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Negative tension branes as stable thin shell wormholes
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We investigate negative tension branes as stable thin shell wormholes in Reissner-
Nordström-(anti) de Sitter spacetimes in d dimensional Einstein gravity. Imposing Z2

symmetry, we construct and classify traversable static thin shell wormholes in spheri-
cal, planar (or cylindrical) and hyperbolic symmetries. In spherical geometry, we find
the higher dimensional counterpart of Barceló and Visser’s wormholes, which are stable
against spherically symmetric perturbations. We also find the classes of thin shell worm-
holes in planar and hyperbolic symmetries with a negative cosmological constant, which
are stable against perturbations preserving symmetries. In most cases, stable worm-
holes are found with the combination of an electric charge and a negative cosmological
constant. However, as special cases, we find stable wormholes even with vanishing cosmo-

logical constant in spherical symmetry and with vanishing electric charge in hyperbolic
symmetry.

Keywords: Wormhole; stability; thin-shell.

1. Construction

We obtain wormholes by operating three steps invoking junction conditions [1].

Firstly, consider a couple of d dimensional manifolds, V
±
. We assume d ≥ 3. The

d dimensional Einstein equations are given by

Gμν± +
(d− 1)(d− 2)

6
Λ
±
gμν± = 8πTμν±, (1)

where Gμν±, Tμν± and Λ
±

are Einstein tensors, stress-energy tensors and cosmo-

logical constants in the manifolds V
±
, respectively. The metrics on V

±
are given by

g±μν(x
±). The metrics for static and spherically, planar and hyperbolically symmet-

ric spacetimes on V
±
are written as

ds2
±

= −f
±
(r
±
)dt2

±

+ f
±
(r
±
)−1dr2

±

+ r2
±

(dΩk
d−2)

2

±

, (2)

f
±
(r
±
) = k − Λ

±
r2
±

3
− M

±

rd−3

±

+
Q2
±

r
2(d−3)

±

, (3)

respectively. M
±
and Q

±
correspond to the masses and charges in V

±
, respectively.

k is a constant that determines the geometry of the (d− 2) dimensional space and

takes ±1 or 0. k = +1, 0 and −1 correspond to a sphere, plane (or cylinder) and a

hyperboloid, respectively.

Secondly, we construct a manifold V by gluing V
±
at their boundaries. We choose

the boundary hypersurfaces ∂V
±
≡ {r

±
= a | f

±
(a) > 0}, where a is called the

thin shell radius. Then, by gluing the two regions with matching their boundaries,

∂V+ = ∂V
−
≡ ∂V , we can construct a new manifold V which has a wormhole throat
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at ∂V . ∂V should be a timelike hypersurface, on which the line element is given by

ds2∂V = −dτ2 + a(τ)2(dΩk
d−2)

2. (4)

τ stand for proper time on the junction surface ∂V .
Thirdly, by using the junction conditions, we derive the equations for the

manifold ∂V .

1.1. Z2 wormholes made of pure tension

From now on, we assume Z2 symmetric wormholes for simplicity. Since our metrics

Eq. (2) are diagonal, Si
j , the stress-energy tensor on the shell, is also diagonalized

and written as Si
j = diag(−σ, p, p, . . . , p), where p is the surface pressure and σ is

the surface energy density living on the thin shell. The explicit form of junction

conditions yield

σ = −d− 2

4πa
A, (5)

p =
1

4π

(
B

A
+

d− 3

a
A

)
, (6)

where A(a) ≡
√
f + ȧ2, B(a) ≡ ä + 1

2
f ′. Thus, we deduce a critical property of

wormholes that σ must be negative.

Then the τ -component of the Hamiltonian constraints, Sij
|j + [Tα

β e
i
αn

β ]
±
= 0,

reduces to

σ′ = −d− 2

a
(σ + p). (7)

From Eq. (7) we see that σ = const. if we choose pure tension p = −σ as a equation

of state on the shell. In this setup of pure (negative) tension, we get the equation of

motion for radially moving shell by squaring Eq. (5). The result is ȧ2 + V (a) = 0,

where

V (a) = f(a)−
(
4πaσ

d− 2

)2

. (8)

1.2. Static solutions, stability criterion and the horizon-avoidance

condition

Suppose a thin shell throat be static at a = a0 and its throat radius satisfy the

relation f(a0) > 0. This condition is called the horizon-avoidance condition in [2].

