
The Pennsylvania State University
The Graduate School

TOWARDS AN EFFECTIVE THEORY OF OPEN QUANTUM SYSTEMS

THROUGH OPEN QUBIT SYSTEMS

A Dissertation in
Physics

by
Sean T. Prudhoe

© 2024 Sean T. Prudhoe

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2024



The dissertation of Sean T. Prudhoe was reviewed and approved by the following:

Sarah Shandera
Associate Professor of Physics
Chair of Committee

Eugenio Bianchi
Associate Professor of Physics
Committee Member

Irina Moiciou
Associate Professor of Physics
Committee Member

Sahin Ozdemir
Professor of Engineering Science and Mechanics
Committee Member

Mauricio Terrones
Verne M. Willaman Professor of Physics
Professor of Chemistry, Materials Science & Engineering
Department Head

ii



Abstract
We explore procedures to approximate the reduced dynamics of open qubit systems,
to understand the construction of effective open theories in more general systems. We
provide constructions both for infinitesimal time-evolution i.e. master equations, and for
discrete time-evolution through random ensembles of quantum channels. An argument is
made that the ensemble approach is a much better suited method to tackle the open
dynamics experienced in more novel open systems, such as those with time-dependent
boundaries that are found in quantum cosmology. We also explore the idea that quantum
subsystems may appear through a process of spontaneous symmetry breaking, which
serves as the prequel to the appearance of an open quantum system.
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Chapter 1 |
Introduction

1.1 The theory of open quantum systems
Quantum mechanics is arguably the most successful set of physical laws yet uncovered
by the scientific community. It describes physical phenomena from the microscopic (e.g.
molecular, atomic, and sub-atomic processes) to the macroscopic (e.g. formation of
neutron stars). And despite the wide applicability, the framework used to build quantum
mechanics is remarkably simple. It includes the quantum state |ψ⟩ which contains all
information about the probabilistic outcome of measuring observable quantities, as well
as the (possibly time-dependent) Hamiltonian which governs time-evolution as

|ψt⟩ = U(t, t0)|ψt0⟩

U(t, t0) = T exp
(

− i
∫
H(t′)dt′

) (1.1)

where T is the time-ordering operator and U(t, t0) is the unitary time-evolution operator.
Unitarity is sufficient to ensure that probability is conserved under time-evolution i.e.
⟨ψt|ψt⟩ = ⟨ψt0|ψt0⟩ = 1. Or stated differently, given a complete set of outcomes for an
experiment when a measurement is performed one of these outcomes must occur.

However, unitarity alone cannot explain all phenomena that emerge from quantum
mechanics. Notable non-unitary processes are projective measurements, for example the
measurements that appear in Stern-Gerlach setups. Further, since unitary processes are
completely reversible (i.e. invertible), any irreversible process requires some degree of non-
unitary. Such processes include decoherence and thermalization, which are fundamentally
important for a classical universe to exist. Therefore, non-unitary dynamics is necessary
for classicality to emerge from quantum mechanics.

To produce non-unitary operations, the unitarity of quantum mechanics need not be
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fully broken, only the construct of quantum subsystems needs to be introduced [1–3].
That is the Hilbert space, the space of quantum states, decomposes as HS ⊗ HE. The
subspace HS contains the degrees of freedom of interest, and HE contains the residual
degrees of freedom. The label S denotes system, and for historical reasons the label E
denotes environment, but note that these degrees of freedom are not always a thermal
reservoir. By coupling system and environment through an interaction Hamiltonian
and tracing out the environment degrees of freedom, the system degrees of freedom will
undergo non-unitary time-evolution. These types of quantum mechanical systems are
referred to as open quantum systems, and they play a central role in this dissertation.

To appreciate the full set of non-unitary dynamics possible, the quantum state must
be promoted to an object known as the density matrix (ρ). The density matrix is a
statistical mixture of quantum states. If the mixture contains only a single state, then
the density matrix is called pure, otherwise it is referred to as a mixed state. Any
mixed state can be constructed as a convex combination of pure states, although such
a construction is not unique. However, the minimum number of pure states required
in such a construction equals the matrix rank of the density matrix. For a given open
quantum system, the set of density matrices are the Hermitian operators such that

trS (ρS) = 1

trS
(
ρ2

S

)
≤ 1 .

(1.2)

These inequalities imply that a density matrix must be a positive operator with eigenvalues
between 0 and 1. The second inequality is only saturated in the case that the density
matrix is a pure state. In a given matrix representation of a density matrix, the diagonal
elements are called populations and the off-diagonal elements are called coherences. And
finally, the expectation of an observable (OS) with respect to the state ρS is

⟨OS⟩ = trS (OSρS) . (1.3)

The action of a non-unitary map will transform the density matrix associated to an
open system. The notable example is that of a projective measurement, but the notion
can be extended to so called generalized measurements. A generalized measurement is
equivalent to acting on the reduced density with a non-unitary operation known as a
quantum channel (E)

ρS → E [ρS] . (1.4)

2



At a technical level a quantum channel is a completely-positive trace-preserving map
(CPTP). The trace preservation is equivalent to probability preservation. Complete-
positivity guarantees that the post measurement state remains a density matrix, no matter
the input state. Further, if a quantum channel only mixes the populations of a density
matrix it is referred to as a classical channel or stochastic matrix. Perhaps the most
important property of quantum channels is that they never increase the trace-distance of
any pair of input states

D
(
E [ρS] , E [σS]

)
≤ D

(
ρS, σS

)
. (1.5)

Physically speaking, a quantum channel never makes pairs of states more distinguishable.
This is precisely why non-unitary processes are said to destroy information.

Complete-positivity of a quantum channel is equivalent to a few properties that we
detail here. Most famously, complete-positivity of an quantum operation is equivalent to
the existence of a Kraus decomposition [4]

∑
i

KiρSK
†
i = E [ρS]

∑
i

K†
iKi = 1S

(1.6)

where the Ki are known as Kraus operators. Note that the Kraus decomposition is not
unique, but there is a minimal number of Kraus operators required to decompose a given
quantum channel, referred to as the Kraus rank. The Kraus rank is equal to the matrix
rank of the Choi matrix, which we define shortly.

The Kraus decomposition is useful for constructing and distinguishing quantum
channels. For example, the unitality of a quantum channel may be deduced from the
Kraus decomposition. A channel is said to be unital if E [1S] = 1S, that is it fixes the
maximally mixed state. Distinguishing channels based on their unitality is helpful for
the following reasons. First, any non-unital channel increases the purity of certain initial
states, most obviously the maximally mixed state. Further, non-unital channels are
strictly contracting over the space of states, therefore their fixed points are unique [2].
We provide examples of non-unital qubit channels in Chapter 2 and Chapter 3.

From the conditions for complete-positivity and the unital condition, it follows
that a channel is unital iff a Kraus decomposition exists consisting entirely of normal
operators. Recall that an operator is called normal if it commutes with its Hermitian
conjugate. A natural construction of unital channels in any open system is to average
over unitary channels. It is clear that such a construction satisfies the conditions of a

3



Kraus decomposition. However in the case of open systems larger than a qubit, unitary
averages are not the only form of unital channels.

Another method to determine the complete-positive of a non-unitary map, is by
determining if the Choi matrix is positive [5]. To define the Choi matrix associated to a
non-unitary map, consider a composite quantum system H = HS ⊗ HS and construct
the maximally entangled state

|Ψ⟩ = 1√
N

N∑
i=1

|i, i⟩ , (1.7)

where N=dimHS. Then the Choi matrix is defined as

CE = (E ⊗ 1)|Ψ⟩⟨Ψ| (1.8)

and the non-unitary operation is completely-positive iff CE is positive. The utility of
the Choi matrix is that positivity of a matrix is a simple property to verify. Further,
the Choi matrix may be used to determine the space of quantum channels for simple
systems as was done for qubit channels in [6]. Connecting to the Kraus decomposition,
the matrix rank of CE is equal to the Kraus rank of the channel E .

And perhaps the most physically relevant property of completely-positive maps is
that of the Stinespring dilation [7]. That is E is completely-positive iff a composite
unitary (V ) and ancillary pure state (ψE) exist such that

E [ρS] = trE
[
V ρS ⊗

(
|ψE⟩⟨ψE|

)
V †
]
. (1.9)

The pure state ψE must reside in a Hilbert space with at least as many dimensions as
the Kraus rank of the channel. From the physics point of view one often starts with the
R.H.S of Eq.(1.9), where the unitary transformation is replaced with the time-evolution
operator. Further, the auxiliary system is allowed to be in mixed state, however the
resulting map will be completely-positive. To see this notice that Eq.(1.9) is invariant
change of basis over the auxiliary Hilbert space, therefore the channel may be computed
in an eigenbasis of the mixed state. The resulting expression is then a convex linear
combination of quantum channels. From the Kraus decomposition it may be deduced
that convex combinations of quantum channels remain completely-positive.

Performing the replacement V → U(t, t0) in Eq.(1.9) we have

Λ(t, 0) [ρS(0)] = trE
[
U(t, 0)

(
ρS(0) ⊗ ρE(0)

)
U †(t, 0)

]
(1.10)
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which is a 1-parameter family of quantum channels known as a dynamical map. We
have changed symbols here to emphasis the difference between a quantum channel and
a dynamical map. The dynamical map is a non-unitary generalization of the unitary
time-evolution operator from closed quantum systems. Besides of course the non-unitary
features previously mentioned, it differs from a time-evolution operator in the possible
lack of divisibility. Recall that the unitary operator defined in Eq.(1.1) may be split into
products of unitary operators

U(t2, t0) = U(t2, t1)U(t1, t0) (1.11)

for any values of time such that t0 ≤ t1 ≤ t2. The process of dividing unitary time-
evolution may be repeated indefinitely, used for example in the derivation of the path
integral formulation in quantum mechanics. But for dynamical maps, the process of
dividing the time-evolution into smaller pieces must be done with more care. The
time-evolution over intermediate times is governed by the propagator, or interweaving
map

Λ(t2, t0) = Φ(t2, t1)Λ(t1, t0) (1.12)

which is not guaranteed to be positive let alone completely-positive. Dynamical maps
where Φ is positive for all intermediate times are known as P-divisible, and are CP-
divisible if Φ is a quantum channel for all intermediate times [8]. For example, unitary
channels are always CP-divisible which follows from Eq.(1.11).

CP-divisible dynamical maps are a widely used generalization of classical Markovian
stochastic processes. There is however not a consensus on the correct definition of
the quantum Markov property, as there is no true quantum analogue of the classical
propagator [9–11]. Dynamical maps that are P-divisible are called weakly non-Markovian,
and processes that are not even P-divisible are called strongly non-Markovian [12]. The
physical relevance of the divisibility of a dynamical map is that it constrains the equations
of motion that can generate a given process. The dynamical map may be thought of as a
non-perturbative description of an open systems dynamics, where as the equations of
motion or master equation is often a tool to obtain approximate solutions for the open
system dynamics.

The most commonly employed master equation is that of the time-dependent Lindblad
equation

∂tρS(t) = −i [H(t), ρS(t)] +
∑

i

(
γi(t)LiρSL

†
i − 1

2{L†
iLi, ρS(t)}

)
(1.13)
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with H(t) the effective Hamiltonian, Li the Lindblad or jump operators, and γi(t) the
time-dependent rates. In the case that the rates are constant and positive this equation
is known as the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation [13,14]. The
rates are crucial in determining the divisibility of the dynamics. For rates that are
non-negative at any time, the obtained dynamical map is CP-divisible, but note this is
only a sufficient condition. In Chapter 2 we provide examples of CP-divisible dynamics
with negative rates in the case of an open qubit system.

However, a time-local description must include divergent rates in the case that the
reduced dynamics is irreversible at some finite time. Such a divergence is unphysical and
thus a suitable master equation in these settings must be non-time-local. A non-time-local
master equation takes the general form

∂tρS(t) = KTL(t) [ρS(t)] +
∫ t

t0
KNTL(t, τ) [ρS(τ)] dτ . (1.14)

A well known example of such a master equation is the Nakajima-Zwanzig equation [15,16].
The issues with non-time-local equations is that being integro-differential equations they
are difficult to solve. Further while the Nakajima-Zwanzig equations is an exact master
equation, it is only formally so as it uses the formal solution to the total system Schrödinger
equation. Actual solutions still must be obtained perturbatively, for example using the
cumulant expansion.

1.2 Effective descriptions of open quantum systems
The main approach to study open systems thus far is to derive, either from first principles
or propose through other means, a master equation of the form given in Eq.(1.13). There
are certainly cases where equations that are non-time-local have been used, for example
the post-Markovian equation proposed in [17]. More typical though is a non-time-local
equation derived perturbatively from the Nakajima-Zwanzig equation, from which a
time-local equation is derived in certain limits. And while there are certainly similarities
between how an effective time-local equation can be derived in a variety of open systems,
there is still no general procedure for obtaining such a result.

There are several obstacles to construct such an effective master equation in open
quantum systems. One obstacle is the initial state of the environment, which for a given
open system can be generic. One may already see that the state of the environment
plays a crucial role at the level of unitary effective theories. For example, in quantum
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field theory when the ultra-violet degrees of freedom form a vacuum state, they may
be integrated out by re-normalizing Hamiltonian parameters. However, when the ultra-
violet degrees of freedom are in a higher temperature thermal state the description can
dramatically change as excitations not present in the low energy effective theory become
relevant. So it is reasonable to suspect that the initial state of the environment plays an
important role in determining the form of an effective master equations, which is seen
from results derived in Chapter 2.

The other major obstacle is the potential for time-locality breaking. That is to say
building an effective master equation requires more than determining the allowed set
of jump operators, and an approximate form for the time-dependent rates. One must
also determine if a non-time-local generator is necessary, and the shape of the memory
kernel. However, it is difficult to address this question non-perturbatively, although
the presence of non-invertibilities may be deduced from trace-distance measures over a
sufficient number of initial states, if such measurements are possible.

So far the difficulty in using non-time-local master equations has lead much of the
investigation of open quantum cosmology to remain in the time-local domain (a non-
exhaustive list [18–23]). In most of these works an argument is made that the late-time
dynamics will be governed by a time-local master equation, which may be true in the
scenarios considered. But we find in Chapter 2 that an open system coupled to a changing
landscape of environmental degrees of freedom requires a non-time-local description. And
depending on the details of the changing landscape, the locality breaking can persist to
late-times.

Because of the sheer difficultly met when trying to derive the reduced dynamics in
quantum cosmology (see for example [24]), we choose to pursue effective theories in open
systems through analytic studies of open qubit networks. Ostensibly, one may argue that
such models may be too simple to say anything useful about quantum gravity or open
quantum cosmology, but it is known in the literature that non-perturbative quantum
gravity will be described using a Type I Von-Neumann algebra (take for example quantum
spin-foams).

We construct our effective theory in the following manner. In Chapter 2 we construct
exact dynamical maps for a three qubit network, where two of the qubits serve the role
of a growing environment. We study two aspects that are relevant for the construction of
effective master equations. First, when only two of the qubits are interacting we determine
in detail how the Hamiltonian parameters and initial environment state conspire to form
non-time-local reduced dynamics. We find that there is both a strong-coupling condition
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and special class of initial states required for non-time-local reduced dynamics.
We further consider making the active degrees of freedom in the environment time-

dependent. We consider the case where the third qubit breaks a symmetry of the
interaction between the previous pair at a point during their evolution. We find that in
the presence of phase-covariance breaking, the reduced dynamics of the system qubit
becomes non-time-local for all times afterwards. We take this as evidence that in an
open quantum system with a changing environmental landscape, a non-time-local master
equation is necessary to approximate the reduced dynamics.

In Chapter 3 we pivot towards a different construction of effective open theories that
moves away from the master equation. To make the construction simple, but still widely
applicable, we consider only phase-covariant reduced dynamics, which is generated over a
qubit network. That is each 1-qubit dynamical map is phase-covariant, no matter which
qubit is chosen to be the system or focal qubit. In this way we are able to obtain an
exact ensemble of phase-covariant dynamical maps. From these ensembles we extract
out how the network and long time averaged channel approaches its steady value. From
the form of the steady channel, and its approach to equilibrium, we construct random
distributions of phase-covariant channels that approximate the network dynamics at
late-times.

And finally in Chapter 4, we explore a model of spontaneous generation of qubit
subsystems, which serve as a potential prequel to the models considered in the previous
chapters. The motivation is to understand how quantum subsystems emerge in a
dynamical process, and what drives the form of typical interaction, say the propensity
towards many-body and local interactions. In principle, the model allows for the eventual
tuning of subsystems that appear, through both the subsystem decompositions and the
form of typical interactions.
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Chapter 2 |
Pursuit of Effective Master Equa-
tions

2.1 Preamble
This chapter is a reprint of [25]. In this work we studied the types of master equations that
describe the exact reduced dynamics of a triplet of qubits. We show how the non-time-local
vs. time-local nature of the master equation depends both on the Hamiltonian parameters
and the class of the initial environment state. Further, we show that when breaking the
phase-covariance of the reduced dynamics by activating a dormant environmental qubit,
the reduced dynamics becomes eternally non-time-local. We take this as a justification
for the need of non-time-local master equations in open quantum systems with time-
dependent boundaries, such as those encountered in quantum cosmology.

2.2 Introduction
The evolution of quantum systems coupled to unobserved or unobservable degrees of
freedom can be much more complex than the evolution of closed systems [1]. Information
may flow back and forth between the observed and unobserved parts of the system, leading
to equations of motion that may not be local in time, and that give rise to non-unitary,
non-Markovian evolution [26]. While formal expressions for the evolution of open systems
exist, and exact expressions can be derived in particular cases where the unobserved
physics is known, there is not yet a procedure for systematically constructing effective
theories of open systems that can encapsulate the full range of possible phenomena.

A particular class of complex open systems appears in cosmology, where the volume
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of the universe accessible to a single observer is generically bounded. An open-systems
approach in cosmology has been advocated by some researchers for decades [27, 28],
and recent theoretical developments have led to a resurgence of interest in these ideas.
For example, the possibility of detecting primordial non-Gaussianity in the statistics
of the cosmic microwave background fluctuations [29] motivated to a comprehensive
study of the effects of interacting fields during or after inflation. Those interactions can
couple Fourier modes of different wavelengths in different ways. The finite extent of
the observable universe means that very long wavelength modes are irretrievably in the
‘environment’. Modes with very short wavelength are practically unobservable as well.
Tracing out either, or both, sets of unobservable modes generates an effective description
for the observable modes, which form an open system [30]. The appropriate framework
for understanding the space of models that generate the data is that of an open effective
theory. Moreover, the field or fields relevant for inflation are expected to be accompanied
by many other degrees of freedom which may move from passive to active as inflation
proceeds. Indeed, it is postulated that if the inflationary field explores too large of a range,
a large number of fields will become relevant, limiting the validity of the original model
as an effective description [31–33]. Using an open system effective theory for the inflaton,
rather than a traditional low-energy effective theory, one can treat these light degrees of
freedom as a time-dependent environment. These open systems are complex, since many
results that are known require non-perturbative techniques [34] and the associated open
systems are frequently non-Markovian [35]. However, one has symmetry constraints to
guide the effective theory [36]. A similar story of complexity restricted by symmetry
applies to another well-studied system where open effective theories are applicable, black
holes [19, 20, 37–41]. Cosmologists, then, would like to understand how to construct
effective theories of open systems that are non-perturbative and non-Markovian, with
time-dependent environments, but constrained by symmetries.

To address these questions requires a non-perturbative understanding of the evolution
of the reduced system. For finite-dimensional quantum systems this can be addressed
using the dynamical map, the operator that governs the dynamics of the reduced degrees
of freedom. Of course, determining the dynamical map is as difficult as solving the
Schrödinger equation governing the system/environment dynamics. Thus for this work
we consider simple open systems, constructing dynamical maps for a single system qubit.
In this setting the dynamical map can be determined as an analytic function of the
Hamiltonian parameters, for a generic initial environment state.

Due to their relative simplicity, much is understood about the general structure of
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qubit dynamical maps [6,42–44]. Such maps appear frequently in quantum computational
settings, where they model noisy interactions of qubits with the environment. Optimal
dynamical maps have been found for performing communication tasks that leverage qubit
entanglement to transmit quantum information securely [45–49]. So, while interacting
qubits are far simpler systems than those found in cosmology, it is an appropriate starting
point to connect the questions of interest to cosmologists to the recent advances in
the understanding of open systems that have been driven by laboratory and quantum
computational considerations.

We begin by investigating a solvable example of coupled qubits to explore how non-
Markovianity and the non-time-local aspects of the master equation for one qubit depend
on the initial state of the unobserved qubit and on the symmetries and coupling constants
of the full Hamiltonian. The first Hamiltonian we consider has (1) a conserved quantity,
and (2) a block-diagonal structure of two equal-size pieces, allowing additional symmetry
structures at special points in parameter space. Since non-time-local master equations
can be particularly difficult to work with, we examine how much of the parameter space
requires a time non-local equation, and the perturbations or approximations in both the
Hamiltonian or the state of the unobserved qubit that will generate time-local equations
of motion.

We then extend the study of the two qubit model, using a subset of the Hamiltonian
family and initial environment states that allow for the appearance of additional degree
of symmetry. We introduce a third qubit that remains a spectator for a time and is later
switched on using an interaction that explicitly breaks the extra symmetry appearing in
the two qubit interaction. The study focuses on the radical change in the invertibility of
the dynamical map obtained by tracing out the two qubits that act as the environment,
indicating that a time-local master equation cannot be used after symmetry breaking.

In the rest of the introduction we briefly review the formalism for open system
dynamics and master equations in the context of our goals and model. Then, in Section
2.3, we introduce the example systems. In Section 2.4 we derive the reduced dynamics
for a single-qubit systems, tracing out the environment qubit(s). Section 2.5 derives
the conditions for non-time-local dynamics via the non-invertibility of the dynamical
map and discusses several features we use to classify the dynamical map including the
non-Markovianity, divisibility, and symmetries of the Hamiltonian. We determine how
these depend on Hamiltonian parameters, in particular whether it is strongly coupled or
not, and what role the initial environment state plays in non-time-locality. In Section 2.6
we use perturbed initial environment states to construct approximate time-local master
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equations. And we conclude in Section 3.7.

2.2.1 Open system evolution

For some open systems, the master equation governing the evolution of the density matrix
for the observed system, ρS(t), is [13,50–52]

∂tρS(t) = −i[Hfree(t) +Hopen(t), ρS(t)] +
∑

k

γk(t)
(
LkρS(t)L†

k − 1
2{L†

kLk, ρS(t)}
)
. (2.1)

Here Hfree(t) +Hopen(t) = Heff(t) is the effective Hamiltonian of the system, containing
both the original system Hamiltonian Hfree(t) and a piece, Hopen(t), generated by the
coupling to an environment. The Lk are operators acting on the system, and the γk(t)
are functions describing the flow of information between the system and environment.
The γk(t), which control the subset of all possible operators Lk that appear with non-zero
coefficients, depend on the system-environment coupling and the state of the environment.
Heff(t) and γk(t) are given by environment correlation functions calculated using the
initial environment state ρE(0).

If the environment and full Hamiltonian are unknown, one might begin constructing
an effective theory for the system by writing all possible Lk and a generic Heff from
the complete set of operators that act on the system. Then, the work in the effective
theory comes in specifying some structure for the dissipation functions γk(t), determining
any approximations that may allow some possible terms in Heff to be discarded, and
in determining consistency between effects captured in Hopen(t) and in the non-unitary
part of Eq.(2.1). Some broad guidelines for this process are known: the simplest choice
would be all γk ≥ 0 and constant, restricting the system to non-unitary however time-
independent, Markovian evolution. Time-dependent Markovian dynamics would be
described by γk(t) ≥ 0 at all times. Finally a restricted set of non-Markovian dynamics
would be captured by considering generic functions γ(t).

However, the most general case allows the master equation to be non-local in time.
Then, in addition to the time-local part one adds an integral term. This is the Nakajima-
Zwanzig equation [15,16],

∂tρS(t) = KTL(t)ρS(t) +
∫
KNZ(t, τ)ρS(τ)dτ , (2.2)

where the time-local piece, KTL(t), generates the same action on ρS(t) as given in Eq.(2.1).
The integral is over the history of the evolution [t0, t] where t0 is a time where the system
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and environment are uncorrelated and t is the time where one is interested in calculating
ensemble averages. In constructing a parameterized effective theory for the open system
dynamics, one would like to know how to systematically address whether a non-local
equation is necessary. In addition, which qualitative aspects of information flow can be
captured in either the γ(t) or the time non-local kernel KNZ(t, τ), and how they should
be implemented?

To address these questions in a simple case, we explore the relationship between
the full Hamiltonian for system and environment, together with the initial state of the
environment, to several features of the reduced dynamics. We consider measures of
non-Markovianity and the conditions under which time non-local evolution is required.
We do this by first computing the exact reduced dynamics via the dynamical map. This
is a non-unitary generalization of the time evolution operator, a completely positive and
trace preserving (CPTP) map from the initial density matrix to the density matrix at a
later time t,

ρS(t) = Λ(t, 0) ◦ ρS(0) . (2.3)

For qubit dynamical maps the complications arising from non-Markovianity are less
severe. Non-Markovian qubit dynamical maps can be tractably studied, more so than
their master equation counterparts. For example the divisibility (how the time evolution
can be broken into steps) and how it relates to non-Markovianity has been exhaustively
studied in the case of qubit dynamical maps [9–11,53]. For the model we consider it is
therefore possible to make detailed statements about the relation between properties of
the dynamical map and its non-Markovianity.

Dynamical maps do not have to be invertible; maps with DetΛ(τi) = 0 for some times
τi require either a time-local description that diverges at each τi or a non-time-local
integral kernel, as written in Eq.(2.2) [54]. For a simple system, we will use the non-
invertibility of the dynamical map to derive the conditions on the full Hamiltonian and
the environment that make a non-time-local master equation necessary. We find that,
independent of the Hamiltonian, there are always a set of initial environment states which
support time-local reduced dynamics. This allows a time-local, approximate, master
equation to be constructed by shifting the initial state of the environment. For an initial
environment state, ρE(t0), and dynamics that requires a non-time-local piece, there exist
environment states nearby in trace distance norm, {ρ′

E(t0)}, which can be used to define
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a master equation of the form

∂tρS(t; ρE(t0)) = KTL(t; ρ′

E(t0))ρS(t; ρE(t0))

+
∫
KNTL(t, τ ; δρE)ρS(τ ; ρE(t0))dτ .

(2.4)

Here the non-time-local component is linear in δρE = ρE(t0) − ρ
′
E(t0), and the integral is

over the evolution history [t0, t].

2.3 The system-environment Hamiltonians and the uni-
tary dynamics
This section introduces both the family of two-qubit Hamiltonians considered, as well
as a more restrictive family of three-qubit interactions. The two-qubit model has an
associated parity symmetry, which splits the Hamiltonian into two equal-sized blocks.
Such models are interesting as they have an intermediate level of symmetry: more than
the class with no non-trivial symmetries, however not as much as Hamiltonians that
preserve the total angular momentum of the two qubits. Physically, dynamics of the
type we use here describe a pair of non-interacting qubits, most clearly seen through a
change of meronomic frame [55]. We also characterize features of the non-Markovianity
of the single-qubit evolution, according to parameter choices in the full Hamiltonian.

2.3.1 Two-qubit family

The two-qubit Hamiltonian that we study is

H =Hfree +Hint

=ωS(ZS ⊗ 1E) + ωE(1S ⊗ ZE) + κSE(YS ⊗XE) + κES(XS ⊗ YE) .
(2.5)

The free parameters ωS and ωE provide the time scales associated to the free dynamics
of each individual qubit (with ℏ = 1), and the parameters κSE and κES are coupling
strengths. H has a symmetry, [H,ZS ⊗ ZE] = 0, so the eigenstates have definite parity
associated to Pzz = ZS ⊗ ZE. This Z2 symmetry allows H to be split into even and odd
blocks, where the even block is spanned by states with correlated spins (e.g. | ↑↑⟩) and
the odd block is spanned by states with anti-correlated spins (e.g. | ↑↓⟩).

The block diagonalization is achieved by splitting H into symmetric and anti-
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symmetric parts under exchange of system and environment operators. Defining new
parameters,

2∆± = ωS ± ωE

2κ± = κSE ± κES ,
(2.6)

the Hamiltonian can be written as

H =∆+(ZS ⊗ 1E + 1S ⊗ ZE) + κ+ [YS ⊗XE +XS ⊗ YE]

+∆−(ZS ⊗ 1E − 1S ⊗ ZE) + κ− [YS ⊗XE −XS ⊗ YE]

≡H+ +H− ,

(2.7)

where the ± labels correspond to the Z2 (parity) eigenvalues of each block. The block
diagonalization of H introduces a subspace decomposition H = Q+ ⊕ Q−, where the
spaces Q± are spanned by the eigenstates of H±. As we show below, there is also a
tensor product decomposition for which the two subsystems decouple.

