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Abstract: The restricted Boltzmann machine (RBM) is a two-layer energy-based model that uses its

hidden–visible connections to learn the underlying distribution of visible units, whose interactions

are often complicated by high-order correlations. Previous studies on the Ising model of small

system sizes have shown that RBMs are able to accurately learn the Boltzmann distribution and

reconstruct thermal quantities at temperatures away from the critical point Tc. How the RBM encodes

the Boltzmann distribution and captures the phase transition are, however, not well explained. In

this work, we perform RBM learning of the 2d and 3d Ising model and carefully examine how

the RBM extracts useful probabilistic and physical information from Ising configurations. We find

several indicators derived from the weight matrix that could characterize the Ising phase transition.

We verify that the hidden encoding of a visible state tends to have an equal number of positive

and negative units, whose sequence is randomly assigned during training and can be inferred by

analyzing the weight matrix. We also explore the physical meaning of the visible energy and loss

function (pseudo-likelihood) of the RBM and show that they could be harnessed to predict the critical

point or estimate physical quantities such as entropy.

Keywords: restricted Boltzmann machine; Ising model; machine learning; statistical physics; phase

transition; entropy estimation

1. Introduction

The tremendous success of deep learning in multiple areas over the last decade has
really revived the interplay between physics and machine learning, in particular neural
networks [1]. On the one hand, (statistical) physics ideas [2], such as the renormalization
group (RG) [3], the energy landscape [4], free energy [5], glassy dynamics [6], jamming [7],
Langevin dynamics [8], and field theory [9], shed some light on the interpretation of deep
learning and statistical inference in general [10]. On the other hand, machine learning and
deep learning tools are harnessed to solved a wide range of physics problems, such as
interaction potential construction [11], phase transition detection [12,13], structure encod-
ing [14], physical concepts’ discovery [15], and many others [16,17]. At the very intersection
of these two fields lies the restricted Boltzmann machine (RBM) [18], which serves as a
classical paradigm to investigate how an overarching perspective could benefit both sides.

The RBM uses hidden–visible connections to encode (high-order) correlations between
visible units [19]. Its precursor—the (unrestricted) Boltzmann machine—was inspired by
spin glasses [20,21] and is often used in the inverse Ising problem to infer physical param-
eters [22–24]. The restriction of hidden–hidden and visible–visible connections in RBMs
allows for more efficient training algorithms and, therefore, leads to recent applications in
Monte Carlo simulation acceleration [25], quantum wavefunction representation [26,27],
and polymer configuration generation [28]. Deep neural networks formed by stacks of
RBMs have been mapped onto the variational RG due to their conceptual similarity [29].
RBMs are also shown to be equivalent to tensor network states from quantum many-body
physics [30] and interpretable in light of statistical thermodynamics [31–33]. As simple as it
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seems, energy-based models like the RBM could eventually become the building blocks of
autonomous machine intelligence [34].

Besides the above-mentioned efforts, the RBM has also been applied extensively in the
study of the minimal model for second-order phase transition—the Ising model. For the
small systems under investigation, it was found that RBMs with an enough hidden units
can encode the Boltzmann distribution, reconstruct thermal quantities, and generate new
Ising configurations fairly well [35–37]. The visible → hidden → visible · · · generating
sequence of the RBM can be mapped onto an RG flow in physical temperature (often
towards the critical point) [38–42]. However, the mechanism and power of the RBM to
capture physics concepts and principles have not been fully explored. First, in what way
is the Boltzmann distribution of the Ising model learned by the RBM? Second, can the
RBM learn and even quantitatively predict the phase transition without extra human
knowledge? An affirmative answer to the second question is particularly appealing,
because simple unsupervised learning methods such as principal component analysis
(PCA) using configuration information alone do not provide quantitative prediction for
the transition temperature [43–45] and supervised learning with neural networks requires
human labeling of the phase type or temperature of a given configuration [46,47].

In this article, we report a detailed numerical study on RBM learning of the Ising model
with a system size much larger than those used previously. The purpose is to thoroughly
dissect the various parts of the RBM and reveal how each part contributes to the learning of
the Boltzmann distribution of the input Ising configurations. Such understanding allows us
to extract several useful machine learning estimators or predictors for physical quantities,
such as entropy and phase transition temperature. Conversely, the analysis of a physical
model helps us to obtain important insights about the meaning of RBM parameters and
functions, such as the weight matrix, visible energy, and pseudo-likelihood. Below, we first
introduce our Ising datasets and the RBM and its training protocols in Section 2. We then
report and discuss the results of the model parameters, hidden layers, visible energy, and
pseudo-likelihood in Section 3. After the conclusion, more details about the Ising model
and the RBM are provided in the Appendices A–C. Sample codes of the RBM are shared on
GitHub at https://github.com/Jing-DS/isingrbm (accessed on 18 November 2022).

2. Models and Methods

2.1. Dataset of Ising Configurations Generated by Monte Carlo Simulations

The Hamiltonian of the Ising model with N = Ld spins in a configuration
s = [s1, s2, · · · , sN ]

T on a d-dimensional hypercubic lattice of linear dimension L in the
absence of a magnetic field is

H(s) = −J ∑
〈i,j〉

sisj (1)

where the spin variable si = ±1 (i = 1, 2, · · · , N), the coupling parameter J > 0 (set to
unity) favors ferromagnetic configurations (parallel spins), and the notation 〈i, j〉 means
to sum over nearest neighbors [48]. At a given temperature T, the configuration s drawn
from the sample space of 2N states follows the Boltzmann distribution

pT(s) =
e
−H(s)

kBT

ZT
(2)

where ZT = ∑
s

e
−H(s)

kBT is the partition function. The Boltzmann constant kB is set to unity.

