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model. The second category is holography, or specifically the holographic
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choose the 3D kink subregion on the boundary, which is the simplest subregion

with singular surface. Properties of subregion complexity are examined.
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Chapter 1

Introduction

The frontier of fundamental physics has two main branches: 1) to un-

derstand the quantum theories of particles and interactions without gravity,

also known as particle physics or particle phenomenology, and 2) to incorpo-

rate gravity into the quantum theory, generally referred to as quantum gravity.

In this dissertation, I will present my works along both of them in my very

distinct projects.

1.1 Effects of Higgs Potential

Supported by some of the greatest experiments human beings have ever

done, a great achievement has been made in the branch of particle phenomenol-

ogy, namely the triumph of the Standard Model of particles (SM). However,

since the discovery of the last building block of SM, the Higgs particle, few

experimental breakthrough has been made to extend our knowledge beyond

SM (BSM), which is currently the most important tasks in this field in the

near future. Among the possible probes of BSM, a new probe inspired by the

Higgs discovery is the effect of the Higgs potential, which will be explored by

future experiments on precision Higgs measurements.
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Currently, our knowledge of the Higgs potential is still far from enough.

The Higgs mass, measured as 126 GeV, and the vacuum expectation value

(VEV), well known as 246 GeV, are only part of the local properties of its

potential at the current minimum. Based on the UV renormalizability, the

SM implies a Higgs potential of the form

V = µ2H†H + λ(H†H)2 (1.1)

which only have two parameters that are completely fixed by the two experi-

mental data. It is plausible to keep this assumption as long as we are not going

to very high energy regime, but as I will explain soon, this model already get

into trouble fairly below the Planck energy, and will not stand as a valid theory

all the way through the regime that phenomenologists are reasonably inter-

ested. Therefore, BSM modifications must exist for the Higgs potential. The

motivation of studying Higgs potential is then to see what could modifying

Higgs potential affect the known physical results.

In my view, the effects of Higgs potential on the known physical results

or effects that can be detected in near future have three aspects:

1. Modifying the stability of the current Higgs vacuum and the self-interaction

couplings. These are the most direct effects on the current universe.

The stability determines whether the universe can exist as it is, which

is a strong guarantee of the real world. The self-interaction couplings

are hopefully measurable in the near future, so that the models can be

tested.
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2. Implying the details of electroweak phase transition. This is beyond the

scope of local properties, and hence is hard to detect in a collider. But

the phase transition in early universe may leave some footprints that we

have access to in cosmological studies, which in turn provides a test of

the models.

3. Playing a role in inflationary physics. Inflation is a very early stage of

the universe when the initial conditions for inflaton-like scalars are not

restricted to minima of the potential. They can often start on a slope of

the potential and roll as the universe inflates. Hence inflationary physics

can in principle probe scalar potential far from its minima, and Higgs as

a possible fundamental scalar may play a role in such an era.

I studied all the three aspects in a series of papers [1–3]. In the first

paper [1], as presented in chapter 2, I will study what kind of modifications

could improve the stability of the current Higgs vacuum. The SM prediction

alone shows that the current vacuum is metastable [4, 5], meaning that its

lifetime before decaying to a true minimum would be longer than the current

age of the universe, and hence we are temporarily safe. It is not a good news,

because as shown in Fig. 1.1, the narrow band of metastability indicates that

this result is very sensitive to new physics or even the precision of our current

measurements. Specifically, if we are interested in BSM that contains extra

fermions, like a top partner, the Higgs vacuum will definitely be unstable. In

the kind of minimal extension to the SM, we use a singlet scalar to stabilize
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Figure 1.1: xxx

the potential. This was already proposed in [6, 7], but using scalar alone has

the risk of getting into strong dynamics as the self interaction of the new scalar

becomes non-perturbative at high energy. I will combine the top partner and

the new scalar and show that together we have a valid model up to very high

energy. I will also study the constraints on the model parameters to see the

survivability of this toy model.

In the second paper in the series [2], which is explained in chapter

3, I will switch to the electroweak phase transition property of a similar toy

model. Due to the existance of a new fermion and hence the new CP violation

introduced by the extended CKM matrix, we expect the Sakharov’s conditions

for Baryogenesis to be satisfied during electroweak phase transition in this

model. Baryogenesis is a necessary process in the early universe that produced

enough matter-antimatter observed today, which is

nb
nγ
∼ 10−10. (1.2)

The so-called Sakharov’s conditions consist of three aspects: 1) there should

4



be a Baryon number violation interaction, which is realized by Sphaleron in

electroweak baryogenesis; 2) there should be enough CP violation to break

the time-reversal symmetry so that Baryon number can steadily change in one

direction; 3) there should be a first order phase transition during which the

bubble nucleation could freeze the net Baryon number generated during the

CP violating process. Assuming enough CP violation from the extended CKM

matrix, which through Dirac equation could generate net Baryon number in the

phase transition bubble wall, the missing piece is hence a strong enough first

order electroweak phase transition (FOPT). We scan through the parameter

space of the scalar potential numerically, and find regions of parameters that

allow FOPT, and hence potentially provides enough baryogenesis. Patterns of

phase transitions are also classified for this kind of two-scalar field space.

I also studied inflation and dark matter in the last paper of the series

[3], where we explored the possible role Higgs can play in the inflationary era.

Not only do we introduce a multi-dimensional scalar space, we also assume

non-minimal gravitational coupling for the scalar sector. In this setup, both

the Higgs and the singlet scalar can be the inflaton, and thus we have two

different inflation scenarios. What is more we set the new vector-like fermion

to be SM singlet, which interacts with SM particle only through Higgs portal.

Therefore, we studied the possibility that this fermion could play the role

of dark matter. Various constraints from inflation, dark matter relics and

particle physics are examined to give the allowed parameter range for both

both scenarios.

5



1.2 Holographic Principle and Quantum Complexity

The idea of incorporating gravity into the quantum theory of matters

has a history dating back to the establishment of the general relativity. In

quantum theory, energy momentum tensor is an observable described by a

Hermition operator, while the other side of the Einstein equation, the Einstein

tensor, is a purely geometrical quantity. A naive way to make sense of it is to

quantize the perturbation of geometry on top of a classical background, which

provides an effective description of gravity in the classical and weak field limit.

However, due to the non-renormalizability, it is far from a complete quantum

gravity theory.

More subtleties arise when people study the behavior of a black hole.

It turns out that a mathematically consistent UV cutoff scheme is not only

more difficult to find, but also less natural than the physical cutoff provided

by the creation of black holes, which indicates that a microscopic description

of quantum gravity is closely related to the black hole physics. On the other

hand, the black hole entropy found in the study of black hole thermodynamics

[8, 9] implies an area law entropy, which drastically reduce the number of

degrees of freedom in the quantum field theory coupled to gravity. The idea

of constructing quantum theory of gravity from a lower dimensional space,

as being similar to idea of hologram, is thus called holographic principle of

quantum gravity [10].

As the most rigorous realization of the holographic principle, the AdS/CFT

correspondence [11] provides a powerful tool to study the properties of quan-
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tum gravity. Recently, in constructing the dictionary between the boundary

CFT data and the bulk gravity data, it was realized that the region behind the

black hole horizon is hard to probe from boundary point of view. In particu-

lar, the Einstein-Rosen Bridge (ERB) continues growing in size for time much

longer than the scrambling time of the black hole [12, 13], while no familiar

boundary quantities have such behavior due to the thermal equilibrium. This

leads to the idea of corresponding the size of ERB to a new concept called

“complexity” of the boundary quantum state, i.e. the holographic complexity

[14].

In the hope of studying holographic complexity in a more concrete case,

and testing the idea in a broader class of geometries, we tried to compute the

holographic complexity of a non-commutative field theory [15], as shown in

chapter 4. The proposal we used for this holographic dual is called “complexity

= action” (CA). The gravitational action in the Wheeler-DeWitt patch is

computed for the AdS5 × S5 bulk geometry, with non-zero NS-NS 2-form

field Bµν turned on in two of the transvers directions. It will induce non-

commutativity in the two directions for the world-sheet theory on the D3

branes, which makes it a non-commutative SU(N) Super Yang-Mills theory.

In the bulk, there are non-trivial dilaton field, B field, R-R 2-form gauge field

C2 and the self-dual 5-form F5. The action in type IIB supergravity is used to

compute the boundary complexity holographically. The privilege of using this

geometry is that the thermodynamic quantities are shown to be independent

of the non-commutativity parameter. We showed, however, that the rate of
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change for holographic complexity depends on this parameter, which reveals

its ability to resolve better than thermodynamics. A toy quantum mechanics

model is used to demonstrate this dependence. Similar computations are made

for an extension of the theory to higher dimensions.

When the rate of change for holographic complexity is computed, its

UV divergence is not relevant because it is usually time independent. Inspired

by the fruitful studies on UV divergence structure of entanglement entropy,

we investigate the UV divergence of holographic complexity in chapter 5. The

UV divergence turns out to be simple for pure holographic states, thus it is

natural to look at the subregion complexity. General subregion with smooth

surface has been studied in [16], but we hope that interesting universal terms

would appear for subregions with singular surface, similar to the case of en-

tanglement entropy. Thus we focus on subregion complexity of the simplest

subregion with singular surface: 3D kink. A systematic technique for subre-

gion CA computation is proposed, and we find new divergence structure due to

the kink feature on the subregion surface. We point out potential connection

between subregion complexity and entanglement entropy according to observa-

tions of the results. There are also hints for setting values for a long-standing

ambiguous parameter in the CA method.
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Chapter 2

Stabilizing the Higgs vacuum

The discovery of the Higgs-like scalar boson at the Large Hadron Col-

lider (LHC) is the great triumph of the standard model (SM) of particle

physics. The Higgs boson mass, was measured at the ATLAS and CMS with

reasonable accuracy: mh = 125.9± 0.4 GeV [17]. Now that all the parameters

of the SM are determined by experimental data, the completion of the SM

evoked our interest in its high energy behavior such as Higgs vacuum stability.

The measured value of the Higgs boson mass leads to a very intriguing situ-

ation. The most accurate analysis of the electroweak vacuum stability in the

SM was performed in [4, 5], showing that the theory sits near the boundary

between stable phase and unstable phase of the vacuum structure (see Fig 2.1).

The starting point of our research [1] was a kind of BSM extensions

which includes new fermions that couple to the Higgs field. Due to experi-

mental constraints on the 4th generation chiral quarks [18, 19], and to avoid

the gauge anomaly problem, we focus on the vector-like fermion models, where

This chapter is based on my previous work [1] with J. -H. Yu, in which we had equal
contributions.
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Figure 2.1: This figure shows the renormalization group running of the Higgs
quartic coupling λ with slight variation of the most important model param-
eters. As will be explained in section 2.2, the region λ < 0 implies vacuum
instability, thus we can see from this figure how different parameters influence
the vacuum stability. Specifically, larger top mass (or top Yukawa coupling)
leads to instability at lower energy scale.

the new fermion ψL,R is singlet under the weak SU(2) gauge group, and pre-

dominantly coupled to the SM top quark [20–23]. We demand the new fermion

to be a top partner, i.e. to have the same quantum number as top quark except

for SU(2), so that it has tree level coupling

Lyuk ⊃ −yTφū3LψR (2.1)
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to the Higgs scalar φ which presumably strongly affects the Higgs potential.

Similar to the top Yukawa yt, the new coupling yT makes the vacuum

instability worse. We proposed that it can be solved if we assume that the

Dirac mass term of the new fermion comes totally from the VEV of a new

singlet scalar S1, hence

Lyuk ⊃ −
yM√

2
Sψ̄LψR. (2.2)

This can be easily guaranteed by assigning +1 charge for both S and ψL under

a global U(1) symmetry.

Therefore, the extensions of this model are in the top Yukawa sector

and the scalar potential sector, characterized by the following terms:

Lyuk ⊃ −Q̄LH̃(ytu3R + yTψR)− yM√
2
Sψ̄LψR, (2.3)

V (H,S) = µ2
HH

†H + λH(H†H)2 +
µ2
S

2
S2 +

λS
4
S4 +

λSH
4
S2H†H. (2.4)

where as in convention QL =

(
u3

d3

)
, H =

(
π±

(φ+ iπ0)/
√

2

)
. Before we move

on, there are a few things here to comment:

• We didn’t write a term like Sψ̄Lu3R in the Yukawa terms, because we

can always redefine the degenerate doublet (u3R, ψR) by a rotation so

that this term vanishes.

1We used the letter S for the singlet scalar in the paper. For consistancy with the other
works presented here, notations in this dissertation may be different from the published
work.
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• Using the bound-from-below condition of the potential, we have the con-

straints

λS > 0, λH > 0, 4λsλH > λ2
SH , (2.5)

which are imposed in the parameter scan.

• With the mixing coupling λSH , we are not restricted to negative µ2
H and

µ2
S. Demanding both 〈H〉 = (0, v/

√
2)T and 〈S〉 = u be non-vanishing,

we have the relations

µ2
H = −λHv2 − λSH

2
u2, µ2

S = −λSu2 − λSH
2
v2. (2.6)

Obviously, it’s not hard to make one of them positive. Letting λSH =

−2
√
λsλH takes its lower bound, we also find that

µ2
H ≤ −

√
λH(

√
λHv

2 −
√
λsu

2),

µ2
S ≤

√
λs(
√
λHv

2 −
√
λsu

2),
(2.7)

indicating that either of them are upper bounded by a negative number,

therefore at most one of them can be positive for spontaneous symmetry

breaking.

This model will be referred to as “Scalar-Assisted Vector-like Fermion”

(SAVF) model, which I studied in a series of papers [1–3]. A little difference

exist between the models used in these papers. In particular, the model used

here [1] has Z2 symmetric scalar and top partner fermion. In the next chapter,

which presents [2], we loosened the Z2 symmetry to allow richer structure in

the potential. Finally in [3] we studied a singlet new fermion, while there are

additional non-minimal gravitational coupling for the scalars.
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2.1 Spectrum and Mixing Angles

From the new model Eq(2.3) and the non-zero VEV (v, u), we can

derive the spectrum from the quadratic terms

Lyuk ⊃ −
(
ū3L ψ̄L

)
MF

(
u3R

ψR

)
,

V (H,S) ⊃ 1

2

(
φ S

)
M2

S

(
φ
S

)
,

(2.8)

where

MF =
1√
2

(
ytv yTv
0 yMu

)
, M2

S =

(
2λHv

2 λSHvu
λSHvu 2λSu

2

)
. (2.9)

These mass matrices can be diagonalized by SO(2) rotations as

MF = U †L
(
mt 0
0 mT

)
UR, M2

S = U †S
(
m2
h 0

0 m2
s

)
US. (2.10)

where(
tL
TL

)
= UL

(
u3L

ψL

)
,

(
tR
TR

)
= UR

(
u3R

ψR

)
,

(
h
s

)
= US

(
φ
S

)
(2.11)

are the mass eigenbasis of the mass matrices. The rotation angles therein are

defined as

UL =

(
cos θL − sin θL
sin θL cos θL

)
, UR =

(
cos θR − sin θR
sin θR cos θR

)
, US =

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

(2.12)

which are true physical parameters characterizing the mixing angles between

the mass eigenbasis and the coupling eigenbasis. Note that the requirement of

the vanishing Sψ̄Lu3R coupling induces a constraint between θL and θR as

mt tan θL = mT tan θR, (2.13)
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the independent mixing angles are only ϕ and θL. For convenience, we intro-

duce the shorthand notations:

sϕ = sinϕ, cϕ = cosϕ,

sL = sin θL, cL = cos θL.
(2.14)

Now we can express the Lagrangian parameters in terms of the physical ones

as

λH =
m2
hc

2
ϕ +m2

ss
2
ϕ

2v2
, yt =

√
2mtmT

v
√
m2
T c

2
L +m2

t s
2
L

,

λS =
m2
hs

2
ϕ +m2

sc
2
ϕ

2u2
, yT =

√
2(m2

T −m2
t )sLcL

v
√
m2
T c

2
L +m2

t s
2
L

,

λSH =
(m2

s −m2
h)sϕcϕ

uv
, yM =

√
2

u

√
m2
T c

2
L +m2

t s
2
L.

(2.15)

To summarize this model, it introduces both a new vector-like fermion that

mixes with top quark, described by its mass mT and the mixing angle θL,

and a singlet scalar that mixes with the Higgs boson, described by its mass

ms and the mixing angle ϕ. Both masses are generated predominantly by

the new physics scale u, which is assumed to be at TeV scale. Regarding our

motivation, both the scalar s and the fermion T have direct coupling with

the Higgs, leading to deformation of the Higgs potential. We will study their

influence on the potential explicitly in the next section.

2.2 Vacuum Stability from RG Improved Higgs Poten-
tial

In order to find out the true vacuum and investigate its stability, we

should study the effective scalar potential which includes the radiative loop

14



corrections and RG-improved parameters. At the one-loop order, the effective

scalar potential is [24], in the Landau gauge,

Veff(H,S) = V (H,S;µ) + STr
M4

i (H
2, S2)

64π2

[
log
M2

i (H
2, S2)

µ2
− ci

]
, (2.16)

whereM2
i (H

2, S2) are the field dependent mass-squared, and the index i runs

over all the fields in the model, as long as the field has a mass matrix that

depends on the scalars. The tree-level potential V (H,S;µ) depends on the

scale µ through the running couplings, while the whole effective potential Veff

is supposed to be independent of µ, due to the Callan-Symanzik equation. The

super-trace operator STr provides correct signs and degeneracies of all the field

multiplets. ci are constants that depend on the renormalization scheme. We

choose the MS scheme, with ci = 3/2 for scalars and fermions, and ci = 5/6

for vector bosons.

The effective scalar potential Veff must develop a realistic minimum at

the electroweak scale v, corresponding to the SM VEV. The stability condi-

tion on the Higgs vacuum is dependent on the behavior of Veff in the large-field

limit φ� v = 246 GeV. This condition is essentially equivalent to the require-

ment [4] that the Higgs quartic coupling λH(µ) never becomes negative up to

the Planck scale. This is because at large field, we can choose µ ∼ φ, S so that

Mi ∼ µ for most of the relevant fields and the log term in the loop correction

is suppressed. Therefore it is sufficient to study the RGE running behavior of

the quartic couplings λ(µ) in the MS scheme.

This requires us to work in the effective field theory framework, by

15



integrating heavy particles out at their mass thresholds and matching all the

running couplings between effective theories at different scales. At the scale

of the scalar pole mass Ms, we can integrate out the scalar singlet in the tree

level potential V (H,S) using its equation of motion:

S2 = u2 − λSH
λS

(H†H − v2/2). (2.17)

Inserting the above equation back to V (H,S), we obtain the tree-level effective

Higgs potential below the heavy mass threshold:

V (H) = λSM(H†H − v2/2)2, (2.18)

where

λSM = λH −
λ2
SH

4λS
. (2.19)

This shows that there is a tree-level shift when we match the Higgs quartic

coupling λH in the model to the Higgs quartic coupling λSM in the low energy

effective theory. This is consistent with the expression of the Higgs boson mass

in the limit of v � u:

m2
h = 2v2

(
λH −

λ2
SH

4λS
+O(v2/u2)

)
. (2.20)

The same argument should in principle go through for the heavy fermion:

at the scale of the heavy fermion pole mass MT , we also integrate out the heavy

fermion using its equation of motion. However, tree-level matching between

the model and the low energy effective theory shows ySM
t = yt. It stems from

our redefinition that turns off the Sψ̄Lu3R coupling.
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Depending on different particle content in effective theories, there are

different RGE running behaviors in different energy regions.

• Region I: scale µ < MT ,MS.

In this region, after integrating out all the heavy particles, we recover

the SM as the low energy theory. The SM one-loop RGE for the Higgs

quartic coupling is

dλ

d log µ2
= βSM

λ =
λ

(4π)2

[
12λ+ 6y2

t −
9g2

1

10
− 9g2

2

2

]
+

1

(4π)2

[
− 3y4

t +
9g4

2

16
+

27g4
1

400
+

9g2
2g

2
1

40

]
,

(2.21)

where g1 =
√

5/3gY is the hypercharge gauge coupling in GUT nor-

malisation, and g2 the weak SU(2)L gauge coupling. Note that for a

light Higgs, the running behavior is mainly controlled by the top quark

Yukawa coupling, which drives λ towards more negative values. If there

is no new particle integrated in at high energies, λ would eventually be-

come negative at energy scale around 1010 GeV, as indicated by the SM

vacuum stability studies [4, 5].

In order to determine the boundary condition for the running of λ(µ),

one need to know how the MS renormalized Higgs quartic coupling λ(µ)

relates to the SM input parameters. Here the SM input parameters are

taken to be the SM pole massesMh,Mt,MW ,MZ and Fermi constantGF ,

αs(MZ). The relation that connects λ(µ) to the SM input parameters
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can be written as

λSM(µ) =
GFM

2
h√

2
[1 + ∆h(µ)] , (2.22)

where ∆h(µ) represents electroweak one loop radiative corrections at the

scale µ [25]. Similarly, the boundary condition for yt can be determined

from the relation between the pole mass and its running mass:

ySM
t (µ) = (

√
2GF )

1
2Mt [1 + ∆t(µ)] , (2.23)

where ∆t(µ) denotes the electroweak radiative corrections [26]. In the

RGE running, we start from the scale of the top pole mass Mt. The

boundary conditions of the couplings at the Mt scale are taken from the

two-loop matched values presented in Ref. [5].

• Region II (a): scale µ ≥MT and µ < MS.

There are two cases in the intermediate region since the model could

have either MT < MS or MT > MS. Let us first discuss the case (a):

MT < MS. As explained earlier, there is no threshold effect at µ = mT ,

we only need to know the new RGE equation. Above the scale mT ,

the heavy fermion T contributes to the one-loop running of the gauge

couplings, Yukawa couplings, and Higgs quartic coupling λH . The RGE

for the Higgs quartic coupling becomes

dλ

d log µ2
= βSM

λ +
1

(4π)2

[
6λy2

T − 3y4
T − 6y2

Ty
2
t

]
. (2.24)
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Due to the negative contributions from the additional terms in the above

RGE, we expect the scale, at which the Higgs quartic coupling becomes

negative, to be lower than that in the SM. Therefore, in the pure vector-

like fermion model, the Higgs vacuum instability problem is worse than

that in the SM.

• Region II (b): scale µ ≥ MS and µ < MT . This is the case when

MT > MS. According to Eq. 2.19, the Higgs quartic coupling receives a

positive shift at the MS threshold

λH = λSM +
λ2
SH

4λS
, (2.25)

which sets the initial condition of the RGE running in this region. The

heavy scalar also changes the RGE running behavior of the Higgs quartic

coupling, which becomes

dλH
d log µ2

= βSM
λ +

1

(4π)2

1

4
λ2
SH . (2.26)

The new positive contribution from the last term in the Eq. 2.26 delays

the occurrence of the vacuum instability at high energies. Therefore,

the above two effects on the RGE running could potentially avoid the

vacuum instability.

However, we have to worry about the perturbativity bounds on the scalar

quartic coupling λS. The RGE running of the scalar coupling is

dλS
d log µ2

=
1

(4π)2

[
9λ2

S + λ2
SH

]
. (2.27)
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If there is no new heavy fermion coupled to the heavy scalar, it is very

likely that the scalar coupling λS blows up at some energy scale, and

thus violate the pertubativity bounds.

• Region III: scale µ ≥ MT ,MS. In this region, both the heavy fermion

and the heavy scalar are involved in the RGE running. The threshold

effect, if any, would be the same as explained above. The full RGE

running of the Higgs quartic coupling in this region is

dλH
d log µ2

= βSM
λ +

1

(4π)2

[
6λHy

2
T +

1

4
λ2
SH − 3y4

T − 6y2
t y

2
T

]
. (2.28)

Now the negative effect from yT and the positive effect from λSH are

both present, so whether the instability will be weakened or even avoided

depends on the comparison between the two couplings.

On the other hand, we need to take care of the perturbativity bounds

on the scalar coupling. The RGE running of the scalar coupling λS is

dλS
d log µ2

=
1

(4π)2

[
9λ2

S + λ2
SH + 6y2

MλS − 3y4
M

]
. (2.29)

Without the y4
M term in the above equation, like in Region II(b), λS

could blow up and reach the Landau pole at some scale below the Planck

scale. The presence of new Yukawa coupling thus plays a role to avoid

this trouble.

The complete RGE in three regions are listed in the Appendix 2.5.

To illustrate, we show the RGE running of the Yukawa and scalar couplings
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in Fig. 2.2 for a typical parameter point: ms = 1 TeV, mT = 800 GeV,

sinϕ = 0.1, sin θL = 0.08 and u = 2 TeV .
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Figure 2.2: The RGE running of the Yukawa and scalar couplings in the model.
All parameters are defined in the MS scheme. The starting point of the running
is mt(Mt). The benchmark point: ms = 1 TeV, mT = 800 GeV, sinϕ = 0.1,
sin θL = 0.08 and u = 2 TeV, is taken.

We could put constraints on the parameter space in the model by re-

quiring stability of the potential and perturbativity of all the couplings. Thus

we perform a numerical scan over a large range of the parameter space for all

parameters: the masses ms,mT , the mixing angles sϕ, sL, and the scale u.

Fig. 2.3 and Fig. 2.4 show the allowed parameter space satisfying the

stability and the perturbativity conditions. As expected, in Fig. 2.3 we notice

there is a small region at small sϕ excluded. It is because if the mixing angle ϕ
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Figure 2.3: The allowed parameter region of the scalar mass and mixing angle
(ms, sϕ) satisfying the vacuum stability of the Higgs potential and perturbativity
of all the running couplings. The dashed lines are the allowed contours (ms, sϕ) for
different fixed scale u.

is too small, the scalar can not give enough lift on the Higgs quartic coupling.