Using |0⟩ and |1⟩ to label the eigenstates of ZS and ZE, the stationary states of H are

|0+⟩ = cos ϕ+

2 |0S, 0E⟩ + i sin ϕ+

2 |1S, 1E⟩

|1+⟩ = sin ϕ+

2 |0S, 0E⟩ − i cos ϕ+

2 |1S, 1E⟩

|0−⟩ = cos ϕ−

2 |0S, 1E⟩ + i sin ϕ−

2 |1S, 0E⟩

|1−⟩ = sin ϕ−

2 |0S, 1E⟩ − i cos ϕ−

2 |1S, 0E⟩ ,

(2.8)

with eigenvalues
±ω± = ±2

√
∆2

± + κ2
± . (2.9)

In Equation (2.8), the angles
ϕ± = arctan κ±

∆±
(2.10)

indicate the relative size of the interaction and free Hamiltonian parameters, and if either
provide a dominate contribution to the energy eigenvalues ω±. As long as at least one of
the blocks is interacting i.e. κ± ̸= 0, the stationary states in the subsystem decomposition
H = QS ⊗ QE are entangled, and maximally entangled as κ±

∆±
→ ±∞.

We will see below that the reduced dynamics may acquire a non-time-local component
if ϕ+ + ϕ− ≥ π

2 . Since this condition requires that one or both of κ± ≥ ∆±, the part of
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parameter space where non-time-local master equations can be required coincides with
strong coupling, although not all strongly coupled Hamiltonians will have non-time-local
dynamics.

So far, we have defined subsystems assuming a laboratory-based notion of locality for
operations on qubits, established by the system/environment labels. However, the block-
diagonal structure of the Hamiltonian suggests that we also consider a re-organization of
the Hilbert space into degrees of freedom that decouple. That is, we can define qubits
A and B, with orthonormal basis states {1A, 0A} and {1B, 0B}, so that H = QA ⊗ QB.
This is a change of meronomic frame [55]. Explicitly, a (non-unique) mapping between
these bases is given by

|0+⟩ =|0A, 0B⟩

|1+⟩ =|1A, 1B⟩

|0−⟩ =|0A, 1B⟩

|1−⟩ =|1A, 0B⟩ .

(2.11)

One finds H = ω+ (|0+⟩⟨0+| − |1+⟩⟨1+|) + ω− (|0−⟩⟨0−| − |1−⟩⟨1−|), it is straightfor-
ward to change to the frame given in Eq.(2.11), where

HAB = ωAZA ⊗ 1B + ωB1A ⊗ ZB . (2.12)

Here ωA = 1
2(ω+ +ω−), ωB = 1

2(ω+ −ω−), and ZA = |0A⟩⟨0A| − |1A⟩⟨1A|, etc. Comparing
to Eq.(2.7), the two terms in Eq.(2.12) are just the A/B frame expressions for H+ and
H−. An advantage of this frame is that it is easy to characterize the regions of parameter
space with extra symmetry. A particularly useful region of parameter space is

ω+ = ω− ⇔ ωB = 0 (the degenerate family) (2.13)

which is symmetric under local rotations on the B qubit subsystem. Since symmetries
are clearest in the A/B frame, we will continue to use it for that purpose in Table 2.1
below, where we classify the reduced system dynamics possible with this Hamiltonian,
Eq.(2.5).

Returning to the system/environment frame, we characterize the entangling properties
of the time evolution. Using the computational basis for system and environment qubits,
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the time evolution operator, U(t), is

U(t) = e−iHt =


α+(t) 0 0 −β+(t)

0 α−(t) −β−(t) 0
0 β−(t) ᾱ−(t) 0

β+(t) 0 0 ᾱ+(t)


,

(2.14)

where

α±(t) = cosω±t− i cosϕ± sinω±t ,

β±(t) = sinϕ± sinω±t ,
(2.15)

and ᾱ±(t) is the complex conjugate of α±(t). The pair of functions from each doublet
satisfy |α±(t)|2 + |β±(t)|2 = 1.

The functions β±(t) are generated by the interaction between system and environment,
so they determine both the entanglement and, as we see below, the invertibility of the
reduced dynamics for the system.

2.3.2 Three-qubit model of dynamical symmetry breaking

We further study a model where the reduced dynamics is phase covariant. Reduced
dynamics is phase covariant or time translation symmetric if the following constraints
hold [56]

I [Hfree, Hint] = 0

II [Hfree, ρE(0)] = 0 .

These constraints have thermodynamic implications. The first constraint is a strict energy
conservation condition i.e. energy is not built up between the system and environment
boundary. The second assumption is that the initial environment state is a Gibbs’ state
defined with respect to the free environment Hamiltonian. If these assumptions hold, then
the set of time evolution operator generated by the free system Hamiltonian commutes
with the action of the dynamical map. Hence the designation as a time translation
symmetry. To incorporate phase-covariance breaking into our model we consider the
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Hamiltonian

H̃(t) =Hfree +Hint(t)

ω(ZS ⊗ 1E ⊗ 1E′ + 1S ⊗ ZE ⊗ 1E′) + ω [XS ⊗ YE ⊗ 1E′ − YS ⊗XE ⊗ 1E′ ]

+ γΘ(t− τ) [XS ⊗ 1E ⊗XE′ ] ,

(2.16)

where Θ(t) is the Heaviside theta function. The choice of the time-independent portion of
the Hamiltonian satisfies strict energy conservation. The second assumption is satisfied
if the initial state of the E qubit is restricted to the form ρE(0) = 1

2(1E + zE(0)ZE). For
what follows H̃t<τ is the Hamiltonian for t < τ and H̃t≥τ is the Hamiltonian for t ≥ τ ,
as we can note the Hamiltonian is a piece-wise defined function.

H̃t≥τ is chosen to break the phase covariance of the reduced dynamics, but in the
process also breaks the parity symmetry. But other global symmetries appear for t ≥ τ ,
which we can exploit to determine the stationary states when the interaction changes.
Using the Pauli anti-commutation relations, it is not difficult to see [H̃t≥τ , ZS⊗ZE⊗ZE′ ] =
0. But from the block structure in the eigendecomposition of the Hamiltonian, one can
note the presence of another symmetry. We find that the observable,

O2 = YS ⊗ 1E ⊗ YE′ − ZS ⊗XE ⊗ YE′ (2.17)

commutes with H̃t≥τ . Therefore H̃t≥τ splits into four 2 × 2 blocks with definite values of
O1 and O2

Thus a familiar path may be taken to determine the time evolution generated by
H̃t≥τ , which we denote by Ũt≥τ (t). We begin with the eigenvalues which are found to be

±Ω± = ±
√
γ2 ± 2

√
2γω + 4ω2 (2.18)

and are doubly degenerate. We shall start the computation in the eigenbasis of O2 (called
the polarized basis), and then go back to the computational basis. To this end define the
angles,

tanψ± = 1 ± 2
√

2ω
γ

(2.19)

from which we obtain the time dependent functions (note the similarity to the previous
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section),

α̃±(t) = cos Ω±t− i cosψ± sin Ω±t

β̃±(t) = sinψ± sin Ω±t
(2.20)

With these functions one can construct the unitary operator Ũt≥τ (t) in the polarized
basis. In the computational basis, the following combinations of functions will be most
useful

a±(t) = 1
2ℜ(α̃+ ± α̃−)

b±(t) = 1
2ℑ(α̃+ ± α̃−)

g±(t) = 1
2(β̃+ ± β̃−)

h±(t) = 1
2(α̃+ ± ¯̃α−)

. (2.21)

We have all we need to compute the total time evolution operator, which is given by the
following time ordered exponential

Ũ(t, 0) = T exp
[
−i
∫ t

0
H̃(τ)dτ

]
. (2.22)

Breaking the time interval into N pieces, and using the Baker-Campbell-Hausdorff
relation, one can show that in the limit N goes to infinity the time ordered exponential
approaches

Ũ(t, 0) = [Θ(t) − Θ(t− τ)] Ũt<τ (t) + Θ(t− τ)Ũt≥τ (t− τ)Ũt<τ (τ) (2.23)

where we have just seen how to compute Ũt≥τ (t), and we can use the results of the
previous section to determine Ũt<τ (t).

2.4 The reduced dynamics
The reduced dynamics of the system is obtained from the full dynamics by tracing out the
environment. Restricting to factorized initial states ensures that the reduced dynamics is
completely positive [13]. In that case, the density matrix of the system qubit alone, at
time t, is

ρS(t) = trE[U(t)ρS(0) ⊗ ρE(0)U †(t)] . (2.24)
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The state of the system qubit at any time can be found using the dynamical map,
represented by a matrix acting on the vectorization of the reduced density matrix [26].
For a qubit density matrix this is the Bloch representation

ρS(0) = 1
2(1S + r⃗S(0) · σ⃗S), (2.25)

where r⃗S(0) is a real, 3-dimensional vector with Euclidean norm ||r⃗S(0)|| ≤ 1. The evolved
density matrix can then be written as

ρS(t) = Λ(t, 0) ◦ ρS(0). (2.26)

where Λ(t, 0) is a 4 × 4 matrix. Note that as the Hamiltonian is time independent, the
dynamical map depends on the initial and final times only through the difference t− t0,
so for what follows we can simply write Λ(t) and suppress the initial time dependence.
It is helpful to further define a 3 × 3 matrix with components T ij = Λij and a 3-vector
di = Λ0i [6], so that the action of the dynamical map can be written

ρS(t) =1
2(1S + r⃗S(t) · σ⃗S)

=1
2

(
1S +

(
⃗⃗
T (t) ◦ r⃗S(0) + d⃗(t)

)
· σ⃗S

)
.

(2.27)

This presentation has the advantage that the trace fixing requirement is immediate. For
Λ to be physical, ⃗⃗T and d⃗ must be real so that ρS(t) is Hermitian. Unlike unitary maps,
dynamical maps need not be divisible. For example, one is generally unable to split the
time evolution as Λ(t+ τ) = Λ(τ)Λ(t). The reduced dynamics further differs from unitary
dynamics by exhibiting hallmark features of open systems, including purity change and
decoherence.

As with ordinary operators, we can define components of the dynamical map with
respect to an operator basis on QS,

Λab(t) = 1
2trS[σa

SΛ(t) ◦ σb
S] = 1

2tr[(σ
a
S ⊗ 1E)U(t)(σb

S ⊗ ρE(0))U †(t)] (2.28)

where a and b can take the values 0, x, y, z where σ0
S = 1S.
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2.4.1 Two-qubit family

Carrying out this calculation, we find the non-zero dynamical map components, in
terms of the environment qubit’s initial state, r⃗E(0), and the functions α±(t) and β±(t)
appearing in the time evolution operator, Eq.(2.15), to be

Λz0(t) =1
2
[
|α+(t)|2 − |β+(t)|2 − |α−(t)|2 + |β−(t)|2

]
zE(0)

Λxx(t) =ℜ[α+(t)α−(t) − β+(t)β−(t)]

Λxy(t) =ℑ[α+(t)α−(t) + β+(t)β−(t)]

Λxz(t) =ℜ[α+(t)β−(t) + α−(t)β+(t)]xE(0) − ℑ[α+(t)β−(t) − α−(t)β+(t)]yE(0)

Λyx(t) = − ℑ[α+(t)α−(t) − β+(t)β−(t)]

Λyy(t) =ℜ[α+(t)α−(t) + β+(t)β−(t)]

Λyz(t) = − ℑ[α+(t)β−(t) + α−(t)β+(t)]xE(0) − ℜ[α+(t)β−(t) − α−(t)β+(t)]yE(0)

Λzx(t) = − ℜ[α+(t)β+(t) + α−(t)β−(t)]xE(0) + ℑ[α+(t)β+(t) − α−(t)β−(t)]yE(0)

Λzy(t) = − ℑ[α+(t)β+(t) + α−(t)β−(t)]xE(0) − ℜ[α+(t)β+(t) − α−(t)β−(t)]yE(0)

Λzz(t) =1
2
[
|α+(t)|2 − |β+(t)|2 + |α−(t)|2 − |β−(t)|2

]
.

(2.29)

Note the difference in how the components of the initial environment state enter, with
zE(0) appearing separately from xE(0) and yE(0). It is instructive to see how the symmetry
of the full Hamiltonian simplifies the dynamical map dependence on the initial state
of the environment qubit, r⃗E(0). To that end, define the partial components of the
dynamical map by

Λab = 1
2Λabcrc

E(0)

Λabc = tr[(σa
S ⊗ 1E)U(t)(σb

S ⊗ σc
E)U †(t)] .

(2.30)

The parity symmetry Pzz = ZS ⊗ ZE essentially halves the number of non-zero Λabc, and
separates the xy and z components of initial environment state in the dynamical map.
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Then, since Pzz commutes with U(t) and satisfies P 2
zz = 1, we see that

Λabc = tr[P 2
zz(σa

S ⊗ 1E)U(t)(σb
S ⊗ σc

E)U †(t)]

= (−1)πa+πb+πctr[Pzz(σa
S ⊗ 1E)U(t)(σb

S ⊗ σc
E)U †(t)Pzz]

= (−1)πa+πb+πcΛabc

, (2.31)

where the πd are defined such that,

Pzz(σe
S ⊗ σf

E) = (−1)πe+πf (σe
S ⊗ σf

E)Pzz . (2.32)

Considering the cases where either e=0 or f=0, allows one to speak of the parity of
local system and environment operators. For example the parity of the operator 1S ⊗ σf

E

is determined by πf . The condition πa + πb + πc = 1 (mod 2) if satisfied implies that
Λabc vanishes. This is equivalent to the following: given Λab if the parity of (πa + πb)
is even (odd) then the only contributing partial components have πc even (odd). Λzzz

also vanishes as a consequence of the parity symmetry. However this is obviously not a
consequence of the previous argument. Instead it follows using the Pzz symmetry and
that trS(ZS) = 0.

Several additional partial components vanish, although not enforced by Eq.(2.31).
For example,

Λxtx = Λxty = 0

Λytx = Λyty = 0
(2.33)

which imposes that the shift d⃗ must be parallel to the z axis. Finally,

Λxxz = Λxyz = Λyxz = Λyyz = 0 . (2.34)

Important to mention is that the shift of the dynamical map is restricted to having
only a non-zero z-component. Thus the dynamical map is unital if zE(0) = 0. A
dynamical map is unital if

Λ(t)1S = 1S , (2.35)

which requires d⃗ = 0⃗. These maps have the distinct property that they never increase
the initial purity (trρ2

S) of any state. When restricting to qubit dynamical maps, they
can always be Kraus decomposed using unitary Kraus operators. That is the reduced
dynamics generated by unital channels may be constructed by averaging over unitary
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channels.
It is worth noting that for the 2-qubit model there is a connection between the free

Hamiltonian and the magnitude of the shift. The magnitude of the shift is zero iff the
state ΩE = 1

2(1S ⊗ ρE(0)) and Hfree are orthogonal operators i.e. Tr(ΩEHfree)=0. But as
we see in the next section, there are special choices of Hamiltonian parameters that make
the dynamical map unital independent of the choice of initial environment state.

2.4.2 Three-qubit model of dynamical symmetry breaking

The reduced dynamics for the three qubit model is computed from

Λ̃ab(t, 0) = 1
4tr

[
σa

S ⊗ 1E ⊗ 1E′Ũ(t, 0)σb
S ⊗ (1E + zE(0)ZE) ⊗ ρE′(0)Ũ †(t, 0)

]
(2.36)

where we assume that the second qubit is in an initial state compatible with phase
covariance. For this reason we do not include initial correlations between subsystems E
and E ′, although this is not necessary for the reduced dynamics to be CP.

For t < τ , we claim that the dynamical map is phase covariant. Using the results of
the previous section we find

Λ̃t<τ (t) =


1 0 0 0
0 cos2 2ωt − cos 2ωt sin 2ωt 0
0 cos 2ωt sin 2ωt cos2 2ωt 0

zE sin2 2ωt 0 0 cos2 2ωt

 (2.37)

If we now focus on the unital action of Λ̃t<τ

T̃t<τ (t) =


cos 2ωt − sin 2ωt 0
sin 2ωt cos 2ωt 0

0 0 1



cos 2ωt 0 0

0 cos 2ωt 0
0 0 cos2 2ωt

 , (2.38)

it is evident that any rotation about the z-axis will commute with T̃t<τ (t). Since the
shift is left fixed by rotations about the z-axis, it follows that

Λ̃t<τ (t)[e−iωtZSρSe
iωtZS ] = e−iωtZS [Λ̃t<τ (t)ρS]eiωtZS , (2.39)

i.e. the reduced dynamics is phase covariant as it has a time-translation symmetry
generated by ωZS. The phase-covariant map presented here is known as the generalized
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amplitude damping channel, which appears in quantum information to describe dissipative
processes [42].

For t ≥ τ , where we introduce the phase covariance breaking into the interaction, the
dynamical map is found to be

Λ̃t≥τ (t) =


1 0 0 0

d̃x(t) 0 0 0
d̃y(t) 0 0 0
d̃z(t) 0 0 0

 , (2.40)

where

d̃x(t) = zExE′√
2

(g+g− − ℜ[b−g+] − ℑ[g−h−] + ℜ[a+]ℜ[h−] − ℜ[b−]ℑ[h−]
)

+
(
g+g− − ℑ[g+h+ + g−h−] + ℜ[h+h−]

)
cos 4ωτ

+
(

ℑ[h+h−] − ℜ[g+h+ + g−h−]
)

sin 4ωτ


d̃y(t) = zExE′√
2

(ℜ[g−h−] − ℜ[a+g+] + ℜ[b−]ℜ[h−] + ℜ[a+]ℑ[h−]
)

+
(

ℜ[g+h+] + ℜ[g−h−] + ℑ[h+h̄−]
)

cos 4ωτ

+
(

− g+g− + ℑ[g+h̄+] + ℑ[g−h−] + ℜ[h+h−]
)

sin 4ωτ


d̃z(t) = zE

2

(|a+|2 − |b−|2 + g2
− + 2ℑ[g+h−]

)
+
(
g2

− − |h+|2 − 2ℑ[g+h−]
)

cos 4ωτ

+ 2
(

ℜ[g−h+] − ℜ[h−]ℑ[h−]
)

sin 4ωτ


(2.41)

and a±, b±, g±, and h± are defined in Eq.(2.21), and are all evaluated at t − τ . The
dynamical map after phase covariance breaking is a time-dependent SWAP operation,
mapping all initial states to ⃗̃d(t). The transition of the reduced dynamics is continuous iff
τ = π

2ω
(n+ 1

2) for some positive integer n; i.e. only if τ coincides with a time when Λt<τ

is non-invertible. If τ is not finely tuned, the image of Λt<τ (τ) will suddenly collapse to
the point ⃗̃d(τ) = zE(0)ẑ.
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2.5 Features of the reduced dynamics
This section reviews important non-unitary features of the dynamical map families that
we have found in the previous section. We begin with a look at the invertibility of the
dynamical maps, as this determines the structure of possible master equations used to
generate the reduced dynamics. We also look at the classes of dynamical maps for the
2-qubit model, which we characterize by their degree of symmetry.

2.5.1 Invertibility

Of paramount interest is the invertibility structure, which determines when time-local
master equations are viable for use as generators. In the case of the 3-qubit example it is
clear that the map is always non-invertible as T̃t≥τ (t) = 0.

But the invertibility of the dynamical map for the two-qubit is non-trivial, and we
show in this section how it depends on the Hamiltonian and the state of the environment.
We find that there are in fact three independent ingredients that play a role in defining
the invertibility: the strength of the system/environment coupling, the ratio between
eigenenergies, and the initial environment state. The fact that these are distinct criteria
is seen from the special row structure of Λ

Det Λ(τ) = Det ⃗⃗T (τ) = |T⃗z(τ)|2 (2.42)

where T⃗z is the third row of ⃗⃗T . This now leads to three conditions that determine when
the dynamical map is non-invertible as we have

Det Λ(τ) = 0 ⇔ T⃗z(τ) = 0⃗ . (2.43)

Starting with the z-component, Λzz(τ) = 0 implies

sin2 ϕ+ sin2(ω+τ) + sin2 ϕ− sin2(ω−τ) = 1 . (2.44)

Eq.(2.44) may only be satisfied at a discrete set of times, and only if sin2 ϕ++sin2 ϕ− ≥
1. The set of ϕ± that satisfy this condition constitute the strong coupling regime of
parameter space. Figure 2.1 shows that this region of parameter space partially overlaps
with the space where U(t) is a perfect entangler.

However, strong coupling between system and environment is not a sufficient for the
map to be non-invertible. Eq.(2.44) also depends on the energy eigenvalues. For example
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The (ϕ−, ϕ+) plane
(π

2 ,
π
2 )

Figure 2.1: The (ϕ+, ϕ−) plane split into regions based on the non-local properties of the
dynamics. The light gray region contains Hamiltonians that are not perfect entanglers,
whereas the other regions (black+dark grey) are perfect entanglers. The entire gray region
supports time local dynamics. The black region is the strong coupling region and contains the
only Hamiltonians that may have DetΛ = 0.

consider the boundary between the dark gray and black regions of Figure 2.1 where
sin2 ϕ+ + sin2 ϕ− = 1 (excluding the corners where either ϕ+ = 0 or ϕ− = 0). In this
region Eq.(2.44) is satisfied iff,

sin2 ω+τ = sin2 ω−τ = 1 . (2.45)

In order for this to be possible integers k and l must exist such that,

ω+

ω−
= 2k + 1

2l + 1 . (2.46)

Defining ν such that ω+ = (2k + 1)ν and ω− = (2l + 1)ν; for any positive integer n a
non-invertiblity can appear in the reduced dynamics at times given by,

τn = (2n+ 1)π
2ν . (2.47)

So on this boundary only Hamiltonians with commensurate eigenenergies require time-non-
local dynamics (although incommensurate Hamiltonians on the boundary can generate
dynamical maps with small determinant). On the other hand, away from the boundary,
farther into the blue region, most frequency pairs will generate dynamics with non-time-
locality for some initial environment states.
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So far, we have considered only one of the conditions for non-invertibility, Λzz(τ) = 0,
which imposes conditions on the Hamiltonian that must be satisfied for the map to
be non-invertible. However, constraining the Hamiltonian to be in the strong-coupling
regime is not sufficient: the initial environment state also plays a role. The class of initial
states of the environment that lead to non-time-local dynamics is found by setting the
remaining components of T⃗z(τ) to zero,

Λzx(τ) = Λzxx(τ)xE + Λzxy(τ)yE = 0 ,

Λzy(τ) = Λzyx(τ)xE + Λzyy(τ)yE = 0 .
(2.48)

We can characterize the set of initial states for which non-invertibility will occur by
finding the vector η⃗(τ) in the xy plane associated to the environment qubit state for
which both

V (τi)η⃗(τ) =
Λzxx(τ) Λzxy(τ)

Λzyx(τ) Λzyy(τ)

 η⃗(τ) = 0 (2.49)

and DetV (τ) = 0 at some fixed τ . The solution is

η⃗(τ) = Λzyy(τ)x̂− Λzyx(τ)ŷ , (2.50)

and the orthogonal direction is

η⃗⊥(τ) = Λzxx(τ)x̂+ Λzxy(τ)ŷ . (2.51)

A non-invertibility at time τ can be removed by shifting the initial state to contain
a component in the direction η⃗⊥(τ). Furthermore, there can only be a discrete set of
times, τi < T , where the condition Λzz(τi) = 0 can be satisfied. Assume there are N
non-invertible times,

0 < τ1 < ... < τN < T, (2.52)

with the associated initial environment states that preserve the non-invertibility {η̂1, ..., η̂N}.
Single out η̂1 and note that so long as η̂⊥

1 · η̂⊥
k ≠ 0, then the non-invertibility at τk is

eliminated by the presence of η̂⊥
1 in r⃗E(0). The remaining directions all must satisfy

η̂⊥
1 · η̂⊥

k = 0. Since these initial environment states lie in a two dimensional space, all the
remaining η̂⊥

i must equal η̂1. The question of removing all non-invertibilities up to T is
then equivalent to finding a θ such that,

η⊥
i · (cos θη̂⊥

1 + sin θη̂1) ̸= 0, (2.53)
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for all i ∈ {1, N}.
We have demonstrated that certain off diagonal components (coherences) of the initial

environment state in the eigenbasis of the free environment Hamiltonian (HE;free) control
the appearance of time-non-locality in the reduced dynamics. In Section 2.6 we use this
knowledge of the time-local environment states in order to construct exact non-local
master equations as well as approximate time-local master equations.

2.5.2 Dynamical map families

We saw above how the invertibility of the dynamical map can be dramatically changed by
symmetry breaking during the dynamics. On the other hand, for the time-independent
Hamiltonian, non-invertibility only occured in a subset of the parameter space. In this
section we classify all the dynamics possible with the Hamiltonian in Eq.(2.5). This
classification illustrates the relationship between symmetry, non-invertibility, and two
other key properties of open system dynamics: non-Markovianity and unitality.

Table 2.1 lists the various dynamical map families contained in this model, together
with each family’s characteristics that we derive below. The largest family is the non-
commensurate family (N ), with two independent frequencies. If we consider the time
evolution in the Bloch ball, the trajectories generated are dense for any initial state
r⃗S(0). As mentioned previously, we use the (AB) frame to discuss the symmetries as
they are simplest in this frame. For example the symmetries present in the entire family
of Hamiltonians are ZA ⊗ 1B and 1A ⊗ ZB. Of course these are equivalent to H and Pzz,
however we find that this frame compresses the discussion of Hamiltonian families that
have additional symmetries beyond these two.

The Hamiltonians which generate the family D have more symmetries than those
corresponding to N ; these Hamiltonians commute with all rotations performed in the
B subsystem. The apparent symmetry between A and B in Eq.(2.12) is broken by the
relationship to the S/E frame. The presence of more symmetries simplifies the time-
dependence of the dynamical map, thus less complicated trajectories are generated and
the non-Markovian measures are periodic. The witnesses of non-Markovianity become
periodic even in the case that the eigenfrequencies of the Hamiltonian are commensurate
(C). Λ ∈ D are not structurally different than those in N i.e. no additional components or
partial components vanish. D does not have conserved quantities at the level of reduced
dynamics.

There are special subfamilies of D that support conserved quantities at the level of
reduced dynamics. These families D± contain dynamical maps that are phase damping
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channels, which are unital channel with the additional condition that λx = 1 and
λy = λz = λ. They are generated from the Hamiltonians with parameters such that
ϕ+ = ±ϕ−. These families are simple to study and allow us to easily determine the set
of initial environment states that yield invertible dynamics. For example in the family
D+, there is only 1 distinct direction η⃗(τ) that allows non-invertibility namely η⃗ = ŷ.

Restricting further the allowed set of initial environment states uncovers a set of
Markovian families M±. These families contain the maps in D± generated using r⃗E(0) =
x̂ (M+) and r⃗E(0) = ŷ (M−). This is simply explained by looking at the Kraus
decomposition of these channels. To illustrate this take an element of D+. The minimal
Kraus decomposition has the form

Λ+ρS = 1 + xE

2 U+ρSU
†
+ + 1 − xE

2 (ZSU+ZS)ρS(ZSU
†
+ZS) (2.54)

thus when the initial environment state is pure and in the x-direction the channel becomes
unitary. We say the dynamics is Markovian as the dynamical map is unitary and thus
generated by a time-dependent Lindblad equation with non-negative rates. Note that
unitary reduced dynamics is the only kind of Markovian dynamics possible, since the
environment Hilbert space is of finite dimension, so necessarily has a free Hamiltonian
that is bounded from below [8]. As in all Markovian open systems, the initial environment
state remains fixed under the time evolution in M±.

So far we have not mentioned the family of maps that are phase covariant i.e. the
generalized amplitude damping channels A±, often referred to by the acronym GADC.
These families do not neatly fit within the previous families, but instead have non-zero
overlap with N , C, and D. These maps have singular values satisfying λz = λ2

x = λ2
y, and

are non-unital with the only non-zero component given by dz = zE(1 − λz). For zE = 1
the maps are simply known as amplitude damping channels. These maps are generated
when either ∆− = κ+ = 0 (A+) or ∆+ = κ− = 0 (A−) and r⃗E(0) = zE(0)ẑ.

It is worth noting that the families D±,A±,and M± consist entirely of extreme
channels; i.e. channels that live in the boundary of the set of qubit channels [6]. The
extreme channels form a tetrahedron, and consist of minimal rank Kraus operators, where
maps on the interior have non-minimal Kraus rank. The families M± are contained in
the corner representing the trivial channel. The families D± live on an edge connected to
the trivial channel. And the families A± live on a face of the tetrahedron.