Using single-flip Monte Carlo simulations under periodic boundary conditions [49],
we generate Ising configurations for two-dimensional (2d) systems (d = 2) of L = 64
(N = 4096) at nT = 16 temperatures T = 0.25, 0.5, 0.75, 1.0, · · · , 4.0 (in units of J/kB) and
for three-dimensional (3d) systems (d = 3) of L = 16 (N = 4096) at nT = 20 temperatures
T = 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.3, 4.4, 4.5, 4.6, 4.7, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25.

https://github.com/Jing-DS/isingrbm


Entropy 2022, 24, 1701 3 of 20

After being fully equilibrated, M = 50,000 configurations at each T are collected into a
dataset DT for that T. For 2d systems, we also use a dataset D∪T consisting of 50,000
configurations per temperature from all Ts.

Analytical results of the thermal quantities of the 2d Ising model, such as internal
energy 〈E〉, (physical) entropy S, heat capacity CV , and magnetization 〈m〉, are well
known [50–53]. Numerical simulation methods and results of the 3d Ising model have also
been reported [54]. The thermodynamic definitions and relations used in this work are
summarized in Appendix A.

2.2. Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) is a two-layer energy-based model with nh

hidden units (or neurons) hi = ±1 (i = 1, 2, · · · , nh) in the hidden layer, whose state vector
is h = [h1, h2, · · · , hnh

]T , and nv visible units vj = ±1 (j = 1, 2, · · · , nv) in the visible layer,

whose state vector is v = [v1, v2, · · · , vnv ]
T (Figure 1) [55]. In this work, the visible layer

is just the Ising configuration vector, i.e., v = s, with nv = N. We chose the binary unit
{−1,+1} (instead of {0, 1}) to better align with the definition of Ising spin variable si.

Figure 1. A restricted Boltzmann machine (RBM) with nh = 6 hidden units and nv = 9 visible units.

Model parameters θ = {W, b, c} are represented by connections. A filter wT
1 from visible units to the

first hidden unit is highlighted by red (light color) connections.

The total energy Eθ(v, h) of the RBM is defined as

Eθ(v, h) = −bTv − cTh − hTWv

= −
nv

∑
j=1

bjvj −
nh

∑
i=1

cihi −
nh

∑
i=1

nv

∑
j=1

Wijhivj
(3)

where b = [b1, b2, · · · , bnv ]
T is the visible bias, c = [c1, c2, · · · , cnh

]T is the hidden bias, and

Wnh×nv =




−wT
1 −

−wT
2 −

...

−wT
nh
−


 =




| | |
w:,1 w:,2 · · · w:,nv

| | |


 (4)

is the interaction weight matrix between visible and hidden units. Under this notation,
each row vector wT

i (of dimension nv) is a filter mapping from the visible state v to a hidden
unit i, and each column vector w:,j (of dimension nh) is an inverse filter mapping from the
hidden state h to a visible unit j. All parameters are collectively written as θ = {W, b, c}.
“Restricted” refers to the lack of interaction between hidden units or between visible units.
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The joint distribution for an overall state (v, h) is

pθ(v, h) =
e−Eθ(v,h)

Zθ

(5)

where the partition function of the RBM:

Zθ = ∑
v

∑
h

e−Eθ(v,h). (6)

The learned model distribution for visible state v is from the marginalization of pθ(v, h):

pθ(v) = ∑
h

pθ(v, h) =
1

Zθ

e−Eθ(v), (7)

where the visible energy (an effective energy for visible state v (often termed as “free energy”
in the machine learning literature)):

Eθ(v) = −bTv −
nh

∑
i=1

ln
(

e−wT
i v−ci + ewT

i v+ci

)
(8)

is defined according to e−Eθ(v) = ∑
h

e−Eθ(v,h) such that Zθ = ∑
v

e−Eθ(v). See Appendix B for

a detailed derivation.
The conditional distributions to generate h from v, pθ(h|v), and to generate v from h,

pθ(v|h), satisfying pθ(v, h) = pθ(h|v)pθ(v) = pθ(v|h)pθ(h), can be written as products:

pθ(h|v) =
nh

∏
i=1

pθ(hi|v)

pθ(v|h) =
nv

∏
j=1

pθ(vj|h)
(9)

because hi are independent of each other (at fixed v) and vj are independent of each other
(at fixed h). It can be shown that

pθ(hi = 1|v) = σ
(

2(ci + wT
i v)
)

pθ(hi = −1|v) = 1 − σ
(

2(ci + wT
i v)
)

pθ(vj = 1|h) = σ
(

2(bj + hTw:,j)
)

pθ(vj = −1|h) = 1 − σ
(

2(bj + hTw:,j)
)

(10)

where the sigmoid function σ(z) = 1
1+e−z (Appendix B).

2.3. Loss Function and Training of RBMs

Given the dataset D = [v1, v2, · · · , vM]T of M samples generated independently from

the identical data distribution pD(v) (v
i.i.d.∼ pD(v)), the goal of RBM learning is to find a

model distribution pθ(v) that approximates pD(v). In the context of this work, the data
samples vs are Ising configurations, and the data distribution pD(v) is or is related to the
Ising–Boltzmann distribution pT(s).

Based on maximum likelihood estimation, the optimal parameters θ
∗ = arg min

θ

L(θ)
can be found by minimizing the negative log likelihood:

L(θ) = 〈− ln pθ(v)〉v∼pD
= 〈Eθ(v)〉v∼pD

+ ln Zθ (11)
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which serves as the loss function of RBM learning. Note that the partition function Zθ only
depends on the model, not on the data. Since the calculation of Zθ involves summation over
all possible (v, h) states, which is not feasible, L(θ) cannot be evaluated exactly, except for
very small systems [56]. Special treatments have to be devised, for example by mean-field
theory [57] or by importance sampling methods [58]. An interesting feature of the RBM is
that, although the actual loss function L(θ) is not accessible, its gradient:

∇θL(θ) = 〈∇θEθ(v)〉v∼pD
− 〈∇θEθ(v)〉v∼pθ

(12)

can be sampled, which enables a gradient descent learning algorithm. From step t to step
t + 1, the model parameters are updated with learning rate η as

θt+1 = θt − η∇θL(θt). (13)

To evaluate the loss function, we used its approximate, the pseudo-(negative log)
likelihood [59]:

L̃(θ) =
〈
−

nv

∑
i=1

ln pθ(vi|vj 6=i)

