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1 Introduction

Machine learning (ML) methods have been a common ingredient in particle physics research for a long
time, with neural networks being applied to object identification already in analyses at LEP [1]. Since
then, the range of applications has grown drastically, with ML methods being developed and used
for example in tagging [2—4], anomaly detection [5—8], individual reconstruction stages like particle
tracking [9-11] or even full event interpretation and reconstruction [12]. Another important use case
for ML in high energy physics (HEP) is detector simulation. With the increasing luminosity of the large-
scale experiments in HEP, the computational cost of high-precision Monte-Carlo (MC) simulations is
going to exceed the available computing resources [13]. Generative methods have the potential to
significantly reduce this resource requirement, which is why a considerable amount of research has
been spent on exploring machine learning architectures for detector simulation [14, 15]. Examples
include GANs [16-27], variational autoencoders (VAEs) and their variants [27-32], normalizing
flows and various types of diffusion models [32-53].

Most ML methods in HEP are designed, developed and trained for very specific tasks. The
focus on specialized models means that the full potential of the vast datasets we have access to is not
being utilized. Furthermore, while these models may be more resource efficient than the traditional
methods they seek to enhance or replace, developing and training each model from scratch still requires
significant amounts of both human and computational resources. For reasons like these, there has been
a growing interest in developing foundation models for particle physics [54—62] in the past couple of
years. A foundation model is a machine learning model that has been pre-trained on a large amount



of data, and can then be fine-tuned for different downstream tasks [63]. The idea behind utilizing
pre-trained models is that their outputs can significantly enhance the performance of downstream
tasks, yielding better results than if the model were to be trained from scratch. While the models
mentioned above have focused on exploring different tasks in specific subdomains, like jet physics, a
more ambitious goal eventually would be to develop a foundation model for all tasks in all subdomains,
including for example tracking, shower generation and anomaly detection in general (not restricted to
jets). The hope would be that it could then utilize the full amount of diverse data from our experiments,
to boost the performance of all possible downstream tasks. The first step towards such a model must
be to be able to handle tasks from different subdomains in the same computational framework.

In this work, we apply the generative part of OMNIJET- [57], originally developed for jet physics,
to a completely different subdomain: electromagnetic shower generation in collider calorimeters. We
show that the OmN1JET- architecture and workflow also works for generating showers, opening up the
possibility of exploring transfer learning for showers in a setting that has already proved successful in the
context of jet physics. This is the first example of an autoregressive generative model utilizing the GPT
architecture for calorimeter point clouds (as opposed to the fixed calorimeter geometries of ref. [64]).
We denote this extended model capable of handling showers as OMNIJET-a ¢ (OMNUET-a Calorimeter).
Showing that we can use the same framework for two very different subdomains is an important step
towards developing a foundation model for all computing and data analysis tasks in particle physics.

This paper is organized as follows. Section 2 describes the dataset used, section 3 the experimental
setup, and section 4 presents the results. Finally, we offer our conclusions in section 5.

2 Dataset

The International Large Detector (ILD) [65] is one of two detector concepts proposed for the
International Linear Collider (ILC) [66], an electron-positron collider that is initially operated at
250 GeV center-of-mass energy and extendable to higher energies up to 1 TeV. ILD is optimized for
the Particle Flow Algorithm [67] that aims at reconstructing every individual particle. The detector
therefore combines precise tracking and vertexing capabilities with good hermiticity, and highly
granular sandwich calorimeters. The electromagnetic calorimeter of ILD (the Si-W ECAL [68])
consists of 20 layers with 2.1 mm thick W-absorbers followed by 10 layers with 4.2 mm W-absorbers,
all interleaved with 0.5 mm thick Si-sensors that are subdivided into 5 mm X 5 mm cells.

