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Abstract: In the low-energy regime, baryons with N f ≥ 2 have long been constructed

as skyrmions or through bag models, but such constructions for N f = 1 are hindered by

the trivial topological structure of the meson field. Recent proposals suggest that one-

flavor baryons can instead be interpreted as quantum Hall droplets on the η′ domain

wall, providing a potential link to quark–hadron continuity at high density. In retrospect,

the qualitative or semi-qualitative construction of one-flavor baryons on the η′ domain

wall reveals that these baryons can be described as quantum Hall droplets, resembling

topological solitons akin to skyrmions. Using an effective theory on the η′ domain wall,

which is conjectured to be the Chern–Simons–Higgs theory, it is discussed that its vortex

solution with unit baryon numbers naturally has a spin of Nc/2, and thus can be interpreted

as a baryon or multi-baryon structure. The particle–vortex duality suggests that quarks

carry a fractional topological charge of 1/Nc and obey fractional statistics. In terms of chiral

bag models, confinement can be attributed to the monopoles confined within the bag, and

the vector meson fields on the bag surface are essential for ensuring the correct baryon

number in the chiral bag framework, thereby providing deeper insights into baryons as

non-trivial topological structures of the meson field. In this paper, we review the progress

in this development, with a special focus on the η′ domain wall dynamics. Naive extensions

to N f ≥ 2 are also discussed.

Keywords: baryon; skyrmion; chiral bag; quantum Hall droplet; Chern–Simons; vortex

1. Introduction

At high energies, quantum chromodynamics (QCD) is well described by a weakly

interacting SU(Nc) gauge theory coupled to N f fundamental fermions, where perturbative

techniques are applicable [1–3]. In contrast, at low energies, QCD transitions into a strongly

coupled regime, leading to the confinement of quarks and gluons into color-neutral hadrons

such as mesons and baryons. The lightest pseudoscalar mesons, identified as Nambu–

Goldstone bosons, emerge from the spontaneous breaking of chiral symmetry: SU(N f )L ×
SU(N f )R → SU(N f )V . These mesons govern the dynamics of QCD at low energies, giving

rise to a non-linear sigma model that serves as the low-energy effective theory for pions [4,5].

To account for corrections beyond the leading order, higher-order pion interactions are

introduced through a systematic expansion using power counting, resulting in chiral

perturbation theory [6–8]. The inclusion of baryons can be achieved by adding interaction

terms that respect the symmetries of the theory [9,10]. Nowadays, chiral effective theories

anchored on chiral symmetry breaking have become the most popular frameworks for
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studying hadrons—both mesons and baryons—dynamics [11–13]. However, this approach

views the baryon as a point particle coupling to the meson field at the Lagrangian level,

which falls short in addressing the detailed internal structure of baryons. This limitation

has prompted the development of various theoretical models to describe baryons more

comprehensively [14–20].

Prior to the formulation of QCD, Skyrme discovered topological soliton solutions

composed of non-linearly interacting pion fields, referred to as skyrmions, and proposed

them as candidates for baryon models [14–16,20]. This idea gained further validation in the

large Nc limit of QCD, where the theory simplifies and becomes dominated by planar dia-

grams [21]. In this limit, baryons can be effectively described as solitons of interacting me-

son fields because their physical properties exhibit the same Nc scalings [22–24]. In (3 + 1)

dimensions, skyrmions are supported by a non-trivial homotopy group, π3(SU(N f )) = Z

for N f ≥ 2, with the integer Z corresponding to the winding number. The winding number,

conserved by virtue of topology, can be interpreted as the baryon number in the context

of QCD. Nevertheless, for the case of a single quark flavor, the homotopy group becomes

trivial, π3(U(1)) = 0, implying the absence of topologically stable soliton solutions that

can be associated with baryons. This limitation has been recognized as a fundamental short-

coming of the skyrmion approach to baryon physics. However, recently, the construction

of the one-flavor baryon in the (2 + 1)-dimensional η′ domain wall has been suggested,

which also inspires reconsideration of the chiral bag in (3 + 1) dimensions.

In the literature, most research has focused on the dynamics of chiral mesons, par-

ticularly pions, within the chiral bag model [25–29]. Less attention has been given to the

pseudoscalar isosinglet meson η′, which acquires mass from the U(1)A anomaly [30–35].

In the large Nc limit, U(1)A symmetry is restored, and the η′ becomes a massless Nambu–

Goldstone boson in the chiral limit. Consequently, the η′ should not be neglected when

considering hadron physics in the large Nc scenario and the topology of low-energy QCD

at high density [36], especially given recent developments in the physics of η′ domain walls.

This prompts a reexamination of the role of the η′ in the chiral bag model.

Recently, the scope of ’t Hooft anomaly matching has been extended to encompass

discrete symmetries and higher-form symmetries [37–39], providing novel insights into

the properties of the η′ domain wall. It has been shown that the η′ domain wall hosts a

topological SU(Nc)N f
Chern–Simons theory [39–41], which is conjectured, via level-rank

duality, to be equivalent to a U(N f )−Nc Chern–Simons theory [42]. In the single-flavor

scenario, baryonic states can be realized on the η′ domain wall in a manner analogous

to quantum Hall droplets. These droplets exhibit a spin of Nc/2 and support chiral edge

modes, encapsulating the correct baryon number [43]. Furthermore, the interpretation of

baryons as quantum Hall droplets can be extended to view them as chiral bags within a

(2 + 1)-dimensional strip, using the Cheshire Cat principle (CCP) [44]. This provides a

direct mapping between the microscopic QCD degrees of freedom, i.e., quarks and gluons,

and the macroscopic degrees of freedom, i.e., hadrons, in terms of topological objects [45].

