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The study of transverse momentum spectra is crucial to understand the nature of matter produced 
during heavy-ion collisions. The pT-spectra in a heavy-ion collision consists of a low pT-region where 
soft processes dominate particle production, whereas the high pT-region is mostly dominated by hard 
processes. Single and multi-component models based on statistical thermodynamics are extensively 
used to characterize the spectra. In this work, we have introduced a unified non-extensive statistical 
approach using the Pearson distribution as a tool to study pT-spectra. The goodness-of-fit of the proposed 
distribution as compared to previously used models makes it an interesting method providing strong 
insights into the underlying physics of heavy-ion collisions. This generalized approach provides a strong 
correlation with other observables by comparing the predictions of the methods in pT-distributions with 
various harmonics of azimuthal distributions.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Ultra-relativistic nuclear-nuclear collision at RHIC and LHC has 
opened the door to study the state of matter produced under ex-
treme conditions of temperature and pressure known as Quark 
Gluon Plasma (QGP). Transverse momentum (pT) spectra is an im-
portant observable as it provides crucial information about the 
equilibrium dynamics as well as the anisotropy of the system pro-
duced in heavy-ion collision [1]. An appropriate theoretical formal-
ism to describe transverse momentum spectra is essential and of 
great interest within the particle physics community. In this direc-
tion, several approaches are being made to find a generalized dis-
tribution with an aim to explain the momentum distribution. Due 
to the asymptotic freedom and very nature of QCD coupling, the 
coupling strength is extremely strong at low-pT making it almost 
impossible to apply perturbative calculations in the region. Thus, 
statistical approaches become more prominent and turn out to be 
successful in explaining the pT-spectra. The idea of using a sta-
tistical model to describe particle production was first introduced 
in 1948 by Heinz Koppe [2,3] and later by Enrico Fermi [4–6]. 
However, the first systematic application of the statistical model 
to describe high energy collision was developed by Hagedorn [7,8]. 
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Most of these approaches consider the system under explanation 
to be of thermal origin. Therefore, considering the system pro-
duced in heavy-ion collision as a thermal system of particles, the 
particle spectra can be well described by standard Boltzmann-Gibbs
statistics [9], and pT-spectra in this formalism is given as

1

2π pT

d2N

dpT dy
= gV mT

(2π)3
exp

(
−mT

T

)
(1)

where mT is the transverse mass of particle under consideration 
given as 

√
p2

T + m2, g is the spin degeneracy factor, V is the vol-

ume and T is the temperature of the system. Boltzmann-Gibbs 
statistics is a good approximation to study the systems where con-
stituents are independent or weakly correlated, hence entropy will 
be additive as well as extensive [10]. However, it fail to explain the 
strongly correlated systems where long-range correlations & inter-
actions are significant [11]. Further, in a strongly correlated system, 
there might exist the case when entropy is non-extensive or non-
additive, and hence Boltzmann-Gibbs statistics will no longer be 
suitably applicable. On the other hand, the memory effects and 
long-range color interactions may give rise to non-Markovian pro-
cesses which in turn affect the dynamical evolution of the fire-
ball produced in heavy-ion collision as described in Ref. [12]. A 
clear experimental deviation from the Boltzmann-Gibbs distribu-
tion function is observed at higher transverse momenta. This devi-
ation can be interpreted as due to the presence of long-range inter-
actions [13] in the produced fireball. The observed transverse mo-
mentum spectra looks more like a power-law distribution rather 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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than an exponential distribution; this might be due to the intrin-
sic nature of the Boltzmann-Gibbs statistics. The Tsallis approach 
overcomes these limitations by incorporating the effects of non-
extensivity in the system, and these ideas are discussed in seminal 
work in Ref. [14]. At the same time, systems with long-range in-
teraction have been nicely explained within Tsallis statistics frame-
work [15–18].