It will still become negative, suggesting that the current vacuum is instable or

metastable. Hence this excluded region correspond to stability constraint. On

the other hand, the parameter region where the scalar and the Higgs have a

large mixing is disfavored, especially when the scalar is heavy. The reason for

this is that the scalar quartic couplings will increase as evoluting to the high

22



 [GeV]Tm
500 1000 1500 2000

) Lθ
si

n
(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
All allowed region

u = 4 TeV Contour

u = 2 TeV Contour

u = 1 TeV Contour

Figure 2.4: The allowed parameter region of the vector-like fermion mass and mix-
ing angle (mT , sL) satisfying the vacuum stability of the Higgs potential and per-
turbativity of all the running couplings. The dashed lines are the allowed contours
(mT , sL) for different fixed scale u.

energy scale, and eventually become nonperturbative. Indeed, Fig. 2.3 shows

the region with large mixing angle sϕ is excluded. If we fix the scale u (dashed

contours in Fig. 2.3), there is a strict bound on the mass of the scalar from

the perturbativity limit on the scalar coupling strength λS.

Regarding to the parameter space for the heavy fermion, we expect

that small sL is favored, since the small mixing angle usually gives rise to
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small Yukawa couplings yT and less tendency of instability. As also shown in

Fig. 2.4, if we fix the scale u (dashed contours), the mass of the vector-like

fermion also has an upper bound since small Yukawa coupling yM is favored.

2.3 Various Other Constraints

Now that we find the constraint on the parameter space of our model

from vacuum stability, we want also to see if there are other constraints. We

are going to consider the constraints from perturbative unitarity, the precision

electroweak measurements and the Higgs coupling measurements.

2.3.1 Perturbative Unitarity

Although there is no bad s-dependent high energy behavior in the

model, the tree-level perturbative unitarity could put constraints on the masses

and couplings of the heavy particles. In the partial wave treatment [27], given

the tree-level scattering amplitude M(s, θ) of all possible 2 → 2 scattering

processes, the partial wave amplitude with angular momentum l is written as

al =
1

32π

∫ 1

−1

d cos θ Pl(cos θ)M(s, θ), (2.30)

where s and θ are the total energy squared, and the scattering polar angle in

the center of mass frame, respectively. Pl(cos θ) is the Legendre Polynomial.

The unitarity requires the following condition [27–29]

|Re(al)| ≤
1

2
. (2.31)
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In the high energy limit, following the equivalence theorem [30–33], the

unitarity condition could be obtained by calculating the partial wave ampli-

tudes of the coupled channels in the scalar sector. It has been shown [34] that

the dominant contribution in the coupled channels is the process SS → SS.

In the high energy limit, tree level amplitude of the SS → SS is

M(
1√
2
SS → 1√

2
SS) =

1

64v2u2

[
6(m2

H + 5m2
s)(v

2 + u2)

+ 3(m2
H + 15m2

s)(v
2 − u2) cos(2ϕ)

− 6(m2
H − 3m2

s)(v
2 + u2) cos(4ϕ)

− 3(m2
H −m2

s)(v
2 − u2) cos(6ϕ)

− 12(m2
H −m2

s)2vu sin3(2ϕ)
]
.

(2.32)

Put it back to the unitarity condition Eq. 2.31, we obtain the constraints on

the parameter space. In the limit of no mixing between the Higgs and the

scalar, it gives a constraint on ms against u:

ms <

√
4π

3
u. (2.33)

On the other hand, the heavy fermion also has an upper bound on

its mass and coupling sL from the requirement of the perturbative unitarity

through the fermion anti-fermion scattering process. At high energy
√
s �

mT , the tree level amplitude of the process T T̄ → T T̄ is

M(T T̄ → T T̄ )λiλf = m2
T (u−2c4

L + v−2s4
L)


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

 (2.34)

25



where λi and λf are the helicity states of the initial and final states. λi and λf

are taken to be one of the following helicity states {++,+−,−+,−−}. Diag-

onalizing it and taking the largest s wave component, we have the unitarity

condition

amax0 =
1

16π

[
m2
T (u−2c4

L + v−2s4
L)
]
<

1

2
. (2.35)

Similarly, if there is no mixing between the vector-like fermion and the top

quark, it gives a constraint on mT against u:

mT <
√

8πu. (2.36)

2.3.2 Precision Electroweak Measurements

The presence of the new scalar S and the vector-like fermion T ren-

ders both modified SM couplings and new electroweak couplings. These new

couplings have impact on the electroweak observables that were precisely mea-

sured at the LEP and SLC.

The dominant NP (New Physics) effects on the electroweak observ-

ables appearing in the gauge boson vaccuum polarization correlations, named

oblique corrections [35], are parametrized by three independent parameters S,

T and U:

αS ≡ 4e2
[
Π′33(0)− Π′3Q(0)

]
, (2.37)

αT ≡ e2

s2
W c

2
Wm

2
Z

[Π11(0)− Π33(0)] , (2.38)

αU ≡ 4e2 [Π′11(0)− Π′33(0)] . (2.39)
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where the notation ΠXY with X, Y = 1, 3, Q denotes the vacuum polarization

amplitudes and Π′XY (q2) = d
dq2

ΠXY (q2). From the global fit of the electroweak

precision data, the constraints on the S, T and U parameters can be obtained.

The following fit results are determined from the GFitter fit [36] for the refer-

ence SM parameters mt = 173 GeV and mh = 126 GeV. In the NP model, the

contribution of the U parameter is usually very small and can be neglected.

Fixing U = 0, the GFitter global fit results in

∆S = SNP − SSM = 0.05± 0.09

∆T = TNP − T SM = 0.08± 0.07.
(2.40)

and the correlation coefficient is taken to be 0.91.

We split the calculation on the oblique parameters into boson-loop con-

tributions TS, SS and fermion-loop contributions TF , SF , and consider them

separately. For the boson-loop contributions, the NP effect is only involved in

the vacuum polarization amplitudes where the Higgs or the heavy scalar are

in the loop. This is shown by Feynman diagrams in Fig. 2.5. Using the vector

boson self-energy ΠV V defined in the Appendix 2.6, we obtain

∆TS = s2
ϕ

[
Ts(m

2
s)− Ts(m2

h)
]
,

∆SS = s2
ϕ

[
Ss(m

2
s)− Ss(m2

h)
]
,

(2.41)
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Figure 2.5: The one-loop Feynman diagrams of the vector boson self-energy ΠV V

due to the scalars in the loop.

where the functions are defined as

Ts(m) = − 3

16πc2
W

[
1

(m2 −m2
Z)(m2 −m2

W )

×
(
m4 lnm2 − s−2

W (m2 −m2
W )m2

Z lnm2
Z

+ s−2
W c2

W (m2 −m2
Z)m2

W lnm2
W

)
− 5

6

]
,

Ss(m) =
1

12π

[
lnm2 − (4m2 + 6m2

Z)m2
Z

(m2 −m2
Z)2

+
(9m2 +m2

Z)m4
Z

(m2 −m2
Z)3

ln
m2

m2
Z

− 5

6

]
.

Similarly, it is straightforward to calculate the oblique corrections due

to the top quark and the vector-like fermion shown in Fig. 2.6. Subtracting
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Figure 2.6: The one-loop Feynman diagrams of the vector boson self-energy ΠV V

due to heavy fermions in the loop.

the SM contributions due to the third generation quarks

T SM
F =

3m2
t

4πe2v2
,

SSM
F =

1

2π

(
1− 1

3
log

m2
t

m2
b

)
,

(2.42)

we arrive at the final expressions

∆TF = T SMs2
L

[
− (1 + c2

L) + s2
L

m2
T

m2
t

+ c2
L

2m2
T

m2
T −m2

t

ln
m2
T

m2
t

]
,

∆SF = − s
2
L

6π

[
(1− 3c2

L) ln
m2
T

m2
t

+ 5c2
L

− 6c2
Lm

4
t

(m2
T −m2

t )
2

(2m2
T

m2
t

− 3m2
T −m2

t

m2
T −m2

t

ln
m2
T

m2
t

)]
,

(2.43)

which agree with the results in Ref. [20].

The only important non-oblique correction comes from the vertex cor-

rection of the Zbb̄ coupling. In general, the effective Zbb̄ vertex can be

parametrized as

g2

cW
b̄γµ

[
gL

1− γ5

2
+ gR

1 + γ5

2

]
bZµ, (2.44)
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Figure 2.7: (a) the dominant one-loop Feynman diagrams in the t’Hooft-Feynman
gauge; (b) the only Feynman diagrams after the gaugeless limit is taken in the
model.

where

gL = gSM
L + δgNP

L ,

gR = gSM
R + δgNP

R .
(2.45)

Here gSM denotes the SM coupling with radiative correction included, and

δgNP represents the correction purely from the NP model. In the SM, taking

the leading mt-dependent radiative corrections into account, the SM couplings

are

gSM
L = −1

2
+

1

3
s2
W +

m2
t

16π2v2
,

gSM
R =

1

3
s2
W .

(2.46)

In our model, there is no tree-level correction to the Zbb̄ coupling. However,

at one-loop, flavor-dependent vertex corrections arise, and contribute to the

ZbLb̄L coupling. Fig. 2.7(a) shows the dominant one-loop Feynman diagram
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in the t’Hooft-Feynman gauge, in which the vector-like fermion and the top

quark appear in the loop. The presence of vertex corrections gives rise to

non-zero δgNP
L . To extract out the leading mT -dependent terms explicitly, we

perform the loop calculation in the “gaugeless” limit [37–40], in which the Z

boson is treated as a non-propagating external field coupled to the current

Jµ = b̄Lγ
µbL. Using the Wald identity [37, 38], the leading contribution to the

ZbLb̄L coupling can be obtained via the calculation of the higher dimensional

operator ∂µπ0

mZ
b̄Lγ

µbL , where π0 is the Goldstone boson eaten by the Z boson.

The relevant Feynman diagram is shown in Fig. 2.7(b). The one-loop effective

Lagrangian that is generated by the Feynman diagram is

Lπbb̄ = εb
2

v
b̄Lγ

µbL∂µπ
0, (2.47)

where

εb = − 1

16π2v2

[
m4
t c

4
LC0(m2

t ,m
2
t , 0) +m4

T s
4
LC0(m2

T ,m
2
T , 0)

+ 2m2
tm

2
T c

2
Ls

2
LC0(m2

t ,m
2
T , 0)

]
,

(2.48)

Here C0(m2
1,m

2
2,m

2
3) is the three-point Passarino-Veltman (PV) function [41]

in the zero external momentum limit, where mi are the masses of the particles

in the triangle loop. In the limit of the massless Goldstone boson, the three-

point PV function reduces to

C0(m2
1,m

2
2, 0) =


− 1

m2
1 −m2

2

ln
m2

1

m2
2

if m1 6= m2

− 1

m2
1

if m1 = m2.
(2.49)
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In the decoupling limit, taking sL → 0 in Eq. 2.48 one recovers the leading

mt-dependent contribution in the SM:

εSM
b =

m2
t

16π2v2
. (2.50)

Based on the Ward identity in Ref. [37, 38], we recognize the coefficient εb in

Eq. 2.47 is proportional to the quantity we are interested in

δgNP
L = εb − εSM

b . (2.51)

So we obtain the expression for the NP correction δgNP
L :

δgNP
L =

m2
t s

2
L

16π2v2

[
− (1 + c2

L)

+ s2
L

m2
T

m2
t

+ c2
L

2m2
T

m2
T −m2

t

ln
m2
T

m2
t

]
.

(2.52)

Note that the terms inside the bracket are the same as in Eq. 2.43.

Among all electroweak observables, three of them are related to the Zb̄b

couplings: Ab, A0,b
FB, and Rb. It is known that the asymmetries Ab and A0,b

FB

are mainly sensitive to δgNP
R , while the Rb mainly sets constraint on δgNP

L . Due

to the dominant corrections on the δgNP
L , we will make use of the observable

Rb to constrain the parameter space. The shift in Rb due to new physics is

δRb = 2Rb(1−Rb)
gLδg

NP
L + gRδg

NP
R

g2
L + g2

R

. (2.53)

The experimental value and SM theoretical value (including two loop correc-

tions) [17] is

Rexp
b = 0.21629± 0.00066

Rth
b = 0.21575± 0.00003.

(2.54)
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Figure 2.8: The allowed region from the oblique corrections S, T , and Zb̄LbL at the
95% confidence level. Below the pink dash line is the allowed region from the S, T
parameters in the pure vector-like fermion model.

Following the Ref. [42], δgNP
L is determined to be δgL = 0.0028± 0.0014.

The experimental constraints on the oblique parameters and the Zb̄b

couplings set limits on the parameter space in the model. We scan over a

large range of the parameter space, and obtain the allowed paramter region

at the 95% confidence level (CL). We find that all the parameter space on the

(ms, sϕ) in the scalar sector are allowed. This means the constraint from the
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electroweak precision data on the scalar sector is quite weak. However, only

part of the parameter space on the (mT , sL) in the top sector is allowed, as is

shown in Fig. 2.8. Since all the NP corrections are proportional to s2
L, there is

a upper limit on the sL. Fig. 2.8 shows the decoupling nature of the vector-like

fermion: as the fermion becomes heavier, there are less allowed region of the

mixing angle. The constraint from the non-universal correction to the Zbb̄

coupling is weaker than the one from the universal oblique corrections. The

tightest constraint comes from the T parameter, since the vector-like fermion

is in the singlet representation of the electroweak group, which contributes to

the custodial symmetry breaking in the model at the loop level. The dashed

line in the Fig. 2.8 shows tighter constraints in the pure vector-like fermion

model than in our model. The relaxed constraint on T parameter in our

model is due to the opposite correction from the boson loops with respect to

the fermion contribution. Therefore, the existence of the heavy scalar leads to

larger allowed parameter space.

2.3.3 Constraints from Higgs Measurements and Direct Search

There can in principle be constraint from Higgs coupling measurements,

due to the mixing angle

gNP
h;i = gSM

h;i cϕ (2.55)

wehre gh;i is some coupling involving the higgs field. It is obvious that the

constraint on the scalar mass ms will be weak. On the other hand, for cou-

plings also involving the top quark like ghtt, the mixing angle θL could also be
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constrained. However, as top does not appear in the decay channel, we can

only expect its contributions to loop process like ghγγ or ghgg may constrain

the fermion sector:

gSM
hgg =

g2
s

16π2

∑
f

gSM
hff

mf

A1/2(τf ),

gSM
hγγ =

e2

16π2

[
gSM

hWW

m2
W

A1(τW ) +
∑
f

2N f
c Q

2
f

gSM
hff

mf

A1/2(τf )

]
,

(2.56)

where the sum over f runs over t, b, s, c quarks, and τi =
4m2

i

m2
h

. Here the loop

function A1(τ) and A1/2(τ) are

A1/2(τ) = 2 τ [1 + (1− τ)f(τ)] ,

A1(τ) = −2− 3τ [1 + (2− τ)f(τ)] .
(2.57)

with

f(x) =

arcsin2[1/
√
x] , for x ≥ 1 ,

−1
4

[
ln 1+

√
1−x

1−
√

1−x − iπ
]2

, for x < 1.
(2.58)

Due to Eq 2.55, the NP couplings take the form

gNP
hgg =

g2
s

16π2

(∑
f

ghff
mf

A1/2(τf ) +
ghTT
mT

A1/2(τT )

)
,

gNP
hγγ =

e2

16π2

[
ghWW

m2
W

A1(τW ) +
∑
f

2N f
c Q

2
f

ghff
mf

A1/2(τf )

+
8

3

ghTT
mT

A1/2(τT )

]
.

(2.59)

Due to the saturated behavior of the function A1/2(τT ) for a heavy mT , the

constraint on the mT is weak. Finally the constraint is mainly on the ϕ− θL
subspace of the parameters, shown in the Fig 2.9.
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Figure 2.9: The allowed parameter region for the parameters (sϕ, sL) in the model
at the 95% CL.

There are many direct searches on the vector-like quarks which couple

predominantly to the third-generation quarks at the Tevatron and the LHC.

At the LHC, the vector-like quark could be produced in pair through QCD

production pp→ T T̄ , or be singly produced via electroweak process pp→ T b̄.

For a light vector-like fermion, the pair production cross section is larger than

the one in the single production, while for a heavy vector-like fermion the

single production is more efficient. The main decay channels of the heavy
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vector-like fermion are

T → tZ, T → bW, T → th, (2.60)

and T → tS only if the scalar is much lighter than the vector-like fermion. In

the model, the tree-level partial decay widths are given by

ΓT→bW =
s2
Lm

3
T

32πv2

(
1 +O(

m2
W

m2
T

)

)
,

ΓT→tZ =
s2
Lm

3
T

64πv2

(
(1− m2

t

m2
T

)3 +O(
m2
Z

m2
T

)

)
,

ΓT→th =
s2
Lc

2
Lc

2
ϕm

3
T

64πv2

(
1 +

5m2
t

m2
T

+O(
m2
h

m2
T

,
m4
t

m4
T

,
v2

u2
)

)
.

(2.61)

Taking the limit mT � mt,mh, the partial decay widths have the following

pattern:

ΓT→bW : ΓT→tZ : ΓT→th ' 2 : 1 : 1. (2.62)

This can be understood using Goldstone equivalence theorem [31–33].

In a recent CMS analysis [43], using the 8 TeV data collected up to

integrated luminosity of 19.5 fb−1, the up-to-dated lower limits on the mass of

the heavy fermion are set to be around 687− 782 GeV depending on different

patterns of the vector-like quark decay branching ratios. Setting the pattern

of the branching ratio as 2 : 1 : 1, we could put a limit on the vector-like

fermion mass: 696 GeV.

Regarding the direct search of the new scalar, because the heavy scalar

in this model is CP-even, the same as the SM Higgs boson, the search limits
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Figure 2.10: Exclusion plot on the parameters mT − sin θL with all current con-
straints included. The exclusion zones are on the shadow side of each line. The
allowed region is shown as the zone delimited by the tightest constraints from the
Stability and the LHC.

on the high mass Higgs boson at the Tevatron and the LHC could be used to

set constraints on the mass and couplings of the heavy scalar. The production

mechanism is similar to the Higgs boson, dominanted by the gluon fusion with

the production cross section σgg→S. The decay channels of the heavy scalar
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Figure 2.11: Exclusion plot on the parameters ms−sinϕ with all current constraints
included. The exclusion zones are on the shadow side of each line. The allowed region
is shown as the zone delimited by the tightest constraints from the Perturbativity,
the Stability (λH < 0), and the LHC.

are

S → WW, S → ZZ, S → hh, S → tt̄, (2.63)

and S → tT only if the vector-like fermion is much lighter than the scalar.

Other decay channels, such as S → γγ/gg, S → ff̄ , where f is the fermion

other than the top quark, are negligible. Similar to the vector-like fermion
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case, by Goldstone equivalence theorem we have the partial widths of decay

modes as ΓS→WW : ΓS→ZZ : ΓS→hh ' 2 : 1 : 1.

In an up-to-dated analysis from the CMS [44], the searches in S → WW

and S → ZZ decay channels are studied in the mass range between 145 GeV

and 1000 GeV. If the high mass Higgs boson has the same coupling as the SM,

the mass range between 145 GeV and 710 GeV are excluded at the 95% CL.

We convert this constraint into the limit on the heavy scalar in the model.

After calculating the production cross section and the decay branching ratios

of the heavy scalar, we perform a scan over the whole range of the parameter

space, which is shown in Fig. 2.11. It is shown that a range of the parameter

space with light scalar mass and moderate mixing angle is ruled out.

2.4 Summary of the Model

We investigated a vector-like fermion coupled to a new singlet scalar

and the third generation quarks. The singlet scalar extended the Higgs sec-

tor, through the mixing with the Higgs boson. In our setup, the mass of the

vector-like fermion is purely generated from symmetry breaking of the singlet

scalar. We carefully examined the electroweak vacuum stability and scalar

perturbativity via the renormalization group evolution of the Higgs quartic

coupling, and the scalar quartic couplings. The matching condition when in-

tegrating out heavy particles, and the relation between the running and phys-

ical parameters, were considered. Although the vector-like fermion provides

negative contributions to the running of the Higgs quartic coupling, the new
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scalar contributes positively. In the matching of the renormalization group,

the Higgs quartic coupling obtains a positive threshod shift at the scale of

the scalar mass. We performed a scan over the parameter space, and studied

the constraints from vacuum stability, perturbativity and perturbed unitarity,

together with experimental constraints from the precision electroweak observ-

ables, Higgs coupling precision measurements and the LHC direct searches. In

Fig. 2.10, and Fig. 2.11, we summarized current constraints on the parame-

ter space of the top sector (mT , sin θL) and the scalar sector (ms, sinϕ). We

observed that the instability only happens in a very small region close to the

zero mixing angle in the scalar sector, which means that the model is very

powerful in stabilizing the Higgs vacuum.
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2.5 Appendix I: Renormalization Group Equations in
SAVF model

In this section, we list the one-loop RGEs in different effective field

theories appearing in the Scalar-Assisted Vector-like-Fermion model, as used

in Chapter 2. This model includes a new vector-like fermion which has the

same quantum number as top quark except for the weak SU(2) group. The

additional scalar singlet has a Z2 symmetry, and hence only has new quartic

couplings λSH and λS.

At the scale µ > MS,MT , both the heavy scalar and the vector-like

fermion are involved in the RGE running. The gauge coupling RGEs are

dg2
1

d lnµ2
=

g4
1

(4π)2

[
41

10
+

16

15

]
,

dg2
2

d lnµ2
=

g4
2

(4π)2

[
− 19

6

]
,

dg2
3

d lnµ2
=

g4
3

(4π)2

[
− 7 +

2

3

]
,

(2.64)

where g2
1 = 5g2

Y /3 is the hypercharge gauge coupling in GUT normalisation.

The second part in the bracket is due to the presence of the top partner, which

is zero for SU(2)L because it’s a singlet under this group.
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The Yukawa coupling RGEs are

dy2
t

d lnµ2
=

y2
t

(4π)2

[
9y2

T

2
+

9y2
t

2
+

3y2
b

2
+ y2

τ −
17g2

1

20
− 9g2

2

4
− 8g2

3

]
,

dy2
b

d lnµ2
=

y2
S

(4π)2

[
3y2

t

2
+

9y2
b

2
+

3y2
T

2
+ y2

τ −
g2

1

4
− 9g2

2

4
− 8g2

3

]
,

dy2
τ

d lnµ2
=

y2
τ

(4π)2

[
3y2

t + 3y2
b + 3y2

T +
5y2

τ

2
− 9g2

1

4
− 9g2

2

4

]
,

dy2
T

d lnµ2
=

y2
T

(4π)2

[
9

2
y2
T +

9

2
y2
t +

3

2
y2
b + y2

τ +
1

4
y2
M −

17

20
g2

1 −
9

4
g2

2 − 8g2
3)

]
,

dy2
M

d lnµ2
=

y2
M

(4π)2

[
y2
T +

9

2
y2
M −

8

5
g2

1 − 8g2
3

]
.

(2.65)

If there is only the new fermion T , i.e. the region II(a), yM is not present

and should be taken as 0 in the equations for other couplings. If T is also

not involved, either in region I or II(b), one only has the first three Yukawa

couplings with yT = yM = 0 in the equations.

The RGEs in the Higgs sector are

dλH
d lnµ2

=
1

(4π)2

[
λH

(
12λH + 6y2

t + 6y2
b + 2y2

τ + 6y2
T −

9g2
1

10
− 9g2

2

2

)
+

(
1

4
λ2
SH − 3y4

t − 3y4
b − y4

τ − 3y4
T − 6y2

t y
2
T +

27g4
1

400
+

9g4
2

16
+

9g2
2g

2
1

40

)]
,

dλSH
d lnµ2

=
1

(4π)2

[
λSH(2λSH + 6λH + 3λS + 3y2

t + 3y2
b + y2

τ + 3y2
T + 3y2

M)

− λSH
(

9g2
1

20
+

9g2
2

4

)
− 6y2

Ty
2
M

]
,

dλS
d lnµ2

=
1

(4π)2

[
9λ2

S + 6y2
MλS + λ2

SH − 3y4
M

]
.

(2.66)

The latter two couplings only appear when the heavy scalar S is involved. The

absence of the heavy fermion will lead to yT = yM = 0 in the equations.
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2.6 Appendix II: Calculation of the Oblique Parameters
S, T

In this section we present the computation of the S, T parameters with

Passarino-Veltman functions [41].

2.6.1 General Formulae For Gauge Boson Self-Energy

We list the general formulae for the gauge boson self-energy functions

Πij, where i, j denote the gauge boson species. In the formulae, only the one-

point PV function A0(m2), and the two-point PV functions B0(p2,m2
1,m

2
2),

B00(p2,m2
1,m

2
2) are involved. In the calculation of the oblique parameters, all

the self-energy functions Πij and their derivatives Π′ij = dΠ
dp2

, are computed at

p2 = 0. Various contributions from fermion and scalar loops are summarized

as follows:

• Fermion Loop Contribution

Πff
ij =− Nc

16π2

[
(giLgjL + giRgjR)

(
4B00(0,m2

f1,m
2
f2)

− (m2
f1 +m2

f2)B0(0,m2
f1,m

2
f2)− A0(m2

f1)− A0(m2
f2)
)

+ 2mf1mf2(giLgjR + giRgjL)B0(0,m2
f1,m

2
f2)

]
,

Π
′ff
ij =− Nc

16π2

[
(giLgjL + giRgjR)

(
4B′00(0,m2

f1,m
2
f2)

− (m2
f1 +m2

f2)B′0(m2
f1,m

2
f2) +B0(0,m2

f1,m
2
f2)
)

+ 2mf1mf2(giLgjR + giRgjL)B′0(0,m2
f1,m

2
f2)

]
,

(2.67)

where giL and giR are the left-handed and right-handed couplings of the
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gauge boson labelled i to the fermions running in the loop, from the

vertex

f̄1γ
µ(giLPL + giRPR)f2Aµ. (2.68)

• Scalar Tadpole Contribution

Πs
ij = −gA0(m2

s), (2.69)

Π
′s
ij = 0, (2.70)

where g is the coupling strength of the s−s−V −V four-point coupling.