〉

v∼pD

≈ L(θ) (14)

where the notation:

pθ(vi|vj 6=i) = pθ(vi|vj for j 6= i) =
e−Eθ(v)

e−Eθ(v) + e−Eθ([v1,··· ,−vi ,··· ,vnv ])
(15)

is the conditional probability for component vi given that all the other components vj

(j 6= i) are fixed [37]. Practically, to avoid the time-consuming sum over all visible units
nv

∑
i=1

,

it is suggested to randomly sample one i0 ∈ {1, 2, · · · , nv} and estimate that:

L̃(θ) ≈
〈
−nv ln pθ(vi0 |vj 6=i0)

〉
v∼pD

, (16)

if all the visible units are on average translation-invariant [60]. To monitor the reconstruction
error, we also calculated the cross-entropy CE between the initial configuration v and the

conditional probability pθ(v
′|h) for reconstruction v

pθ(h|v)−→ h
pθ(v

′ |h)−→ v′ (see Appendix C
for the definition).

For both 2d and 3d Ising systems, we first trained single-temperature RBMs (T-RBM).
M = 50,000 Ising configurations at each T forming a dataset DT are used to train one model
such that there are nT T-RBMs in total. While nv = N, we tried various numbers of hidden
units with nh = 400, 900, 1600, 2500 in 2d and nh = 400, 900, 1600 in 3d. For 2d systems,
we also trained an all-temperature RBM (∪T-RBM) for which 50,000 Ising configurations
per temperature are drawn to compose a dataset D∪T of M = 50,000 nT = 8 × 105 samples.
The number of hidden units for this ∪T-RBM is nh = 400, 900, 1600. Weight matrix W is
initialized with Glorot normal initialization [61] (b and c are initialized as zero). Parameters
are optimized with the stochastic gradient descent algorithm of learning rate η = 1.0× 10−4

and batch size 128. The negative phase (model term) of the gradient 〈∇θEθ(v)〉v∼pθ
is

calculated using CD-k Gibbs sampling with k = 5. We stopped the training until L̃ and CE
converged, typically at 100–2000 epochs (see the Supplementary Materials). Three Nvidia
GPU cards (GeForce RTX 3090 and 2070) were used to train the model, which took about
two minutes per epoch for a M = 50,000 dataset.

3. Results and Discussion

In this section, we investigate how the RBM uses its weight matrix W and hidden
layer h to encode the Boltzmann distributed states of the Ising model and what physical
information can be extracted from machine learning concepts such as the visible energy
and loss function.
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3.1. Filters and Inverse Filters

It can be verified that the trained weight matrix elements Wij of a T-RBM follow a
Gaussian distribution of zero mean with the largest variance at T ∼ Tc (Figure 2a) [62].
The low temperature distribution here is different from the uniform distribution observed
in [35], which results from the uniform initialization scheme used there. This suggests
that the training of RBMs could converge to different minima when initialized differently.
According to Equation (10), the biases ci and bj can be associated with the activation
threshold of a hidden unit and a visible unit, respectively. For example, whether a hidden
unit is activated (hi = +1) or anti-activated (hi = −1) depends on whether the incoming
signal wT

i v from all visible units exceeds the threshold −ci. The values of ci (and bj) are all

close to zero and are often negligible in comparison with the total incoming signal wT
i v

(and hTw:,j) (see the Supplementary Materials for the results of constrained RBMs where
all biases are set to zero). The distribution of ci and bj should in principle be symmetric
about zero (Figure 2b,c). A non-zero mean can be caused by an unbalanced dataset with
an unequal number of m > 0 and m < 0 Ising configurations. The corresponding filter or
inverse filter sum may also be distributed with a non-zero mean in order to compensate
the asymmetric bias, as will be shown next.

Figure 2. Probability density function (PDF) of the distribution of (a) Wij, (b) bj, and (c) ci of T-RBMs

with nh = 400 hidden units for the 2d Ising model at temperatures below, close to, and above Tc.

Since v = s is an Ising configuration with ±1 units in our problem, wT
i v will be more

positive (or negative) if the components of wT
i better match (or anti-match) the signs of the

spin variables. In this sense, we can think of wT
i as a filter extracting certain patterns in

Ising configurations. Knowing the representative spin configurations of the Ising model
below, close to, and above the critical temperature Tc, we expect that wT

i (i = 1, 2, · · · , nh)

wrapped into an Ld arrangement exhibits similar features. In Figure 3a, we show sample
filters of T-RBMs with nh = 400 trained for the 2d Ising model at three temperatures
T = 1.0, 2.25, and 3.5 (see the Supplementary Materials for more examples of filters). At
low T, the components of wT

i tend to be mostly positive (or negative), matching the spin
up (or spin down) configurations in the ferromagnetic phase. At high T, filters wT

i possess
strip domains consisting of roughly equal numbers of well-mixed positive and negative
components, like Ising configurations during spinodal decomposition. Close to Tc, the wT

i
patterns vary dramatically from each other, in accord with the large critical fluctuation. In
particular, some even exhibit hierarchical clusters of various sizes. The element sum of

the filter—filter sum sum(wT
i ) =

nv

∑
j=1

Wij—plays a similar role as the magnetization m. The

distribution of all the nh filter sums at each T changes with increasing temperature as the
Ising magnetization changes, from bimodal to unimodal with the largest variance at Tc
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(Figure 3b). This suggests that the peak of the variance

〈∣∣∣∣∣
nv

∑
j=1

Wij

∣∣∣∣∣

2〉
−
〈∣∣∣∣∣

nv

∑
j=1

Wij

∣∣∣∣∣

〉2

as a

function of temperature coincides with the Ising phase transition (inset of Figure 3b). More
detailed results about the 2d and 3d Ising models are in the Supplementary Materials.

