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Abstract The dependence of particle production on the
size of the colliding nuclei is analyzed in terms of the ther-
mal model using the canonical ensemble. The concept of
strangeness correlation in clusters of sub-volume Vc is used
to account for the suppression of strangeness. A systematic
analysis is presented of the predictions of the thermal model
for particle production in collisions of small nuclei. The pat-
tern of the maxima of strange-particles-to-pion ratios as a
function of beam energy is quite special, as they do not occur
at the same beam energy and are sensitive to the system size.
In particular, the �/π+ ratio shows a clear maximum even
for small systems while the maximum in the K+/π+ ratio
is less pronounced in small systems.

1 Introduction

A substantial experimental effort is presently being made to
study not only heavy- but also light-ion collisions. This is
being motivated by the puzzling results, obtained in Pb–Pb
and Au–Au collisions, for the non-monotonic behavior of the
K+/π+ratio, and other particle ratios which have been con-
jectured as being due to a phase change in nuclear matter [1].

A consistent description of particle production in heavy-
ion collisions, up to LHC energies, has emerged during the
past two decades using a thermal-statistical model (referred
to simply as thermal model in the remainder of this paper).
It is based on the creation and subsequent decay of hadronic
resonances produced in chemical equilibrium at a unique
temperature and baryo-chemical potential. According to this
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picture the bulk of hadronic resonances made up of the light
flavor (u,d and s) quarks are produced in chemical equilib-
rium.

Indeed, some particle ratios exhibit very interesting fea-
tures as a function of beam energy: (i) a maximum in the
K+/π+ratio, (ii) a maximum in the �/π ratio, and (iii) no
maximum in the K−/π−ratio. These three features occur at a
center-of-mass energy of around 10 GeV [2–4]. The maxima
occur in an energy regime where the largest net baryon den-
sity occurs [5,6] and a transition from a baryon-dominated
freeze-out to a meson dominated one takes place [4]. An
alternative interpretation is that these maxima reflect a phase
change to a deconfined state of matter [1].

The maxima mark a distinction between heavy-ion colli-
sions and p–p collisions as they have not been observed in the
latter. This shows a clear difference between the two systems
which is worthy of further investigation.

It is the purpose of the present paper to investigate the
transition from a small system like a p–p collision to a large
system like a Pb–Pb or Au–Au collision and to follow explic-
itly the genesis of the maxima in certain particle ratios. This
is relevant for the interpretation of the data coming out of
the BES [7] and NA61 [8] experiments. These experiments
are spearheading this effort at the moment, in the near future
additional results will be obtained at the NICA collider and
at the FAIR facility.

2 The model

A relativistic heavy-ion collision goes through several stages.
In one of the later stages, the system is dominated by hadronic
resonances. The identifying feature of the thermal model is
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that all the resonances as listed by the Particle Data Group [9]
are assumed to be in thermal and chemical equilibrium. This
assumption drastically reduces the number of free parame-
ters and thus this stage is determined by just a few thermo-
dynamic variables, namely the chemical freeze-out temper-
ature T , the various chemical potentials μ determined by the
conserved quantum numbers and by the volume V of the
system. It has been shown that this description is also the
correct one [10–12] for a scaling expansion as first discussed
by Bjorken [13].

In general, if the number of particles carrying quantum
numbers related to a conservation law is small, then the
grand-canonical description no longer holds. In such a case,
conservation of charges has to be implemented exactly by
using the canonical ensemble [14–24]. We start by present-
ing a brief reminder of the general concepts of the thermal
model. The analysis presented here emphasizes the role of
strangeness; it should be clear, however, that in small sys-
tems, particularly at lower energies, at some stage also baryon
number (and charge) conservation will have to be considered
in the canonical ensemble. This will be taken into account in
a future publication.

2.1 Grand-canonical ensemble

In the grand-canonical ensemble, the volume V , temperature
T and the chemical potentialsµ determine the partition func-
tion Z(T, V,µ). In the hadronic fireball of non-interacting
hadrons, ln Z is the sum of the contributions of all particle
species i given by

1

V
lnZ(T, V,µ) =

∑

i

Z1
i (T,µ), (1)

where µ = (μB, μS, μQ) are the chemical potentials related
to the conservation of baryon number, strangeness and elec-
tric charge, respectively.