The method we devise later for constructing effective master equations relies on there
being a set of fundamental time scales that can be used to determine all non-invertible
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Dynamical Map Families
Family Time Evolution Extra Symmetries Unital

Non-Commensurate
(N )
ω+ ̸= qω−

Aperiodic
Non-Markovian

None If zE(0) = 0

Commensurate (C)
ω+ = qω−

Periodic
Non-Markovian

None If zE(0) = 0

Degenerate (D)
ω+ = ω−

Periodic
Non-Markovian

{1A⊗XB, 1A⊗YB} If zE(0) = 0

Phase Damping(D±)
ϕ+ = ±ϕ−

Periodic
Non-Markovian

{1A⊗XB, 1A⊗YB} Any r⃗E(0)

Markovian (M±)
r⃗E(0) = x̂(+) or ŷ(-)

Markovian {1A⊗XB, 1A⊗YB} Always

Amplitude Damping
(A±)

Aperiodic NM (A±∩N )
Periodic NM (A± ∩D)

None
{1A⊗XB, 1A⊗YB}

If zE(0) = 0

Table 2.1: Here various dynamical map families are defined for the 2-qubit model. They
are distinguished by the Hamiltonian parameters and initial environment state used in
their generation.

times of the reduced dynamics. Such a task is especially simple for the families D± and
A± ∩ D, where only one such time scale exists. But for the set of Hamiltonians where
the parameters are not carefully chosen (N ), such a construction is unfavorable as the
non-invertible times behave as essentially random.

2.5.3 Entanglement generation and non-Markovianity

For the range of parameters possible in the two-qubit Hamiltonian, we can characterize the
flow of information between system and environment by examining the non-Markovianty
and the degree to which the system and environment can become entangled.

The parameters required for the time-evolution to be (periodically) perfectly entan-
gling can be found using the criteria of Makhlin [57, 58], that the convex hull of the
eigenvalues of the matrix m(U) = (Q†UQ)TQ†UQ contains zero, where Q is the operator
that changes to the Bell basis. Evaluating the eigenvalues of m(U), the convex hull
condition becomes (see details in Appendix A.1)

cos2 φβ2
+(t) + sin2 φβ2

−(t) = 1
2 , (2.55)

where φ ∈ [0, 2π) parameterizes the remaining convex combinations. This can be satisfied
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Figure 2.2: The fidelity and trace distance between time evolved reduced states using
the initial conditions r⃗1(0) = x̂ and r⃗2(0) = cos θx̂+ sin θŷ are plotted. The parameters
used are ω = ω+ = ω− =

√
5

2 , tanϕ+ = tanϕ− = 2, and r⃗E(0) = 0⃗. The non-Markovian
nature of the reduced dynamics is evident from the oscillations of D and F .

iff the largest of β2
+(t) and β2

−(t) is greater than or equal to 1
2 , which will hold at some

times as long as Max(ϕ+, ϕ−) ≥ π
4 . This condition on the parameter space of the

Hamiltonian is shown in Figure 2.1, compared with other conditions we derive below
related to properties of the reduced dynamics.

For nearly all parameter values in the Hamiltonian, Eq.(2.7), and initial states, the
dynamical map is non-Markovian. This is expected since the system and environment are
the same (small) size. The non-Markovianity is diagnosed by information back-flow into
the system from the environment [59], with standard indicators being non-monotonicity
in the evolution of trace distance and fidelity. For any two states on the reduced system,
r⃗1(t) and r⃗2(t), the trace distance (D) and fidelity (F) are [60],

2D(r⃗1(t), r⃗2(t)) = ||r⃗1(t) − r⃗2(t)||

2F(r⃗1(t), r⃗2(t)) = 1 + r⃗1(t) · r⃗2(t) +
√

(1 − r2
1(t))(1 − r2

2(t)) .
(2.56)

Generically these measures are oscillatory, and aperiodic unless ω+ = qω− for some q ∈ Q.
The degenerate family, Eq.(2.13), always has periodic measures of non-Markovianity

and is a useful case to look at in more detail. Figure 2.2 shows the trace distance and
fidelity in the degenerate family, demonstrating the non-Markovian character of the
reduced dynamics. The dimensionless parameter χ = ωt

π
(ω = ω+ = ω−) is used to

construct these plots, and the environment memory time-scale can be read off as τNM ∼
O( π

2ω
).

Figure 2.2 is generated with ϕ+ = ϕ− allowing for interesting features to appear in F .
If ϕ± are perturbed so that ϕ+ ̸= ϕ−, these interesting features also vanish. First note the
plateaus, which indicate there is a unitary phase (i.e. F=constant) if we further require
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that r⃗E(0) = x̂. Additionally, preceding the plateaus are discontinuities in Ḟ . In some
other finite open systems, such discontinuities indicate dynamical phase transitions [61].

Non-Markovianity of the dynamics has been equated to the indivisibility of the
dynamical map into channels (CPTP maps) [59], however the actual relationship is more
complicated as non-Markovian dynamical maps can be CP divisible [9–11]. To study the
divisibility of the dynamical map one looks at the interweaving maps (Φ), defined using
two times τ2 > τ1 ≥ 0,

Λ(τ2) = Φ(τ2, τ1)Λ(τ1) . (2.57)

For invertible reduced dynamics the interweaving map is computed as
Φ(τ2, τ1) = Λ(τ2)Λ−1(τ1), although Φ may still be defined even when Λ−1 does not
exist [10].

The degree of positivity of Φ(τ2, τ1) determines the divisibility class of the map Λ(τ2),
as Λ(τ1) is completely positive by construction. It is important to note that divisibility
is meant in a holistic sense i.e. the reduced dynamics is considered CP divisible up
to time τ2 only if Φ(τ2, τ1) is completely positive for all τ1 < τ2. A qubit channel is
(infinitesimally) P-divisible if DetΛ(t) ≥ 0 for all t ≥ 0 [8]. We have shown this to be true
for the 2-qubit family studied. So the dynamical maps presented here may be arbitrarily
split into positive maps, each made close to the identity channel.

The question of CP divisibility is in general more subtle. For qubit dynamical maps
of full rank, these maps are CP divisible if s1s2s3 > 0, where si are the singular values of
the Lorentz normal form of the channel [11]. For unital channels, this is equivalent to
requiring DetΛ(t) > 0. We are able to find many examples of such maps. Take Λ(t) ∈ N
and zE(0) = 0. As long as the initial environment state is not pure, Λ(t) will be a
full Kraus rank unital channel. Therefore it will be CP divisible iff it is invertible. Of
course these maps generate oscillation in non-Markovian measures, so do not constitute
Markovian reduced dynamics. In Appendix A.2, we study the CP divisibility of deficient
Kraus rank maps in D+. We find that even when these maps are invertible, there typically
exist time intervals s.t. for τ ∈ [τa, τb] the map Φ(τ2, τ) fails to be CP.

2.6 Master equations
We present the standard master equations that can be associated to any Λ(t, 0), both
local and non-local in time. We find that by changing r⃗E(0), different partitions of the
singularity between non-local and local terms can be achieved. We show that we can
capture some non-unitarity features of the reduced dynamics just using the local term.
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Figure 2.3: TrKTL (scaled by π
4ω ) and DetΛ are plotted with r⃗E(0) = 0⃗. a) Uses parameters

ω = ω+ = ω− =
√

17
4 and tan ϕ+ = tan ϕ− = 1

2 ; the dynamics is invertible with DetΛ separated
from zero. b) Uses parameters ω = ω+ = ω− =

√
5 and tan ϕ+ = tan ϕ− = 4; DetΛ=0 has

solutions, where the dynamical map becomes a projection onto the Q̂1(τ) direction in the Bloch
ball.

2.6.1 Standard master equations

The dynamical map can be used to construct the time-local, although possibly singular,
generator for the master equation

∂tρS(t) = KTL(t)ρS(t) = Λ̇(t)Λ−1(t)ρS(t) . (2.58)

Since the inverse dynamical map is

Λ−1(t) = 1
T 2

z

 T 2
z 0 0 0

−dzT⃗z T⃗y × T⃗z T⃗z × T⃗x T⃗z

 , (2.59)

the time-local generator is expressed in terms of the dynamical map components as

KTL(t) = 1
T 2

z


0 0 0 0

−dz( ˙⃗
Tx · T⃗z) ˙⃗

Tx · (T⃗y × T⃗z) ˙⃗
Tx · (T⃗z × T⃗x) ˙⃗

Tx · (T⃗z)
−dz( ˙⃗

Ty · T⃗z) ˙⃗
Ty · (T⃗y × T⃗z) ˙⃗

Ty · (T⃗z × T⃗x) ˙⃗
Ty · (T⃗z)

−dz( ˙⃗
Tz · T⃗z) ˙⃗

Tz · (T⃗y × T⃗z) ˙⃗
Tz · (T⃗z × T⃗x) ˙⃗

Tz · (T⃗z)

 . (2.60)

Fig (2.3) contains plots of DetΛ and TrKTL using Λ(t) ∈ D+, which demonstrate that
singularities in KTL occur where DetΛ = 0.

The generator KTL can be put into Lindblad form,

∂tρS(t) = −i[(H⃗eff(t) · σ⃗S), ρS(t)] +
3∑

i=1

3∑
j=1

γij(t)(σj
SρS(t)σi

S − 1
2{σi

Sσ
j
S, ρS(t)}) , (2.61)
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Figure 2.4: Plotted are the real and imaginary parts of the off diagonal Lindblad coefficients.
Plots are generated using the parameters ω+ = ω− =

√
5

2 and tan ϕ+ = tan ϕ− = 2. Included
in the plots is the trace distance evaluated using the same parameters and initial states
r⃗1(0) = −r⃗2(0) = x̂. We include the trace distance to demonstrate that experimentally
accessible quantum information measures can constrain the parameters that appear in effective
master equations; in this case oscillation frequencies of the Lindblad coefficients.

where H⃗eff(t) = ωSẑ+H⃗open(t) generates unitary evolution on QS with a contribution from
internal parameters and a portion that knows about the environment and interaction,
H⃗open(t). The coefficients γij(t) are the Lindblad coefficients which generate the non-
unitarity that appears in the reduced dynamics.

Obtaining the Lindblad form of the master equation amounts to a change of basis,
for example the effective Hamiltonian has components

H i
eff(t) = 1

2ϵ
ijkKjk(t) , (2.62)

and similar expression exist for the γij(t), though we do not include them here. Figure
2.4 shows how we can use the quantities such as the D(t) to determine the oscillation
timescales that appear in the Lindblad coefficients, which is useful to set a scale for
environment memory timescales that will inevitably appear in effective master equations.

In the strong coupling region where the time-local description has singular behavior,
we instead use an integral master equation known as the Nakajima-Zwanzig equation.
The Hamiltonian being time independent allows the NZ generator to take the form
KNZ(t, τ) = KNZ(t− τ). Thus the NZ equation is a convolution,

∂tρS(t) =
∫ t

0
KNZ(t− τ)ρS(τ)dτ . (2.63)

The convolution kernel may be obtained from the dynamical map using the Laplace
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transform of the dynamical map Φ(s) (as in [62]),

K̃NZ(s) = s14 − Φ−1(s) (2.64)

The form of the functions α±(t) and β±(t) restrict the dynamical map components to
having few Fourier components. That is each Λab has a Fourier decomposition of the
form,

Λab(t) = Cab+F ab
1 e−i2ω+t + F ab

2 e−i2ω−t + F ab
3 e−i(ω++ω−)t + F ab

4 e−i(ω+−ω−)t

+Gab
1 e

i2ω+t +Gab
2 e

i2ω−t +Gab
3 e

i(ω++ω−)t +Gab
4 e

i(ω+−ω−)t
. (2.65)

If ab is even (odd) then the component Λab involves only even (odd) time dependent
functions. It is now simple to go to the frequency domain, where we can write the generic
Laplace transformed components,

Φab(s) = Cab

s
+ F ab

1
s+ i2ω+

+ F ab
2

s+ i2ω−
+ F ab

3
s+ i(ω+ + ω−) + F ab

4
s+ i(ω+ − ω−)

+ Gab
1

s− i2ω+
+ Gab

2
s− i2ω−

+ Gab
3

s− i(ω+ + ω−) + Gab
4

s− i(ω+ − ω−)

. (2.66)

In principle one can use these formulae to construct the exact non-time-local master
equation associated to the reduced dynamics, although the expressions involved are
cumbersome. Instead for what follows we devise a method to expand the NZ kernel,

KNZ(t− τ) = δ(t− τ)KTL(t) +KNTL(t, τ) . (2.67)

Such an expansion is available for each time-local initial environment state (r⃗TL), where
the relative importance of the time-local vs non-time-local component is controlled by
the magnitude of r⃗TL − r⃗E(0).

2.6.2 Effective master equation

An exact time local master equation without singularities exists as long as either of the
following conditions are met

I The Hamiltonian parameters are in the weak coupling region, i.e. sin2 ϕ+ +sin2 ϕ− <

1.

II r⃗E(0) has off diagonal elements in the eigenbasis of HE;free along certain directions
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described in Section IIIB.

However, when neither of the above holds only a non-local equation can capture the
exact time evolution of the reduced state. Such a master equation can be found using
reduced dynamics from the time-local region.

Consider the case where the Hamiltonian parameters are in the strong coupling region
and r⃗E(0) = r⃗NTL, yielding non-invertibilities in the reduced dynamics. By choosing a
shifted initial environment state (r⃗ ′

E), we can engineer the time local component of a
non-time local master equation. By using the exact non-time local dynamical map we
can also determine the corresponding non-time-local component for the master equation.
As the non-time-local piece is linear in δr⃗ = r⃗NTL − r⃗

′
E, the choice of shifted initial state

controls its relevance.
We can choose r⃗ ′

E by considering states near to r⃗E(0) that are shifted along the
direction(s) η⊥ as defined in Eq.(2.51). The time derivative of ρS(t; r⃗NTL) may be
expanded as,

ρ̇S(t; r⃗NTL) = ∂tρS(t; r⃗ ′

E + δr⃗) = ∂t

[
Λ(t; r⃗ ′

E) + (Λ(t; δr⃗) − Λ(t; 0⃗))
]
ρS(0)

= KTL(t; r⃗ ′

E)ρS(t; r⃗ ′

E) + δr⃗ ·
[
∂Λ̇(t; δr⃗)
∂δr⃗

]
ρS(0)

= KTL(t; r⃗ ′

E)ρS(t; r⃗NTL) + δr⃗ ·
[
∂Λ̇(t; δr⃗)
∂δr⃗

−KTL(t; r⃗ ′

E)∂Λ(t; δr⃗)
∂δr⃗

]
ρS(0) .

(2.68)

Note that since the dynamical map is linear in the initial environment state, we can
replace ∂Λ(t;δr⃗)

∂δr⃗
in the above equation with ∂Λ(t;r⃗ ′

E)
∂r⃗

′
E

ρ̇S(t; r⃗NTL) = KTL(t; r⃗ ′

E)ρS(t; r⃗NTL) + δr⃗ ·
[
∂Λ̇(t; r⃗ ′

E)
∂r⃗

′
E

−KTL(t; r⃗ ′

E)∂Λ(t; r⃗ ′
E)

∂r⃗
′
E

]
ρS(0) .

(2.69)

This can be further simplified noting that Λ̇(t; r⃗ ′
E) −KTL(t; r⃗ ′

E)Λ(t; r⃗ ′
E) = 0, yielding the

final expression

ρ̇S(t; r⃗NTL) = KTL(t; r⃗ ′

E)ρS(t; r⃗NTL) + δr⃗ ·
[
∂KTL(t; r⃗ ′

E)
∂r⃗

′
E

Λ(t; r⃗ ′

E)
]
ρS(0) . (2.70)

We have now explicitly isolated a time-local component which is evaluated at the
same Hamiltonian parameters as Λ(t; r⃗TNL), but uses the initial environment state r⃗ ′

E
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instead of r⃗NTL. How large δr⃗ is compared with r⃗TNL determines the maximum value of
TrKTL(t; r⃗ ′

E), which in turn determines how relevant the integral term is in capturing
the non-invertibility.

An effective time local description is obtained keeping only the zeroth order term,

∂tρS(t; r⃗NTL) ≈ KTL(t; r⃗ ′

E)ρS(t; r⃗NTL) (2.71)

Using this equation to generate the reduced dynamics is equivalent to exchanging
the dynamical map Λ(t, r⃗NTL) for the dynamical map Λ(t; r⃗ ′

E), so obviously defines a
completely positivity master equation.

2.7 Conclusions
For a two-qubit system with symmetry, we have classified how the non-Markovianity,
unitality, and time non-locality depend on the system/environment Hamiltonian and
the initial state of the environment. We also considered a three-qubit example with a
time-dependent interaction that broke a dynamical symmetry.

The oscillatory character of the reduced dynamics demonstrates that there is a
continuous flow of information flow back and forth between system and environment. For
sufficiently symmetric Hamiltonians, special initial environment states exist that support
Markovian reduced dynamics, where the information flow becomes one-way. While this
is not surprising, it is a reminder that the assumption of a Markovian master equations
is not consistent with typical interacting Hamiltonians. This is true in the cosmological
context as well [24, 63].

In typical effective theories of open systems, then, we need some guidance for how
to parameterize the possible non-Makovian behavior. In the qubit model, whether
the flow of information between system and environment was periodic or aperiodic
depended on the degree of symmetry present in the Hamiltonian. There was no reason to
assume that any of the parameters in the Hamiltonian take related values (for example,
commensurate frequencies in the system/environment free Hamiltonians). In some
cosmological contexts, however, there are effects that connect parameter values. For
example, in inflation all modes undergo a common squeezing driven by the background
expansion. This squeezing can determine a significant part of the time-dependence in the
dissipative coefficients γ(t) [24], including the periodicity. The background expansion
may suggest the appropriate scale to use in an effective open model.
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A further wrinkle in open effective theories is that the master equations need not
be local in time. Most constructions in cosmology restrict to time-local equations for
simplicity [22,35,64] although work in the context of black holes has shown that non-time-
local evolution can be required [41]. Our work here explores the conditions necessary for
time-local dynamics in small qubit models. We find that even in the regions of parameter
space with the largest degrees of symmetry, it can be necessary to use a time-non-local
master equation. We make this determination based on the non-invertibility of the
dynamical map, which depends both on the Hamiltonian and the initial environment
state. Strong coupling is a necessary condition for non-invertibility, however so is a
rather restricted set of initial environment states. Those states are defined largely by
the dynamics of the free Hamiltonian for the environment. Diagonal initial environment
states in the eigenbasis of HE;free are the most non-local, as their dynamical maps are
non-invertible in the presence of strong coupling.

In cosmology, the Hamiltonian is generically time-dependent, so it is not uncommon
for the relevant (active) degrees of freedom and couplings to evolve over time. We used
a 3-qubit model to investigate how such a time-dependence effects the nature of the
dynamical map. We found that introducing a degree of freedom that does not respect
the symmetry of the initial interaction drastically altered the reduced dynamics. The
dynamical map became non-invertible at all times after the activation of the spectator
qubit. This strongly suggests that the framework of open effective theories in cosmology
should include a time-non-local component.
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Chapter 3 |
Effective Dynamics via Quantum
Channel Ensembles

3.1 Preamble
This chapter is a reprint of [65]. From the previous chapter we determined that in
open quantum system, such as those encountered in quantum cosmology, any effective
master equation should include a non-time-local component. This does not rule out the
master equation approach, but it certainly makes it much more challenging. Therefore
instead of focusing on effective master equations, in this chapter we develop a method
to approximate the long-time dynamics of open systems using ensembles of quantum
channels. In order to narrow our focus, we consider open systems that may be described
by phase-covariant dynamical maps, although we expect that this is not too restrictive.

3.2 Introduction
Most of the quantum systems used for measurement and computation are open, rather
than isolated, systems. We are frequently interested in understanding the dynamics of
an ensemble of such systems, such as the set of evolutions of some quantum state under
many trials of a noisy circuit [66,67]. An ensemble of noisy circuits is an approximate
description of some more complex, closed system, and more generally ensembles of
open systems provide an alternative description of closed systems. In that case, the
ensemble is generated by a partition of the closed system into a set of subsystems, with
the evolution of each subsystem described by an open-systems equation. The set of
sub-system evolutions is constrained by conservation laws and symmetries of the closed,
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unitary evolution. One might in practice be primarily interested only in the evolution of
some special subsystems, for example the computational qubits or the probe systems for
a measurement task. For other questions, such as studying thermalization, it may be
useful to define a typical or average open evolution together with the deviations from
the average.

In this work, we derive and characterize ensembles of open-system qubit evolutions. We
consider cases where either all members of the ensemble are phase-covariant dynamical
maps [68, 69], or ensembles whose average map is phase covariant. Prior work on
random ensembles of open-system dynamics has largely been restricted to evolution
that is time-homogeneous, Markovian and unital [70–79]. Phase-covariant maps provide
a well-characterized way to consider more complex open-system evolution with none
those restrictions [56, 80, 81], making them appealing for phenomenological studies of
thermalization, quantum homogenization, dephasing process, quantum metrology and
quantum optics [80,82–84]. For computational questions, they carry the advantages of
non-unitality [67,85,86].

The most general phase-covariant qubit channel can be parameterized as

ΛPC =


1 0 0 0
0 λ1 cos θ −λ1 sin θ 0
0 λ1 sin θ λ1 cos θ 0
τ3 0 0 λ3

 , (3.1)

where λ1, λ3, θ, and τ3 are all real numbers and complete positivity imposes some
restrictions on the parameters, discussed below. The action of this class of channels
includes translations and xy-symmetric deformations of the Bloch sphere that commute
with rotations about the z-axis. Phase covariant maps provide agnostic noise models,
since they describe a combination of pure dephasing with energy absorption and emission.
An additional useful property of phase-covariant channels is that they need not have the
maximally mixed state as a fixed point. That is, they need not be unital. The state that is
invariant under the action of the phase-covariant map, Eq.(3.1), is ρ∗ = 1

2

(
1 +

(
τ3

1−λ3

)
Z
)
,

where Z is the Pauli matrix. This state is different from the maximally mixed state (the
Gibbs state at infinite temperature) whenever τ3 ≠ 0, but it is still diagonal and can
be understood as a classical ensemble or Gibb’s state with β∗ = log

[
2

1−a∗

]
> 0, where

a∗ = τ3
1−λ3

. This simple steady state is useful for studying thermalization beyond the
Markovian regime [69].

Evolution under a phase-covariant dynamical map (a smooth, time-parameterized
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sequence of phase-covariant channels) can be generated for a system with free Hamiltonian
HS by coupling it via an interaction term HSE to an environment with free Hamiltonian
HE in initial state ρS ⊗ ρE, with the restrictions

[HS +HE, HSE] = [HE, ρE] = 0 . (3.2)

These relations imply that (i) no energy builds up within interactions and (ii) the initial
environment state is a Gibbs state with respect to H0, and plays the role of a classical
reservoir in the case that the reduced dynamics is Markovian. But, these maps are
generically non-Markovian, allowing much richer dynamics [87].

By choosing Hamiltonians for N coupled spins with initial states that obey the
conditions above, we can construct ensembles of open-system evolution where each
member of the ensemble is a phase-covariant map for a single spin degree of freedom.
Except in special cases, the full set of maps is time-consuming to derive for large N .
However, we can take a useful limit that effectively averages over the oscillatory behavior
associated with the finite system size. We will find that in useful cases this average map
provides a stationary channel that depends only on the initial state and the symmetries
of the interaction terms in the Hamiltonian.

To construct these channels from example systems, we first average over the set
of individual dynamical maps at fixed time t associated with the evolution of the ith
subsystem, Λi(t′), and then take the limit of a long time-average:

Λ∞
N ≡ lim

t→∞

1
t

∫ t

0

[
1
N

N∑
i=1

Λi(t′)
]
dt′ . (3.3)

In useful cases, the limit of the long-time and ensemble averaged map will be a time-
independent channel. Furthermore, for disordered Hamiltonians, ΛN(t) (and the map
averaged over the N sub-systems at any time) may be phase-covariant even when
individual maps are not. This is most directly seen by working with the distribution of
map parameters, inherited from the Hamiltonian disorder, over the N sub-systems. Then
Λ∞

N may again be a time-independent, phase-covariant channel. We will demonstrate
these points with specific examples below.

In the rest of the paper, we establish a procedure for generating ensembles of phase-
covariant maps with a long-time average that is time-independent and with fluctuations
about the average that mimic those found in finite-size spin networks. We begin in
Section 3.3 by constructing ensembles of maps for spin networks where every division into
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sub-system and environment satisfies Eq.(3.2). That is, every map is phase-covariant and
differences in the map come from the inhomogeneity of the initial state. We derive the
Λ∞

N for those ensembles. In Section 3.4 we provide a perturbative calculation justifying
the use of Λ∞

N as defined in Eq.(3.3) as a large-N limit for at least some kinds of systems.
Next, in Section 3.5, we consider a case where different members of the ensemble may
also have different dynamics, for example as generated by different values for couplings
within the full, closed Hamiltonian. There we show how moving from a distribution over
Hamiltonian parameters to a distribution over map parameters facilitates the construction
of additional scenarios whose average dynamics are phase covariant. We put these pieces
together in Section 3.6, and provide a prescription for generating ensembles of open-
system evolution that we conjecture to be useful for studying the ensemble of subsystems
of large-N , closed systems. We conclude in Section 3.7.

3.3 Phase-covariant ensembles from XXZ networks
In this section we consider several examples of XXZ spin-networks in external magnetic
fields, which we use as benchmark examples of the phase-covariant ensembles. We are
interested in extracting features that can be usefully generalized to a construction that
can be carried out using only the parameters of the maps in Eq.(3.1), without reference
to an explicit Hamiltonian, although we will see how properties of the Hamiltonian are
recognizable in the maps. The phase-covariant restrictions on XXZ models have a simple
late-time averaged behavior, described by single phase-covariant channel (since these
channels are closed under convex linear combinations [88]). Besides characterizing this
channel, we use these models to extract a typical scaling with N of how maps vary
around the average, which can be used to inform more general probability distributions
over map parameters.

To begin, the dynamical map associated to the ith qubit in the network is defined as

Λi(t)[ρi(0)] = trj ̸=i

[
e−iHtρi(0) ⊗ ρEi(0)eiHt

]
(3.4)

where H is the full Hamiltonian describing the network dynamics. Λi(t) depends on
time, the Hamiltonian parameters, and the initial state of the remaining qubits. To
obtain phase-covariant dynamical maps for a given qubit network, we must ensure the
thermodynamic constraints from Eq.(3.2) are satisfied. Therefore, we choose initial
global states that are totally uncorrelated and diagonal in the computational basis (as
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appropriate for XXZ type Hamiltonians)

ρ(0) = 1
2N

N⊗
i=1

(
1i + ziZi

)
. (3.5)

The initial state must be totally uncorrelated so that for all possible choices of focal qubit
the reduced dynamics is completely positive. Then, all maps are of the form Eq.(3.1)
and satisfy the following inequalities [6]

|λ3,i| + |τ3,i| ≤ 1

4λ2
1,i + τ 2

3,i ≤ (1 + λ3,i)2 .
(3.6)

3.3.1 XXZ-networks

In this section, we consider homogeneous XXZ-networks with two different topologies.
The first has nearest-neighbor interactions and periodic boundary conditions (a ring),
with Hamiltonian

Hring
XXZ = h

N∑
i=1

Zi + J⊥

2

N∑
i=1

(XiXi+1 + YiYi+1) + J∥

2

N∑
i=1

ZiZi+1 . (3.7)

Here X, Y, Z are the usual Pauli matrices and the qubit indices take integer values mod N .
The coupling constants J∥ and J⊥ determine the class of the model. For J⊥ = 0, HXXZ

reduces to the (anti)-ferromagnetic Ising model with J∥ < 0 (J∥ > 0). When J⊥ = J∥ the
model reduces to the XXX model. These models belong to different universality classes
as they flow to distinct fixed points under renormalization.

Second, we consider completely connected networks, with all possible pairwise inter-
actions:

Hcc
XXZ = h

N∑
i=1

Zi + J⊥

2
∑
i,j

(XiXj + YiYj) + J∥

2
∑
i,j

ZiZj . (3.8)

Technically, the computation of the dynamical maps via Eq.(3.4) involves exponen-
tiating the Hamiltonian and tracing over most of the system. This is easiest to do if
the Hamiltonian is first diagonalized. Both topologies have a number of symmetries
that can be exploited to perform this diagonalization. A detailed description can be
found in Appendix B.1, but we summarize the key points here as they provide a helpful
organization to understand some of the structure in the maps.