• Scalar Loop Contribution

Πss
ij = 4gigjB00(0,m2

s1,m
2
s2), (2.71)

Π
′ss
ij = 4gigjB

′
00(0,m2

s1,m
2
s2), (2.72)

where gi is the coupling strength of the s − s − V three-point coupling

involving gauge boson labelled i.

• Scalar-Vector Loop Contribution

Πvs
ij = −gigjB0(0,m2

v,m
2
s), (2.73)

Π
′vs
ij = −gigjB′0(0,m2

v,m
2
s), (2.74)

where gi is the coupling strength of the s− V − V three-point coupling

involving gauge boson labelled i.

45



2.6.2 The Oblique Parameters S, T

We present the contributions to the S, T from the fermion loops and

the boson loops, seperately.

2.6.3 The Fermion Loops

The T parameter is computed as

αT ≡ e2

s2
W c

2
Wm

2
Z

[Π11(0)− Π33(0)] =
ΠWW

m2
W

− ΠZZ

m2
Z

− 2sW
cW

ΠZγ

m2
Z

, (2.75)

where for fermion loops the last term on the right-hand side does not con-

tribute. In the SM, the fermion contributions mainly come from the third

generation quarks:

ΠSM
WW = Πtb,SM

WW , (2.76)

ΠSM
ZZ = Πtt,SM

ZZ + Πbb,SM
ZZ . (2.77)

In our model, there are new contributions from the vector-like fermion T :

ΠWW = Πtb
WW + ΠTb

WW , (2.78)

ΠZZ = Πtt
ZZ + 2ΠtT

ZZ + ΠTT
ZZ + Πbb,SM

ZZ . (2.79)

Subtracting the SM contribution, the NP correction on the parameter T from

the fermion loops can be obtained

∆TF =
1

α

[ 1

m2
W

(
Πtb
WW + ΠTb

WW − Πtb,SM
WW

)
− 1

m2
Z

(
Πtt
ZZ + 2ΠtT

ZZ + ΠTT
ZZ − Πtt,SM

ZZ

) ]
.

(2.80)
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The S parameter is defined as

S = 16π
(
Π′33 − Π′3γ

)
. (2.81)

In the SM, the fermion contributions are

Π′SM33 = Π′tt,SM33 + Π′bb,SM33 , (2.82)

Π′SM3γ = Π′tt,SM3γ + Π′bb,SM3γ . (2.83)

while the new model gives

Π′SM33 = Π′tt33 + 2Π′tT33 + Π′TT33 + Π′bb,SM33 , (2.84)

Π′SM3γ = Π′tt3γ + 2Π′tT3γ + Π′TT3γ + Π′bb,SM3γ . (2.85)

Therefore the NP correction on the parameter S from the fermion loops is

∆SF = 16π
[(

Π′tt33 + 2Π′tT33 + Π′TT33 − Π′tt,SM33

)
−
(

Π′tt3γ + 2Π′tT3γ + Π′TT3γ − Π′tt,SM3γ

)]
.

(2.86)

2.6.4 The Boson Loops

To compute the boson contributions, it is convenient to split them into

the gauge parts (T̃v, S̃v) and the scalar parts (T̃s, S̃s):

TS = T̃v + T̃s, SS = S̃v + S̃s, (2.87)

where the tilde indicates there are divergences in each part (T̃ , S̃), while the

total boson constributions to (TS, SS) are convergent. The gauge parts consist

of the contributions from the W/Z loops, the ghost loops and the Goldstone
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loops, which are not altered in our model. So the gauge parts will not con-

tribute to ∆TS and ∆SS in our model. The scalar parts (T̃s, S̃s) consist of all

the loops that involve the Higgs boson, or any new real scalars that mix with

the Higgs boson. In the following, we will only consider the contributions to

the ∆TS and ∆SS from the scalar parts.

In the SM, the self-energy functions involving the Higgs boson are

ΠSM
WW =

1

2
Πh,SM
WW + ΠhW,SM

WW + Πhπ±,SM
WW , (2.88)

ΠSM
ZZ =

1

2
Πh,SM
ZZ + ΠhZ,SM

ZZ + Πhπ0,SM
ZZ , (2.89)

while there is no Higgs boson contribution in the two-point function ΠZγ .

Inserting the above self-energy functions back to T parameter definition, due to

the cancellation between the first terms in the W and Z self-energy functions,

we obtain the scalar part T̃ SMs

T̃ SMs =
1

α

[ΠhW,SM
WW + Πhπ±,SM

WW

m2
W

− ΠhZ,SM
ZZ + Πhπ0,SM

ZZ

m2
Z

]
, (2.90)

=
3

16πc2
W

∆ + Ts(mh), (2.91)

where ∆ is the divergent term ∆ = 2
4−d −γ+ ln 4πµ2 in the MS scheme. Here

the finite part is written as a function of the scalar mass m

Ts(m) = − 3

16πc2
W

[
− 5

6
+

1

(m2 −m2
Z)(m2 −m2

W )
×(

m4 logm2 − (m2 −m2
W )m2

Z

s2
W

logm2
Z +

c2
W (m2 −m2

Z)m2
W

s2
W

logm2
W

)]
.

(2.92)

The calculation is done in the MS scheme, without loss of generality.
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In our model, the self-energy functions involving the Higgs boson and

the new scalar are

ΠWW =
1

2
(Πh

WW + ΠS
WW ) + (ΠhW

WW + ΠSW
WW ) + (Πhπ±

WW + ΠSπ±

WW ), (2.93)

ΠZZ =
1

2
(Πh

ZZ + ΠS
ZZ) + (ΠhZ

ZZ + ΠSZ
ZZ) + (Πhπ0

ZZ + Πhπ0

ZZ ). (2.94)

Note that the first terms do not contribute to the T parameter, as in the SM.

Similarly, we obtain the scalar part T̃s

T̃s =
1

α

[ΠhW
WW + Πhπ±

WW

m2
W

− ΠhZ
ZZ + Πhπ0

ZZ

m2
Z

]
+

1

α

[ΠSW
WW + ΠSπ±

WW

m2
W

− ΠSZ
ZZ + ΠSπ0

ZZ

m2
Z

]
(2.95)

= c2
ϕ

(
3∆

16πc2
W

+ Ts(mh)

)
+ s2

ϕ

(
3∆

16πc2
W

+ Ts(mS)

)
(2.96)

=
3∆

16πc2
W

+ c2
ϕTs(mh) + s2

ϕTs(mS), (2.97)

where the divergent part is the same as the SM as expected. As the new

scalar only contribute to the part T̃s via mixing with the SM Higgs, common

factors sϕ and cϕ could be extracted, leaving a SM-like T̃s(m). Hence the

function Ts(m) can be used to obtain a concise form for the T̃s in our model.

Subtracting the SM contribution T̃ SMs in Eq. 2.91, we get a finite and very

concise result for ∆TS

∆TS = ∆T̃s = s2
ϕ

[
Ts(mS)− Ts(mh)

]
, (2.98)

The S parameter can be defined in an alternative way using the hyper-

chage Y ,

S ≡ −16πΠ′3Y , (2.99)
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which reduces a lot of work for boson contributions. The Higgs dependent

part S̃s in the SM is

S̃SMs = −16π
(

Π′hZ,SM3Y + Π′hπ
0,SM

3Y

)
(2.100)

= − 1

12π
∆ + Ss(mh), (2.101)

where

Ss(m) =
1

12π

[
lnm2 − 5

6
− (4m2 + 6m2

Z)m2
Z

(m2 −m2
Z)2

+
(9m2 +m2

Z)m4
Z

(m2 −m2
Z)3

ln
m2

m2
Z

]
.

(2.102)

For the same reason as in TS calculation, when we turn to the new model, it

has a very concise form

S̃s = c2
ϕ

(
− ∆

12π
+ Ss(mh)

)
+ s2

ϕ

(
− ∆

12π
+ Ss(mS)

)
(2.103)

= − ∆

12π
+ c2

ϕSs(mh) + s2
ϕSs(mS), (2.104)

and similarly

∆SS = ∆S̃s = s2
ϕ

[
Ss(mS)− Ss(mh)

]
. (2.105)
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Chapter 3

Electroweak Baryogenesis

The baryonic matter that remains after the baryon-antibaryon annihi-

lation, makes up around 5% of the total energy density of the universe. It is

puzzling that the universe does not have equal amounts of matter and anti-

matter. We can characterize the asymmetry between matter and antimatter

in terms of the baryon-to-photon ratio

η ≡ nB
nγ
, (3.1)

where nB = nb − nb̄ is the difference between the number density of baryons

and antibaryons, and nγ is the number density of photon. The nγ is introduced

to prevent the parameters η from diluting during the expansion of the universe

after nucleosynthesis. The baryonic matter desity nB at present time has been

consistently measured by the big bang nucleosynthesis and the fluctuations

of the cosmic microwave background. The Planck result for the cosmological

density parameter [45]

ΩBh
2 = 0.02226± 0.00016, (3.2)

This chapter is based on my previous work [2] with J. -H. Yu, in which we had equal
contributions.
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translates to the baryon-to-photon ratio

η = (6.05± 0.07)× 10−10. (3.3)

Explaining the observed baryon asymmetry has been one of the great-

est challenges of particle physics and cosmology. As the entropy production

during inflation could greatly dilute and thus wash out any existing baryon

asymmetry, it is reasonable to assume a zero baryon number density after

the inflation. Later, the asymmetry is generated dynamically through the so-

called ”baryogenesis”. It has been suggested by Sakharov [46] long time ago

that the general baryogenesis has three necessary conditions: baryon number

violation, sufficient C and CP violation, and departure from thermal equilib-

rium. Hence, we look forward to a mechanism in which these three conditions

are satisfied and could provide the observed baryon asymmetry.

Electroweak baryogenesis [47–49] (EWBG) offers a theoretically at-

tractive and experimentally testable mechanism to realize baryogenesis. The

great attraction of this mechanism is that the baryogenesis took place at or

near the electroweak scale, suggesting that it might be probed in the near

future by experiments at the accelerators. The EWBG proceeds as follows

(see [50–55] for reviews). At temperatures far above the electroweak scale,

the electroweak symmetry is manifest, which implied a high sphaleron rate

that preserves baryon symmetry in thermal equilibrium. As the universe cools

down to near the electroweak phase transition scale, bubbles of the symmetry-

broken vacuum began to emerge and grow. CP violating processes involving
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the electroweak sector were triggered at the expanding wall of the bubbles,

leaving baryons inside the bubbles and antibaryons outside. Through the

rapid sphaleron transitions in the unbroken phase, the excess of antibaryons

are washed out. Meanwhile, if the sphaleron rate in the broken phase could

be suppressed enough, the excess of baryons inside the bubbles could survive.

We can easily realize a Boltzmann suppression of the sphaleron rate, because

the sphaleron has an excitation energy Esph that is related to the Higgs VEV

v. It has been shown [56] that the suppression is strong enough when

Esph/Tc ≥ 45, (3.4)

which serves as the condition for a strong first-order phase transition in the

context of electroweak baryogenesis.

The standard model (SM) contains all the necessary ingredients to re-

alize electroweak baryogenesis: baryon number is violated by sphaleron pro-

cesses; CP violation comes from the Cabbibo-Kobayashi-Maskawa (CKM) ma-

trix; departure from equilibrium is realized by the bubble nucleation and ex-

pansion during the first-order electroweak phase transition (EWPT). However,

given the observed Higgs boson mass MH = 125 GeV, the EWPT is not strong

enough to suppress the sphaleron rate inside the bubbles [57]. Also, the CP

violation in the CKM matrix is not large enough to generate the expected

asymmetry. Therefore a successful electroweak baryogenesis needs new physics

beyond the Standard Model. The new physics should provide new sources of

CP violation that can be manifested by the advancing bubble walls, and also
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provide strong enough first order EWPT. Both conditions require the exis-

tence of new physics at around the electroweak scale that directly couples to

the SM Higgs sector. A simple and economic way to realize the strong first

order EWPT is to add a new scalar which couples to the Higgs boson, such

as the singlet extended standard model, etc [58–66]. Moreover, if the scalar

is a real singlet [62, 66], the cubic terms could exist in the potential at tree-

level, and therefore the phase transition gets stronger without the need of the

thermally induced barrier.

In the work [2], we use the SAVF model without Z2 symmetry for the

scalar S to study the electroweak baryogenesis. The vector-like fermion in the

model is supposed to extend the 3× 3 CKM matrix to a 3× 4 matrix, which

provides additional sources of CP violation. Due to the coupling between

Higgs and the new scalar, the phase transition occurs in an extended scalar

space, which leads to more possibilities. We will discuss the scalar potential in

detail, and investigate how the extended scalar sector provides us the strong

first order EWPT. Furthermore, we classify the phase transition patterns and

explore the parameter preferences in each pattern using the shape of the zero-

derivative curves of the scalar potential.

3.1 CP Violation from Vector-like Fermion

In the SM, the CP violation is characterized by the quark-rephasing

invariant quantity, the Jarlskog invariant [67]

JCP = (m2
t −m2

c)(m
2
t −m2

u)(m
2
c−m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s−m2

d)A, (3.5)
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where

A = ImVudVcbV
∗
ubV

∗
cd (3.6)

is twice the area of the unitarity triangle of the CKM matrix. As the SM CKM

matrix only has 1 independent CP phase, the three unitarity conditions give

the same area, which is the only CP violating source. This quantity can also

be written as [68]

JCP = − i
2

det[Hu, Hd], (3.7)

where Hu = MuM
†
u and Hd = MdM

†
d are the building blocks of rephasing

invariants. In the picture of electroweak baryogenesis, this quantity provides

a dimensionless CP violation strength JCP/T
12
c ∼ 10−20, which is too small

compared to the typical strength of Baryogenesis η ∼ 10−10. We observe that

both the fermion masses and the unitarity triangle A suppress the CP viola-

tion. One resolution is to add more massive fermions and extend the unitarity

triangle to polygon with larger area. However, the most simple extension,

hence the 4th generation model, is ruled out by the experiment data [18, 19].

Our hope would be to get larger CP violation from the new vector-like fermion

in our model.

Despite the tight constraints on the flavor mixing between the new

vector-like fermion and the first two generations, these mixings are still essen-

tial for the new CP violation. If we consider the three families of the quarks in

the SM, the Yukawa couplings yt and yT becomes matrix Y u
ij and vector Y ′i in
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the flavor space. With explicit flavor indices, the Yukawa Lagrangian becomes

LYuk = −Y d
ijQLiΦ dRj − Y u

ijQLiΦ̃uRj

− Y ′iQLiΦ̃UR − yssULUR −MULUR + h.c.
(3.8)

The mass term of the fermion sector is

Lmass = −
(
uLi UL

)(vY u
ij vY ′i

0 M + ysu

)(
ujR
UR

)
− vY d

ijdLid
j
R + h.c.. (3.9)

Hereafter we identify

Mu
IJ =

(
vY u

ij vY ′i
0 M + ysu

)
, Md

ij = vY d
ij , (3.10)

where I and J run over 1 to 4.

It was investigated that in the vector-like bottom partner model [69],

the CP violation is characterized by 7 Jarlskog-like invariants (J-invariants).

The top partner model should be similar. In the simple case of chiral limit

mu = md = ms = mc = 0, only one of them is independent:

J = Im Tr(HdHuhuh
†
u)

= m2
bm

2
Tm

2
t (m

2
T −m2

t )B2,
(3.11)

where B2 is the only rephrasing invariant constructed from the new CKM

matrix that is non-vanishing in this chiral limit.

To estimate the strength of CP violation in our model, we need to look

at the experimental constraints on the heavy fermion mass and the extended

CKM matrix elements. We will show later that the heavy fermion mass would

be around TeV scale. For the latter, current experiments on flavor physics,
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such as K and B decay and B−B̄ mixing were analyzed in the literature[70, 71]

by performing a global fitting on the 4 × 3 CKM matrix elements using 68

flavor physics observables [71]. The analysis includes the direct measurements

of the CKM elements, CP violation in KL → ππ, branching fraction of the

decay K+ → π+νν̄, branching fraction of the decay KL → µ+µ−, Z → bb̄

decay, B0
q − B̄0

q mixing (q = d, s), indirect CP violation in B0
d → J/ψKS

and B0
s → J/ψφ, CKM angle γ, branching ratio of B → Xs`

+`− (` = e, µ),

branching ratio of B → Xsγ, branching ratio of B → Kµ+µ−, constraints

from B → K∗µ+µ−, branching ratio of B+ → π+µ+µ−, branching ratio of

Bq → µ+µ− (q = s, d), branching ratio of B → τ ν̄, like-sign dimuon charge

asymmetry AbSL, and finally the oblique parameters S and T . The results

of the global fitting are shown in Table 5 and 6 of Ref. [71] for mT = 800

GeV and 1200 GeV. The results suggest that B2 could be as large as 10−6

for a TeV top partner. More importantly, the enhancement from the heavy

top quark mass implies a J-invariant of order J ≤ 1011GeV8. Assuming that

the typical energy scale during the baryogenesis is the critical temperature of

EW phase transition Tc, the dimensionless CP violation strength formulated

as J/T 8
c needs to be greater than the observed baryon number asymmetry.

J

T 8
c

≥ η ∼ 10−10, (3.12)

which sets an upper bound for the critical temperature Tc ≤ 420TeV.1

1It is argued that the W massmW is another typical energy scale, and it should contribute
several powers in the denominator in the expression of dimensionless CP violation strength.
In that case, the upper bound could be pushed higher to TeV scale.
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3.2 First Order Phase Transition

3.2.1 Finite Temperature Scalar Potential

To study the phase transition, we consider the scalar potential at finite

temperature (see Ref. [52] for review). Starting from the zero temperature

one-loop order Coleman-Weinberg potential Eq 2.16, with the field dependent

masses Mi(H,S) defined in Appendix 3.5. Additional counter-terms are in-

troduced to preserve the definition of input parameters in the formula

∂(VCW + VCT)

∂φi

∣∣∣
φi=〈φi〉

= 0, (3.13)

∂2(VCW + VCT)

∂φi∂φj

∣∣∣
φi=〈φi〉

=M2
ij, (3.14)

where φi = φ, S and m2
ij are elements of the non-Z2 extension of the tree level

mass squared matrix defined in Eq. 2.9:

M2
s ≡

(
m2
φφ m2

φS

m2
Sφ m2

SS

)
=

(
2λHv

2 µSHv + λSHuv

µSHv + λSHuv 2λSu
2 + µ3u− µSφv

2

2u

)
. (3.15)

Note that the above conditions need additional care for massless fields. For

example, the Goldstone boson contribution to the scalar masses in Eq. 3.14 is

infrared log-divergent due to its zero pole mass. This indicates that renormal-

izing the scalar potential at zero external momenta is not a well-defined pro-

cedure. An alternative on-shell renormalization procedure was proposed [59,

72, 73] to cure the problem. Here we list the final expression of the zero
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temperature one-loop effective potential:

V on−shell
CW (φ, S) = Vtree(φ, S) + STri 6=G

[M4
i (φ, S)

64π2

(
log
M2

i (φ, S)

M2
i (v, u)

− 2

3

)
+ 2M2

i (v, u)M2
i (φ, S)

]
+

3

64π2
M4

G(φ, s) log
M2

G(v, u)

M2
h

.

(3.16)

The one-loop thermal corrections at temperature T is

Vthermal(φ, S, T ) =
∑
i

niT
4

2π2
JB,F

(M2
i (φ, S)

T 2

)
, (3.17)

where

JB,F(y) =

∫ ∞
0

dxx2 log
[
1∓ e−

√
x2+y

]
. (3.18)

with the sign − for bosons and + for fermions.

On the other hand, to understand the dominant contributions at the

high temperature, it is also useful to expand the thermal functions JB,F in the

high temperature regime. At high temperature limit, the thermal corrections

can be expanded as

Vthermal(φ, s, T ) '
∑
i=B,F

(
ni
ciπ

2

90
T 4 +

|ni|
24(1 + δiF)

M2
i (φ, s)T

2

− ni
64π2

M4
i (φ, s) log

M2
i (φ, s)

aiT 2

)
−
∑
j=B

ni
12π

[
M2

i (φ, s)
]3/2

T,

(3.19)

where δiF = 0 for bosons and 1 for fermions, and the coefficients cB = −1 for

bosons and cF = 7
8

for fermions, aB = 16π2 exp(3/2 − 2γE) for bosons and

aF = π2 exp(3/2− 2γE) for fermions.
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The finite-temperature potential needs to be corrected, due to the in-

frared divergences, generated by bosonic long-range fluctuations called Mat-

subara zero modes. The dominant contribution2 arises from the ring diagrams,

which include the quadratic divergences going like T 2. This can be solved

schematically by resumming over all diagrams with bubbles attached to the

big loop [74–76]. This leads to a shift of the bosonic field-dependent masses

m2
i (φ, s) to the thermal field-dependent masses

M2
i (φ, s, T ) ≡M2

i (φ, s) + Πi(T ), (3.20)

where the thermal shifts Πi are defined in Appendix 3.5. After resummation,

the ring-diagram contribution to the effective potential reads

Vring = − T

12π

∑
i=B

ni

([
M2

i (φ, S, T )
]3/2 − [M2

i (φ, S)
]3/2)

. (3.21)

It gives the last term in Eq. 3.19 a temperature dependence which is crucial

for the analysis of the phase transition in the SM.

In the SM, this cubic term is the only source to induce a thermal

barrier between a symmetric minimum and a symmetry-broken minimum in

the effective potential. It was because that all the other terms in SM Higgs

sector are quadratic or quartic, which can’t create such degenerate minima

in one-dimensional space. However, in our model, as shown later, the new

dimension in the scalar space greatly enriches the possibility, and hence the

ring diagram contribution is much less important.

2There are subtleties about the sub-dominant contributions [52].
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The total effective potential at finite temperature is the sum of the

above terms

Veff(φ, S, T ) = V on−shell
CW (φ, S) + Vthermal(φ, S, T ) + Vring(φ, S, T ). (3.22)

For part of the field space, the field-dependent masses of the scalars and the

Goldstone bosons can be negative, and the non-convexity of the potential

would induce an imagenery part that indicates a vacuum decay rate per unit

volume. However, the real part can still be interpreted as the expectation value

of the energy density. Therefore we only take the real part of the potential to

do the analysis.

3.2.2 Approximations

Before we do numerical scan over the parameter space, we want to get

a flavor of how the potential behaves when the temperature varies, and some

general features of a first order phase transition.

First, we try to examine the potential using high temperature approxi-

mation. This approximation is actually not quite valid at the phase transition

temperature, which is usually not very high. Using the high temperature

expression Eq 3.19, we get from Eq 3.22

Veff(φ, s, T ) ' Vtree +
T

12π

∑
i=B

ni
[
M2

i (φ, S, T )
]3/2

+
∑
i=B,F

|ni|
24(1 + δiF)

M2
i (φ, S)T 2

−
∑
i=B,F

ni
64π2

(
M4

i (φ, S) log
M2

i (v, u)

a′iT
2
− 2M2

i (v, u)M2
i (φ, S)

)
.

(3.23)

61



The second line with loop factor can be neglected as further approximation,

while the log T dependence can be absorbed into the running couplings which

also don’t have large effect within the energy range of interest. The T 2 term

is the main effect from thermal correction, and the |ni| factor means that

both bosonic and fermionic fields contribute positively to the mass squared

functions. The subleading T 3/2 term is hard to deal with, because it’s the

only place where cubic term can appear in the SM, so naive expansion in high

temperature would hide the phase transition feature of the potential.

We argue that with non-Z2 extended field space {φ, S}, since we have

tree level cubic term, the cubic term from ring diagram will be subleading in

general. Thus further approximation can be taken to expand the ring diagram

term in high temperature, and the leading feature of first order phase transition

could still be studied. Hence after the expansion we get

Veff(φ, S, T ) ' V0 +
∑
i=B

nici
8π

m2
i (φ, S)T 2 +

∑
i=B,F

|ni|
24(1 + δiF)

m2
i (φ, S)T 2 + δ(T ),

(3.24)

where V0 is the zero-temperature potential, δ(T ) is the T 4 order vacuum-

independent energy density term. ci are coefficients in the thermal masses

Πi. Assuming ci ∼ 1, we see that the ring contribution is roughly at the

same order as the original T 2 contribution. Finally we get the approximated

finite-temperature potential

Veff(φ, S, T ) ' V0 + T 2
[
AS +Bφ2 + CS2

]
, (3.25)
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where

A =
1

12
[4µSφ + 2µ3] ,

B =
1

12

[
(6λH + λSH/2) +

1

4
(3g2

2 + g2
1) +

2

3
(y2
t + y2

T )),

]
,

C =
1

12

[
(3λS + 2λSH)− 3y2

M

]
.

(3.26)

One thing obvious from this form of potential is the high temperature field

values. φ must be in the symmetric phase φT→∞ = 0 due to the dominant

positive quadratic term, and ST→∞ ∼ − A
2C

in terms of high temperature values

of the couplings.