The partition function contains all information needed to
obtain the number density ni of particle species i . Introducing
the particle’s specific chemical potential μi , one gets

ni (T,µ) = 1

V

∂(T ln Z)

∂μi

∣∣∣∣
μi=0

. (2)

Any resonance that decays into species i contributes to
the yields eventually measured. Therefore, the contributions
from all heavier hadrons j that decay to hadron i with the
branching fraction � j→i are given by

ndecay
i =

∑

j

� j→i n j . (3)

Consequently, the final yield Ni of particle species i is the
sum of the thermally produced particles and the decay prod-
ucts of resonances,

Ni = (ni + ndecay
i ) V . (4)

From Eqs. (2)–(4) it is clear that in the grand-canonical
ensemble the particle yields are determined by the volume
of the fireball, its temperature and the chemical potentials.

2.2 Canonical ensemble

If the number of particles is small, then the grand-canonical
description no longer holds. In such a case conservation
laws have to be implemented exactly. Here, we refer only
to strangeness conservation and consider charge and baryon
number conservation to be fulfilled on the average in the
grand-canonical ensemble because the number of charged
particles and baryons is much larger than that of strange
particles [21]. The density of strange particle i carrying
strangeness s can be obtained from (see [21] for further
details)

nCi = Z1
i

ZC
S=0

∞∑

k=−∞

∞∑

p=−∞
a p

3 a
k
2a

−2k−3p−s
1

×Ik(x2)Ip(x3)I−2k−3p−s(x1), (5)

where ZC
S=0 is the canonical partition function

ZC
S=0 = eS0

∞∑

k=−∞

∞∑

p=−∞
a p

3 a
k
2a

−2k−3p
1

×Ik(x2)Ip(x3)I−2k−3p(x1), (6)

and Z1
i is the one-particle partition function (Eq. 1) calculated

for μS = 0 in the Boltzmann approximation. The arguments
of the Bessel functions Is(x) and the parameters ai are intro-
duced as,

as = √
Ss/S−s , xs = 2V

√
Ss S−s, (7)

where Ss is the sum of all Z1
k for particle species k carrying

strangeness s.
In the limit where xn < 1 (forn = 1, 2 and 3) the density of

strange particles carrying strangeness s is well approximated
by [21]

nCi � ni
Is(x1)

I0(x1)
. (8)

From these equations it is clear that in the canonical ensemble
the strange particle density depends explicitly on the volume
through the arguments of the Bessel functions. This volume
might be different from the overall volume V and is denoted
as Vc [18,20,25].
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In this case there are two volume parameters: the overall
volume of the system V , which determines the particle yields
at fixed density, and the strangeness correlation volume Vc,
which describes the range of strangeness conservation. If this
volume is small, it reduces the densities of strange particles.

3 Origin of the maxima

It has been observed that the baryon chemical potential
decreases with increasing beam energy while the temperature
increases quickly and reaches a plateau. Following the rapid
rise of the temperature at low beam energies, the �/π+ and
K+/π+also increase rapidly. This halts when the temperature
reaches its limiting value. Simultaneously the baryon chem-
ical potential keeps on decreasing. Consequently, the �/π

and K+/π+ratios follow this decrease because the strange
chemical potential is not independent of the baryonic one
since strangeness conservation connects the two. The two
effects combined lead to maxima in both cases. For very
high energies, the baryo-chemical potential no longer plays
a role (μB ≈ 0) and, since the temperature remains constant,
these ratios no longer vary [4].

In order to analyze the strangeness content in a heavy-ion
collision we make use of the Wroblewski factor [26] which
is defined as

λs = 2 〈ss̄〉
〈uū〉 + 〈

dd̄
〉 .

This factor is determined from the quark content of the
hadronic resonances, namely, by the number of newly cre-
ated strange–anti-strange (〈ss̄〉) and the non-strange 〈uū〉 and〈
dd̄

〉
quarks before the strong decays of the resonances.

Its limiting values are obvious: λs = 1, if all quark pairs
are equally abundantly produced, i.e. flavor SU(3) symmetry
and λs = 0, if no strange quark pairs are present in the final
state. This factor has been calculated in the thermal model
using the THERMUS [28] code by examining the quark con-
tent of hadronic resonances. Due to its definition, contribu-
tions from heavy flavors like charm are explicitly excluded.
The relative strangeness production in heavy-ion collisions
along the chemical freeze-out line shows a maximum. This
is illustrated by the Wroblewski factor in Fig. 1. The func-
tional dependence of T and μB on

√
sNN as in [3] was used.

For comparison we also show the freeze-out parameteriza-
tion recently introduced in [27], which has a lower limiting
temperature than the one given in [3].

In an earlier publication, we have already discussed how
the maximum in λs , seen in Fig. 1, occurs [21]. It turns out
that the shape of the Wroblewski factor tracks the energy
dependence of the K+/π+ ratio.

