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Abstract: In this paper, by using the Hamming distance, we establish a relation between quantum

error-correcting codes ((N, K, d + 1))s and orthogonal arrays with orthogonal partitions. Therefore,

this is a generalization of the relation between quantum error-correcting codes ((N, 1, d + 1))s and

irredundant orthogonal arrays. This relation is used for the construction of pure quantum error-

correcting codes. As applications of this method, numerous infinite families of optimal quantum

codes can be constructed explicitly such as ((3, s, 2))s for all si ≥ 3, ((4, s2, 2))s for all si ≥ 5, ((5, s, 3))s

for all si ≥ 4, ((6, s2, 3))s for all si ≥ 5, ((7, s3, 3))s for all si ≥ 7, ((8, s2, 4))s for all si ≥ 9, ((9, s3, 4))s

for all si ≥ 11, ((9, s, 5))s for all si ≥ 9, ((10, s2, 5))s for all si ≥ 11, ((11, s, 6))s for all si ≥ 11, and

((12, s2, 6))s for all si ≥ 13, where s = s1 · · · sn and s1, . . . , sn are all prime powers. The advantages of

our approach over existing methods lie in the facts that these results are not just existence results,

but constructive results, the codes constructed are pure, and each basis state of these codes has far

less terms. Moreover, the above method developed can be extended to construction of quantum

error-correcting codes over mixed alphabets.

Keywords: quantum error-correcting code; orthogonal array; orthogonal partition; uniform state

1. Introduction

As in the classical transmission of data, in the transmission of quantum information,
errors are inevitable. Quantum error-correcting codes (QECCs) are designed for correcting
errors in the quantum communication channels. In 1995, Shor [1] gave the first [[9, 1, 3]]2
QECC, which was improved to the optimal [[5, 1, 3]]2 QECC soon after [2]. In 1996, Steane
revealed the natural link between basic quantum theory and linear error correcting codes
of classical information theory [3]. These fundamental studies promote the rapid develop-
ment of the theory of QECC. Now, QECCs have found wide applications in fault-tolerant
quantum computation [4,5], quantum key distributions [6,7], and entanglement purifica-
tion [8–11], etc. The construction of good QECCs has become one of the most important
tasks in quantum coding theory [2,12–14].

The stabilizer codes are an important family of QECCs. They are studied by many
researchers and a lot of results can be obtained [15–20]. Especially, based on classical Eu-
clidean or Hermitian self-orthogonal codes, many new optimal QECCs are given [15,19,20].
Based on the coding clique, some binary QECCs, additive or non-additive, can be obtained
by the graphical approach [21,22]. Although this method can be applied to the construction
of non-binary QECCs ((N, K, d))s [23] and even the QECCs ((N, K, d))s1s2···sN

over mixed
alphabets [24] (short for mixed QECCs), it is difficult to search for a coding clique for bigger
N and d. Moreover, for prime power s, even though the existence of many s-ary QECCs
has been proved [12,19,20,23,25–27], only a few families of codes can be constructed explic-
itly [23,24,28]. Pang et al. presented a method of explicitly constructing binary QECCs by
using orthogonal arrays (OAs) from difference schemes [28] and point out the superiority
of the obtained QECCs to the binary stabilizer QECCs in ref. [29]. The purpose of this
paper is to explicitly construct nonbinary and mixed QECCs by using OAs.

Orthogonal array, introduced by Rao [30], plays a prominent role in the design of
experiments. The connection between OAs and classical error-correcting codes is revealed
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in refs. [31–33]. In 2014, Goyeneche et al. established a link between an irredundant
orthogonal array (IrOA) and a uniform state [34], which is closely related to QECCs. A
relation between irredundant mixed orthogonal arrays and quantum k-uniform states for
heterogeneous systems is investigated in refs. [35,36]. Many infinite classes of uniform
states for homogeneous systems and heterogeneous systems are constructed from OAs
in refs. [36–38]. Shi et al. give a connection between QECCs and quantum information
masking and point out that if a QECC Q is pure, then any state in Q is a k-uniform state
and vice versa [39].

In recent years, more and more new OAs, especially high strength OAs, have been
presented [40–44]. It is these new developments in OAs and uniform states that shed light
on constructing QECCs from OAs.

In this paper, by using the Hamming distance, we establish a relation between quan-
tum error-correcting codes ((N, K, d + 1))s and orthogonal arrays with orthogonal parti-
tions. Therefore, this is a generalization of the relation between quantum error-correcting
codes ((N, 1, d + 1))s and irredundant orthogonal arrays. This relation is used for the con-
struction of pure quantum error-correcting codes. As applications of this method, numerous
infinite families of optimal quantum codes can be constructed explicitly such as ((3, s, 2))s

for all si ≥ 3, ((4, s2, 2))s for all si ≥ 5, ((5, s, 3))s for all si ≥ 4, ((6, s2, 3))s for all si ≥ 5,
((7, s3, 3))s for all si ≥ 7, ((8, s2, 4))s for all si ≥ 9, ((9, s3, 4))s for all si ≥ 11, ((9, s, 5))s for
all si ≥ 9, ((10, s2, 5))s for all si ≥ 11, ((11, s, 6))s for all si ≥ 11, and ((12, s2, 6))s for all
si ≥ 13, where s = s1 · · · sn and s1, . . . , sn are all prime powers. The advantages of our
approach over existing methods lie in the facts that these results are not just existence
results, but constructive results, the codes constructed are pure, and each basis state of
these codes has far less terms. Moreover, the above method developed can be extended to
the construction of QECCs over mixed alphabets.

This paper is organized as follows. In Section 2, we review some basic knowledge
about orthogonal arrays and QECCs. In Section 3, we present a general method of con-
structing QECCs over a single alphabet by using OAs and construct numerous infinite
families of optimal quantum codes. Afterwards, by expansive replacement of an orthogonal
array, this method is extended to the construction of QECCs over mixed alphabets. In
Section 4, some examples are provided. Some conclusions are drawn in Section 5. The two
explicitly constructed QECCs ((6, 52, 3))5 and ((7, 73, 3))7 are listed in Appendix A.

2. Preliminaries

First, the notations used in this paper are listed as follows.
Let AT be the transposition of matrix A and (s) = (0, 1, . . . , s − 1)T . Let 0r denote

the r × 1 vector of 0s. Let Zn
s denote the n- dimensional space over a ring Zs = {0, 1, . . . ,

s − 1}. If A = (aij)n×m and B = (buv)s×t with elements from a Galois field with binary
operations (+ and ·), the Kronecker sum A ⊕ B is defined as A ⊕ B = (aij + B)sn×tm where
aij + B represents the s × t matrix with entries aij + buv (1 ≤ u ≤ s, 1 ≤ v ≤ t). Let

Cs⊗N = C
s ⊗C

s ⊗ · · · ⊗C
s

︸ ︷︷ ︸

N

.

Some basic knowledge about OA and QECC is given.

Definition 1 ([37]). An orthogonal array OA(r, N, s, t) of strength t is an r × N matrix with
elements from Zs, with the property that, in any r × t submatrix, all possible combinations of t
symbols appear equally often as a row.

Definition 2 ([43]). Let A be an OA(r, N, s, t). Suppose that the rows of A can be partitioned
into K submatrices A1, . . . , AK such that each Ai is an OA(r/K, N, s, t′) with t′ ≥ 0. Then the
set {A1, . . . , AK} is called an orthogonal partition of strength t′ of A.
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Definition 3 ([45]). Let R1, . . . , Rn be the rows of an n × k matrix A with entries from Zs . The
Hamming distance HD(Ru, Rv) between Ru = (au1, . . . , auk) and Rv = (av1, . . . , avk) is defined
as follows:

HD(Ru, Rv) = |{r : 1 ≤ r ≤ k, aur 6= avr}|.

In this paper, MD(L) denotes the minimum Hamming distance between two distinct rows of
an OA L.

Definition 4 ([34]). An OA(r, N, s, t) is said to be an irredundant orthogonal array if, in any
r × (N − t) subarray, all of its rows are different.

Definition 5 ([37]). A pure quantum state of N subsystems with s levels is said to be d-uniform if
all of its reductions to d qudits are maximally mixed.

A link between an IrOA of strength d and a d-uniform state is established and an
((N, 1, d + 1))s QECC is one-to-one connected to a d-uniform state of N qudits in ref.
[34]. Hence the uniform state corresponding to an IrOA of strength d can be seen as an
((N, 1, d + 1))s QECC.

Lemma 1 ([39]). Let Q be a subspace of Cs⊗N . If Q is an ((N, K, d + 1))s QECC, then for any d
parties, the reductions of all states in Q to the d parties are identical. The converse is true. Further
if Q is pure, then any state in Q is a d-uniform state. The converse is also true.

It follows from Lemma 1 that an ((N, K, d + 1))s QECC corresponds to a special
subspace of Cs⊗N . Therefore, the lemma can also be regarded as the definition of a QECC
((N, K, d + 1))s in ref. [46], where N is the number of qudits, K is the dimension of the
encoding state, d + 1 is the minimum distance, and s is the alphabet size. A QECC can
also be denoted by [[N, k, d + 1]]s where k = logs K usually. In this paper, we mainly use
the notation ((N, K, d + 1))s because it is convenient to reveal the relation between codes
((N, K, d + 1))s and orthogonal arrays with orthogonal partitions. An ((N, K, d + 1))s

QECC has the quantum Singleton bound K ≤ sN−2d. A QECC saturating the bound is
called optimal.

The following are some important properties of OAs.

Lemma 2 ([47]). Taking the runs in an OA(r, N, s, t) that begin with 0 (or any other particular
symbol) and omitting the first column yields an OA(r/s, N − 1, s, t − 1). If we assume that these
are the initial runs, the process can be represented by the following diagram:

0
... OA(r/s, N − 1, s, t − 1)
0

1
... OA(r/s, N − 1, s, t − 1)
1

...
...

Lemma 3 ([48]). If s ≥ 2 is a prime power then an OA(st, s + 1, s, t) of index unity exists
whenever s ≥ t − 1 ≥ 0.

