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Abstract—Quantum computers, leveraging superposition and entangle-
ment, offer significant qubit efficiency for data processing compared to
classical systems. However, encoding classical data into quantum states,
given the current limitations of quantum hardware, often results in higher
runtime complexity than classical methods, thus limiting the perceived
quantum advantage. Previous quantum data compression methods, pri-
marily based on Amplitude Encoding and mixed-state systems, result in
lossy data recovery and necessitate extensive preprocessing. In this work,
we propose Quantum Run-Length Encoding (QRLE), a novel lossless
quantum data compression method that integrates Basic Encoding with
Run-Length Encoding principles. By encoding repeated data sequences
with their run lengths, QRLE achieves efficient and accurate data
recovery on quantum computers, while exponentially reducing both qubit
costs and runtime complexity compared to existing quantum data storage
models. We further explore QRLE’s application in image processing,
where it significantly optimizes quantum resource utilization over recent
quantum image representation techniques. Experiments conducted on
both quantum simulators and IBM’s superconducting quantum computer
validate the efficiency of QRLE and confirm its compatibility with current
quantum hardware.

I. INTRODUCTION

The rapid advancement of information technology has led to an
explosive growth in data generation, creating a pressing need for more
efficient data compression techniques. While classical compression
algorithms, such as Huffman coding [1], Discrete Cosine Transform
(DCT) [2], and Discrete Wavelet Transform (DWT) [3], have been
widely used, they struggle to keep pace with this expanding data
landscape. These methods require O(N) bits to compress a dataset
of N elements, a limitation stemming from the finite capacity of
the classical bit—the smallest unit in classical computing [4]–[8]. In
contrast, quantum computing, first proposed by Richard Feynman in
1982, offers promising solutions to problems that are intractable for
classical computers. This potential has been demonstrated in various
fields, including the quantum acceleration of classical algorithms [9],
[10], quantum communication [11], quantum image processing [12]–
[14], and quantum machine learning [15]–[17].

Quantum algorithms in signal processing universally require the
encoding of classical data into quantum states prior to processing.
While quantum computing offers the advantage of exponentially
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Fig. 1. Workflow of QRLE model for compressing an N = 2n×2n-element
classical data set with m different groups into a quantum computer.

reducing qubits/bits consumption for data storage [18], optimizing
quantum resource usage remains a crucial concern, especially in
the Noisy Intermediate-Scale Quantum (NISQ) era [19], [20]. De-
spite this, research on quantum data compression remains limited,
with a few initiatives exploring mixed-state encoding [21], Fourier
Transform-like [22], [23] and machine learning-based compression
[24]–[27].

Mixed-state encoding, an adaptable variable-length coding method,
exhibits considerable potential for data compression. However, its
practical implementation on current quantum hardware devices re-
mains challenging due to the requirement of handling multiple pure
states, given that quantum computing hardware for pure state systems
is still in the NISQ era. Methods like Fourier Transform-based
and machine learning-based approaches require complex preprocess-
ing—such as Fourier transformations and quantum neural network
training—leading to significantly increased resource consumption, yet
still fall short of achieving accurate data recovery. To date, lossless
compression methods that simultaneously reduce qubits cost and
runtime complexity on quantum computers remain unexplored.

In this paper, we propose Quantum Run-Length Encoding (QRLE),
a novel quantum data compression method that combines classical
Run-Length Encoding (RLE) with Basic Encoding. QRLE integrates
the entanglement of run lengths and data values with their corre-
sponding positional information, offering a lossless and resource-
efficient quantum compression technique particularly suited for near-
term quantum computers. We further extend our analysis to QRLE-
based image processing, demonstrating a significant reduction in
time complexity compared to existing models [28]–[36]. Finally,
experiments on both simulators and a real superconducting quantumIC
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computer from IBM Quantum platform validate the efficacy of our
QRLE model and its compatibility with current quantum hardware.

In summary, for a N = 2n×2n dataset or image with a substantial
number of consecutive data, the QRLE method offers the following
advantages:

1) Qubits consumption is exponentially reduced. The QRLE
model requires only O(logn) qubits for lossless data storage,
a significant reduction compared to the O(n) qubits needed by
existing quantum data storage models.

2) The preparation process is exponentially simplified. The
runtime complexity and quantum circuit depth for QRLE
preparation are both O(logn · n), a significant improvement
over the O(n · 22n) required by existing models.

3) Image processing operations are more flexible. QRLE-based
image processing operations reduce runtime complexity, with
some operations transitioning from O(n2) to constant time.

