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1 Introduction
It has been realized by E.Wigner [1], back in 1950, that the canonical commutation
relation, written in terms of creation and annihilation operators as

[a,at] =1 (1.1)
is by no means the only solution of the Heisenberg equations of motion
[H,aF] = +a™, (1.2)

where ) )

H= §(a_a+ +ata™) = §{a_,a+} (1.3)
is the (Bose-) harmonic oscillator Hamiltonian. A more general, ” paraquantization” scheme
was proposed in 1953 by H.S.Green [2]. From the algebraic point of view the main dif-
ference between the canonical quantization approach and the paraquantization scheme
comes from the replacement of the standard bilinear relation (1.1) by a pair of relations,
a threelinear one and its conjugate, which has additional solutions.

This idea has been extended to the case of several degrees of freedom (as well as to
parafermionic systems which will not be discussed here). It has been shown that physical
(lowest weight unitary) representations of the parastatistics algebra are labeled by a pos-
itive integer p called the order. It turned out that the most appropriate way of defining
Bose-parastatistics algebra for n > 1 degrees of freedom was to attract some generalized
symmetry argumentation and it has been found [3] that the resulting parabosonic algebra
is just the (universal enveloping algebra of the) Lie superalgebra osp(1|2n), appearing also
as B(0,n) in the Kac classification list [4] (see [5] both for an introduction or an advanced
guidance in parastatistics). Therefore, it would be natural to expect that a deformation
of Bose-parastatistics algebra should be related to a deformation of B(0,n).

Quantum deformations of universal enveloping algebras of Lie superalgebras have been
defined in [6], [7] (see also [8]). They naturally appear as a graded generalization of the no-
tion of a quantum universal enveloping algebra (QUEA) U, (G) of a Lie algebra G defined by
Jimbo [9], which contains perhaps the most popular examples of nontrivial i.e., both non-
commutative and noncocommutative, quasitriangular Hopf algebras (”quantum groups”,
[10], [11]). Quantum generalizations of the Jordan-Schwinger-Bargmann construction have
been also proposed — first for the simplest case of U, (su(2)) realization ([12], [13], [14]) —
in terms of the so called quantum ”Biedenharn-Macfarlane” oscillators, the QUEA gener-
ators being expressed, like in the undeformed case, as bilinear combinations of these. This
construction has been further generalized for the quantum deformations of a broad class
of Lie algebras and superalgebras [15], [6], [7].

Our interest in this subject evolved from an attempt to interpret quantum groups as
generalized internal symmetries in two dimensional conformal field theory [16], [17]. An
approach to quantum oscillators describing specific ”quantum internal degrees of freedom”
has been developed in [18] and extended further in [19], [20]. The basic assumption about
the oscillators in this setting concerns their covariance properties with respect to the corre-
sponding QUEA (an idea which, for the U, (su(2)) case, has been first realized in [21]); one
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derives then the corresponding relations requiring their compatibility with the transforma-
tion laws of the creation and annihilation operators, and some other natural properties.
We shall refer to the oscillators constructed this way as to ”covariant oscillators”. Their
relation to the Biedenharn-Macfarlane ones is displayed in [18].

The situation is somewhat different in the case of the g-deformation of U (B(0,n)).
In the undeformed case the odd generators to which creation and annihilation operators
correspond in representations enter the Cartan-Weyl-Kac basis of B(0,n) so that their
(anti-)commutation relations turn out to be fixed from the outset. The g-deformed version
being formulated in terms of the deformed analogs of the Chevalley-Kac basis, one has
to define appropriately the g-counterparts for the odd generators, relations among which
would give a sensible deformed version of the Bose-parastatistics algebra. Here the pre-
scriptions of [22] (see also references therein) for the appropriate definition of the quantum
counterpart of the Cartan-Weyl-Kac generators turn out to be helpful.

Previous attempts to define a ¢g—deformed Bose-parastatistics deal with the compar-
atively easy n = 1 case [23], [24]. There are also results for the n = 2 case [25]; the author
has been informed about partial results for the general case as well [26].

The paper is organized as follows. After reviewing the undeformed case we display
in details the construction of the odd generators of U, (B (0, n)) which correspond to the
"classical” (¢ = 1) para-Bose creation and annihilation operators (we shall refer to them
as to "totally odd basis”), together with certain threelinear relations among them (with
coefficients in the Cartan subalgebra). We prove that this construction can serve as an
alternative definition of U, (B(O,n)); in particular, the standard set of relations for the
Chevalley generators is in one-to-one correspondence with the set of relations we derive for
the totally odd basis. We also give an interpretation of the notion of parastatistics order
of a representation which seems to be useful, leading to compact and suggestive formulae
(the latter being perhaps new even for the ¢ = 1 case).