First, HXXZ for either connectivity has a U(1) symmetry generated by the charge
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operator QN = ∑
i Zi. Therefore HXXZ is block-diagonal in an excitation basis,

PNHXXZP†
N = H0

XXZ ⊕H1
XXZ ⊕ ...⊕HN

XXZ , (3.9)

with dim Hq
XXZ =

(
N
q

)
and PN is a 2N ×2N permutation matrix taking the computational

basis to a chosen excitation basis. There are many choices of excitation basis, as one can
always reorder computational basis states within a given q-block to obtain a new basis.

Next, one can leverage the translation symmetry of the models. For homogeneous
couplings and the two topologies considered here, the Hamiltonian is invariant under
relabelings like i → i− 1. That is, the translation operator over N spins, TN , satisfies
[TN , HXXZ] = 0. Thus the next stage in block-diagonalization for both models is achieved
by using a Fourier basis, with blocks labelled by a:

ΓNPN (HXXZ) P†
NΓ†

N =
N⊕

q=0

N−1⊕
a=0

Hq,a
XXZ . (3.10)

See Appendix B.1 for additional details and examples.
However, for N > 3, even these symmetries are not enough to achieve exact diago-

nalization (see, for example, Eq.(B.11) in the Appendix). The additional degeneracy in
the eigenstates of TN increases with N , and so eigenstates of HXXZ are superpositions of
these Fourier modes. That is, if eigenstates of the Hamiltonian are labelled by a complete
set of quantum numbers {q,a,l}, and the index k runs over the Fourier modes in each
block a, then

|Ea
q ; l⟩ =

kmax∑
k=kmin

Ckl
q |Fa

q ; k⟩ . (3.11)

Whenever kmax = kmin, the stationary states are just Fourier modes i.e. |Ea
q ; kmin⟩ =

|Fa
q ; kmin⟩. For small (kmax − kmin), the time evolution may be computed analytically.

That is the procedure we will follow in the examples below, but the maximum degree of
degeneracy amongst Fourier modes grows linearly with N , and it becomes more difficult
to perform the diagonalization.

To make this a bit more explicit, consider the q = 1 block for an XXZ-network with N
qubits. The block has dimension N and TN is non-degenerate within it, so diagonalization
of Hq=1

XXZ is achieved through an N -dimensional discrete Fourier transformation. Explicitly
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the eigenstates are given as discrete plane waves

|Fa
1 ; 0⟩ ≡ 1√

N

N−1∑
k=0

eikθaσ+
k |1...1⟩ , (3.12)

where θa = 2πa
N

and σ+
k flips the kth spin from 1 to 0 and acts as the identity every

where else. The q = N − 1 block has essentially identical eigenstates, expect with the
replacement

σ+
k |1...1⟩ → σ−

k |0...0⟩ . (3.13)

For other values of q, the translation operator becomes more degenerate. In these cases
an appropriately sized discrete Fourier transformation must be performed to reach the
next step of block-diagonalization.

In the remainder of this subsection, we go through the computation of the dynamical
maps for three qubits in detail. Then, in the rest of the section, we report map parameters
and average maps for N > 3, leaving details of the process to Appendix B.1.

3.3.1.1 3-qubit XXZ-network

We shall now demonstrate how we compute the ensemble of phase-covariant maps and
the average map, and characterize the fluctuations, for the example of a 3-qubit network.
In this case, the ring and completely connected topologies are equivalent. We begin by
diagonalizing HXXZ, going first to the canonically ordered excitation basis

P3HXXZP†
3 = H0

XXZ ⊕H1
XXZ ⊕H2

XXZ ⊕H3
XXZ . (3.14)

This example is especially simple as the only interacting blocks, H1
XXZ and H2

XXZ, are
both diagonalized through discrete Fourier transformation. The other blocks are non-
interacting, and consist of the computational basis states |1...1⟩ (q=0) and |0...0⟩ (q=N).
Using the exact diagonalization of the Hamiltonian, we determine explicit expression for
the parameters appearing in the phase-covariant dynamical maps when the initial state
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is of the form Eq.(3.5). We find

λ1,i(t, 3) =
√
α2

i (t, 3) + β2
i (t, 3)

θi(t, 3) = 2ht+ ϕi(t, 3)

λ3,i(t, 3) = 1
9
(
5 + 4 cos 3J⊥t

)
τ3,i(t, 3) = 2

9(
∑
k ̸=i

zk)
(
1 − cos 3J⊥t

)
(3.15)

where we have made the definitions

αi(t, 3) = 1
18

((
1 −

∏
k ̸=i

zk

)(
7 + 2 cos 3J⊥t

)
+
(
1 +

∏
k ̸=i

zk

)(
3 cos (2J∥ − 2J⊥)t+ 6 cos (J∥ + 2J⊥)t

))

βi(t, 3) = 1
18
(∑

k ̸=i

zk

)(
3 sin (2J∥ − 2J⊥)t+ 6 sin (J∥ + 2J⊥)t

)

ϕi(t, 3) = tan−1
(
βi(t, 3)
αi(t, 3)

)
.

(3.16)

Notice that the strength of the external magnetic field, h only enters into the rotation
angle θ.

There are two relevant time scales in these maps, determined by J∥ and J⊥. For
simplicity, we will illustrate results in Figure 3.1 for J∥ = J⊥, and define a single time-scale

tJ = 2π
J⊥

. (3.17)

While a simplifying assumption, we do not expect this reduction to drastically change
the primary aspects of our results for the average phase-covariant maps computed below.
For example, the late-time average values of both λ3 and τ3 are independent of the ratio
J⊥
J∥

. Further, if we avoid certain commensurate values of Hamiltonian parameters, the
steady-state values of λ1 are also independent of the coupling ratio.
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Figure 3.1: Examples of ensembles of two of the dynamical map functions, λ1,i(t) and
τ3,i(t). Each panel shows results for all spins (i = 1, 2, 3) in the network. Plots on the
left are for initial state z1=1, z2 = 1

3 and z3 = 2
3 (hierarchical), while those on the right

had z1 = z3 = −z2 = 1 (Néel). Both cases assume J∥ = J⊥, which is used to define the
time scale tJ = 2π

J⊥
.

We now turn to the computation of the steady-channel, Λ∞
3 and the normalized

fluctuations. For generic values of h (i.e. not commensurate with J⊥ or J∥), Λxx(t),
Λxy(t), Λyx(t), and Λyy(t), vanish under long-time averaging. Therefore we assume that
h is generic, precluding this situation. Choosing to define the time average of λ1(t) as

λ1(t) =
√

Λ2
xx(t) + Λ2

xy(t) (3.18)

we then find

λ1(t = ∞, N = 3) = 0 ,

λ3(t = ∞, N = 3) = 5
9 ,

τ 3(t = ∞, N = 3) = 4
9
e1(zi)

3 .

(3.19)

Anticipating results for larger N , we express τ∞
3 in terms of elementary symmetric
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polynomials in the initial state ek(zi). These polynomials are defined for any N by the
equation

N∏
i=1

(z + zi) = e0(zi)zN + e1(zi)zN−1 + ...+ eN(zi) . (3.20)

Examples and related applications of the polynomials can be found in [89].
Before we move on to the next topic, it is useful to point out a few features of the

dynamical map ensembles for the various N we consider.

Figure 3.2: The ensembles of non-unitary parameters are plotted for the 4 and 5 qubit
XXX-model for hierarchical initial states. The top set of plots are generated using the
the initial state with z1 = 1, z2 = 1

4 , z3 = 2
4 , and z4 = 3

4 . The bottom set of plots are
generated using the initial condition z1 = 1, z2 = 1

5 , z3 = 2
5 , z4 = 3

5 , and z5 = 4
5 .

Figure 3.2 emphasizes the non-time-local nature or non-invertibility of our ensembles,
following from the existence of zeros in the λ3(t) plots. The top left panel shows that
while not every individual map is time-local for the N = 4 hierarchy state, the average
dynamics will be. While not plotted here, the Néel serves as a maximal example of
locality breaking, as even the average dynamical map is time-non-local.

We may also use these plots to draw a point of distinction between the two topologies
of networks. In the completely connected case λ3(t) and τ3(t) are always periodic over
some multiple of tJ , while in the case of the XXX-ring the dynamics need not be periodic,
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as can be seen from the lower panel of Figure 3.2. Of course if N is a perfect square then
periodicity occurs, as can be seen for the case of N = 4. Equations (B.42) and (B.54) in
Appendix B.2 makes this point clear, showing that for the XXX-ring

√
NJ⊥ appears in

the various frequencies comprising the dynamical map components.

3.3.2 Long-time averaged channels

The individual maps and steady-channels for N > 3 require a similar, but longer
computation. the two topologies of XXZ-clusters for. We also discuss features of the
reduced dynamics found for the computed ensembles, i.e. whether they are time-local for
certain initial states and other average properties. Details of the map components as a
function of time, and some additional plots of that time-dependence, can be found in
Appendix B.2.

3.3.2.1 Complete connectivity

Turing our attention to the completely-connected XXZ-network we compute the late-time
network averaged quantum channels. For N = 4 we find

λ
∞
1 (N = 4) = 0

λ
∞
3 (N = 4) = 7

16
e0(zi)

1 + 3
16

e2(zi)
6

τ∞
3 (N = 4) = 9

16
e1(zi)

4 − 3
16

e3(zi)
4 .

(3.21)

For N = 5 we find

λ
∞
1 (N = 5) = 0

λ
∞
3 (N = 5) = 7

15
e0(zi)

1 + 16
75

e2(zi)
10

τ∞
3 (N = 5) = 8

15
e1(zi)

5 − 16
75

e3(zi)
10 .

(3.22)

and for N = 6 we find

λ
∞
1 (N = 6) = 0

λ
∞
3 (N = 6) = 59

144
e0(zi)

1 + 5
12

e2(zi)
15 − 5

48
e4(zi)

15

τ∞
3 (N = 6) = 85

144
e1(zi)

6 − 5
12

e3(zi)
20 + 5

48
e5(zi)

6 .

(3.23)
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The relationship appearing between λ∞
3 and τ∞

3 are in part due to constraints that must
be satisfied. Namely if all zi = ±1, the total global state is a fixed point of the unitary
evolution therefore

τ∞
3

∣∣∣∣
zi=±1

± λ
∞
3

∣∣∣∣
zi=±1

= ±1 . (3.24)

Our results taken together with these constraint leads us to make the following conjectures
for the values of any N where for odd values

λ
∞
1 (N = odd) = 0

λ
∞
3 (N = odd) = a0

e0(zi)
1 + a2

e2(zi)(
N
2

) + ...+ aN−3
eN−3(zi)(

N
N−3

)
τ∞

3 (N = odd) = (1 − a0)
e1(zi)(

N
1

) − a2
e3(zi)(

N
3

) − ...− aN−3
eN−2(zi)(

N
N−2

)
(3.25)

and for even values

λ
∞
1 (N = even) = 0

λ
∞
3 (N = even) = a0

e0(zi)
1 + a2

e2(zi)(
N
2

) + ...+ aN−2
eN−2(zi)(

N
N−2

)
τ∞

3 (N = even) = (1 − a0)
e1(zi)(

N
1

) − a2
e3(zi)(

N
3

) − ...− aN−2
eN−1(zi)(

N
N−1

) .

(3.26)

Another property of these long time averages, and in fact of the dynamical map compo-
nents in general, is that λ3 is an even function of {zi} while τ3 is an odd function. This
is a consequence of the symmetry generated by

P =
N∏

i=1
Zi. (3.27)

which is a symmetry for both models considered, therefore λ3(t) and τ3(t) have definite
values of P in the ring topology as well.

To conclude the discussion, notice that the average map depends only on the initial
state and symmetry of the Hamiltonian. We note that in this case the long time averages
are invariant under any permutation of the initial zi. Comparing the fully connected
case to the ring, shown next, illustrates this dependence. In addition, notice that the
invariant state of the average map is not the average of the initial states, but any explicit
dependence on coupling strength is gone. As expected from the individual maps at any
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time, there is also no dependence on magnetization. In the case of non-phase covariant
maps, there will be terms depending on h, and, just as in the case of λ1, special values of
the coupling lead to different long time average values.

3.3.2.2 Ring connectivity

Computing the late-time and ring-averaged quantities we find for N = 4

λ
∞
1 (N = 4) = 0

λ
∞
3 (N = 4) = 7

16 + 3
16

e2(zi) − 4z1z3 − 4z2z4

6

τ∞
3 (N = 4) = 9

16
e1(zi)

4 + 1
16

e3(zi)
4 ,

(3.28)

and for N = 5

λ
∞
1 (N = 5) = 0

λ
∞
3 (N = 5) = 71

225 + 2
45

e2(zi)
10

τ∞
3 (N = 5) = 154

225
e1(zi)

5 − 2
45

e3(zi)
10 .

(3.29)

Comparing to the complete connectivity, Eq.(3.26) and Eq.(3.25), demonstrates how the
interaction structure appears in the maps. For example taking N = 4, the long-time
average is only invariant under cyclic permutations of the initial state while in the fully
connected case the invariance was with respect to the full permutation group. However,
for N = 5 the full permutation symmetry is recovered in the infinity time limit. But
we do not expect this to be a generic feature for larger N , and in principle only cyclic
polynomials of the initial state should appear. As before, the invariant state of the
average map does not correspond to the average initial state.

3.3.3 Fluctuations about the average channel

We now consider physical data to constrain the variance we expect in the distributions
at late-times. We do this by considering the maximum distance from the finite-time
average to the steady value. We define the fluctuations at finite-time about these average
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quantities, estimated by the normalized fluctuations

∆λi ≡ λi(t) − λ
∞
i

λ
∞
i

∆τ3 ≡ τ 3(t) − τ∞
3

τ∞
3

.

(3.30)

These quantities will be used to calibrate the second moments of the phase-covariant
measures developed in Section 3.6. The normalized fluctuations are generally initial-state
dependent. But to determine an approximate size of the fluctuations, we may simply
consider a class of initial states that have essentially initial state independent fluctuations.
To see that such a class of states exists, consider the completely connected network and
assume that each qubit satisfies 0 ≤ zi ≤ Z < 1. Then we may notice that

ek(zi)(
N
k

) ≤ Zk (3.31)

therefore for small enough Z, only the first terms in λ3(t) and τ 3(t) are relevant. In such
a class the fluctuations about the long time average will be initial state independent.

In Figures 3.3 and 3.4, we have plotted the fluctuations about the long time averages
for the completely and ring connected networks, using only the lowest order terms in the
initial state from λ3(t) and τ 3(t). We confirm in Section 3.6 that these approximations
do provide a good estimate of the fluctuation size, even when considering a generic initial
state.
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Figure 3.3: The normalized fluctuations of λ3(t) and τ 3(t) considering only lowest order
terms are plotted for the completely-connected XXZ network. The bounding hyperbolas
estimate the size of the late-time fluctuations, as in Eq.(3.32).

From these plots the late-time fluctuations are found to scale as

∆ζ ≈ CζtJ
Nt

, (3.32)

where tJ = 2π
J⊥

is the dynamical timescale defined in Eq.(3.17) and Cζ is an order one
constant. The completely connected network, for a fixed N , approaches the steady
channel more quickly than in the case of the ring. Comparing the N = 6 completely
connected network and the N = 5 ring network, we see that the fluctuations persist at
least four times longer in the case of the ring. Note that the scale of the vertical axis of
all plots are identical.
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Figure 3.4: The approximate normalized fluctuations of λ3(t) and τ 3(t) considering only
lowest order terms are plotted for the XXZ ring. The bounding hyperbolas estimate the
size of the late-time fluctuations, as in Eq.(3.32).

3.4 Physical relevance of the long-time averaged channel
Consider a qubit network that consists of NCL clusters, each containing N qubits,
where we assume NCL ≫ N . For simplicity, each cluster is assumed to have the same
connectivity. The spin-averaged dynamical map for the Ith cluster is

⟨ΛI(t)⟩ = 1
N

N∑
i=1

ΛIi(t) . (3.1)

Suppose at some very early time there are no interactions and the state of the network
is entirely uncorrelated. Interactions within each individual cluster are turned on via
a quenching mechanism, but that not all clusters are quenched at the same time. Let
the time-scale for over which the cluster quenching is (uniformly) staggered be longer
than that set by the interaction time-scale within each cluster. The time-dependent
Hamiltonians considered (and initial states) are such that the conditions for phase
covariance are satisfied for each cluster. For example, this scenario can be modeled by a
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Hamiltonian of the form

H(t) =
NCL∑
I=1

(
hI

N∑
i=1

ZIi + Jθ
(
t− tI

)∑
i,j

(
XIiXIj + YIiYIj + ZIiZIj

))
(3.2)

where θ(t) is the Heaviside step function, and tI are the various quench times associated
with the clusters. If the timing of the quench varies over a time-scale longer than that
set by J , and the large number of clusters ensures that all oscillation scales of the
single-cluster Hamiltonian are smoothly sampled, then the clusters will be at varying
points in their evolution and the average map at late times will be given by

lim
NCL→∞

1
NCL

∑
I

⟨ΛI(t)⟩ = 1
t

∫ t

0
dt′⟨ΛK(t′)⟩ = ΛN(t) . (3.3)

In fact, as long as there are many clusters with any given initial state, which experience
the quench at offset times, one can imagine a further average over steady channels with
different initial states to match the full complexity of the initial system of size ≫ N .
That is, one could average over the initial states appearing in the steady channels.

Under such a quenching scenario, even for relatively small clusters, we obtain average
dynamical maps that approach a steady-channel, denoted as Λ∞

N , in the limit t → ∞.
We are then able to construct distributions of channels that have the steady channel as
their average. By studying the approach to the steady channel, we able to constrain the
second moment of the distributions.

3.5 Phase-covariance on average from disordered Hamil-
tonians
While in the staggered quench example above we imposed that each cluster had the same
Hamiltonian and an initial state from the phase-covariant set, the regime of applicability
of the phase-covariant steady channel is actually larger. In this section we show that
constrained Hamiltonian disorder, or noise, can be rather naturally consistent with
phase-covariant, average reduced dynamics. We show this by considering ensembles of
qubit pairs, which serve as a simple model of the paradigm set forth at the end of the
previous section.
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3.5.1 An ensemble with non-phase-covariant elements

To begin we start with a physical setting where distributions of maps that are not
necessarily phase-covariant appear. We consider a Hamiltonian that governs the time
evolution of NCL pairs of spins, where each pair evolves independently, and conserves the
total excitation number Q = ∑

Zi. This can be compactly written as

H =
2NCL∑
i=1

hiZi +
2NCL∑
i=1

Ji(i+1)

2

[
1 + (−1)i+1

2

]
[XiXi+1 + YiYi+1]

=
2NCL∑
i=1

1 + (−1)i+1

2 H i,i+1
XX = H1,2

XX +H3,4
XX + ...+H2N−1,2NCL

XX .

(3.4)

The 2NCL qubits are taken to be in a completely uncorrelated initial state. For each pair,
we allow this example to break both phase-covariant conditions from Eq.(3.2). First,
allowing hi ̸= hj means that the interaction term will not commmute with the free
Hamiltonian. In addition, we do not impose any restriction on the initial state.

As the Hamiltonian is block diagonal in the qubit pairs, we can determine both the
1-spin and 2-spin dynamical maps obtained for a single pair. The 2-qubit maps describe
unitary evolution, and this example may be viewed as an generalization of the noisy
qubit models proposed in [70] to a larger system size. However, at the single-spin level
the evolution is non-unitary and richer than what can be found with noisy Hamiltonians
alone.

To write the single-spin dynamical map, it is convenient to decompose the unitary
evolution in terms of

U ij
lk ≡ 1

4tr
[(
σi

1 ⊗ σj
2

)
e−i(H1,2

XX)t
(
σl

1 ⊗ σk
2

)
ei(H1,2

XX)t
]
. (3.5)

The Hamiltonian parameters enter in the unitary evolution in the following combinations:

h12 = h1 + h2

2 , ω12 = sgn(∆12)
√

∆2
12 + J2

12

∆12 = h1 − h2 , tanϕ12 = J12

∆12
.

(3.6)

Further details can be found in Appendix B.2. Then the evolution of the first spin in the
first pair, for example, is given by

ρ1(t) = tr2
[
e−i(H1,2

XX)tρ1(0) ⊗ ρ2(0)ei(H1,2
XX)t

]
= tr2 [U(t)ρ(0)] ≡ Λ1(t, 0)ρ1(0) . (3.7)
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Using the Bloch parameterization for the second spin (which provides the initial envi-
ronment state for the first spin) as ρ2 = 1

2(1 + x2X2 + y2Y2 + z2Z2), and defining partial
components

Λijk
1 = U i0

jk , (3.8)

the dynamical map is

Λ1(t, 0) =


1 0 0 0
0 Λxx0

1 Λxy0
1

(
x2Λxzx

1 + y2Λxzy
1

)
0 Λyx0

1 Λyy0
1

(
x2Λyzx

1 + y2Λyzy
1

)
z2Λz0z

1

(
x2Λzxx

1 + y2Λzxy
1

) (
x2Λzyx

1 + y2Λzyy
1

)
Λzz0

1

 . (3.9)

The dynamical map is non-unital so long as z2(0) ̸= 0.
The dynamical map Λ2(t, 0) for the second spin can be obtained directly from Eq.(3.9).

From the Hamiltonian it is easy to see that we need only exchange the values of hi, so
Λ2(t, 0) is directly obtained by exchanging the initial states and sending ∆12 → −∆12.
In terms of map components, this is accomplished by

Λijk
2 (t,∆12) = U0i

kj(t,∆12) = U i0
jk(t,−∆12) = Λijk

1 (t,−∆12) . (3.10)

The dynamical maps associated to the second qubit pair are obtained through the
replacement 12 → 34 in the initial states, hi and Ji,i+1. In this way we obtain an
ensemble of non-unital 1-qubit dynamical maps and unitary 2-qubit dynamical maps.

Given the collection of disjoint qubit pairs, and the associated 2-qubit unitary channels,
it is possible to construct their ensemble averages. Both averages will be non-unitary,
since convex combinations of unitary channels may be non-unitary. This provides a useful
means to efficiently simulated non-unitary evolution [90]. If each pair is assumed to be in
the same uncorrelated 2-qubit state, the following non-unitary ensemble averaged 2-qubit
dynamical map may be defined

U(t) [ρ1(0) ⊗ ρ2(0)] = 1
NCL

∑
clusters

(
e−i(Hi,i+1

XX )tρ1(0) ⊗ ρ2(0)ei(Hi,i+1
XX )t

)
. (3.11)

At this point we have a physical representation of the sort of noisy Hamiltonians
that have appeared in numerous works. Now conceptually we may view the the previous
ensemble as an instantiation of some noise distribution over Hamiltonian parameters.
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Therefore in the limit of large NCL the network average is equivalent to

U(t) [ρ1(0) ⊗ ρ2(0)] = ⟨e−iHXXtρ1(0) ⊗ ρ2(0)eiHXXt⟩disorder (3.12)

where we have dropped the superscripts on HXX to emphasis the conceptual difference
with the network of clusters.

Now instead of considering a disorder distribution directly over the parameters in the
Hamiltonian, we consider the distributions directly over its eigenvalues and eigenvectors.
That is, we take the fundamental parameters to be those on the left hand side of Eq.(3.6),
e.g. h (from h12), ω, and ϕ, rather than (h1, h2, J⊥). This approach allows for a closer
connection to the dynamical map components. For example, the following component

Λxzy
1 ∝ sinϕ , (3.13)

which is compactly expressed in terms of the mixing angle ϕ from HXX eigendecomposition.
Notice that such a component vanishes if the noise distribution is an even function of ϕ,
where tanϕ = J

∆ . The other dynamical map components that break phase-covariance
also vanish under the same assumption. We understand this as the phase-covariant
constraints in Eq.(3.2) being satisfied on average.

We can apply a similar procedure to other non-phase-covariant maps. In particular,
for more general non-unital quantum channels with non-zero shift in the x and y direction
(τ1 ̸= 0 and τ2 ̸= 0), the invariant state can have coherences and therefore cannot be
represented as a Gibbs state in the computational basis. However, ensembles of such
general non-unital maps can be generated such that the shift in the x and y directions
are eliminated, resulting in a Gibbs-like state for the ensemble-averaged map. We will
demonstrate this with an example.

3.5.2 Phase-covariance via disorder averaging

We begin by considering independent Gaussian distributions for h and ω,

ph(h) = 1√
2πσ2

h

e
− (h−B)2

2σ2
h , pω(ω) = 1√

2πσ2
ω

e
− (ω−Ω)2

2σ2
ω (3.14)
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and two different examples of probability distributions over ϕ,

pG(ϕ) = 1√
2πσ2

ϕ

e
− ϕ2

2σ2
ϕ , pT(ϕ) = tanh[aϕϕ]2(

π − 2
aϕ

tanh
[

aϕπ

2

]) , (3.15)

where for pT(ϕ) the range is restricted to be −π/2 ≤ ϕ ≤ π/2. Both distributions have
⟨ϕ⟩ = 0 to ensure that the 1-qubit dynamical maps are phase-covariant. We consider
multiple ϕ-distributions as the average values of τ3 and λ3 are strongly tied to this choice.
Certain ϕ-distributions restrict the range of allowed average values of map parameters,
and we see from Figure 3.5 that the Gaussian distribution cannot generate large enough
τ3 to be compatible all examples from Section 3.3.

Using these distributions, the partial components of the effective focal dynamical
map are

Λxx0
1 = Λyy0

1 =
(

cos Ωt cos 2Bt− e
− π2

2φ2 sin Ωt sin 2Bt
)
e−

(σ2
ω+4σ2

h
)t2

2

Λyx0
1 = −Λxy0

1 =
(

cos Ωt sin 2Bt+ e
− π2

2φ2 sin Ωt cos 2Bt
)
e−

(σ2
ω+4σ2

h
)t2

2

Λz0z

1 = 1 − Λzz0
1 = 1

4
(
1 − e

− 2π2
φ2
)(

1 − cos (2Ωt)e−2σ2
ωt2)

.

(3.16)

Figure 3.5 shows the non-unitary phase-covariant parameters of the map Λ1(t, 0). For
plotting purposes we have defined the dimensionless quantity χ = Ω

2π
t.

Figure 3.5: The non-unitary parameters of Λ1(t, 0) are plotted for σh = σω = 1, φ = 3,
and the traced out qubit has z = 1. For large enough Ω, revivals appear in the non-
unitary parameters. In either case, the x and y components of the focal Bloch vector
fully decohere before ζ = 1.

We have introduced the additional truncated distribution over ϕ to demonstrate that
disorder distributions can capture the larger values of τ3 found above. For example, in
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the truncated hyperbolic tangent distribution the maximum allowed value of τ3 is found
to be

lim
aϕ→0

1
π − 2

aϕ
tanh[aϕπ/2]

∫ π/2

−π/2
sin2[ϕ] tanh2[aϕϕ]dϕ = 6 + π2

2π2 ≈ 0.8 . (3.17)

3.6 Phase-covariant dynamics from channel ensembles
In the final section of this work we construct measures over phase-covariant channels
that capture key features of the long-time averaged channels derived from XXZ networks.
However, the time-evolving ensemble can be considered on its own, characterized by
its thermodynamic properties without reference to a particular Hamiltonian. From the
Gaussian examples considered in Section 4, we are motivated to considered a phase-
covariant measure consisting of truncated Gaussian distributions over the non-unitary
parameters. We use the physical constraints from Section 2 to fix the mean (µ) and scale
(σ) parameters.

3.6.1 Phase-covariant measures

The key point in defining a measure over channels is determining the domain of integration.
This depends on the constraints imposed by complete positivity, which are especially
simple in the case of phase-covariant qubit channels. Then, a phase-covariant measure
may be defined by supplying a joint probability distribution pN (λ1, τ3, λ3; t) which satisfies
the normalization condition

1 =
∫

ΓPC
pN(λ1, τ3, λ3; t)dλ1dτ3dλ3

=
∫ 1

0

∫ 1−λ3

−(1−λ3)

∫ 1
2

√
(1+λ3)2−τ2

3

− 1
2

√
(1+λ3)2−τ2

3

pN(λ1, τ3, λ3; t)dλ1dτ3dλ3

+
∫ 0

−1

∫ 1+λ3

−(1+λ3)

∫ 1
2

√
(1+λ3)2−τ2

3

− 1
2

√
(1+λ3)2−τ2

3

pN(λ1, τ3, λ3; t)dλ1dτ3dλ3 ,

(3.1)

where the order of integration follows from the form of the constraints in Eq.(3.6). For
more general quantum systems it may not be possible to determine the boundary of
integration, but restricting the reduced dynamics to be G-covariant potentially makes
the problem tractable for larger quantum channel.
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The above measure allows us to define the average dynamical map,

⟨ΛN⟩(t) =
∫

ΓPC
pN(λ1, τ3, λ3; t)Λ(λ1, τ3, λ3)dλ1dτ3dλ3 . (3.2)

We choose to introduce time-dependence into the probability distribution, instead of
directly into the dynamical map, as the time-dependence of the dynamical map becomes
quite complicated for large clusters.