Lemma 4 ([48]). If s = 2m and m ≥ 1, then there exists an OA(s3, s + 2, s, 3).

Lemma 5 ([37]). The minimal distance of an OA(st, N, s, t) is N − t + 1 for s ≥ 2 and t ≥ 1.
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Lemma 6 ([48]). Two OA(r1, N, s1, t) and OA(r2, N, s2, t) can produce an OA(r1r2, N, s1s2, t).

Lemma 7. Assume that A is an OA(r1, N, s1, t) with MD(A) = h1, and that B is an OA(r2, N,
s2, t) with MD(B) = h2. Let h = min{h1, h2}. Then, there exists an OA(r1r2, N, s1s2, t) with
MD = h.

Proof. Let

A =








a11 a12 . . . a1N

a21 a22 . . . a2N
...

... · · ·
...

ar11 ar12 . . . ar1 N








and B =








b11 b12 . . . b1N

b21 b22 . . . b2N
...

... · · ·
...

br21 br22 . . . br2 N








.

The OA(r1r2, N, s1s2, t) exists from Lemma 6. It can be written as

C =





















(a11, b11) (a12, b12) · · · (a1N , b1N)
(a11, b21) (a12, b22) · · · (a1N , b2N)

...
... · · ·

...
(a11, br21) (a12, br22) · · · (a1N , br2 N)

...
... . . .

...
(ar11, b11) (ar12, b12) · · · (ar1 N , b1N)
(ar11, b21) (ar12, b22) · · · (ar1 N , b2N)

...
... · · ·

...
(ar11, br21) (ar12, br22) · · · (ar1 N , br2 N)





















.

Consider MD(C). In C, take any two rows c1 = ((ae1, bg1), (ae2, bg2), . . . , (aeN , bgN))
and c2 = ((a f 1, bv1), (a f 2, bv2), . . . , (a f N , bvN)). Correspondingly, a1 = (ae1, ae2, . . . , aeN)
and a2 = (a f 1, a f 2, . . . , a f N) are two rows of A while b1 = (bg1, bg2, . . . , bgN) and
b2 = (bv1, bv2, . . . , bvN) are two rows of B. Let Hc1c2 = |{i|aei 6= a f i and bgi 6= bvi,
i = 1, . . . , N.}|, where |A| denotes the number of elements of a set A. We have

HD(c1, c2) =







HD(b1, b2) ≥ h2 if e = f and g 6= v,
HD(a1, a2) ≥ h1 if e 6= f and g = v,
HD(a1, a2) + HD(b1, b2)− Hc1c2 ≥ max{h1, h2} if e 6= f and g 6= v.

Therefore, MD(C) = h.

Lemma 8. Under the conditions of Lemma 7, suppose A has an orthogonal partition {A1, . . . , An}
of strength t′ with MD(Ai) = h′1 for i ∈ {1, . . . , n} and that B has an orthogonal partition
{B1, . . . , Bm} of strength t′ with MD(Bj) = h′2 for j ∈ {1, . . . , m}. Let h′ = min{h′1, h′2}.
Then the OA(r1r2, N, s1s2, t) produced by Lemma 7 has an orthogonal partition {C11, . . . , Cnm} of
strength t′ with MD(Cij) = h′ ≥ h.

Proof. Let C = OA(r1r2, N, s1s2, t). Denote

Ai =








ai
11 ai

12 · · · ai
1N

ai
21 ai

22 · · · ai
2N

...
... · · ·

...

ai
l1 ai

l2 · · · ai
lN








, Bj =









b
j
11 b

j
12 · · · b

j
1N

b
j
21 b

j
22 · · · b

j
2N

...
... · · ·

...

b
j
g1 b

j
g2 · · · b

j
gN









,



Entropy 2023, 25, 680 5 of 18

where l = r1
n , g = r2

m . We define

Cij =























(ai
11, b

j
11) (ai

12, b
j
12) · · · (ai

1N , b
j
1N)

(ai
11, b

j
21) (ai

12, b
j
22) · · · (ai

1N , b
j
2N)

...
... · · ·

...

(ai
11, b

j
g1) (ai

12, b
j
g2) · · · (ai

1N , b
j
gN)

...
... · · ·

...

(ai
l1, b

j
11) (ai

l2, b
j
12) · · · (ai

lN , b
j
1N)

(ai
l1, b

j
21) (ai

l2, b
j
22) · · · (ai

lN , b
j
2N)

...
... · · ·

...

(ai
l1, b

j
g1) (ai

l2, b
j
g2) · · · (ai

lN , b
j
gN)























.

Then, Cij is an OA(lg, N, s1s2, t′) for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. By Lemma 7,
MD(Cij) = h′. Since h′1 ≥ h1 and h′2 ≥ h2, we have h′ = min{h′1, h′2} ≥ min{h1, h2} = h.
Obviously, {C11, . . . , Cnm} is an orthogonal partition of C.

3. The Construction of QECCs Based on OAs

We present a general method for constructing QECCs from OAs in this section.
Theorem 1 reveals a relation between a QECC and an OA with an orthogonal partition. With
Theorem 1 and the existence of OA(st, s + 1, s, t) , Theorem 2 produces the ((N, sl , t − l +
1))s QECCs including several infinite classes of optimal QECCs in Corollary 1. In Theorem 3,
several special QECCs can be directly obtained by using Theorem 1. Two optimal QECCs
((6, 52, 3))5 and ((7, 73, 3))7 are presented in Theorem 4. The production construction of
the obtained QECCs is given in Theorem 5. Consequently, Corollary 3 improves Theorem 2
and Corollary 1. Theorem 6 is the generalization of Theorem 2 to construction of QECCs
over mixed alphabets.

Goyeneche et al. reveal the relation between a ((N, 1, d + 1))s QECC and an IrOA [34],
while the following result is the generalization of this relation.

Theorem 1. Assume that there exists an OA(r, N, s, t) with MD = h and an orthogonal partition
{A1, . . . , AK} of strength t′. Let d = min{t′, h − 1}. Then, there exists an ((N, K, d + 1))s

QECC.

Proof. By Definition 4, the OA(r, N, s, t) and Ai (i = 1, . . . , K) are an IrOA(r, N, s, d) and an
IrOA( r

K , N, s, d), respectively. From the link between IrOAs and uniform states in ref. [34]
and {A1, . . . , AK}, we can obtain K d-uniform states {|ϕ1〉, . . . , |ϕK〉}, which can be used
as an orthogonal basis. By Lemma 1, the complex subspace spanned by the orthogonal
basis is an ((N, K, d + 1))s QECC.

Remark 1. Using Theorem 1, one can easily obtained a QECC because of the one-to-one corre-
spondence between the orthogonal basis {|ϕ1〉, . . . , |ϕK〉} of the code and the orthogonal partition
{A1, . . . , AK} of an orthogonal array. The codes from Theorem 1 are better than the ones in
ref. [23] in terms of the number of the terms of basis states of codes. The number is decreasing

geometrically. For example, the OA(9, 3, 3, 2) =





0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 1 2 0





T

with

minimal distance 2 has the partition {A1, A2, A3} of strength 1, where A1 =





0 0 0
1 1 1
2 2 2



,

A2 =





0 1 2
1 2 1
2 0 1



 and A3 =





0 2 1
1 0 2
2 1 0



. Every row of Ai is put in kets and summed to
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produce 1-uniform state |ϕi〉, i.e., |ϕ1〉 = |000〉+ |111〉+ |222〉, |ϕ2〉 = |012〉+ |120〉+ |201〉
and |ϕ3〉 = |021〉 + |102〉 + |210〉. A ((3, 3, 2))3 QECC can be obtained easily, and its three
basis states are |ϕi〉 for i = 1, 2, 3. The number of the terms of each basis state of this code is
3. Base on the coding group {(0, 0, 0), (1, 0, 2), (2, 0, 1)}, another ((3, 3, 2))3 QECC can be ob-
tained in ref. [23] and the three graph-state bases are |ψ1〉 = |000〉+ |001〉+ |002〉+ |010〉+
ω|011〉+ω2|012〉+ |020〉+ω2|021〉+ω|022〉+ |100〉+ |101〉+ |102〉+ω|110〉+ω2|111〉+
|112〉 + ω2|120〉 + ω|121〉 + |122〉 + |200〉 + |201〉 + |202〉 + ω2|210〉 + |211〉 + ω|212〉 +
ω|220〉 + |221〉 + ω2|222〉, |ψ2〉 = |000〉 + ω2|001〉 + ω|002〉 + |010〉 + |011〉 + |012〉 +
|020〉 + ω|021〉 + ω2|022〉 + ω|100〉 + |101〉 + ω2|102〉 + ω2|110〉 + ω2|111〉 + ω2|112〉 +
|120〉+ω|121〉+ω2|122〉+ω2|200〉+ω|201〉+ |202〉+ω|210〉+ω|211〉+ω|212〉+ |220〉+
ω|221〉+ ω2|222〉, |ψ3〉 = |000〉+ ω|001〉+ ω2|002〉+ |010〉+ ω2|011〉+ ω|012〉+ |020〉+
|021〉+ |022〉+ ω2|100〉+ |101〉+ ω|102〉+ |110〉+ ω2|111〉+ ω|112〉+ ω|120〉+ ω|121〉+
ω|122〉 + ω|200〉 + ω2|201〉 + |202〉 + |210〉 + ω2|211〉 + ω|212〉 + ω2|220〉 + ω2|221〉 +

ω2|222〉, where ω = ei 2π
3 . Obviously, the number of the terms of every basis state of this code in

ref. [23] is 27.

Theorem 2. For a prime power s and integers N, l, t, if 2t ≤ l + N ≤ s + 1 and t ≥ l ≥ 1,
then there exists an ((N, sl , t − l + 1))s QECC. Moreover, the QECC is optimal if and only if
l + N = 2t.

Proof. Since s + 1 ≥ 2t, we have s ≥ 2t − 1. So s ≥ t − 1. By Lemma 3, an OA(st, s + 1, s, t)
exists. Then there exists an OA(st, l + N, s, t) if l + N ≤ s + 1.