To provide a more concrete framework, it has been demonstrated that a Chern–Simons–

Higgs theory emerges on the η′ domain wall [46]. This theory supports vortex solutions,

with each vortex carrying a unit of topological charge and naturally exhibiting a spin of

Nc/2. The Nc scaling of these vortices aligns with known baryon properties, suggesting

a perspective in which baryons can be interpreted as vortices. Through particle-vortex

duality, the Zhang–Hansson–Kivelson framework [47] implies that quarks carry a fractional

topological charge of 1/Nc and follow fractional statistics.

On the other hand, the chiral bag model has provided a successful framework for

constructing baryons in the case of multiple flavors, N f ≥ 2 [25,26,29,48–55]. However,

attempts to extend the chiral bag model to include an η′ boundary condition have en-
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countered significant challenges. It has been predicted that such configurations allow

color to leak from the bag, thereby breaking confinement [28,56]. To address this issue, a

counterterm on the bag surface has been proposed, restoring gauge invariance through the

SU(Nc)N f
Chern–Simons theory observed on the η′ domain wall [57]. This development

has sparked further investigation into the interplay between the internal dynamics of the

bag and the induced surface physics in chiral bag models.

In recent years, significant progress has been made in constructing baryons involving

the η′ meson field, and this article reviews these developments. The outline of this article is

as follows: In Section 2, we review the fundamental aspects of the Skyrme model and chiral

bag model, especially regarding topological baryon number and the color charge flow-out

problem. In Section 3, we examine the qualitative and semi-quantitative construction of

one-flavor baryons on the η′ domain wall, where the baryon, as a quantum Hall droplet,

provides insights into quark-hadron continuity. In Section 4, we propose the concrete theory

on the η′ domain wall, where vortex solutions can be understood as baryon or multi-baryon

structures based on the large Nc scaling. The relevance of domain-wall skyrmions is also

discussed. In Section 5, we explore the hypothesis that confinement is driven by monopoles

confined within the bag and derive the effective theory for the bag surface. The role of

vector meson fields on the bag surface is emphasized, as they are essential for ensuring the

correct baryon number in the chiral bag framework. Finally, we conclude with a summary

and brief discussion.

2. Baryon Construction for N f ≥ 2

For the case of flavor number N f ≥ 2, baryons have been successfully constructed

using both the Skyrme model [14–16,20] and the chiral bag model [25,26,29,48–55]. In this

section, we review these two approaches separately and explore how they lead to the

construction of baryons in the one-flavor case.

2.1. Skyrmion

We consider QCD with N f ≥ 2 quark flavors. The QCD Lagrangian possesses an

axial symmetry, U(1)A, which is broken at the quantum level due to the axial anomaly.

Consequently, the theory retains a global continuous symmetry SU(N f )L × SU(N f )R ×
U(1)B. For N f within the confining range (below the conformal window), QCD exhibits

confinement at low energies, and the global symmetries are spontaneously broken by the

formation of a chiral condensate

SU(N f )L × SU(N f )R ×U(1)B → SU(N f )V ×U(1)B. (1)

Here, SU(N f )V is the diagonal subgroup of SU(N f )L × SU(N f )R, which leaves the chiral

condensate invariant. This spontaneous breaking of chiral symmetry results in massless

Nambu–Goldstone bosons, identified as pions. The low-energy dynamics are captured by

a non-linear sigma model, with the leading-order effective Lagrangian parametrized by

U(x) ∈ SU(N f )

L =
f 2
π

4
tr
(

∂µU†∂µU
)
+ · · · , U(x) = exp

{
2i

fπ
πa(x)λa

}
, (2)

where higher-derivative terms, represented by · · · , may be included if necessary. Notably,

for N f ≥ 3, the Wess–Zumino term is crucial for anomaly matching [24,58]. It is intriguing

that this effective theory, though only incorporating the massless Nambu–Goldstone (NG)

modes, still allows for baryonic soliton solutions, known as skyrmions after stabilization.
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To stabilize the energy of these soliton solutions, Skyrme introduced a higher-

derivative term beyond leading order, forming the celebrated Skyrme model

LSky =
f 2
π

4
tr
(

∂µU†∂µU
)
+

1

32e2
tr
(
[U†∂µU, U†∂νU][U†∂µU, U†∂νU]

)
. (3)

For any soliton solution of the Skyrme model, static field configurations map spatial R3

to the group manifold SU(N f ). To ensure finite energy, the field must reach its vacuum

at spatial infinity, limr→∞ U(x) = 1, effectively compactifying R3 to S3. Thus, soliton

solutions are classified by

π3(SU(N f )) = Z, ∀N f ≥ 2, (4)

and the associated topological current is the skyrmion current

Sµ =
1

24π2
ϵµνρσ tr

(
U†∂νUU†∂ρUU†∂σU

)
, (5)

which is identically conserved, ∂µSµ = 0. The topological charge, given by S =
∫

d3x S0,

provides a conserved quantum number. In the simplest case of N f = 2, the field U(x)

wraps around the target space SU(2) ∼= S3 as one traverses spatial R3. This is achieved by

the hedgehog ansatz [23]

USky(x) = exp(i f (r) σ · x̂) = cos f (r) + i σ · x̂ sin f (r). (6)

To satisfy the boundary condition U(∞) = 1, one can choose f (∞) = 0. To ensure that

U(x) has a well-defined limit at the origin, we also require f (0) = nπ, where n ∈ Z. It can

then be shown that this configuration has a topological charge S = n.