This form of the map ensemble can be usefully compared to prior explorations of
random open system dynamics, and to compare the phase-covariant class to the larger
class of channels.

We compare the distribution of eigenvalues for a non-unital phase-covariant ensemble
to those of the more general class of dynamical maps, treated for example in [77]. To do
so, it is helpful to diagonalize the phase-covariant channel and define

DΛPC =


1 0 0 0
0 λ1e

iθ 0 0
0 0 λ1e

−iθ 0
0 0 0 λ3

 , (3.3)

where µ± = λ1e
±iθ. Note that τ3 does not appear in the eigenvalues but only in the

eigenvectors. The dynamical map parameters (restricted by complete positivity) are
uniformly sampled and plotted on the left panels of Figures 6 and 7.

To make a comparison with the more general class of dynamical maps in [77], we
consider a minimal breaking of the phase-covariance through the introduction of a new
parameter λ2,

ΛPC
Break−−−→

PC


1 0 0 0
0 λ1 cos θ −λ2 sin θ 0
0 λ1 sin θ λ2 cos θ 0
τ3 0 0 λ3

 . (3.4)

The eigenvalues of the non-phase-covariant map are

µ± =
(λ1 + λ2) cos θ ±

√
(λ1 + λ2)2 cos2 θ − 4λ1λ2

2 . (3.5)

The dynamical map parameters are uniformly sampled (again restricting to complete
positivity) and the eigenvalues of the non-phase-covariant ensemble are plotted on the
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right panels of Figures 6 and 7. This simple breaking of phase covariance introduces
additional structure seen in Figure 6 (right), several of which match those in Figure 1 of
the slightly more general treatment of [77]. For example, there is agreement in the empty
parts of the plane, and the apparent ‘repulsion’ of the points away from the real axis.
Note also that a significant number of µ± eigenvalues become real when phase covariance
is broken.

1.0 0.5 0.0 0.5 1.0
(z)

1.0

0.5

0.0

0.5

1.0

(z
)

Phase-Covariant

1.0 0.5 0.0 0.5 1.0
(z)

non-Phase-Covariant

+

3

Figure 3.6: The distribution of eigenvalues, µ±, λ3, for a non-unital phase-covariant
ensemble (left) and non-unital non-phase-covariant ensemble (right) in the complex plane.
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Figure 3.7: Plotted are histograms of the distribution of the eigenvalue, λ3, for a non-
unital phase-covariant ensemble (left) and non-unital non-phase-covariant ensemble
(right).

Finally, we end by defining the uniform distribution over phase-covariant channels

vol
(
ΓPC

)
= vol

(
Γ+

PC

)
+ vol

(
Γ−

PC

)
=
(16

9 − π

6

)
+ π

6 = 16
9 (3.6)

where we have separated the integral into two regions based on the sign of λ3. The
positive region has a larger volume than that of the negative region, which is confirmed
in Figure 7 (left). Therefore when sampling the phase-covariant channels using a uniform
distribution, we expect there to be a bias towards positive λ3. Our results are consistent
with, although scaled differently from, those found in [81].

3.6.2 Example distribution: Truncated-Gaussians

There are of course many other non-uniform distributions to use to define a phase-
covariant measure, and making an appropriate choice allows one to more easily capture
the behavior of the long time average channels determined in Section 2. Although a
time-dependent uniform distribution could be used, this is a more difficult to define from
the data gathered from the average and late-time fluctuations. Ostensibly, the results
of Section 4 indicate that using truncated Gaussian distributions could be a fruitful
approach. We consider phase-covariant measures defined in this way for the remainder
of this section.
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A truncated Gaussian distribution over a single random variable (X) is given by

pTG(X; η⃗) = e− (X−µ)2

2σ2

N (η⃗) (3.7)

where η⃗ stands in for the parameters of the distribution and N is the normalization
factor

N (η⃗) =
∫ b

a
e− (X−µ)2

2σ2 dX . (3.8)

There are four total parameters associated to a two-sided truncated Gaussian, the mean
parameter (µ) , the scale parameter (σ), and the end points of the interval that define
the truncation. For our purposes the end points of each distribution are set by the
complete-positivity constraints. For example the truncated Gaussian associated with λ3

may take values between -1 and 1, while the other distributions have intervals depending
on the values of λ3.

The remaining parameters we set through the use of the physical constraints found
in the previous section. For example the scale parameter (assumed real) takes the form

σ = C

N

tref

t
, (3.9)

where the constant C is O(1). We define the mean of each parameter by

µ1(N) = λ
∞
1 (N) = 0

µλ(N) = λ
∞
3 (N)

µτ (N) = τ∞
3 (N) ,

(3.10)

where we have seen that µλ ≈ a0 and µτ ≈ (1 − a0)z are approximations that are valid
for a non-empty set of initial states. Notice that these parameters do not correspond to
the mean and variance of the truncated Gaussians, and in general they will be larger
than these values.

In order to construct instances of these distributions and how they change over time
we use the following procedure. First, we choose a sampling time, set by the time-scale
tref = tJ = 2π

J⊥
. We then sample the distribution pTG (λ3, η⃗3) at each time step, where

the scale parameter is changed according to Eq.(3.9). In this way we obtain an ordered
list of values that λ3 during each time-step. From these values of λ3, we may construct
the distribution pTG(τ3, η⃗τ ), as recall the end-point parameters for a given time-step
depend explicitly on obtained values of λ3. The procedure then carries on in the same
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manner as for λ3, a successive list of values for τ3 are generated for each time-step.
Finally, using the outcomes of the previous steps a list of values for λ1 may be generated
from the distribution pTG(λ1, η⃗1). Figure 8 illustrates the results of this procedure. One
could define a smaller sampling time, as it is clear that the sampling procedure does
not capture the smaller scale fluctuations. However, these fluctuations do not carry
additional physical information about the convergence toward the steady channel, for
single-qubit dynamics, at least.

Care must be taken into the above procedure, as the endpoints for the distribution
over τ3 depends explicitly on the sign of λ3. One way around the potential issues is
to simply take the τ3-interval to be set by the sign of the late-time limit of λ3. This
guarantees that at late-enough times, no positivity breaking occurs. Of course one may
just consider the sign of λ3 in the above procedure and take care to use the correct
interval for τ3 at a given time-step.

Figure 3.8: The time and network averaged λ3(t) are plotted for the completely-connected
XXZ-cluster with N = 3 and N = 5, assuming each is in their respective hierarchical
initial states. Additionally, there are instantiations of the time-dependent truncated
Gaussians plotted, given by the red dots within each plot. As expected, at small t

tJ
the

distribution fails to capture the dynamics, but better approximates the dynamics as
t

tJ
→ ∞.

3.7 Conclusions
In this work we have defined phase-covariant ensembles in two different ways. The first
approach was to construct ensembles directly from a time-independent Hamiltonian, and
consider the individual reduced dynamics for all possible subsystems of the smallest size.
We constructed examples where each dynamical map in the ensemble was phase-covariant,
and examples where only the network averaged reduced dynamics was phase-covariant.
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From these examples, we are able to conjecture the form of the map parameters in terms
of the initial state and connectivity, as shown in Eq.(3.25) and Eq.(3.26) for completely
connected maps and Eq.(3.28) and Eq.(3.29) for one-dimensional rings with only nearest
neighbor interactions. While we are unable to conjecture the general form of the long-time
average for the ring connectivity, we do see that in general only the translation symmetry
should be imposed.

The resulting time-independent, phase-covariant channels generate a notion of ther-
malization associated with each Hamiltonian and initial state, since under many repeated
applications of the steady channel, every single-spin state will be driven toward the Gibbs
state associated with β∗ = log

[
2

1−a∞
∗

]
, where a∞

∗ = τ∞
3

1−λ
∞
3

. The repeated application of
such maps has also found a role in the simulation of open quantum systems [91], although
so far restricted to systems described by stationary Lindblads. Our results may open up a
similar route to efficient simulation of a broader class of open systems. This is especially
interesting as quantum simulators may have an exponential advantage for simulating
open-system evolution [92]. The procedure in Section 5 could be used in this direction.

The phase-covariant dynamics of 1-qubit subsystems do not seem to differ based
on the integrable vs. non-integrable nature of the spin-chain Hamiltonian considered.
In principle, such a characterization should be crucially important in determining the
nature of a random distribution over channels, similar to how it constrains the form of
random unitary dynamics in various large systems. It will be interesting to expand this
study to both larger subsystems and more explicit breaking of phase-covariance.
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Chapter 4 |
Emergent Quantum Subsystems

4.1 Preamble
This chapter is a reprint of [93]. In this chapter we explore the idea of quantum subsystem
emergence. We find this to be an important aspect of any effective theory of open system,
as the subsystems found in nature are not arbitrary and often the boundaries found are
set by dynamical features, such as the form of the metric etc. But what mechanisms
can be responsible for the appearance of physical subsystems? We further explore the
ideas developed in [94–96], where they leveraged the geometry of the space of unitary
operators to deduce a subsystem structure. Here we explore further the action principle
that determines the metric or geometry over the space of unitary operators of a quantum
system.

4.2 Introduction
Although the notion of emergent gravity has been studied from a variety of perspectives1,
a simpler but still illuminating question to consider is the emergence of locality. A
formal structure to pose that question, at least for toy systems described by large,
finite-dimensional quantum systems, was recently suggested by Freedman and Zini
[103–105]. They introduced functionals of geometry on the evolutionary operators of
high-dimensional quantum systems and asked whether the geometries that minimize
those functionals correspond to dynamics of a many-body quantum system with a notion
of local interactions. The tools to answer this question are inner products on the Lie
algebra su(N), corresponding to left-invariant metrics on the associated manifold of the

1A non-exhaustive list of examples includes [97–102].
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Lie group SU(N) [106–108]. Those inner products, or metrics, can be used to construct
probability distributions over Hamiltonians that give preference to different classes of
dynamics on a Hilbert space of dimension N .

Here, we expand in two technical ways on the examples considered in the original
statement of this program [103]. First, we consider a new set of geometrically motivated
loss functionals which have critical points corresponding to a qubit structure decomposi-
tion. Reference [103] labeled critical points of that type as KAQ since they ‘know about
qubits’. Motivated by the critical point structure of the Ricci scalar, we consider loss
functions built from higher-order curvature terms. The exact equations of motion for
such actions already exist in the literature [109–112]. Secondly, we provide a construction
for classes of KAQ metrics that generalize those recovered in [103] and originally found
in [113]. We use this construction as an ansatz for critical points of our loss functionals.
In this way we are able to determine potential KAQ critical points in the space of our
ansatz metrics, which then may be checked against the equations of motion. We do
not need to search in the full space of left-invariant metrics, we only need to search in
the exponentially reduced space of our ansatz KAQ metrics. Although still numerically
intensive, this is a promising approach to apply to systems larger than those we treat in
this article.

In the rest of this section, we lay out in more detail the statement of the problem
and the tools to be used, including the new loss functionals. Section 4.3 then describes
in detail the parameterizations of KAQ metrics we find useful. In Section 4.4 we
present the equations of motion that must be solved to find critical points and apply the
parameterizations to find new critical points, presented in Section 4.5. We conclude with
implications and further directions in Section 4.6.

4.2.1 Distributions over Hamiltonians

Rather than searching for some dynamics that picks out a specific Hamiltonian, it is
natural to ask for a distribution over Hamiltonians that assigns a higher likelihood
to a particular class with interesting behavior. A simple and familiar choice for a
distribution over dynamics of a quantum system of dimension N is the Gaussian Unitary
Ensemble [114,115], where each independent real number of the N ×N Hermitian matrix
that defines the Hamiltonian, H, is independently drawn from a Gaussian distribution.
Equivalently,

ρGUE
(
H
)

∝ e
−tr
(

H2
)
. (4.1)
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This distribution is invariant under unitary transformations, H → UHU † (as is clear
from the cyclic property of the trace). It does not give preference to Hamiltonians that
have the many-body local structure typical of spin systems frequently observed in nature,
where the many entries in the large matrix H that correspond to interactions among
nearly all the degrees of freedom would be suppressed. A different distribution that
would support a many-body local structure when N = 2d would, for example, have a
basis constructed from Pauli words for qubits, ⊗d

i=1σ
(J)
i , where each σ(J) is any of the

Pauli matrices or the 2 × 2 identity. A choice of weights assigned to operators in this
basis could define a distribution favoring some subset of operators, for example words of
shorter length (measured by the number of non-identity Pauli matrices).

To formalize distributions that are different from GUE, consider the set of inner
products on the space of operators, which for quantum systems with Hilbert space of
dimension N is the algebra g = su(N). The Lie algebra comes equipped with the Lie
bracket, but the bracket itself does not assign an inner product. The GUE arises from
the most symmetric choice of metric, given by the Killing form K : g × g → C, which
defines a map that is invariant under a basis change. Using K defines the Killing-Cartan
metric for X, Y elements of the algebra

δ(X, Y ) ≡ tr
(
adX ∗ adY

)
, (4.2)

where adX is the map defined by adX(Y ) = [X, Y ] for all Y . General inner products on
the algebra correspond to left-invariant metrics on the group manifold for G = SU(N),
while the Killing-Cartan metric is special in that it is both left and right invariant i.e.
bi-invariant. Although from the manifold point of view one can imagine more complex
metrics that depend on some choice of coordinates, the set of left-invariant metrics is
sufficient for constructing a larger class of distributions over Hamiltonians. The more
general distributions over Hamiltonians can be written

ρFZ(H) ∝ e−g(H,H) (4.3)

where g is a strictly left-invariant metric over SU(N). To construct a left-invariant metric,
one need only supply its value over the Lie algebra. This is equivalent to supplying the
Lie algebra with an inner product i.e.

⟨·, ·⟩ : g × g → C (4.4)
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which may be propagated to the rest of the Lie group through use of the differential
of left-multiplication [106]. Defining the metric in this way guarantees that it is indeed
left-invariant. For a left-invariant metric to be bi-invariant, its associated inner product
must be adg invariant i.e.

⟨[O, A], [O, B]⟩ = ⟨A,B⟩ (4.5)

holds for all O, A,B ∈ su(N). In Section 4.3 we construct several classes of strictly
left-invariant metrics, and one may demonstrate they are strictly left-invariant by finding
any particular O for which Eq.4.5 fails to hold.

In fact the Killing-Cartan geometry is the only bi-invariant geometry over SU(N)
(up to overall scale) and so considering strictly left-invariant geometries allows for more
structure. Left-invariant metrics can be distinguished using their principal axes, which
correspond to the elements of the orthonormal basis (Xa) of an associated inner product.
These operators are orthonormal in the sense that ⟨Xa, Xb⟩ = δab where δab is the
Kronecker delta and the indices take values between 1 and 4d − 1. In general, the
orthonormal basis of an inner product produces a non-holonomic or non-coordinate basis
over the manifold since the structure constants (Cc

ab ) are non-zero. Recall that the
structure constants of a basis are given by

[Xa, Xb] =
∑

c

Cc
abXc . (4.6)

Therefore, one may not use the standard formulas from general relativity when computing
curvature functionals. For example, in a non-holonomic basis the Christoffel connection
picks up a term proportional to the structure constants. See Appendix C.1 for all relevant
formula of the curvature functionals expressed in a non-holonomic basis.

4.2.2 Many-body dynamics via preferred geometries

Although one can construct any distribution over Hamiltonians by hand, it is interesting
to ask if there may be a geometrical means of picking out interesting classes, which
perhaps could be dynamically realized as a spontaneous symmetry breaking process that
fragments a large "single-particle" quantum system into an ensemble of small quantum
systems interacting in a way that resembles local, many-body physics. Freedman and
Zini [103–105] considered a family of functionals of the group geometry, parameterized
by the metric and the structure constants, and explored whether the minima of these
functionals select out KAQ metrics.
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Here, we explore this idea a bit further by looking at functionals L[g] that are natural
on the group manifold, defined by the set of two-derivative curvature tensors

L[g] = R + αR2 + βRabR
ab + γRabcdR

abcd

= R + αR0 + βR2 + γR4 .
(4.7)

The critical points of just the Ricci scalar, R, were first studied by [113], and the same
results were recovered by [103]. The larger class of functionals in Eq.(4.7) is especially
tractable to study since the conditions for a metric to be a critical point are already
known [112,116]. We return to this in Section 4.4. While [103] used numerical techniques
to find all critical points of some loss functionals and then determine if they corresponded
to KAQ or non-KAQ metrics, we take a different approach and instead explore whether
or not KAQ metrics occur as critical points (and ideally minima) of an expanded set of
loss functions. To do so, we next introduce parameterizations of KAQ metrics, including
generalizations of those that correspond to the KAQ critical points found in [113] for
L[g] = R. This allows us to explore the structure and properties of the KAQ metrics in
more detail, although with the drawback that we cannot determine the relative frequency
of KAQ vs non-KAQ minima.

4.3 KAQ parameterization schemes

Among the
(

N+1
2

)
distinct metrics on SU(N), only some will have a structure that is

compatible with a tensor product decomposition into d qubit operators when N = 2d.
This notion can be expanded to apply to tensor decompositions of more general large
N spaces that can include factors of dimension other than two (qudits) [104,105]. The
KAQ property of a metric g is decoded from its (possibly non-unique) principle axes.
An observable Ea is said to be a principle axis of the metric if

ga
bEa = λbEb (4.8)

that is Ea is an eigenvector of the tensor ga
b = gcbδ

ca, where δab is the Killing-Cartan
metric. The location of indices in the previous equation matter; they are chosen so that
we may compute eigenvectors. Later on we compute only the components of tensors in
an orthonormal basis of the metric, therefore placement of indices becomes essentially
irrelevant. In Eq.4.8 the index placement is relevant, as we require a tensor that maps
vectors to vectors.
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The principal axis {Ea} need only be orthogonal, hence the need for a distinct from
an orthonormal basis which are denoted by {Xa}. A left-invariant (but not bi-invariant)
metric is said to be KAQ if a basis of principal axis exist such that

Φ[Ea] = σ
(a1)
1 ⊗ ...⊗ σ

(ad)
d

[Ea, Eb] = Pc
abEc

(4.9)

where Φ is a Lie algebra isomorphism i.e. a bijective linear map which preserves
commutation relations and the tensors Pc

ab are the structure constants of s
(
u(2)⊗d

)
,

the Lie algebra u(2)⊗d with the generator 1⊗d removed. While our definition is slightly
different than that given in [103], they are in fact equivalent. Taking a given Pauli
word to a linear combination requires using unitary conjugation which will not affect
commutation relations. It is important to stress that the metric will typically have
many possible bases of principle axes, and only one needs to satisfy the KAQ condition.
Furthermore, among that restricted set of KAQ metrics, not all will generate many-body
local dynamics by suppressing the contributions from Pauli words with length close to d.

The degeneracy pattern of metric determines the freedom there is in choosing a
KAQ basis. In the case of no degenerate eigenvalues, the metric is KAQ iff all principal
axes already align with some Pauli word basis. This is clearly a special case. More
generally, a degenerate eigenspace may be decomposed into a basis that aligns with
Pauli words, although some “decoding" may be required. Decoding here means that the
degenerate principal axes are mixed using an element of SO(4d − 1) which is not an inner
automorphism of su(2d). Such transformations keep distinct degenerate axis orthogonal,
but they do not preserve commutation relations. Later in this section we give an explicit
example of such a decoding process, where we demonstrate that Gell-Mann matrices may
serve the role of a KAQ basis for certain metrics.

An obvious structure to make use of in searching for KAQ metrics is the so(2d)
subalgebra of su(2d), which one might expect contains a set of axes decodable to the
length-one Pauli words, the single-qubit operators [117]. In the case of su(4), the
construction is simple: if one starts with the natural basis of Gell-mann matrices, the
single-qubit operators can be recovered by identifying linear combinations of matrices in
the sub-algebra that have a tensor product form and then making a rotation to align
those linear combinations with length-one Pauli words. On the other hand, the other
obvious subalgebra decomposition, sp(2d−1), contains degenerate subspaces that must
align with Pauli word basis, and others which may require decoding. Operationally, we
consider this case in detail below to illuminate the relationship between known critical
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points of the Ricci scalar, which carry this subgroup structure, and critical points with
KAQ structure.

In order to construct parameterizations of KAQ metrics, which can then be used as
ansatze for critical metrics, we use the fact that a left-invariant metric over a Lie group
is entirely specified by an inner product over the corresponding Lie algebra. In this way
instead of referring to the metric, one may just as well refer to an orthonormal basis
of the associated inner product. For excellent reviews of the Lie algebra and geometric
background needed for these constructions, see [106–108].

4.3.1 Riemannian geometry of compact symmetric Lie algebras

Consider first the Killing-Cartan geometry naturally available to SU(4). It is the unique
(up to scale) bi-invariant geometry over the special unitary group, and describes color
dynamics (in 0+1 dimensions) mediated by 15 gluons. The generalized Gell-Mann
matrices, Ga provide an orthonormal basis, where we use the definitions provided in [118].
However, we include an additional factor of i in our construction of generalized Gell-Mann
matrices therefore taking them to be anti-Hermitian operators. This is more in keeping
with standard notation in differential geometry. We further consider a non-standard
normalization

tr
(
G†

aGb

)
= 1

2δab , (4.10)

which will enter the structure constants

[Ga, Gb] = Kc
abGc . (4.11)

Denoting Ka as the matrix of structure constants with entries Kc
ab in the Gell-Mann

basis we then have
trKaKb = −4δab (4.12)

and bi-invariance implies that KT
a = −Ka i.e. the structure constants are totally anti-

symmetric. This equation is negative definite due to the compactness of the special
unitary group. The normalization choice here leads to a convenient normalization later
on in the loss functionals, where the Ricci scalar takes the value R = 15 = N2 − 1 when
evaluated over the Killing-Cartan geometry.

The Killing-Cartan geometry serves the role of a simple fiducial metric, as well as
the assumed unstable starting point for spontaneous symmetry breaking. Instead of
studying a more complicated left-invariant metric directly, one may look at the linear
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transformation (ω) relating one of its orthonormal bases to that of the Killing-Cartan
geometry [113]. The transformation ω is required to fix the determinant, which we
impose in order to use the equations of motion referenced in Section 4.4. The linear
transformation is related to the metric when expressed in the Gell-Mann basis as g = ω−2.
One may check such transformation certainly maps Gell-Mann letters to an orthonormal
basis of g.

Assume we have related a new orthonormal basis to the Gell-Mann matrices by a
special linear transformation G̃a = ∑

a ωabGb. Then the structure constants are related
by

K̃a =
∑

b

ωab[ω−1Kbω] , (4.13)

where Kb is the matrix with kjth entry Kk
bj. For these calculations the location of an

index (up or down) is unimportant, as the metric is always an identity matrix. The
preceding equation makes explicit the matrix multiplication that must be performed to
determine the new structure constants. That is, the transformation law may be written
equivalently as

K̃c
ad = K̃cad =

∑
bef

ωabω
−1
ce Kebfωfd . (4.14)

The utility is that now curvature functions may be expressed in terms of Killing-Cartan
tensor networks, where the total anti-symmetry can be leveraged.

We shall end with a final bit of notation, which simplifies the construction of KAQ
metrics. As the metrics are considered over the Lie algebra, it is helpful to use the adjoint
representation (adg). Here observables themselves become operators acting over g. For
example, we can define kets from the Gell-mann matrices Ga ∈ su(2d), denoted |Ga⟩. We
then define dual vectors with respect to the Killing-Cartan metric i.e.

⟨Gb| ≡ 2tr
[
G†

b(·)
]
. (4.15)

Defined in this way {|Ga⟩} is an orthonormal basis of g, with inner product ⟨Ga|Gb⟩ = δab.
Projectors are defined in the standard way

Πa = |Ga⟩⟨Ga| , (4.16)
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and the action of the observables becomes (4.11)

adGa|Gb⟩ = Ka|Gb⟩ = |[Ga, Gb]⟩ =
∑

c

Kcab|Gc⟩ . (4.17)

We also obtain a matrix representation for the action of any metric over g. For example
the linear transformation ω takes the form

ω =
∑
ab

ωab|Ga⟩⟨Gb| (4.18)

where ωab = ωba and ωab ∈ R.

4.3.2 Jensen geometries over SU(4)

In [113] the author searched for the critical points of the Ricci scalar curvature (R) in the
space of left-invariant metrics with fixed determinant. It was shown that for unimodular
Lie algebras (tr [Ca] = 0), Einstein metrics are precisely the critical points of R. While the
proof was not constructive for general unimodular Lie groups, by specializing the author
was able to construct several classes of Einstein metrics, now called Jensen metrics. These
were found over symmetric Lie algebras i.e. those Lie algebras with at least one Cartan
decomposition. The Cartan decomposition plays a crucial role in forming the ansatz
metric used in [113] to find Einstein metrics. Further exploring the algebraic structures
of these decompositions is an interesting point we return to later. We find it useful to
first explore the algebraic properties of Jensen metric through explicit constructions of
two classes relevant for this work.

Further assuming that the manifold is compact guarantees the existence of a strictly
left-invariant Einstein metric. The Lie algebra su(4) is compact and symmetric. Thus it
may be Cartan decomposed into a subalgebra and its orthogonal complement with respect
to the Killing-Cartan form, allowing for non-trivial Ricci critical metrics. There are two
inequivalent ways to do this, corresponding to the two non-isomorphic subalgebras so(4),
and sp(2) the compact symplectic Lie algebra.

The heart of the Cartan decomposition is to break the Lie algebra into the subalgebra
and the orthogonal complement with respect to the Killing-Cartan form. That is, given
a subalgebra R ⊂ g we decompose g as

g = R ⊕ M (4.19)
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where δ(A,B) = 0 for all A ∈ R and B ∈ M. We say the pair (g,R) forms a Cartan
decomposition if the following are satisfied

[R,R] ⊆ R , [R,M] ⊆ M , and [M,M] ⊆ R . (4.20)

The commutation relations above are equivalent to the existence of a certain kind of Lie
algebra isomorphism, known as the Cartan involution (θ). Explicitly a Cartan involution
is a Lie algebra automorphism θ : g → g such that [119]

θ =
1r 0

0 −1m

 (4.21)

where r = dimR and m = dimM. In what follows we construct the two types of Jensen
metrics that exist for su(4). To do so, we construct the transformation ω, which takes
an orthonormal basis of the Killing-Cartan metric to an orthonormal basis of the given
critical metric. These transformations are generated by the symmetric, traceless operator

B =
1

r
1r 0
0 − 1

m
1m

 (4.22)

yielding the linear transformation

ω = exp τB . (4.23)

The metric corresponding to ω(τ) is a non-trivial critical point of the Ricci scalar iff

τ = rm

2(r +m) ln 2r +m

2r −m
. (4.24)

These metrics are KAQ due to the following. First, the subalgebras which are pulled out
for these two Cartan decompositions are generated by known sets of Pauli-words. This
in conjunction with the large degeneracy in the Cartan blocks that ensures a KAQ basis
may be defined. We do this explicitly in the next section.

Before moving to our more general sets of KAQ parameterizations, it is worth
explaining the algebraic structures we leverage. To begin we simply note that the Jensen
metrics have a reduced symmetry structure compared to the Killing-Cartan metric.
Using the form of Jensen metrics, defined by Eq.(4.22)-Eq.(4.24), and the commutation
relations, one may show that the Jensen metrics are only bi-invariant with respect to R.
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Thus since Jensen metrics are not adg invariant, they cannot support GUE dynamics.
However the adR invariance allows for the creation of Gaussian ensembles over smaller
sets of matrices. For example the so(4) Jensen metric gives dynamics via the Ricci scalar
where the GUE spontaneously breaks down to a model which approximates a lower
dimensional Gaussian orthogonal ensemble (GOE),

ρ = ρGUE(H(N2−1)) → ρ ≈ ρGOE(H(N(N−1)/2)) . (4.25)

It does not exactly yield the GOE as there is a non-negligible probability for observables
outside of the so(4) subalgebra to contribute to the Hamiltonian. Similarly, the sp(2)
Jensen metrics generate an approximate Gaussian Symplectic Ensemble (GSE).