Note that there is no leading order modifications of the cubic potential

term. If we neglect subleading corrections, we can roughly estimate the first

order phase transition in the polar coordinate in the field space at the transition

temperature Tc

ρ =
√
φ2 + (s− us)2, tanα =

s− us
φ

, (3.27)

where us is the VEV of S at the symmetric phase. Suppose the symmetry-

broken phase is at vc, ub, which in polar coordinates is (ρ̄, ᾱ), so that

tan ᾱ =
ub − us
vc

(3.28)

Along this direction, the potential should have degenerate minima, which takes

the general form

Veff(ρ, T ) ' 1

2
D(T 2 − T 2

0 )ρ2 + Eρ3 +
λ

4
ρ4 =

λ

4
ρ2(ρ− ρ̄2). (3.29)
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with coefficients D, T0, E and λ depending on coefficients in Eq 3.25 and the

angle ᾱ. The broken phase is solved as

ρ̄ = −2E
λ
, T 2

c = T 2
0 +

8E2

λD
(3.30)

with our interesting parameter given by vc = ρ̄ cos ᾱ. Note that only negative

E could lead to degenerate phases. The parameters are

D = 2(B + C),

E = sα
[
(µSH + λSHus)c

2
α/2 + (µ3/3 + λSus)s

2
α

]
,

λ = λHc
4
α + λSs

4
α + λSHc

2
αs

2
α,

(3.31)

with sα ≡ sin ᾱ, cα ≡ cos ᾱ. In the next section, we will use these expressions

of the coefficients to analyse the parameter preferences in light of the strong

first order phase transition.

3.2.3 Numerical Scan

Once we obtain the full effective potential, we could investigate how

the vacuum state evolves with temperature. At each temperature, we find

the true vacuum by looking for the global minimum of the potential in the

(φ, S) field space. It is known that at zero temperature, the global minimum

of the scalar potential is at (v0, u0), with v0 = 246 GeV and u0 as an input

parameter. After we turn on and increase the temperature, we track the

position of the global minimum, seeking the sign of a phase transition. In the

context of effective potential, the fields are defined to be the first derivative

of the free energy with respect to the corresponding particle source, and thus
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acts like an order parameter of the phase transition. If the transition of the

field values between the two phases is continuous, it is a second order phase

transition. Otherwise, if there is a discontinuous variation of the fields, it

is a first order phase transition. The first order phase transition proceeds by

bubble nucleation of the broken phase at around the critical temperature. The

bubbles grow and coalesce, and finally turn the whole universe into the broken

phase.

As discussed in the introduction, to have successful baryogenesis, it is

essential to have a strong enough first order phase transition, so thatEsph(Tc)/Tc ≥

45 inside the bubbles. It has been shown in literature [61] that for a singlet

extended model the sphaleron energy is approximately proportional to the φ

vev: Esph(Tc) ∝ vc. Moreoever, the bubble expansion and wall velocity in the

singlet extended model have been discussed in Ref. [77]. In our model there is

a similar scalar sector. Thus the discussions about the bubble expansion and

sphaleron process in literatures also applied to our model. Therefore, similar

to singlet extended model, we add the following criterion to our scan to pick

out the events with strong FOPT:

ξ ≡ vc
Tc
≥ 1. (3.32)

To determine the parameter region in which the strong first order phase

transition could happen, we perform a random scan over the parameter space.

The procedure is the following. We have quite a few independent parameters

λS, λSH , µ3, µSH , M, yT , yM , (3.33)
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in addition to the singlet vev u0 in the zero temperature. M is the dirac mass

for the vector-like fermion ψ. The parameters λH and yt are determined by

the Higgs mass and the top quark mass that are already known. We choose

the input parameters from the ranges

|λsφ| ≤ 1.5, 0 < λs ≤ 2, |yT | ≤ 1.5, |ys| ≤ 1.5,

|u0| ≤ 600, |µ3| ≤ 800, |µsφ| ≤ 1000, 0 ≤M ≤ 1200.
(3.34)

Given the input parameters, the full effective potential in the field space is cal-

culated. Then for each temperature, we utilize the MINUIT subroutine [78]

to find the global minimum of the effective potential. As the temperature

increases, we track the change of the global minimum at each step in our nu-

merical scan. Additional care should be taken: if the minimum moves to very

large field values, it may indicates vacuum instability. If the global minimum

becomes the symmetric one (0, 〈s〉) at certain temperature, we perform a fine

scan near the temperature until we find the critical temperature Tc and the

corresponding vevs (vc, ub) in the broken phase. After obtaining the Tc and

vc, we use the washout condition to pick out the strong first order phase tran-

sition, eliminating the data points that has ξ < 1. We randomly scan 106

parameter points, among which 25818 parameter points pass all the require-

ments. Figure 3.1 shows the distribution of the successive data points in the

Tc − vc plane. From the figure we notice that for the parameter region we

scanned, the critical temperature is typically less than 200 GeV, while vc is

smaller than its zero-temperature value vc > v0 = 246 GeV. The higher the

critical temperature is, the smaller the φ VEV gets to before the transition,
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and this correlation is clearly shown in the figure. Furthermore, this range of

critical temperature is quite safe from the bound of the CP violation strength

that we discussed in Sec.3.1.
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Figure 3.1: The allowed value of the critical temperature Tc versus the φ vev vc at
the critical temperature from a random scan over the parameter space.

3.3 Analysis of Results

I will list a few important feature from the scan results. For more

detailed analysis please refer to [2].
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3.3.1 Transition Pattern

We are interested in the evolution of ground states during the cooling of

the universe, especially around the phase transition temperature. The easiest

way to investigate this is to look at the field values at some key points, i.e.

the zero-temperature values (v0, u0), slightly lower than critical temperature

(broken phase) values (vc, ub) and slightly higher than critical temperature

(symmetric phase) (0, us). For field φ, the only unknown vc is already shown

in Fig. 3.1. Thus we show the correlation between (us, ub) and (ub, u0) in

Fig. 3.2
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Figure 3.2: The allowed value of the contour (us, ub) (left) and (ub, u0) (right) from
a random scan over the parameter space.

From the (us, ub) histogram, it is easy to distinguish several distinct

patterns:

• Pattern I: us ∼ 0. It corresponds to the bright greenish line-shape region

at the center and its surrounding blue region. Surprisingly, although
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there is no Z2 symmetry for the field S, it is still preferred to take 0

value right after the phase transition, even though its high temperature

limit − A
2C

we found earlier is obviously nonzero. It is due to the fact

that we didn’t include a linear term in S in the Lagrangian, which sets

the definition of S with respect to shifting. This vanishing linear term

guarantees that there is one extremum for S at S = 0. In the case when

Veff(0, S) only has one extremum, i.e. S = 0, it must be a minimum, and

it is the symmetric phase in this pattern. The case when Veff(0, S) has

three extrema will be discussed in the next pattern. If we look at the

parameter E in this case, since us ∼ 0, it has very simple form

EI =
1

2
µSHsαc

2
α (3.35)

Thus to get stronger FOPT, large µSH is prefered, and sα would have

opposite sign than µSH . This preference can be understood because µSH

is a tree-level cubic term, which is essential for getting FOPT. But the

key point here is that µ3 does not matter in this pattern – from the scan,

we found that µ3 prefers small values. In Fig. 3.3 we show the histogram

of the cubic couplings for u0 > 0, while the case with u0 < 0 should be

symmetric with this distribution.

• Pattern II: us 6= 0. It is usually the case when there are three extrema

for Veff(0, S). According to the way we scan the parameter space, it

is easy to see that it is most likely to have a positive and a negative

extrema besides the S = 0 one, and thus the S = 0 is a local maxi-
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Figure 3.3: In the pattern I with u0 > 0, the allowed values of the cubic couplings
µsφ, µ3 are shown.

mum. Therefore, without large changes due to temperature, we would

expect the symmetric phase to appear at an extremum other than S ∼ 0,

thus distinguished from pattern I. In this pattern, there are very strong

correlation between u0, ub and us, as indicated from Fig. 3.2.

Aside from the same preference of large µSH in pattern I, it turns out

that a µ3 with opposite sign than u0 is strongly prefered. It is because us,

being correlated with u0 and having the same sign, is a lower minimum

than the other minimum with opposite sign, which is controlled by the

sign of µ3. In Fig. 3.4 we show the histogram of the cubic couplings for

u0 > 0.

• Pattern III. This pattern includes all the other cases, represented by the

points scattered away from the mainstream in Fig.3.1 and Fig.3.2. The

number of events in this pattern is relatively few. These cases include

unusual situations when transition happens between uncorrelated u val-
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Figure 3.4: In the pattern II with u0 > 0, the allowed values of the model parame-
ters µsφ, µ3 are shown.

ues (inter-branch transition) or there are multiple transitions processes

(multi-step transitions). As they seem to have less probability, and un-

typical parameters may be allowed, we are not interested in them here.

For more details please refer to [2].

3.3.2 Prefered Physical Parameters and Constraints

We would also like to see what region of physical parameters are pref-

ered by the electroweak FOPT. In Figure 3.5, we present the two dimensional

contours of the physical parameters (mS, sα) in the scalar sector, and those

of (mT , sin θ) in the fermion sector. It is shown that the scalar with its mass

around 500 - 1000 GeV and a medium mixing angle is favored. We recognized

the feature that small mixing angle are disfavored, as expected from the fact

that the scalar needs to couple with the Higgs boson to render strong first

order phase transition. This favored region is compatible with that allowed
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Figure 3.5: The allowed parameter contour (mS , sinϕ) (left) and (mT , sin θL)
(right) in light of the strong first order phase transition. The constraints from
the S, T parameters, Higgs coupling measurements, and direct LHC searches are
shown as the exclusion lines.

by vacuum stability criteria [1]. Unlike the scalar mixing angle, the fermionic

mixing angle can be very small, which indicates the decoupling between the

new fermion and the phase transition criteria.

The curves with different colors represent various constraints from the

experiments, as discussed in Chapter 2. We note that although the large

mixing in fermion sector is completely ruled out by LHC search, the most

populated region is still alive. Ths scalar sector, however, is not so lucky, as the

strong preference on large mixing angle (stronger than the stability constraint

studied in Chapter 2) is significantly constrained by the experiments.
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3.4 Conclusions

We investigated the necessary conditions to realize the electroweak

baryogenesis in a SAVF model. In the fermion sector, the extended CKM

matrix provides additional sources of the CP violation effects, parametrized

by Jarlskog-like invariant. We found that the CP violation rate is greatly en-

hanced by the heavy mass of the new fermion. With the flavor constraints on

the extended 4 × 3 CKM matrix considered, we estimated the CP violation

strength, which turns out to be adequate for the baryon number asymmetry.

We focused on the one-loop, finite-temperature effective potential in

our model and its implications on the electroweak phase transition. Unlike

the case of the SM, the new scalar extends the field space in which the phase

transition occurs. In the two-dimensional field space, we have more possible

ways of constructing barriers between minima. Specifically, the cubic term

essetial for the FOPT can be generated at tree level, greatly enhancing the

strength of the phase transition.

We performed a parameter scan over the 8 independent model parame-

ters, and obtained the allowed parameter region which could have strong first

order phase transition. According to the different regions in the (ub, us) con-

tour at the critical temperature, transition patterns are classified into different

patterns. Large trilinear mass term µsφ is usually favored because the width

of the barrier is strongly related to it.

Finally we combine the constraints from strong first order phase transi-
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tion and the experimental limits on the S, T parameters, Higgs coupling mea-

surements, and direct LHC searches, in order to examine the allowed region for

physical parameters. We found that there is still a significant amount of pa-

rameter region for the fermion mass and couplings to satisfy all the constraints,

and have adequate CP violation strength to realize the baryon asymmetry at

the same time. The new scalar with mass around 500 - 1100 GeV and mixing

angle sinϕ around 0.25− 0.42 are still allowed and favored by the strong first

order phase transition.

We expect that the future Higgs data could explore the parameter

region on the (mS, sinϕ) contour. We should also be able to explore the scalar

trilinear coupling λsφ and λφ at the high luminosity LHC. If the trilinear

couplings are enhanced compared to the SM Higgs self-coupling, the Higgs

pair production cross section should be larger than the SM value. Through

the Higgs pair production process pp → h/S → hh, we could extract out the

trilinear couplings from the production cross section measurements.
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3.5 Appendix: Details of Coleman-Weinberg Potential

In effective potential, the particles running in the loop are the particles

in the model with the following degrees of freedom in the Landau gauge:

nW = 6, nZ = 3, nπ = 3, nh = nS = 1, nt = −12, nT = −12. (3.36)

The field-dependent masses of the top quark, gauge bosons and Goldstone

bosons at zero temperature are given by

m2
W (φ) =

g2

4
φ2, m2

Z(φ) =
g2 + g′2

4
φ2,

m2
π(φ, s) = λφφ

2 − µ2
φ +

1

2
λsφs

2 + µsφs.

(3.37)

The field-dependent masses of the scalars h and S are obtained as

m2
h,S(φ, s) =

1

2

(
m2
φφ(φ, s) +m2

ss(φ, s)
)
∓ 1

2

√(
m2
φφ(φ, s)−m2

ss(φ, s)
)2

+ 4m4
sφ(φ, s),

(3.38)

where the field-dependent quantities are

m2
φφ(φ, s) = 3λφφ

2 − µ2
φ +

λsφ
2
s2 + µsφs,

m2
sφ(φ, s) = m2

φs(φ, s) = (λsφs+ µsφ)φ,

m2
ss(φ, s) = 3λss

2 + 2µ3s− µ2
s +

λsφ
2
φ2.

(3.39)

The field-dependent masses of the top quark and heavy vector-like top quark

T are obtained as

m2
t,T (φ, s) =

1

2

(
m2
tt(φ, s) +m2

TT (φ, s)
)
∓ 1

2

√
(m2

tt(φ, s)−m2
TT (φ, s))

2
+ 4m4

tT (φ, s),

(3.40)
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where the field-dependent quantities are

m2
tt(φ, s) =

1

2
(y2
t + y′2)φ2,

m2
tT (φ, s) = m2

Tt(φ, s) =
1√
2
y′φ(yss+M),

m2
TT (φ, s) = (yss+M)2.

(3.41)

The finite-temperature potential needs to be corrected by the ther-

mal field-dependent masses. The thermal field-dependent masses is calculated

by adding the Debye masses, calculated from the the quadratically diver-

gent bubbles and Daisy resummation. This leads to a shift of the bosonic

field-dependent masses m2
i (φ, s) to the thermal field-dependent masses (Debye

masses)

m2
i (φ, s, T ) ≡ m2

i (φ, s) + Πi(φ, s, T ), (3.42)

where Πi(φ, s, T ) is the self-energy of the bosonic field i in the IR limit. In

particular, the longitudinal and transversal polarizations of the gauge bosons

have to be taken into account separately: only the longitudinal components

get a thermal mass correction and the transversal ones will not. Since the ring

diagrams will only contribute significantly at high-temperature, only the zero-

mode of the Matsubara frequency behave as a massless degree of freedom and

generate IR-divergences at high-temperature, while other modes lead to sub-

dominant contributions. For the SM bosonic contributions, the gauge boson

thermal self energy is

m2
V(h, s, T ) = m2

V(h, s) + ΠV, (3.43)
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where

m2
V = φ2


g2

4
0 0 0

0 g2

4
0 0

0 0 g2

4
−gg′

4

0 0 −gg′

4
g′2

4

 (3.44)

and

ΠV = diag

[
11

6
g2T 2,

11

6
g2T 2,

11

6
g2T 2,

11

6
g′2T 2

]
(3.45)

The Goldstone boson is

Ππ =

(
3

16
g2 +

1

16
g′2 +

λ
H

2
+
yt
4

+
λ
HS

3

)
T 2 (3.46)

For the new scalar bosons,

M2(φ, s, T ) =M2(φ, s) +

(
cφ 0
0 cs

)
T 2, (3.47)

where

cφ =
λφ
2

+
λsφ
24

+
3g2 + g

′2

16
+
y2
t

4
,

cs =
λs
4

+
λsφ
6
.

(3.48)

After diagonalization, we obtain the Deybe squared mass mh,S(φ, s, T ). For

the SM bosonic particles, we obtain

ΠWL
=

11

6
g2T 2, ΠWT

= 0,

ΠZL =
11

6
(g2 + g

′2)T 2, ΠZT = 0,

Ππ = cφT
2.

(3.49)
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Chapter 4

Holographic Complexity in Non-commutative

Field Theory

In the past several years, there has been a growing interest in the topic

of “holographic complexity”. This interest was originally motivated by the

late time growth of the wormhole size for two-sided black holes, which seems

to have no correspondence in the boundary state which is in thermal equilib-

rium. It was then conjectured that such a phenomenon should be related to

the quantum complexity of the boundary state [13], and this conjecture was

strengthened by the study of quantum chaos, namely the “switchback effect”

[14, 79]. There have since been several conjectures as to the exact bulk quan-

tity dual to the complexity on the boundary, all tied to the phenomenon of

the expanding wormholes in two-sided black holes. The first proposal, “com-

plexity = volume” (CV) [13], was that the complexity of state on a boundary

time slice σ is given by

CV (σ) ∼ 1

G`
max{Vol(Σ)|∂Σ = σ}, (4.1)

This chapter is based on my previous work [15] with J. Couch, et. al., in which we had
equal contributions.
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where Σ is a bulk time slice whose boundary is exactly σ. The obvious problem

with this proposal is the ambiguous scale ` appearing in the formula, which

proves to be varied in different cases. An improved version, “complexity =

action” (CA) [80, 81], was then proposed as

CA(σ) ∼ IWDW(σ), (4.2)

where IWDW is the gravitational action evaluated on the Wheeler-DeWitt

(WDW) patch. WDW is defined to be the set of points in the bulk that are

space-like separated from the given boundary time slice σ, which is bounded

by null hypersurfaces W± generated by null normal vectors on σ towards the

bulk. Another closely related conjecture was later proposed in [82], namely

that the complexity is dual to the space-time volume of a WDW patch.

Unfortunately, there is little that we know about the concept of quan-

tum complexity in the boundary field theory. The basic definition involves

a reference state |ψ0〉, a set of quantum gates G = {gi}, and a tolerance

parameter ε. The complexity of a quantum state |ψ〉 is the minimum num-

ber of gates one needs to make up a quantum circuit Q =
∏C

i=1 gi so that

df (Q|ψ0〉, |ψ〉) < ε. One can also define the complexity of a unitary operator

U to be the minimum number of gates one needs to make up a quantum circuit

QU so that ||QU − U || < ε. 1 The holographic complexity is supposed to be

1df ( , ) is the Fubini-Study metric for quantum state df (α, β) = arccos

√
|〈α|β〉|2
〈α|α〉〈β|β〉 .

The norm ||A|| for operators can be defined as the square root of the spectral radius ρ(A†A),
which is the supremum of the eigenvalues of A†A.
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the state complexity, while we also use the operator complexity to analyze the

characteristic behavior in section 4.2. Even with these definitions, the task

of actually computing the relative complexity of two states is notoriously dif-

ficult. What is more, in the definition one has to make several choices, and

where these choices appear in the holographic prescription is as of yet unclear.

It is also a puzzle how one goes from the discretum of quantum circuits to

a supposedly continuous quantum field theory. There has been considerable

effort defining complexity in the quantum field theory [83–88], however they

are weakly related to the holographic complexity at this point. Therefore,

what we are interested in is to utilize our intuitions from quantum mechanics

to conjecture some constraints on complexity in general. These constraints are

to be tested for both the boundary theory and the holographic theory.

Among the constraints which people have considered is the Lloyd bound

[89]. This bound was derived from the Margolus-Levitin theorem [90] under

the assumption that each gate will evolve a generic state into an orthogonal

state. It states that the time rate change of complexity2 is constrained by the

energy:

Ċ ≤ 2M

π
, (4.3)

where M is the energy of the system. In [80, 81] it was conjectured that

neutral black holes should saturate this bound, and this assumption was made

2We also refer to the time rate change of complexity as the “complexification” rate, which
should be considered synonymous as they appear in this paper.
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in order to set the constant of proportionality between complexity and action.

This conjecture originated from the fast scrambling nature of black holes and

the related idea that black holes are the fastest possible quantum computers.

However, one finds that for neutral black holes, the Lloyd bound is saturated

from above [91], which makes the conjecture somewhat suspicious. One can

also argue that the Lloyd bound is not an exact bound because the assumption

is based on is highly unrealistic. In fact, whether this assumption applies in

the case of holographic complexity has recently been questioned in [92].

In light of these difficulties with the Lloyd bound, it is interesting to test

the holographic complexity conjectures3 against additional pieces of intuition

in novel contexts. One context which might reasonably provide a testbed is

the noncommutative field theories. The study of such theories has a long

history and has produced many profound results, see for example [93–98].

One feature of noncommutative field theory which is suggestive of interesting

behavior is that it adds a degree of non-locality, which has been shown to lead

to interesting effects, e.g. an increase relative to the commutative case in the

dissipation rate of scalar modes [99]. Indeed, the holographic entanglement

entropy in this context has already been studied in, for example, [100, 101],

where non-trivial behavior was found in the limit where the Moyal scale is much

larger than the thermal scale. The geometry was obtained in a string theory

context by turning on the NS-NS B fields on Dp branes. The non-vanishing B

3In this paper we will consider only complexity = action, and discussion of the complexity
= volume and complexity = spacetime volume conjectures are left for future work.
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field then induces Dirichlet boundary condition for open strings, and non-zero

commutator of the end point coordinates [93]. After decoupling the closed

strings, the Dp brane worldvolume becomes a noncommutative space. It was

shown that in such setup, although space is coarse-grained by the Moyal scale,

which might indicate a reduction in the number of degrees of freedom, it

turns out that all thermodynamical quantities are unchanged [94, 96]. This

can be understood by looking at the thermal boundary state in the large N

limit, which consists of only planar diagrams without external legs. Such

diagrams are insensitive to the non-commutativity of the spacetime [102]. It

thus provides a perfect arena for testing quantum complexity, whose main

characteristic is that it is more than thermodynamics. If the holographic

complexity can see the difference caused by non-commutativity, it is a sign

that we are on the right track.

4.1 Holographic Complexity of 4d N = 4 NCSYM

4.1.1 The holographic dual to noncommutative SYM

We consider the noncommutative field theory widely studied in the

context of string theory. It was shown that the non-vanishing NS-NS B field

will induce noncommutative space on the D brane that decouples from the

closed string excitations [93]. The way to turn on the B field is to perform a T

duality, in D3 brane for instance, along x3 direction, assuming the x2, x3 are

compatified on a torus. The torus becomes tilted after the T duality, which

indicates a D2 brane smearing along x3 direction. Then one performs another
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T duality along x3, to get the following solution ([94, 95]):

ds2 = α′
[( r

R

)2 (
−f(r)dt2 + dx2

1 + h(r)(dx2
2 + dx2

3)
)

+

(
R

r

)2(
dr2

f(r)
+ r2dΩ2

5

)]
,

f(r) = 1−
(rH
r

)4

, h(r) =
1

1 + a4r4
,

(4.4)

with non-trivial fields

e2Φ = ĝ2
sh(r),

B23 = B∞(1− h(r)), B∞ = − α′

a2R2
,

C01 = −α
′a2r4

ĝsR2
, F0123r =

4α′2r3

ĝsR4
h(r).

(4.5)

The {t, x1, x2, x3} are the D3 brane coordinates, while {x2, x3} are non-commuting

with Moyal algebra

[x2, x3] = ia2. (4.6)

The radius coordinate r has units of inverse length4, and a is the Moyal scale

with units of length. rH denotes the location of the event horizon, and ĝs

denotes the closed string coupling, which is related to the S5 radius as R4 =

ĝsN .

Note that the geometry becomes degenerate at r → ∞; thus we have

to put the boundary theory on some cutoff surface rb <∞. It was shown that

4In the literature, the coordinate denoted here by ’r’ is typically denoted ’u’ in order to
emphasize that it does not have dimensions of length. We have however chosen to denote
it by ’r’ to avoid confusion with the Eddington-Finkelstein like null coordinate.
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this natural cutoff plays an important role in the divergent structure of entan-

glement entropy [100]. However, as will be explained later, our computation

is cutoff independent; therefore we don’t need to worry about it.

As explained in [94], all the thermodynamic quantities of this solution

are the same as in the commutative case. In particular, the temperature and

entropy is independent of a, given by

E =
3r4

HΩ5V3

(2π)7ĝ2
s

, T =
rH
πR2

, S =
4πR2r3

HΩ5V3

(2π)7ĝ2
s

(4.7)

It is then interesting to ask whether the complexity is affected by the non-

commutativity because complexity is fine-grained information that knows more

than thermodynamics.

We adopt the Complexity equals Action (CA) approach to compute

the holographic complexity of the boundary state. It involves evaluating the

action in a bulk subregion, called the Wheeler-deWitt (WDW) patch. Recent

work on evaluating gravitational action [103] provided a toolkit that deals with

null boundary contributions in the context of Einstein gravity. Hence we are

interested in the Einstein frame action of type IIB supergravity:

ds2
E = exp(−Φ/2)ds2, (4.8)

2κ2SE =

∫
d10x
√−gE

[
R− 1

2
|dΦ|2 − 1

2
e−Φ|dB|2 − 1

2
eΦ|F3|2 −

1

4
|F̃5|2

]
− 1

2

∫
C4 ∧ dB ∧ F3, (4.9)

where the notation |Fp|2 = 1
p!
Fµ1...µpF

µ1...µp is understood. One should keep

in mind that the 5-form F̃5 is self dual while evaluating this action. This
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requirement actually always makes the term |F̃5|2 = 05.