One compelling argument for identifying skyrmions as low-energy descriptions of

baryons lies in their Nc scaling behavior, which matches that of baryons. Additionally,

’t Hooft anomaly matching conditions further relate the skyrmion current to the baryon

current, providing a strong indication that skyrmions capture essential aspects of baryonic

physics [24,59]. To capture the topological characteristics of a skyrmion, one can analyze

the static pion field configuration U(x) as a background field. Introducing a coupling of Nc

quarks to this skyrmion background, we write

LSky−quark = ψ̄

(
i/∂ − µ exp

{
2i

fπ
γ5πa(x)λa

})
ψ. (7)

Here, the specific value of the coupling constant µ is not essential for our analysis. By

quantizing the system in the presence of the U(x) background field, one can compute the

baryon number associated with the skyrmion background. This calculation yields a baryon

number that exactly equates to the topological charge S [60], providing further evidence

that QCD baryons correspond to skyrmions in the low-energy effective theory.

Using the skyrmion approach, not only single baryons but also nuclei—multiskyrmion

state—and nuclear matter can be accessed using a unified framework [61–67]. A novel

phenomenon that has not been found in other approaches than the skyrmion one is the

topology change where the matter made of one-winding number objects transit to that made

of half-winding number objects [68–71]. In terms of CCP, this topology change represents

the hadron–quark continuity in QCD in hadronic matter [44,45]. It has been found that

this topology change is essential for the equation of state for compressed baryonic matter

relevant for massive compact stars [72–76].
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2.2. Chiral Bag

The skyrmion description of baryons emphasizes global properties but does not

capture their quark composition. To address this, the chiral bag model of baryons was

proposed as an extension of the MIT bag model [29,48–52], incorporating spontaneous

chiral symmetry breaking. In this model, the MIT bag is surrounded by a cloud of chiral

mesons, such as pions. The bag represents a static three-dimensional region Ω, bounded

by a smooth surface Σ. Here, Σ is not required to be connected, and Ω need not be simply

connected. Inside the bag, quarks are free and satisfy the Dirac equation iγµ∂µψ = 0. To

confine the quarks, ψ obeys a boundary condition on Σ [77]

−iγ · nψ = exp(iθΣσ · nγ5)ψ, (8)

where we consider two-flavor quarks, with σ as the Pauli matrices, and n the unit exterior

normal to Σ. The bag surface is parametrized by the chiral angle θΣ. In the chiral bag model,

the baryon number is defined as

NB = −1

2
lim

t→+0
∑
n

ϵ(En) exp(−t|En|), (9)

where the sum extends over all positive and negative energy single-particle eigenstates.

This regulated expression corresponds to
∫

d3x 1
2 [ψ

†(x), ψ(x)]. Using the Dirac equation

and boundary conditions, it can be shown that [78,79]

dNB

dθΣ

=
1

2
lim

t→+0
t ∑

n

dEn

dθΣ

exp(−t|En|) =
1

π
χ sin2 θΣ, (10)

where χ is the Euler characteristic of Σ, given by twice the number of pieces of Σ minus

twice the number of handles.

If chiral symmetry is unbroken within the bag, the chiral angle must take a vacuum

value, θin. Moving from the bag’s interior to its exterior across Σ causes a discontinuous

change in the chiral angle from θin to θΣ. For a spherical bag surface Σ, χ = 2, we can

integrate dN/dθΣ in Equation (10) to determine the baryon number inside the two-flavor

chiral bag

Nin =
1

π

{
θΣ − θin −

1

2
[sin 2θΣ − sin 2θin]

}
. (11)

Outside the chiral bag, the baryon number is carried by the meson cloud, which is

described by the Skyrme model. Adopting the hedgehog ansatz and setting the chiral angle

at infinity to θ∞, we insert U = exp(iθτ · nβ) into the skyrmion current Equation (5), and

integrate from the bag surface to infinity to obtain the baryon number outside the chiral bag

Nout =
1

π

{
θ∞ − θΣ −

1

2
[sin 2θ∞ − sin 2θΣ]

}
. (12)

The total baryon number of the chiral bag is thus

N = Nin + Nout =
1

π

{
θ∞ − θin −

1

2
[sin 2θ∞ − sin 2θin]

}
, (13)

which precisely matches the result from the topological soliton bag model for baryons [29].

There are also gluons present within the bag. To confine color charge within the bag,

gluons must satisfy the following boundary conditions on the bag surface [48]

n · Ea
G = 0, n× Ba

G = 0, (14)
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where n is the outward normal to the bag surface Σ, Ea
G = Fa,i0

G ei represents the color

electric field tangent to the surface, and Ba
G = − 1

2 ϵijkFG,jkei represents the color magnetic

field orthogonal to the surface, ei is the unit vector in i = 1, 2, 3 direction. Here, a, b, c are

color indices. Under these boundary conditions, quarks are restricted to move along the

bag surface and cannot escape at the classical level. However, at the quantum level, this

scenario changes.