II. BACKGROUND AND RELATED WORK

A. Classical Data Encoding

Depending on the required quality of reconstructed data, data
compression techniques can be divided into lossless and lossy com-
pression. Lossy data compression methods often transform data into
the frequency domain such as DCT [2] and DWT [3] or are based
on neural networks [5]. Notable lossless data compression methods
include Huffman Encoding [1], Delta Encoding [37] and Run-Length
Encoding [6]–[8], [38].

Run-Length Encoding (RLE) is a compression technique that
represents consecutive occurrences of identical elements in a data
sequence with a single value and a count of repetitions. It efficiently
reduces data size by encoding run length of the same element, making
it a widely used method for lossless compression in data and image
processing. However, all the classical lossless compression methods
require O(N) bits/time complexity to store a dataset of N elements.

B. Quantum Data Encoding and Compression

Quantum data encoding. Quantum data encoding is generally
classified into two types [39]. The first type, Basis Encoding, encodes
data into the basis states of a quantum system. The second type, Am-
plitude Encoding, encodes data into the amplitude of quantum states.
Basis Encoding allows for precise data reconstruction by leveraging
the orthogonal separability theorem [18], while Amplitude Encoding
is more qubit-efficient but can only recover data probabilistically and
requires multiple quantum measurements.

Quantum data compression. Beyond encoding, research has
extended to quantum data compression. Some studies focus on mixed-
state encoding, analogous to variable-length encodings in classical
computers [21]. However, mixed-state encoding remains challenging
with current NISQ-era hardware, which predominantly supports pure
states. Other approaches, including quantum Fourier, cosine, and
wavelet transforms, or quantum neural networks for data compression
[22]–[27], primarily based on Amplitude Encoding, which compli-
cates precise data recovery and requires significant preprocessing and
measurements.

Although quantum computers require only O(logn) qubits to store
an N = 2n × 2n-element set, the runtime complexity remains O(n ·
2n)—far exceeding the classical O(2n). A resource-efficient, lossless
quantum data compression method has yet to be explored.

III. QUANTUM RUN-LENGTH ENCODING

By combining the principles of classical Run-Length Encoding
and Basic Encoding, the proposed Quantum Run-Length Encoding

Fig. 2. The quantum circuit construction of QRLE model involves two steps:
superposition through the H gate and entanglement via the UCNOT gate.

Algorithm 1 QRLE compression for an N -element dataset χ with
m distinct value groups

INPUT χ = x0 · k0, . . . , xm−1 · km−1

OUTPUT |QRLE⟩
PROCEDURE

Find γ: bits required for max {xi, ki}, i = 0, . . . ,m− 1 ;
Initialization: |0⟩log(m·γ)+2 ;
Superposition: −→

∑γ−1
h=0

∑m−1
i=0 |0⟩ ⊗ |h⟩ |index⟩ |i⟩ ;

Entanglement: −→
∑m−1

i=0 |ci⟩ (|xi⟩ |0⟩+ |ki⟩ |1⟩) |i⟩;
MEASUREMENT

Obtain |QRLE⟩
RETURN |QRLE⟩

(QRLE) model comprises two entangled qubit sequences: one for the
data value and its corresponding run length, |l⟩, and the other for the
order information of elements, |i⟩, as illustrated in Figure 1.

For an N = 2n × 2n-element dataset x, with m distinct value
groups, the sequence |i⟩ of logm qubits represents the order infor-
mation for each group, where i = 0, 1, . . . ,m − 1. Let xi and ki
denote the data value and run length of the i-th group, respectively.
The number of bits required to represent max {x, k} in binary form
is denoted by γ, and logγ qubits are required to index the bit order
of γ. An additional qubit, |index⟩, is used to indicate whether the
logγ qubits store the data value xi or the run length ki for the i-th
group. Another qubit, |c⟩, encodes the binary value of xi and ki.
Therefore, the total number of qubits required is logm + logγ + 2,
and the QRLE state |QRLE⟩ can be expressed as:

|QRLE⟩ = 1√
2γm

γ−1∑
h=0

m−1∑
i=0

|chi⟩ |h⟩ |index⟩ |i⟩ ; (1)

=
1√
2γm

m−1∑
i=0

|ci⟩ (|xi⟩ |0⟩+ |ki⟩ |1⟩) |i⟩ , (2)

where |h⟩ represents the superposition state of |x⟩ and |k⟩.
QRLE can be extended to compress color images across the three