4.1.2 Wheeler-DeWitt Patch Action

Regarding representing the boundary state, the WDW patch differs

from the entanglement wedge at two points: first, it specifies a specific time

slice on the boundary, instead of a covariant causal diamond; second, it probes

behind the horizon, which is supposed to contain information beyond thermo-

dynamics. It was conjectured in [80, 81] that the action evaluated in the WDW

patch is dual to the complexity of the boundary state, which is referred to as

CA duality/proposal. In our noncommutative geometry setup, we will be in-

terested in the WDW patch for the two-sided black hole, which intersects the

left boundary at time tL, and the right boundary at time tR. According to

CA duality, the action evaluated on such a patch will compute the relative

complexity of the quantum state of the boundary CFT living on the (tL, tR)

slice as

C(tL, tR) = kSWDW , (4.10)

with the coefficient set to k = (π~)−1 by the assumption that AdS-Schwartzchild

black hole saturates the Lloyd bound. The complexity computed this way is

5We point it out that due to the famous subtlety about type IIB action, that the self-
duality condition should be imposed by hand, the treatment we use for the action is only
plausible. There are other ways to impose self-duality, for example the PST formulation,
but the action computation and the holography there will be subtle.
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cutoff dependent, but its time derivative

Ċ(tL, tR) :=
d

dtL
C(tL, tR), (4.11)

in which we are interested, is cutoff independent. Without loss of generality,

we make a choice to differentiate with respect to the left time instead of the

right time, as the geometry should be symmetric between left and right.

V1

V2

B2

B1

Sε

(uL, vL)

(uL + δt, vL + δt)

(uR, vR)

(v
=
v
L )

(u
=
u L

)

Figure 4.1: Two WDW patches separated by δt. Although the boundary of
each patch is really at some large but finite rb, the choice of rb drops out in
the differences we consider and we do not indicate it explicitly in this graphic.

It will prove convenient to utilize radial advanced/retarded null coor-

dinates:

dr∗ =
R2dr

r2f(r)
, u = t+ r∗, v = t− r∗. (4.12)
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Notice that unlike r, r∗ has units of length. Suppressing all but the bulk

and timelike direction, the contributions to the time rate change of the WDW

patch can be visualized in the conformal diagram represented in Figure 4.1.

The calculation of the time rate of change of the action is detailed in

Appendix 4.6. It is convenient to express the result in terms of the radial

coordinate rB of the pastmost joint of the WDW patch (joint B2 in the dia-

gram 4.1, which coincides with joint B1 as δt → 0.) Note that rB increases

monotonically with tL from rB = 0 to rB = rH as tL → ∞, and so we will

use it to parameterize the time dependence of the complexification rate. 6 We

find the following combined result:

ṠWDW =
Ω5V3

(2π)7ĝ2
s

(−2 log(1 + a4r4
B)

a4
+ 4r4

B + 6r4
H

+ 3(r4
H − r4

B) log
∣∣ cc̄

√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣) (4.13)

where c and c̄ are arbitrary constants associated with the normalization of

boundary null generators entering the computation of δSjoint. See Appendix

4.6.3, as well as [103], [84] for discussion.

Various aspects of the time dependence (or rB dependence) of equation

4.13 are unusual in light of the conjectured CA duality. Similar features have

been seen in other systems [91]. We discuss the finite time behavior in Section

4.3.

6We consider only tL > 0, and fix tR so that this corresponds to when the joint B has
left the past singularity.
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The late time complexification rate is achieved by sending rB → rH :

Ṡ
∣∣
t→∞ ≈

Ω5V3r
4
H

(2π)7ĝ2
s

(
10− 2

log(1 + a4r4
H)

a4r4
H

)
(4.14)

One can immediately see that if we assume the standard relationship,

C = kS with k = 1/π, then the system violates the Lloyd bound (4.3) at

late times: the ratio Ṡ
2M

should be less than or equal to 1, but at late times

it saturates values between 4/3 to 5/3 as we vary a. The relevance of the

bound to holographic complexity has been disputed [92], and violations have

been found in many other systems. But for purposes of comparison we find it

interesting that, even if we had not assumed the standard k = 1/π, but instead

used the logic that commutative black holes should saturate the Lloyd bound,

we would set k = 3/(4π). Clearly, the associated bound would fail immediately

upon considering highly noncommutative black holes. Rather than proposing

some different k in the relationship C = kS, we find it plausible that such a

choice does not generalize to all systems, at least under the current conventions

for computing bulk action.

Overlooking the Lloyd bound for now, the dependence of the late time

complexification on the noncommutativity parameter a is rather striking.

As one can see from Figure 4.2, the complexification rate increases with

the non-commutativity parameter a, or more specifically the Moyal scale. It’s

also intriguing that a always appears in the combination arH , indicating that

the only reference scale in the theory that the Moyal scale is sensitive to is

the thermal scale T−1 ∼ r−1
H . When a � T−1, the complexification rate does
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Figure 4.2: Late time action growth rate normalized by ST , versus Moyal
scale a (in unit of thermal length). It is observed that the complexification
rate under the CA conjecture increases significantly when the Moyal scale is
comparable to the thermal scale, and saturate a new bound which is 5/4 of
the commutative value when the Moyal scale is much larger than the thermal
scale.

not change much. It noticeably changes when a becomes comparable to T−1.

When a � T−1, the complexification rate stops growing and saturates a new

bound. It is inspiring to see that it does not grow indefinitely because that

will violate the Lloyd bound in any possible sense. On the other hand, the

ratio that it increases is an interesting rational number 5/4. It may imply that

this enhancement could be understood as some counting problem. With all

these interesting features in mind, we want to answer two questions:

1. How might we explain the enhancement from non-commutativity?

2. Are there other examples of noncommutative theories that corroborate

these results?

These will provide the content for the next few sections.
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4.2 Non-Commutativity Enhancement of Complexifica-
tion Rate

Why the above enhancement should be exactly 25% is as of yet un-

clear. We do, however, have a conceptual argument for why there should be a

noncommutative enhancement at all.

Consider the following problem: We have a unitary operator U , whose

complexity is known to be C(U), and we want to know what can be said

about the complexity of C(UN) for some integer N . One thing that can be

immediately said is that

C(UN) ≤ NC(U) (4.15)

Because given an optimal circuit Q implementing U , UN can be imple-

mented by N successive applications of Q, namely QN . 7 The bound above

need not be saturated, however, as there might be a few gates at the beginning

of Q which can cancel with some at the end of a successive copy of Q, resulting

in a new circuit which (a unitary identical) to QN , but which is less complex.

If we suppose that every time a new copy of U is added (after the first one

7There is a subtlety here in that Q only need implement a unitary that is within some
small number ε of U , but if this is the case, there is no guarantee that QN will be within ε
of UN . It is also possible that for particular choices of gate set, some power of Q, say QM ,
may itself be a gate. This would result in “saw tooth” growth in complexity and periodically
discontinuous time derivatives. It may be hoped that such issues are rendered obsolete in
an appropriate continuum limit (as in the “geometry of complexity” program [104, 105]),
and we ignore these subtleties for the present discussion.
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of course), we get a cancellation of χ gates, and we suppose that χ doesn’t

depend on N (or at least asymptotes to a constant as N becomes large), then

we have

C(UN) ≈ NC(U)− (N − 1)χ (4.16)

It’s easy to show that this formula holds for any U → Un with the same χ.

If we are then interested in the (time evolution of the complexity of a

family of operators) generated by some hamiltonian H

U(t) = eiHt, (4.17)

then we may use the above to write

C(t) ≡ C(U(t)) = C[U(δt)t/δt] ≈ t

δt
[C(δt)− χ] + χ. (4.18)

This will be true for any t and δt. Therefore we can compute the complexifi-

cation rate

d

dt
C(t) ≈ 1

δt
[C(δt)− χ] . (4.19)

Now, what happens if we turn on non-commutativity in our theory? Let

us suppose that our Hamiltonian H = Ha varies continuously with the Moyal

scale a, and suppose that our gates vary continuously as well so that the gates

in the noncommutative theory can be identified with gates in the commutative

theory. Suppose furthermore that for sufficiently small δt, Ua(δt) = eiHaδt can

be optimally approximated by the same circuit Q, but with each of the original

gates g replaced with its noncommutative analog ga (Call this circuit Qa).

Then it is still true that UN
a can be implemented by QN

a . But now, because
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Commutative Case Non-Commutative Case

× ×
× ×

Figure 4.3: This circuit represents the end of one copy of a circuit QU imple-
menting a hypothetical unitary U and the beginning of a second copy of QU .
In this plot horizontal lines are qubits, and the dots connected by vertical lines
are gates acting on the pair of qubits they connect. For this illustration, we
will consider gates to be their own inverse. Gates from two copies may cancel
(illustrated here with dashed blue lines connecting the gates), reducing the
complexity of the circuit and providing a more efficient way to compute UN .
This cancellation relies, however, on the ability of gates to commute past each
other, so that gates which could cancel can meet. We argue that in the non-
commutative case, fewer gates commute and so there are fewer cancelations of
this type. In this illustration, we see on the third line that a gate which can
commute to cancel in the commutative case is prevented from doing so in the
non-commutative case due to mild non-locality. Cartoon inspired by one used
in a talk by Adam Brown.
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of the non-commutativity, it is likely that fewer of the gates at the beginning

and end of Q will commute with each other (see figure 4.3). And so we can

still write

Ca(t) ≈
t

δt
[Ca(δt)− χa] + χa ≈

t

δt
[C(δt)− χa] + χa, (4.20)

but because fewer gates cancel, χa will be smaller than the original χ. These

mean that the complexifaction rate

Ċa(t) ≡
d

dt
Ca(t) ≈

1

δt
[C(δt)− χa] (4.21)

gets an enhancement due to the suppression of χa. Finally we get an enhance-

ment ratio of complexification rate as

Ċa(t) ≈
C(δt)− χa
C(δt)− χ Ċ(t). (4.22)

The same effect could be understood as arising from an increased non-

locality due to the noncommutativity. The dependence of complexity growth

on the locality of gates is explored in [81], where an extension of the Lloyd

bound is studied by looking at the ”k-locality” of the Hamiltonian and the gate

set. A ”k-local” operator is one that acts on at most k degrees of freedom:

a k-local Hamiltonian consists of interactions coupling at most k degrees of

freedom, and similarly a k-local gate set consists of at most k-local operators.

8 For convenience we let the Hamiltonian be ”k-local” while the gate set is

8To avoid dependence on the choice of basis, we would like to define k as the maximum
rank of the coupling terms, or the maximum rank of the generators of the gates.
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”j-local.” Usually, the Lloyd bound should be satisfied if j = k, because one

can choose the coupling terms as gates so that the time evolution could be

easily implemented by the gates. However if one chooses a different j for the

gate set, a bound of the following general form is to be expected

Ċ ≤ g(k)

g(j)

2M

π
, (4.23)

where g(k) is a monotonically increasing function. The interesting connection

to our interpretation of non-commutativity is that the Moyal area introduced

in non-commutative space can be thought of as an effective k for the Hamil-

tonian, meaning that non-local interactions couple wider range of degrees of

freedom than local interactions. On the other hand, we are not changing j

because our holographic prescription is not changed. Then we have an extra

factor g(k)/g(j) > 1 in the bound, hence an enhanced bound. A similar factor

greater than 1 is hence obtained in eq(4.22).

4.3 Finite Time behavior

Up to now, we have only discussed the asymptotic behavior of the

complexification rate at late times. It is plausible that the early time com-

plexification rate is not as important as the late time limit because there is a

thermal scale time resolution for this quantity. One might think of this reso-

lution as the time scale for a new gate to act on the state. In the paper [91]

people carefully studied the finite time behavior of the complexification rate

and found several interesting features. We will briefly outline the finite time
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behavior for noncommutative SYM, reproduce those features, and find new

features introduced by the non-commutativity.

We will rewrite equation (4.13) using the dimensionless parameters

b = arH , ρ = rB/rH , γ =
cc̄
√
ĝsR

2

α′r2
H

, (4.24)

so that we get

δS

δt
=

Ω5V3r
4
H

(2π)7ĝ2
s

(−2 log(1 + b4ρ4)

b4
+4ρ4+6+3(1−ρ4) log

∣∣ γρ2

(1 + b4ρ4)1/4(1− ρ4)

∣∣).
(4.25)

Note that since T = rH/π, we have b = πaT .

We will now normalize this by the late time commutative result at the

same temperature to define

Ċn(ρ) =
− log(1 + b4ρ4)

4b4
+

1

2
ρ4+

3

4
+

3

8
(1−ρ4) log

∣∣ γρ2

(1 + b4ρ4)1/4(1− ρ4)

∣∣ (4.26)

Substituting left time in thermal units for ρ, can plot Ċn vs time at

fixed b and γ, yeilding (in the case where we take b→ 0 and γ = 80) the plot

in figure 4.4.

It is clear from this plot that there is a local maximum at early time

(around t = 0.1β, β being the inverse temperature), and then at late times, it

approaches the smaller asymptotic value from above. There is also a logarith-

mic divergence as t goes to zero which comes from the log term in equation

(4.26). Both of these features are observed in [91], where they are discussed in
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Figure 4.4: Normalized complexification rate versus time in thermal units for
γ = 80 and b = 0.
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great detail. The logarithmic divergence is not important in the sense that if

you take the average complexification rate over a roughly thermal time scale,

this divergence will be gone. A small period of decreasing complexity remains,

but such behavior is not altogether prohibited. At early times the complexity

is highly sensitive to the choice of the reference state, and only at late times is

a constant growth rate expected for generic (time-independent) Hamiltonians.

Regardless, the issues of the local maximum and the asymptotic approach

to the ”bound” from above are not resolved in any explanations here. One

could average over an artificially long period of time to smooth out the lo-

cal maximum, but doing so would never eliminate the approach from above,

irrespective of the physicality of such a procedure.

Our primary interest here, however, is to discuss how these behaviors

change with the noncommutative parameter b. To that end, we will consider

what happens when we replot this curve fixing γ but varying b. The result is

displayed in figure 4.5.

From figure 4.5 we see that as the non-commutativity is turned up,

the local maximum decreases, and the asymptotic value increases. It is ob-

vious that the change happens at b ∼ π, which is when the Moyal scale a

is comparable to the thermal scale T−1 = π/rH . For b � π, it seems that

the asymptotic value is approached from below. Strictly speaking, it is not

true, because the local maximum always exists, but has a diminishing relative

height and is pushed to very late time. We can find the local maximum and

plot its ratio to the asymptotic value versus b as in figure 4.6. The fact that
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Figure 4.5: normalized complexification rate versus time in thermal units. γ
is held fixed at 80 while b = arH is varied.
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the local maximum decays physically rather than by tuning some artificial

choice is a sign that the noncommutative complexification rate at late time is

a more qualified bound for a generic quantum system. We will discuss it in

more details in the conclusion.

1 2 3 4
b

1.05

1.10

1.15

1.20

Figure 4.6: The vertical axis is the ratio between the local maximum and the
asymptotic late time value of the complexification rate. The black, orange and
blue curves correspond to γ = 1, 2, 3.

It is observed that the complexification rate mainly depends on tem-

perature through the combination b, except an extra logarithmic contribution

from γ. Therefore we expect that the variation with respect to temperature is

similar to figure 4.5. This can be implemented by varying b while fixing the

combination γb2, i.e., fixing a. When this is done with γb2 = 1 one gets figure

4.7, which is indeed similar to figure 4.5. This check shows that the only scale

that the non-commutativity a is sensitive to is the thermal scale.

Finally, one may also be interested in the effect of γ, which at fixed AdS
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Figure 4.7: normalized complexification rate versus time in thermal units. γb2

is held fixed at 1 while b = arH is varied.
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radius and temperature encodes information about the normalization of the

generators of the null boundaries of the WDW patch. It has been suggested

that this normalization, which is ambiguous in the action, should correspond

to an ambiguity in the definition of complexity on the boundary such as the

choice of reference state [84]. In our case, we observe that the dependence on

γ does not depend on the non-commutativity at all, which seems to support

this idea for a broader class of theories.

4.4 Other noncommutative systems

As a test of the above argument, and to better understand the depen-

dence of the enhancement on various factors, we would like to consider more

examples of noncommutative field theories. It’s easy to extend the D3 brane

solution we discussed in Section 4.1 to other Dp branes, in which we are also

able to put more noncommutative pairs of directions. For p = 4, 5, 6, we can

turn on more than one B field component, making multiple pairs of directions

non-commuting. Let us denote the number of non-vanishing B components as

m so that B will be a rank-2m matrix. In this section, we will investigate the

dependence of late time complexification rate on the dimension of space p and

the rank of the B field.
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4.4.1 Supergravity solutions and decoupling limit

The general string frame metric for non-extremal Dp branes with m

non-commuting pairs of directions are given as

ds2

α′
=
( r
R

) 7−p
2

(
−f(r)dx2

0 +

p−2m∑
i=1

dx2
i +

m∑
i=1

hi(r)(dy
2
i,1 + dy2

i,2)

)

+

(
R

r

) 7−p
2
(
dr2

f(r)
+ r2dΩ2

8−p)

) (4.27)

where

f(r) = 1− r7−p
H

r7−p , (4.28)

hi(r) =
1

1 + (air)7−p . (4.29)

In NS-NS sector we have

e2Φ = ĝ2
s

(
R

r

) (7−p)(3−p)
2

m∏
i=1

hi(r),

B(i) = − α′

(aiR)
7−p
2

[1− hi(r)]dyi,1 ∧ dyi,2.
(4.30)

We also have many R-R fields turned on via the T-duality. One would expect

them by looking at the Chern-Simons term in D brane action

SDpCS = µp

∫
(C ∧ exp(B + kF ))p+1 . (4.31)

Only rank-(p + 1) R-R potential Cp+1 is turned on without any background

field, whereas in the presence of B field, terms like Cp+1−2n∧B(i1)∧ · · · ∧B(in)

can also be sourced, where n = 0, 1, · · · ,m. In other words, when m = 1, we

have Cp−1 turned on; when m = 2, we have Cp−3 turned on, and so on.
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The general formulae for all these R-R fields are

Cp+1 = −(α′)
p+1
2

ĝs

( r
R

)7−p∏
i

hi(r),

C
(j)
p−1 =

(α′)
p−1
2

ĝs

( r
R

)7−p
(ajR)

7−p
2

∏
i 6=j

hi(r),

C
(j,k)
p−3 = −(α′)

p−3
2

ĝs

( r
R

)7−p
(ajakR

2)
7−p
2

∏
i 6=j,k

hi(r),

C
(j,k,l)
p−5 =

(α′)
p−3
2

ĝs

( r
R

)7−p
(ajakalR

3)
7−p
2

∏
i 6=j,k,l

hi(r).

(4.32)

We are omitting the basis here, but it’s clear that these components are along

all the directions on Dp brane except for the directions of the B fields indicated

by their superscript. We also omitted their (inverse) hodge dual forms which

may contribute to the action.

While these are all good solutions for supergravity in the bulk, one has

to be careful with its world volume dual theory. The decoupling limit of the

world volume theories for 2 ≤ p ≤ 6 in the presence of B field is studied in

[106], with the conclusion that there is no decoupling limit for D6 branes even

for m > 0. For p ≤ 5, decoupling limits do exist, and it’s reasonable to talk

about the complexity on the world volume theory. One may be worried that

for D4 brane we have to up lift to 11 dimensions to compute the M theory

action, but the effective string coupling at high energy is

eΦ ∼ r
(7−p)(p−3−2m)

4 , (4.33)

which is suppressed by the non-commutativity when m ≥ 1, indicating that

at sufficiently high energy, we don’t have to go to M theory.
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As such, we will be using type IIB action for odd p and type IIA action

for even p. The type IIA action is

SIIA
string =

1

2κ2

∫
dx10
√−g

[
e2Φ(R+ 4|dΦ|2 − 1

2
|H|2)− 1

2
|F2|2 −

1

2
|F̃4|2

]
− 1

4κ2

∫
B ∧ F4 ∧ F4,

(4.34)

with the usual conventions:

F2 = dC1, F4 = dC3, F̃4 = F4 − C1 ∧H. (4.35)

4.4.2 Complexification Rates

We report the action growth rates with the following p-dependent pref-

actor,

cp ≡
Ω8−pr

7−p
H

(2π)7ĝ2
s

, (4.36)

We also divide out the transverse volume Vp to give a ”density of action.” The

complexification rate will be related to the action growth rate by eq(4.10),

where the coefficient k is not specified yet. We will discuss the strategy of

choosing k at the end of the section. Both the joint and boundary contributions

to the late time complexification rate take a particularly simple form:

Ṡjoint = (7− p)cp

Ṡboundary =
1

8
(65− 14p+ p2)cp

(4.37)
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The bulk contributions exhibit more interesting dependencies on the

size and number of noncommutativity parameters. These are here reported

for each p.

D2 Brane

This is the simplest case, where we have fewest R-R fields and don’t

need to put the self-duality constraint. We have

F2 = dCp−1, (4.38)

F̃4 = dCp+1 − Cp−1 ∧H. (4.39)

Plugging them in the type IIA action, we obtain the complexity growth

rate. Including all contributions, the late time limit becomes

Ṡp=2,m=1 = 12cp. (4.40)

Surprisingly, we find that the late time complexification rate does not even

depend on the non-commutativity parameter a. We may argue that it is the

case where the bound is already saturated so that non-commutativity could

not enhance it anymore.
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D4 Brane

This is the minimal dimension that we can include two pairs of non-

commutative directions, hence m = 2. The R-R field contents are

F2 = dC
(1,2)
p−3 , (4.41)

F̃4 =
∑
i

[
dC

(i)
p−1 − C(1,2)

p−3 ∧H(i+1)
]

+ ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
.

(4.42)

Note that mod m is understood in the supercript of the forms.

The complexity growth rate including all contributions has late time

limit

Ṡ4,2 =

(
5 +

3a3
1a

3
2r

6
H

(1 + a3
1r

3
H)(1 + a3

2r
3
H)

)
cp. (4.43)

The p = 4, m = 0, 1 cases can be obtained by taking one or both of

the a parameters to zero:

Ṡ4,0 = Ṡ4,1 = 5c4 (4.44)

It’s striking that turning on a single pair of noncommutative directions does

not affect the late time complexification rate at all, but turning on the second

pair does increase the rate. It means that we cannot use the argument as for

p = 2 to explain the zero enhancement here because obviously the bound was

not saturated yet.
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D5 Brane

It’s another case where we need to take into account the self-duality

issue. Again we can have m = 2, and the R-R field contents are

F3 = dC
(1,2)
p−3 + ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
, (4.45)

F̃5 =
∑
i

[
dC

(i)
p−1 −

1

2
C

(1,2)
p−3 ∧H(i+1) +

1

2
dC

(1,2)
p−3 ∧B(i+1)

]
+ self dual. (4.46)

The complexity growth rate including all contributions has late time

limit

Ṡ5,2 =

(
11

2
+

a2
1a

2
2r

4
H − 2

2(1 + a2
1r

2
H)(1 + a2

2r
2
H)

+
a2

2 log(1 + a2
1r

2
H)

2a2
1(a2

1 − a2
2)

+
a2

1 log(1 + a2
2r

2
H)

2a2
2(a2

2 − a2
1)

)
c5.

(4.47)

We can also examine the m = 1 case by taking a2 = 0 and a1 = a:

Ṡ5,1 =

(
5− 1

1 + a2r2
H

)
cp,

Ṡ5,0 = 4cp

(4.48)

In contrast with p = 4, turning on the first pair of noncommutative directions

already changes the complexity, and turning on the second enhances more.

D6 Brane

Finally we may investigate a case where we can turn on 3 pairs of

noncommutative directions, hence D6 brane. Form = 3, the R-R field contents
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are

F2 = dC
(1,2,3)
p−5 + ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
, (4.49)

F4 =
∑
i

[
dC

(i+1,i+2)
p−3 − C(1,2,3)

p−5 ∧H(i)
]

+ ∗−1

[
dC

(i)
p−1 −

∑
j 6=i

C
(i,j)
p−3 ∧H(j)

]
.

(4.50)

The complexity growth rate including all contributions has late time

limit

Ṡ6,3 =

(
4 +

a1a2 log(1 + a3rH)

(a2 − a3)a3(a3 − a1)rH
+ cyclic permutation

)
c6 (4.51)

The three a-dependent terms have the property that no matter how many a’s

you turn off, their sum is a constant as -1. Thus again, it is a situation where

only turning on maximum number of non-commutativity can we increase the

non-commutativity, similar to the p = 4 case.

Ṡ6,0 = Ṡ6,1 = Ṡ6,2 = 3c6 (4.52)

However, this complexity growth rate seems to have no physical mean-

ing, because there is not a world volume theory that is decoupled from gravity.

The holographic principle is subtle in this case. We present the result here

because the bulk computation can be done in a similar manner without noting

the difference. Whether the quantity so computed has any physical meaning

is an open question.
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p m = 0 m = 1 m = 2 m = 3 πBL

2 12 12 - - 7
3 8 10 - - 6
4 5 5 8 - 5
5 4 5 6 - 4
6 3 3 3 4 3

Table 4.1: This table lists all the action growth rate at late time for general
p and m. They are in unit of the constant cp defined in eq(4.36). The last
column is showing the Lloyd bound BL also in unit of cp.

4.4.3 Summary of Results

From the above computation, we find that when we turn on non-

commutativity on Dp branes, the complexity growth rate either stays the

same, or increases. The fact that it does not decrease is encouraging for our

argument given in section 4.2. However, the values of the enhancement ratio

are not understood.

In the table 4.1, we list all the density of late time action growth rate in

unit of cp, in the limit that all m non-commutativity parameters ai, i = 1, ..,m,

goes to infinity.

There are no obvious laws that govern these rates in general, but we

do observe some interesting features. For both D3 and D5 branes, we have

enhancement from each pair of non-commuting directions. In particular, the

ratio for the enhancement from the first pair are the same in both cases, and

the enhanced amount from the first and second pair are also the same in D5

brane. These two cases seem to provide reasonable behaviors one may naively

expect. On the other hand, the type IIA supergravity with even-ps does not
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always have complexification rate enhancement from non-commutativity. The

reason for it may depend on the details of the boundary theory.