After permutation of rows, the OA(st, l + N, s, t) has the following form

L = ((s)⊕ 0st−1 , 0s ⊕ (s)⊕ 0st−2 , . . . , 0sl−1 ⊕ (s)⊕ 0st−l , V)

=







(s)⊕ 0st−1 , 0s ⊕ (s)⊕ 0st−2 , . . . , 0sl−1 ⊕ (s)⊕ 0st−l ,








V0···00

V0···01
...

V(s−1)···(s−1)(s−1)















=








(0 · · · 00)⊕ 0st−l V0···00

(0 · · · 01)⊕ 0st−l V0···01
...

...
((s − 1) · · · (s − 1)(s − 1))⊕ 0st−l V(s−1)···(s−1)(s−1)








.

Clearly, V is an OA(st, N, s, t) and by Lemma 2, Vi1···il−1il is also an OA(st−l , N, s, t − l) for

(i1, · · · il−1, il) ∈ Zl
s. Hence, {V0···00, V0···01, . . . , V(s−1)···(s−1)(s−1)} is an orthogonal partition

of strength t′ of V where t′ = t − l. By Lemma 5, MD(L) = N + l − t + 1. Notice that
MD(Vi1···il−1il ) = MD(L) = N + l − t + 1 ≥ t + 1 ≥ t − l + 1. Take h = MD(V) =
MD(L)− l = N + 1 − t ≥ t − l + 1. Then, d = min{t′, h − 1} = t − l. By Theorem 1, there
exists a ((N, sl , t − l + 1))s QECC.

If N + l = 2t, then l = N − 2(t − l + 1 − 1). So the QECC is optimal. The converse is
also true.

Several infinite families of optimal QECCs can be obtained from Theorem 2.

Corollary 1. Let s be a prime power. Then there exist optimal QECCs ((3, s, 2))s for s ≥ 3,
((4, s2, 2))s for s ≥ 5, ((5, s, 3))s for s ≥ 5, ((6, s2, 3))s for s ≥ 7, ((7, s3, 3))s for s ≥ 9,
((8, s2, 4))s for s ≥ 9, ((9, s3, 4))s for s ≥ 11, ((9, s, 5))s for s ≥ 9, ((10, s2, 5))s for s ≥ 11,
((11, s, 6))s for s ≥ 11, and ((12, s2, 6))s for s ≥ 13.

Proof. In Theorem 2, take t = 2, N = 3, l = 1; t = 3, N = 4, l = 2; t = 3, N = 5, l = 1;
t = 4, N = 6, l = 2; t = 5, N = 7, l = 3; t = 5, N = 8, l = 2; t = 6, N = 9, l = 3; t = 5,



Entropy 2023, 25, 680 7 of 18

N = 9, l = 1; t = 6, N = 10, l = 2; t = 6, N = 11, l = 1 and t = 7, N = 12, l = 2,
respectively. The desired result follows.

Remark 2. Hu et al. have found a suboptimal code ((3, p − 1, 2))p with even p in Ref. [23].
However, from Corollary 1, we can construct optimal QECCs ((3, p, 2))p such as ((3, 4, 2))4 and
((3, 8, 2))8, whose basis states are |φ1〉, . . . , |φ4〉 and |ψ1〉, . . . , |ψ8〉, respectively, where |φ1〉 =
|000〉+ |123〉+ |231〉+ |312〉, |φ2〉 = |111〉+ |032〉+ |320〉+ |203〉, |φ3〉 = |222〉+ |301〉+
|013〉 + |130〉, |φ4〉 = |333〉 + |210〉 + |102〉 + |021〉 and |ψ1〉 = |000〉 + |123〉 + |246〉 +
|365〉+ |451〉+ |572〉+ |617〉+ |734〉, |ψ2〉 = |111〉+ |032〉+ |357〉+ |274〉+ |540〉+ |463〉+
|706〉+ |625〉, |ψ3〉 = |222〉+ |301〉+ |064〉+ |147〉+ |673〉+ |750〉+ |435〉+ |516〉, |ψ4〉 =
|333〉+ |210〉+ |175〉+ |056〉+ |762〉+ |641〉+ |524〉+ |407〉, |ψ5〉 = |444〉+ |567〉+ |602〉+
|721〉+ |015〉+ |136〉+ |253〉+ |370〉, |ψ6〉 = |555〉+ |476〉+ |713〉+ |630〉+ |104〉+ |027〉+
|342〉+ |261〉, |ψ7〉 = |666〉+ |745〉+ |420〉+ |503〉+ |237〉+ |314〉+ |071〉+ |152〉, |ψ8〉 =
|777〉+ |654〉+ |531〉+ |412〉+ |326〉+ |205〉+ |160〉+ |043〉.

Theorem 3. (1) If s ≥ 2 is a prime power and s ≥ t − 1 ≥ 0, then there exists an ((s + 1, st, 1))s

QECC and an ((s + 1, 1, d + 1))s QECC where d = min{t, s − t + 1}. For any positive integer t
and prime power s, a ((t, st, 1))s QECC can be obtained.

(2) If s = 2m and m > 1, then there exist QECCs ((s + 2, 1, 4))s, ((s + 1, s, 3))s, ((s, s2, 2))s

and ((s − 1, s3, 1))s.

Proof. (1) If s ≥ 2 is a prime power and s ≥ t − 1 ≥ 0, by Lemma 3, an OA(st, s + 1, s, t)
exists. By Lemma 5, the minimum Hamming distance of this array is s − t + 2. Let K = st

in Theorem 1. We have an ((s + 1, st, 1))s QECC. Let K = 1 in Theorem 1. We have an
((s + 1, 1, d + 1))s QECC where d = min{t, s − t + 1}. Similarly, a ((t, st, 1))s QECC can be
obtained since an OA(st, t, s, t) = Zt

s exists.
(2) If s = 2m, m > 1, by Lemma 4, an OA(s3, s + 2, s, 3) exists. By Lemma 5, the

minimum Hamming distance of this array is s. Let K = 1 in Theorem 1. We have an ((s +
2, 1, 4))s QECC. Moreover, by Lemma 2, deleting the first column of the OA(s3, s + 2, s, 3),
one can have an orthogonal partition {A1, . . . , As} of the OA(s3, s + 1, s, 3). By Theorem 1,
we have an ((s + 1, s, 3))s QECC. Similarly, deleting the first two or three columns of the
OA(s3, s + 2, s, 3), one can have an orthogonal partition {B1, . . . , Bs2} of the OA(s3, s, s, 3)
or an orthogonal partition {C1, . . . , Cs3} of the OA(s3, s − 1, s, 3). By Theorem 1, we have
an ((s, s2, 2))s QECC and an ((s − 1, s3, 1))s QECC.

Remark 3. In Theorem 14 of ref. [12], for 0 ≤ d ≤ ⌊N/2⌋, 3 ≤ N ≤ s + 1 and s > 2 (s is a
prime power), there exists an ((N, sN−2d, d + 1))s optimal QECC. In this paper, we can obtain
not only optimal QECCs with N ≤ s + 1 for any prime power s but also optimal QECCs with
N = s + 2 for some s. We list all the ((N, K, d + 1))4 and ((N, K, d + 1))3 QECCs constructed
in this paper in Table 1, in which the QECCs with N = 1, 2, 6 are not included in ref. [12].

Table 1. ((N, K, d + 1))4 and ((N, K, d + 1))3 QECCs constructed in this paper.

((N, K, d + 1))4 QECC Reference Parameters ((N, K, d + 1))3 QECC Reference Parameters

((1, 4, 1))4 Theorem 2 l = 1, t = 1 ((1, 3, 1))3 Theorem 2 l = 1, t = 1
((2, 42, 1))4 Theorem 2 l = 2, t = 2 ((2, 32, 1))3 Theorem 2 l = 2, t = 2
((3, 43, 1))4 Theorem 3 (2) m = 2 ((3, 3, 2))3 Corollary 1
((3, 41, 2))4 Corollary 1 ((3, 33, 1))3 Theorem 3 (1) t = 3
((4, 44, 1))4 Theorem 3 (1) t = 4 ((4, 34, 1))3 Theorem 3 (1) t = 3

((4, 42, 2))4 Theorem 3 (2) m = 2 ((4, 32, 2))3 Theorem 1 OA(33, 4, 3, 3)(c),

((4, 1, 3))4 Theorem 1 OA(42, 4, 4, 2)(a), h = 2
h = 3 ((4, 1, 3))3 Theorem 3 (1) t = 2

((5, 45, 1))4 Theorem 3 (1) t = 5

((5, 43, 2))4 Theorem 1 OA(44, 5, 4, 4)(b), ((5, 4, 3))4 Theorem 3 (2) m = 2
h = 2 ((6, 1, 4))4 Theorem 3 (2) m = 2
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In Table 1, (a). OA(42, 4, 4, 2) = ((4)⊕04, 04 ⊕ (4), (4)⊕ (4), (4)⊕2 · (4)). (b). OA(44, 5, 4, 4)
= (043 , 042 ⊕ (4), 04 ⊕ (4) ⊕ 04, (4) ⊕ 043 , (4) ⊕ 2 · (4) ⊕ (4)) ⊕ (4). (c). OA(33, 4, 3, 3) =
(09, 03 ⊕ (3), (3)⊕ 03, (3)⊕ (3))⊕ (3).

By using Theorems 1–3 and the propagation rules in ref. [49], we can immediately
obtain a general result.

Corollary 2. For any positive integers N, K, and d satisfying sN−2d ≥ K, there exists an
((N, K, d + 1))s QECC for any sufficient large s (power of prime number).

Theorem 4. There exist optimal QECCs ((6, 52, 3))5 and ((7, 73, 3))7.

Proof. Let s = 5 in Lemma 3. L = OA(54, 6, 5, 4) exists. By Lemma 5, MD(L) = 3. An
orthogonal partition {L1, . . . , L25} of L can be obtained via computer search where each Li

is an OA(52, 6, 5, 2). By Theorem 1, there exists a ((6, 52, 3))5 QECC.
Similarly, we can obtain a code ((7, 73, 3))7.