RGB channels by adding two extra qubits, |index0,1⟩, as follows:

|ψ⟩ = 1

2
√
γm

γ−1∑
h=0

m−1∑
i=0

|chi⟩ |h⟩ |index0,1⟩ |i⟩ ; (3)

=
1

2
√
γm

m−1∑
i=0

|ci⟩ (|ri⟩ |00⟩+ |gi⟩ |01⟩+ |bi⟩ |10⟩

+ |kli⟩ |11⟩) |i⟩ , (4)

where |index0,1⟩ = |00⟩, |01⟩, |10⟩, and |11⟩ correspond to the R,
G, B channels and run length, respectively. Algorithm 1 outlines
the process of compressing an N -element dataset χ with m groups
using the QRLE model, while Figure 2 illustrates the quantum circuit
construction. The preparation procedure of QRLE requires only H
gates and UCNOT gates, ensuring that the data information for each
qubit is either |0⟩ or |1⟩, which can be accurately recovered [18].



TABLE I
RESOURCE CONSUMPTION COMPARISONS BETWEEN QRLE AND
EXISTING QUANTUM DATA STORAGE MODELS FOR STORING AN

N = 2n × 2n DATA SET.

IV. EXPERIMENT AND ANALYSIS
Comparison QRLE Existing models
Qubits resource O(logn) O(n)
Runtime complexity O(logn · n) O(n · 22n)
Quantum circuit depth O(logn · n) O(n · 22n)
Controlled qubits O(logn) O(n)
Number of entangled states O(n) O(2n)
Image restoration Lossless Lossless/Loss

(a) (b)

(c) (d)

Fig. 3. (a) Quantum circuit construction of QRLE for preparing a set
χ: 000,333. (b) Quantum circuit construction of BRQI for preparing set
χ. (c) Simulation result of (a) using the qasm simulator after 20,000
shots. (d) Experimental result of Figure 3(a) obtained from the 127-qubit
superconducting quantum computer ibm sherbrooke after 20,000 shots.

Baseline setting. Since QRLE exponentially optimizes resource
consumption for compressing large consecutive data, we use all
existing quantum data storage models as our baseline [28]–[36].

A. Performance analysis

Theoretical analysis. Appendix VI provides detailed analyses of
qubits cost and runtime complexity for compressing an N = 2n×2n

set with substantial repeated data. We also focus on the other
performance of QRLE such as the the number of controlled qubits
and entangled states. Table I summarizes the detailed resource con-
sumption comparison of QRLE and all the existing models [28]–[36].
The results clearly demonstrate that our QRLE model is exponentially
optimized and more suitable for NISQ devices.

Case study. Beyond the theoretical analysis presented in Table
I, we provide a straightforward example to further evaluate the
performance of our QRLE model. Specifically, we demonstrate the
compression of a simple dataset, χ = 000333, using both the qasm
simulator and the 127-qubit superconducting quantum computer,
ibm sherbrooke, on the IBM Quantum platform.

For the set x = 000333 = 0&3, 3&3 = 00&11, 11&11, we
have m = 2 and γ = 2. The total number of qubits required is
logm + log γ + 2 = 4. As shown in Figure 3(a), after applying
three Hadamard gates (H), we only need to perform controlled
NOT (UCNOT ) gates at the positions in χ where the binary values
of the data and run length are 1. In the first group, 00&11, two
UCNOT gates are required with control bits 010 and 110. Here,
the first bit represents the binary value of the run length (11), the
second bit differentiates the run length, and the last qubit indicates

TABLE II
COMPARISON OF TIME COMPLEXITY BETWEEN QRLE AND EXISTING

QUANTUM IMAGE PRESENTATION MODELS FOR DIFFERENT IMAGE
PROCESSING OPERATIONS FOR AN N = 2n × 2n COLOR IMAGE.

Image operations QRLE Existing models
Channel swapping ≤ O(3) ≥ O(3)
One channel changing O(logn) O(n)
Geometric Transformation constant (O(logm)) O(n2)
Fourier Transformation constant (O(logm)) O(n2)

TABLE III
COMPARISON OF COMPRESSION PERFORMANCE BETWEEN QRLE AND

RECENT LOSSLESS QUANTUM IMAGE PRESENTATION MODELS FOR A
16× 16 GRAYSCALE IMAGE WITH DIFFERENT VALUES OF m AND k AS

SHOWN IN FIGURE 4.