So far, we have discussed the boundary conditions involving only pion fields in the

bag model. However, the pseudoscalar isosinglet meson field η′ is also important for a more

comprehensive picture. The coupling of η′ to quarks on the bag boundary is formulated as

follows [53,77]: [
iγ · n + e

iγ5η′Σ/ fη′
]
ψ = 0, (15)

where fη′ is the decay constant of η′. For convenience, we redefine the η′ field by η′ → η′ fη′

to absorb the decay constant in the following, so that η′ becomes a dimensionless field. It

has been observed, however, that allowing for a pseudoscalar singlet coupling at the bag

surface can result in color charge leakage [28].

Within the bag, the color charge Qa
G is defined through the QCD current as

Qa
G =

∫

Ω
d3x ja

0 =
∫

Ω
d3x

(
gψ† 1

2
λaψ + g f abcGb

i Eci

)
≃
∮

Σ
dS Ea

G · n, (16)

where the final expression follows from Gauss’ law. Here, λa represents the Gell-Mann

matrices, and f abc are the structure constants of the SU(3) color algebra. Although the

QCD action is locally gauge-invariant within the bag, color charge Qa is not conserved at

the quantum level. In the case of one-flavor quarks and quasi-Abelian symmetry, color

charge leakage can occur when the η′ field varies with time [28]

dQa
G

dη′Σ
=

g2

8π2

∮

Σ
dS Ba

G · n ≃
d

dη′Σ

∮

Σ
dS Ea

G · n. (17)

This relationship is argued to apply to non-Abelian color magnetic fields as well. Such

color charge leakage is problematic as it breaks both confinement and gauge invariance. To

counteract this, a gauge-dependent counterterm has been proposed [28]

SCT =
g2N f

16π2

∮

Σ
dβ η′Σ nµK

µ
5 , K

µ
5 = ϵµναβ

(
Ga

νGa
αβ −

2

3
f abcgGa

νGb
αGc

β

)
. (18)

If we choose the vacuum value of η′ inside the bag as η′in, which shifts sharply to η′Σ on the

bag surface, we can express the counterterm more explicitly as

η′Σ − η′in
2π

×
∫

Σ

N f

4π

(
G dG− i

2

3
G3

)
, (19)

where differential form notation is used, and the gauge coupling is absorbed into the gauge

field. This expression reveals a Chern–Simons theory arising on the bag surface. This result

shows a striking similarity to recent studies on η′ domain walls, where a similar topological

field theory is predicted [40,41]. This leads us to suggest that the Chern–Simons theory on

the chiral bag surface may be analogous to that on the η′ domain wall.

The construction of baryons discussed above holds primarily for multi-flavor cases

(N f ≥ 2). How to understand one-flavor baryons from a topology point of view remained

a puzzle for many years. A recent proposal to construct one-flavor baryon using η′ domain

walls in (2 + 1) dimensions [43] put forward this direction and deepens our understanding

of the chiral bag model [44,46,80–82].
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3. Baryons as Quantum Hall Droplets and Quark-Hadron Duality

For the multi-flavor case N f ≥ 2, we have reviewed the construction of baryons

through two approaches: the Skyrmion model and the chiral bag model. Both are based on

the Nambu–Goldstone bosons arising from chiral symmetry breaking and the non-trivial

homotopy group π3(SU(N f )) = Z, valid for all N f ≥ 2. However, this approach does

not work in the one-flavor case. The η′ meson acquires a significant mass due to the axial

anomaly, so there is no Nambu–Goldstone boson present [83,84]. Even in the large Nc limit,

where the UA(1) symmetry is restored and the η′ meson becomes massless, the homotopy

group π3(U(N f = 1)) = 0 is trivial, making it impossible to construct a one-flavor baryon

in (3 + 1) dimensional spacetime. However, if we consider the one-flavor baryon in (2 + 1)

dimensions, a construction is possible. Such a construction takes place on an η′ domain

wall, exhibiting several unique properties [43,44,46,81,82].

As mentioned, in the large Nc limit, the UA(1) symmetry becomes exact, and its

breaking leads to the emergence of a Nambu–Goldstone boson, the η′. The η′ is a periodic

scalar, satisfying η′ ∼ η′ + 2π. The effective Lagrangian, which includes the leading 1/Nc

correction, is given by [30,31]

Leff
η′ =

N f f 2
π

8
dη′ ∧ ⋆dη′ +

f 2
π

8N f
m2

η′ min
n∈Z

(
N f η′ + θ − 2πn

)2
, (20)

where the potential term is locally quadratic but has a cusp whenever η′ = π mod 2π.

Physically, this cusp implies that when η′ crosses π, heavy fields transition between vacua.

The domain wall between η′ = 0 and η′ = π is a metastable configuration [43]. This

domain wall supports a topological field theory on its world volumeM3, which has been

identified as an SU(Nc)N f
Chern–Simons (CS) theory

i

4π

∫

M3

N f Tr

(
ã ∧ dã +

2

3
ã3

)
, (21)

where ã is the su(Nc)-valued gauge field, N f and Nc are referred to as the level and rank of

the Chern–Simons (CS) theory, respectively.