Apart from the aspect of g-parastatistics, constructing representations of U, (B(O7 n))
could have various other applications. Since the sub-Hopf-algebraic structure in the de-
formed case differs from that in the undeformed one, it seems to be useful to have at hand
alternative constructions of quantum group representations which coinside in the ¢ — 1
limit. One should mention among the latter — for n = 2 — a construction of the state
space of the ”g-deformed top” [27] which describes the zero modes of the WZNW model
(see also [28] where a g- deformed chiral version of the classical finite-dimensional model
is considered), the regular representations of Uy(sl(2)) for ¢ a root of unity [29], a natural
g-deformation of the supersingletons [30] and of the important from the physical point of
view massless representations of the four dimensional Poincaré (and conformal) algebras
[31] — see [20], etc.



2 Scope of the Undeformed Case
It would be useful for what follows to introduce the notation

apt" = me,), pe {12, 0} (2.1)

where a;r, resp. a;, 1 < i < n are n pairs of para-Bose creation, resp. annihilation
operators, assuming that e, generate the abstract parabosonic algebra and 7 stands for a
vacuum representation (there is no need to fix it for the moment), the vacuum being just
a lowest weight vector annihilated by all a;. The parabosonic relations for the case of n

oscillators can be now written in the form
Hew ev}sep] = 200,60 +0,,e4) 5 pv,p€{£1,£2,... +n} (2.2)

where
8, = sgn(p)dy (2.3)

is a sort of a finite-dimensional analog of the ¢’ function.
One can easily prove [3] that if one defines

1 1
E; = 5{61‘,6471} , E_;= 5{672‘,6”1} , 1<i<n—1, FEip=-¢é4n, (2.4)

then {E,},=+1,42.. +n form a Chevalley-Kac basis for the Lie superalgebra osp(1|2n) =
B(0,n). Here {eH}M:iLﬂ)m’in and EF4,, are assumed to be odd, and all other E'y; — even
generators. Since we shall need the notion of a root system of a simple Lie (super-)algebra
and, moreover, since it is in fact the same in the deformed as in the undeformed case, we
shall briefly spell out its most important features for our case (see [4] for more details).

The rank of B(0,n) being equal to n, there are n simple roots, {a;};,_; 5 ,, ; the
set of odd simple roots 7 contains only one element, 7 = {a,}. The Cartan matrix
¢ij = 2(ay, @)/ (o, ) is given by

The correspondence between the roots a; and the Chevalley generators Ey; in Eq.(2.4) is
E:ti — :I:ai.

One has now all the data needed to write down the commutation and Serre relations
for the universal enveloping algebra of the Lie superalgebra U (B (0, n)) in terms of {E,}
assuming that the n Cartan generators are defined — up to normalization — by the (anti-
Jcommutators of F; and F_;, 1 <14 < n. However, it is instructive to have the Cartan-Weyl
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basis of B(0,n)as well. There are 2n? even roots (all of them real) and 2n odd ones; in
standard notations [4] the set of all roots A is decomposed as A = Ag U A; , where

Ag ={£206; ; (B + Be) ;£(8; —Be)|[1 <i<n;1<k<j<n}, (2.6a)
A= {21 <i<n}. (2.60)

Adding the n Cartan generators, one obtains
dimB(0,n) =n(2n+3) (=5,14,27,...forn =1,2,3...). (2.7)
Accordingly, the Cartan-Weyl basis is most conveniently expressed in terms of the gener-
ators corresponding to the odd roots, the correspondence being given by +3; < ei;. It

is not surprising at all — taking into account Eq.(2.4) — that the relation between the
simple roots and the odd ones is

ai:ﬁifﬂi—&-lylgign*l; an:/Bn- (28)

We shall call {e,},=+1 42, .+, "the totally odd basis”. In some respects it is even more
convenient than the Chevalley basis. The one-to-one correspondence between both is
becoming transparent if we write down the relations inverse to Eq.(2.4):

€Ly — E:I:n 3 (2.9(1)

€; = [Ei, 67;+1] y €_; = [6_(i+1),E_i] s 1= 1,2, e — 1. (29b)

The recursive relations (2.9b) follow directly from Egs. (2.4), (2.2).