Figure 3. T-RBMs with nh = 400 for the 2d Ising model at temperature T = 1.0, 2.25, and 3.5. (a) Five

sample filters wT
i at each temperature. The color bar range is set to be within about two standard

deviations of the distribution. (b) PDF of the distribution of the nh = 400 filter sums (normalized

by nv). Inset: variance

〈∣∣∣∣∣
nv

∑
j=1

Wij

∣∣∣∣∣

2〉
−
〈∣∣∣∣∣

nv

∑
j=1

Wij

∣∣∣∣∣

〉2

of the filter sum as a function of temperature.

(c) PDF of the distribution of the nv = 4096 inverse filter sums (normalized by nh). Inset: correlation

between a pair of inverse filters w:,j and w:,j′ (normalized by auto-correlation) as a function of

spin–spin distance rjj′ .

When a hidden layer h is provided, the RBM reconstructs the visible layer v by
applying the nv inverse filters w:,j (j = 1, 2, · · · , nv) on h. The distribution of the inverse

filter sum sum(w:,j) =
nh

∑
i=1

Wij is Gaussian with a mean close to zero (Figure 3c), where a

large deviation from zero mean is accompanied by a non-zero average bias ∑
j

bj/nv, as

mentioned above (Figure 2b). We find that this is a result of the unbalanced dataset, which
has ∼60% m < 0 Ising configurations. Because the activation probability of a visible unit
vj is determined by w:,j, the correlation between visible units (Ising spins) is reflected in
the correlation between inverse filters. This is equivalent to the analysis of the nv × nv

matrix WTW or its eigenvectors as in [38,42], whose entries are the inner product wT
:,jw:,j′

of inverse filters. We can therefore locate the Ising phase transition by identifying the
temperature with the strongest correlation among the w:,js, e.g., the peak of wT

:,jw:,j′ at a

given distance rjj′ (inset of Figure 3c). See the Supplementary Materials for results in 2d
and 3d.

In contrast, the filters of the ∪T-RBM trained from 2d Ising configurations at all tem-
peratures have background patterns like the high temperature T-RBM (in the paramagnetic
phase). A clear difference is that most ∪T-RBM filters have one large domain of positive or
negative elements (Figure 4a), similar to the receptive field in a deep neural network [29].
This domain randomly covers an area of the visual field of the L × L Ising configuration
(see the Supplementary Materials for all the nh filters). The existence of such domains in
the filter causes the filter sum and the corresponding bias ci to be positive or negative with
a bimodal distribution (Figure 4b,c). The inverse filter sum and its corresponding bias bj

still have a Gaussian distribution, although the unbalanced dataset shifts the mean of bj

away from zero.
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Figure 4. The ∪T-RBM with nh = 400 for the 2d Ising model. (a) Four sample filters wT
i . (b) PDF

of the distribution of Wij, bj, and ci. (c) PDF of the distribution of the nh = 400 filter sums and the

nv = 4096 inverse filter sums.

3.2. Hidden Layer

Whether a hidden unit uses +1 or −1 to encode a pattern of the visible layer v is
randomly assigned during training. In the former case, the filter wT

i matches the pattern
(wT

i v is positive); in the latter case, the filter anti-matches the pattern (wT
i v is negative).

For a visible layer v of magnetization m, the sign of wT
i v and the encoding hi is largely

determined by the sign of sum(wT
i ) (Table 1). Since the distribution of sum(wT

i ) is sym-
metric about zero, the hidden layer of a T-RBM roughly consists of an equal number of

+1 and −1 units—the “magnetization” mh = 1
nh

nh

∑
i=1

hi of the hidden layer is always close

to zero and its average 〈mh〉 ≈ 0. The histogram of mh for all hidden encodings of visible
states is expected to be symmetric about zero (Figure 5). We found that, for the smallest
nh, the histogram of mh at temperatures close to Tc is bimodal due to the relatively large
randomness of small hidden layers. As more hidden units are added, the two peaks merge
into one and the distribution of mh becomes narrower. This suggests that a larger hidden
layer tends to have a smaller deviation from mh = 0.

Table 1. When sum(wT
i ) > 0, a visible layer pattern v with magnetization m > 0 (or m < 0) is more

likely to be encoded by a hidden unit hi = +1 (or hi = −1). When sum(wT
i ) < 0, the encoding

is opposite.

sum(wT
i
) > 0 sum(wT

i
) < 0

m > 0 hi = +1 hi = −1
m < 0 hi = −1 hi = +1

The order of the hi = ±1 sequence in each hidden encoding h is arbitrary, but relatively
fixed once the T-RBM is trained. The permutation of hidden units together with their
corresponding filters (swap the rows of the matrix W) results in an equivalent T-RBM.
Examples of hidden layers of T-RBMs with nh = 400 at different temperatures are shown
in the inset of Figure 5, where the vector h is wrapped into a 20 × 20 arrangement. Note
that there are actually no spatial relationships between different hidden units, and any
apparent pattern in this 2d illustration is an artifact of the wrapping protocol.
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Figure 5. Histogram of mh obtained from the hidden encodings of M = 50,000 2d Ising configurations

at T = 2.25 using T-RBMs with various nh. Inset: examples of the hidden layer of T-RBMs with

nh = 400 wrapped into a 20 × 20 matrix at three temperatures, where +1/−1 units are represented

by black/white pixels.

As a generative model, a T-RBM can be used to produce more Boltzmann-distributed
Ising configurations. Starting from a random hidden state h(0), this is often fulfilled by a
sequence of Markov chain moves h(0) → v(0) → h(1) → v(1) → · · · until the steady state is
achieved [31]. Based on the above-mentioned observations, we can design an algorithm to
initialize h(0) that better captures the hidden encoding of visible states (equilibrium Ising
configurations), thus enabling faster convergence of the Markov chain. After choosing a
low temperature TL and a high temperature TH , we generate the hidden layer as follows:

• At low T ≤ TL < Tc, if sum(wT
i ) > 0, hi = +1; if sum(wT

i ) < 0, hi = −1. This will
be an encoding of an m > 0 ferromagnetic configuration. To encode of an m < 0
ferromagnetic configuration, just flip the sign of hi.

• At high T ≥ TH > Tc, randomly assign hi = +1 or −1 with equal probability. This
will be an encoding of a paramagnetic configuration with m ≈ 0.