We analyze stability against small perturbations preserving symmetries [3]. To

determine whether the shell is stable or not against the perturbation, we use Taylor

expansion of the potential V (a) around the static radius a0 as

V (a) =V (a0) + V ′(a0)(a− a0) +
1

2
V ′′(a0)(a− a0)

2 +O((a− a0)
3). (9)
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One find ȧ0 = 0, ä0 = 0 ⇔ V (a0) = 0, V ′(a0) = 0 at a = a0 so the leading-order

term for the potential given by Eq. (9) is proportional to V ′′(a0)(a−a0)2. Therefore,
the stability condition against radial perturbations for the thin shell is given by

V ′′(a0) > 0. (10)

The present system may have static solutions a = a0. Then, from Eqs. (5) and

(6) we get the equation which determines a0 as

2ka
2(d−3)

0
− (d− 1)Mad−3

0
+ 2(d− 2)Q2 = 0. (11)

For k = ±1, Eq. (11) has two solutions:

ad−3

0±
=

d− 1

4k
M(1± b), (12)

where

b :=

√
1− k

q2

q2c
, q :=

|Q|
|M | , qc :=

(d− 1)

4
√
d− 2

. (13)

2. Classification of static wormholes

By studying both the existence of static solutions and stability conditions, we can

search static and stable wormholes. The results are summarized in Table 1 – 4.

Table 1. The existence and stability of Z2 symmetric static wormholes in
three dimensions. k = 1, 0 and −1 correspond to spherical, planar (cylindri-
cal) and hyperbolic symmetries, respectively.

Static solution Horizon avoidance Stability

k −M +Q2 = 0 ∀a0 > 0 Satisfied Marginally stable

k −M +Q2 	= 0 None – –

Table 2. The existence and stability of Z2 symmetric static wormholes in spherical symmetry
in four and higher dimensions. The expressions for the static solutions a0± (0 < a0− < a0+) are
given by Eqs. (12) and (13) with k = 1. H±(d, q) and R(d) are given by Eq. (A.3) and Eq. (A.2),
respectively. Note that H+ > 0 for 0 ≤ q ≤ qc, while H− > 0 only for 1/2 < q ≤ qc. Therefore,
if Λ = 0, the horizon-avoidance condition holds for a0+ for 0 ≤ q ≤ qc, while it does for a0− only
for 1/2 < q ≤ qc. For M > 0 and q = qc, the double root solution a = a0± is linearly marginally
stable but nonlinearly unstable.

Static solution Horizon avoidance Stability

M > 0 q = 0 [(d− 1)M/2]1/(d−3) λ < H+(d, 0) Unstable
0 < q < qc a0± λ < H±(d, q) for a0± a0−: Stable, a0+: Unstable

q = qc [(d− 1)M/4]1/(d−3) λ < R(d) Unstable
qc < q None – –

M < 0 None – –

M = 0 None – –
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Table 3. The existence and stability of Z2 symmetric static wormholes in
hyperbolic symmetry in four and higher dimensions. The definitions for q

and λ are same as in Table 2. The expressions for the static solutions a0±

are given by Eqs. (12) and (13) with k = −1. Since all of I, N and S are
negative, the horizon-avoidance condition cannot be satisfied with Λ = 0 for
any cases in hyperbolic symmetry.

Static solution Horizon avoidance Stability

M > 0 q = 0 None – –

q > 0 a0− λ < I(d, q) Stable

M < 0 q = 0 [(d− 1)|M |/2]1/(d−3) λ < N(d, 0) Stable
q > 0 a0+ λ < N(d, q) Stable

M = 0 Q = 0 None – –

|Q| > 0 [
√
d− 2|Q|]1/(d−3) Λ/3 < S(d, q) Stable

Table 4. The existence and stability of Z2 symmetric static wormholes in planar or cylin-
drical symmetry in four and higher dimensions. The definitions for q and λ are same
as in Table 2. Note that we assume that the bulk spacetime is described by the Reiss-
ner-Nordstöm-(anti) de Sitter metric or its higher dimensional counterpart. J(d, q) is given
by Eq. (A.7). Since J is negative, the horizon-avoidance condition cannot be satisfied with

Λ = 0 for M > 0 and q > 0 in planar or cylindrical symmetry.