Models Year Qubits Time complexity
OCQR [33] 2018 16 ≈ 16, 400
QRCI [40] 2019 12 ≈ 22, 539
MQIR [36] 2021 13 ≈ 22, 539
QRLE-(a) / 6 ≈165
QRLE-(b) / 7 ≈390
QRLE-(c) / 6 ≈ 165
QRLE-(d) / 13 ≈ 27, 904

Fig. 4. Four 16× 16 Grayscale images with different values of m and k.

the first group. Similarly, in the second group, two UCNOT gates
with control qubits 001 and 101 are required for the data value (11),
while 011 and 111 are used for the run length (11). Theoretical χ
compressed by QRLE on quantum computer is represented as: |χ⟩ =
|0000⟩+|0100⟩+|1010⟩+|1110⟩+|1001⟩+|1101⟩+|1011⟩+|1111⟩ .

Figure 3(b) compares the most resource-efficient model, MQIR
[36], for storing χ, which is clearly much more complex than our
QRLE model. Figure 3(c) presents the simulation results of the quan-
tum circuit depicted in Figure 3(a) after 20,000 shots using the qasm
simulator. To validate these findings, we replicated the experiment
on the IBM Quantum platform’s 127-qubit superconducting quantum
computer ibm sherbrooke, which has an Error Per Logical Gate
(EPLG) of 1.9%, a median T1 relaxation time of 275.91 µs, and a
median T2 dephasing time of 189.21 µs as depicted in Figure 3(d).
Disregarding the noise in the measurement outcomes for counts below
500, the results from both qasm and ibm sherbrooke are consistent
with the expected theoretical state |χ⟩.

B. Subsequent image operations

Theoretical analysis. Subsequent basic color image processing op-
erations on QRLE image are available with lower runtime complexity,
which are challenging to achieve on classical computers when an
image is compressed. Leveraging the unique attributes of Run-length
Encoding, QRLE image processing can operate in groups, enhancing
flexibility and efficiency compared to exiting models. Due to space
limitations, we omit the detailed derivations of all the available image
operations on QRLE image while instead presenting a conclusion of



(a) (b)

Fig. 5. (a) Horizontal flipping operation on a 25 × 25 color image with
two groups and its quantum circuit construction with only one X gate. (b)
Simulation result of (a) by the qasm simulator within 2,0000 shots.

basic image operations as shown in Table II.
Case study. As depicted in Figure 5(a), we use a 25 × 25 color

image with detailed color values and m = 2 groups to showcase an
example of Geometric Transformation on a QRLE image: horizontal
flipping. The original image |ψ⟩ is expressed as:

|1⟩ (|0001⟩ |00⟩+ |0100⟩ |01⟩+ |0101⟩ |10⟩+ |1001⟩ |11⟩) |0⟩+
|1⟩ (|0011⟩ |00⟩+ |0110⟩ |01⟩+ |0111⟩ |10⟩+ |1001⟩ |11⟩) |1⟩ ,

and the flipped image |ψ1⟩ is:

|1⟩ (|0001⟩ |00⟩+ |0100⟩ |01⟩+ |0101⟩ |10⟩+ |1001⟩ |11⟩) |1⟩+
|1⟩ (|0011⟩ |00⟩+ |0110⟩ |01⟩+ |0111⟩ |10⟩+ |1001⟩ |11⟩) |0⟩ .

As shown in Table II, the runtime complexity of Geometric Trans-
formations is constant. For m = 2, the horizontal flip operation
requires only one quantum NOT gate (X). Figure 5(b) presents the
results from the qasm simulator after 20,000 shots on the IBM
Quantum platform, aligning with the theoretical flipped image state
|ψ1⟩, confirming the correctness and high efficiency of the QRLE
model in image processing operations.

We further evaluate the compression performance of QRLE on
grayscale images with various m and k values, as shown in Figure
4. The results are presented in Table III, comparing QRLE with
recent lossless quantum data storage models: OCQR [33], QRCI [40]
and MQIR [36]. Similar to classical Run-Length Encoding, QRLE
demonstrates superior compression performance when handling large
volumes of sequentially identical data, as shown in cases (a), (b),
and (c) in Table III. In scenarios with no consecutive identical
values, QRLE’s performance is comparable to existing models, as
demonstrated in case (d) in Table III and analyzed in Appendix VI-B.