But there are other known examples of Einstein metrics over SU(N), which have more
varied structure than Jensen metrics. Most of these metrics are naturally reductive like
the Jensen metrics. Naturally reductive metrics are more general than Jensen metrics,
but they remain adR invariant. The more varied structure is obtained by decomposing
the Lie algebra further, isolating certain algebraic structures of R. Given a Lie algebra
with an orthogonal (but not necessarily Cartan) decomposition, one further decomposes
it as

g = R ⊕ M = C ⊕ I1 ⊕ ...⊕ Iq ⊕ M (4.26)

where C is the center of R ([C,R]=0) and Ii(i > 0) are simple ideals satisfying

[R, Ii] ⊂ Ii . (4.27)

Using this decomposition, a general form of naturally reductive metrics is given in [120],

⟨ | ⟩ = ⟨ | ⟩C + λ11I1 + ...+ λq1Iq + µ1M (4.28)

where ⟨ | ⟩C is a general inner product over C, and λi and µ are non-negative. The authors
used these parameterization to find examples of naturally reductive (non-Jensen) Einstein
metrics, which are also critical points of R. The critical points of R found in [103–105]
were only of Jensen type. We find evidence later for why the non-Jensen type critical
points were not found during the evolutionary search done by Freedman and Zini.

It has recently been shown that non-naturally reductive Einstein metrics exist over
SU(N) [121], but we do not yet know how large the overlap is with KAQ metrics.
With that said, we shall also consider metric parameterizations which are non-naturally
reductive. We motivate our construction by considering metrics with a reduced bi-
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invariance compared with the Jensen metrics. That is we consider metrics which are
bi-invariant with respect to a Cartan subalgebra of R. Explicitly we decompose the Lie
algebra as

g = R ⊕ M = R0 ⊕ R1 ⊕ ...⊕ Rq ⊕ M (4.29)

where R0 is a Cartan subalgebra of R, and Ri are subspaces satisfying

[R0,Ri] ⊂ Ri . (4.30)

Using this decomposition we define the following metrics

⟨ | ⟩ = ⟨ | ⟩R0 + λ11R1 + ...+ λq1Rq + µ1M (4.31)

where λi, µ > 0. It is simple to show these metrics are indeed adR0 invariant using the
preceding commutation relations.

4.3.3 Cipher classes

In this section we introduce our KAQ parameterizations, which we break into cipher
classes. These classes are distinguished by the existence of non-isomorphic KAQ bases.
A given cipher class will have a basis of principal axes that is mixed between Gell-Mann
letters and Pauli words. The smallest of these classes are the untranslated KAQ (UKAQ)
metrics. These metrics have a KAQ basis consisting entirely of Gell-Mann letters. Such
metrics are the most difficult to decode the KAQ property. The next biggest class are
the partially translated KAQ metrics (PKAQ), followed by the fully translated KAQ
metrics (FKAQ). The FKAQ metrics only have KAQ bases consisting entirely of Pauli
words, thus they require no decoding when checking the KAQ property. We have the
inclusion relation

UKAQ ⊂ PKAQ ⊂ FKAQ . (4.32)

For what follows we assume the basis principal axes maps to pure tensor Pauli words i.e.

Φ
[
Ẽa

]
= σa1 ⊗ ...⊗ σad

(4.33)

where Ẽa represents the bases of principal axes post possible decoding process. It is
useful to introduce some additional notation for the generalized Gell-Mann matrices,
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splitting them into three groups

{Ga} = {{iAl}, {iSl}, {iDp}} (4.34)

which are the anti-symmetric matrices, the off-diagonal symmetric matrices, and the
diagonal matrices respectively. For a generic N these indices take values in

1 ≤ l ≤
(
N

2

)
1 ≤ p ≤ N − 1

(4.35)

How we label the Gell-Mann matrices follows the notation from [118], although we use a
different overall normalization.

4.3.3.1 Untranslated KAQ metrics

We consider first the class of untranslated KAQ metrics (UKAQ). As a natural example,
we use generalizations of the so(4) Jensen metrics that are considerably less degenerate.
To begin the construction we choose an orthonormal basis of the Killing-Cartan metric.
We define generalized so(4) Jensen metrics as those with an orthonormal basis compatible
with the involution θ[X] = −XT, i.e. an orthonormal basis constructed from eigenvectors
of θ. Notice that

θ[Al] = Al

θ[Sl] = −Sl

θ[Dp] = −Dp

(4.36)

thus Gell-Mann letters are a good fiducial basis that can be used to construct generalized
so(4) Jensen metrics.

Now notice that the eigen-spectra of Gell-Mann letters do not match those of the
Pauli words. Therefore it is impossible to relate these bases through unitary conjugation
i.e. inner automorphism. But in order to serve as a basis of principal axes, a Lie
algebra homomorphism to Pauli words must exist. See also [117,122]. Having ruled out
the existence of an inner automorphism (unitary conjugation) that accomplishes the
translation to Pauli words, the only remaining isomorphisms are the outermorphisms.
But the only non-trivial outermorphism of su(n) is complex conjugation. Complex
conjugation combined with unitary conjugation can never match the eigen-spectra of
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Gell-Mann letters and Pauli words.
Therefore we need to be able to decode the Gell-Mann matrices for the constructed

metrics to be KAQ. It is straightforward to show that they may serve as a basis of
principal axis, so long as we assume certain degeneracy patterns exist in the metric. To
elucidate this concept, we construct the following dictionary that translates Gell-Mann
letters to Pauli words

(A1 + A6) = 1
2
(
11 ⊗ Y2

)
, (A1 − A6) = 1

2
(
Z1 ⊗ Y2

)
(A2 + A5) = 1

2
(
Y1 ⊗ 12

)
, (A2 − A5) = 1

2

(
Y1 ⊗ Z2

)
(A3 + A4) = 1

2

(
Y1 ⊗X2

)
, (A3 − A4) = 1

2

(
X1 ⊗ Y2

)
.

(4.37)

We may further construct Pauli words from M

(S1 + S6) = 1
2

(
11 ⊗X2

)
, (S1 − S6) = 1

2

(
Z1 ⊗X2

)
(S2 + S5) = 1

2

(
X1 ⊗ 12

)
, (S2 − S5) = 1

2

(
X1 ⊗ Z2

)
(S3 + S4) = 1

2

(
X1 ⊗X2

)
, (S4 − S3) = 1

2

(
Y1 ⊗ Y2

)
D1 −

√
1
3D2 +

√
2
3D3

 = 1
2

(
11 ⊗ Z2

)
D1 +

√
1
3D2 −

√
2
3D3

 = 1
2

(
Z1 ⊗ Z2

)
0D1 +

√
4
3D2 +

√
1
3D3

 = 1
2

(
Z1 ⊗ 12

)
.

(4.38)

Therefore it is possible for Gell-Mann letters to form a KAQ basis, so long as the
metric has appropriate degeneracy patterns. These degeneracies are required to be
able to translate Gell-Mann letters to Pauli words using more general maps than inner
automorphisms. As an example consider A1 and A6. Their weights must be the same to
construct the words E1 and E2. It is these considerations that lead us to the following
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UKAQ metrics

ωUKAQ(r⃗, m⃗) = er1

(
|A1⟩⟨A1| + |A6⟩⟨A6|

)
+ er2

(
|A2⟩⟨A2| + |A5⟩⟨A5|

)

+ er3

(
|A3⟩⟨A3| + |A4⟩⟨A4|

)
+ em1

(
|S1⟩⟨S1| + |S6⟩⟨S6|

)

+ em2

(
|S2⟩⟨S2| + |S5⟩⟨S5|

)
+ em3

(
|S3⟩⟨S3| + |S4⟩⟨S4|

)

+ e−∆
(

|D1⟩⟨D1| + |D2⟩⟨D2| + |D3⟩⟨D3|
)
,

(4.39)

where we fix the determinant by setting ∆ = 2
3
∑

i(ri + mi). Now we may see that
the UKAQ parameterization is compatible with a many-body structure. A physically
interesting structure arises when

ri > 0

mi < 0

∆ ≥ 0 ,

(4.40)

where a many-body structure exists if an inner automorphism ΦMBP exists mapping R to
the set of 1-string Pauli words. The inner automorphism for this example is constructed
by the unitary

UMBP = exp
[
iπ

4 Y1 ⊗ Y2

]
(4.41)

which maps computational states to Bell states. Therefore, with a few assumptions about
the singular values, we have shown that many-body KAQ metrics exist which generalize
the so(4) Jensen metrics. For further exploration in the more complex loss functionals,
we make the simplifying assumption that mi = −∆ and r2 = r3. This results in a class
of adR0 invariant metrics

ΩUKAQ(t, s) = e
t
6

(
|A1⟩⟨A1| + |A6⟩⟨A6|

)
+ e

s
6

(
|A2⟩⟨A2| + |A5⟩⟨A5| + |A3⟩⟨A3| + |A4⟩⟨A4|

)
+ e− t+2s

27

(
|S1⟩⟨S1| + |S6⟩⟨S6| + |S2⟩⟨S2| + |S5⟩⟨S5| + |S3⟩⟨S3| + |S4⟩⟨S4|

+ |D1⟩⟨D1| + |D2⟩⟨D2| + |D3⟩⟨D3|
)

(4.42)
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where R0=span(A1, A6). Notice that ΩUKAQ(t, t) corresponds to the class of so(4) Jensen
metrics, and all metrics off of this line are non-Jensen. We note this as over R the metric
contains two unequal weights whenever t ̸= s.

4.3.3.2 Partially translated KAQ metrics

The partially translated or PKAQ metrics have a KAQ basis which is mixed between
Gell-Mann letters and Pauli words. They will be simpler to decode than UKAQ metrics,
but still require some work. A natural class of PKAQ metric structures appear from
a generalization of the sp(2) Jensen metrics. The KAQ basis in this case must be
compatible with the involution θ[X] = JXTJ where the matrix J is defined as

J =
 0 12d−1

−12d−1 0

 (4.43)

A critical difference appearing for this choice of θ is that most Gell-Mann matrices are
not eigenvectors. For example

θ[A1] = −A6

θ[A6] = −A1
(4.44)

thus
(
A1 − A6

)
is an eigenvector of θ that lives in R and

(
A1 + A6

)
is an eigenvector of

θ that lives in M. So we must use an orthonormal basis of the Killing-Cartan metric
that is mixed between Gell-Mann letters and Pauli words to be compatible with θ. Using
the same dictionary, but a different Cartan decomposition, the Pauli words in R are

(S1 − S6) = 1
2

(
Z1 ⊗X2

)
, (A1 − A6) = 1

2

(
Z1 ⊗ Y2

)
(S2 + S5) = 1

2

(
X1 ⊗ 12

)
, (A2 + A5) = 1

2

(
Y1 ⊗ 12

)
(S3 + S4) = 1

2

(
X1 ⊗X2

)
, (S4 − S3) = 1

2

(
Y1 ⊗ Y2

)
(A3 + A4) = 1

2

(
Y1 ⊗X2

)
, (A3 − A4) = 1

2

(
X1 ⊗ Y2

)

D1 −
√

1
3D2 +

√
2
3D3 = 1

2

(
11 ⊗ Z2

)

0D1 +
√

4
3D2 +

√
2
3D3 = 1

2

(
Z1 ⊗ 12

)
,

(4.45)
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and the Pauli words constructed from M are

(S1 + S6) = 1
2

(
11 ⊗X2

)
, (A1 + A6) = 1

2

(
11 ⊗ Y2

)
(S2 − S5) = 1

2

(
X1 ⊗ Z2

)
, (A2 − A5) = 1

2

(
Y1 ⊗ Z2

)

D1 +
√

1
3D2 −

√
2
3D3 = 1

2

(
Z1 ⊗ Z2

)
.

(4.46)

Each word constructed from the same pair of Gell-Mann letters living in different Cartan
blocks must be pre-translated into the Killing-Cartan basis to be compatible with θ. For
each of these pre-translated words, we may assign an independent weight in the metric.
Only the pairs (S3, S4) and (A3, A4) have the same weights, as we do not require them
to be translated to achieve the Cartan decomposition. We are thus lead to the following
parameterization for generalized sp(2) metrics

ωPKAQ(ri,mα) = er1|Z1X2⟩⟨Z1X2| + er2|Z1Y2⟩⟨Z1Y2| + er3|X1⟩⟨X1| + er4|Y1⟩⟨Y1|

+ er5
(
|S3⟩⟨S3| + |S4⟩⟨S4|

)
+ er6

(
|A3⟩⟨A3| + |A4⟩⟨A4|

)
+ er7|Z2⟩⟨Z2| + er8|Z1⟩⟨Z1| + em1|X2⟩⟨X2| + em2 |Y2⟩⟨Y2|

+ em3|X1Z2⟩⟨X1Z2| + em4 |Y1Z2⟩⟨Y1Z2| + e−∆|Z1Z2⟩⟨Z1Z2|

(4.47)

where again ∆ is chosen such that det
(
ωPKAQ

)
= 1. Here we clearly see that a few

principle axes are still untranslated, but there is far less translation to be done than in
the UKAQ example. Note as well that there are many other ways to construct a PKAQ
parameterization that are not compatible with the Cartan involution.

Again we take a simpler PKAQ parameterization for further investigation. We reduce
to two parameters as this is the minimal number necessary to search for non-Jensen
type critical points. We take the following non-naturally reductive adR0 invariant
parameterization

ΩPKAQ(t, s) =e− 3t+2s
25

(
|X2⟩⟨X2| + em2 |Y2⟩⟨Y2| + |X1Z2⟩⟨X1Z2| + |Y1Z2⟩⟨Y1Z2| + |Z1Z2⟩⟨Z1Z2|

)
+e t

10

(
|Z1X2⟩⟨Z1X2| + |Z1Y2⟩⟨Z1Y2| + |X1⟩⟨X1| + |Y1⟩⟨Y1| + |Z2⟩⟨Z2| + |Z1⟩⟨Z1|

)
+e s

10

(
|S3⟩⟨S3| + |S4⟩⟨S4| + |A3⟩⟨A3| + |A4⟩⟨A4|

)
(4.48)

which is bi-invariant with respect to R0=span(Z1, Z2). When t = s the parametrization
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reduces to that of sp(2) Jensen metrics, therefore any critical points found along the line
t = s in the t− s plane are Jensen metrics for the given parameterization. Otherwise the
other metrics in the t− s plane are all non-Jensen.

4.3.3.3 Fully translated KAQ metrics

The final cipher class we consider is the class of fully translated KAQ (FKAQ) metrics.
These metrics have no degeneracy, therefore to know about qubits the principal axes
must already agree with a set of Pauli words. We use the following parameterization for
FKAQ metrics

ωFKAQ(wi,Wα) = ew1|X1⟩⟨X1| + ew2|Y1⟩⟨Y1| + ew3|Z1⟩⟨Z1|

+ ew4|X2⟩⟨X2| + ew5|Y2⟩⟨Y2| + ew6|Z2⟩⟨Z2|

+ eW1|X1X2⟩⟨X1X2| + eW2|X1Y2⟩⟨X1Y2| + eW3|X1Z2⟩⟨X1Z2|

+ eW4 |Y1X2⟩⟨Y1X2| + eW5 |Y1Y2⟩⟨Y1Y2| + eW6 |Y1Z2⟩⟨Y1Z2|

+ eW7 |Z1X2⟩⟨Z1X2| + eW8|Z1Y2⟩⟨Z1Y2| + e−∆|Z1Z2⟩⟨Z1Z2|

(4.49)

where we have assumed that all the principal axes are pure tensor. We have reduced
the number of parameters by choosing a set of lab frames for the qubits, i.e. a choice
of xyz-axes. But notice that this choice has no effect on the shape of the curvature
functionals, changing the definition of axis or even meronomic frame comes only at the
cost of performing an inner automorphism. The parameter ∆ is chosen such that ωFKAQ

has unit determinant. In this class no decoding needs to be done, only the commutation
relations need to be checked to confirm the KAQ property.

Again we reduce the number of independent weights to simplify the search. First
we consider a naturally reductive example based upon a penalty metric [123–126]. We
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define the biased penalty metric

ΩBP(t, s) = e
t
6

(
|X1⟩⟨X1| + |Y1⟩⟨Y1| + |Z1⟩⟨Z1|

)
+ e

s
6

(
|X2⟩⟨X2| + |Y2⟩⟨Y2| + |Z2⟩⟨Z2|

)

+e− (t+s)
18

|X1X2⟩⟨X1X2| + |X1Y2⟩⟨X1Y2| + |X1Z2⟩⟨X1Z2|

+ |Y1X2⟩⟨Y1X2| + |Y1Y2⟩⟨Y1Y2| + |Y1Z2⟩⟨Y1Z2|

+ |Z1X2⟩⟨Z1X2| + |Z1Y2⟩⟨Z1Y2| + |Z1Z2⟩⟨Z1Z2|

 .
(4.50)

Motivated by the construction in [127] we define a class of non-naturally reductive class
of metrics, referred to as Abelian breakdown (AB)

ωAB(ti) = e−∆
(
|Z1⟩⟨Z1| + |Z2⟩⟨Z2| + |Z1Z2⟩⟨Z1Z2|

)
+ et1

(
|X1⟩⟨X1| + |X1Z2⟩⟨X1Z2|

)
+ et2

(
|Y1⟩⟨Y1| + |Y1Z2⟩⟨Y1Z2|

)
+ et3

(
|X2⟩⟨X2| + |Z1X2⟩⟨Z1X2|

)
+ et4

(
|Y2⟩⟨Y2| + |Z1Y2⟩⟨Z1Y2|

)
+ et5

(
|X1X2⟩⟨X1X2| + |Y1Y2⟩⟨Y1Y2|

)
+ et6

(
|X1Y2⟩⟨X1Y2| + |Y1X2⟩⟨Y1X2|

)
.

(4.51)

The name is chosen as all degenerate eigenspaces form Abelian subalgebras. We may
reduce to two parameters for further investigation

ΩAB(t, s) = e− 8t+4s
30
(
|Z1⟩⟨Z1| + |Z2⟩⟨Z2| + |Z1Z2⟩⟨Z1Z2|

)
+ e

t
10

(
|X1⟩⟨X1| + |Y1⟩⟨Y1| + |X2⟩⟨X2| + |Y2⟩⟨Y2|

+ |X1Z2⟩⟨X1Z2| + |Y1Z2⟩⟨Y1Z2| + |Z1X2⟩⟨Z1X2| + |Z1Y2⟩⟨Z1Y2|
)

+ e
s

10

(
|X1X2⟩⟨X1X2| + |Y1X2⟩⟨Y1X2| + |X1Y2⟩⟨X1Y2| + |Y1Y2⟩⟨Y1Y2|

)
.

(4.52)

Notice that when t = s, a 1-dimensional space of naturally reductive metrics is obtained.
But none of the contained naturally reductive metrics are Jensen metrics. To see this note
that while the 3 dimensional subspace does form a subalgebra, the final commutation
relation [M,M] ∈ R does not hold.
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4.4 Equations of motion
We turn our attention now to the loss functionals we consider in this work, which may only
depend on the metric and structure constants. We consider loss functionals derived from
curvature functionals which are essentially tensor networks of the Christoffel connection.
These classes of loss functionals contain structure constant networks not appearing
in [103–105] at the same order in "perturbation" (defined by the number of structure
constants in the contraction). We find it appealing to construct the loss functional from
curvature functionals as

I R[g] is the lowest order term in many natural classes of such actions.

II R[g] always has two distinct classes of KAQ critical metrics.

A larger, natural class of loss functionals is

L[g] = R + αR2 + βRabR
ab + γRabcdR

abcd

= R + αR0 + βR2 + γR4 .
(4.53)

An additional improvement on the pure Ricci theory is that this loss functional contains
order parameters, allowing for the appearance of quantum subsystems through sponta-
neous symmetry breaking. The results of [112, 116] provide the equations of motion that
must be satisfied in order for g to be a critical metric of the loss functional L[g;α, β, γ],
over a compact manifold while enforcing a fixed volume element. The last point is why
the determinant of the metric must be fixed for our purposes.

Performing the variation of these functionals (in an orthonormal basis of the metric)
yields the following "stress-energy" tensors

Tij = Rij − 1
2Rδij

T
(0)
ij = 2RRij + 2∇k∇k(Rδij) − 2∇i∇jR − 1

2R
2δij

T
(2)
ij = 2RikjlR

kl + ∇k∇kRij + 1
2∇k∇k(Rδij) − ∇i∇jR − 1

2RklR
klδij

T
(4)
ij = 2RiklmR

klm
j + 4RikjlR

kl + 4∇k∇kRij − 2∇i∇jR − 4RikR
k

j − 1
2RklmnR

klmnδij

.

It is important to note that using our definition of Rijkl (see Appendix A), leads to
different indicies being contracted in the Riemann-Ricci terms than those found in [112].
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Muto [111] proved that a given metric is a critical point iff

Tij = Tij + αT
(0)
ij + βT

(2)
ij + γT

(4)
ij = Λδij (4.54)

where Λ is a real constant depending on the parameters of the problem, namely m, r, and
the coupling constants. Note to reduce the calculation, we may move all the terms already
proportional to the metric to the RHS. Further, as we are considering homogeneous
spaces the covariant derivatives of the Ricci scalar vanish. The "stress-energy" tensors
simplify to

Tij = Rij

T
(0)
ij = 2RRij + 2R∇k∇k(δij)

T
(2)
ij = 2RikjlRkl + ∇k∇k(Rij) + 1

2R∇k∇k(δij)

T
(4)
ij = 2RiklmRjklm + 4RikjlRkl + 4∇k∇k(Rij) − 4RikRkj,

where, as we are working in an orthonormal basis, we are free to lower all the indices.
Summation over repeated indices is still implied. The last simplification available is
to compute the terms involving the covariant Laplacian. The Laplacian of the metric
vanishes

∇k∇k(δij) = −∇k(Γlkiδlj + Γlkjδil) = ∇k(Γikj + Γjki) = 0 (4.55)

which is equivalent to metric compatibility of the connection. We need to also compute
the Laplacian of the Ricci tensor, but notice if we take a particular choice of the coupling
constants the contribution from this term cancel. This particular combination is in fact
the Gauss-Bonnet term yielding the loss functional

LGB(γ) = R + γ(R0 − 4R2 + R4) . (4.56)

We should emphasis that the Gauss-Bonnet term is not topological in this theory; the
dimension of the space is 4d − 1 ≥ 15, thus clearly never 4. The equations of motion for
the chosen loss functional are

Tij = Rij + γ
(

2RRij + 2RiklmRjklm − 4RiljkRlk − 4RikRkj

)
= ΛGBδij . (4.57)

where indeed we see the ∇2Rij term vanishes. In the next section we provide much
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evidence that the Gauss-Bonnet functional has the Killing-Cartan geometry as an unstable
critical point. We suspect that the general class of loss functionals contained in Eq.4.53
are concave about the Killing-Cartan geometry for the same reason as found in [103],
who examined the behavior of individual diagrams contributing to the functionals (see
their Appendix C and our Appendix C.2).

And while ostensibly we have made a restrictive choice of coupling constants, by using
a graphical method developed in Appendix C.2 we in fact see that the loss functional in
Eq.(4.56) has general properties of the larger family, as no special cancellations appear in
the graphs. As further evidence we may also contrast the Gauss-Bonnet loss functional
with those introduced by Freedman and Zini. Besides the Ricci scalar, they considered
non-Gaussian functionals for example the Euclidean integral

F [G;κ] =
∫

R3(4n−1)
dy1dy2dy3e

[−κ
∑3

i=1 gabya
i yb

i +Cabcya
1 yb

2yc
3] . (4.58)

The use of three integration variables is necessary to construct a non-vanishing scalar from
the structure constants. Considering perturbed Gaussian integrals allows for a systematic
approach to the perturbative calculation. In this way a series of trivalent tensor networks
is obtained that determines the loss functional at a given order in perturbation parameter
κ.

Now consider the graphical representation of the types of terms is given in Appendix
C.2. The diagrams help illuminate a few important points of comparison between the
loss functionals in Eq. (4.53) compared to Eq. (4.58). First, the family of curvature terms
depends on diagrams with only at most four structure constants in the contraction. In
contrast, the perturbed Gaussian of [103] contains a series out to infinite order, which
was computed up to terms of order six for the analysis. At the level of fourth order
terms, the Gauss-Bonnet combination does not induce any special cancellation between
diagrams appearing in R0, R2, and R4. The individual curvature terms contain somewhat
symmetric combinations of diagrams with a different relationship from that imposed by
Eq. (4.58). This family of loss-functionals is well-suited to a geometrically illuminating
study that may be able to connect KAQ structure to other known and interesting classes
of metrics, including the naturally reductive metrics.
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4.5 Results for SU(4)
The equations of motion allow us to search for solutions in the space of each 2-parameter
KAQ metrics defined in Section 4.3. These parameterizations include both naturally and
non-naturally reductive metrics. To yield a solution, a given ω must generate a diagonal
stress energy tensor satisfying

Ti ≡ Tii = ΛGB (4.59)

where 1 ≤ i ≤ 15 and ΛGB is real. Thus for a given parameterization, we first determine
the number of independent Ti. By setting s = at, we simultaneously plot the independent
Ti, allowing us to vary a and check if any critical points appear for non-zero values of t.

By making contour plots of the loss function, we systematically find potential critical
points and check if they are indeed true critical points. Further, while we do not have
access to the second variation of the loss functional, we still obtain information about the
second derivative by comparing contour plots which agree along the line t = s. Doing so
affords us a glimpse at the stability of the loss functional around certain Jensen type
critical points. The straightforward but lengthy evaluation of the second variation could
be performed to fully check stability.

4.5.1 FKAQ critical points

Here we collect our results for the two FKAQ parameterizations given in Section 4.3.
These include the naturally reductive parameterization ΩBP defined in Eq.(4.50) and
the non-naturally reductive parameterization ΩAB defined in Eq.(4.52). Using two
parameterizations allows us to compare the type of critical metrics that appear in the
naturally reductive vs. non-naturally reductive cases.

We show results with the help of two types of figures. First, to demonstrate the
technique, we plot the equations of motion for an example, at fixed values of the weighting
parameters in the metric (s, t). But, to visualize the space of solutions in the weighting
parameters, we show contour plots of the loss functionals for varying s, t. It is important
to stress that not all critical points that appear in these plots are critical in the space
of left-invariant metrics. All that can be learned from these plots is whether they are
critical in the considered parameterization space. In order to determine true criticality
we always appeal to the equations of motion.
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4.5.1.1 Biased penalty metric

There are only three independent Ti for the biased penalty metric ansatz, ΩBP from
Eq.(4.50). The equations that must be satisfied are

T1 = e
1
9 (−7a−10)t

(
−3γeat

3 + 18.75γe 4
9 (a+1)t + 9γe 2

3 (a+2)t − 1.125γe 1
9 (2a+11)t + 1.125γe 1

9 (8a+5)t

+0.375γe 1
9 (10a+13)t + 0.75e 5

9 (a+1)t + 0.25e 1
9 (7a+13)t − 1.125γet/3

)
=ΛGB,

T4 = e
1
9 (−10a−7)t

(
−1.125γeat

3 + 18.75γe 4
9 (a+1)t + 1.125γe 1

9 (5a+8)t − 1.125γe 1
9 (11a+2)t

+0.375γe 1
9 (13a+10)t + 9γe 2

3 (2at+t) + 0.75e 5
9 (a+1)t + 0.25e 1

9 (13a+7)t

−3γet/3
)

= ΛGB,

T7 = e− 10
9 (a+1)t

(
2γe 2at

3 + 1.5γe 1
3 (a+1)t + 51.5γe 8

9 (a+1)t + 3γe(a+ 4
3)t − 18.75γe 1

9 (4a+7)t

−0.75γe 1
9 (5a+11)t − 18.75γe 1

9 (7a+4)t − 0.75γe 1
9 (11a+5)t + 3γe 4at

3 +t

−0.5e 1
9 (5a+8)t − 0.5e 1

9 (8a+5)t + 2eat+t + 2γe2t/3
)

=ΛGB. (4.60)

With only three independent diagonal elements, this parameterization is only slightly
more complicated than the Jensen type. For Jensen metrics there are only 2 independent
Ti. Recall that we want to find non-Jensen type critical points, as for larger number of
qubits Jensen metrics are highly non-local and do not give a typical many-body structure.

In Figure 4.1 we plot the set of Ti for two different values of a. The left plot shows
that for most values of a (here 0.1), the only solution that appears is the trivial non-KAQ
solution s = at = 0. But for special values of a, non-trivial solutions do appear. We
unsurprisingly find Jensen type critical points for a = 1, which is expected due to
the simplicity of the equations of motion. Figure 4.2 however, shows an example of a
non-Jensen type critical points, of which several exist.
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Figure 4.1: Here the equations of motion (Eq.4.56) are plotted for the biased penalty
metric ansatz ΩBP (Eq.4.50), which includes a Gauss-Bonnet with γ = 1. The left plot
shows the line t = s, and for the biased penalty metric these are Jensen-type. In fact
we find an additional solution (relative to pure Ricci scalar) for t < 0. The second plot
demonstrates that for most a strictly left-invariant solutions do not exist.

Figure 4.2: Here the equations of motion for ΩBP are plotted for a ≈ −2.06. We see that
there is a non-Jensen type solution for t ≈ −1.67.