Static solution Horizon avoidance Stability

M > 0 q = 0 None – –

q > 0 [2(d− 2)q2M/(d− 1)]1/(d−3) λ < J(d, q) Stable

M < 0 q = 0 None – –
q > 0 None – –

M = 0 Q = 0 ∀a0 > 0 Satisfied Marginally stable
|Q| > 0 None – –

3. Summary and discussion

We developed the thin shell formalism for d dimensional spacetimes and investigated

spherically, planar (cylindrically) and hyperbolically symmetric wormholes with a

pure negative tension brane and found and classifies Z2 symmetric static solutions

which are stable against radial perturbations. We found that in most cases charge

is needed to keep the static throat radius positive and that a negative cosmological

constant tends to decrease the radius of the black hole horizon and then to achieve

the horizon avoidance. So the combination of an electric charge and a negative

cosmological constant makes it easier to construct stable wormholes. However, a

negative cosmological constant is unnecessary in a certain situation of k = +1 and

M > 0 and charge is unnecessary in a certain situation of k = −1 and M < 0. We

summarize the results in Tables 1, 2, 3 and 4.

In three dimensions, there is only possibility to have a marginally stable worm-

hole. The ingredients of this wormhole are a couple of AdS space-times.

Then, we restrict the spacetime dimensions to be higher than or equal to four.

For k = +1, spherically symmetric thin shell wormholes which are made with

a negative tension brane are investigated. It turns out that the mass must be
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positive, i.e., M > 0. The obtained wormholes can be interpreted as the higher

dimensional counterpart of Barceló-Visser wormholes [2]. As a special case, if 1/2 <

q < qc, one can obtain a stable wormhole without a cosmological constant. This

wormhole consists of a negative tension brane and a couple of over-charged Reissner-

Nordström space-times.

For k = −1, though it is hard to imagine how such symmetry is physically

realized, they are interesting from the viewpoint of stability analyses. It turns out

that M can be positive, zero and negative for stable wormholes. In this geometry,

there is no upper limit for |Q| for stable wormholes. There is possibility for a stable

wormhole without charge if M < 0 and λ < N(d, 0) is satisfied.

For k = 0, the geometry is planar symmetric or cylindrically symmetric. In

this case, since the generalized Birkhoff’s theorem does not apply, we should regard

the Reissner-Nordström-(anti) de Sitter spacetime as a special solution to the elec-

trovacuum Einstein equations. This means that the present analysis only covers a

part of possible static thin shell wormholes and the stability against only a part of

possible radial perturbations. Under such a restriction, we find that we need Q �= 0

and Λ < 0 to have stable wormholes. There is no upper limit for |Q|. In the zero

mass case, the wormhole is marginally stable.

We would note that the existence and stability of negative tension branes as

thin shell wormholes crucially depend on the curvature of the maximally symmetric

(d − 2) dimensional manifolds. On the other hand, they do not qualitatively but

only quantitatively depend on the number of space time dimensions.
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Appendix A. Definition of functions

Functions presented in tables are defined by

λ :=
Λ

3
|M | 2

d−3 , (A.1)

R(d) ≡
(

4

d− 1

) 2
d−3 (d− 3)2

(d− 1)(d− 2)
, (A.2)

H
±
(d, q) ≡−

{
4

(d− 1)(1± b)

} 2
d−3 d− 3

(d− 1)(d− 2)(1± b)
[2− (d− 1)(1± b)] ,

(A.3)

I(d, q) :=− d− 3

(d− 1)(d− 2)

{
4

(d− 1)(b− 1)

}
−

2
d−3

[
2

b− 1
+ d− 1

]
, (A.4)
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N(d, q) ≡
{

4

(d− 1)(1 + b)

} 2
d−3 d− 3

(d− 1)(d− 2)(1 + b)
[2− (d− 1)(1 + b)] , (A.5)

S(d, q) ≡− |Q|− 2
d−3 (d− 3)(d− 2)d−4, (A.6)

J(d, q) ≡− 1

4

(
1

q

)2
d−1

d−3
(

d− 1

2(d− 2)

) 2
d−3 (d− 1)(d− 3)

(d− 2)2
.

(A.7)

References

1. M. Visser, Lorentzian Wormholes, AIP Press, New York(1996).
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