In the table 4.1, we also list the Lloyd bound computed from the ADM

mass of the geometry (see Appendix 4.7). One may set the coefficient k in

eq(4.10) to let any of the complexification rate to saturate the Lloyd bound.

For instance, if we want to set the commutative N = 4 SYM (p = 3, m = 0)

to saturate the bound, we can take πkp=3 = 3/4. However, the consequence

is that we can always turn on the non-commutativity and violate this bound.

In order that the Lloyd bound is not violated, we need to guarantee that the

maximum complexification rate for each p is bounded by BL, thus

k2 ≤
7

12π
, k3 ≤

3

4π
, k4 ≤

5

8π
, k5 ≤

2

3π
, k6 ≤

3

4π
. (4.53)

If one follows the argument at the end of section 4.2, and get an

enhanced bound for non-commutative field theory, the bound on kp will be

weaker. On the other hand, the Lloyd bound is defined under the assumption

that all gates take a generic state to an orthogonal state, which is usually not

true. It is argued that we simply should not take this bound seriously [92].

This objection will make it hard to determine what k should be, but for our

purpose, k does not affect our main results.

4.5 Conclusion

In this paper, we have considered the effects of non-commutativity on

the holographic complexity of SYM according to the complexity = action
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conjecture. We have done this in the hope that this would produce further ev-

idence about the validity of this conjecture, and of the concept of holographic

complexity more generally. Our main result is that the late time complexifi-

cation rate increases with the non-commutativity in a class of theories.

We computed the holographic complexity for 4DN = 4 non-commutative

super Yang-Mills, by evaluating the WDW action in the bulk geometry de-

scribed by type IIB supergravity with D3 branes. We saw a 5/4 enhancement

for late time complexification rate in the non-commutative result over the com-

mutative result. This was striking because it is well known that the thermo-

dynamics of this theory are independent of the non-commutative parameter a.

The observed changes to complexity support the idea that complexity is more

than thermodynamics, and indicates that the CA prescription is reproducing

this feature of complexity. Comparing to the Lloyd bound derived from the to-

tal energy, we discovered that using the coefficient of proportionality k = 1/π

as in [80] will make the commutative late time complexification rate violate

the bound. One could in principle avoid this by arguing that k should not be

universal for all kinds of theories, but the commutative black hole still can not

saturate the bound because there should be space for enhancement from the

non-commutativity.

We presented a quantum argument to explain this enhancement and

to argue that we should have expected it. We assume that the time evolution

operator is approximated by sequential copies of the same quantum circuit,

and the optimization of the total circuit when you combine them will be less
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efficient in non-commutative theories. We also argue that this expectation

matches the k-locality model prediction if we relate the size of Moyal scale

to the size of locality k. Then we investigate the finite time behavior of this

complexification rate and see that the problematic finite time maximum gets

suppressed by non-commutativity.

Finally, we generalized the solution for D3 branes to general Dp branes

to get a broader class of noncommutative gauge theories. We presented similar

calculations as for p = 3 and obtained the late time complexification rates for

2 ≤ p ≤ 6 and all allowed ranks of the B field. The results for p = 5 are

similar to those for p = 3 but can have another enhancement of the same

magnitude from a second B field component. This is consistent with our

heuristic argument. The results for the even p cases are less well understood.

We found that there is no enhancement for p = 2 and that for p = 4 one

must introduce a second B field component to get an enhancement. This

result would seem to be in mild tension with the argument of section 4.2. The

correct explanation for this behavior is left for future work. Despite not seeing

an enhancement in some cases, it is at least encouraging that no decrease

was observed, which would have been a much clearer contradiction to the

arguments of section 4.2.

Regarding the statement that non-commutativity enhances the com-

plexification rate in general, there are several interesting aspects one can in-

vestigate. First, this result is in tension with the often expressed idea that the

commutative AdS-Schwarzschild black hole is the fastest possible computer
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[80]. If non-commutativity can somehow increase the computational speed

even further, it would be very interesting to see if it also increases the scram-

bling process of the black hole. Second, it also would be interesting to compute

the complexity of a weakly coupled field theory on a non-commutative manifold

in order to test the conclusion of our heuristic argument in a non-holographic

context. Such a computation would, in light of this work, provide for a more

robust check on the complexity = action conjecture. The work of [83, 84]

might prove useful to such an endeavor. Another interesting extension of this

work would be to repeat the computations for the complexity = volume, and

the complexity = spacetime volume conjectures, which will be both a test for

our results and a test for the holographic complexity prescriptions. Finally, it

was pointed out to us by Eoin Ó Colgáin that the geometry corresponding to

the D3-brane case that we have considered here has been discovered to belong

to a larger class of deformations of AdS5, studied in e.g. [107–109]. It would

perhaps be interesting to extend the results of this paper to the more general

case.
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4.6 Appendix I: Calculation of ṠWDW

To minimize clutter in expressions, in this appendix we set 2κ2 =

(2π)7α4 = 1 and reinstate κ dependence only at the end. Following the sys-

tematic treatment of [103], the action on a bulk subregion is divided into

contributions as follows:

SV =

∫
V

(
R+ Lm

)√−gdV
+ 2ΣTi

∫
∂VTi

KdΣ + 2ΣSisign(Si)

∫
∂VSi

KdΣ− 2ΣNisign(Ni)

∫
∂VNi

κdσdλ

+ 2Σjisign(ji)

∫
Bji

ηjidσ + 2Σmisign(mi)

∫
Bmi

amidσ

(4.54)

The first line we call the bulk contribution. The second line contains

boundary contributions along timelike (T ), spacelike (S), and null boundaries

(N ), respectively. The final line contains joint contributions, divided into

those which result from intersections of timelike and/or spacelike boundaries,

and those which include one or more null boundaries. Sign conventions and

notation for integrand quantities will be explained as needed in what follows.

While the action on a WDW patch is obviously of interest for its con-

jectured relation to Quantum Complexity, its time derivative is simpler to

compute and interesting for diagnostic purposes. Due to the spacetime sym-

metries, this quantity reduces to the difference of two volume contributions

(V1 and V2 in figure 4.1), one boundary surface contribution (Sε in figure 4.1),

and two joint contributions (B1 and B2 in figure 4.1).
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δSWDW = δSbulk + δSboundary + δSjoints

δSbulk = SV1 − SV2

δSboundary = −2

∫
Sε
KdΣ

δSjoints = 2

∫
B1

a1dσ − 2

∫
B2

a2dσ

(4.55)

4.6.1 Bulk Contribution

The bulk integral contributions are of the form:

Sbulk =

∫
V

√−gE
(
R+ Lm

)
dV , (4.56)

where Einstein frame metric is used. For the action eq(4.9) and field content

eq(4.5) we have

R =
−2
√
ĝs
(
2a4r4

H + a8r4(r4 + r4
H)
)

α′R2(1 + a4r4)9/4
, (4.57)

Lm =
2
√
ĝs
(
4a4r4

H + a8r4(3r4 + r4
H)
)

α′R2(1 + a4r4)9/4
. (4.58)

We let the integral over x1, x2, and x3 give V3 and the five-sphere Ω5.

Also abbreviate C =
α′4Ω5V3

ĝ2
s

. Further let ρ(u, v) and ρ̄(u, v) denote the radial

value r as implicit functions of advanced/retarded coordinates u and v from

the appropriate quadrant (here the left and bottom quadrants, respectively).

The form of these functions is not important here.

The bulk contribution for V1 can be written in (u, r) coordinates with

radial limits expressed implicitly.
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SV1 = C

∫ uL+δt

uL

du

∫ r=ρL(u−vL)

r=ε

dr
4r3(a8r8 + a4r4

H)

(1 + a4r4)2
, (4.59)

Here r = ε is a surface close to the singularity which will be sent to zero. A

similar expression can be written for V2 in (v, r) coordinates, and after the

radial integration we have:

1

C
(SV1 − SV2) =

∫ uL+δt

uL

du
(
G(ρL(u− (vL + δt)))−G(ε)

)
−
∫ vL+δt

vL

dv
(
G(ρL(uL − v)))−G(ρ̄(uR, v))

) (4.60)

Changing variables u→ uL+vL−v+δt leads to a cancellation of terms

such that for small δt we are left with

SV1 − SV2 ≈ C

(
G
(
ρ̄(uR, vL) = rB

)
−G

(
ε
))
δt,

G(r) =
a4(2r4 + a4L8 − r4

H)− 2(1 + a4r4) log(1 + a4r4)

(a4 + a8r4)
.

(4.61)

This cancellation is expected from the boost symmetry of the left wedge of the

spacetime, and also indicates the cutoff independence of our calculation. We

denote the radial value at the bottom corner of the WDW patch ρ̄(uR, vL) ≡

rB. As ε→ 0 we find a bulk contribution of

Ṡbulk = lim
δt→0

SV1 − SV2
δt

=
α4Ω5V3

ĝ2
s

(
a4r4

B

1 + a4r4
B

(r4
H−r4

B)+2r4
B−

2 log(1 + a4r4
B)

a4

)
(4.62)

Note that rB is related to tL in the manner that as tL → ∞, rB → rH .

Therefore, the late time limit can be obtained by taking rB → rH limit.
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4.6.2 Boundary Contributions

We adopt the convention that the null boundary geodesics are affinely

parameterized: kµ∇µk
ν = κkν with κ = 0, which simplifies the action compu-

tation considerably because all but one boundary surface (Sε) make no contri-

bution. The boundary Sε is the spacelike surface r = ε→ 0. The contribution

is of the form

δSboundary = −2

∫
Sε
KdΣ (4.63)

where dΣ is the induced volume element on the boundary hypersurface and K

is the extrinsic curvature: K = gµν∇µsν with the unit normal sν chosen to be

future directed, away from the WDW patch. This convention for choosing the

direction of the surface normal is responsible for the minus sign on this term

[103].

For our metric eq(4.8) we have

K =

(
ĝs
α2

)1/4
4rh(r)f ′(r) + f(r) (32h(r)− rh′(r))

8Rh(r)7/8
√
−f(r)

, (4.64)

which as ε→ 0 leads to

Ṡboundary = 4r4
H

α4Ω5V3

ĝ2
s

(4.65)

4.6.3 Joint Contributions

There are two joints (B and B′) which contribute to the complexifica-

tion rate. Each of these is comprised of the intersection of two null surfaces,
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so their contributions are of the form

SJ = 2Σmisign(mi)

∫
Bmi

amidσ (4.66)

ami = log

∣∣∣∣−1

2
kL · kR

∣∣∣∣
where dS is the volume element on the joint. Here kL and kR are future-

pointing null generators along the left-moving and right-moving boundaries,

respectively. Both of the joints in question lie at the past of the corresponding

null segments, which together form the past boundary of a WDW patch. To-

gether these facts determine that the sign of each joint’s contribution to the

WDW patch action is positive [103], and so taking a difference of two patches

leads to the signs given in equation 4.55.

In addition to the affine parameterization of boundary generators, a

convention must be chosen to fix their normalization. It may be possible

to associate the freedom allowed by this choice with corresponding conven-

tions which must be established in the definition of quantum complexity (e.g.,

choice of reference state and gate set). Indeed, progress has been made in

this direction [84]. For our purposes, establishing a normalization convention

is necessary to make meaningful comparisons between different WDW patch

actions (such as that implicit in our “time derivative”) as parameters of the

theory are adjusted.

We normalize according to kL · tL = −c and kR · tR = −c̄, where t̂R and
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t̂L are normalized generators of time-translation on each boundary. With this

in mind we choose

(kL)µ = −c(δtµ −
√−grr

gtt
δrµ)

(kR)µ = c̄(δtµ +

√−grr
gtt

δrµ).

(4.67)

For small δt, the joints B2 and B1 are at fixed radii r = rB and r =

rB + 1
2

√
−gtt
grr

δt, respectively. The quantities am in equation 4.66 are easily

evaluated at each joint and the combined contribution is found to be:

SB1 − SB2 = 2
α4V3Ω5

ĝ2
s

(
r3 log

[
− c̄cR

2(ĝ2
sh(r))1/4

αr2f(r)

]∣∣∣∣r=rB1

r=rB2

)
≈ δt

α4V3Ω5

ĝ2
s

(
2r4

H + r4
B(2 + a4(3r4

B + r4
H))

1 + a4r4
B

+ 3(r4
H − r4

B) log

∣∣∣∣ cc̄
√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣∣∣)
(4.68)

4.6.4 Combined Contributions

We can combine contributions 4.62, 4.65, and 4.68 to arrive at the full

time rate change of the WDW patch action (reinstating explicit κ dependence

and immediately using 2κ2 = (2π)7α4):

ṠWDW =
Ω5V3

(2π)7ĝ2
s

(−2 log(1 + a4r4
B)

a4
+ 4r4

B + 6r4
H

+ 3(r4
H − r4

B) log
∣∣ cc̄

√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣) (4.69)
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4.7 Appendix II: Thermodynamics and the Lloyd Bound

It is interesting that the thermodynamic quantities for these systems

exhibit no dependence on the noncommutativity parameter a (see [94] for

discussion). We find that for general p9

E =
(9− p)r(7−p)

H

2(2π)7ĝ2
s

VpΩ(8−p)

T =
(7− p)r(5−p)/2

H

4πR(7−p)/2

S =
4πR(7−p)/2r

(9−p)/2
H

(2π)7ĝ2
s

VpΩ(8−p)

(4.70)

with E being the ADM mass. The first law dE = TdS is easily confirmed.

In the original CA duality conjecture [80, 81] the proportionality con-

stant in Complexity = k×Action was fixed by an expectation that black holes

are the fastest computers in nature, and that at late times they would saturate

a bound from Lloyd [89, 90]. Matching Ċ = 2M
π

at late times for Schwarzschild

AdS black holes sets the constant at k = 1
π
. The relevance of the Lloyd bound

to these considerations is questionable [92], but in the interest of comparison

we note that the systems studied in this work would require different constants

to meet the same criterion: for the commutative black holes to saturate the

bound at late times, k = lim
t→∞

2M
πṠ

would be given by

p = 2 p = 3 p = 4 p = 5 p = 6
k 7

12π
3

4π
1
π

1
π

1
π

9Note that for p = 5 equations 4.70 would indicate zero specific heat. We take this as
further evidence that results for p ≥ 5 should be viewed skeptically.
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Furthermore, if the proportionality k were fixed with reference to com-

mutative black holes, the bound would still be violated by highly noncommu-

tative black holes. Rather than proposing novel bounds or searching over all

systems for a minimum necessary k = lim
t→∞

2M
πṠ

(giving the weakest bound on

Ṡ) to be the true proportionality in C = kS, we suspect that the precise pro-

portionality cannot be universally generalized between systems, at least under

the established conventions for computing the WDW action.
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Chapter 5

Holographic Subregion Complexity of Singular

Surface

In the context of gauge/gravity duality we have learned that quantum

entanglement in a field theory encodes information about the geometry of the

dual spacetime. The holographic principle equates the entanglement entropy

of a field theory to a geometrical object, the holographic entanglement entropy,

in the dual spacetime. Therefore, entanglement plays a crucial role in the pro-

gram of understanding how to reconstruct the dual spacetime from boundary

(field theory) data. However, recently we have understood that entanglement

entropy cannot be the only ingredient involved in spacetime reconstruction.

After a black hole is formed, the interior grows for an exponentially large

time but the holographic entanglement entropy fails to reproduce this growth

[12, 110]. New developments point to quantum complexity as the missing in-

gredient [13, 111]. One way to think about complexity in quantum mechanical

systems is as the minimum number of “simple” operations needed to go from

a reference state to a target state. Quantum complexity is an active area of

research in quantum information but little is known about complexity in quan-

tum field theories. Two prescriptions for its dual, holographic complexity, have

been put forward. These two proposals go by the names of complexity-volume
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(CV) [14] and complexity-action(CA) [80, 81]. In the gravity side it is natural

to also define a complexity not of the whole state but of a region of space,

i.e. subregion complexity [112, 113]. The subregion complexity-volume pro-

posal, subregion-CV, identifies the subregion complexity with the spatial vol-

ume bounded by the Ryu-Takayanagi and the boundary region. On the other

hand, the subregion complexity-action proposal, subregion-CA, associates the

complexity of a boundary region with the action evaluated on the intersec-

tion of the Wheeler-DeWitt (WDW) patch and the entanglement wedge of

the given region [16]. Unfortunately, the meaning of subregion complexity in

quantum information or field theory is not yet clear nor is it understood which

of the holographic definitions is the correct one.

In the past, understanding the divergence structure of entanglement

entropy in singular boundary regions was quite fruitful. A singular region is

characterized by an opening angle 0 < θ < 2π. Cut-off independent coeffi-

cients, a(θ), arising for such regions were studied in a variety of quantum field

theories [114–116] (free scalars, free fermions, interacting scalars) and in holo-

graphic models [117–120] as well. It was found that these coefficients represent

an effective measure of the degrees of freedom of the underlying CFT. Fur-

thermore, it was shown that the ratio a(θ → π)/CT , where CT is the central

charge associated with the stress tensor Tµν , is universal for any 3D CFTs.

Inspired by these lessons, in this paper we study subregion complexity-

action of a boundary region with a geometric singularity or kink. Our goal is

to take a first step towards understanding if geometrical singularities in the
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boundary region also encode cutoff independent and universal contributions

to subregion complexity. To calculate subregion complexity-action we have to

evaluate the action in the spacetime region determined by the intersection of

the entanglement wedge and the Wheeler DeWitt patch. The calculation in

the case of singular subregions is quite non-trivial. We discuss the appropriate

way to define the infrared cutoff and develop a systematic approach to calcu-

late all the divergences. The divergence structure is much richer than in the

subregion complexity-volume case [121]. We find that the leading divergence

is proportional to the volume of the boundary region and identify new con-

tributions coming from the singularity to the cut-off independent coefficients

of log and log2 terms. As in the case of subregion complexity-action for a

smooth subregion, there are subleading divergences that depend on the nor-

malization of null normals. We comment on this issue and on different choices

of normalizations.

The contribution of our work is two-fold: 1) the systematic approach we

develop to study the divergence structure of a region with a kink can easily be

extended to higher dimensions and more general geometric singularities and

2) our detailed results can serve as a benchmark for proposals of subregion

complexity in field theory.

This paper is organized as follows. In Section 5.1 we review the relevant

ideas of entanglement entropy in singular regions and their significance. In

Section 5.2 we review the definitions of subregion-CV and subregion-CA and

recall the results for subregion-CV in a region with a kink obtained in [121].
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Sections 5.3 and 5.4 constitute the main parts of this paper. In Section 5.3

we define the problem and point out the subtleties, then present the steps of

calculations. In Section 5.4 we present the final result and discuss its various

properties. Section 5.5 contains the conclusions and future directions. We also

have two appendices: in Appendix 5.6, we present the details of extracting UV

divergence structures, and the derivation of the final result, then we show the

induced geometry on joint surfaces in Appendix 5.7.

5.1 Entanglement entropy in singular subregions

Spatial subregions in the boundary theory that contain geometric sin-

gularities are known to have interesting contributions to the entanglement

entropy. In quantum field theory, the entanglement entropy has an area law

behavior. But the coefficients of the leading order area law contribution de-

pend on the UV regularization of the theory. On the other hand, there are sub-

leading contributions that are independent of the UV regularization and thus,

contain unambiguous information about the boundary theory [122]. These

contributions were later shown to be universal for a large class of CFTs [114].

Therefore, when the boundary has sharp features or singularities, there will be

extra contributions to the entanglement entropy that are universal and local

on the boundary [118, 119]. In this section we will review some results related

to entanglement entropy in singular regions.
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The metric of d+ 1 dimensional AdS space in Poincare patch is,

ds2 =
L2

z2

[
− dt2 + dz2 + dρ2 + ρ2(dθ2 + sin2 θ dΩ2

n)
]
. (5.1)

where n = d− 3. A cone is an example of a singular region on the boundary.

In general, cones in different dimensions can be parametrized as,

cn = {t = 0, |θ| ≤ Ω, 0 ≤ ρ < ρIR}. (5.2)

where ρIR is an IR cutoff that has to be taken to infinity at the end of the cal-

culation. The cone cn has a scaling symmetry along the radial direction. Due

to this symmetry, the Hubeny-Rangamani-Takayanagi (HRT) surface [123] has

the form

zRT = ρ h(θ). (5.3)

The function h(θ) has a maximum at θ = 0 that we wil denote h0, h(0) =

hmax ≡ h0, and vanishes at the boundary, h(Ω) = 0. The entanglement

entropy of cn is given by the area

Sn = Ln+2Ωn

∫
dρ

ρ

∫
dθ sinn θ

√
1 + h2 + h′2

hn+2
. (5.4)

The extremality condition of the area determines the shape function

h(θ). And since h(θ) specifies the HRT surface (5.3), this function will play

an important role in the complexity calculations of the following sections.

In this paper we focus in d = 3 , i.e. n = 0. Thus, we have a c0 cone

which we will refer to as a kink, k. In this case the integrand is independent
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of θ and the area functional has an integration constant

K =
1 + h2

h2
√

1 + h2 + h′2
=

√
1 + h2

0

h2
0

. (5.5)

The opening angle, Ω can the be written as a function of h0,

Ω =

∫ h0

0

dh

h′(θ)
=

∫ h0

0

Kh2√
(1 + h2)(1 + h2 −K2h4)

dh ≡
∫ h0

0

ω(h) dh. (5.6)

The our purposes it is interesting to note the asymptotic behavior at small or

large angles,

Ω(h0 → 0) ∼ γh0 +O(h3
0),

Ω(h0 →∞) ∼ π

2
(1− h−1

0 ) +O(h−2
0 ),

(5.7)

where

γ =

√
πΓ(3/4)

Γ(1/4)
≈ 0.599. (5.8)

The large angle limit is Ω = π/2, indicating a flat opening angle, i.e. no kink.

We will call this the “smooth limit”. In this limit the contributions coming

from the singular point should vanish.

Note that we can also look at opening angle 2Ω larger than π. Such

kink indicates a concave corner. For the simple kink shape, the HRT surfaces

are the same for Ω = Ω0 and Ω = π−Ω0, but the notion of “in” and “out” of

this HRT surface is reversed.

In [120] the authors found that cone regions contribute to universal

terms in the entanglement entropy. These contributions introduce new log or

127



log2 terms that are cutoff independent,

Suniv
n (V ) =

{
(−1)

d−1
2 a

(d)
n (Ω) log(R/δ) d odd,

(−1)
d−1
2 a

(d)
n (Ω) log2(R/δ) d even.

(5.9)

The functions a
(d)
n (Ω) are functions of the opening angle Ω. Since we are

dealing with a pure state, a
(d)
n (Ω) = a

(d)
n (π − Ω). An additional restriction on

adn(Ω) comes from the fact that when Ω→ π/2 we are in the smooth limit, no

singularity, and therefore a
(d)
n (Ω = π/2) = 0. These constraints imply that in

the large anlge limit adn(Ω) is of the form

a(d)
n (Ω→ π/2) = 4σ(d)

n

(π
2
− Ω

)2

. (5.10)

Thus, the conical singularity introduces a set of coefficients σdn that encode

regulator-independent information about the CFT. Remarkably, this same be-

havior for σ
(d)
n was found for field theory calculations of entanglement in regions

with sharp corners [116]. Furthermmore, holographically, it can be shown that

σ
(d)
n is purely determined by the boundary stress tensor charge CT . As men-

tioned in the Introduction, the motivation of the present work is to understand

if similar cutoff independent and possibly universal contributions are present

in the case of subregion complexity-action.

5.2 Subregion Complexity

Currently there are two proposals for for holographic subregion com-

plexity, subregion-CV and subregion-CA. Both of these proposals recover the

original holographic state complexity in the limit when the region is the whole
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boundary. It is also required that they only include information from reason-

ably portion of the spacetime, i.e., the entanglement wedge.

In the CV approach, one takes the maximal spatial volume bounded

by the boundary region and its HRT surface. Clearly, if we take the subregion

to be the whole boundary we recover the original CV-complexity. Subregion-

CV complexity was investigated in [112] for smooth subregions and in [121]

for singular regions. In particular, for a 3 dimensional kink the subregion-CV

complexity is [121],

Ck =
L2

8πG

[
Ω

2

R2

δ2
− α(h0) log

R

δ

]
. (5.11)

Interestingly, besides the regular volume contribution, a new term with

log divergence appears as the kink contribution. The coefficient

α(h0) =

∫ Ω

0

dθ

h2
=

∫ h0

0

ω(h)

h2
dh (5.12)

has the limiting behavior

lim
h0→0

α(h0) =
γ′

h0

, γ′ =

∫ 1

0

2√
1− x4

dx ≈ 2.622,

lim
h0→∞

α(h0) =
π

h0

.

(5.13)

In [16] the authors proposed that the subregion-CA complexity is given

by the action evaluated on the intersection of the entanglement wedge of the

subregion and the WdW patch of the boundary time slice. Fig 5.1 schemati-

cally shows half of the relevant bulk region, where the boundary (pink sheet)

spatial region (red line) has an HRT surface (blue curve), that develops a
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light sheet (pink surface) as the boundary of the entanglement wedge. The

interval itself also develops a bulk light sheet (green surface) as the boundary

of the WdW patch. The two light sheets intersect at the green curve, which

delimits the closed region below wherein we evaluate the action. Of course, a

symmetric counterpart is present in the past direction, which is not drawn for

clarity.