We present the explicit construction of the two codes in Appendix A.
In QECC theory, various constructions and propagation rules have been proposed.

Based on our QECCs, we can induce an analogous propagation rule for quantum codes.

Theorem 5. If there exist QECCs ((N, n, d+ 1))s1
and ((N, m, d+ 1))s2 obtained from Theorems 1–4,

then there exists an ((N, nm, d + 1))s1s2 QECC, which can be constructed from Theorem 1.

Proof. It follows from Lemma 8 and Theorems 1–4.

Remark 4. There is a similar result in ref. [16]. However, the theorem above is still constructive.

The following result is an immediate consequence of Theorem 5.

Corollary 3. (i) For prime powers si (i = 1, . . . , n) and integers N, l, t, if s = s1 · · · sn, 2t ≤
l + N ≤ min{s1, . . . , sn}+ 1 and t > l ≥ 1, then there exists an ((N, sl , t − l + 1))s QECC.
Moreover, the QECC is optimal if and only if l + N = 2t.

(ii) Let s = s1 · · · sn for prime powers s1, . . . , sn. Then, there exist optimal QECCs ((3, s, 2))s

for all si ≥ 3, ((4, s2, 2))s for all si ≥ 5, ((5, s, 3))s for all si ≥ 4, ((6, s2, 3))s for all si ≥ 5,
((7, s3, 3))s for all si ≥ 7, ((8, s2, 4))s for all si ≥ 9, ((9, s3, 4))s for all si ≥ 11, ((9, s, 5))s for all
si ≥ 9, ((10, s2, 5))s for all si ≥ 11, ((11, s, 6))s for all si ≥ 11, and ((12, s2, 6))s for all si ≥ 13.

The comparison of ((6, K, 3))s and ((7, K, 3))s QECCs constructed in this paper with
the codes in ref. [25] are summarized in Table 2, in which s1, . . . , sn are all prime powers,
O.P. is short for odd prime, and ((7, 3, 3))3 and ((7, 8, 3))5 are listed in Example 2. In order
to distinguish, the codes in ref. [25] are written as ((6, K, 3))∗s and ((7, K, 3))∗s and our codes
are denoted by ((6, K, 3))s and ((7, K, 3))s.
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Table 2. Comparison of the constructed ((6, K, 3))s and ((7, K, 3))s QECCs with such codes in ref. [25].

s and K s and K of The Number of Terms
of Optimal QECC Unoptimal QECC in a Basis State

((6, K, 3))∗s O.P. s ≥ 3, K = s2 s6

((7, K, 3))∗s O.P. s ≥ 3, K = s3 s7

((6, K, 3))s s = s1 · · · sn, all si ≥ 5,K = s2 s2

s = 3, K = 1 2s2

((7, K, 3))s s = s1 · · · sn, all si ≥ 7, K = s3 s2

s = 3, K = 3 s2

s = 5, K = 8 s2

We often use hybrid systems with different dimensions to store, transmit, and process
the quantum information. Thus, it is quite necessary to generalize the standard QECCs
over a single alphabet to mixed alphabets [24]. The QECCs ((N, K, d))s1s2···sN

over mixed
alphabets have been discussed in refs. [24,39], and the quantum Singleton bound is also
generalized. Unfortunately, there are still fewer such studies on quantum codes so far. By
the definitions of IrMOA and the k-uniform state for heterogeneous systems in refs. [35,36],
the method presented here can be generalized to the construction of QECCs over mixed
alphabets naturally.

Theorem 6. For a prime power s = qm and integers l, n, h, t and N with m ≥ 2,
2t ≤ l + N − n(h − 1) ≤ s + 1 and n < N/h, if there exists an OA(s, h, q, t − l) with MD ≥ 1,
then there exists an ((N, sl , t − l + 1))sN−hnqhn QECC.

Proof. Since s is a prime power and s ≥ 2t − 1, there exists an OA(st, s + 1, s, t). Then there
exists an OA(st, l + N − n(h − 1), s, t) if l + N − n(h − 1) ≤ s + 1.

By Lemma 5, MD(OA(st, l + N − n(h − 1), s, t)) = l + N − n(h − 1)− t + 1. After
permutation of rows, the OA(st, l + N − n(h − 1), s, t) has the following form

LL = ((s)⊕ 0st−1 , 0s ⊕ (s)⊕ 0st−2 , . . . , 0sl−1 ⊕ (s)⊕ 0st−l , W)

=








(0 · · · 00)⊕ 0st−l W0···00

(0 · · · 01)⊕ 0st−l W0···01
...

...
((s − 1) · · · (s − 1)(s − 1))⊕ 0st−l W(s−1)···(s−1)(s−1)








.

Obviously, W is an OA(st, N − n(h − 1), s, t) and by Lemma 2, Wi1···il−1il is also

an OA(st−l , N − n(h − 1), s, t − l) for (i1, · · · il−1, il) ∈ Zl
s. Hence, {W0···00, W0···01, . . . ,

W(s−1)···(s−1)(s−1)} is an orthogonal partition of strength t′ of W where t′ = t − l. By
Lemma 5, MD(W) = N − n(h − 1)− t + 1 ≥ t − l + 1.

Since there exists an OA(s, h, q, t − l) with MD ≥ 1, by expansive replacement [36],
a mixed OA W ′ = OA(st, N, sN−hnqnh, t′) can be obtained from the OA W by replacing n
(n < N/h) columns of s levels by the following replacement

0 1 · · · qm − 2 qm − 1

↓ ↓
... ↓ ↓

a1 a2 · · · as−1 as

where a1, a2, . . . , as are all the rows of the OA(s, h, q, t′). Correspondingly, the strength

of W ′ is t′ and W ′ has an orthogonal partition {W
′

0···00, W
′

0···01, . . . , W
′

(s−1)···(s−1)(s−1)} of
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strength t′ where W
′

i1···il−1il
denotes the matrix obtained by replacing the corresponding n

columns of Wi1···il−1il . Clearly, MD(W ′) ≥ N − n(h − 1)− t + 1 ≥ t − l + 1.

By the definition of IrMOA, the W ′ and W
′

i1···il−1il
are IrMOAs of strength t − l, respec-

tively. From the link between IrMOAs and uniform states in ref. [35] and {W
′

0···00, W
′

0···01, . . . ,

W
′

(s−1)···(s−1)(s−1)}, we can obtain sl (t − l)-uniform states |ϕ1〉, . . . , |ϕsl 〉, which can be

used as an orthogonal basis. Since min{t′, N − n(h − 1)− t} = t − l, the complex subspace
spanned by the orthogonal basis is an ((N, sl , t − l + 1))sN−hnqhn QECC by a generalization
of Theorem 1.

Remark 5. If the OA(s, h, q, t− l) in Theorem 6 is replaced by an OA(s, h, q1
r1 q2

r2 · · · qv
rv , t− l),

then the corresponding result is still true.

4. Examples

In this section we shall provide some specific QECCs, which are based on the theorems
above.

Example 1. The optimal code ((5, 5, 3))5

For the case N = 5, t = 3, l = 1 and s = 5, Theorem 2 produces the code ((5, 5, 3))5. Here
its five basis states are presented.

|ϕ1〉 = 00000〉 + 12340〉 + 24130〉 + 31420〉 + 43210〉 + 14411〉 + 21201〉 + 33041〉 +
40331〉+ 02121〉+ 23322〉+ 30112〉+ 42402〉+ 04242〉+ 11032〉+ 32233〉+ 44023〉+ 01313〉+
13103〉+ 20443〉+ 41144〉+ 03434〉+ 10224〉+ 22014〉+ 34304〉,

|ϕ2〉 = |11110〉+ |23400〉+ |30240〉+ |42030〉+ |04320〉+ |20021〉+ |32311〉+ |44101〉+
|01441〉+ |13231〉+ |34432〉+ |41222〉+ |03012〉+ |10302〉+ |22142〉+ |43343〉+ |00133〉+
|12423〉+ |24213〉+ |31003〉+ |02204〉+ |14044〉+ |21334〉+ |33124〉+ |40414〉,

|ϕ3〉 = |22220〉+ |34010〉+ |41300〉+ |03140〉+ |10430〉+ |31131〉+ |43421〉+ |00211〉+
|12001〉+ |24341〉+ |40042〉+ |02332〉+ |14122〉+ |21412〉+ |33202〉+ |04403〉+ |11243〉+
|23033〉+ |30323〉+ |42113〉+ |13314〉+ |20104〉+ |32444〉+ |44234〉+ |01024〉,

|ϕ4〉 = |33330〉+ |40120〉+ |02410〉+ |14200〉+ |21040〉+ |42241〉+ |04031〉+ |11321〉+
|23111〉+ |30401〉+ |01102〉+ |13442〉+ |20232〉+ |32022〉+ |44312〉+ |10013〉+ |22303〉+
|34143〉+ |41433〉+ |03223〉+ |24424〉+ |31214〉+ |43004〉+ |00344〉+ |12134〉,

|ϕ5〉 = |44440〉+ |01230〉+ |13020〉+ |20310〉+ |32100〉+ |03301〉+ |10141〉+ |22431〉+
|34221〉+ |41011〉+ |12212〉+ |24002〉+ |31342〉+ |43132〉+ |00422〉+ |21123〉+ |33413〉+
|40203〉+ |02043〉+ |14333〉+ |30034〉+ |42324〉+ |04114〉+ |11404〉+ |23244〉.