The dataset used in this work was originally created for ref. [28], where more details on the detector
and simulation can be found. While the dataset itself is not publicly available, it can be fully recreated
by following the simulation and processing instructions provided in ref. [28]. Showers of photons
with initial energies uniformly distributed between 10—100 GeV are simulated with Geant4 [69] using
a detailed and realistic detector model implemented in DD4hep [70]. The resulting showers are
projected into a regular 3D grid with 30 x 30 x 30 = 27 000 voxels. The 3D-grid data is converted
into a point cloud format, where each point has four features: the x- and y-position (transverse to
the incident particle direction), the z-position (parallel to the incident particle direction), and the
energy. On average, each shower contains approximately 930, but not more than 1700 points with
non-zero energy depositions, representing only a small fraction of the total 27,000 voxels in the
grid. The incoming photon enters the calorimeter at perpendicular incident angle from the bottom
at z = 0 and traverses along the z-axis, hitting cells in the center of the x-y plane. A staggered cell
geometry results in small shifts between the layers.



We preprocess the four input features (x, y, z and energy) by standardization. The energy feature
is log-transformed before being scaled and shifted, which has the additional advantage that generated
energies are by design non-negative.

The dataset has 950 000 samples, of which 760 000 are used for training, 95 000 for validation,
and 95000 as test samples.

3 Methods

This work uses the workflow of OMNIJET-¢ [57], which is a foundation model originally developed
for jet physics. We do not use a pretrained version of OMNIJET-a, but rather implement the same
autoregressive architecture and train it from scratch for generating calorimeter showers. OMNUJET-«
uses a VQ-VAE [56, 71-73] to tokenize the input features. The VQ-VAE transforms high-dimensional
features into discrete latent representations by encoding the data and quantizing it to the nearest
vectors in a learned codebook. The constituents of the jets, or in this case the voxel hits of the
showers, are represented as a sequence of integers, which correspond to codebook vectors. A start
token and a stop token are added to the beginning and the end of each sequence. These are special
tokens that are needed for the autoregressive generation, as described in section 4.2. The sequences
are used as input for the generative model, which is a GPT-style [74] model. Since the model
only expects integers, it is not dependent on a specific type of data as input as long as it can be
represented in this format. Moreover, the model accepts variable-length sequences, which means
that it can be used equally well for jets with a variable number of constituents as for showers with
a variable number of hits. The training target of the model is next token prediction, that is, it learns
the probability of each token given a sequence of previous tokens, p(x;|x;—1,...,x0). This means
that it is straightforward to use the trained model for autoregressive generation, where each new
token is generated conditioned on the previous ones in the sequence. While OMNIJET- also has
classification capabilities, this work only focuses on the generative part. One key feature of OMNIJET-
is that it learns the sequence length from context. This removes the need for specifying the number
of elements in the sequence beforehand.

The VQ-VAE and generative model were trained using the hyperparameters described in
appendix A. For the VQ-VAE, the best epoch was selected via lowest validation loss. After training, the
VQ-VAE was frozen. The input data was tokenized using this model, and then fed into the generative
model for training. Here again the epoch with the lowest validation loss was chosen as the best epoch.
New showers in the form of integer sequences were then generated using this final generative model,
and the frozen VQ-VAE was used to decode these integer sequences back into physical space.

4 Results

In the following we will present the results of the training of the VQ-VAE and the generative model.
For comparison we use the test dataset, which the models never saw during training. As a benchmark
for shower generation the performance of OMNIJET-a ¢ is compared to two state-of-the-art generative
networks: one point cloud model, CaLoCroups II [75], and one fixed-grid model, L2LFLows [76].
CaLoCroups II is a continuous time score-based diffusion model that has been further distilled
into a consistency model (CM), whereas L2LFLows is a flow-based model using coupling flows
with convolutional layers. L2LLFLows has already been trained on this dataset in [76], and showers



generated by this model were provided to us directly by the authors. For CaLoCroups II however, no
such training was available. Instead we ran this training ourselves, using the same hyperparameters
as in [75] with the exception of training the diffusion model for 3.5 M iterations instead of 2 M, and
the consistency model for 2.5 M iterations instead of 1 M. This is the first time CaLoCrLoups II has
been trained on a dataset in which the granularity matches the one of the calorimeter.