In Fig 4.3 we present a holistic view of the critical points that appear through the use
of contour plots of the loss functional. We see that even for the Ricci scalar, non-Jensen
naturally reductive critical points are present. The shapes of the contour near the
origin show why evolutionary searches performed in [103] likely missed out on the more
structured critical points. Evolutionary searches begin with the choice of an initial parent
point. The natural choice here is the Killing-Cartan metric, or a randomly selected
nearby point. The search then casts a small net around the parent point, and the loss
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functions is computed for each of these points. The point with the lowest value serves as
the new parent point in the following step. The topography of these plots demonstrates
that such a method can fail to find the saddle points, instead settling on the Jensen-type
critical point(s).

Figure 4.3: Contours of the loss functional are plotted for ΩBP, Eq.(4.50), with γ = 0
(the Ricci scalar only) and γ = 1. All red points marked on the plots are critical in the
space of left-invariant metrics with fixed determinant. Critical points residing on the line
t = s are Jensen type, while all others are non-Jensen appealing to the form of ΩBP(t, s).

4.5.1.2 Abelian breakdown metric

Moving to the non-naturally reductive FKAQ parameterization, ΩAB from Eq.(4.52),
we plot the set of independent Ti in Fig 4.4, where there are 4 such elements. We find
solutions only for a = 1, the potential meeting point in the left plot never actually
becomes a crossing. In this case the solution is naturally reductive but not of Jensen
type, even though the corresponding critical metric only has two distinct weights, as the
weights do not distinguish blocks that belong to a Cartan decomposition.
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Figure 4.4: Plotted are the equations of motion for the Abelian breakdown metric ansatz,
ΩAB of Eq.(4.52), which is non-naturally reductive. Again, we have taken γ = 1 for the
amplitude of the Gauss-Bonnet term. The first plot shows the behavior for a typical a;
no non-trivial solutions exist. The second plot shows the existence of a non-Jensen type
critical point for a = 1 and t ≈ 1.45.

We have plotted contour plots in Fig 4.5, where we find only one non-trivial solution.
Comparing to the biased penalty example we may make two comments. First, there
are far fewer critical points along these directions in the space of left-invariant metrics.
Further, the critical point we obtained is rather interesting. The KAQ critical metric puts
distinct weight on Cartan subalgebra distinguishing it from the remaining observables.
While a small step, it is evidence that curvature-based loss functionals may support KAQ
critical points with many-body local structure.

Figure 4.5: Contours of the loss functional LGB is plotted for ΩAB, Eq.(4.52), with γ = 0
(the Ricci scalar only) and γ = 1. The red points marked on the plots are critical points
in the space of left-invariant metrics with fixed determinant. As explained in Section
4.3.3.3, no metric in this class, regardless of parameter values, is of the Jensen type.
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4.5.2 UKAQ critical points

Turning to our UKAQ parametrization, ΩUKAQ from Eq.(4.42), we may perform the
same search for critical points. The equations of motions are much more complex for this
example, where there are 6 independent Ti. While certain choices of a reduce the number
of independent Ti, only for a = 1 do we obtain non-trivial solutions to the equations of
motion.

By comparing Figure 4.3 and Figure 4.6 we obtain some evidence about the preference
of naturally reductive metric. Notice that these figures exactly agree on the line t = s, so
we can see how the value of the functional changes in naturally reductive vs. non-naturally
reductive direction. We see that Figure 4.3 clearly contains more true critical metrics,
and that the only critical metrics contained within Figure 4.6 are naturally reductive as
well. This provides some evidence that naturally reductive metrics may be favored over
non-naturally reductive metrics when weighed by curvature based functionals.

Some understanding about the stability of the Jensen type critical points common
to both examples can be obtained by comparing these figures. The Jensen type critical
point with s, t < 0 appears to be a stable critical point, where as the solution for positive
t and s is clearly a saddle point. Although there are many different cross sections one
must consider to truly determine the stability.

Figure 4.6: Contours of the loss functionals are plotted for the ΩUKAQ parameterization,
Eq.(4.42). The red points located along the line t = s are critical points in the space
of left-invariant metrics. All other points (green) are only critical in the considered
parameterization space.

We do not fully understand the propensity towards Jensen metrics in our examples.
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It could simply be a preference for naturally reductive metrics. There is however another
possibility. At such a low dimension (two qubits) the Jensen metrics and penalty metrics
are essentially the same. So, the loss functions investigated here may simply be favoring
penalty structures. It would be enlightening to study su(8) to illuminate this point.

4.5.3 PKAQ critical points

For the final parameterization, we investigate ΩPKAQ defined in Eq.(4.48). We only find
Jensen-type critical points, and note that this direction seems the least fruitful in the
search for critical metrics.

Figure 4.7: Contours are plotted for the ΩPKAQ parameterization, Eq.(4.48). The red
points indicate true critical points, which are all Jensen type. The green point, in the
second plot, is only critical in the parameterization space.

4.6 Conclusions
In this work we have found critical points of curvature-based loss functionals that are
KAQ and include metrics which are compatible with many-body physics. All of the
critical points we have found are naturally reductive, although we cannot rule out the
existence of non-naturally reductive KAQ metrics. From the examples we tried we found
no adR0 invariant critical metrics which were not Jensen. We also have found that most
critical points are saddle points, with the potential for a few stable Jensen critical points.

While we have only analyzed detailed examples for su(4), it is straightforward,
although numerically intensive, to generalize these constructions to larger N . What we
have presented is evidence that the KAQ ansatz is a useful tool both for finding critical
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metrics among the large set of left-invariant metrics and for better understanding the
structure of KAQ critical points. Even going to su(8) would be helpful in determining
more about the structure of the critical points of curvature-based loss functionals. For
example with three qubits, penalty metrics are not Jensen, allowing for more exploration
in what exactly drives the value of the loss function; the algebraic properties of the
principal axes or structure of the weights?

These constructions for KAQ metrics we provide may also be used to explore a
much broader family of functionals depending on curvature tensors. However, as this
construction cannot find non-KAQ minima, we cannot study the relative frequency of
KAQ vs non-KAQ. Ideally, one would like functionals with only KAQ minima, or related
structure for N ̸= 2d.
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Chapter 5 |
Conclusions

In this work we presented analytic descriptions of several types of open qubit systems,
and along the way we derived several results that can aid in the development of open
effective theories. Among these results, we have found that time-dependent environmental
landscapes have a dramatic effect on the form of an effective master equation, making
necessary the use of a non-time-local kernel in the master equation. From these results
we determined that an effective approach constructed from quantum channels may be
more fruitful, and is much simpler in principle to develop. Along these lines we explored
an ensemble approach to an effective theory, by studying the ensemble of phase-covariant
dynamics that appears in qubit networks interacting under XXZ-Hamiltonians. We found
that the long-time dynamics may be approximated using a phase-covariant ensemble of
channels, needing only some information about the symmetry of the interaction governing
the network dynamics, and information about how fluctuations scale with time and
system size. Finally, we have explored a model for the spontaneous emergence of qubits
from featureless quantum systems. We found that natural geometrically motivated loss
functionals have a plethora of KAQ minima, and show promise to contain minima that
are both many-body and local.

There are several routes towards future work from what was presented in this disser-
tation. Most relevant for understanding open quantum cosmology, is more sophisticated
studies of the dynamic environmental landscape. Perhaps most glaring, can we un-
derstand the role phase-covariance breaking plays in the models we set forth. At the
moment it is not clear if the features we derived, namely the eternal non-time-local
nature of the dynamics, persist for different configurations of system and environments.
Another interesting model to consider is the spreading of time-non-locality from local
phase-covariance breaking, that is introduced phase-covariance breaking locally in a
spin-network and determine what the time-local nature of the dynamical map near and
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far from the phase-covariance breaking site. A final consideration past our simple model
is to consider a mosaic environment where degrees of freedom may activate and deactivate.
By taking the times of activation and deactivation to be random an interesting, and
perhaps solvable model in some instances, emerges. The interesting question to ask what
typical duration of environmental degrees of freedom yield time-local vs. non-time-local
dynamics.

The random ensembles of quantum channels and certain generalizations of phase-
covariant ensembles are another promising direction of research. The first obvious
direction is to consider larger sized dynamical maps, taking the minimal step to 2-qubit
dynamical maps can provide useful information. As two-point correlation functions find
vast uses in modern physics, and they can be probed in certain models to understand
certain phase-transitions. Therefore it seems plausible that some features of these kinds
of transitions in say spin-chains could be discerned from features or late-time behavior of
the dynamical map.

Further, by exploring larger dynamical maps we can ponder another potential con-
nection to thermodynamics. From random matrix theory it is well known that integrable
models, that is the most symmetric theories, fully resist thermalization in the ther-
modynamic limit. An idea we can investigate is whether the G-covariance of a given
dynamical map relates at all to these thermodynamic notions. For example we see that
phase-covariance at the level of qubit maps is ostensibly uninteresting in these regards.
The integrable vs. thermalizing nature of the full Hamiltonian is obfuscated in the 1-qubit
dynamical maps. However this does not mean that for larger maps phase-covariance still
hides these features. In principle one can imagine that a certain size of group relative
to the size of the dynamical map may allow for interesting thermodynamic features to
appear.

And the most open is the possible extension of the KAQ metrics. From the work done
so far it looks promising to explore the set of KAQ Einstein metrics, which are critical
points of the Ricci scalar. The appeal of this approach is that the search for critical
points is much less numerically intensive than that of the high order curvature terms.
Ultimately one is interested in taking a large N limit for these theories and showing
(or not) that in these scenarios many-body local Hamiltonians are favored then there
non-local counterparts.
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Appendix A|
Effective Master Equations

A.1 Derivation of the maximally entangling parameter
space
Following [57, 58], we find the essential non-local properties of U by changing to the Bell
basis using the unitary operator,

Q = 1√
2


1 0 0 i

0 i 1 0
0 i −1 0
1 0 0 −i

 . (A.1)

The choice of Bell states is made so that the entanglement quadratic form Ênt maps
to the identity matrix. The operator Ênt is defined as,

DetIC(|ψ⟩) = ψ00ψ11 − ψ01ψ10 = |ψ⟩T Ênt|ψ⟩ , (A.2)

where IC is the Choi isomorphism IC : H → Mat(2,C), and one sees upon further
inspection that Ênt = −1

2YS ⊗YE and QT (Ênt)Q = 1
21S ⊗ 1E. At the level of observables

Q takes the subalgebra of local observables su(2)S ⊕ su(2)E to the generators of 4D
rotations on the Bell space so(4)Bell.
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The time evolution operator is expressed in the Bell basis as,

UBell(t) =


cosω+t 0 0 eiϕ+ sinω+t

0 cosω−t −eiϕ− sinω−t 0
0 e−iϕ− sinω−t cosω−t 0

−e−iϕ+ sinω+t 0 0 cosω+t

 (A.3)

The non-local properties of the time evolution in the reduction frame are determined by
the eigenvalues of UT

BellUBell found to be,

u+ = cos2 ω+t+ (cos 2ϕ+ + i
√

sin2 2ϕ+ + sin2 ϕ+) sin2 ω+t

u− = cos2 ω+t+ (cos 2ϕ+ − i
√

sin2 2ϕ+ + sin2 ϕ+) sin2 ω+t

v+ = cos2 ω−t+ (cos 2ϕ− + i
√

sin2 2ϕ− + sin2 ϕ−) sin2 ω−t

v− = cos2 ω−t+ (cos 2ϕ− − i
√

sin2 2ϕ− + sin2 ϕ−) sin2 ω−t

. (A.4)

Assume we are given a linear combination of these eigenvalues au+ + bu− + cv+ + dv−

such that a, b, c, d ≥ 0 and a+ b+ c+ d = 1. For this combination to be real we must
have a = b and c = d. Setting a = cos2 φ and c = sin2 φ we have,

0 = cos2 φ(cos2 ω+t+ cos 2ϕ+ sin2 ω+t) + sin2 φ(cos2 ω−t+ cos 2ϕ− sin2 ω−t)

= cos2 φ(|α+|2(t) − β2
+(t)) + sin2 φ(|α−|2(t) − β2

−(t))
(A.5)

A little bit of algebra and we find,

cos2 φβ2
+(t) + sin2 φβ2

−(t) = 1
2 . (A.6)

This condition may only be satisfied iff the largest of β2
+(t) and β2

−(t) is greater than
or equal to 1

2 , or equivalently Max(ϕ+, ϕ−) ≥ π
4 . That is maximally entangled states

may only be generated when U has large enough off diagonal components, which we see
becomes one of the conditions that non-invertibilities appear in the reduced dynamics.

A.2 Divisibility in channels
In this appendix we establish the divisibility of the dynamical map family D+. For
simplicity we assume that r⃗E(0) = 0⃗ although the results derived apply even if r⃗E(0) =
xE(0)x̂. We are interested in when the map Φ(τ2, τ1) fails to be completely positive, and
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how this depends on τ2 and ϕ. To that end, the dynamical map has the structure,

Λ(t) =


1 0 0 0
0 Λxx(t) Λxy(t) 0
0 Λyx(t) Λyy(t) 0
0 0 0 Λzz(t)

 (A.7)

with determinant DetΛ = Λ2
zz and inverse,

Λ−1(t) =


1 0 0 0
0 Λyy(t)

Λzz(t) −Λxy(t)
Λzz(t) 0

0 −Λyx(t)
Λzz(t)

Λxx(t)
Λzz(t) 0

0 0 0 1
Λzz(t)

 , (A.8)

and the (possibly singular) interweaving map is,

Φ(τ2, τ1) =


1 0 0 0
0 Λxx(τ2)Λyy(τ1)−Λxy(τ2)Λyx(τ1)

Λzz(τ1)
−Λxx(τ2)Λxy(τ1)+Λxy(τ2)Λxx(τ1)

Λzz(τ1) 0
0 Λyx(τ2)Λyy(τ1)−Λyy(τ2)Λyx(τ1)

Λzz(τ1)
Λyy(τ2)Λxx(τ1)−Λyx(τ2)Λxy(τ1)

Λzz(τ1) 0
0 0 0 Λzz(τ2)

Λzz(τ1)

 . (A.9)

N.B. that the map Φ(τ2, τ1) can have a restricted domain, where instead of the Bloch
ball the interweaving map only acts on the image of Λ(τ1).

The criterion in [6] asserts that Φ(τ2, τ1) is completely positive if,

[
Λxx(τ2)Λyy(τ1) − Λxy(τ2)Λyx(τ1)

Λzz(τ1)
± Λyy(τ2)Λxx(τ1) − Λyx(τ2)Λxy(τ1)

Λzz(τ1)

]2

≤
[
1 ± Λzz(τ2)

Λzz(τ1)

]2

.

(A.10)

The + inequality is saturated at all times, so the components of Λ satisfy the relation
(recall Λyx(t) = −Λxy(t)),

Λxx(τ2)Λyy(τ1) + 2Λxy(τ2)Λxy(τ1) + Λyy(τ2)Λxx(τ1) = Λzz(τ2) + Λzz(τ1) . (A.11)
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Thus Φ is completely positive if,

(Λxx(τ2)Λyy(τ1) − Λyy(τ2)Λxx(τ1))2 ≤ (Λzz(τ2) − Λzz(τ1))2 . (A.12)

We already see that if τn = nπ
2ω

, then Φ(τn, τ1) is CP as the above inequality reduces to a
CP condition satisfied by Λ(τ1). Therefore, special times τ2 exist where the dynamics is
CP divisible. This condition is not dependent on what particular values are chosen for
ω and ϕ. However for other values of τ2, the CP inequality will fail to be satisfied for
certain values of τ1. The size of this interval is not dependent on ω, but depends on ϕ

and τ2.
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Appendix B|
Quantum Channel Ensembles

B.1 N-qubit Fourier modes
In this appendix we lay out the symmetries that are useful in computing exact dynamical
maps. The first of these symmetries is the charge, or equivalently the excitation number,
operator

QN =
∑

i

Zi . (B.1)

Throughout the article the excitation number is labeled as q, but note this is not the
eigenvalue of QN . Each block with a given value of q has dimension m =

(
N
q

)
, simply the

number of ways to pick q qubits to be excited.
Hamiltonians satisfying [H,QN ] = 0 will be block diagonal in any excitation eigen-

basis. Since QN is already diagonal in the computational basis, block diagonalizing the
Hamiltonian at most requires a permutation matrix that reorders computational basis
states by excitation number. For this article we chose PN so that the computational
states within the same q-blocks are ordered based on their binary representation. For
example when N = 3, in the q = 1 block the computational state |001⟩ comes before
|100⟩. The next symmetry available to the models we consider is the translation operator
(TN). The translation action on computational basis states is

TN |a1a2...aN⟩ = |aNa1...aN−1⟩ (B.2)

and the adjoint action on Pauli matrices is

TNσ
α
i T

†
N = σα

i+1 . (B.3)

where a tensor product of the Pauli with the identity operator on all other spins is
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implied. Since [QN , TN ] = 0 the translation operator is block diagonal in any excitation-
ordered computational basis. Further noting that TN

N = 1, it is not hard to see that its
eigen-spectrum consists entirely of N th roots of unity. Combining these results we may
label the eigenstates of TN as

TN |Fa
q ; k⟩ = ei 2πa

N |Fa
q ; k⟩

QN |Fa
q ; k⟩ =

(
2q −N

)
|Fa

q ; k⟩
(B.4)

where q is the excitation number, and k is a label that removes any remaining degeneracy
of the eigenstates. In a given q-block, Fourier modes corresponding to subgroups of the
cyclic group ZN may appear, which happens when N is a composite integer. In the
remainder of this appendix we give constructions of the Fourier modes for N ≤ 6.

B.1.1 3-qubits

|F0
0 ; 0⟩ = |111⟩ |F0

3 ; 0⟩ = |000⟩ (B.5)

|F0
1 ; 0⟩ = 1√

3

(
|011⟩ + |101⟩ + |110⟩

)
|F1

1 ; 0⟩ = 1√
3

(
|011⟩ + e

2πi
3 |101⟩ + e

4πi
3 |110⟩

)
|F2

1 ; 0⟩ = 1√
3

(
|011⟩ + e

4πi
3 |101⟩ + e

2πi
3 |110⟩

) (B.6)

|F0
2 ; 0⟩ = 1√

3

(
|001⟩ + |010⟩ + |100⟩

)
|F1

2 ; 0⟩ = 1√
3

(
|001⟩ + e

2πi
3 |010⟩ + e

4πi
3 |100⟩

)
|F2

2 ; 0⟩ = 1√
3

(
|001⟩ + e

4πi
3 |010⟩ + e

2πi
3 |100⟩

) (B.7)

B.1.2 4-qubits

|F0
0 ; 0⟩ = |1111⟩ |F0

4 ; 0⟩ = |0000⟩ (B.8)
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|F0
1 ; 0⟩ = 1√

4

(
|0111⟩ + |1011⟩ + |1101⟩ + |1110⟩

)
|F1

1 ; 0⟩ = 1√
4

(
|0111⟩ + i|1011⟩ − |1101⟩ − i|1110⟩

)
|F2

1 ; 0⟩ = 1√
4

(
|0111⟩ − |1011⟩ + |1101⟩ − |1110⟩

)
|F3

1 ; 0⟩ = 1√
4

(
|0111⟩ − i|1011⟩ − |1101⟩ + i|1110⟩

)
(B.9)

|F0
3 ; 0⟩ = 1√

4

(
|0001⟩ + |0010⟩ + |0100⟩ + |1000⟩

)
|F1

3 ; 0⟩ = 1√
4

(
|0001⟩ + i|0010⟩ − |0100⟩ − i|1000⟩

)
|F2

3 ; 0⟩ = 1√
4

(
|0001⟩ − |0010⟩ + |0100⟩ − |1000⟩

)
|F3

3 ; 0⟩ = 1√
4

(
|0001⟩ − i|0010⟩ − |0100⟩ + i|1000⟩

)
(B.10)

|F0
2 ; 0⟩ = 1√

4

(
|0011⟩ + |0110⟩ + |1001⟩ + |1100⟩

)
|F1

2 ; 0⟩ = 1√
4

(
|0011⟩ + i|0110⟩ − |1001⟩ − i|1100⟩

)
|F2

2 ; 0⟩ = 1√
4

(
|0011⟩ − |0110⟩ + |1001⟩ − |1100⟩

)
|F3

2 ; 0⟩ = 1√
4

(
|0011⟩ − i|0110⟩ − |1001⟩ + i|1100⟩

)
|F0

2 ; 1⟩ = 1√
2
(
|0101⟩ + |1010⟩

)
|F2

2 ; 1⟩ = 1√
2
(
|0101⟩ − |1010⟩

)

(B.11)

B.2 Glossary of dynamical maps
In this Appendix we present the exact formulae for the dynamical maps considered in
this work. We have the following form of phase-covariant maps

Λ(t) =


1 0 0 0
0 Λxx(t) Λxy(t) 0
0 Λyx(t) Λyy(t) 0

Λz0(t) 0 0 Λzz(t)

 (B.12)
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where for the Hamiltonians considered, the various components all may be decomposed
as

Λxx(t) = α(t) cos 2ht− β(t) sin 2ht = λ1(t) cos (2ht+ ϕ(t))

Λyx(t) = β(t) cos 2ht+ α(t) sin 2ht = λ1(t) sin (2ht+ ϕ(t))

Λzz(t) = λ3(t)

Λz0(t) = τ3(t) ,

(B.13)

with the remaining components determined by the relations Λyy = Λxx and Λxy = −Λyx.
To perform the minimum amount of computations, we only provide explicit formulas for
τ3, λ3, α, and β for each model.

B.2.1 Completely-connected XXZ-network

We present the exact dynamical map components for the completely-connected and
homogeneous XXZ-network. We present all the non-unitary parameters defined in
Eq.(B.13).

B.2.1.1 4-qubits

For 4-qubits the Hamiltonian has the block diagonal structure

P4HXXZP†
4 = H0

XXZ ⊕H1
XXZ ⊕H2

XXZ ⊕H3
XXZ ⊕H4

XXZ (B.14)

The only non-trivial diagonalization occurs in the q = 2 block. Restricting to this sector,
we now invoke the translation symmetry of the model

Γ4H
2
XXZΓ†

4 = H2,0
XXZ ⊕H2,1

XXZ ⊕H2,2
XXZ ⊕H2,3

XXZ (B.15)

where Γ4 is a unitary transformation that diagonalizes T4. The a = 1, 3 blocks are
singlets, while a = 0, 2 are doublets (see Eq.(B.11)). Only for a = 0 do the Fourier
modes mix, although the mixing angle is parameter independent. But obviously the
eigenvalues depend on the Hamiltonian paramters. We find the non-unitary parameters
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of the dynamical map to be

λ3,i(t, 4) =
 7

16+1
4 cos 2J⊥t+

5
16 cos 4J⊥t


+
 1

16 − 1
12 cos 2J⊥t+ 1

48 cos 4J⊥t

 ∑
k<l

k,l ̸=i

zkzl

(B.16)

τ3,i(t, 4) =
 3

16− 1
12 cos 2J⊥t−

5
48 cos 4J⊥t

∑
k ̸=i

zk

−

 3
16−1

4 cos 2J⊥t+
1
16 cos 4J⊥t

∏
k ̸=i

zk

(B.17)

αi(t, 4) =
 3

16 cos (3J⊥+J∥)t+
1
16 cos 3(J⊥−J∥)t

+ 3
32 cos (J⊥+3J∥)t+

1
4 cos (J⊥ + J∥)t

+3
8 cos (J⊥−J∥)t+

1
32 cos (5J⊥−J∥)t


+
 3

16 cos (3J⊥+J∥)t+ 1
16 cos 3(J⊥−J∥)t

− 1
32 cos (J⊥+3J∥)t−

1
12 cos (J⊥+J∥)t

−1
8 cos (J⊥−J∥)t−

1
96 cos (5J⊥−J∥)t

 ∑
k<l

k,l ̸=i

zkzl

(B.18)
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βi(t, 4) =
 3

16 sin (3J⊥+J∥)t−
1
16 sin 3(J⊥−J∥)t

+ 1
32 sin (J⊥+3J∥)t+

1
12 sin (J⊥+J∥)t

−1
8 sin (J⊥−J∥)t−

1
96 sin (5J⊥−J∥)t

∑
k ̸=i

zk

+
 3

16 sin (3J⊥+J∥)t−
1
16 sin 3(J⊥−J∥)t

− 3
32 sin (J⊥+3J∥)t−

1
4 sin (J⊥+J∥)t

+3
8 sin (J⊥−J∥)t+

1
32 sin (5J⊥−J∥)t

∏
k ̸=i

zk

(B.19)

B.2.1.2 5-qubits

As the exact diagonalization is more complicated for the 5-qubit network, we shall go
through the steps more explicitly than the 4-qubit case. Again we may change to the
canonical excitation basis

P5HXXZP†
5 = H0

XXZ ⊕H1
XXZ ⊕H2

XXZ ⊕H3
XXZ ⊕H4

XXZ ⊕H5
XXZ . (B.20)

As with the ring topology, we further go to the basis of translation eigenstates. Again
the only excitation number blocks that are not diagonalized trivially at this stage are

Γ5H
2
XXZ ⊕H3

XXZΓ†
5 =

4⊕
a=0

H2,a
XXZ ⊕H3,a

XXZ . (B.21)
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And as for the ring-topology, we obtain a set of ten 2×2 matrices that require further
computation to diagonalize. The q = 2 blocks are found to be

H2,0
XXZ =


−h− J∥ + 2J⊥ 4J⊥

4J⊥ −h− J∥ + 2J⊥



H2,1
XXZ =


−h− J∥ +

(√
5−1
2

)
J⊥ −J⊥e

− 6πi
5

−J⊥e
6πi

5 −h− J∥ −
(√

5+1
2

)
J⊥



H2,2
XXZ =


−h− J∥ −

(√
5+1
2

)
J⊥ −J⊥e

− 2πi
5

−J⊥e
2πi

5 −h− J∥ +
(√

5−1
2

)
J⊥



(B.22)

With the remaining blocks determined by the relations H2,2
XXZ =

(
H2,3

XXZ

)T
and H2,1

XXZ =(
H2,4

XXZ

)T
. The matrix representations for the q = 3 block are obtained through the

replacement h → −h, affecting only the eigenvalues and not the form of the associated
eigenvectors. Again to due to large degree of symmetry of the model, the eigenvectors
are parameter independent. The resulting map parameter functions are:

λ3,i(t, 5) =
 7

15+1
3 cos 3J⊥t+

1
5 cos 5J⊥t


+
 8

225 − 1
18 cos 3J⊥t+ 1

50 cos 5J⊥t

 ∑
k<l

k,l ̸=i

zkzl

(B.23)

τ3,i(t, 5) =
 2

15 − 1
12 cos 3J⊥t− 1

20 cos 5J⊥t

∑
k ̸=i

zk

−

 4
75 − 1

12 cos 3J⊥t+ 3
100 cos 5J⊥t

∑
k<l<j
k,l,j ̸=i

zkzlzj

(B.24)
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αi(t, 5) =
157

600 + 1
12 cos 3J⊥t+ 3

100 cos 5J⊥t+ 3
50 cos (3J⊥ + 2J∥)t

+ 1
40 cos 4(J⊥−J∥)t+ 1

100 cos (7J⊥ − 2J∥)t

+ 9
50 cos 2(J⊥ − J∥)t+ 1

4 cos (J⊥ + 2J∥)t

+ 1
10 cos (J⊥+4J∥)t


−

 157
1800 + 1

36 cos 3J⊥t+ 1
100 cos 5J⊥t− 1

40 cos 4(J⊥ − J∥)t

− 1
10 cos (J⊥ + 4J∥)t

 ∑
k<l

k,l ̸=i

zkzl

+
157

600 + 1
12 cos 3J⊥t+ 3

100 cos 5J⊥t+ 1
10 cos (J⊥ + 4J∥)t

−1
4 cos (J⊥ + 2J∥)t− 3

50 cos (3J⊥ + 2J∥)t

− 1
100 cos (7J⊥ − 2J∥)t− 9

50 cos 2(J⊥ − J∥)t

+ 1
40 cos 4(J⊥ − J∥)t

 ∑
j<k<l<m
j,k,l,m ̸=i

zjzkzlzm

(B.25)

βi(t, 5) =
 3

100 sin (3J⊥ + 2J∥)t− 1
40 sin 4(J⊥ − J∥)t

− 1
200 sin (7J⊥ − 2J∥)t− 9

100 sin 2(J⊥ − J∥)t

+1
8 sin (J⊥ + 2J∥)t+ 1

10 sin (J⊥ + 4J∥)t
∑

k ̸=i

zk

−

 3
100 sin (3J⊥ + 2J∥)t+ 1

40 sin 4(J⊥ − J∥)t

− 1
200 sin (7J⊥ − 2J∥)t− 9

100 sin 2(J⊥ − J∥)t

+1
8 sin (J⊥ + 2J∥)t− 1

10 sin (J⊥ + 4J∥)t
∑

k<l<j
j,k,l ̸=i

zjzkzl

(B.26)
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B.2.1.3 6-qubits

Repeating the procedures of the previous sections we may block diagonalize the 6-qubit
XXZ-network. Going to the Fourier basis we have the remaining blocks to diagonalize

Γ6

(
H2

XXZ ⊕H3
XXZ ⊕H4

XXZ

)
Γ†

6 =
5⊕

a=0
H2,a

XXZ ⊕H3,a
XXZ ⊕H4,a

XXZ (B.27)

which provides more of a challenge than the previous examples as now 4 × 4 blocks
and 3 × 3 blocks appear. But the example still retains a degree of simplicity, as the
eigenvectors do not contain any parameter dependence. The computation may be further
reduced by noting that once H2,a

XXZ is diagonalized, a similar transformation may be used
to diagonalize H4,a

XXZ. As for the size of the various blocks we have for q = 2

dimH2,0
XXZ = dimH2,2

XXZ = dimH2,4
XXZ = 3

dimH2,1
XXZ = dimH2,3

XXZ = dimH2,5
XXZ = 2

(B.28)

where the same holds for q = 4. All of these blocks create superpositions amongst the
Fourier modes except H2,3

XXZ, which is comprised of two singlet states |F3
2 , 0⟩ and |F3

2 , 1⟩.
The same conclusion applies for q = 4. For q = 3 we have

dimH3,0
XXZ = dimH3,3

XXZ = 4

dimH3,1
XXZ = dimH3,2

XXZ = dimH3,4
XXZ = dimH3,5

XXZ = 3
(B.29)

and there are mixtures created among all the Fourier modes except |F2
3 , 0⟩ and |F4

3 , 0⟩.