The Tsallis generalization introduces a new parameter, q, which 
intrinsically takes care of non-extensivity, where the normal expo-
nential is replaced by the q−exponential [19]

ex
q = [1 + (q − 1)x]

1
q−1 (2)

and Tsallis entropy is given as

Sq = k
1 − ∑

i pq
i

q − 1
(3)

which in the limit q → 1 satisfy the Boltzmann-Gibbs entropy

S =
∑

i

piln(pi) (4)

Since the q parameter explains the deviation from thermal equilib-
rium, it can be used to quantify temperature fluctuations around 
the equillibrated value of temperature T0 and the q parameter can 
be connected to variance of temperature [20,21]

q − 1 = V ar(T )

〈T 〉2
(5)

With a negligible chemical potential in LHC energies [22], the Tsal-
lis statistics [23] defines the transverse momentum spectra as

1

2π pT

d2N

dpT dy
= gV mT

(2π)3

[
1 + (q − 1)

mT

T

]− q
q−1

(6)

where Tsallis distribution preserves Boltzmann-Gibbs distribution 
in the limit q → 1. The normalized q-expectation value is usu-
ally expanded as a series of the value around (1 − q), where the 
absolute value |1 − q| is the measure of the deviation from the 
Boltzmann-Gibbs statistics [24]. The thermodynamical consistency 
of Tsallis statistics is proved in Ref. [19], which validates its ap-
plicability in explaining pT-spectra & maintaining the properties 
of Boltzmann-Gibbs statistics in the limit of non-extensivity. Al-
though the Tsallis approach remains very successful in explaining 
the low-pT part of the spectra (except at very low values), it de-
viates from experimental data towards higher-pT. This might be 
due to finite contributions from “soft excitation process” as well as 
“hard scattering process” to the spectrum of particles produced in 
heavy-ion collision [25–28]. In other work, considering the Tsallis 
distribution as a good approximation for pT-spectra for soft pro-
cesses [29–32], it has been derived that the corresponding particle 
multiplicity spectra will be of the form of a negative binomial dis-
tribution (NBD) [33]. However, it is observed that a single NBD 
doesn’t explain particle produced in hard processes [29–32]. At the 
same time, QCD calculations suggest that the inverse power-law 
distribution successfully describes pT-spectra for hard scattering 
processes. Hence, the Tsallis approach has not much to say about 
the hard-processes, where more generalized descriptions should be 
applied. Our proposal is to combine spectra from both processes 
and to explain them in a more generalized way, which could not 
be done in previous approaches.

As we discussed earlier, there does not exist a well established 
theory that can be used to explain the form of pT-spectra for 
both soft & hard processes (usually hard process are explained us-
ing perturbative QCD). The perturbative QCD calculations suggest 
that transverse momentum spectra of particles produced in hard 
scattering processes will be of the form of an inverse power-law 
[34–38] given by the Eq. (7)

f (pT ) = 1

N

dN

dpT
= ApT

(
1 + pT

p0

)−n

(7)

Here A is normalization constant and p0, n are free parameters. 
The relationship in the above equation enforces a generalization in 
such a way that at low-pT, we rely on statistical physics to explain 
the spectra, whereas at high-pT we have a well established per-
turbative QCD theory that nicely explains transverse momentum 
spectra.

2. Pearson formalism

Our proposed method is a generalized approach which is in-
line to the Tsallis statistics, which can explain the spectra at 
low-pT well. The basic goal is to present a generalized approach 
to satisfy both “soft” and “hard” processes, keeping all thermo-
dynamical properties preserved, and to develop a unified spectral 
distribution which is required for upcoming high-energy & high-
luminosity experiments like High luminosity LHC, Future Circular 
Collider (FCC) etc., where a dominance of hard-processes is antic-
ipated. Therefore, we introduce the “Pearson Distribution” as the 
master equation to obtain a generalized distribution of the subject 
under discussion. The Pearson Distribution was initially discussed 
by Karl Pearson in 1895 [39] and subsequently modified in 1901 
and 1916. Pearson’s proposal was to classify a distribution function 
based on the first four moments related to mean, standard devi-
ation, skewness and kurtosis of the distribution. Having success-
ful applications in many different fields like geophysics, statistics 
and financial marketing, the Pearson’s distribution provides ample 
scope to explore generalizations of spectral analyses, in our case, 
particularly in momentum spectra. The Pearson distribution func-
tion is expressed in the form of a differential equation [40] as:

1

p(x)

dp(x)

dx
+ a + x

b0 + b1x + b2x2
= 0 (8)

where parameters a, b0, b1, b2 can be related to first four moments 
as:

a = b1 = m3(m4 + 3m2
2)

10m2m4 − 18m3
2 − 12m2

3

(9)

b0 = m2(4m2m4 − 3m2
3)

10m2m4 − 18m3
2 − 12m2

3

(10)

b2 = 2m2m4 − 6m3
2 − 3m2

3

10m2m4 − 18m3
2 − 12m2

3

(11)

here m1, m2, m3 and m4 are the first four central moments 
with m1 = 0 by construction. Different conditions on parame-
ters a, b0, b1, b2 or more generally different types of roots of the 
quadratic equation in the denominator will give different distri-
bution functions. There are 12 different distributions that comes 
under Pearson family of curves. The Pearson criteria which will 
decide the type of distribution is given as

k = b2
1

4b0b2
(12)

This determines the type of roots of the quadratic equation in the 
denominator of Eq. 8. When the roots are real and have different 
signs (i.e. k < 0) we will get a Pearson distribution of type I also 
known as the β-distribution whereas real roots with identical signs 
(i.e. k > 1) correspond to type VI. Complex roots appear for 0 <
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Fig. 1. Boltzmann fit of charged particle pT-spectra produced in PbPb collision for 
four different centrality bins at 2.76 TeV measured in ALICE at LHC.

k < 1 and the corresponding distribution is classified as type IV. A 
detailed discussion of Pearson criteria can be found in Ref. [41,42]. 
Upon solving Eq. (8), we get:

p(x) = C(e + x) f (g + x)h (13)

p(x) = B
(

1 + x

e

) f
(

1 + x

g

)h

(14)

upto some normalization constant B = Ce f gh . If we replace g =
T

q−1 , h = − q
q−1 , f = −n and e = p0 we will get:

1

2π pT

d2N

dpT dy
= B

(
1 + pT

p0

)−n (
1 + (q − 1)

pT

T

)− q
q−1

(15)

where

B = C
1

(p0)n

(
T

q − 1

)− q
q−1

(16)

Interestingly, the backward compatibility can be proved by reduc-
ing the Pearson distribution to Tsallis distribution within the limit 
n = −1 and p0 = 0, which indeed preserves all thermodynamic 
properties of the Tsallis distribution. It is therefore, a generalized 
version of the Tsallis distribution which has the extra advantage 
of explaining the spectra at higher-pTwhich infers hard scatter-
ing processes. A detailed thermodynamical consistency check is 
beyond the scope of this article and will appear in follow-up 
work. However, we discuss outcomes of this approach by analyzing 
heavy-ion collision data.

3. Result and discussion

A detailed analysis was performed on the invariant yield of 
charged hadrons produced in a PbPb collision at 2.76 TeV at LHC 
measured by ALICE experiment [43]. This dataset is chosen because 
of its better resolution and availability of the larger pT range for 
all centrality bins which enable a better qualitative analysis and a 
better comparison between various models. We performed a nu-
merical fitting by sliding the ranges in such a way that the models 
could predict their best fits over the entire range of spectra. The 
Boltzmann, Tsallis and Pearson fits to the transverse momentum 
spectra are shown in Figs. 1, 2 and 3 respectively. From the fit-
ting analysis it is evident the Bolzmann statistics shows a poor 
agreement in explaining the spectra, Tsallis statistics fits only at 
the intermediate pT range whereas Pearson gives a best fit re-
sults by expressing entire pT range. Goodness of fit in terms of 
Fig. 2. Tsallis fit of charged particle pT-spectra produced in PbPb collision for four 
different centrality bins at 2.76 TeV measured in ALICE at LHC.