4.1 Token quality

We first investigate the encoding and decoding capabilities of the VQ-VAE. To judge the effect of
the tokenization and potential loss of information, we compare the individual hits in the original
showers with the corresponding hits in the reconstructed showers. A perfect reconstruction would
yield a Dirac delta function for the difference between reconstructed and original values for each
feature. However, as shown in figure 1, while the distributions surrounding the center are indeed
narrow, they do have some spread. A codebook size of 65 536 shows a narrower resolution distribution
than a codebook size of 8 192. In particular, the reconstruction of z for the latter has a larger spread
of 0§, = 0.66 layers compared to o5, = 0.4 layers with the larger codebook size. For the
energy, the respective spread values are O'E?Zrzgy =0.11 MeV and aggesr;ég = 0.07 MeV. Furthermore,
the reconstructed z distribution demonstrates a broader spread and a more complex reconstruction
relative to the transverse coordinates x and y, which exhibit similar and narrower distributions. This
difference in reconstruction accuracy can be attributed to a broader spatial extent of the showers
along the longitudinal axis z. However, because voxels are discrete, the three spatial features need
to be rounded to integers. Perfect resolution is achieved if these values remain within +0.5 before
rounding, the region indicated by the light gray lines in figure 1.
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Figure 1. Reconstruction resolution for the input features (x, y, z, energy) for different codebook sizes.

To accurately compare the reconstructed showers with the original showers, we need to apply
postprocessing. This step is explained in appendix B and essentially projects hits back into the voxel
grid and processes duplicate hits (hits that are identical in all of the three spatial features). For the
following analysis, showers are converted to tokens and then back to physical space. Figure 2 shows
different feature distributions of the original and reconstructed showers, showcasing an overall good
agreement between the two. Rare tokens, such as those located at the edges of the shower or tokens
associated with high-energy hits, exhibit the lowest reconstruction quality. Again the VQ-VAE with
the codebook size of 65 536 performs better and has the smallest loss of information and is selected
for tokenizing the showers for the generative training.
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Figure 2. Distributions of physical observables between Geant4 (grey, filled) with the codebook size of 65 536
(blue) and codebook size of 8 192 (orange). Hits that were below the MIP threshold (0.1 MeV), i.e. those in
the shaded region of the visible cell energy plot, were not considered for the comparison in the remaining
distributions. This cutoff can affect the number of hits for reconstructed showers.

4.2 Shower generation

Following training, OMNIJET-@¢ generates point clouds autoregressively. Initialized with a start token
(a special token that initiates the autoregressive generation process), the model predicts the probability
distribution for the next token based on the preceding sequence. OMNLET-@ ¢ then samples from this
distribution, appending the chosen token to the growing sequence. This process continues until a stop
token (a special token that represents the end of the generated sequence) is generated or the maximum
sequence length of 1700 tokens is reached. Unlike most ML-based shower generators, OMNUET-a ¢ iS
not trained to generate showers for specific incident photon energies. Instead, the model learns to
generate showers with a variety of energies. We reserve a study of how to condition the model on the
incident energy for future work. This would allow the user to request showers of a specific energy. In
this first version however, we will only compare the full spectrum of showers.

We see in figure 3 that OMNIJET-a ¢, CaLoCLoUDs II (CM) and L2LFLows generate showers
that appear to be visually acceptable compared to Geant4. Next, we compare the performance of
OmNUJET-a¢ to CaLoCLoubs II (CM) and L2LFrLows for three different quantities.!

INote that compared to the original training of CaLoCrLoubs II in ref. [75], this training is done at physical, ie. lower,
resolution.
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Figure 3. Examples of individual photon showers with a total energy sum of 1000 MeV generated by Geant4
(left), L2LFLows (center left), the CaLoCrLoups II (CM) (center right) and OMNIJET-a ¢ (right).

Figure 4 (left) compares the cell energies. We observe an accurate performance of OMNIJET-a ¢
across almost the entire energy range, on par with L2LFLows. For the higher energies we see some
deviations for both OMN1IJET-@¢ and CaLoCroups II (CM). As seen in figure 2, the mismodeling
for OMNIJET-( is introduced by the VQ-VAE. The behavior of CarLoCroups II (CM) is consistent
with what was seen in the original paper. The shaded area in the histogram corresponds to the region
below half the energy of a minimal ionizing particle (MIP). In real detectors, read-outs at such small
energies are dominated by noise. Therefore, cell energies below 0.1 MeV will not be considered in the
following discussion, and the remaining plots and distributions only include cells above this cut-off.