Note that, as a consequence of (2.5) and (2.8), the odd roots corresponding to the
generators {e; };=12, ., form an orthonormal coordinate system. Indeed, let us symmetrize
the Cartan matrix (2.5) by defining !

1
aij = diCij s Clz = 5(012‘,041‘) =2 — 61'77, 5 1 S ’L',j S n. (2.10)

Then the symmetric Cartan matrix is given by a;; = (a;, ),

4 -2 0

-2 4 =2

0o -2 4 ... ... ..

e e oo 4 =20
-2 4 =2
0 -2 2

! One only has the freedom of choosing an overall normalization factor; our {d;} are
twice bigger than those in [22] and [7].



and it is amusing to check that, since
Bi=> ar, 1<i<n, (2.12)
k=i

the scalar products (8;, 3;) obey

n n

(Bir B5) =D aw = 255 . (2.13)

k=i l=j

Hence, in the undeformed case one can alternatively define U (B(0,n)) in terms of its
Chevalley or, respectively, totally odd bases.

Note that, according to (2.6a), all even Cartan-Weyl generators are given (or, in fact,
can be defined) in terms of the anticommutators of the odd ones, the Cartan subalgebra
being spanned by {{e;,e_;}|1 < i < n} (this last property does not hold in the g-deformed
case). On the other hand, (2.6a) implies also that relations (2.2) may be reformulated as
defining the commutator (in the proper sence) of any pair of an even and an odd member
of the Cartan-Weyl basis (surely, in terms of a linear combination of odd ones). Finally,
any of the even-even commutation relations can be deduced from the even-odd ones by
expressing one of the even generators as an anticommutator of odds and then using the
generalized Jacobi identity

Indeed, assuming that A is even and B,C odd, only known quantities appear in the right-
hand side of (2.14). Defining U(B(O,n)) as a free associative algebra with generators
{eu}u=+1,+2,.. +n , one has to impose appropriate relations among them which could be
identified with any generating subset of the parabosonic ones (2.1) (not all of these are
independent because of the generalized Jacobi identities); choosing its standard definition
in terms of the Chevalley basis, one considers the commutation and Serre relations for
{E.}=+1,42,... +n instead.



3 U,(B(0,n)) in Two Different Bases

We have collected in this section all the relevant formulae concerning the two bases
of U, (B (0, n)) , the Chevalley and the totally odd one (their equivalence is proved in the
next section).

The commutation relations for the Chevalley generators are

where [z] := q;__qq:lw )
{Ena E—n} = [Hn] (3.1b)
¢ EL g =¢F By, 1<i,j<n. (3.1¢)

Trivial Serre relations:
[Bi Esj]=0; |i—jl>2, 1<ij<n. (3.2)

Nontrivial Serre relations:

S(Eyi,Baip1) =0, 1<i<n-—1, (3.3)
S(Ex@+1), Bxi) =0, 1<i<n-—2 (3.4)
T(Esn, Ex(n_1)) =0, (3.5)
where
S(z,y) =2’y +ya® — (¢ + ¢ )y, (3.6)
T(z,y) = 2°y + y2® — (> + ¢ — 1)(wy2® + 2°yx) (3.7)

are the Serre polynomials for this case.
Denote, assuming
[A, Blye := AB — ¢“BA

(analogous convention will be used further also for anticommutators). Then the totally
odd generators (and the corresponding Cartan generators) are defined by (cf. [22])

€4y = Ein (380,)

€; 1= [Ei76i+1]q*2 (38b)

e_; = [67(i+1);E—i}q2 , (3.8¢)

gt = Hqu’“ . (3.8d)
k=1
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The following relations are counterparts of (3.1) - (3.5) for the totally odd basis:
{esei} =[], 1<i<n (3.9a)