To understand how this theory couples to the background baryon gauge field A, we

apply level-rank duality [85–89]:

SU(Nc)N f
←→ U(N f )−Nc . (22)

For the one-flavor case with N f = 1, level-rank duality transforms the non-Abelian theory

into an Abelian one, effectively gauging the flavor symmetry. This allows us to introduce a

u(1) gauge field a and write the action on the domain wall as

∫

M3

Nc

4π
a ∧ da +

1

2π
a ∧ dA. (23)

Here, level-rank duality transforms the baryon symmetry in the SU(Nc)1 description into

magnetic symmetry in the U(1)−Nc description. This action resembles that of the fractional

quantum Hall effect, where imposing a boundary on the domain wall gives rise to a

quantum Hall droplet shown in Figure 1a. This droplet is suggested to represent a baryon,

with chiral boundary excitations, where specific boundary vertex operators correspond to

states with baryon numbers. If the chiral boundary mode carries a unit baryon number, then

the droplet possesses a spin of Nc/2, matching that of a one-flavor baryon. Additionally,

the mass, size, and excitation properties of this droplet align with those of a one-flavor

baryon [43].



Symmetry 2025, 17, 477 8 of 25

(a)

←→
2R

+π

−π

x
y

QH droplet

U(1) chiral bag in 1+2

(b)

Figure 1. Baryons as quantum Hall droplets and quark-hadron duality. (a) The one-flavor baryon is

suggested to be a quantum Hall droplet (picture from [82]). (b) The one-flavor baryon is constructed

from the chiral bag model by the Cheshire Cat principle (picture from [44]).

The chiral bag construction further clarifies details on baryons as quantum Hall

droplets. As mentioned above, the boundary chiral mode is essential, carrying baryon

number and inducing spin. However, the mechanism by which quarks form baryons

remained unclear until it was interpreted via the Cheshire Cat principle (CCP). As shown

in Figure 1b, the boundary of the quantum Hall droplet can be extended to an annular-

shaped chiral bag, with a width of 2R, where the η′ field forms a monodromy of 2π. For a

single-flavor quark species, the chiral bag model on the annulus is described by [90]

(i∂t + iσ2∂x − iσ3∂y)q(t, x, y) = 0, |x| < R,

(e−iσ2θ(t,x) − σ3ϵ(x))q(t, x, y) = 0, |x| = R,
(24)

where ϵ(x) = x/|x| is the outward normal to the bag, and (γ0, γ1, γ2) = (σ1, iσ3, iσ2).

The η′ field acts at the boundary through the chiral angle θ = η′/ fη , which can be time-

dependent but is independent of y. Here, fη is the decay constant of η′. Solving these

equations yields a twisted spectrum

En =
(2n + 1)π

4R
+

∆θ

4R
, ∆θ = [θ(+R)− θ(−R)], (25)

where ∆θ represents the jump in the η′ field across the chiral bag. At the “magic angle”

∆θ = π, the energy level E−1 crosses zero, requiring a redefinition of the vacuum. This

redefinition implies that the baryon charge Q fractionalizes into three parts, each carried by

the Hall droplet, the chiral bag, and the exterior of the bag [60,78,90]

Q =
e

2π
{[θ(−R)− (−π)] + ∆θ + [π − θ(+R)]} = e, (26)

where e is the total baryon charge. According to the CCP, physical properties should not

depend on the bag size. As the bag radius decreases, the bag reduces to a vortex line,

resembling the “smile” of the Cheshire Cat, with gapless quarks circulating in the same

direction. The disk enclosed by the “smile” is described by a topological field theory due to

the Callan–Harvey anomaly outflow [91]

∫

M3

Nc

4π
a ∧ da, (27)
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which exactly corresponds to the U(1)−Nc Chern–Simons field introduced earlier. Thus,

inside the vortex line, quarks carry baryon charge and are in the fundamental representation

of the gauge group SU(Nc)1. Outside, the gauge field is U(1)−Nc , with its flux serving as a

measure of baryon charge. These two Chern–Simons theories are connected in the vortex

line via level-rank duality. This configuration allows the vortex line to expand or contract

arbitrarily without affecting the physics, implying quark-hadron continuity.

4. Baryons as Vortices

The one-flavor baryons, interpreted as quantum Hall droplets under quark-hadron

duality on the η′ domain wall, primarily involve qualitative insights, leaving a complete

theoretical formulation as an open challenge. Although the level-rank duality in Chern–

Simons theory provides a foundational aspect, it is insufficient. For multiple flavors, the

Chern–Simons (CS) field SU(Nc)N f
present on the domain wall is expected to correspond

to the gluon field. Advancing towards a comprehensive theory requires incorporating

strongly interacting quarks or fermions within the framework.

In this context, the dual theory becomes more complex with the introduction of

additional fields. The proposed duality between the two formulations can be written

as [41,42]

SU(Nc)−N f
+ N f fermions ←→ U(N f )Nc + N f scalars. (28)

On the right-hand side, the dual theory incorporates N f scalar fields, representing the

bosonized form of the fermions or quarks from the left-hand side. We should admit that we

cannot explicitly identify the physical content of the N f scalars but as auxiliary fields in the

CPN f−1 model. Duality (28) establishes a link between the SU(Nc) color gauge symmetry

with N f fermions in the fundamental representation and the U(N f ) baryon gauge symmetry

with N f scalar fields in the fundamental representation. In this framework, the global flavor

symmetry U(N f ) becomes gauged through level-rank duality. Such a setup provides a

pathway for developing a concrete theory on the domain wall, where baryons appear as

vortices, analogous to skyrmions viewed as topological solitons.