Figure 4 (center) shows the distribution of the total energy sum of showers. For this calculation,
the energy of all hits surpassing half the MIP energy are added up for each shower. This distribution
is strongly correlated to the incident photon energy on which L2LFLows and CarLoCroubs II (CM)
are conditioned. OMNIJET-a¢ has to learn this distribution on its own.

Finally, figure 4 (right) shows the number of hits. While the L2LFLows and CaLoCroubps II
(CM) are conditioned on this distribution, OMNIJET- ¢ is able to achieve good agreement with the
Geant4 distribution without this conditioning. The discrepancies we see are a small peak at a shower
length of around 400 to 500, and also some showers that are too long.
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Figure 4. Distributions of per-cell energy (left), total energy sum (middle) and the number of hits above 0.1 MeV
(right) between Geant4 (grey, filled) and the generative models: OMNUET-@ ¢ (blue), the CaLoCLoups II (CM)
(orange, dashed) and L2LFLows (green, dashed).

In figure 5 we compare the spatial properties of the shower. The left plot shows that the Geant4
distribution of the center of gravity along the z-axis is well modeled by all three architectures.
OmN1JET-0 ¢ performs better in the center of the peak than at the edges.



The longitudinal energy distribution, depicted in the middle plot of figure 5, reveals a comparatively
weaker performance of the OMNLJET-@¢ model and CarLoCroups Il (CM) compared to L2LFlows in
the initial 10 layers. However, OMNUJET-a¢ outperforms CaLoCroups II (CM) in the first 4 layers.
The mismodeling of OMNIJET-a¢ in the initial layers is likely attributable to the tokenization process
(see figure 2), where these layers, being less common, are represented by a limited number of tokens.
A similar degradation is observed in the outer regions of the radial energy distribution (right plot
of figure 5), although OMNUJET-a ¢ still outperforms CarLoCroubs II (CM).
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Figure 5. Distributions of center of gravity (left), mean energy per layer (middle) and the radius (right) between
Geant4 (grey, filled) and the generative models: OMNIJET-a ¢ (blue), the CaLoCrLoups II (CM) (orange, dashed)
and L2LFrows (green, dashed).

Another important aspect for comparing generative models is the single-shower generation time.
Generating 1000 showers with OMNIJET-@ ¢, randomly sampled across all incident energies, resulted in
a mean and standard deviation of (3 £ 1) s per shower. The generation was performed with a batch size
of 2 on an NVIDIA® A100 GPU. In contrast, Geant4 on a CPU required (4.1 + 0.2) s per shower [28].
Therefore, our model demonstrates a speedup factor of 1.39 in this case. On identical hardware and
with a batch size of 1000, L2LFlows achieves per-shower generation times of (3.24 + 0.05) ms and a
speedup factor of 1260. CaLoCroups II on identical hardware but with a batch size of 100 generates
one shower in (16 + 6) ms and achieves a speedup factor of 255. The comparatively slow performance
of OMNIJET-a is attributable to the characteristic quadratic scaling O(N?) of the autoregressive
transformer architecture with respect to the sequence length. Since this study did not prioritize
generation speed, optimizations such as multi-token generation are left for future work.

5 Conclusion

In this work, we take a first important step towards building a foundation model for several subdomains
of particle physics. We show that we are able to use the architecture and workflow of a foundation
model originally developed for jet physics to generate electromagnetic showers in a calorimeter,
a fundamentally different problem. This is a notable difference to previous efforts for foundation
models in HEP, which so far focused on tasks within one subdomain, mostly different tasks within jet
physics. Our work demonstrates that the same architecture can be successfully reused across distinct
physical domains, without significant modifications. It is also the first implementation of a GPT-style
autoregressive generative model for calorimeter shower point cloud generation.