Example 2. Construction of the ((7, 3, 3))3 and ((7, 8, 3))5 QECCs
By Theorem 1, we can obtain two orthogonal bases {|ψ1〉, |ψ2〉, |ψ3〉} and {|φ1〉, . . . , |φ8〉}

for ((7, 3, 3))3 and ((7, 8, 3))5, respectively.
|ψ1〉 = |0000000〉 + |0001111〉 + |0110022〉 + |0112211〉 + |0221122〉 + |0222200〉 +

|1011202〉 + |1012120〉 + |1120101〉 + |1121010〉 + |1200212〉 + |1202021〉 + |2020221〉 +
|2022012〉+ |2101220〉+ |2102102〉+ |2210110〉+ |2211001〉,

|ψ2〉 = |1110000〉 + |1111111〉 + |1220022〉 + |1222211〉 + |1001122〉 + |1002200〉 +
|2121202〉 + |2122120〉 + |2200101〉 + |2201010〉 + |2010212〉 + |2012021〉 + |0100221〉 +
|0102012〉+ |0211220〉+ |0212102〉+ |0020110〉+ |0021001〉,

|ψ3〉 = |2220000〉 + |2221111〉 + |2000022〉 + |2002211〉 + |2111122〉 + |2112200〉 +
|0201202〉 + |0202120〉 + |0010101〉 + |0011010〉 + |0120212〉 + |0122021〉 + |1210221〉 +
|1212012〉+ |1021220〉+ |1022102〉+ |1100110〉+ |1101001〉.

|φ1〉 = |0001114〉 + |1112220〉 + |2223331〉 + |3334442〉 + |4440003〉 + |0001003〉 +
|1112114〉 + |2223220〉 + |3334331〉 + |4440442〉 + |0001442〉 + |1112003〉 + |2223114〉 +
|3334220〉 + |4440331〉 + |0001331〉 + |1112442〉 + |2223003〉 + |3334114〉 + |4440220〉 +
|0001220〉 + |1112331〉 + |2223442〉 + |3334003〉 + |4440114〉 + |0124343〉 + |1230404〉 +
|2341010〉 + |3402121〉 + |4013232〉 + |0124232〉 + |1230343〉 + |2341404〉 + |3402010〉 +
|4013121〉 + |0124121〉 + |1230232〉 + |2341343〉 + |3402404〉 + |4013010〉 + |0124010〉 +



Entropy 2023, 25, 680 11 of 18

|1230121〉 + |2341232〉 + |3402343〉 + |4013404〉 + |0124404〉 + |1230010〉 + |2341121〉 +
|3402232〉 + |4013343〉 + |0242022〉 + |1303133〉 + |2414244〉 + |3020300〉 + |4131411〉 +
|0242411〉 + |1303022〉 + |2414133〉 + |3020244〉 + |4131300〉 + |0242300〉 + |1303411〉 +
|2414022〉 + |3020133〉 + |4131244〉 + |0242244〉 + |1303300〉 + |2414411〉 + |3020022〉 +
|4131133〉 + |0242133〉 + |1303244〉 + |2414300〉 + |3020411〉 + |4131022〉 + |0310201〉 +
|1421312〉 + |2032423〉 + |3143034〉 + |4204140〉 + |0310140〉 + |1421201〉 + |2032312〉 +
|3143423〉 + |4204034〉 + |0310034〉 + |1421140〉 + |2032201〉 + |3143312〉 + |4204423〉 +
|0310423〉 + |1421034〉 + |2032140〉 + |3143201〉 + |4204312〉 + |0310312〉 + |1421423〉 +
|2032034〉 + |3143140〉 + |4204201〉 + |0433430〉 + |1044041〉 + |2100102〉 + |3211213〉 +
|4322324〉 + |0433324〉 + |1044430〉 + |2100041〉 + |3211102〉 + |4322213〉 + |0433213〉 +
|1044324〉 + |2100430〉 + |3211041〉 + |4322102〉 + |0433102〉 + |1044213〉 + |2100324〉 +
|3211430〉+ |4322041〉+ |0433041〉+ |1044102〉+ |2100213〉+ |3211324〉+ |4322430〉,

|φ2〉 = |0002011〉 + |1113122〉 + |2224233〉 + |3330344〉 + |4441400〉 + |0002400〉 +
|1113011〉 + |2224122〉 + |3330233〉 + |4441344〉 + |0002344〉 + |1113400〉 + |2224011〉 +
|3330122〉 + |4441233〉 + |0002233〉 + |1113344〉 + |2224400〉 + |3330011〉 + |4441122〉 +
|0002122〉 + |1113233〉 + |2224344〉 + |3330400〉 + |4441011〉 + |0120240〉 + |1231301〉 +
|2342412〉 + |3403023〉 + |4014134〉 + |0120134〉 + |1231240〉 + |2342301〉 + |3403412〉 +
|4014023〉 + |0120023〉 + |1231134〉 + |2342240〉 + |3403301〉 + |4014412〉 + |0120412〉 +
|1231023〉 + |2342134〉 + |3403240〉 + |4014301〉 + |0120301〉 + |1231412〉 + |2342023〉 +
|3403134〉 + |4014240〉 + |0243424〉 + |1304030〉 + |2410141〉 + |3021202〉 + |4132313〉 +
|0243313〉 + |1304424〉 + |2410030〉 + |3021141〉 + |4132202〉 + |0243202〉 + |1304313〉 +
|2410424〉 + |3021030〉 + |4132141〉 + |0243141〉 + |1304202〉 + |2410313〉 + |3021424〉 +
|4132030〉 + |0243030〉 + |1304141〉 + |2410202〉 + |3021313〉 + |4132424〉 + |0311103〉 +
|1422214〉 + |2033320〉 + |3144431〉 + |4200042〉 + |0311042〉 + |1422103〉 + |2033214〉 +
|3144320〉 + |4200431〉 + |0311431〉 + |1422042〉 + |2033103〉 + |3144214〉 + |4200320〉 +
|0311320〉 + |1422431〉 + |2033042〉 + |3144103〉 + |4200214〉 + |0311214〉 + |1422320〉 +
|2033431〉 + |3144042〉 + |4200103〉 + |0434332〉 + |1040443〉 + |2101004〉 + |3212110〉 +
|4323221〉 + |0434221〉 + |1040332〉 + |2101443〉 + |3212004〉 + |4323110〉 + |0434110〉 +
|1040221〉 + |2101332〉 + |3212443〉 + |4323004〉 + |0434004〉 + |1040110〉 + |2101221〉 +
|3212332〉+ |4323443〉+ |0434443〉+ |1040004〉+ |2101110〉+ |3212221〉+ |4323332〉,

|φ3〉 = |0004032〉 + |1110143〉 + |2221204〉 + |3332310〉 + |4443421〉 + |0004421〉 +
|1110032〉 + |2221143〉 + |3332204〉 + |4443310〉 + |0004310〉 + |1110421〉 + |2221032〉 +
|3332143〉 + |4443204〉 + |0004204〉 + |1110310〉 + |2221421〉 + |3332032〉 + |4443143〉 +
|0004143〉 + |1110204〉 + |2221310〉 + |3332421〉 + |4443032〉 + |0122211〉 + |1233322〉 +
|2344433〉 + |3400044〉 + |4011100〉 + |0122100〉 + |1233211〉 + |2344322〉 + |3400433〉 +
|4011044〉 + |0122044〉 + |1233100〉 + |2344211〉 + |3400322〉 + |4011433〉 + |0122433〉 +
|1233044〉 + |2344100〉 + |3400211〉 + |4011322〉 + |0122322〉 + |1233433〉 + |2344044〉 +
|3400100〉 + |4011211〉 + |0240440〉 + |1301001〉 + |2412112〉 + |3023223〉 + |4134334〉 +
|0240334〉 + |1301440〉 + |2412001〉 + |3023112〉 + |4134223〉 + |0240223〉 + |1301334〉 +
|2412440〉 + |3023001〉 + |4134112〉 + |0240112〉 + |1301223〉 + |2412334〉 + |3023440〉 +
|4134001〉 + |0240001〉 + |1301112〉 + |2412223〉 + |3023334〉 + |4134440〉 + |0313124〉 +
|1424230〉 + |2030341〉 + |3141402〉 + |4202013〉 + |0313013〉 + |1424124〉 + |2030230〉 +
|3141341〉 + |4202402〉 + |0313402〉 + |1424013〉 + |2030124〉 + |3141230〉 + |4202341〉 +
|0313341〉 + |1424402〉 + |2030013〉 + |3141124〉 + |4202230〉 + |0313230〉 + |1424341〉 +
|2030402〉 + |3141013〉 + |4202124〉 + |0431303〉 + |1042414〉 + |2103020〉 + |3214131〉 +
|4320242〉 + |0431242〉 + |1042303〉 + |2103414〉 + |3214020〉 + |4320131〉 + |0431131〉 +
|1042242〉 + |2103303〉 + |3214414〉 + |4320020〉 + |0431020〉 + |1042131〉 + |2103242〉 +
|3214303〉+ |4320414〉+ |0431414〉+ |1042020〉+ |2103131〉+ |3214242〉+ |4320303〉,

|φ4〉 = |0010021〉 + |1121132〉 + |2232243〉 + |3343304〉 + |4404410〉 + |0010410〉 +
|1121021〉 + |2232132〉 + |3343243〉 + |4404304〉 + |0010304〉 + |1121410〉 + |2232021〉 +
|3343132〉 + |4404243〉 + |0010243〉 + |1121304〉 + |2232410〉 + |3343021〉 + |4404132〉 +
|0010132〉 + |1121243〉 + |2232304〉 + |3343410〉 + |4404021〉 + |0133200〉 + |1244311〉 +
|2300422〉 + |3411033〉 + |4022144〉 + |0133144〉 + |1244200〉 + |2300311〉 + |3411422〉 +
|4022033〉 + |0133033〉 + |1244144〉 + |2300200〉 + |3411311〉 + |4022422〉 + |0133422〉 +
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|1244033〉 + |2300144〉 + |3411200〉 + |4022311〉 + |0133311〉 + |1244422〉 + |2300033〉 +
|3411144〉 + |4022200〉 + |0201434〉 + |1312040〉 + |2423101〉 + |3034212〉 + |4140323〉 +
|0201323〉 + |1312434〉 + |2423040〉 + |3034101〉 + |4140212〉 + |0201212〉 + |1312323〉 +
|2423434〉 + |3034040〉 + |4140101〉 + |0201101〉 + |1312212〉 + |2423323〉 + |3034434〉 +
|4140040〉 + |0201040〉 + |1312101〉 + |2423212〉 + |3034323〉 + |4140434〉 + |0324113〉 +
|1430224〉 + |2041330〉 + |3102441〉 + |4213002〉 + |0324002〉 + |1430113〉 + |2041224〉 +
|3102330〉 + |4213441〉 + |0324441〉 + |1430002〉 + |2041113〉 + |3102224〉 + |4213330〉 +
|0324330〉 + |1430441〉 + |2041002〉 + |3102113〉 + |4213224〉 + |0324224〉 + |1430330〉 +
|2041441〉 + |3102002〉 + |4213113〉 + |0442342〉 + |1003403〉 + |2114014〉 + |3220120〉 +
|4331231〉 + |0442231〉 + |1003342〉 + |2114403〉 + |3220014〉 + |4331120〉 + |0442120〉 +
|1003231〉 + |2114342〉 + |3220403〉 + |4331014〉 + |0442014〉 + |1003120〉 + |2114231〉 +
|3220342〉+ |4331403〉+ |0442403〉+ |1003014〉+ |2114120〉+ |3220231〉+ |4331342〉,