4.1. Baryons as Vortices for N f = 1 and Particle-Vortex Duality

To simplify the discussion, we begin with the one-flavor case, i.e., N f = 1, and later

generalize to multi-flavor. For N f = 1, the duality on the η′ domain wall described in

Equation (28) simplifies to

SU(Nc)−1 + one fermion ψ ←→ U(1)Nc + one scalar ϕ. (29)

On the right-hand side, the effective field theory consists of a U(1)Nc Chern–Simons (CS)

gauge field aµ and a complex dual scalar field ϕ. Assuming gauge invariance and minimal

coupling, the effective Lagrangian in (2 + 1)-dimension can be conjectured as

LA[ϕ, a] =
∫

d3x |∂µϕ− iaµϕ|2 + Nc

4π
ϵµνρaµ∂νaρ −V(ϕ∗ϕ), (30)

where ϕ represents the bosonized form of the fermion ψ, i.e., ϕ∗ϕ ∼ ψ†ψ. The gauge field

aµ is an emergent U(1) field linked to baryon number conservation before gauging. This

Lagrangian (30) is consistent with the quantum Hall description of baryons, where the

fermion ψ (quark) replaces the electron in fractional quantum Hall systems at a 1/Nc filling

fraction. In this context, ϕ∗ϕ corresponds to the quark density, and aµ propagates the quark

number. Since quarks carry color charge, the quark density per color, ϕ∗c ϕc = ϕ∗ϕ/Nc,

must remain finite in the large Nc limit.
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The potential V(ϕ∗ϕ) obtains a non-zero vacuum expectation value ⟨ϕ∗ϕ⟩ = Ncv2. It

can be formally expressed as

V(ϕ∗ϕ) = Nc

∞

∑
I=1

cI

(
ϕ∗ϕ
Nc
− v2

)I

, v > 0, (31)

where the coefficients cI are constrained to ensure that ϕ∗c ϕc has a non-zero vacuum expec-

tation value v2, independent of Nc.

The Lagrangian LA scales with Nc, representing the leading contribution in the Nc

expansion. While additional terms of lower order in Nc can be included, their effects are

negligible in the large Nc limit.

For the theory described by LA, (2+1)-dimensional topologically non-trivial finite-

energy vortex solutions exist, satisfying the equations of motion

(∂µ − iaµ)(∂
µ − iaµ)ϕ +

∂V

∂ϕ∗
= 0,

(∂µ + iaµ)(∂
µ + iaµ)ϕ∗ +

∂V

∂ϕ
= 0,

i(ϕ∗∂µϕ− ϕ∂µϕ∗) + 2aµϕϕ∗ +
Nc

2π
ϵµνρ∂νaρ = 0.

(32)

In this review, we focus on the topological properties of the vortices without solving these

complex equations of motion explicitly. Additionally, we only consider the global quantities

such as spin and topological charge of vortices in the large Nc limit, therefore, the precise

form of V(ϕ∗ϕ) which relates to local properties for example the vertex mass, radius, etc, is

not essential. For the present qualitative discussion, we only require that the potential is of

the Higgs type. Considering a single vortex located at the origin, we adopt the following

ansatz in polar coordinates [92]

ϕ(r) = einθh(r), a0(r) = a0(r), a(r) =
a(r)

r
(sin θ,− cos θ), (33)

with boundary conditions for finite energy

h(∞) =
√

Ncv, a0(∞) = 0, a(∞) = n; h(0) = 0, a0(0) = c, a(0) = 0, (34)

where c is a non-zero constant. The winding number n ∈ Z characterizes the vortex

solutions, as we will discuss.

The Chern–Simons term in the Lagrangian is topological and contributes to a topolog-

ical current given by

jµ =
Nc

2π
ϵµνρ∂νaρ =

Nc

4π
ϵµνρ fνρ, (35)

where fµν = ∂µaν − ∂νaµ is the field strength tensor of aµ. Using this expression, the vortex

solution can be shown to carry a topological charge

Q =
∫

j0 dx dy =
Nc

2π

∫
ϵ0νρ∂νaρ dx dy = nNc, (36)

which corresponds to the quantization of the vortex flux

Φ =
∫

ϵ0νρ∂νaρ dx dy =
∫

a · dr =
∫

n

r
rdθ = 2πn. (37)
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Objects that carry both flux and charge, such as these vortex solutions, are known as

anyons, which obey fractional statistics [93,94]. The spin of such a vortex is given by

s =
QΦ

4π
= n2 Nc

2
, n ∈ Z. (38)

For vortices with n = ±1, the spin matches that of one-flavor baryons in their ground

state. Since the scalar field ϕ corresponds to the quark number and its coupling to aµ is

normalized to unity, the topological charge Q can be interpreted as the quark number.

Given that a baryon consists of Nc quarks, the baryon number can naturally be defined as

B =
Q

Nc
= n. (39)

Thus, it is reasonable to conjecture that vortices with n = ±1 represent (anti)baryons on the

domain wall. These vortices exhibit properties consistent with one-flavor baryons in the

large Nc limit. A special case is the n = 0 vortex, which has a zero baryon number. Given

the relation ϕ∗ϕ ∼ ψ†ψ, this vortex is associated with quark condensates. Vortices with

|n| ≥ 2 can be interpreted as multi-baryon structures on the domain wall, analogous to

skyrmions with higher baryon numbers in (3 + 1) dimensions [95,96].