¢"esjqg" =g Pes;, 1<i,j<n, (3.90)
and, introducing the convenient notation

1

&= E(J*hi“{%@—(iﬂ)} , Eoii= m{e—hei-&-l}qhHl , 1<i<n—-1;
Ein 1= €4n , (3.10a)
M= gthigthin 1 <i<n—1,; ¢TMr= gt (3.100)
we have also
[Eivej] = —0ijq" e_(iy1y, [E—ivej] =0dieiv1qg ™, 1<i<n—-1, 1<j<n (3.11)
[5ii,€ij}:o, 3<t1+2<j5<n (312)
[Eiseirt]g—2 =€, [e_(it1),Eilgz = e (3.13)
[Eiiexidp =0, 1<i<n—1 (3.14)
[g:t(i+1)7 eii] =0 5 1 < ) <n-— 2 s (315(1)
[{ei(n,l), ein}, ein]q2 =0. (3.15b)
The super-Hopf algebraic structure is given by
- the gradation
degbEy; =0, 1<i<n-—1; degFyi,=1; (3.16a)
deggti =0, 1<i<n (3.16b)
degey; =1; degg™ =0, 1<i<n, (3.16¢)
- the comultiplication
AE)=E®1+¢d""®F (3.17a)
AE_)=1®E_;+E_;®q (3.17b)
Ag") = ¢ @ gt (3.17c)
note that in super-Hopf algebras, for any A, D and for homogeneous B, C
(A® B)(C ® D) = (—1)%9B9¢ AC' @ BD (3.18)



- the antipode

1(E) = —q " E, (3.19a)
VE_;) = —E_ig" (3.190)
g™y = ¢Fh (3.19¢)

(in super-Hopf algebras 7 should be a graded antihomorphism i.e., that

V(AB) = (~1)%94498(B)y(4) (3.20)
otherwise e.g. Eq.(3.1b) would be inconsistent), and
- the counit,
e(BExi) =0=clexs), (3.21a)
(gt =1 =¢e(¢t) . (3.21b)

For e, , the formulae for the coproduct and the antipode are more involved — addi-
tional terms (vanishing for ¢ = 1) appear, e.g., in

Aley) =€, @1+¢" ®e,, (3.22a)

A(en—l) =ep_1®1+ qhn_l @ ep—1+ (q - qil){en—la e—n} & en , (322b)

A(en—Q) =ep2®1+ qhn72 Qen—2+ (q - qil) ({en—2a e—(n—l)} Qen—1+ {en—2; e—n} 2 en) )
(3.22¢)
etc. The corresponding formulae for the antipode can be also easily derived from the
definitions and (3.19) - (3.20).
Note also the existence of a non-graded algebraic antiinvolution *,

(AB)* = B*A*, (3.23)
( the ”Cartan-Planck conjugation” of [22]) acting on the generators as
(Bei)* =Bz, (") =", ¢=q". (3.24)

In other words, relations obtained by applying * to true relations are also true; we shall
refer to them as to the ”conjugate relations”, correspondingly. For ¢ on the unit circle we
define * as a coalgebraic antihomomorphism ([32], [19]; see also [33]).

The action of the antiinvolution * in the totally odd basis is quite similar to (3.24) —
one has
iHi)*

(exi)” =exi, (¢ =q7h. (3.25)



4 Proof of the Equivalence
This is the main part of the paper. We shall prove here that the two systems of
generators and relations of Section 3 are equivalent, e.g. that starting from the standard
Chevalley basis with relations
I: (3.1)—(3.5)

one obtains (with the conventions (3.8) and (3.10)) the ¢-deformed totally odd basis sat-
isfying
II: (3.9),(3.11) — (3.15)
and, vice versa, that — assuming that (3.8) and (3.10) hold — relations II imply the
system I (with the identifications Fy; — &4 , qui — qui).
The idea of the proof is to use the induction suggested by the natural ”tower” of
inclusions?

Uy(B(0,1)) CUy(B(0,2)) C ... CUy(B(0,k+1)) C...CUy(B(0,n))
adding at any subsequent level a new quadruple of generators

{Ei(n—k)a qun_k} ’

or
{ei(n—k)a qihn_k } ’

respectively.?

Proof of 1 = 1II.

Let us define e4;, ¢t through (3.8), and, further, & — through (3.10a). Then, for
it =n (3.9a) is trivial, and for 1 <1i <n — 1 it follows by induction. Indeed, the following
chain of relations for ¢ = k£ can be derived from that for ¢ > k + 1:

[Eive—j} =0, i<y, (41(1)
qhq‘,+1Eiq—hi+1 _ q_QEi (4.1b)

1 —hiq1 —
E; = mq e e} =& (4.1c)
qMieiyig M =g %641, (4.1d)
[B_i,ei] = errg™ ™ (4.1¢)

2 Having in mind quantum field theory applications, one can consider the infinite
"tower” of inclusions as well (it would be better then to reverse the ordering of the
generators).