|φ5〉 = |0012002〉 + |1123113〉 + |2234224〉 + |3340330〉 + |4401441〉 + |0012441〉 +
|1123002〉 + |2234113〉 + |3340224〉 + |4401330〉 + |0012330〉 + |1123441〉 + |2234002〉 +
|3340113〉 + |4401224〉 + |0012224〉 + |1123330〉 + |2234441〉 + |3340002〉 + |4401113〉 +
|0012113〉 + |1123224〉 + |2234330〉 + |3340441〉 + |4401002〉 + |0130231〉 + |1241342〉 +
|2302403〉 + |3413014〉 + |4024120〉 + |0130120〉 + |1241231〉 + |2302342〉 + |3413403〉 +
|4024014〉 + |0130014〉 + |1241120〉 + |2302231〉 + |3413342〉 + |4024403〉 + |0130403〉 +
|1241014〉 + |2302120〉 + |3413231〉 + |4024342〉 + |0130342〉 + |1241403〉 + |2302014〉 +
|3413120〉 + |4024231〉 + |0203410〉 + |1314021〉 + |2420132〉 + |3031243〉 + |4142304〉 +
|0203304〉 + |1314410〉 + |2420021〉 + |3031132〉 + |4142243〉 + |0203243〉 + |1314304〉 +
|2420410〉 + |3031021〉 + |4142132〉 + |0203132〉 + |1314243〉 + |2420304〉 + |3031410〉 +
|4142021〉 + |0203021〉 + |1314132〉 + |2420243〉 + |3031304〉 + |4142410〉 + |0321144〉 +
|1432200〉 + |2043311〉 + |3104422〉 + |4210033〉 + |0321033〉 + |1432144〉 + |2043200〉 +
|3104311〉 + |4210422〉 + |0321422〉 + |1432033〉 + |2043144〉 + |3104200〉 + |4210311〉 +
|0321311〉 + |1432422〉 + |2043033〉 + |3104144〉 + |4210200〉 + |0321200〉 + |1432311〉 +
|2043422〉 + |3104033〉 + |4210144〉 + |0444323〉 + |1000434〉 + |2111040〉 + |3222101〉 +
|4333212〉 + |0444212〉 + |1000323〉 + |2111434〉 + |3222040〉 + |4333101〉 + |0444101〉 +
|1000212〉 + |2111323〉 + |3222434〉 + |4333040〉 + |0444040〉 + |1000101〉 + |2111212〉 +
|3222323〉+ |4333434〉+ |0444434〉+ |1000040〉+ |2111101〉+ |3222212〉+ |4333323〉,

|φ6〉 = |0021012〉 + |1132123〉 + |2243234〉 + |3304340〉 + |4410401〉 + |0021401〉 +
|1132012〉 + |2243123〉 + |3304234〉 + |4410340〉 + |0021340〉 + |1132401〉 + |2243012〉 +
|3304123〉 + |4410234〉 + |0021234〉 + |1132340〉 + |2243401〉 + |3304012〉 + |4410123〉 +
|0021123〉 + |1132234〉 + |2243340〉 + |3304401〉 + |4410012〉 + |0144241〉 + |1200302〉 +
|2311413〉 + |3422024〉 + |4033130〉 + |0144130〉 + |1200241〉 + |2311302〉 + |3422413〉 +
|4033024〉 + |0144024〉 + |1200130〉 + |2311241〉 + |3422302〉 + |4033413〉 + |0144413〉 +
|1200024〉 + |2311130〉 + |3422241〉 + |4033302〉 + |0144302〉 + |1200413〉 + |2311024〉 +
|3422130〉 + |4033241〉 + |0212420〉 + |1323031〉 + |2434142〉 + |3040203〉 + |4101314〉 +
|0212314〉 + |1323420〉 + |2434031〉 + |3040142〉 + |4101203〉 + |0212203〉 + |1323314〉 +
|2434420〉 + |3040031〉 + |4101142〉 + |0212142〉 + |1323203〉 + |2434314〉 + |3040420〉 +
|4101031〉 + |0212031〉 + |1323142〉 + |2434203〉 + |3040314〉 + |4101420〉 + |0330104〉 +
|1441210〉 + |2002321〉 + |3113432〉 + |4224043〉 + |0330043〉 + |1441104〉 + |2002210〉 +
|3113321〉 + |4224432〉 + |0330432〉 + |1441043〉 + |2002104〉 + |3113210〉 + |4224321〉 +
|0330321〉 + |1441432〉 + |2002043〉 + |3113104〉 + |4224210〉 + |0330210〉 + |1441321〉 +
|2002432〉 + |3113043〉 + |4224104〉 + |0403333〉 + |1014444〉 + |2120000〉 + |3231111〉 +
|4342222〉 + |0403222〉 + |1014333〉 + |2120444〉 + |3231000〉 + |4342111〉 + |0403111〉 +
|1014222〉 + |2120333〉 + |3231444〉 + |4342000〉 + |0403000〉 + |1014111〉 + |2120222〉 +
|3231333〉+ |4342444〉+ |0403444〉+ |1014000〉+ |2120111〉+ |3231222〉+ |4342333〉,

|φ7〉 = |0023020〉 + |1134131〉 + |2240242〉 + |3301303〉 + |4412414〉 + |0023414〉 +
|1134020〉 + |2240131〉 + |3301242〉 + |4412303〉 + |0023303〉 + |1134414〉 + |2240020〉 +
|3301131〉 + |4412242〉 + |0023242〉 + |1134303〉 + |2240414〉 + |3301020〉 + |4412131〉 +
|0023131〉 + |1134242〉 + |2240303〉 + |3301414〉 + |4412020〉 + |0141204〉 + |1202310〉 +
|2313421〉 + |3424032〉 + |4030143〉 + |0141143〉 + |1202204〉 + |2313310〉 + |3424421〉 +
|4030032〉 + |0141032〉 + |1202143〉 + |2313204〉 + |3424310〉 + |4030421〉 + |0141421〉 +



Entropy 2023, 25, 680 13 of 18

|1202032〉 + |2313143〉 + |3424204〉 + |4030310〉 + |0141310〉 + |1202421〉 + |2313032〉 +
|3424143〉 + |4030204〉 + |0214433〉 + |1320044〉 + |2431100〉 + |3042211〉 + |4103322〉 +
|0214322〉 + |1320433〉 + |2431044〉 + |3042100〉 + |4103211〉 + |0214211〉 + |1320322〉 +
|2431433〉 + |3042044〉 + |4103100〉 + |0214100〉 + |1320211〉 + |2431322〉 + |3042433〉 +
|4103044〉 + |0214044〉 + |1320100〉 + |2431211〉 + |3042322〉 + |4103433〉 + |0332112〉 +
|1443223〉 + |2004334〉 + |3110440〉 + |4221001〉 + |0332001〉 + |1443112〉 + |2004223〉 +
|3110334〉 + |4221440〉 + |0332440〉 + |1443001〉 + |2004112〉 + |3110223〉 + |4221334〉 +
|0332334〉 + |1443440〉 + |2004001〉 + |3110112〉 + |4221223〉 + |0332223〉 + |1443334〉 +
|2004440〉 + |3110001〉 + |4221112〉 + |0400341〉 + |1011402〉 + |2122013〉 + |3233124〉 +
|4344230〉 + |0400230〉 + |1011341〉 + |2122402〉 + |3233013〉 + |4344124〉 + |0400124〉 +
|1011230〉 + |2122341〉 + |3233402〉 + |4344013〉 + |0400013〉 + |1011124〉 + |2122230〉 +
|3233341〉+ |4344402〉+ |0400402〉+ |1011013〉+ |2122124〉+ |3233230〉+ |4344341〉,

|φ8〉 = |0030444〉 + |1141000〉 + |2202111〉 + |3313222〉 + |4424333〉 + |0030333〉 +
|1141444〉 + |2202000〉 + |3313111〉 + |4424222〉 + |0030222〉 + |1141333〉 + |2202444〉 +
|3313000〉 + |4424111〉 + |0030111〉 + |1141222〉 + |2202333〉 + |3313444〉 + |4424000〉 +
|0030000〉 + |1141111〉 + |2202222〉 + |3313333〉 + |4424444〉 + |0103123〉 + |1214234〉 +
|2320340〉 + |3431401〉 + |4042012〉 + |0103012〉 + |1214123〉 + |2320234〉 + |3431340〉 +
|4042401〉 + |0103401〉 + |1214012〉 + |2320123〉 + |3431234〉 + |4042340〉 + |0103340〉 +
|1214401〉 + |2320012〉 + |3431123〉 + |4042234〉 + |0103234〉 + |1214340〉 + |2320401〉 +
|3431012〉 + |4042123〉 + |0221302〉 + |1332413〉 + |2443024〉 + |3004130〉 + |4110241〉 +
|0221241〉 + |1332302〉 + |2443413〉 + |3004024〉 + |4110130〉 + |0221130〉 + |1332241〉 +
|2443302〉 + |3004413〉 + |4110024〉 + |0221024〉 + |1332130〉 + |2443241〉 + |3004302〉 +
|4110413〉 + |0221413〉 + |1332024〉 + |2443130〉 + |3004241〉 + |4110302〉 + |0344031〉 +
|1400142〉 + |2011203〉 + |3122314〉 + |4233420〉 + |0344420〉 + |1400031〉 + |2011142〉 +
|3122203〉 + |4233314〉 + |0344314〉 + |1400420〉 + |2011031〉 + |3122142〉 + |4233203〉 +
|0344203〉 + |1400314〉 + |2011420〉 + |3122031〉 + |4233142〉 + |0344142〉 + |1400203〉 +
|2011314〉 + |3122420〉 + |4233031〉 + |0412210〉 + |1023321〉 + |2134432〉 + |3240043〉 +
|4301104〉 + |0412104〉 + |1023210〉 + |2134321〉 + |3240432〉 + |4301043〉 + |0412043〉 +
|1023104〉 + |2134210〉 + |3240321〉 + |4301432〉 + |0412432〉 + |1023043〉 + |2134104〉 +
|3240210〉+ |4301321〉+ |0412321〉+ |1023432〉+ |2134043〉+ |3240104〉+ |4301210〉.