Fig. 3. Pearson fit of charged particle pT-spectra produced in PbPb collision for four 
different centrality bins at 2.76 TeV measured in ALICE at LHC.

Table 1
Best fit value of χ2/N D F for different centrality bins.

Centrality Boltzmann Tsallis Pearson

0 to 5% 25.3451 1.99445 0.10100
5 to 10% 25.5971 1.86747 0.08545
10 to 20% 26.5224 1.75271 0.08609
20 to 30% 27.6911 1.57784 0.08423
30 to 40% 28.3606 1.34457 0.06994
40 to 50% 29.8191 1.1226 0.05170
50 to 60% 29.4844 0.88907 0.03901
60 to 70% 27.9139 0.65552 0.02568

χ2/N D F has been provided in Table 1 for different centrality bins 
and we observe that the values are minimum for Pearson distribu-
tion which support our claim of best fit using Pearson distribution. 
We have already discussed that the q parameter is a measure of 
deviation from thermal equilibrium, so the fitted values of q sug-
gest a departure from equilibrium with an increase in centrality, 
where central collisions are more toward the equilibrium as com-
pared to peripheral collisions. We observed a decreasing trend in 
q-parameter with centrality, which matches well with the observa-
tions in Tsallis Blast Wave (TBW) fits [44] and q-Weibull fits [45].

One possible reason for obtaining the best fit using the Pearson 
distribution is the presence of higher order moments as parame-
ters whereas other distribution functions use only the mean and 
standard deviation as parameters. It was discussed earlier that the 
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Tsallis distribution is not fitting higher pT values which form the 
tail part of the distribution. The tail of a distribution is sensitive to 
higher order moments, so a distribution function which depends 
on higher moments can fit the tail part in a more precise way as 
in our case. It can be clearly seen that the Pearson fitting is com-
patible with both low-pT and high-pT.

Upon a careful observation of the fitting results, it can be seen 
that while the numerical value of n is of the order 10−2, the q
produces a value close to unity. This shows a rapid decay of the 
Tsallis component of Eq. (15) and a slow decay of hard scattering 
processes. This also supports our argument that the first part of 
the Eq. (15) will be dominant in higher pT region of the spectra.

The Pearson distribution is more physically realistic over many 
two component models that explain data as usually two compo-
nent models fit the data separately in low-pT and high-pT missing 
a unified explanation. The Pearson distribution is a single func-
tion which is thermodynamically consistent and preserves both 
the Tsallis and Boltzmann-Gibbs distributions in different limiting 
cases as well as explain both low and high-pT regions. Although 
the Pearson distribution nicely describes the momentum spectra, 
we have kept the parameters as free parameters and an explo-
ration of those parameters will be the subject of a separate work 
to suffice our examinations.

With the successful reproduction of the momentum spectra of 
high energy collisions at the LHC, we examined other data inter-
pretations, for example, a scaling of flow parameters in heavy-
ion collisions. The flow parameters basically explain azimuthal 
anisotropies in particle production and are directly related to the 
fluctuation in the initial fireball produced in the collision, which 
plays a key role in understanding the dynamics of QGP evolution 
which in turn contains information of QCD phase structure [46]. 
The flow parameters appear in a Fourier series expansion of the az-
imuthal distribution of particles. Particle yield in terms of Fourier 
expansion is given as [47,48]

E
d3N

dp3
= 1

pT

d2N

dpT dy

N

2π
[1 + 2

∑
n

vncos {n(φ − ψ)}] (17)