3 In the first case nontrivial commutations appear only among ”nearest neighbor”
(quadruples of) generators; for the totally odd basis the structure is more involved.
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{61', G_i} = [hl] . (41f)

(We shall prove below that (4.1a) is in fact valid for any 1 <4 < j < n, the equations from
(4.1b) to (4.1e) —for 1 <i<mn —1, and (4.1f) — for 1 <i < n).
Let first Kk =n — 1. Then,

[En_1,6-n] = [En_1,E_n] =0 (4.24)

according to (3.1a). Further,

H

qh"En_1q7h" = anEn_qu n — qan nlf = C]72En—1 (4.2())

because of (3.1¢) (cf. (2.11)). Now (3.8b), (4.2a) and (4.2b) imply
{En—h e—n} = {En—len - q726nEn—176—n} =

= Enfl{ena €,n} - q_Q{e'ru €,n}En,1 = Enfl[hn] - q_g[hn]Enfl =
= ([hn +2] - q72[hn])En71 = [2]qh"Enfl ) (4.2¢)

ie., (4.1c) for i = n — 1 as claimed. We also have
an—l enq_anl = an71 Enq_anl = qa‘”fl "En = q_2€n (4.2d)
and, as a corollary,

[Ef(nfl)v enfl] = [Ef(n71)7Enflen - q_QenEnfl] =

_ 1, _
= [E—(n—l)vEnfl]en —q 2en[E—(n—1)7En71] = ﬁ(q 2en[Hn71] - [anl]en) =
1 _ _
= men(q [Hp 1] — [Hyo1 — 2]) = e,q Hn-1 . (4.2¢)
All this implies

{en—1,e—(n-1)} ={en—1,6cnB_(n1) — CE_(n_1ye—n} =
= {en—h e—n}Ef(nfl) + e—n[Ef(nfl)y en—l]_
_qZEf(nfl){enfla G,n} + q2 [Ef(n71)7 €n,1]€,n =
= [{en—la e—n}a E—(n—l)]q2 + {e—na [E—(n—l),en—l]}qz =
= [2] [qh"En—laEf(nfl)]qz + {e_n, enq—Hn,l}q2 =
= [21¢" [Bn-1, B-(n-)] + {e—n, en}a™ "t = ¢" [Hpoa] + [hn]g ™t =
 Houos ] = (o] (12f)
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it has been used that
{A,BC} ={A,B}C + B[|C,A] = B{A,C} — [B, A]C. (4.3)

Thus, the relations (4.1) for ¢ = n — 1 follow indeed from those for ¢ = n . This step
(namely, the proof that (4.1) for ¢ > k+ 1 imply those for i > k) can be made with almost
no changes for any 1 < k < n — 1, the only thing to be taken into account — in the
derivation of (4.1a), (4.1b), (4.1d) — on top of the arguments used for k = n — 1 being
the trivial remark that e;, gt for any 1 <i < n — 1 may be expressed entirely in terms
of {E1;, ¢} with [ > i (we shall call this ”the triangular property”). The latter follows
directly from the definitions (3.8); e.g., (3.8b), (3.8c) imply

€; = [EZ, [E7;+1, e [Enfl, En] -2 .. .]q—z]q—2 s (44&)

q
€_; = [[ .. [E_n, E—(n—l)]q2 RPN 7E—(i+1)]q27E—i]q2 y (44b)

respectively.
So we have proved (3.9a). Having in mind (4.4) (see also (2.13)), it is quite easy now
to derive (3.9b):

n n
h; —h; — Hy, —-H
¢"erig " = [[a"ex; [[Ja " =
k=i m=i

= qi Zk:i 1=j akleij = quéij €Lty . (45)

Applying the antiinvolution * to (4.1), we obtain the following conjugate relations (see
(3.23), (3.24), (3.25)) :

[E_i,ej] =0, 1<i<j<n, (4.6a)
qh71+1 E_iq—hi-H — q2E_i , (46b)

1 v .
E_;= @{6476#1}@“ =&, (4.6¢)
¢e_iya ™ = ety (4.6d)
le—i, Bi] = q"Me_j11 (4.6¢)

the last four equalities being valid for 1 < i < n — 1. Relation (4.1f) is self-conjugate.
To prove the first part of the equalities (3.11), since we have already (4.1c) and (4.6¢)
(see also (3.10b)), we must only check that
[Ei7e,j] =0,1<j5<i<n—-1,;

the second part is obtained by conjugation. Let us first consider the case 2 < j+1 =13 <
n — 1 .Using (3.1a), (3.1c) and (3.2), we get

(Ejt1,e—5] = [Eji1, e 1), B-jlez] = [Ejv1, e, E-jle =
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= [q"" e_(j10), E—jlg2 = q" [e_(j42), E_j] = 0. (4.7)

With (3.2) and (4.7), one can proceed further to obtain — step by step — the remaining
relations of the first part of (3.11):

[Ejt2;e—5] = [Ejta; [e—j41), E-jle2] = [Ejta, e—(41)]s E-jlg2 = 0 (4.8)

etc.