Example 3. Construction of QECCs ((8, 9, 3))9434 , ((7, 9, 3))9433 , ((6, 9, 3))9432 ,
((4 + n1, 16, 3))1644n1 for 2 ≤ n1 ≤ 5, ((5 + n2, 16, 3))164412n2 for 2 ≤ n2 ≤ 12,
((6 + n2, 16, 3))164422n2 for 0 ≤ n2 ≤ 9, ((7 + n2, 16, 3))164432n2 for 0 ≤ n2 ≤ 6,
((8 + n2, 16, 3))164442n2 for 0 ≤ n2 ≤ 3, ((4 + n2, 16, 3))1642n2 for 4 ≤ n2 ≤ 15,
((5 + n2, 16, 3))164812n2 for 1 ≤ n2 ≤ 8.

(1) Consider the codes ((8, 9, 3))9434 , ((7, 9, 3))9433 and the optimal code ((6, 9, 3))9432 .
Take q = 3, m = 2, l = 1, n = 1, t = 3, h = 4 and N = 8 in Theorem 6. Since there

exists an OA(s, h, q, t − l) = OA(9, 4, 3, 2) =







0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 1 2 0







T

, we have

the replacement:
0 1 · · · 7 8

↓ ↓
... ↓ ↓

0000 0111 · · · 2102 2210

.

Then, we obtain the code ((8, 9, 3))9434 .
Obviously, there exist the arrays OA(9, 3, 3, 2) and OA(9, 2, 3, 2). Similarly, we can have the

codes ((7, 9, 3))9433 and ((6, 9, 3))9432 . According to the quantum Singleton bound of QECC over
mixed alphabets [39], the code ((6, 9, 3))9432 is optimal.

(2) Consider the construction of the remaining codes.
Take q = 2, m = 4, l = 1, n = 1, t = 3 in Theorem 6. Using OA(16, n1, 4, 2) for 2 ≤ n1 ≤ 5,

OA(16, 412n2 , 2) for 2 ≤ n2 ≤ 12, OA(16, 422n2 , 2) for 0 ≤ n2 ≤ 9, OA(16, 432n2 , 2) for 0 ≤
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n2 ≤ 6, OA(16, 442n2 , 2) for 0 ≤ n2 ≤ 3, OA(16, n2, 2, 2) for 4 ≤ n2 ≤ 15, OA(16, 812n2 , 2)
for 1 ≤ n2 ≤ 8 as the OA(s, h, q, t − l) in Theorem 6, respectively, we can obtain the desired
codes. According to the quantum Singleton bound of QECC over mixed alphabets [39], the codes
((6, 16, 3))16442 , ((7, 16, 3))1644122 , ((8, 16, 3))16424 and ((6, 16, 3))1648121 are optimal.

Remark 6. Given the optimal ((3, K, 2))4n1 2n2 codes and the trivial codes ((2, 1, 2))4 and ((2, 1, 2))2 ,
Wang et al. constructed most of the optimal ((N, K, 2))4n1 2n2 codes via stabilizer pasting [24].
Obviously, the parameters d, s and q of QECCs ((N, K, d + 1))sn1 qn2 obtained by Theorem 6 are
more flexible than that in ref. [24].

5. Conclusions

This paper studied the relation between QECCs and OAs and presented a general
method of constructing QECCs. Compared to previous constructions, our technique has
some interesting features.

(1) The results are not just existence results, but constructive results. A lot of families
of QECCs over a single alphabet and over mixed alphabets, including families of optimal
codes, can explicitly be obtained, and are not limited to the classes listed in the paper.

(2) All the constructed QECCs are pure.
(3) Each basis state of these codes has far less terms.
(4) Some optimal QECCs ((N, K, 2))s for an odd N with s can even be constructed,

such as ((3, 4, 2))4, ((3, 8, 2))8 and ((5, 83, 2))8 compared with the codes in [23].
(5) For any positive integers N, K and d satisfying sN−2d ≥ K, there exist QECCs

((N, K, d + 1))s, naturally including optimal codes, for any sufficient large s, not necessarily
equal to a prime power.

(6) A quantum code constructed in this paper can easily produce uniform states.
The theory of quantum information often benefits from OAs. Next we will study how

to use OAs with special properties to construct new QECCs. Notice that the knowledge on
QECCs over mixed alphabets remains rather limited so far. Therefore, how to use mixed
OAs to construct such QECCs will also be our work in the future. All QECCs in our paper
are explicitly given, which can provide great convenience for users. By means of their
stabilizer matrices, the QECCs can be used to correct errors such as existing quantum codes.
Furthermore, we will try to explore a new and simple way to correct errors in the future.
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Appendix A

(I) The optimal code ((6, 52, 3))5 in Theorem 4.
We list its 25 basis states as follows.
|ϕ1〉 = |000000〉+ |011111〉+ |022222〉+ |033333〉+ |044444〉+ |101234〉+ |112340〉+

|123401〉+ |134012〉+ |140123〉+ |202413〉+ |213024〉+ |224130〉+ |230241〉+ |241302〉+
|303142〉+ |314203〉+ |320314〉+ |331420〉+ |342031〉+ |404321〉+ |410432〉+ |421043〉+
|432104〉+ |443210〉,

|ϕ2〉 = |001324〉+ |012430〉+ |023041〉+ |034102〉+ |040213〉+ |102003〉+ |113114〉+
|124220〉+ |130331〉+ |141442〉+ |203232〉+ |214343〉+ |220404〉+ |231010〉+ |242121〉+
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|304411〉+ |310022〉+ |321133〉+ |332244〉+ |343300〉+ |400140〉+ |411201〉+ |422312〉+
|433423〉+ |444034〉,

|ϕ3〉 = |002143〉+ |013204〉+ |024310〉+ |030421〉+ |041032〉+ |103322〉+ |114433〉+
|120044〉+ |131100〉+ |142211〉+ |204001〉+ |210112〉+ |221223〉+ |232334〉+ |243440〉+
|300230〉+ |311341〉+ |322402〉+ |333013〉+ |344124〉+ |401414〉+ |412020〉+ |423131〉+
|434242〉+ |440303〉,

|ϕ4〉 = |003412〉+ |014023〉+ |020134〉+ |031240〉+ |042301〉+ |104141〉+ |110202〉+
|121313〉+ |132424〉+ |143030〉+ |200320〉+ |211431〉+ |222042〉+ |233103〉+ |244214〉+
|301004〉+ |312110〉+ |323221〉+ |334332〉+ |340443〉+ |402233〉+ |413344〉+ |424400〉+
|430011〉+ |441122〉,

|ϕ5〉 = |004231〉+ |010342〉+ |021403〉+ |032014〉+ |043120〉+ |100410〉+ |111021〉+
|122132〉+ |133243〉+ |144304〉+ |201144〉+ |212200〉+ |223311〉+ |234422〉+ |240033〉+
|302323〉+ |313434〉+ |324040〉+ |330101〉+ |341212〉+ |403002〉+ |414113〉+ |420224〉+
|431330〉+ |442441〉,

|ϕ6〉 = |001441〉+ |012002〉+ |023113〉+ |034224〉+ |040330〉+ |102120〉+ |113231〉+
|124342〉+ |130403〉+ |141014〉+ |203304〉+ |214410〉+ |220021〉+ |231132〉+ |242243〉+
|304033〉+ |310144〉+ |321200〉+ |332311〉+ |343422〉+ |400212〉+ |411323〉+ |422434〉+
|433040〉+ |444101〉,

|ϕ7〉 = |002210〉+ |013321〉+ |024432〉+ |030043〉+ |041104〉+ |103444〉+ |114000〉+
|120111〉+ |131222〉+ |142333〉+ |204123〉+ |210234〉+ |221340〉+ |232401〉+ |243012〉+
|300302〉+ |311413〉+ |322024〉+ |333130〉+ |344241〉+ |401031〉+ |412142〉+ |423203〉+
|434314〉+ |440420〉,

|ϕ8〉 = |003034〉+ |014140〉+ |020201〉+ |031312〉+ |042423〉+ |104213〉+ |110324〉+
|121430〉+ |132041〉+ |143102〉+ |200442〉+ |211003〉+ |222114〉+ |233220〉+ |244331〉+
|301121〉+ |312232〉+ |323343〉+ |334404〉+ |340010〉+ |402300〉+ |413411〉+ |424022〉+
|430133〉+ |441244〉,

|ϕ9〉 = |004303〉+ |010414〉+ |021020〉+ |032131〉+ |043242〉+ |100032〉+ |111143〉+
|122204〉+ |133310〉+ |144421〉+ |201211〉+ |212322〉+ |223433〉+ |234044〉+ |240100〉+
|302440〉+ |313001〉+ |324112〉+ |330223〉+ |341334〉+ |403124〉+ |414230〉+ |420341〉+
|431402〉+ |442013〉,