Here, E is the energy of the particle, pT is transverse momentum, 
vn represents the nth order flow coefficient, y is rapidity, ψ rep-
resent the reaction plane angle and φ is the azimuthal angle. Flow 
coefficients are expressed as

vn = 〈cos [n(φ − ψ)]〉 (18)

where the angle brackets represent an average over all of the par-
ticles in all events. Since the differential flow depends directly on 
pT & y, it is natural to estimate the flow by integrating the flow 
coefficient over pT and y. We further explore the correlation of 
flow coefficients to different Pearson parameters. This is due to the 
fact that the flow-coefficient depends on the azimuthal anisotropy 
of momentum distribution and thus an imprint of flow must be 
present in the pT-spectra of particles produced in the heavy-ion 
collision. Since the flow-coefficients directly depend on the initial 
geometry of the collision, there must be a centrality dependence of 
Pearson parameter which are connected to these flow-coefficient.

In the spirit of successful spectral analysis, we examined the 
correlation of various parameters with the flow coefficient. To ver-
ify the potential correlation, we investigated the charged hadron 
elliptic flow coefficient (v2 {2} extracted using two particle cu-
mulant method) integrated over pT from 0.2 to 5 GeV/c with a 
rapidity interval of |η| < 0.8 for a PbPb collision at 2.76 TeV for 
different centrality bins [49]. Further, we analyzed the pT-spectra 
of charged hadrons in a similar range of pT, η & centralities and 
obtained the values of parameters. Fig. 4 shows the Pearson pa-
rameter f versus centrality and observed that the behavior of 
Fig. 4. Pearson parameter f versus centrality (%) for charged hadrons at 2.76 TeV 
and inlay shows the v2 at same energy.

Fig. 5. Elliptic flow coefficient versus Pearson parameter f at 2.76 TeV PbPb colli-
sion and the curve is fitted with a linear equation.

curves for integrated elliptic flow and Pearson f are of similar 
nature. More interestingly, both of them peak at the 50 − 60% cen-
trality bin. We also observed that there is a linear relation between 
f and v2 {2} as in Fig. 5 fitted by v2 = 0.267426 f + 0.230294 and 
the Pearson correlation coefficient is 0.9976 which proves the lin-
ear relation between these two variables.

These exciting results envisage that the v2 can be obtained 
using the Pearson’s f parameter which requires more data for esti-
mating the energy dependent correlation. The above results estab-
lish a direct correlation of anisotropic flow to the parameters of the 
Pearson distribution as the flow coefficients are directly obtained 
from transverse momentum spectra instead of a conventional flow 
analysis.

4. Conclusion

To conclude, our study presents a complete solution for the ex-
planation of transverse momentum spectra of particles produced 
in high energy collisions. We examine a single particle Pearson 
distribution function, which in turn introduces a generalized def-
inition of entropy. In this work, we have demonstrated that the 
study of the Pearson distribution and its application has the unique 
potential to resolve particle production through hard-processes in 
high-energy collisions. The particular strength of our findings is 
that they apply to particles which are produced throughout spec-
trum from low to high-pT. To receive the ultimate benefit of the 
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proposed method requires sufficient and wide testing of differ-
ent observables, which requires more events samples. The Pear-
son formalism provides a strong motivation for the studies of 
high-pT particle production in heavy-ion collisions and this work 
should be expanded in the future to include larger statistics and 
data from a similar range of results for v2 and pT.

This approach opens up a new avenue to test our formalism, for 
example, there would be substantial prospects to study chiral sym-
metry restoration within the framework of Pearson distribution. 
This is due to the fact that the effective potential depends on the 
momentum distribution and in turn, the symmetry restoration also 
depends on momentum distribution. Thus, the generalized power 
like distribution may change the value related to chiral symme-
try. We hope that this work may be helpful for the community 
to study the thermal system of QGP within the framework of the 
Pearson generalized statistics. The Pearson distribution can also be 
tested in many fields of physics such as Bose-Einstein condensa-
tion, black-body radiation, neutron star, early universe, supercon-
ductivity etc.
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