The vanishing of the commutators [€4;,e4;] for 3 <i+2 < j <n — Egs. (3.12)
— is a direct consequence of (4.1c) and (4.6¢), the trivial Serre relations (3.2) and the
”triangular property” (4.4).

Proceeding further, one sees that (3.13) follows immediately from the defining recur-
sion relations (3.8b), (3.8¢c) (due to (4.1c), (4.6¢)). To establish (3.14), one should first
note that the two sets of equations are conjugate to each other. On the other hand, one
can use again (4.1c) and then convert the commutator [E;, e;],2 by expressing

ei = [Ei, eit1]q-2 = [Ei, [Eiy1, €ira]g—2]g-2 (4.9)

to
[Ei, [Ez [Ei+17 B,H_Q}q—z]q—z]q‘z = [[El, [EZ, Ei+1]q—2}q2, ei+2]q*2 (4100,)

(E; and e;49 commute, due to (3.12)), for 1 <i<n—2, or to
[Enfl, [Enfl, en]qfﬂqz = [Enfl, [Enfl, En}q—z]qz 5 (410b)

for i = n—1. The proof that both (4.10a) and (4.10b) vanish can be done by representing
the Serre polynomial as

S(z,y) = 2*y +ya® — (¢ + ¢ *ayx =

= [z, [z, ylgelg-e, a =2 (4.11)

and then using (3.3).
The following chain of equalities,

(@ +q ) [Eit1,e) = (@ + ¢ ) [Eig, [Ei, €i1]4-2] =
=(¢*+ ¢ *)Eis1Eieis1 — Eipr€iEi — ¢ *Eiy1ei1 Ei—
—¢*Eiei11Eiy1 — ¢ P Eiei1 B + (P + ¢ 2)ein1 BBy =
=(¢®+ ¢ *)Eis1Eieis1 — Eipr€i1Ei — ¢ *e1 Ei 1 Ei—
—EiEi1ei1 — q *Eiei1 B + ¢ (¢ + ¢ ?)ein1 BBy =
=(*+ ¢ )Ei1Ei(Eiy1eiyo — ¢ 2eis0Fir1) — Eip1(Bip1eivo — ¢ 2eiroli1)Ei—
—q¢ 3 (Bit1€iv2 — ¢ 2eiroEir1)Ei1 B — BBy (Bitreivo — ¢ 2eiroEip1)—
—q ?Ei(Eiy1€iv2 — q €2 Bip1)Eipi+
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+¢2(* + ¢ ) (Eiy1eiv2 — ¢ Peir2Ei) BBy =
= ((®+q EinEiEi — B} E; — BiE})eiyat
+eira (¢ Ei LB+ ¢ BB} — ¢ (" + ¢ *)EBi1EiBi) =
=q %1 28(Eiv1, Ei) — S(Eiy1, Ei)eira =0, (4.12)

proves (in fact, for ¢* # —1) relations (3.15a) (the conjugate equations should be also
valid) — see (3.4), (3.6). Relations (3.15b) follow directly from (3.5), (3.7), e.g.

[{en—lven}ven](ﬁ = [{[En—laEn}q*%En}aEn]q? =
= ([En—h En]q*2En +En[En—1a En]q*Q)En - qun([En—lv En]q*2En +En[En—1a En]q*Q) =
=EE, \+E, 1E>—(¢*+q *-1)(E?E,, 1E,+FE,E, 1E?>)=T(E,,E,_1) =0, (4.13)

and one also has the conjugate relation. This completes the proof that relations I imply
1I.

Proof of II — 1.