λ3,i(t, 6) =
 59

144+ 5
32 cos 2J⊥t+

5
16 cos 4J⊥t+ 35

288 cos 6J⊥t


+
 1

24− 1
32 cos 2J⊥t−

1
40 cos 4J⊥t+ 7

480 cos 6J⊥t

 ∑
k<l

k,l ̸=i

zkzl

−

 1
48− 1

32 cos 2J⊥t+
1
80 cos 4J⊥t− 1

480 cos 6J⊥t

 ∑
j<k<l,m
j,k,l,m ̸=i

zjzkzlzm

(B.30)
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τ3,i(t, 6) =
 17

144− 1
32 cos 2J⊥t−

1
16 cos 4J⊥t− 7

288 cos 6J⊥t

∑
k ̸=i

zk

−

 1
24− 1

32 cos 2J⊥t−
1
40 cos 4J⊥t+ 7

480 cos 6J⊥t

∑
k<l<j
k,l,j ̸=i

zkzlzj

+
 5

48− 5
32 cos 2J⊥t+

1
16 cos 4J⊥t− 1

96 cos 6J⊥t

∏
j ̸=i

zj

(B.31)

The expressions for α(t) and β(t) are lengthy, therefore we shall express our results using
the partial components. The remaining non-zero partial components are obtained using
the permutation symmetry, for example αzz000

i = αz0z00
i = α00zz0

i , etc. We find

α00000
i (t, 6) = 5

96 cos (J⊥ + 5J∥)t+ 1
96 cos 5(J⊥ − J∥)t

+ 3
16 cos (J⊥ + 3J∥)t+ 25

288 cos 3(J⊥ − J∥)t

+ 1
288 cos (9J⊥ − 3J∥)t+ 1

48 cos (5J⊥ + J∥)t

+ 3
32 cos (3J⊥ + J∥)t+ 5

32 cos (J⊥ + J∥)t

+ 5
16 cos (J⊥ − J∥)t+ 1

32 cos (5J⊥ − J∥)t

+ 1
96 cos (7J⊥ − J∥)t+ 5

144 cos 3(J⊥ + J∥)t

(B.32)

αzz000
i (t, 6) = 5

96 cos (J⊥ + 5J∥)t+ 1
96 cos 5(J⊥ − J∥)t

+ 3
80 cos (J⊥ + 3J∥)t− 1

240 cos (5J⊥ + J∥)t

− 3
160 cos (3J⊥ + J∥)t− 1

32 cos (J⊥ + J∥)t

+ 5
288 cos 3(J⊥ − J∥)t+ 1

1440 cos (9J⊥ − 3J∥)t

− 1
16 cos (J⊥ − J∥)t− 1

160 cos (5J⊥ − J∥)t

− 1
480 cos (7J⊥ − J∥)t+ 1

144 cos 3(J⊥ + J∥)t

(B.33)
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αzzzz0
i (t, 6) = 5

96 cos (J⊥ + 5J∥)t+ 1
96 cos 5(J⊥ − J∥)t

− 9
80 cos (J⊥ + 3J∥)t− 5

96 cos 3(J⊥ − J∥)t

− 1
480 cos (9J⊥ − 3J∥)t+ 1

240 cos (5J⊥ + J∥)t

+ 3
160 cos (3J⊥ + J∥)t+ 1

32 cos (J⊥ + J∥)t

+ 1
16 cos (J⊥ − J∥)t+ 1

160 cos (5J⊥ − J∥)t

+ 1
480 cos (7J⊥ − J∥)t− 1

48 cos 3(J⊥ + J∥)t

(B.34)

βz0000
i (t, 6) = 5

96 sin (J⊥ + 5J∥)t− 1
96 sin 5(J⊥ − J∥)t

+ 9
80 sin (J⊥ + 3J∥)t− 5

96 sin 3(J⊥ − J∥)t

− 1
480 sin (9J⊥ − 3J∥)t+ 1

240 sin (5J⊥ + J∥)t

+ 3
160 sin (3J⊥ + J∥)t+ 1

32 sin (J⊥ + J∥)t

− 1
16 sin (J⊥ − J∥)t− 1

160 sin (5J⊥ − J∥)t

− 1
480 sin (7J⊥ − J∥)t+ 1

48 sin 3(J⊥ + J∥)t

(B.35)

βzzz00
i (t, 6) = 5

96 sin (J⊥ + 5J∥)t− 1
96 sin 5(J⊥ − J∥)t

− 3
80 sin (J⊥ + 3J∥)t+ 5

288 sin 3(J⊥ − J∥)t

+ 1
1440 sin (9J⊥ − 3J∥)t− 1

240 sin (5J⊥ + J∥)t

− 3
160 sin (3J⊥ + J∥)t− 1

32 sin (J⊥ + J∥)t

+ 1
16 sin (J⊥ − J∥)t+ 1

160 sin (5J⊥ − J∥)t

+ 1
480 sin (7J⊥ − J∥)t− 1

144 sin 3(J⊥ + J∥)t

(B.36)
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βzzzzz
i (t, 6) = 5

96 sin (J⊥ + 5J∥)t− 1
96 sin 5(J⊥ − J∥)t

− 3
16 sin (J⊥ + 3J∥)t+ 25

288 sin 3(J⊥ − J∥)t

+ 1
288 sin (9J⊥ − 3J∥)t+ 1

48 sin (5J⊥ + J∥)t

+ 3
32 sin (3J⊥ + J∥)t+ 5

32 sin (J⊥ + J∥)t

− 5
16 sin (J⊥ − J∥)t− 1

32 sin (5J⊥ − J∥)t

− 1
96 sin (7J⊥ − J∥)t− 5

144 sin 3(J⊥ + J∥)t

(B.37)

B.2.2 Ring-connected XXZ-network

Turning to the more difficult model, the homogeneous XXZ-ring. Due to the more
complicated structure of this model we only investigate the XXZ model for N = 4, and
use the XXX model for N = 5, where we only present the computations for λ3(t) and
τ3(t).

B.2.2.1 4-qubits

For 4-qubits the Hamiltonian has the block diagonal structure

P4HXXZP†
4 = H0

XXZ ⊕H1
XXZ ⊕H2

XXZ ⊕H3
XXZ ⊕H4

XXZ (B.38)

The only non-trivial diagonalization occurs in the q=2 block. Restricting to this sector,
we may reduce it to smaller blocks by invoking the translation symmetry

Γ4H
2
XXZΓ†

4 = H2,0
XXZ ⊕H2,1

XXZ ⊕H2,2
XXZ ⊕H2,3

XXZ (B.39)

where Γ4 is a unitary transformation that diagonalizes T4. The a = 1, 3 blocks are
singlets, while a = 0, 2 are both doublets. Mixing only occurs within the a = 0 block,
which in this case does depend on the parameters of the Hamiltonian. Theses stationary
states of H2,2

XXZ are determined to be

|E0
2 ; 0⟩ = cos ϕ×

2 |F0
2 ; 0⟩ + sin ϕ×

2 |F0
2 ; 1⟩

|E0
2 ; 1⟩ = sin ϕ×

2 |F0
2 ; 0⟩ − cos ϕ×

2 |F0
2 ; 1⟩

ω± = J∥ ± sgn
(
J∥
)
J×

(B.40)
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where the Hamiltonian dependent parameters we have introduced are

J× =
√
J2

∥ + 8J2
⊥

ϕ× = −tan−12 3
2
J⊥

J∥
.

(B.41)

λ3,i(t, 4) =
( 7

16 + 1
4 cos 2J⊥t+ 1

16 cos 4J⊥t+ 1
4 cos J∥t cos J×t

+ 1
4 cosϕ× sin J∥t sin J×t

)
+
( 1

16 + cos 4J⊥t− 1
8 cos J∥t cos J×t

− 1
8 cosϕ× sin J∥t sin J×t

)(
zi−1zi+2 + zi+1zi+2

)

−
( 3

16 − 1
4 cos 2J⊥t+ 1

16 cos 4J⊥t
)(

zi−1zi+1

)
(B.42)

τ3,i(t, 4) =
( 1

16 − 1
4 cos 2J⊥t− 1

16 cos 4J⊥t+ 1
4 cos J∥t cos J×t

+ 1
4 cosϕ× sin J∥t sin J×t

)∏
k ̸=i

zk

+
( 3

16 − 1
16 cos 4J⊥t− 1

8 cosϕ× sin J∥t sin J×t

− 1
8 cos J∥t cos J×t

)
(zi−1 + zi+1)

+
( 3

16 − 1
4 cos 2J⊥t+ 1

16 cos 4J⊥t
)
zi+2

(B.43)

As seen in the previous section, the expression for α(t) and β(t) are more cumbersome
than the other non-unitary parameters. Therefore we again split them into their partial
components. For the ring topology we only need to consider the reflection symmetry to
generate additional partial components as will be clear in the following equations. We
find

α000
i (t, 4) = 1

4+1+3 cos 2J∥t

16 cos2 J⊥t+
1+3 cos 2J⊥t

16 cos J∥t cos J×t

−
√

2
8 sinϕ× sin 2J⊥t cos J∥t sin J×t

−

(
1+ cosϕ× sin J⊥t sin J×t

)
8 sin2 J∥t

(B.44)
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α0zz
i (t, 4) = cos2 J⊥t

8
(

cos 2J∥t− cos J∥t cos J×t+ cosϕ× sin J∥t sin J×t
)

+
√

2
16 sinϕ× cos J∥t sin 2J⊥t sin J×t = αzz0

i (t, 4)
(B.45)

αz0z
i (t, 4) =−1

8 + cos2 J⊥t

4
(
1+3

2 cos 2J∥t
)
−sin2 J⊥t

8 cos J∥t cos J×t

+1 + 3 cos 2J⊥t

16 cosϕ× sin J∥t sin J×t

(B.46)

βz00
i (t, 4) =−cos2 J⊥t

8

(
3 sin 2J∥t+ sin J∥t cos J×t+ cosϕ× cos J∥t sin J×t

)
+

√
2

16 sinϕ× sin J∥t sin 2J⊥t sin J×t = β00z
i (t, 4)

(B.47)

β0z0
i (t, 4) = 1+3 cos 2J⊥t

16 cosϕ× cos J∥t sin J×t−
cos2 J⊥t

8 sin 2J∥t

+sin2 J⊥t

8 sin J∥t cos J×t

(B.48)

βzzz
i (t, 4) =sin2 J⊥t

8 cosϕ×t cos J∥t sin J×t− cos2 J⊥t

8 sin 2J∥t

+1 + 3 cos 2J⊥t

16 sin J∥t cos J×t

−
√

2
16 sinϕ× sin J∥t sin 2J⊥t sin J×t

(B.49)

B.2.2.2 5-qubits

As with the previous examples we change from the computational basis to the canonically
ordered excitation basis. We achieve this by using a permutation matrix

P5HXXZP†
5 = H0

XXZ ⊕H1
XXZ ⊕H2

XXZ ⊕H3
XXZ ⊕H4

XXZ ⊕H5
XXZ (B.50)

and we are interested in finding the stationary states of the middle two blocks, as the
others may be found trivially. Now we can go further by changing to a translation
eigenbasis

Γ5H
2
XXZ ⊕H3

XXZΓ†
5 =

4⊕
a=0

H2,a
XXZ ⊕H3,a

XXZ (B.51)
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where the q = 2 blocks take the form

H2,a
XXZ =


−h+ 1

2J∥
(
2 cos 6πa

5 J⊥
)
e− 6πia

5

(
2 cos 6πa

5 J⊥
)
e

6πia
5 −h− 3

2J∥ + 2 cos 6πa
5 J⊥

 (B.52)

and the q = 3 blocks are obtained by sending h → −h. We thus obtain the following
parameterization of the non-trivial stationary states

tanψa = 6πa
5

tanϕa =
2 cos 6πa

5 J⊥(
J∥ − cos 6πa

5 J⊥
)

Ja =
√

(J∥ − cos 6πa
5 J⊥)2 + 4 cos2 6πa

5 J2
⊥

(B.53)

Due to the length of the expression obtained, we must report the non-unitary parameters
by the partial components defined in the main text. Setting J⊥ = J∥ we find

λ0000
3,i (t; 5) = 71

225 + 13
90 cos (3 −

√
5

2 )J⊥t+ 1
10 cos (5 −

√
5

2 )J⊥t

+ 1
45 cos 3(1 −

√
5

2 )J⊥t+ 32
225 cos

√
5J⊥t

+ 13
90 cos (3 +

√
5

2 )J⊥t+ 1
10 cos (5 +

√
5

2 )J⊥t

+ 2
225 cos 2

√
5J⊥t+ 1

45 cos 3(1 +
√

5
2 )J⊥t

(B.54)

λzz00
3,i (t, 5) = − 6

√
5+25

900 cos (3+
√

5
2 )J⊥t+

6
√

5−25
900 cos (3−

√
5

2 )J⊥t

+ 1
100 cos (5 +

√
5

2 )J⊥t+ 1
100 cos (5 −

√
5

2 )J⊥t

−
√

5
450 cos 3(1 −

√
5

2 )J⊥t+
√

5
450 cos 3(1 +

√
5

2 )J⊥t

− 2
225 cos 2

√
5J⊥t+ 2

45 cos
√

5J⊥t = λ00zz
3,i (t, 5)

(B.55)
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λz0z0
3,i (t, 5) = 1

100 cos (5 −
√

5
2 )J⊥t− 6

√
5 + 25
900 cos (3 −

√
5

2 )J⊥t

+
√

5
450 cos 3(1 −

√
5

2 )J⊥t−
√

5
450 cos 3(1 +

√
5

2 )J⊥t

+ 6
√

5 − 25
900 cos (3 +

√
5

2 )J⊥t+ 1
100 cos (5 +

√
5

2 )J⊥t

− 2
225 cos 2

√
5J⊥t+ 2

45 cos
√

5J⊥t = λ0z0z
3,i (t, 5)

(B.56)

λ0zz0
3,i (t, 5) = 1

45 + 3
√

5 − 5
300 cos (3 −

√
5

2 )J⊥t+ 1
75 cos 2

√
5J⊥t

+ 1 −
√

5
100 cos (5 −

√
5

2 )J⊥t− 5 −
√

5
450 cos 3(1 −

√
5

2 )J⊥t

− 3
√

5 + 5
300 cos (3 +

√
5

2 )J⊥t+ 1 +
√

5
100 cos (5 +

√
5

2 )J⊥t

− 5 +
√

5
450 cos 3(1 +

√
5

2 )J⊥t

(B.57)

λz00z
3,i (t, 5) = 1

45−3
√

5+5
300 cos (3−

√
5

2 )J⊥t+
1+

√
5

100 cos (5−
√

5
2 )J⊥t

− 5 +
√

5
450 cos 3(1 −

√
5

2 )J⊥t+ 3
√

5 − 5
300 cos (3 +

√
5

2 )J⊥t

+ 1 −
√

5
100 cos (5 +

√
5

2 )J⊥t+ 1
75 cos 2

√
5J⊥t

+ 5 −
√

5
450 cos 3(1 +

√
5

2 )J⊥t

(B.58)

τ z000
3,i (t; 5) = 77

450−1+
√

5
40 cos (5+

√
5

2 )J⊥t−
1−

√
5

40 cos (5−
√

5
2 )J⊥t

− 1 −
√

5
180 cos 3(1 −

√
5

2 )J⊥t− 1 +
√

5
180 cos 3(1 +

√
5

2 )J⊥t

− 13 + 3
√

5
360 cos (3 +

√
5

2 )J⊥t−
13−3

√
5

360 cos (3−
√

5
2 )J⊥t

− 1
450 cos 2

√
5J⊥t− 8

225 cos
√

5J⊥t = τ 000z
3,i (t; 5)

(B.59)

τ 0z00
3,i (t; 5) = 77

450−1−
√

5
40 cos (5+

√
5

2 )J⊥t−
1+

√
5

40 cos (5−
√

5
2 )J⊥t

− 1+
√

5
180 cos 3(1−

√
5

2 )J⊥t−
1−

√
5

180 cos 3(1+
√

5
2 )J⊥t

− 13−3
√

5
360 cos (3+

√
5

2 )J⊥t−
13+3

√
5

360 cos (3−
√

5
2 )J⊥t

− 1
450 cos 2

√
5J⊥t− 8

225 cos
√

5J⊥t = τ 00z0
3,i (t; 5)

(B.60)
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τ zzz0
3,i (t; 5) =− 1

90−3−
√

5
200 cos (5+

√
5

2 )J⊥t−
3+

√
5

200 cos (5−
√

5
2 )J⊥t

+5+3
√

5
900 cos 3(1−

√
5

2 )J⊥t+
5−3

√
5

900 cos 3(1+
√

5
2 )J⊥t

+65+3
√

5
1800 cos (3+

√
5

2 )J⊥t+
65−3

√
5

1800 cos (3−
√

5
2 )J⊥t

+ 1
450 cos 2

√
5J⊥t− 2

45 cos (
√

5J⊥t) = τ 0zzz0
3,i (t; 5)

(B.61)

τ z0zz
3,i (t; 5) =− 1

90−3+
√

5
200 cos (5+

√
5

2 )J⊥t−
3−

√
5

200 cos (5−
√

5
2 )J⊥t

+5−3
√

5
900 cos 3(1−

√
5

2 )J⊥t+
5+3

√
5

900 cos 3(1+
√

5
2 )J⊥t

+65−3
√

5
1800 cos (3+

√
5

2 )J⊥t+
65+3

√
5

1800 cos (3−
√

5
2 )J⊥t

+ 1
450 cos 2

√
5J⊥t+ 2

45 cos (
√

5J⊥t) = τ zz0z
3,i (t; 5)

(B.62)

B.2.3 Disconnected XX-network

In terms of the following parameterization of the eigendecomposition of H1,2
XX

h12 = h1 + h2

2 ω12 = sgn(∆12)
√

∆2
12 + J2

12

∆12 = h1 − h2 tanϕ12 = J12

∆12

(B.63)
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the Pauli components of the unitary channel may be expressed as

Ux0
zy = U zx

y0 = U0x
yz = Uxz

0y = −Uy0
zx = −U zy

x0 = −U0y
xz = −Uyz

0x = sinϕ12 sinω12t cos 2h12t

Uxx
0z = Uyy

z0 = U z0
xx = U z0

yy = −Uxx
0z = −Uyy

0z = −U0z
xx = −U0z

yy = cosϕ12 sinϕ12 sin2 ω12t

Uxy
z0 = Uyx

z0 = U z0
yx = U0z

xy = −Uxy
0z = −Uyx

z0 = −U z0
xy = −U0z

yx = 1
2 sinϕ12 sin 2ω12t

U0x
xz = U0y

yz = Uxz
0x = Uyz

0y = Ux0
zx = Uy0

zy = U zx
x0 = U zy

y0 = sinϕ12 sinω12t sin 2h12t

Uy0
x0 = −Ux0

y0 = Uyz
xz = −Uxz

yz = cosω12t sin 2h12t+ cosϕ12 sinω12t cos 2h12t

U0y
0x = −U0x

0y = U zy
zx = −U zx

zy = cosω12t sin 2h12t− cosϕ12 sinω12t cos 2h12t

Ux0
x0 = Uy0

y0 = Uxz
xz = Uyz

yz = cosω12t cos 2h12t− cosϕ12 sinω12t sin 2h12t

U0x
0x = U0y

0y = U zx
zx = U zy

zy = cosω12t cos 2h12t+ cosϕ12 sinω12t sin 2h12t

Uyx
xx = Uyy

xy = −Uxx
yx = −Uxy

yy = 1
2
(

sin 4h12t+ cosϕ12 sin 2ω12t
)

Uxy
xx = Uyy

yx = −Uxx
xy = −Uyx

yy = 1
2
(

sin 4h12t− cosϕ12 sin 2ω12t
)

Uyy
xx = Uxx

yy = 1
2
(

− cos 4h12t+ cos2 ϕ12 cos 2ω12t+ sin2 ϕ12
)

Uxx
xx = Uyy

yy = 1
2
(

cos 4h12t+ cos2 ϕ12 cos 2ω12t+ sin2 ϕ12
)

Uxy
xy = Uyx

yx = 1
2
(

cos 4h12t+ cos 2ω12t
)

Uxy
yx = Uyx

xy = 1
2
(

cos 4h12t− cos 2ω12t
)

U z0
z0 = U0z

0z = 1 − sin2 ϕ12 sin2 ω12t

U z0
0z = U0z

z0 = sin2 ϕ12 sin2 ω12t

(B.64)

Constructing the 1-qubit dynamical map, a non-unital dynamical map is obtained as
given in Section 2. But enforcing a noise-distribution over ϕ12 that is an even function,
the noise-averaged dynamical map takes the form Eq.(B.12).
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Appendix C|
Emergent Quantum Subsystems

C.1 Curvature functionals from the structure constants
To begin, a non-holonomic basis is a choice of basis over the tangent manifold that is
non-commutative. Assume that {Xa} forms a basis for the tangent manifold with

[Xa, Xb] = Cc
abXc (C.1)

defining the structure constants associated to the chosen basis. The Christoffel connection
(the unique connection that is torsion-less and compatible with the metric) in a non-
coordinate basis is

Γabc = 1
2 [∂cgab + ∂bgac − ∂agbc + Cabc − Cbca − Ccba] . (C.2)

Assuming {Xa} is an orthonormal basis of the metric and that the metric is left invariant,
the terms involving the metric vanish leaving

Γabc = 1
2(Cabc − Cbca − Ccba) . (C.3)

Notice that Γabc = −Γcba. The components of the Christoffel connection in an orthonormal,
non-holonomic basis are referred to as the Ricci rotation coefficients [128]. The Riemann
tensor and its various traces are computed as functions of the Christoffel connection and
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structure constants [129]

Rabcd =Γe
dbΓace − Γe

cbΓade − Ce
cdΓaeb

Rab = − 1
2geb

(
CdacC

ced + CcadC
ced − 1

2CacdC
ecd

)

R = − 1
2CabcC

cba − 1
4CabcC

abc .

(C.4)

Using the graphical method described in Appendix C.2, we compute the second order
curvatures functionals in terms of structure constant networks. We have found

R2[g] = 1
16g

efglk

Cdbf

[
4CaceC

dbkCacl − 4CaceC
bdkCcla − 8CaceC

dbkCcla
]

+Cfdb

[
CecaC

kdbC lca − 4CaceC
kdbCacl + 4CaceC

kdbCcla
]

R4[g] = 1
8g

efglk

Cdbf

[
4CaceC

dbkCacl − 4CaceC
bdkCcla − 8CaceC

dbkCcla

]

+Cfdb

[
3CecaC

kdbC lca + 8CaceC
kdbCacl + 8CaceC

kdbC lca

]

−Cfcd

[
CebaC

kdbC lca + 2CaebC
dbkC lca + 4CaebC

bdkCacl

8CaebC
kdbC lca − 8CaebC

kdbCcla + 28CaebC
kdbCacl

] .

C.2 Graphical representation of structure networks
The fundamental information about the group structure and the metric on the manifold
is carried in the structure constants, organized into the connection, and the metric. Any
functionals one might want to define, including the Ricci scalar R, R2[g], and R4[g]
can be built from the totally contracted combinations of Cijk, Cijk, gℓm, and gℓm. A
diagrammatic representation of the terms is useful, where each Cijk is represented by a
node and contractions are indicated with edges. The line style of the edge carries relevant
information about the contraction, i.e., whether it involves the metric and any symmetry
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information.
We define the following notation for the placement and style of nodes and edges:

Cijk is a node with edges emerging upward, while Cijk is a node with edges emerging
downward. Contractions via the metric will then always be represented by horizontal
lines, while others appear as vertical or diagonal lines. Since the Cijk are antisymmetric
in the last two indices, we differentiate contractions between indices in different positions.
Contractions of indices both in the first position are drawn with a solid line, both indices
in the second or both in the third position with a dashed line, and contractions between
an index in the first position and one in the second or third is a solid line with arrows
pointing from the node containing the first-position index to the node containing the
second- or third-position index.

For example, the two terms contributing to the R = −1
2CabcC

cba − 1
4CabcC

abc can be
drawn as

CabcC
cba CabcC

abc

These are similar to the theta diagrams defined in [103]. The remaining curvature
structures we consider, R2 and R4, have terms containing four structure constants, so
all additional graphs have four nodes. There are two classes of graphs, depending on
whether each node is connected to two others (“tin cans") or to three (“tetrahedra"). R2

contains only tin cans while R4 has both types of graphs.
Tin can terms from the product of four Christoffel symbols have a symmetry structure

that helps to simplify the large number of terms. Consider, for example, the term

gefgℓkΓfdbΓaceΓkdbΓacℓ = 1
4g

efgℓk(Cfdb −Cdbf −Cbdf )(Ckdb −Cdbk −Cbdk)ΓaceΓacℓ . (C.5)

Here there are two pairs of terms that cancel, among the nine terms coming from
expanding ΓfdbΓkdb, due to the anti-symmetry of the full contraction under permutations
of indices. On the other hand, there are two pairs of terms that add, containing CdbfC

dbk

and CbdfC
bdk, for example. There are therefore three sets of nine diagrams that remain
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to be evaluated. For example, one such term is

gefgℓkCdbfC
dbk
[
CaceC

acℓ − CacdC
cℓa − CaceC

ℓca (C.6)

− CceaC
acℓ + CceaC

cℓa + CceaC
ℓca

−CecaC
acℓ + CecaC

cℓa + CceaC
ℓca
]

⊂ gefgℓkΓfdbΓaceΓkdbΓacℓ .

The nine terms in this sum can be represented diagramatically as:

As the graph structure (and colors) indicate, the nine terms contain only four distinct
constructions. Note that the graph structure does not directly indicate the relative sign
between graphs related by a rotation of the structure nodes, for example between the
upper right diagram and the lower left diagram. Furthermore, the signs of the terms are
inherited from the signs in the expansions Γabc = 1

2(Cabc − Cbca − Ccba). Collecting all
relative signs, the two identical (green) diagrams in the right column cancel, as do the
two identical (green) diagrams in the bottom row. The other pairs add so that there
are three distinct diagrams. Within the four-gamma term that contains the above set,
gefgℓkΓfdbΓaceΓkdbΓacℓ, there are two other sets of nine terms that must be evaluated.
The pattern of colors (identical graphs) and cancellations repeats in each of the nine sets
of nine graphs, and there are ultimately three additional types of diagrams.

A different contraction structure occurs in terms like gefgℓkCfcdΓaebΓkdbΓacℓ. This
term can be represented by tetrahedron diagrams. Among the (seven) terms that do not
cancel, there are just three diagrams:
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One can certainly consider other loss functionals. For example, the function primarily
studied in [103], given by Eq.(4.58), contains terms with all even numbers of Cijk. That
work considered an expansion of terms up to third order, giving rise to graphs with two,
four, and six nodes. However, only a subset of the four-vertex graphs appeared. The set
of four-vertex graphs needed for the curvature terms is larger.
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