5.3 Complexity-action of a region with 3d kink

E

E

J
boundary bulk

W

W

boundary bulk

t

x

z

Figure 5.1: Intersection of the entanglement wedge and WDW patch is shown.
For clearity, only the t > 0 part of the region V+ is explicitly shown, which
should be understood as upper half of V while the lower half V− is symmetric.
As understood in the δ = 0 limit, the red line represents both the boundary
regionA and the surfaceW on the cutoff surface. The blue curve represents the
HRT surface E. The green and pink surfaces represent the null hypersurfaces
W+ and E+, and their intersection at the green curve is the surface J+.
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5.3.1 Setup

To compute the holographic complexity of a 3d kink region A in CA

approach, one has to first define the bulk region V on which we compute the

action. According to the description in the last section, this region is delimited

by a boundary that consists of 4 hypersurfaces:

W± : z = δ ± t, (x, y) ∈ A; (5.14)

E± : Xµ
±(λ) = Xµ

0 + f(λ)V µ
± (5.15)

where W± are the null boundaries of the WdW patch, and E± are the null

boundaries of the entanglement wedge. The HRT entangling surface is E =

E+ ∩ E−. We express the location of E in terms of Cartesian coordinates in

Poincare patch:

X t
0 = 0, Xz

0 = ρh(θ), Xx
0 = ρ cos θ, Xy

0 = ρ sin θ. (5.16)

The E± are generated by null normal vectors V µ
± of E:

V <
± = ±

√
1 + h2 + h′2t̂− ẑ + (h cos θ − h′ sin θ)x̂ + (h sin θ + h′ cos θ)ŷ

V >
± = ±

√
1 + h2 + h′2t̂ + ẑ− (h cos θ − h′ sin θ)x̂− (h sin θ + h′ cos θ)ŷ

(5.17)

The superscripts represent the orientation of E, since the kink with Ω and

π − Ω share the same HRT surface, but differ by its orientation. For convex

kinks with Ω < π/2, one takes V <; for concave kinks with Ω > π/2, one

takes V >. Due to the conformal flatness in Poincare patch, the light rays are
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straight lines, with linear coefficients f(λ). This reparameterization function

shall be determined later when we choose λ to be the affine parameter.

We further define W = W+ ∩ W− and J± = E± ∩ W±. W is on

the cutoff surface δ which becomes A in the δ → 0 limit. These geometrical

objects can be visually seen in Fig. 5.1

5.3.2 Subtle Issues in the Action Computation

Before we compute the action in V , there are a few issues that worth

careful studies. First, in the definition of V , the null hypersurface E may not

be smooth over the part we are interested in. The non-smoothness may be

introduced by so-called caustics. Second, as the subregion we consider is not

closed, we need a IR cutoff in order to implement the computation. There

is however subtlety about defining this IR cutoff. Finally, the computation

of action in a bulk region with boundary is not a completely well-studied

problem, and we will show the defects of the current available technique for

this computation.

5.3.2.1 Caustics

According to the focussing theorem, lightsheets are going to end on

caustics in finite amount of affine time. If the lightsheet ends before it inter-

sects with W±, the part of caustics should also be included as hypersurface

that delimit the region. Caustics can be obtained by solving for the divergence
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of expansion rate Θ of the lightsheet congruence

Θ± =
1√
g±

∂
√
g±

∂λ
(5.18)

where g±,αβ(λ) is the induced metric on equal λ slice of the light sheet (see

Appendix 5.7), and λ should be the affine parameter of the geodesic Xµ
±(λ).

We can solve the geodesic equation kµ∇µk
ν = 0 for kµ ≡ ∂Xµ

±/∂λ, which

yields

f<(λ) =
λρ2h(θ)2

L2 + λρh(θ)
, f>(λ) =

λρ2h(θ)2

L2 − λρh(θ)
. (5.19)

One can then solve for the expansion

Θ± = − 2λρ2h2

L4 − λ2ρ2h2
, (5.20)

which diverges at

λ = λc ≡
L2

ρh
. (5.21)

This result does not depend on convexity of the kink (same for both super-

scripts < and >).

To see if the caustic occurs before reaching the intersection J±, we can

solve for the λ values on J± by combining (5.14) and (5.15), thus Xz
±(λ∗) =

δ ±X t
±(λ∗), as:

λ<∗ =
λc(ρh− δ)

ρh
√

1 + h2 + h′2 + δ
, λ<∗ =

λc(ρh− δ)
ρh
√

1 + h2 + h′2 − δ
. (5.22)

Hence in our case, λ∗ < λc for all ρ and θ, and for both convex and concave

kinks, which means that the caustics is totally outside of the region V , so that

we don’t need to worry about it.
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5.3.2.2 IR cutoff

Another tricky issue is the IR cutoff of the region. One would naively

use the same cutoff R for radius coordinate on both A and E, but they are

actually not consistent because the hypersurfaces E± and W± will not match

exactly to enclose the region. To unambiguously define the IR cutoff, we can

only set constant cutoff R for either of A and E, and find the cutoff on the

other by following the null rays on the hypersurfaces, as shown by the dashed

arrows in Fig.5.2. As we have already parameterized E± in terms of coordinates

(ρ, θ) on E, it should be easier to work with a constant IR cutoff at ρ = R

where ρ is defined to be projected radial coordinate on E.

We want to use ρ, θ to parameterize the whole region V , so that the

parameter range bounded by constant cutoff R sets the true range of V . As

the parameterization has been done along E up to the surface J as Xµ(λ),

0 < λ < λ∗, we would like to continue along W towards the boundary surface

W . We follow the null rays that generate W , denoted by

U± = ∓t̂− ẑ, (5.23)

with integral curve

W± : X̃µ
±(η) = Xµ

±(λ∗) + ηUµ
±. (5.24)

The starting point Xµ
±(λ∗) is at the joint surface J±, while the ending at W

is solved through X̃z
±(η∗) = δ as,

η<∗ =
1 + h2

H+

(ρh− δ), η>∗ =
1 + h2

H−
(ρh− δ), (5.25)
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E

J

W

E

W

boundary

bulk

ρ
IR

?

z

y

x

Figure 5.2: This is also showing the region V , but with time direction sup-
pressed by projection so that both spatial directions can be shown explicitly.
The yellow plane is the boundary space, with the red curve denoting the sur-
face of the kink. The blue surface is the HRT surface E and the purple one is
J . The null hypersurfaces E and W are the volume between E and J and the
volume between the boundary and J , while the red and green dashed arrows
are typical null rays on them. It is clear that if we choose ρ = R constant IR
cutoff on E as shown here, the red null ray matches a corresponding green null
ray only when the IR cutoff on the boundary takes the purple dashed curve
instead of the naive orange circle.

where

H± ≡ 1 + h2 ±Kh2 (5.26)

is a shorthand notation used throughout the paper. Now the surface W is

parameterized as X̃µ(η∗, ρ, θ) where ρ < R sets the cutoff boundary, as shown

in Fig. 5.2 by the purple dashed curve.

In Fig. 5.3, we show exact shape of W for different kink openning

angles. The blue shades are the true range of W while the yellow shades are
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Figure 5.3: We plot the shape of surface W for different openning angles,
labeled by corresponding values of h0. The cutoff R is taken to be 10. The
yellow shade represent the projection of E which has the shape of a sector
with radius R = 10, and the blue shade is the true range of W with the same
IR cutoff.

the projection of E on the boundary that has constant radial cutoff. We can

see that when the openning angle is small, the extra piece is small and the

volume is dominated by the sector shape of the projection; for large openning

angle, the shape becomes much larger than the projection. In the limit of flat

angle kink, W will have the shape of a half strip. For any openning angles,

the two regions share the same boundary surface as the two straight sides.

Now that we parameterized all the boundary hypersurfaces by (ρ, θ),
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we can naturally extend the parameterization to the whole region V together

with ζ = f(λ) and η:

Vµ±(ζ, η, ρ, θ) = Xµ
0 (ρ, θ) + ζV µ

± (ρ, θ) + ηUµ
± (5.27)

with range of parameters

0 < ρ < R, 0 < h < h0, ρh > δ,

0 < ζ < ζ∗ = f(λ∗), 0 < η < η∗,
η

η∗
<

ζ

ζ∗
.

(5.28)

The last condition is to restrict the parameterization V± to ±t > 0 region, and

hence V = V+ t V−. Due to time reflection symmetry, the action should be

twice the action in either of V±.

For readers’ convenience, we also write the bulk reparameterization

explicitly in the form of coordinate transformation (for convex kink):

t = ±ζ
√

1 + h2 + h′2 ∓ η,

z = ρh− ζ − η,

x = ρ cos θ + ζ(h cos θ − h′ sin θ),

y = ρ sin θ + ζ(h sin θ + h′ cos θ).

(5.29)

5.3.2.3 Higher Codimension Manifolds on the Boundary

We can write down the most general form of gravitational action as

Igrav =
1

8πG

D∑
d=0

nd∑
i

∫
Σ

(d)
i

√
σ

(d)
i φ

(d)
i , (5.30)

where Σ
(d)
i are dimension d manifolds with metric σ

(d)
i that are relevant for the

spacetime region in which we compute action. In particular, Σ
(D)
i are the bulk
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regions with D the total dimension of spacetime. For this bulk integration,

the integrand is, say, the Einstein-Hilbert term, hence φ(D) = 1
2
R + Λ. When

d < D, Σ
(d)
i are manifolds on the boundaries of Σ

(D)
i . For example, a cube is

a region Σ(D=3) with boundary manifolds Σ
(2)
1,··· ,6 as the surfaces, Σ

(1)
1,··· ,12 as the

edges and Σ
(0)
1,··· ,8 as the vertices. For Σ(D−1), as long as it is non-null, we have

the usual York-Gibbons-Hawking (YGH) term φ(D−1) = K, i.e. the trace of

the extrinsic curvature.

Note that for Lorentzian spacetime there can be null manifolds on the

boundary, which has degenerate metric. Contributions from null Σ
(D−1)
i has

been studied [124], which shows that the volume form should be modified and

the integrand should be the surface gravity:

1

8πG

∫
null Σ

(D−1)
i

√
σ

(D−2)
i κ dλ dxD−2, (5.31)

where λ is the null parameter and κ is the surface gravity associated with null

vector field ∂/∂λ. Inspired by the CA conjecture, further studies have been

done for contributions from higher codimension manifolds. The codimension

2 non-null manifolds, called joints, were studied in [103] which provides the

integrand as

φ
(D−2)

Σ
(D−1)
i ∩Σ

(D−1)
j

= ± log
ki · kj

2
, (5.32)

where the joint is specified as intersection of two codimension 1 manifolds

Σ
(D−1)
i,j . We only present here the case when both Σ

(D−1)
i,j are null, as it is the

only relevant case for our computation. ki,j = ∂/∂λi,j are null generators of
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the codimension 1 manifolds, and the sign depends on the orientation of the

intersection.

In this paper, we only compute the action up to the joint contributions

as

Itotal = Ibulk + IYGH + Inull + Ijoint, (5.33)

omitting the higher codimention singular features, which need further analysis

and remain unknown. Although it was mentioned in [125] that a high codi-

mension conical singularity can be regulated to a geometry with only lower

dimensional singular surface, and through the regulation it was shown that the

conical singularity does not contribute to the action, the regulation method

cannot be generalized to deal with general singular features, like polyhedral

singularity, i.e. the intersection of several hypersurfaces. The polyhedral sin-

gularity naturally appear in any subregion CA computation, the common one

being the codimension 3 manifold ∂W sitting at the intersection of all of the

four E± andW± hypersurfaces. For our case when there is additional singular

feature on the surface of the boundary subregion, it introduces even higher

codimension singularity on ∂W . These are all polyhedral singularity that can-

not be reduced through regulation, therefore we can only list them here for

future studies on corner contributions to gravitational action.
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5.3.3 Bulk contributions

Let’s first deal with the bulk action, which is simply the Einstein-

Hilbert term in our AdS vacuum case,

Ibulk =
1

16πG

∫
V

√−g (R− 2Λ) = − 3

8πGL2

∫
V

√−g (5.34)

It would be convenient to write the metric in the new set of coordinates

ξa = {ζ, η, ρ, θ}, so that it’s given by

gξab =
∂Vµ
∂ξa

∂Vν
∂ξb

g0
µν (5.35)

where g0 is the original Cartesian coordinates of AdS4. Its determinant turns

out to have the simple form√
−gξ< =

(1 + h2)H+(ρh− 2ζ)

K2h5(ρh− ζ − η)4
L4, (5.36)√

−gξ> =
(1 + h2)H−(ρh+ 2ζ)

K2h5(ρh+ ζ − η)4
L4. (5.37)

We first integrate along ζ and η directions. According to eq(5.28), we

get

Ibulk ≡ −
3

8πGL2

∫
Aδ

dθ dρ 2

∫ ζ∗

0

dζ

∫ η∗
ζ∗
ζ

0

dη

√
−gξ<

>

=

∫
Aδ

dθ dρ

(
− L2

8πG

)
×

(1 + h2)2(ρh− δ)2
[
h(1 + h2)H∓ρ

2 + 2(H2
± − 2K2h4)ρδ ±Kh(3H+ + 2Kh2)δ2

]
Kh5H±ρδ2(ρ+ ρh2 ±Khδ) .

(5.38)
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The range of (ρ, θ) is denoted by Aδ indicating that the parameter range in

the bulk should be cutoff by z = δ, and hence is slightly smaller than eq(5.2).

The integration can be written explicitly in two forms as∫
Aδ

dθ dρ =

∫ h0

δ/R

2ω(h) dh

∫ R

δ/h

dρ

=

∫ R

δ/h0

dρ

∫ h0

δ/ρ

2ω(h) dh.

(5.39)

We use the first form because the ρ integration is usually much easier and might

be carried out analytically. Using the technique developed in the Appendix 5.6,

we can evaluate the integration in Aδ to get the divergence structure (5.74).

5.3.4 Boundary contributions

The spacetime region we are interested in only has null codimension

1 boundary hypersurface, thus the YGH term is irrelevant. For the null hy-

persurfaces E± and W±, we can choose the affine parameters and make it

vanishes. The only term left would be the Ijoint, which consists of three terms:

Ijoint = IW + 2IJ + IE (5.40)

where IJ ≡ IJ+ = IJ− due to symmetry. In terms of affine parameters, the

null generators of the 4 hypersurfaces are

kW±,µ = αg0
µνU

ν ;

k
<
>
E±,µ = −βg0

µν(V
<
>
± )ν(λ),

(5.41)

where α, β are positive normalization factors, and the signs are chosen so that

these are outward pointing one forms. The integrands of these joint terms are
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respectively

aW = − log

[
1

2
kW+,µg

0,µνkW−,ν)

]
= − log

α2δ2

L2

a
<
>
J = log

[
1

2
kW±,µg

0,µνk
<
>
E±,ν

]
= log

αβ(ρ+ ρh2 ±Khδ)2

2KH±L2

aE = − log

[
1

2
kE+,µg

0,µνkE−,ν

]
= − log

β2ρ2(1 + h2)2

K2h2L2

(5.42)

The joint contribution can then be expressed as

Ijoint =
1

8πG

∫
Aδ

dρ dh
∑

∈{W,J+,J−,E}

a
√

det g, (5.43)

where g is given in Appendix 5.7, and the integration is carried out in Ap-

pendix 5.6.

5.4 Final Result and Discussions

Adding the contributions from bulk and boundary, the total action is

obtained in (5.84), which I copied here:

I
(div)
total = v̄0

VA
δ2

+ b̄0(h0)
V∂A
δ

+ k0
1(h0) log

R

δ
+ k0

2(h0) log2 R

δ

+ log
L

αδ

[
v̄α0
VA
δ2

+ b̄α0 (h0)
V∂A
δ

+ kα1 (h0) + kα2 (h0) log
R

δ

]
+ log

L

βδ

[
kβ1 (h0) + kβ2 (h0) log

R

δ

]
,

(5.44)

where the coefficient functions are defined in (5.85). We can see explicitly the

volume law term that is proportional to the volume VA, and the area law term

that is proportional to the area V∂A = 2R, both defined in (5.86). In addition,

there are divergences of order log δ and order log2 δ.

142



5.4.1 Geometric Origin and Cutoff Dependence

In light of the discussions in [16], the divergence structure of the holo-

graphic complexity of subregion A can be expressed in terms of volume inte-

gration in A and surface integration on ∂A

CA =

∫
A
v(R, K; ξ) +

∫
∂A
b(R, K̃; s, t; ξ), (5.45)

In the above equation, we have R denoting the spacetime curvature, K denot-

ing the exterior curvature of the time slice, K̃ denoting the exterior curvature

of ∂A, and s, t denoting the spacelike and timelike normal vectors of the ∂A.

We added dependence of ξ denoting the collection of CFT parameters, which

are dimensionless and should determine the coefficients of various combina-

tions of curvatures in the integrands.

This expression is only for subregions with smooth surface, similar to

gravitational action only with YGH term. In general, there could be higher

codimension defects on the surface, like the cube example we mentioned in

Sec. 5.3.2.3, and these defects could contribute independently to the complex-

ity. Thus the most general form would be an expression similar to (5.30). In

this paper, we only deal with a kink shape in two spatial dimensions, where the

only singularity on the surface is the point-like kink tip. Thus the only extra

term we expect is a local contribution that does not involve any integrations.

For higher dimensional subregions with singular surface, integration might be

needed for contributions from non-point-like creases.
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The main point of this notation is that these integrands are local func-

tions in A or on ∂A. In our kink case, all curvatures involved in the volume

and area integrations vanish: R = 0 because we are in Poincare patch, K = 0

as we are on a trivial flat time slice, and K̃ = 0 for the straight sides of the

kink. Hence, we expect the integrands to be constants, and the integrations

simply give the volume and surface area of A. These are the volume law terms

and area law terms shown above.

The locality of the integrands also imply that the coefficients of the

volume and area terms are independent of the kink angle Ω or h0. As expected,

the volume law coefficients v̄0 = −1/2 and v̄α0 = 1 are constants. However, we

find that our area law coefficients depend on the openning angle, as seen from

(5.85):

b̄0(h0) =
3− 2 log 2

2
+ ∆(h0), b̄α0 (h0) = −1−∆(h0). (5.46)

As a comparison, we can look at a smooth surface case, like a spherical

region in Poincare patch [16]. For example, a disk region in CFT3 has “CA”

complexity

CA(disk) =
L2

4π2G

[(
−1

2

πR2

δ2
+

3− 2 log 2

2

2πR

δ
− 4π log

R

δ

)

+ log
L

αδ

(
πR2

δ
− 2πR

δ
− π

)]
.

(5.47)

The volume law coefficients are exactly the same, while the area law coefficients

differ by a h0 dependent shift ∆(h0). This function has been plotted in Fig. 5.4,
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Figure 5.4: The ∆(h0) shift function both for convex and concave kinks are
presented. The function is zero for zero convex angle, and remains negative for
a while as the angle increases. Afterwards, it increases monotonically towards
infinity. When the openning angle crosses the flat angle, hence the smooth
limit case, the function has value 1 (in unit of L2/4πG).

from which it is clear that it vanishes for zero openning angle, and approaches

1 (in unit of L2

4πG
) in the h0 → ∞ smooth limit. It has a small dip into the

negative values when the openning angle was very small, and then increase

monotonically towards infinity as the openning angle continue increasing to

the Ω → π limit, which corresponds to moving to right infinity along the

“convex” branch and coming back along the “concave” branch to h0 → 0.

This weird area law contribution has the origin as the subleading term in

the volume of W , as shown in (5.86). One can easily show that for ordinary

constant IR cutoff on the boundary, no subleading term at this order would

appear. Afterall, coefficients at this order are still cutoff dependent, so this

extra contribution may not have important physical meaning.

It is also interesting to observe the sign difference between the volume
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and area terms. If we assume that the terms with log L
αδ

dominates (more

details discussed in Sec. 5.4.3) over the terms without extra log δ, we end

up with positive volume law term and negative area law term. The positive

volume law is easy to understand as complexity naturally grow with the size of

subregion. If we relate the area law terms with entanglement with outside of

subregion, the negativity can also be understood as loss of detailed information

of the entanglement when the outside is traced out. This loss of information

also occurs for thermal state, when the complexity growth that is dual to the

wormhole growth is completely hidden for the one-sided thermal state.

5.4.2 Cutoff Independent Terms

Next we investigate the cutoff independent coefficients, which naturally

groups into the ones for log terms, denoted by k1, and for log2 terms, denoted

by k2, which have superscripts 0, α, β labelling the exact form of the logs.

We start by looking at the k1 functions. These functions are shown in

Fig. 5.5, where convex and concave cases are plotted separately. Note that

besides the individual contributions, we also present the sum of them as the

black curves. The sum represents the total coefficient of log δ divergence if no

extra δ dependence is introduced (for instance from the constants α, β, which

will be discussed later).

One observation is that for convex openning angles, the sum is mostly

contributed by k0
1(h0) for large angles, while kα,β1 (h0) are nealy zero. kα,β1 are

much more important in small angle region. On the other hand, for concave
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Figure 5.5: The coefficients for log divergence in the action is shown. The
left panel is for convex kink and the right panel is for concave kink. Different
contributions are labelled by different colors, while the sum is given by the
black thick curves.

kinks, kβ1 remains small, while kα1 and k0
1 are roughly opposite of each other.

In terms of additivity, the sum is mostly close to kβ1 as far as the plot shows.

Finally we look at the log2 terms k2(h0). The first observation is the

identity

kα2 + kβ2 = −2k0
2. (5.48)

This indicates a combination of the log2 level divergence structure

−2 log
L

δ
log

R

δ
+ log2 R

δ
= − log2 L

δ
+ log2 L

R
, (5.49)

where the second term is finite. It means that the way of writing it in three

parts is only an artifact from the computational technique, while the true

source of log2 term is only log term in the brackets at the second and third lines

in (5.44). The contents in these two brackets have a more direct geometrical

meaning. As shown in (5.42) and (5.43), log(L/αδ) and log(L/βδ) are constant

pieces in a which can be taken out of the integral, and the remains just give
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the volumes of the joint surfaces. It turns out that we always have

Itotal ⊃
1

4πG

[
log

L

αδ
(VW − VJ) + log

L

βδ
(VE − VJ)

]
. (5.50)

This indicates a relation with the generalized Bousso bound [126]. Note that

from (5.20), the expansion rates on E vanishes on E, which makes all four null

normal hypersurfaces bounded by E qualified as “light-sheets”. In particular,

E for both convex and concave kinks are light-sheets. On the other hand, the

expansion rate on W of congruence towards the bulk is always negative, soW

is also light-sheet.
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h0

0.1
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0.4

0.5

k2(h0)/
L2

4πG

Total
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k2β

Figure 5.6: According to the relation (5.48), it is sufficient to only present the
kα2 and kβ2 functions. The sum of them is also presented as black curve. Note
that the true total log2 coefficient should be half the sum.

The generalize Bousso bound states that the area differences of two

sections on the light-sheets bound the entropy of matter on the part of light-

sheets between the two sections. It is very powerful and was proven with weak
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assumptions recently [127, 128]. In particular,

S(W) ≤ 1

4G
(VW − VJ), S(E) ≤ 1

4G
(VE − VJ). (5.51)

The sum of the two then bounds the entropy inside the region V , because

W ∩ E is a Cauchy surface for V1.

It would be nice if the relation with Bousso bound could be valid for

complexity of all shapes of subregions. Actually, the vanishing of expansion

rates on the HRT surface is guaranteed by the extremailty condition of its

area, thus E is always a light-sheet. However, there might be a problem that

the light-sheet ends before it reaches the joint J , which does not happen in

our case because the caustic occurs after the intersection at J , as discussed in

Sec. 5.3.2.1. This though is not guaranteed in general cases. Therefore this

relation with Bousso bound may be just an accident, or it is valid for a class

of shapes with “good” property that caustic does not occur within the region

V .

Coming back to the log2 coefficients. The above arguments tend to

imply that these log2 terms come from the log piece in the generalized Bousso

bound. We have the coefficients plotted in Fig. 5.6. We further notice that

1A relation between entanglement entropy and the Bousso bound was first noticed in
[129], where the Bousso bound considered was for the entropy on the whole E , which is
saturated due to the minimality of the Ryu-Takayanagi surface. Here S(E) is saturated for
the same reason, but S(W) is far from saturation, and that’s why it is very large due to the
UV divergence of VW . But both Bousso bound may fail because of caustic issues. In the
case of kink, as is shown, there are caustics on E , so the entanglement entropy is not a good
bound for bulk entropy. But as the caustic is outside of V, the bound we find here, though
far from saturation, is a valid entropy bound for the region V.
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these coefficients do not depend on which of the convex and concave kinks is

being computed, which means that it is purely determined by the entangling

surface ∂A alone. This strongly suggests that this contribution originats from

the entanglement entropy on the boundary.

As a summary, let us list the asymptotic behaviors of all the coefficient

functions at various limits in Table. 5.1. The γ appearing in them is the one

defined in (5.8). It is clear from the middle colume of the table that all of these

2Ω→ 0 2Ω→ π± 2Ω→ 2π

k0
1

−1.22− 3.59 log h0

h0

−π ± π/2
h0

− π

h2
0

+
−2.70− 3.59 log h0

h0

kα1
−1.68 + 2.40 log h0

h0

+π ∓ π
h0

π

h2
0

+
2.42 + 2.40 log h0

h0

kβ1
−2.51 + 1.20 log h0

h0

0
−1.03 + 1.20 log h0

h0

kα2
2γ + 2

h0

π

h2
0

2γ + 2

h0

kβ2
4γ − 2

h0

π

2h2
0

4γ − 2

h0

Table 5.1: Asymptotic Behaviors of various coefficient functions at small angle
and smooth limits.

contributions seem to be from the kink feature of the subregion, because they

all vanish at the smooth limit. To further verify this, one needs to compute a

finite region with such kinks to see if these contributions appear as they are

here. It will be a very interesting future work.
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5.4.3 Determine α and β from Limiting Behavior

It was argued in [16] that the ambigous parameters α, β should be

chosen as

α = L/`α, β = L/`β, (5.52)

where `α,β are some scales in the setup. The reason is that as a boundary quan-

tity, the holographic complexity should denpend on L explicitly only through

the combination L2/G, thus L/α and L/β cannot have explicit L dependence.