To show this in more detail we present as an example in
Fig. 2 contour lines where the K+/π+and the �/π+ ratios
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Fig. 1 The Wroblewski factor λs as a function of beam energy cal-
culated along the chemical freeze-out curve. The dashed-dotted line is
calculated along the freeze-out curve obtained in [3] while the dashed
line uses the parametrization given in [27]

remain constant in the T − μB plane. It should be noted
that the maxima of these ratios do not occur in the same
position, which remains to be confirmed experimentally. It is
also worth noting that in these cases the maxima are not on,
but slightly above the freeze-out curve.

4 Particle ratios for small systems

To consider the case of the collisions of smaller nuclei we take
into account the strangeness suppression using the concept
of strangeness correlation in clusters of a sub-volume Vc ≤
V [18,20,29].

A particle with strangeness quantum number s can appear
anywhere in the volume V but it has to be accompanied
by another particles carrying strangeness −s to conserve
strangeness in the correlation volume Vc. Assuming spheri-
cal geometry, the volume Vc is parameterized by the radius
Rc which is a free parameter that defines the range of local
strangeness equilibrium.

In the following we show the trends of various particle
ratios as a function of

√
sNN. The dependence of T and μB

on the beam energy is taken from heavy-ion collisions [3]. For
p–p collisions slightly different parameters would be more
suited [30]. Therefore, the calculations illustrate the general
trend, as we have ignored the variations of the parameters
with the system size.

We focus on the system-size dependence of the thermal
parameters with particular emphasis on the change in the
strangeness correlation radius Rc. The radius parameters of
the volume V , R = 10 fm (which is the value for central Pb–
Pb collisions) and γS = 1 are kept fixed. The freeze-out values
of T and μB will vary with the system size [29]; however, this
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Fig. 2 Values of the
K+/π+(left-hand pane) and the
�/π+ (right-hand pane) ratios
in the T − μB plane. Lines of
constant values are indicated.
The dashed-dotted line is the
freeze-out curve obtained in [3],
while the dashed line uses the
parameterization given in [27].
Note that the maxima do not
occur in the same position
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Fig. 3 Behavior of particle
ratios as a function of the
invariant beam energy for
various strangeness correlation
radii Rc, calculated using the
thermal model formulated in a
canonical ensemble [28]. The
K+/π+, �/π± ratios are shown
in the left-hand panel while the
corresponding antiparticles are
shown in the right-hand panel.
Note that the �/π± ratio is the
only ratio where the maximum
does not disappear as the system
size is reduced
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has not been taken into account in the present work, which
therefore gives only a qualitative description of the effect.

The smaller system size is described by decreasing
the value of the correlation radius Rc. This ensures that
strangeness conservation is exact in Rc, and hence strange-
ness production is more suppressed with decreasing
Rc.

In Fig. 3 we show the energy and system-size dependence
of different particle ratios calculated along the chemical
freeze-out line. A maximum is seen in the K+/π+ ratio which
gradually disappears when the correlation radius decreases.
A different effect is seen in the �/π± ratio. Here, the grad-
ual decrease of the maximum is also seen but, contrary to the
K+/π+ ratio, it does not disappear and is still present even
for small radii. This behavior can be tested experimentally
and, if confirmed, will give support the hadronic scenario
presented here.

In the left-hand panel of Fig. 3 it is also seen that for dif-
ferent particle ratios the maxima gradually become less pro-
nounced as the size of the system decreases. Also, the max-
imum shifts, for smaller systems, towards higher

√
sNN. For

pp collisions which correspond to a Rc of about 1.5 fm [29],
they will hardly be observed, except for �/π ratio. As noted
before the maxima occur at different beam energies.

The corresponding ratios for antiparticles are shown in
the right-hand panel of Fig. 3. As is to be expected in the
thermal model, no maxima are present because the baryon
chemical potential μB enters with the opposite sign and the
ratios increase smoothly with increasing beam energies until
they reach a constant value corresponding to the limiting
hadronic temperature.

The ratios involving multi-strange baryons are also shown
in Fig. 3. It is to be noted here that the maxima occur at
a higher beam energy than for the K+/π+ and the �/π
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ratios. The maxima are caused by an interplay of different
mass thresholds, a decreasing μB and the saturation of T .
The maxima gradually disappear as the size of the system is
reduced. These are the main results of the present paper.

It must be emphasized that the results presented here are
of a qualitative nature. In particular, there could be changes
due to variations with the system size of the temperature and
the baryon chemical potential.