• At intermediate TL < T < TH , to encode an m > 0 Ising configuration, if sum(wT
i ) >

0, assign hi = +1 with probability ph ∈ (0.5, 1.0) and hi = −1 with probability 1 − ph;
if sum(wT

i ) < 0, assign hi = −1 with probability ph ∈ (0.5, 1.0) and hi = +1 with
probability 1 − ph. ph is a predetermined parameter, and the above two algorithms
are just the special cases with ph = 1.0 (T ≤ TL) and ph = 0.5 (T ≥ TH), respectively.
In practice, one may approximately use ph = (〈|m|〉+ 1)/2 or use linear interpolation
within TL < T < TH , ph = 0.5 + 0.5(T − TL)/(TH − TL).

Below, we compare the (one-step) reconstructed thermal quantities using two differ-
ent initial hidden encodings with results from a conventional multi-step Markov chain
(Figure 6). The hidden encoding methods proposed here are quite reliable at low and high
T, but less accurate at T close to Tc.
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Figure 6. (a) Internal energy, (b) magnetization, and (c) specific heat of 2d Ising states reconstructed

by T-RBMs (nh = 400) with the hidden layer h(0) initiated according to ph = (〈|m|〉 + 1)/2 or

ph = 1.0(T ≤ 2.0), 0.5(T ≥ 2.5), 0.75(2.0 < T < 2.5) (stepwise). Reconstruction by a seven-step

Markov chain from random h(0) is compared (v(7)). Analytical and Monte Carlo simulation results

are also shown.

3.3. Visible Energy

When a T-RBM for temperature T is trained, we expect that pθ(v) ≈ pD(v) ≈ pT(s)—
the Boltzmann distribution at that T. Although formally related to the physical energy in
the Boltzmann factor (with temperature absorbed), the visible energy Eθ(v) of an RBM
should be really considered as the negative log (relative) probability of a visible state
v. For single-temperature T-RBMs, the mean visible energy 〈Eθ(v)〉 increases monoton-
ically with temperature (except for the largest nh, which might be due to overfitting)
(Figure 7a,b). The value of 〈Eθ(v)〉 and its trend, however, cannot be used to identify the

physical phase transition. In fact, Eθ(v) can differ from the reduced Hamiltonian
H(s)
kBT

by an arbitrary (temperature-dependent) constant while still maintaining the Boltzmann
distribution pθ(v) ≈ pT(s) (if the partition function Zθ is calibrated accordingly).

The trend of 〈Eθ(v)〉 for T-RBMs can be understood by considering following approxi-
mate forms. First, due to the symmetry of +1 and −1, the biases bj and ci are all close to
zero. A constrained T-RBM with zero bias has a visible energy:

EW (v) = −
nh

∑
i=1

ln
(

e−wT
i v + ewT

i v
)

(17)

that approximates the visible energy of the full T-RBM, i.e., Eθ(v) ≈ EW (v). Next, unless
wT

i v is close to zero, one of the two exponential terms in Equation (17) always dominates

such that EW (v) ≈ ẼW (v), where

ẼW (v) = −
nh

∑
i=1

∣∣∣wT
i v
∣∣∣ = −

nh

∑
i=1

∣∣∣∣∣
nv

∑
j=1

Wijvj

∣∣∣∣∣. (18)
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Equation (18) can further be approximated by setting v = 1 with all vj = +1, i.e.,

ẼW (v) ≈ ẼW (1) with

ẼW (1) = −
nh

∑
i=1

∣∣∣sum(wT
i )
∣∣∣ = −

nh

∑
i=1

∣∣∣∣∣
nv

∑
j=1

Wij

∣∣∣∣∣. (19)

In summary, EW (v), ẼW (v), and ẼW (1) are all good approximations to the original Eθ(v)
(Figure 7a). The increase of mean 〈Eθ(v)〉 with temperature coincides with the increase of
−
∣∣sum(wT

i )
∣∣ with temperature, which is evident from Figure 3b. At fixed temperature, the

decrease of 〈Eθ(v)〉 with nh is a consequence of the sum
nh

∑
i=1

in the definition of visible energy.

The variance 〈E2
θ
〉 − 〈Eθ〉2 is a useful quantity for phase transition detection, because it

reflects the fluctuation of the probability pθ(v). In both low T ferromagnetic and high T
paramagnetic regimes, pθ(v) is relatively homogeneous among different states. When T is
close to Tc, the variance of pθ(v) and Eθ(v) is expected to peak (Figure 7d,e). The abnormal
rounded (and even shifted) peaks at large nh could be a sign of overfitting.

Figure 7. Mean and variance of visible energy Eθ as a function of temperature for 2d (a,c,d,f) and 3d

(b,e) Ising models captured by T-RBMs (a,b,d,e) and the ∪T-RBM (c,f) of various hidden neurons nh.

Three approximate forms of visible energy for nh = 400 T-RBMs are shown in (a).

For the all-temperature ∪T-RBM, the Ising phase transition can be revealed by either
the sharp increase of the mean 〈Eθ(v)〉 or the peak of the variance 〈E2

θ
〉 − 〈Eθ〉2 (Figure 7c,f).

However, this apparent detection can be a trivial consequence of the special composition
of the dataset D∪T , which contains Ising configurations at different temperatures in equal
proportion. Only configurations at a specific T are fed into the model to calculate the
average quantity at that T. Technically, a visible state v in D∪T is not subject to the
Boltzmann distribution at any specific temperature. Instead, the true ensemble of D∪T is
a collection of nT different Boltzmann-distributed subsets. Many replicas of the same or
similar ferromagnetic states are in D∪T , giving rise to a large multiplicity, high probability,
and low visible energy for such states. In comparison, high temperature paramagnetic
states are all different from each other and, therefore, have low pθ(v) (high Eθ(v)) for
each one of them. Knowing this caveat, one should be cautious when monitoring the
visible energy of a ∪T-RBM to detect phase transition, because changing the proportion of
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Ising configurations at different temperatures in D∪T can modify the relative probability of
each state.