In the large Nc limit, the quark density per-color, ϕ∗c ϕc = ϕ∗ϕ/Nc, must remain finite.

The Lagrangian in Equation (30) can be reformulated as

LA = Nc

[∣∣∂µϕc − iaµϕc

∣∣2 −Vc(ϕ
∗
c ϕc) +

1

4π
ϵµνρaµ∂νaρ

]
, (40)

where

Vc(ϕ
∗
c ϕc) =

V(ϕ∗ϕ)
Nc

=
∞

∑
I=1

cI

(
ϕ∗c ϕc − v2

)I
, v > 0. (41)

This potential is independent of Nc, ensuring that Nc appears only as an overall factor in the

Lagrangian. Consequently, Nc does not enter the equations of motion or affect the vortex

solutions. Therefore, the sizes of the vortices are determined solely by color-independent

parameters. Following the reasoning in Ref. [22], one can deduce that vortex radii scale as

∼ O(N0
c ), their energy (mass) scales as ∼ O(Nc), and vortex-vortex scattering amplitudes

are of order Nc.

These scaling properties are identical to those of baryons, reinforcing the identification

of vortices as baryons on the η′ domain wall.

As we have seen, baryons can be described as vortices, and it is also possible to

estimate the physical quantities of mesons. In large Nc QCD, meson operators are of

the form J (x) =
√

Ncψ̄Gmψ, where Gm denotes any number of gluon field strengths,

derivatives, and Dirac gamma matrices, and ψ is the quark field. The normalization factor√
Nc ensures that the two-point function ⟨J J ⟩ ∼ O(N0

c ), indicating that meson operators

create meson states with amplitudes of order N0
c .

On the domain wall, within the effective theory LA, meson operators should corre-

spond to Ĵ (x) =
√

Ncϕ∗ f mϕ, where f m involves combinations of Chern–Simons field

strengths, derivatives, and other operators. We can estimate the two-point function of

meson operators using the quark density relation form ϕ∗ϕ ∼ ψ†ψ. The coupling between

two meson operators is determined by the first term of the Higgs-type potential

c2Nc

(
ϕ∗ϕ
Nc
− v2

)2

∼ c2

(√
Ncϕ∗c ϕc

)2
∼ c2Ĵ Ĵ . (42)
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This leads ⟨Ĵ Ĵ ⟩ ∼ c2 ∼ (N0
c ). Similarly, the four-point function for mesons can be

estimated as

c4Nc

(
ϕ∗ϕ
Nc
− v2

)4

∼ c4

Nc

(√
Ncϕ∗c ϕc

)4
∼ c4

Nc
Ĵ Ĵ Ĵ Ĵ . (43)

Thus, the amplitude for meson-meson scattering scales as 1/Nc, consistent with the ex-

pected behavior of large Nc QCD. Higher-order correlation functions can be analyzed

similarly, showing that meson properties on the domain wall align with those in large Nc

QCD.

To investigate baryon–meson interactions in the large Nc limit, one can insert a meson

operator Ĵ (x) =
√

Ncϕ∗ f mϕ into a vortex solution. When the operator is inserted far from

the vortex center, the stability of the vortex is preserved. Local fluctuations in the quark

density occur, and the dominant energy contribution arises from the potential term, which

scales as c2 ∼ N0
c . This implies that the meson-vortex (baryon) scattering amplitudes are of

order N0
c .

For one flavor, the gauge field aµ in the theory LA arises purely from the topological

Chern–Simons term, with no self-interaction term. Consequently, there is no equivalent

description of glueballs in (2 + 1) dimensions. Additionally, the requirement ϕ∗c ϕc =

ϕ∗ϕ/Nc ensures that the kinetic term remains finite and does not survive in the large Nc

limit, suppressing glueball-like structures for any number of flavors.

So far, we have successfully constructed topological baryons as vortices on the η′

domain wall. However, the precise role of quarks in this picture remains unclear. This

ambiguity relates to the concept of particle-vortex duality [97]. In (2 + 1) dimensions, it is

possible to describe the same physics using dual theories, where particles in one theory

correspond to vortices in the other, and vice versa.

For the theory LA, two types of excitations emerge: quantized ϕ, representing quarks,

and vortices. According to particle-vortex duality, the dual theory, known as the relativistic

Zhang–Hansson–Kivelson (ZHK) theory [47,98], is given by

LB[ϕ̃, ã] =
∫

d3x

[
|∂µϕ̃− iãµϕ̃|2 − Ṽ(ϕ̃∗ϕ̃) +

1

4πNc
ϵµνρ ãµ∂ν ãρ

]
, (44)

where ϕ̃ is a complex scalar field, ãµ is a U(1) gauge boson, and Ṽ(ϕ̃∗ϕ̃) is a Higgs-type

potential. By particle-vortex duality, ϕ̃ represents baryons, while vortices in LB correspond

to quarks or multi-quark structures. The dual theory LB also admits vortex solutions, with

a topological current given by

j̃µ =
1

2πNc
ϵµνρ∂ν ãρ. (45)

The corresponding topological charge is

Q̃ =
∫

j̃0 dx dy =
1

2πNc

∫
ϵ0νρ∂ν ãρ dx dy =

n

Nc
, (46)

using the same parameterizations and boundary conditions as in Equations (33) and (34).