5 Conclusions

The thermal model describes the presence of maxima in the
K+/π+and the �/π± ratios at a beam energy of

√
sNN ≈

10 GeV. In this paper we have described what could possi-
bly happen with different strange particles and pion yields in
collisions of smaller systems due to constraints imposed by
exact strangeness conservation. To this end, use was made of
a correlation volume to account for the strangeness suppres-
sion effect. We have shown that, in general, the characteristic
feature of such ratios is a non-monotonic excitation function
with well-identified maxima for the ratios involving strange
particles. The ratios with the anti-strange particle yields
exhibit a monotonic increase and saturation with energy. A
decrease in the maxima was noted and for certain ratios of
particle yields the maxima completely disappear but not for
all. In particular, the �/π+ ratio still shows a clear maximum
even for small systems. The pattern of these maxima is also
quite special, they are not always at the same beam energy.

If all ratios are following the trend given here, it is a strong
argument that the properties of the strange particle excitation
functions, and their system-size dependence, are governed
by the hadronic phase of the collisions constrained by an
exact strangeness conservation implemented in a canonical
ensemble.

Acknowledgements The work of KR was supported by the Polish Sci-
ence Center (NCN), under Maestro Grant DEC-2013/10/A/ST2/00106.
NS acknowledges the support of DST-SERB Ramanujan Fellowship
(D.O. No. SB/S2/RJN- 084/2015).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. M. Gazdzicki, M.I. Gorenstein, Acta Phys. Polon. B 30, 2705
(1999)

2. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772,
167 (2006)

3. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C
73, 034905 (2006)

4. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B
615, 505 (2005)

5. J. Randrup, J. Cleymans, Phys. Rev. C 74, 047901 (2006)
6. J. Randrup, J. Cleymans, Eur. Phys. J. 52, 218 (2016)
7. Mustafa Mustafa (STAR Collaboration). arXiv:1512.09329 (2015)
8. N. Abgrall et al. (NA61), JINST 9, P06005 (2014)
9. K.A. Olive et al. (Particle data Group), Chin. Phys. C 38, 090001

(2014)
10. J. Cleymans, in Proceedings, 3rd International Conference on

Physics and Astrophysics of Quark-Gluon Plasma (ICPA-QGP
’97), vol. 55. arXiv:nucl-th/9704046 (1998)

11. S.V. Akkelin, P. Braun-Munzinger, YuM Sinyukov, Nucl. Phys. A
710, 439 (2002)

12. W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001)
13. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)
14. R. Hagedorn, K. Redlich, Z. Phys. C 27, 541 (1985)
15. J. Cleymans, K. Redlich, E. Suhonen, Z. Phys. C 51, 137 (1991)
16. F. Becattini, Z. Phys. C 76, 485 (1996)
17. F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997). [Erratum Z. Phys.

C 76, 578 (1997)]
18. J. Cleymans, H. Oeschler, K. Redlich, Phys. Rev. C 59, 1663 (1999)
19. J. Sollfrank, F. Becattini, K. Redlich, H. Satz, Nucl. Phys. A 638,

399 (1998)
20. S. Hamieh, K. Redlich, A. Tounsi, Phys. Lett. B 486, 61 (2000)
21. P. Braun-Munzinger, J. Cleymans, H. Oeschler, K. Redlich, Nucl.

Phys. A 697, 902 (2002)
22. P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon

Plasma 3, eds. by R.C. Hwa, Xin-Nian Wang, World Scientific
Publishing. arXiv:nucl-th/0304013

23. R. Stock, J. Phys. G 30, S633 (2004)
24. F. Becattini, P. Castorina, K. Redlich, H. Satz, Eur. Phys. J. C 56,

493 (2008)
25. P. Castorina, H. Satz, Eur. Phys. J. A 52(7), 200 (2016)
26. A. Wroblewski, Acta Phys. Polon. B 16, 379 (1985)
27. V. Vovchenko, V.V. Begun, M.I. Gorenstein, Phys. Rev. C 93,

064906 (2016)
28. S. Wheaton, J. Cleymans, M. Hauer, Comput. Phys. Commun. 180,

84 (2009)
29. I. Kraus, J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys.

Rev. C 76, 064903 (2007)
30. J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, N.

Sharma, Phys. Rev. C 84, 054916 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1512.09329
http://arxiv.org/abs/nucl-th/9704046
http://arxiv.org/abs/nucl-th/0304013

	Ratios of strange hadrons to pions in collisions of large and small nuclei
	Abstract 
	1 Introduction
	2 The model
	2.1 Grand-canonical ensemble
	2.2 Canonical ensemble

	3 Origin of the maxima
	4 Particle ratios for small systems
	5 Conclusions
	Acknowledgements
	References