3.4. Pseudo-Likelihood and Entropy Estimation

The likelihood L(θ) defined in Equation (11) is conceptually equivalent to the phys-
ical entropy S defined by the Gibbs entropy formula, apart from the Boltzmann con-
stant kB difference (Appendix A). However, just as entropy S cannot be directly sam-
pled, the exact value of L(θ) is not accessible. In order to estimate S, we calculated the
pseudo-likelihood L̃(θ) instead, which is based on the mean-field-like approximation
pθ(v) ≈ ∏

nv
i=1 pθ(vi|vj 6=i). Similar ideas to estimate the free energy or entropy were put

forward with the aid of variational autoregressive networks [63] or neural importance
sampling [64]. The true and estimated entropy of the 2d and 3d Ising models using T-
RBMs with different nh are shown in Figure 8a,b. As a comparison, we also considered a
“pseudo-entropy” with a similar approximation:

S̃ = −kB

〈
N

∑
i=1

pT(si|sj 6=i)

〉

s∼pT

≈ S (20)

where the conditional probability:

pT(si|sj 6=i) =
e
−H(s)

kBT

e
−H(s)

kBT + e
−H([s1,··· ,−si ,··· ,sN ])

kBT

(21)

and the ensemble average 〈· · · 〉s∼pT
is taken over states obtained from Monte Carlo sam-

pling. In both 2d and 3d, S̃ is lower than the true S, especially at high T, because a mean-field
treatment tends to underestimate fluctuations.

Figure 8. Pseudo-likelihood L̃ per spin of T-RBMs (a,b) and of the ∪T-RBM (c) with different

numbers nh of hidden units for the 2d (a,c) and 3d (b) Ising models in comparison with entropy S

and pseudo-entropy S̃ per spin. Dashed lines are polynomial fittings around Tc.

While increasing model complexity by adding hidden units is usually believed to
reduce the reconstruction error, e.g., of energy and heat capacity [35,36] (see also the
Supplementary Materials), a recent study suggested that a trade-off could exist between the
accuracy of different statistical quantities [65]. Here, we found that the pseudo-likelihood
of T-RBMs with the fewest hidden units in our trials (nh = 400) appears to provide the best
prediction for entropy. Increasing nh leads to larger deviations from the true S at higher
T. The decreasing of L̃ with nh at fixed temperature agrees with the trend of the visible
energy. A lower Eθ(v) corresponds to a higher pθ(v) and, thus, a lower L̃ according to its
definition. The surprisingly good performance of L̃ in approximating S could be due to the
fact that visible units vi in RBMs are only indirectly correlated through hidden units, which
collectively serve as an effective mean-field on each visible unit. We also calculated L̃(θ)
with the all-temperature ∪T-RBM in 2d (Figure 8c). Compared with single-temperature
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T-RBMs of the same nh (Figure 8a), the ∪T-RBM predicts higher L̃(θ) with considerable
deviations even at low T. The trend of L̃(θ) also agrees with that of 〈Eθ(v)〉 (Figure 7c).

The knowledge of the entropy allows us to estimate the phase transition point ac-
cording to the thermodynamic relation CV = T dS

dT . We constructed this estimated CV as a

function of temperature using L̃(θ) and its numerical fitting, whose peaks are expected
to be located at Tc (Figure 9). The predicted Tcs are compared with the results from en-
tropy and pseudo-entropy, as well as the Monte Carlo simulation results for our finite
systems and the known exact values for infinite systems in Table 2. It can be seen that
single-temperature T-RBMs capture the transition point fairly well within an error of about
1–3%.

Figure 9. T
dL̃
dT

per spin of T-RBMs (a,b) and of the ∪T-RBM (c) with different numbers nh of hidden

units for the 2d (a,c) and 3d (b) Ising models in comparison with T
dS

dT
and T

dS̃

dT
per spin, as well as

specific heat cV calculated from Monte Carlo simulation.

Table 2. Tc estimated according to the peak of T dL̃
dT obtained from single-temperature T-RBMs and

the all-temperature ∪T-RBM with different numbers (nh) of hidden units. Predictions from numerical

derivatives T dS
dT and T dS̃

dT are also shown for comparison. Results extracted from the peak of cV

obtained by Monte Carlo simulations of finite systems are listed under “MC”. “Exact” refers to

analytical or numerical results for infinite systems.

Model nh = 400 900 1600 2500 S S̃ MC Exact

2d T-RBM 2.240 2.291 2.316 2.367 2.267 2.367 2.28 2.269
2d ∪T-RBM 2.189 2.163 2.214 - 2.267 2.367 2.28 2.269
3d T-RBM 4.444 4.434 4.444 - 4.390 4.383 4.44 4.511

4. Conclusions

In this work, we trained RBMs using equilibrium Ising configurations in 2d and 3d
collected from Monte Carlo simulations at various temperatures. For single-temperature
T-RBMs, the filters (row vectors) and the inverse filters (column vectors) of the weight
matrix exhibit different characteristic patterns and correlations, respectively, below, around,
and above the phase transition. These metrics, such as filter sum fluctuation and inverse
filter correlation, can be used to locate the phase transition point. The hidden layer h on
average contains an equal number of +1 and −1 units, whose variance decreases as more
hidden units are added. The sign of a particular hidden unit hi is determined by the signs
of the filter sum sum(wT

i ) and the magnetization m of the visible pattern. However, there
is no spatial pattern in the sequence of positive and negative units in a hidden encoding.

The visible energy reflects the relative probability of visible states in the Boltzmann
distribution. Although the mean of visible energy is not directly related to the (physical)
internal energy and does not reveal a clear transition, its fluctuation, which peaks at the
critical point, can be used to identify the phase transition. The value and trend of the visible
energy can be understood from its several approximation forms, in particular the sum of
the absolute value of filter sums. The pseudo-likelihood of RBMs is conceptually related to
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and can be used to estimate the physical entropy. Numerical differentiation of the pseudo-
likelihood provides another estimator of the transition temperature because it provides
an estimate of the heat capacity. All these predictions about the critical temperature were
made by unsupervised RBM learning, for which human labeling of the phase types is
not needed.