The next immediate step will be to investigate whether this model can be used for transfer
learning between different types of showers. In the long term, we aim to develop a joint model that
can work with both jets and showers. Combining tasks from different subdomains in one single
framework is a necessary step towards a foundation model for particle physics that can handle a
variety of data types and tasks.
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A Model details and hyperparameters

Different hyperparameter configurations were tested for the individual model components of OMNIJET-
ac. The configurations presented in the following were found to lead to stable trainings. However,
no extensive hyperparameter optimization was performed.

Table 1. Hyperparameters used in the VQ-VAE training.

Hyperparameter Value
Learning rate 0.001
Optimizer Ranger
Batch size 152
Batches per epoch 1000
Number of epochs 588
Hidden dimension 128
Codebook size 65536
B 0.8
@ 10
Replacement frequency 100

The hyperparameters used for the VQ-VAE training are shown in table 1. Only the codebook size,
replacement frequency and the hyperparameter § were adjusted. The remaining hyperparameters are
the same as in OMNIJET-. An increase of the codebook size from 8 192 to 65 536 was found to improve
the reconstruction capabilities (i.e. the resolution of the tokenized showers). The codebook utilization,
i.e. the fraction of used tokens, is also monitored during the training to ensure that the resulting
codebook is used completely. Unused tokens would drastically increase the number of parameters of
the generative model while not adding any potential improvements in the performance of the generative
model. The current setup results in a codebook utilization of the final VQ-VAE model of 99.65%.
The hyperparameter S which defines the relative importance of how much weight should be given to
updating the encoder embeddings z. towards the codebook vectors z, and vice versa, is decreased from
0.9t0 0.8. This leads to a higher emphasis on adapting the encoder to bring the embeddings z. closer to



the codebook vectors z,,. Furthermore, the optimization process employs a token replacement strategy
based on usage frequency. The chosen replacement frequency of 100 batches (instead of 10) indicates
that a token must be used at least once within the preceding 100 batches to avoid being replaced by a
new token. We used the Lookahead optimizer [77] with RAdam as the inner optimizer [78].

For the hyperparameters of the backbone, no changes compared to OMNIJET-@ were made except
for the batch size. The hyperparameters used are listed in table 2.

Table 2. Hyperparameters used in the generative model training.

Hyperparameter Value
Learning rate 0.001
Optimizer Ranger
Batch size 72
Batches per epoch 6000
Number of epochs 106
Embedding dimension 256
Number of heads 8
Number of GPT blocks 3

B  Postprocessing

Projecting the hits of a point cloud model back onto the voxel grid can result in duplicate hits in some
voxels. To resolve these duplicates, the voxels with lower energy are translated along the z-axis to the
nearest unoccupied voxel position. This heuristic preserves both the total energy and the hit count
while minimally impacting the z-distribution. We could also translate the voxels along the x- or y-axis,
but as shown in figure 6 the hit energies are not invariant in these directions.

C Generation quality

C.1 Generation

To isolate the impact of the tokenization and subsequent reconstruction from that of the generative
model itself, figure 7 compares showers generated by OMNIJET—2 ¢ to Geant4 showers that were
first tokenized and then reconstructed. This figure should be viewed in context of figure 2, which
shows the performance of the tokenization and reconstruction, and figures 4 and 5 which show the
generated showers compared to the original Geant4 showers. The same discrepancy in the energy
sum and number of hits that was seen in figure 4 can also be seen here. This means that this is an
effect of the generative model itself, not the VQ-VAE.

C.2 Correlations

Figure 8 summarizes how well each model preserves the linear relationships among shower observables.
The relation between number of hits and energy sum, which is an important relation in the calorimeter
context, is preserved in all models. The correlations between the other shower features are weak in
the Geant4 baseline, a characteristic that is also reflected by all models.
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Figure 7. Distributions for Geant4 after tokenization and reconstruction (gray) and generated showers by

OmNUJET-a ¢ (blue).
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Figure 8. Linear correlation of shower features for Geant4 (top left) and the residuals for OmMNIJET-@¢ (top right),
CaLoCroups II (CM) (bottom left) and L2LFLows (bottom right).

Code Availability Statement. This article has associated code in a code repository. The code for this
paper can be found at https://github.com/uhh-pd-ml/omnijet_alpha_c. The code for recreating the
dataset can be found at https://github.com/FLC-QU-hep/getting_high.
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