We are going to prove now that, within the free associative algebra with generators
{e4i,g™™} ;1 < i < n and relations (3.9), one can recover, by (3.10), the Chevalley
generators of U, (B(O,n)) ie., that &4 ,¢t" | 1 < i < nobey the defining commutation
relations (3.1) and the Serre relations (3.2) - (3.7). Let us start with the proof of (3.1a)
for 1 <i=7<n-—1. We have

21[€i, €] = Eile—ieits + eiprei)q" = (e_ieipr + eipre )" E =
= (e—i& — " g " e_r))ei1 g + (¢ i+ ei)e—igit -
—(e_ieit1 +eiprei)q" 1 E =
=e_i(q e + e)g" = qMe e+
teir1(q 2e—i&id" = "))+
tejeig" T — (e_ieipr + eipiei)q" T E =

= {eieitaqlyy — {eir e }a" = [hilg" it — [hiald" = [Hi] . (4.14)
Relation (3.1b) is just (3.9a) fori =j=mn.Letnow 1 <i# j <n and, eg., i+ 1 <j.
Then, for j = n, we use directly (3.11), and for j <n — 1 we first rewrite

21(&,E-] = [Ei,{e—j, ej41 1" ] (4.15)

and then apply (3.9b), (3.11) and (3.12) (the latter — because i +2 < j + 1) to prove
that the commutator vanishes. If, on the contrary, i > j + 1, we express &; according to
(3.10a) and apply the conjugate relations instead.
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Relations (3.1c) are trivial corollaries of (3.9b); in fact, when 1 < 4,5 <n —1, one
just has to check that

h —h

qhiq_ i+1{ej’ e,(jﬂ)}qh’"“q Vi qaij {ej7 67(j+1)} (416)
and when ¢ and/or j are equal to n, the derivation is even simpler.
The trivial Serre relations (3.2) follow from (3.9b), (3.11) and (3.12).
Let us consider, finally, the nontrivial Serre relations. We shall display the proof for
those involving {&;} with positive i; the ones for {£_;} can be obtained by conjugation.
One has (see (4.11))

1 _h
S(&i,Eiv1) = m[& (i g M {eiv1, e (ir2) Hg-2]g =

1 1, :
= mq hita [51, {61‘, 6_(1'_;'_2)}}(12 = mq h1+2{[(€i, ei]q27 6_(i+2)} =0 , 1 <z S n—2 (417@)
(due to (3.9b), (3.11) and (3.14)), and

S(gnfl, gn) = [gnfl, [gnfl, en]q—z]qz = [5n717 enfl]qz = 0 . (417b)
This proves (3.3); relations (3.4) for 1 <14 < n — 2 follow from

1 o
S(&iv1,&) = m[gmv Eirr a7 e, e g He2lg2 =

2 4

q —Ri41 —Ii41 J—
= m[5i+17q hitrfe;, [Eiv1, e—irn) Ho-2 = mq Pt fe;, [Ei1, [Eivts e—(i4n)]lg-2} =

= —E(J*hi“{eia [Eiv1,q" g M 2e_(ha)]4-at = —éqfhi”{@m [Eiv1,e—@iv2)]} =0
(4.18)
(we have used (4.11), (3.9b), (3.15a) and (3.11)). The last Serre relation (3.5) can be
derived from the definitions and (3.15b):
T(Enyvén-1) = [{[En—1,Enlg—2,En}, Enl e =
= [{en—1,en} en]2 =0. (4.19)
Hence, we have proved the equivalence of the both systems of generators and relations
which produce the super-Hopf quantum algebra U, (B (0, n)) Note the differences between
the relations for {e, },=+1 42, 4+, in the deformed and undeformed cases — first, in the
deformed case we have in general coefficients in the Cartan subalgebra, and second — this
is the reason for not having displayed (for n > 2) the full set of analogs of (2.2) — not all
of the relations are of the typical for the ¢ = 1 para-Bose algebra type (i.e., threelinear in
the odd generators in the left-hand side and linear in the right-hand side). Although it is
obvious that one could, in principle, compute all the expressions of the type [{e,,e.}, e,],
e.g., by expressing the odd generators as in (4.4), one has to expect that, in general,
threelinear terms (with coefficients that vanish in the limit ¢ — 1) would appear in the
right-hand side, too *. Indeed, one can show, as an example — for the first nontrivial case
n =3 — that
[{e—1,es},e0) = —(¢° — g *){e—1,ea}es. (4.20)

4 The author owes this observation to T.Palev [26].
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5 Q-deformed Para-Bose Oscillators
We consider in this section, for any n—tuple of real numbers p = {p1,p2,...,pn},

vacuum representations 7@ of the super-Hopf algebra U, (B(0,m))
ey =af, i=1,2,...,n, (5.1)
characterized by the existence of a lowest weight vector |0 >, the vacuum, such that

a7 |0>=0, ¢*" P

0>=¢q

0> (5.2)