As a comparison, we also trained an all-temperature ∪T-RBM, whose dataset is a
mixture of Boltzmann-distributed states over a range of temperatures. Each filter of this
∪T-RBM is featured by one large domain in its receptive field. Although the visible energy
and pseudo-likelihood of the ∪T-RBM show a certain signature of the phase transition, one
should be cautious, as this detection could be an artifact of the composition of the dataset.
Changing the proportions of Ising configurations at different temperatures could bias the
probability and the transition learned by the ∪T-RBM.

By extracting the underlying (Boltzmann) distribution of the input data, RBMs capture
the rapid (phase) transition of such a distribution as the tuning parameter (temperature) is
changed, without knowledge of the physical Hamiltonian. Information about the distribu-
tion is completely embedded in the configurations and their frequencies in the dataset. It
would be interesting to see if such a general scheme of RBM learning can be extended to
study other physical models of phase transition.
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Appendix A. Statistical Thermodynamics of Ising Model

In this Appendix, we review the statistical thermodynamics of the Ising model covered
in this work. The internal energy at a given temperature:

〈E〉 = ∑
s

pT(s)H(s) =
∑
s
H(s)e

−H(s)
kBT

ZT
(A1)

https://www.mdpi.com/article/10.3390/e24121701/s1
https://www.mdpi.com/article/10.3390/e24121701/s1
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where 〈· · · 〉 means to take the thermal average over equilibrated configurations. The heat
capacity is

CV = kBβ2
(
〈E2〉 − 〈E〉2

)
(A2)

where β = 1
kBT , and the heat capacity per spin (or specific heat) is cV = CV/N. The

magnetization per spin:

〈m〉 = 1

N

〈
N

∑
i=1

si

〉
. (A3)

In small finite systems, because flips from m to −m configurations are common, we
need to take the absolute value |m| before the thermal average:

〈|m|〉 = 1

N

〈∣∣∣∣∣
N

∑
i=1

si

∣∣∣∣∣

〉
. (A4)

The physical entropy can be defined using the Gibbs entropy formula:

S = −kB〈ln pT(s)〉 = −kB ∑
s

pT(s) ln pT(s). (A5)

For the 2d Ising model, the critical temperature solved from sinh
(

2 J
kBTc

)
= 1 is

kBTc =
2J

ln(1+
√

2)
= 2.269185J. Define

K =
J

kBT
, x = e−2K, q(K) =

2 sinh 2K

cosh2 2K

K1(q) =
∫ π/2

0

dφ√
1 − q2 sin2 φ

, E1(q) =
∫ π/2

0
dφ

√
1 − q2 sin2 φ;

analytical results of the 2d Ising model are expressed as: magnetization per spin [52]:

〈m〉 =
[

1 + x2

(1 − x2)2

(
1 − 6x2 + x4

) 1
2

] 1
4

= [1 − sinh−4(2K)]1/8, (A6)

internal energy per spin [50]:

〈E〉
N

= −J coth 2K

[
1 +

2

π

(
2 tanh2 2K − 1

)
K1(q)

]
, (A7)

specific heat [53]:

cV = kB
4

π
(K coth 2K)2

{
K1(q)− E1(q)−

(
1 − tanh2 2K

)[π

2
+
(

2 tanh2 2K − 1
)

K1(q)
]}

, (A8)

and the partition function per spin (or free energy per spin f = F/N) [51]:

−β f = ln(
√

2 cosh 2K) +
1

π

∫ π/2

0
ln

(
1 +

√
1 − q2 sin2 φ

)
dφ. (A9)

The equation for entropy can be obtained from thermodynamic relation F = 〈E〉 − TS.
For the 3d Ising model, 〈m〉, 〈E〉, and cV can be calculated directly from Monte Carlo

sampling [54]. The numerical prediction for the critical temperature is Tc ≈ 4.511 J
kB

[66].
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Special techniques are needed to compute the free energy or entropy. We used the thermo-
dynamic integration in the high temperature regime:

F = −NkBT ln 2 + kBT
∫ 1

kBT

0
〈E〉dβ′ (A10)

or

S(T) =
∫ T

0

CV(T
′)

T′ dT′ (A11)

in the low temperature regime, since S(T → 0) = 0 and CV(T → 0) → 0 for the
Ising model.

Appendix B. Energy and Probability of RBMs

In this Appendix, we review the derivations of the energy and probability of RBMs,
which can be found in the standard machine learning literature [67]. The visible energy
Eθ(v):

Eθ(v) = − ln ∑
h

e−Eθ(v,h) = − ln pθ(v)− ln Zθ = − ln


e

nv
∑
j

bjvj

∑
h

e

nh
∑
i

(
nv
∑
j

Wijvj+ci

)
hi




= −
nv

∑
j

bjvj − ln




+1

∑
h1=−1

+1

∑
h2=−1

· · ·
+1

∑
hnh

=−1

nh

∏
i=1

e

(
nv
∑
j

Wijvj+ci

)
hi


 = −

nv

∑
j

bjvj − ln




nh

∏
i=1

∑
hi=−1,1

e

(
nv
∑
j

Wijvj+ci

)
hi




= −
nv

∑
j

bjvj − ln
nh

∏
i=1


e

−
nv
∑
j

Wijvj−ci

+ e

nv
∑
j

Wijvj+ci


 = −

nv

∑
j

bjvj −
nh

∑
i=1

ln


e

−
nv
∑
j

Wijvj−ci

+ e

nv
∑
j

Wijvj+ci




= −bTv −
nh

∑
i=1

ln
(

e−wT
i v−ci + ewT

i v+ci

)
.

