionless quantities marked with ~), Ep can be transformed
into Ep = E0 · f(ξE2s0, B̃s0, x̃, t̃). We also know that when ξ → 0, the equation is only related to x̃, t̃ and can
return to the classical limit. So, Ep can be further written as Ep = E0 · f(h(ξE2s0, B̃s0), x̃, t̃). Because the ξ is very
small and satisfies ξE2s0 ≪ 1, typical value x̃, t̃∼ 1 , we can do a Taylor expansion of it to get
Ep = E0 · f0(x, t)+ E0 · f ′(x̃, t̃)h ′(B̃s0) ∗ ξE2s0 + o((ξE2s0)

2). Here, f 0 is the electric field solution of the probe
without vacuum polarization effect. This indicates that within this parameter range (ξE2s0 ≪ 1) the influence
caused by vacuum polarization is proportional to ξ. We arrived at the desired conclusion, and it should be
careful to set the magnified ξ to ensure that the term o((ξE2s0)

2) is small.
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