V. CONCLUSION

In conclusion, our paper presents the pioneering design and
implementation of Run-length Encoding on quantum computers
(QRLE). Similar to classical Run-length Encoding, QRLE excels
in compressing consecutive identical data. Compared to existing
models, QRLE exponentially reduces qubit consumption and runtime
complexity, making it well-suited for NISQ devices. Moreover, QRLE
demonstrates its potential in quantum image processing, enabling
image operations with lower runtime complexity. Experiments on
both simulators and a real superconducting quantum computer from
the IBM Quantum platform validate the correctness and efficacy of
our QRLE model. Future work will explore QRLE’s applications
in quantum machine learning, particularly focusing on optimizing
resource efficiency in quantum neural network training.

VI. APPENDIX

A. Qubits cost of QRLE

Section III demonstrates that the total qubits required for QRLE
to compress an N = 2n × 2n data set with m different groups are

logm+ log γ + 2, where log γ is the number of qubits required for
representing data value and run length. Like the classical Run-length
Encoding, QRLE achieves efficient compression performance when
processing large amounts of sequential data on quantum computers.
In this optimal case, run length k ≫ data value x and m is regarded
as constant. Therefore, the required qubits for QRLE are primarily
depended on γ. While γ represents the bits required for max {x, k}
in binary form and k ≤ 2n × 2n, then γ ≤ 2n and log γ ≤ log 2n,
which results in O(logn) qubits consumption for QRLE models.

B. Runtime complexity and quantum depth of QRLE

For compressing a N = 2n × 2n-element dataset with substantial
consecutive repeating data, the primary workflow for preparing a
QRLE state is divided into two steps as shown in Figure 2.

At the beginning, the initial state of the quantum system is
initialized as |ψ0⟩ = |0⟩⊗ logm+log γ+2, where γ is the number of
bits required for max {x, k}, x the different data value, k the run
length and m the different groups.

step1: Superposition. We use two important single quantum gates
I and H to complete the construction of this quantum operation as
U1 = I ⊗ H⊗ logm+log γ+1 . Equation (5) illustrates the quantum
transformation from the initial state |ψ0⟩ to the middle state |ψ1⟩
through the quantum operator U1.

|ψ1⟩ = U1 |ψ0⟩ =
1√
2γm

γ−1∑
h=0

m−1∑
i=0

|0⟩ ⊗ |h⟩ |i⟩ (5)

step2: Entanglement. m sub-operation Ai encodes the data value
xi and run length ki for the i − th group. Each Ai is a logm +
log γ +1-UCNOT gate so the quantum operator of step2, U2 can be
expressed as U2 =

∏m−1
i=0 Ai. Then the function of U2 of step2 is

described as follows:

U2 |ψ1⟩ =
1√
2γm

γ−1∑
h=0

m−1∑
i=0

|chi⟩ |h⟩ |index⟩ |i⟩ = |QRLE⟩ (6)

Following the aforementioned two steps, a data set is encoded and
stored in a QRLE state on a quantum computer.

Theorem 1: The overall runtime complexity and quantum circuit
depth required for preparing a N = 2n × 2n set with a substantial
number of consecutive repeating data is O(logn · n).

Proof : Firstly, U1 in step 1 consists of logm + log γ + 1 single
qubit gates which cost O(logm+log γ+1) and O(1) circuit depth.

Secondly, U2 in step 2 has to set the data value and run length
for all groups and consists of m sub-operations. Each sub-operation
contains information storage of x and k, and the maximum number of
bits of their binary information is γ. Then Ai includes 2 · γ UCNOT

gates, where each UCNOT gate with logm + log γ + 1 controlled-
bit string can be divided into O(logm+ log γ + 1) single quantum
gates [34]–[36] and costs runtime complexity and quantum depth
of O(logm + log γ + 1). For all groups, the time complexity and
quantum circuit depth of step2 is no more than O(2 · γ · (log(γ ·
m) + 1) ·m). Therefore, for γ ≤ 2n and log γ ≤ log 2n, the whole
runtime complexity of compressing a N = 2n × 2n set with m
different groups into a QRLE state is no more than O(2 · γ · (log(γ ·
m)+1)·m+log(γ ·m)+1) ≈ O(logn·n). Additionally, the quantum
depth is also O (2 · γ · (log(γ ·m) + 1) ·m+ 1) ≈ O(logn · n).

Notably, when the dataset lacks a significant amount of continuous
data, the parameter γ becomes very small and can be approximately
treated as a constant. In such cases, when m ≈ 2n×2n, the required
number of qubits increases to O(n), and the runtime complexity
grows to O(n · 2n), which aligns with the performance of existing
quantum models [31]–[36].
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