(A12)

The conditional probability:

pθ(h|v) =
pθ(v, h)

pθ(v)
=

e−Eθ(v,h)

e−Eθ(v)
=

ebTv

e−Eθ(v)
ecTh+hTWv =

1

Ωθ(v)
ecTh+hTWv (A13)

where the h-independent constant Ωθ(v) = e−bTv−Eθ(v) = ∑
h

ecTh+hTWv such that

Zθ = ∑
v

Ωθ(v)e
bTv. Therefore,

pθ(h|v) =
1

Ωθ(v)
e

nh
∑

i=1
cihi+

nh
∑

i=1
hiw

T
i v

=
1

Ωθ(v)
e

nh
∑

i=1
hi(ci+wT

i v)
=

1

Ωθ(v)

nh

∏
i=1

ehi(ci+wT
i v) =

nh

∏
i=1

pθ(hi|v) (A14)

from which it can be recognized that pθ(hi|v) ∝ ehi(ci+wT
i v). The single-unit conditional

probability:

pθ(hi = 1|v) = pθ(hi = 1|v)
pθ(hi = −1|v) + pθ(hi = 1|v) =

eci+wT
i v

e−ci−wT
i v + eci+wT

i v

=
1

1 + e−2(ci+wT
i v)

= σ
(

2(ci + wT
i v)
)

.

(A15)

Other relations of pθ(hi = −1|v), pθ(vj = 1|h) and pθ(vj = −1|h) can be found similarly.
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Appendix C. Maximum Likelihood Estimation and Gradient Descent of RBMs

In this Appendix, we review the gradient descent algorithm of RBMs derived from
maximum likelihood estimation [67]. The likelihood function for a given dataset

D = [v1, v2, · · · , vM]T is Pθ(D) =
M

∏
m=1

pθ(vm), and the maximum likelihood is equiva-

lent to the minimum negative log likelihood (or its average):

θ
∗ = arg max

θ

M

∏
m=1

pθ(vm) = arg min
θ

{
−

M

∑
m=1

ln pθ(vm)

}

= arg min
θ

{
− 1

M

M

∑
m=1

ln pθ(vm)

}
= arg min

θ

〈− ln pθ(v)〉v∼pD
= arg min

θ

L(θ)
(A16)

where v ∼ pD means to randomly draw v from pD and 〈· · · 〉 is the expectation value (sub-
ject to the distribution). Alternatively, this can be considered as minimizing the Kullback–
Leibler (KL) divergence:

DKL(pD|pθ) =
M

∑
m=1

pD(vm) ln
pD(vm)

pθ(vm)
= 〈ln pD(v)− ln pθ(v)〉v∼pD

≥ 0

with respect to θ, where only the second term 〈− ln pθ(v)〉v∼pD
depends on parameter θ.

In this work, we used L(θ) as the loss function to train the RBMs.
It is sometimes useful to directly monitor the reconstruction error by comparing the

input (v) and reconstructed configurations (v′) or, more quantitatively, by the (normalized)
cross-entropy:

CE =

〈
− 1

nv

nv

∑
j=1

[
✶vj=+1 ln pθ(v

′
j = +1|h) + ✶vj=−1 ln pθ(v

′
j = −1|h)

]〉

v∼pD

(A17)

where the indicator function ✶A = 1 if A is true or 0 if A is false.
The gradient of the loss function:

∇θL(θ) = ∇θ〈Eθ(v)〉v∼pD
+∇θ ln Zθ = 〈∇θEθ(v)〉v∼pD

+∇θ ln Zθ (A18)

where

∇θ ln Zθ =
∇θZθ

Zθ

=
∇θ ∑

v
e−Eθ(v)

Zθ

=
∑
v
∇θe−Eθ(v)

Zθ

= −
∑
v

e−Eθ(v)∇θEθ(v)

Zθ

= −∑
v

pθ(v)∇θEθ(v) = −〈∇θEθ(v)〉v∼pθ
.

Furthermore,

∇θL(θ) = 〈∇θEθ(v)〉v∼pD
− 〈∇θEθ(v)〉v∼pθ

= positive phase + negative phase

= data term + model term

(A19)

In both the positive and negative phase,

∇θEθ(v) = ∇θ

[
−bTv −

nh

∑
i=1

ln
(

e−wT
i v−ci + ewT

i v+ci

)]
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which has components:

∂Eθ(v)

∂Wij
= −

−vje
−wT

i v−ci + vje
wT

i v+ci

e−wT
i v−ci + ewT

i v+ci

= vj
e−wT

i v−ci − ewT
i v+ci

e−wT
i v−ci + ewT

i v+ci
= −vj tanh

(
wT

i v + ci

)

= −vj[(−1)pθ(hi = −1|v) + (+1)pθ(hi = 1|v)]
= −vj〈hi〉hi∼pθ(hi |v)

∂Eθ(v)

∂ci
= −−e−wT

i v−ci + ewT
i v+ci

e−wT
i v−ci + ewT

i v+ci
= − tanh

(
wT

i v + ci

)

= −[(−1)pθ(hi = −1|v) + (+1)pθ(hi = 1|v)]
= −〈hi〉hi∼pθ(hi |v)

∂Eθ(v)

∂bj
= −vj.

(A20)

To evaluate the expectation value 〈∇θEθ(v)〉, in the positive phase, v can be directly
drawn from the dataset, while in the negative phase, v must be sampled from the model
distribution pθ(v). In practice, as an approximation, the Markov chain Monte Carlo
(MCMC) method is used to generate v states that obey the distribution pθ(v), such that

〈∇θEθ(v)〉v∼pθ
≈ 1

sample size ∑
v∼pθ

∇θEθ(v). (A21)

Using the conditional probability, pθ(h|v) and pθ(v|h), we can generate a sequence of states:

v(0) → h(0) → v(1) → h(1) → · · · → v(t) → h(t) → · · · .

As t → ∞, the MCMC converges with (v(t), h(t)) ∼ pθ(v, h) and v(t) ∼ pθ(v).
The Markov chain starting from a random v(0) takes many steps to equilibrate. There

are two ways to speed up the sampling [68]:

• k Step contrastive divergence (CD-k):

For each parameter update, draw v(0) (or a minibatch) from the training data
D = [v1, v2, · · · , vM]T and run Gibbs sampling for k steps. Even CD-1 can work
reasonably well.

• Persistent contrastive divergence (PCD-k):
Always keep the same MC during the entire training process. For each parameter
update, run this persistent MC for another k steps to collect v states.
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