|ϕ10〉 = |000122〉+ |011233〉+ |022344〉+ |033400〉+ |044011〉+ |101301〉+ |112412〉+
|123023〉+ |134134〉+ |140240〉+ |202030〉+ |213141〉+ |224202〉+ |230313〉+ |241424〉+
|303214〉+ |314320〉+ |320431〉+ |331042〉+ |342103〉+ |404443〉+ |410004〉+ |421110〉+
|432221〉+ |443332〉,

|ϕ11〉 = |002332〉+ |013443〉+ |024004〉+ |030110〉+ |041221〉+ |103011〉+ |114122〉+
|120233〉+ |131344〉+ |142400〉+ |204240〉+ |210301〉+ |221412〉+ |232023〉+ |243134〉+
|300424〉+ |311030〉+ |322141〉+ |333202〉+ |344313〉+ |401103〉+ |412214〉+ |423320〉+
|434431〉+ |440042〉,

|ϕ12〉 = |003101〉+ |014212〉+ |020323〉+ |031434〉+ |042040〉+ |104330〉+ |110441〉+
|121002〉+ |132113〉+ |143224〉+ |200014〉+ |211120〉+ |222231〉+ |233342〉+ |244403〉+
|301243〉+ |312304〉+ |323410〉+ |334021〉+ |340132〉+ |402422〉+ |413033〉+ |424144〉+
|430200〉+ |441311〉,

|ϕ13〉 = |004420〉+ |010031〉+ |021142〉+ |032203〉+ |043314〉+ |100104〉+ |111210〉+
|122321〉+ |133432〉+ |144043〉+ |201333〉+ |212444〉+ |223000〉+ |234111〉+ |240222〉+
|302012〉+ |313123〉+ |324234〉+ |330340〉+ |341401〉+ |403241〉+ |414302〉+ |420413〉+
|431024〉+ |442130〉,

|ϕ14〉 = |000244〉+ |011300〉+ |022411〉+ |033022〉+ |044133〉+ |101423〉+ |112034〉+
|123140〉+ |134201〉+ |140312〉+ |202102〉+ |213213〉+ |224324〉+ |230430〉+ |241041〉+
|303331〉+ |314442〉+ |320003〉+ |331114〉+ |342220〉+ |404010〉+ |410121〉+ |421232〉+
|432343〉+ |443404〉,

|ϕ15〉 = |001013〉+ |012124〉+ |023230〉+ |034341〉+ |040402〉+ |102242〉+ |113303〉+
|124414〉+ |130020〉+ |141131〉+ |203421〉+ |214032〉+ |220143〉+ |231204〉+ |242310〉+
|304100〉+ |310211〉+ |321322〉+ |332433〉+ |343044〉+ |400334〉+ |411440〉+ |422001〉+
|433112〉+ |444223〉,
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|ϕ16〉 = |003223〉+ |014334〉+ |020440〉+ |031001〉+ |042112〉+ |104402〉+ |110013〉+
|121124〉+ |132230〉+ |143341〉+ |200131〉+ |211242〉+ |222303〉+ |233414〉+ |244020〉+
|301310〉+ |312421〉+ |323032〉+ |334143〉+ |340204〉+ |402044〉+ |413100〉+ |424211〉+
|430322〉+ |441433〉,

|ϕ17〉 = |004042〉+ |010103〉+ |021214〉+ |032320〉+ |043431〉+ |100221〉+ |111332〉+
|122443〉+ |133004〉+ |144110〉+ |201400〉+ |212011〉+ |223122〉+ |234233〉+ |240344〉+
|302134〉+ |313240〉+ |324301〉+ |330412〉+ |341023〉+ |403313〉+ |414424〉+ |420030〉+
|431141〉+ |442202〉,

|ϕ18〉 = |000311〉+ |011422〉+ |022033〉+ |033144〉+ |044200〉+ |101040〉+ |112101〉+
|123212〉+ |134323〉+ |140434〉+ |202224〉+ |213330〉+ |224441〉+ |230002〉+ |241113〉+
|303403〉+ |314014〉+ |320120〉+ |331231〉+ |342342〉+ |404132〉+ |410243〉+ |421304〉+
|432410〉+ |443021〉,

|ϕ19〉 = |001130〉+ |012241〉+ |023302〉+ |034413〉+ |040024〉+ |102314〉+ |113420〉+
|124031〉+ |130142〉+ |141203〉+ |203043〉+ |214104〉+ |220210〉+ |231321〉+ |242432〉+
|304222〉+ |310333〉+ |321444〉+ |332000〉+ |343111〉+ |400401〉+ |411012〉+ |422123〉+
|433234〉+ |444340〉,

|ϕ20〉 = |002404〉+ |013010〉+ |024121〉+ |030232〉+ |041343〉+ |103133〉+ |114244〉+
|120300〉+ |131411〉+ |142022〉+ |204312〉+ |210423〉+ |221034〉+ |232140〉+ |243201〉+
|300041〉+ |311102〉+ |322213〉+ |333324〉+ |344430〉+ |401220〉+ |412331〉+ |423442〉+
|434003〉+ |440114〉,

|ϕ21〉 = |004114〉+ |010220〉+ |021331〉+ |032442〉+ |043003〉+ |100343〉+ |111404〉+
|122010〉+ |133121〉+ |144232〉+ |201022〉+ |212133〉+ |223244〉+ |234300〉+ |240411〉+
|302201〉+ |313312〉+ |324423〉+ |330034〉+ |341140〉+ |403430〉+ |414041〉+ |420102〉+
|431213〉+ |442324〉,

|ϕ22〉 = |000433〉+ |011044〉+ |022100〉+ |033211〉+ |044322〉+ |101112〉+ |112223〉+
|123334〉+ |134440〉+ |140001〉+ |202341〉+ |213402〉+ |224013〉+ |230124〉+ |241230〉+
|303020〉+ |314131〉+ |320242〉+ |331303〉+ |342414〉+ |404204〉+ |410310〉+ |421421〉+
|432032〉+ |443143〉,

|ϕ23〉 = |001202〉+ |012313〉+ |023424〉+ |034030〉+ |040141〉+ |102431〉+ |113042〉+
|124103〉+ |130214〉+ |141320〉+ |203110〉+ |214221〉+ |220332〉+ |231443〉+ |242004〉+
|304344〉+ |310400〉+ |321011〉+ |332122〉+ |343233〉+ |400023〉+ |411134〉+ |422240〉+
|433301〉+ |444412〉,

|ϕ24〉 = |002021〉+ |013132〉+ |024243〉+ |030304〉+ |041410〉+ |103200〉+ |114311〉+
|120422〉+ |131033〉+ |142144〉+ |204434〉+ |210040〉+ |221101〉+ |232212〉+ |243323〉+
|300113〉+ |311224〉+ |322330〉+ |333441〉+ |344002〉+ |401342〉+ |412403〉+ |423014〉+
|434120〉+ |440231〉,

|ϕ25〉 = |003340〉+ |014401〉+ |020012〉+ |031123〉+ |042234〉+ |104024〉+ |110130〉+
|121241〉+ |132302〉+ |143413〉+ |200203〉+ |211314〉+ |222420〉+ |233031〉+ |244142〉+
|301432〉+ |312043〉+ |323104〉+ |334210〉+ |340321〉+ |402111〉+ |413222〉+ |424333〉+
|430444〉+ |441000〉.

(II) The optimal code ((7, 73, 3))7 constructed in Theorem 4.
Let L0 be the following OA(49, 7, 7, 2) and M be the following 343 × 7 matrix. Then

Li = L0 ⊕ M(i) is an OA(49, 7, 7, 2) where M(i) is the i-th row of M for i = 1, 2, . . . , 343.
Then, an OA(75, 7, 7, 5) with MD = 3 constructed by Lemma 3 has an orthogonal partition
{L1, L2, . . . , L343}. Every row of Li is put in kets and summed to produce a 2-uniform state

|ϕi〉 for i = 1, 2, . . . , 343. These states form an orthogonal basis of a subspace Q of C7⊗7
. It

follows from Theorem 1, where Q is the ((7, 73, 3))7 QECC.
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LT
0 =













0000000111111122222223333333444444455555556666666
0123456012345601234560123456012345601234560123456
0123456123456023456013456012456012356012346012345
0123456234560145601236012345123456034560125601234
0123456345601260123452345601560123412345604560123
0123456456012312345605601234234560160123453456012
0123456560123434560121234560601234545601232345601













,

MT =









000000000000000000000000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000000000000000000000011 111111111111111111111111111111
000000011111112222222333333344444445555555666666600 000001111111222222233333334444
012345601234560123456012345601234560123456012345601 234560123456012345601234560123
036251436251406251403251403651403621403625403625114 036254036251036251436251406251
065432143210651065432543210621065436543210321065410 654325432106210654365432103210

000000000000000000000000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
111111111111111112222222222222222222222222222222222 222222222222222333333333333333
444555555566666660000000111111122222223333333444444 455555556666666000000011111112
456012345601234560123456012345601234560123456012345 601234560123456012345601234560
403251403651403622514036514036214036254036251036251 436251406251403362514062514032
654065432143210652106543654321032106540654321432106 510654325432106321065406543214
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
333333333333333333333333333333333344444444444444444 444444444444444444444444444444
222222333333344444445555555666666600000001111111222 222233333334444444555555566666
123456012345601234560123456012345601234560123456012 345601234560123456012345601234
514036514036214036254036251036251440362510362514362 514062514032514036514036214036
321065106543254321062106543654321043210651065432543 210621065436543210321065406543
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000000000000000000000000 000000000000000000000000000000
445555555555555555555555555555555555555555555555555 666666666666666666666666666666
660000000111111122222223333333444444455555556666666 000000011111112222222333333344
560123456012345601234560123456012345601234560123456 012345601234560123456012345601
255140362140362540362510362514362514062514032514036 625140325140365140362140362540
215432106210654365432103210654065432143210651065432 654321032106540654321432106510

0000000000000000000
0000000000000000000
6666666666666666666
4444455555556666666
2345601234560123456
3625103625143625140
6543254321062106543









.
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