The natural ways to choose the scales `α,β are left as only δ or R.

It was also pointed out that by setting `α = R, the typical size of the

subregion, the complexity would be superextensive in the sense that it grows

faster than the volume. We argue that the superextensivity is expected from

long-range entanglement in the boundary theory. Naive extensivity holds if

we only consider complexity of the UV structure of the state, but there can in

general be long-range entanglement, whose complexity “density” accumulates

logarithmically with the size, similar to the depth of MERA network for CFT

states2. Therefore, we suggest that `α = R is better interpretted than the

choice `α = eσδ made in the paper [16].

We have further evidence that we should take `α = R. Note that by

taking this value, we can combine k0
1 and kα1 by simple addition. From the

2One may still get extensivity by simply counting the number of gates in the MERA
network as complexity. But we claim that gates in MERA at different scale level could in
principle have different weights for complexity counting. To operate at larger scale will of
course cost more “simple” operations based on a sense of locality for quantum gates.
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Table. 5.1, it is easy to find that the |π/2−Ω| dependence at the smooth limit

drops off. In terms of ε = π/2− Ω and using (5.7)3, we can rewrite

lim
h0→∞

k0
1(h0) =

L2

4πG
(−2|ε| − ε), lim

h0→∞
kα1 (h0) =

L2

4πG
(2|ε|+ 2ε). (5.53)

Hence simply adding them eliminates the |ε| dependence at least at leading

order. It makes the complexity a differentiable function of angle Ω at the

smooth limit. While the importance of this differentiability remains unclear,

the “accidental” cancellation still suggests the privilege of taking `α = R.

As a side comment, we also like to point out that the cancellation of

|ε| contributions leads to the following behavior

CA(Ω) + CA(π − Ω) ∼ ε2. (5.54)

Although in “CA” we don’t have any identity like CV (A) + CV (Ā) = CV (σ)4

where σ is the whole space region, we still expect some physical meaning of

CE(A : B) ≡ CA(A) + CA(B)− CA(A ∪ B) (5.55)

which potentially describe the complexity of the entanglement between the

two regions A and B. It is then natural to assume that CE ∼ SEE(A) the

3Note that in (5.7), Ω is defined to be convex. For general Ω, we have Ω = π/2 ± π
2h0

where + sign is chosen for concave angle and − for convex angle. Thus the term with ±
sign is actually ∼ ε, while the term without ± is ∼ |π/2− Ω|.

4This identity is proposed in [16] and only holds in time-symmetric bulk geometry when
the HRT surface lies on the maximal time slice in the bulk. In more general cases, CV (A) +
CV (Ā) < CV (σ) due to the maximality of bulk time slice volume on the right side.

152



entanglement entropy when B = Ā5. We have already seen the area law

contributions that may come from the entanglement entropy. Note that there

is an extra log contribution in (5.9) to entanglement entropy of kink, which

goes like ε2 at the smooth limit according to (5.10). Thus the behavior in

(5.54) can possibly be explained as the kink contribution to the entanglement

entropy.

There is another “accident” in the Table. 5.1. If we simply add all the

k1 functions, at small angle behavior we have

lim
Ω→0

(k0
1(h0) + kα1 (h0) + kβ1 (h0)) =

−5.4

h0

L2

4πG
,

lim
Ω→π

(k0
1(h0) + kα1 (h0) + kβ1 (h0)) =

−1.3

h0

L2

4πG
.

(5.56)

Note that all the log(h0)/h0 behavior exactly cancels6. It is also unclear

whether this cancellation is important or not, but this “accident” suggests

a simple addition of all the three terms, and hence the choice of `β = R.

In sum, the complexity for the choice `α = `β = R is then

I
(div)
total =

(
v̄0 + v̄α0 log

R

δ

)
VA
δ2

+

(
b̄0(h0) + b̄α0 log

R

δ

)
V∂A
δ

+ k1(h0) log
R

δ
+ k2(h0) log2 R

δ
.

(5.57)

where k1 = k0
1 + kα1 + kβ1 , k2 = k0

2 + kα2 + kβ2 . We can identify the constants

5For the general case B 6= Ā, one may expect that CE ∼ I(A : B) the mutual infor-
mation, or other measure of entanglement between bipartite state like the entanglement of
purification [130].

6The cancellation is examined analytically, thus it is not a numerical artifact.
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appearing in the aymptotic behavior of k1(h0) as “corner charges”:

lim
Ω→0

k1(h0) =
−5.4

h0

L2

4πG
=
−9.04

Ω

L2

4πG
≡ κC

Ω
,

lim
Ω→π

k1(h0) =
−1.3

h0

L2

4πG
=
−2.19

Ω

L2

4πG
≡ κ′C

Ω
.

(5.58)

similar to the studies of entanglement entropy [119]. Note that there are two

κ charges due to the lack of symmetry between A and Ā in complexity. The

corner charge for smooth limit is given by (5.53) as

lim
Ω→π/2

k1(h0) =
L2

4πG
ε ≡ σCε, (5.59)

where we chose the linear coefficient with respect to the deviation ε while in

the entanglement entropy case it was the quadratic coefficient. There are no

obvious relations between the corner charges for complexity due to lack of

analyticity in the computation, and the universality for them to describe the

underlying CFT is also unknown before more examples are investigated.

Finally, it was suggested in [87] that α should be interpretted as choice

of reference state in the definition of field theory complexity. In light of this,

we suggest that

`α = `β = eσ̃πR, (5.60)

where the parameter σ̃ characterizes the change of the normalizations due to

change of the reference states. This scale factor does not affect the analysis

above. The only change is that, according to (5.51), besides the results we

have in (5.57) we have additional term as

Itotal(σ̃) = Itotal(0) + σ̃SB, (5.61)
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where SB is the generalized Bousso bound on entropy within the causal di-

amond V . This indicates that the complexity depends on reference state as

linearly in σ̃ in unit of the Bousso entropy bound.

5.5 Conclusions

Inspired by the holographic entanglement entropy studies for bound-

ary subregions with singular surface [118–120], and similar computations of

complexity-volume for the same subregions [121], we studied the computation

of complexity-action for the simplest subregion with singular surface, i.e. the

3D kink. After careful exploration of techniques used in the computation, we

obtained the subregion complexity of 3D kink, which consists of volume law

term, area law term, and cutoff independent divergent terms of order log δ and

log2 δ.

Besides the computational techniques, there are also a few discussions

of the property of the result that worths taking away. First, there are a few

hints discovered for the contribution from entropy to the complexity. What is

more, these hints are all absent in the approach of CV.

1. The appearance of area law terms and its negative sign. As explained in

Sec. 5.4.1, the negative area law contribution can be attributed to the

loss of information of entanglement. Although the general CV subregion

complexity can have area law contribution, and it should be negative due

to the inequality CV (A) +CV (Ā) ≤ CV (A∪Ā) (explained in footnote 4),

155



the fact that it may vanish in some case seems inconsistent with this

interpretation.

2. The vanishment of |ε| dependence in the smooth limit. It both renders

the differentiability of complexity across the flat angle, which is a plausi-

ble requirement, and also makes sure that CV (A) +CV (Ā) behaves as ε2,

similar to the entanglement entropy. On the other hand, k2(h0) is sym-

metric for convex and concave kinks, which reveals the fact that it only

originates from the entangling surface. The log or log2 divergences may

account for the kink contribution to the entanglement entropy, which is

also at log level.

Second, there is also explicit relation between subregion complexity and

the Bousso entropy bound, though the bound considered here seems far from

saturated. One interesting relation is that the Bousso bound for V seems to

set the rate of change of complexity with respect to the reference state labelled

by σ̃ defined in (5.61).

Next, we made a comment on the superextensivity of subregion com-

plexity, due to the extra leading log in the volume and area law terms. We

claim that as the size of subregion grows, more and more long range entangle-

ments, like more layers in MERA network, should be counted whose complexity

density may be similar to the short range entanglement layers. The number

of layers would be log of the size of the subregion, thus the overall leading

contribution should go like V log V instead of V for simple extensivity. The
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same argument goes for area law terms.

A striking side effect of the kink computation is that it gives hints

about the determination of the normalization parameters α, β. Among the

only choices R, δ in this setup, `α,β ∼ R are both favored according to the

accidental cancellation of certain terms in the log coefficients when they are

summed. The conclusion is (5.61), where extra freedom of scaling is allowed

to account for the change of reference states.
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5.6 Appendix I: Details of Action Computation

We adopt the following procedure to do ρ and θ integrations over the

range defined by Aδ. Using eq(5.39), we obtain

F =

∫
Aδ

dθ dρ f0(ρ, h(θ), δ) =

∫ h0

δ/R

2ω(h) dh

∫ R

δ/h

dρ f0(ρ, h, δ). (5.62)

The ρ integration is usually carried out analytically, so we can define

f1(h, δ) = 2ω(h)

∫ R

δ/h

dρ f0(ρ, h, δ). (5.63)

Then we series expand f1(h, δ) in powers of h, and extract the part that is

divergent at h = 0

f1(h, δ) = fdiv(h, δ) + f2(h, δ). (5.64)

As fdiv is in power series of h, its integration can be carried out explicitly

Fh(δ) =

∫ h0

δ/R

fdiv(h, δ), (5.65)

while we do integration of f2(h, δ) for each divergent powers of δ numerically.

Namely, for the expansion

f2(h, δ) =
f

(2)
2 (h)

δ2
+
f

(1)
2 (h)

δ1
+ f

(0)
2 (h) log δ +O(δ0), (5.66)

we get

F (i) =

∫ h0

0

dh f
(i)
2 (h)−

∑
j>i

[∫ δ/R

0

dh f
(j)
2 (h)

] ∣∣∣∣∣
O(δj−i)

(5.67)
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for ith order divergence. Note that although the regularity at h = 0 guarantees

that there’s no new divergence from integration at h = 0, it can still produce

weakend divergence from the second term above. For instantce
∫ δ/R

0
dh f

(2)
2 (h)

may contribute to F (1) if f
(2)
2 (0) 6= 0. In sum, the UV divergent part of the

integral F is

Fdiv = Fh(δ) +
∑
i

F (i)δ−i (5.68)

There is a subtlety in this procedure. Although f2(h, δ) is regular at

h = 0 by design, after expansion in δ, it may not be regular order by order.

We are lucky that in our case the coefficients f
(i)
2 (h) are all integrable at h = 0.

Now we apply this procedure to the real calculations. In what follows,

the functions ω(h), H±(h) and the integration constant K appear frequently

in our calculations. They are defined in equations (5.6) , (5.26) and (5.5)

respectively. For sake of completness we list them again here:

K =
1 + h2

h2
√

1 + h2 + h′2
=

√
1 + h2

0

h2
0

(5.69)

ω(h) =
Kh2√

(1 + h2)(1 + h2 −K2h4)
(5.70)

H±(h) ≡ 1 + h2 ±Kh2 (5.71)

5.6.1 Bulk contributions

First look at the bulk contribution eq(5.38):

f0(ρ, h, δ) = − L2

8πG

(1 + h2)2(ρh− δ)2

Kh5H±ρδ2(ρ+ ρh2 ±Khδ)
×
[
h(1 + h2)H∓ρ

2 + 2(H2
± − 2K2h4)ρδ ±Kh(3H+ + 2Kh2)δ2

]
.

(5.72)
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where the ± are for convex and concave kinks respectively. The ρ integration

can be done analytically to get f1(h, δ), which decomposes as

f1(h, δ) = fdiv(h, δ) + f2(h, δ),

fdiv(h, δ) =
L2

4πG

[
2δ

Rh3
+

1

h2

(
3 log

Rh

δ
− 3

2
− Kδ2

2R2

)
+

2Kδ

Rh

]
,

f2(h, δ) =
L2

4πG

[
B2(h)

R2

δ2
+ B1(h)

R

δ
+ B0(h) log

[
R

δ

]
+O(δ0)

]
.

(5.73)

Note that the non-zero limit of B2 at h = 0 will contribute to the δ−1 divergence

after integrated against the UV cutoff region, as indicated by the second term

in eq(5.67). Overall, the UV divergences are:

I
(div)
bulk =

∫ h0

δ/R

fdiv(h, δ)− L2

4πG

∫ δ/R

0

dh B2(0)
R2

δ2

+
L2

4πG

∫ h0

0

dh

[
B2(h)

R2

δ2
+ B1(h)

R

δ
+ B0(h) log

[
R

δ

]]
+O(δ0)

=
L2

4πG

[(∫ h0

0

dh B2(h)

)
R2

δ2
+

(
3 +

∫ h0

0

dh B1(h)

)
R

δ

+

(
− 3

h0

+

∫ h0

0

dh B0(h)

)
log

[
R

δ

]]
.

(5.74)

where the integrands for the numerical integrations are

B2(h) = −(1 + h2)H∓
2Kh2H±

ω(h),

B1(h) = ∓4(1 + h2)

hH±
ω(h),

B0(h) = − 3

h2

(
1− 1 + h2

Kh2
ω(h)

)
± 3(1 + h2)2 −K2h4

h2(1 + h2)H±
ω(h).

(5.75)
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5.6.2 Joint contributions

Next look at the joint contribution eq(5.43). After the ρ integration,

we have

fW1 (h, δ) ≡ 2ω(h)

8πG

∫ R

δ/h

dρ aW
√

det gW

=
L2

4πG

[
− 1

h2
+ J20(h)

R2

δ2
+ J10(h)

R

δ
+ J̃W

0 (h)

]
log

L

αδ
, (5.76)

fJ1 (h, δ) ≡ 2ω(h)

8πG

∫ R

δ/h

dρ aJ±
√

det gJ±

=
L2

8πG

[
1

2h2

(
log2 R2

Kδ2
− log2Kh2

)
+ J J

00(h) log2 R

δ
+ J J

0 log
R

δ

+

(
− 2

h2
log

Rh

δ
+ J̃ J

00(h) log
R

δ
+ J̃ J

0 (h)

)
log

2L2

αβδ2

]
, (5.77)

fE1 (h, δ) ≡ 2ω(h)

8πG

∫ R

δ/h

dρ aE
√

det gE

=
L2

4πG

[
1

h2

(
log2Kh2 − log2 R

Khδ

)
+ J E

00(h) log2 R

δ
+ J E

0 log
R

δ

+

(
2

h2
log

Rh

δ
+ J̃ E

00(h) log
R

δ
+ J̃ E

0 (h)

)
log

L

βδ

]
. (5.78)

The result is thus

I
(div)
joint =

∫ h0

δ/R

dh (fW1 + 2fJ1 + fE1 ), (5.79)
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where the h = δ/R contributions give

FW
h −

∫ δ/R

0

dh J20(h)
R2

δ2
=

L2

4πG

(
1

h0

− 2R

δ

)
log

L

αδ
, (5.80)

F J
h =

L2

8πG

[(
4 log

R

δ
− 2 logK − 4

)
R

δ
+

2 logK

h0

log
R

δ
− 2

h0

log2 R

δ

+

(
−2R

δ
+

2

h0

log
R

δ
+

2

h0

(1 + log h0)

)
log

2L2

αβδ2

]
, (5.81)

FE
h =

L2

4πG

[(
−4 log

R

δ
+ 2 logK + 6

)
R

δ
− 2

h0

(1 + logKh0) log
R

δ
+

1

h0

log2 R

δ

+

(
2R

δ
− 2

h0

log
R

δ
− 2

h0

(1 + log h0)

)
log

L

βδ

]
. (5.82)

Note that the second lines in eq(5.81) and eq(5.82) are exactly opposite, indi-

cating no dependence on β. Roughly speaking, these contributions are from

∂A. It is interesting to see that although the β dependence does not vanish in

general, it might only come from the interior of the boundary region A. We
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list the integrands of the numerical integrations as follows

J20(h) =
(1 + h2)H∓
Kh2H±

ω(h),

J10(h) = ±4(1 + h2)

hH±
ω(h),

J̃W
0 (h) =

1

h2

(
1− 1 + h2

Kh2
ω(h)∓ 2(1 + h2)

H±
ω(h)

)
,

J J
0 (h) =

2

h2

(
logK +

H+H−
Kh2(1 + h2)

log
(1 + h2)2

KH±
ω(h)

)
,

J J
00(h) = − 2

h2

(
1− H+H−

Kh2(1 + h2)
ω(h)

)
,

J̃ J
0 (h) =

2

h2

(
log h+

(
H+H−

Kh2(1 + h2)
log

H±
h(1 + h2)

− Kh2

1 + h2
∓ 1

)
ω(h)

)
,

J̃ J
00(h) =

2

h2

(
1− H+H−

Kh2(1 + h2)
ω(h)

)
,

J E
0 (h) = − 2

h2

(
log(Kh) +

1 + h2

Kh2
log

1 + h2

Kh
ω(h)

)
,

J E
00(h) =

1

h2

(
1− 1 + h2

Kh2
ω(h)

)
,

J̃ E
0 (h) =

2

h2

(
− log h+

1 + h2

Kh2
log(h)ω(h)

)
,

J̃ E
00(h) = − 2

h2

(
1− 1 + h2

Kh2
ω(h)

)
.

(5.83)

The naming rules are 1) J stands for joint contributions instead of bulk ones

denoted by B; 2) the subscripts denote the order of divergence, i.e. 2 for

δ−2, 1 for δ−1, and each 0 for one log δ; 3) the superscripts show which joint

surface source this term; 4) the tildes indicate that one of the log is of the form

log(L/δ) instead of log(R/δ), which may or may not be important for future

study.
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5.6.3 Total Results

Now we can wrap up all the contributions and summarize as the fol-

lowing

I
(div)
total = v̄0

VA
δ2

+ b̄0(h0)
V∂A
δ

+ k0
1(h0) log

R

δ
+ k0

2(h0) log2 R

δ

+ log
L

αδ

[
v̄α0
VA
δ2

+ b̄α0 (h0)
V∂A
δ

+ kα1 (h0) + kα2 (h0) log
R

δ

]
+ log

L

βδ

[
kβ1 (h0) + kβ2 (h0) log

R

δ

]
,

(5.84)

where the coefficients are

v̄0 =
L2

4πG

(
−1

2

)
, b̄0(h0) =

L2

4πG

[
3− 2 log 2

2
+ ∆(h0)

]
,

k0
1(h0) =

L2

4πG

[
− 1

h0

(5− 2 log 2 + 2 log h0)

+

∫ h0

0

dh
(
B0(h) + J E

0 (h) + J J
0 (h) + log 2 J̃ J

00(h)
)]

,

k0
2(h0) =

L2

4πG

[
− 1

h0

+

∫ h0

0

dh
(
J E

00(h) + J J
00(h)

)]
,

v̄α0 =
L2

4πG
, b̄α0 (h0) =

L2

4πG
[−1−∆(h0)] ,

kα1 (h0) =
L2

4πG

[
1

h0

(3 + 2 log h0) +

∫ h0

0

dh
(
J̃W

0 (h) + J̃ J
0 (h)

)]
,

kα2 (h0) =
L2

4πG

[
2

h0

+

∫ h0

0

dh J̃ J
00(h)

]
,

kβ1 (h0) =
L2

4πG

∫ h0

0

dh
(
J̃ E

0 (h) + J̃ J
0 (h)

)
,

kβ2 (h0) =
L2

4πG

∫ h0

0

dh
(
J̃ E

00(h) + J̃ J
00(h)

)
.

(5.85)

The volume VA is defined to be the leading order in the volume of W which

should be equal to the volume of A with appropriate IR cutoff, with induced
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metric on joint W at the cutoff surface (c.f. Appendix 5.7), which can be read

off in (5.76) and (5.80) as∫
W

√
det gW =

L2

δ2

(
VA − δ∆(h0)V∂A +O(δ2)

)
,

VA = R2

∫ h0

0

dh J20(h), V∂A = 2R,

∆(h0) = 1− 1

2

∫ h0

0

dh J10(h).

(5.86)
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5.7 Appendix II: Induced Geometry on the Null Hy-
persurfaces

In this appendix, some detailed calculations about the null hypersurface

geometry will be carried out. These results are involved in several discussions

like Sec(5.3.2) and the joint contribution computations.

Because we are always using wα = (ρ, θ) defined on the HRT surface

as the parameters, the light sheet geometry is mostly convenient to be studied

as induced geometry following the flow of V µ
± and Uµ

±. Starting from the HRT

surface, from eq(5.15) we get the induced metric on E±:

g±αβ(λ) =
∂X±µ (λ)

∂wα
∂X±ν (λ)

∂wβ
g0
µν ,√

det g±(λ) =
(1 + h2)(λ2

c − λ2)ρ

Kh2L2
.

(5.87)

As λ is chosen to be affine parameter, the expansion rate of the congruence

V µ
± can be computed

Θ± =
1√

det g±(λ)

∂

∂λ

√
det g±(λ) = − 2λ

λ2
c − λ2

. (5.88)

As expected, the monotonicity is predicted by focusing theorem, and it blows

up to negative infinity at the caustic.

Next we investigate the hypersurfaces W±. With eq(5.24), we write

down the induced metric

g̃±αβ(η) =
∂X̃±µ (η)

∂wα
∂X̃±ν (η)

∂wβ
g0
µν ,√

det g̃(η(λ̃)) =
(1 + h2)(H±L

2 + λ̃h(ρ+ ρh2 ±Khδ))2(ρH∓ ± 2Khδ)

Kh4H±L2(ρ+ ρh2 ±Khδ)2
.

(5.89)
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Here we reparameterize with affine parameter λ̃ for future convenience

η
<
>(λ̃) =

λ̃h2(ρ(1 + h2)±Khδ)2

H±[H±L2 + λ̃h(ρ(1 + h2)±Khδ)]
. (5.90)

and we drop the ± superscript due to time reflection symmetry. We also

restore the > and < superscripts for concave and convex kinks respectively.

We recognize the induced metric on the joint surfaces as g and g̃ at different

ends of the affine parameter ranges, and obtain the relations:√
det g(0) ≡

√
det gE =

(1 + h2)

Kh4ρ
L2,√

det g
<
>(λ∗) =

√
det g̃

<
>(0) ≡

√
det g

<
>
J =

(1 + h2)H±(ρH∓ ± 2Khδ)

Kh4(ρ(1 + h2)±Khδ)2
L2,√

det g̃
<
>(η∗) ≡

√
det g

<
>
W =

(1 + h2)(ρH∓ ± 2Khδ)

Kh2H±δ2
L2.

(5.91)
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Classical Yang-Baxter Equation from Supergravity. 2017.

[110] Leonard Susskind. Butterflies on the Stretched Horizon. 2013.

[111] Leonard Susskind. Entanglement is not enough. Fortsch. Phys., 64:49–

71, 2016.

[112] Mohsen Alishahiha. Holographic Complexity. Phys. Rev.,

D92(12):126009, 2015.

[113] Omer Ben-Ami and Dean Carmi. On Volumes of Subregions in Holog-

raphy and Complexity. JHEP, 11:129, 2016.

181



[114] H. Casini and M. Huerta. Universal terms for the entanglement entropy

in 2+1 dimensions. Nucl. Phys., B764:183–201, 2007.

[115] H. Casini, M. Huerta, and L. Leitao. Entanglement entropy for a

Dirac fermion in three dimensions: Vertex contribution. Nucl. Phys.,

B814:594–609, 2009.

[116] Pablo Bueno, Robert C. Myers, and William Witczak-Krempa. Universal

corner entanglement from twist operators. JHEP, 09:091, 2015.

[117] Robert C. Myers and Ajay Singh. Entanglement Entropy for Singular

Surfaces. JHEP, 09:013, 2012.

[118] Pablo Bueno, Robert C. Myers, and William Witczak-Krempa. Uni-

versality of corner entanglement in conformal field theories. Phys. Rev.

Lett., 115:021602, 2015.

[119] Pablo Bueno and Robert C. Myers. Corner contributions to holographic

entanglement entropy. JHEP, 08:068, 2015.

[120] Pablo Bueno and Robert C. Myers. Universal entanglement for higher

dimensional cones. JHEP, 12:168, 2015.

[121] Elaheh Bakhshaei, Ali Mollabashi, and Ahmad Shirzad. Holographic

Subregion Complexity for Singular Surfaces. 2017.

[122] Sergei N. Solodukhin. The Conical singularity and quantum corrections

to entropy of black hole. Phys. Rev., D51:609–617, 1995.

182



[123] Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi. A

Covariant holographic entanglement entropy proposal. JHEP, 07:062,

2007.

[124] Krishnamohan Parattu, Sumanta Chakraborty, Bibhas Ranjan Majhi,

and T. Padmanabhan. A Boundary Term for the Gravitational Action

with Null Boundaries. Gen. Rel. Grav., 48(7):94, 2016.

[125] Shira Chapman, Hugo Marrochio, and Robert C. Myers. Complexity of

Formation in Holography. JHEP, 01:062, 2017.

[126] Eanna E. Flanagan, Donald Marolf, and Robert M. Wald. Proof of

classical versions of the Bousso entropy bound and of the generalized

second law. Phys. Rev., D62:084035, 2000.

[127] Raphael Bousso, Horacio Casini, Zachary Fisher, and Juan Maldacena.

Proof of a Quantum Bousso Bound. Phys. Rev., D90(4):044002, 2014.

[128] Raphael Bousso, Horacio Casini, Zachary Fisher, and Juan Maldacena.

Entropy on a null surface for interacting quantum field theories and the

Bousso bound. Phys. Rev., D91(8):084030, 2015.

[129] Tomoyoshi Hirata and Tadashi Takayanagi. AdS/CFT and strong sub-

additivity of entanglement entropy. JHEP, 02:042, 2007.

[130] Tadashi Takayanagi and Koji Umemoto. Holographic Entanglement of

Purification. 2017.

183