(we are not going to introduce special notations for the Cartan generators in the represen-
tation 7®)). One has then (cf. (3.9) - (3.15))

a;,ai} = [h; 1<i<n 5.3a
{ (A 1 } [ )

aFq M =g el 1<ij<n (5.3b)
[{ajva;rl}vaﬂq*”iﬂj = _[2]5ithia;+1 , I<i<n—-1, 1<j<n (5.4)
[{a;7a:;1}7aﬂq*25i+1j = [2]5ijai++1q_hi , 1<i<n-1, 1<j<n (5.4%)
{af aiihaf]=0, 3<i+2<j<n (5.5)
Hai.af }a51=0, 3<i+2<j<n (5.5%)
Hat,a; }afy) = 2" el , 1<i<n-—1 (5.6)
Hai s afdary) = —2lefqg ", 1<i<n—1 (5.6%)
Haf e} afle =0, 1<i<n-—1 (5.7)
Ha; el )07 ] =0, 1<i<n-—1 (5.7%)
[{a;:_l, Qiiols af]=0, 1<i<n-2 (5.8a)
o100} 071 =0, 1<i<n-—2 (5.8a*)
Han_1,at}able =0 (5.8b)
[{a”r_L*l’ a;}, a:z]QQ =0. (581)*)

Let us consider the representation of the subalgebra U, (B (0, 1)) generated by some
quadruple {ey;, qihi} ; since they are all isomorphic, we shall skip the index ¢ altogether.
As a corollary of (5.2), (5.3) one has

{a=,a*}|0 >= [p]|0 > (5.9)
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which is an expected generalization of the known for ¢ = 1 notion of the order of paras-
tatistics [5]. It is obvious that the set of eigenvectors of ¢*="

In>:=(a")"0>, ¢ n>=¢®|n>, n=012... (5.10)
is nondegenerate for generic ¢ . Hence, the action of a® is given by
atin>=n+1>, (5.11a)
a”|ln>=zpn—1>, (5.11b)
where x,, obeys the finite difference equation following from
Tpln—1>=a n>=a"at|n—1>=

=(-ata" +[R])n—-1>=(—zp_1+p+2(n—1)])n—-1> (5.12a)

together with the initial condition
x9=0. (5.120)

The unique solution of (5.12a), (5.12b) is

1 n
r =g (20 =1 = (-1 - 1]). (5.13)
Hence, if we introduce the g—analogs of the number operators ¢=%: ;i = 1,2,...,n by
defining
g =qTa, g g =0 (5.14a)
we can identify
hi=2N;+P,, i=12,...,n (5.15)

where the operators {P;} are in the commutant of the representation 7® . Taking them
to be all equal,> P; = P, leads to

a;ai = é—](pNi +P+1]+ (-1)N [P —1]) (5.16a)
atar = é(pNi L P - (C)NP 1) (5.16b)

(all N; have nonnegative-integer spectrum). These compact expressions are perhaps new
for the undeformed case as well. It is quite clear that P plays the role of an order operator.

5 In the undeformed case this is a theorem following from the requirement of the posi-
tivity of the metric and the existence of a lowest weight state [5]; it turns out that there is
also a straightforward g-deformed version of it which fails, however, for ¢ a root of unity.
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Choosing P to be equal to the unit operator, i.e. h; = 2N; + 1, one obtains

1
a;af = m[m\a— +2] = [N; + 1] 2 (5.17a)
|
a; a; = EBNJ = [Ni]g2, (5.17b)
or
a;af —qFafa; = ¢, (5.18a)

Let now n = 2;it is trivial to show that (5.18a) and

afaf = q*ajal

afa; = q_zagair

ayay =g *agay

aya; = q’aya; (5.18b)

imply relations (5.3) - (5.8). The operators a:f,i = 1,2 obeying (5.18) are the ”covariant”
(Pusz-Woronowicz type, see [21]) U,(sl(2)) -oscillators of [18]. They are related to the
Biedenharn-Macfarlane ones [12]-[14] by

b= g2V,

bT — ai}-qu172N2

by =q™ay

by = ajq_N2

Ny, =N1, Ny, =Ns. (5.18¢)

6 Outlook

There are several problems which deserve future consideration, e.g.

- a more detailed investigation of the structure of the g-deformed parabosonic relations

- representations of the algebra (5.3) - (5.8) with h; = 2N; + P, i = 1,2,...,n for
higher values of the parastatistics order p

- representations for ¢ - root of unity

- applications to specific two-dimensional models,

etc. We postpone the discussion of these questions to a future publication.
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