With ϕ̃∗ϕ̃ representing baryon density and ãµ propagating unit baryon numbers, the baryon

number is defined as the topological charge Q̃.

Vortices in LB exhibit fractional topological charge and spin:

s̃ =
Q̃Φ

4π
=

n2

2Nc
, n ∈ Z. (47)

Basic vortex states with winding numbers ±1 correspond to (anti)quarks, with the same

statistics as quarks leaked from chiral bags [44]. Higher winding numbers describe multi-

quark structures. Notably, vortices with n = ±Nc carry unit baryon numbers and spin
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Nc/2, corresponding to one-flavor baryons. For an observer on the domain wall, the nature

of particle statistics is intrinsically colorful.

4.2. Baryons as Vortices for N f > 1

Next, we extend the preceding discussion from the single-flavor case to the multi-

flavor scenario. In this context, based on the level-rank duality presented in Equation (28),

the flavor symmetry group U(N f ) is promoted to a gauge symmetry. Consequently, the

gauge field mediates both quark number and isospin charge. Assuming the minimal

coupling remains valid, we can construct a Lagrangian analogous to LA, expressed as

LC[φ,A] = |∂µφ− iAµφ|2 −VC(φ
†φ) +

Nc

4π
ϵµνρ Tr

(
Aµ∂νAρ − i

2

3
AµAνAρ

)
, (48)

where φ = (ϕ1, ϕ2, . . . , ϕN f )T denotes the N f quark fields, and the gauge fields Aµ belong

to the algebra u(N f ).

To simplify, we focus on the case N f = 2, where Aµ is represented in the adjoint

representation as Aµ = Aa
µta, a = 0, 1, 2, 3, and ta = (1/2, σ/2), with σ being the Pauli

matrices. The potential, respecting the U(2) symmetry, is written as

VC(φ
†φ) = Nc

∞

∑
I=1

cI

(
φ†φ

Nc
− v2

)I

. (49)

We hypothesize the existence of vortex solutions in this framework. Consistent with

the above analyses, evaluating the topological charge and the statistical spin of the

vortices demands scrutiny of their asymptotic behavior. The potential determines the

vacuum configuration for φ. For simplicity, we choose the vacuum state as φ0 =√
Nc(v1ein1θ , v2ein2θ+iφ), n1, n2 ∈ Z, v2

1 + v2
2 = v2, v1, v2 > 0, where φ is an undetermined

phase angle. Assuming the vortex is centered at the origin, the asymptotic behavior be-

comes φ(r → ∞, θ) = φ0. To ensure finite vortex energy, the following condition should

hold ∫
dr2|∂iφ− iAiφ|2 < ∞. (50)

Expanding terms up to O( 1
r ), constraints on the gauge field at large distances can be

derived as

A
0
i (r → ∞, θ) = (n1 + n2)

eθ

r
, A

3
i (r → ∞, θ) = (n1 − n2)

eθ

r
. (51)

For the components A1
µ and A2

µ, the analysis differs. Since the vacuum state φ0 can impart

mass to three of the four gauge fields, the massless gauge field must vanish in vortex

configurations. By substituting φ0 into LC, the interaction terms involving A1
µ and A2

µ

become

LA2 =
1

4
(v2

1 + v2
2)
[
(A0

µ)
2 + (A1

µ)
2 + (A2

µ)
2 + (A3

µ)
2
]
+

1

2
(v2

1 − v2
2)A

0
µA

3
µ

+ v1v2A
0
µ

{
cos[(n1 − n2)θ − φ]A1

µ − sin[(n1 − n2)θ − φ]A2
µ

}
.

(52)

The dependence on the polar angle θ appears, complicating the definition of mass eigen-

states globally and disrupting the vortex’s central symmetry. A straightforward resolution
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is to set A1
µ and A2

µ to zero everywhere. Under this simplification, the remaining compo-

nents of Aµ are diagonalized

A0(r → ∞, θ) =

(
O( 1

r ) 0

0 O( 1
r )

)
, Ai(r → ∞, θ) =

(
n1

eθ
r + O( 1

r ) 0

0 n2
eθ
r + O( 1

r )

)
, (53)

where the residual O( 1
r ) term decays exponentially, reflecting the massiveness of A0

µ and

A3
µ.

With non-zero values of A0
µ and A3

µ, the Lagrangian density takes the form

LC[φ,A] =

∣∣∣∣∂µϕ1 − i
1

2
(A0

µ +A
3
µ)ϕ1

∣∣∣∣
2

+

∣∣∣∣∂µϕ2 − i
1

2
(A0

µ −A
3
µ)ϕ2

∣∣∣∣
2

−VC(φ
†φ)

+
Nc

4π
ϵµνρ Tr

(
Aµ∂νAρ − i

2

3
AµAνAρ

)
,

(54)

where, in this specific two-scalar-field case (since we consider N f = 2 here), A+
µ = (A0

µ +

A3
µ)/2 interacts with ϕ1 to propagate a unit quark number, while A−µ = (A0

µ − A3
µ)/2

interacts with ϕ2 and similarly propagates a unit quark number. This configuration reduces

the complexity of calculations, effectively behaving as two independent copies of the

single-flavor case. The gauge field can thus be expressed as

Aµ =

(
A+

µ 0

0 A−µ

)
, A

+,−
µ (r → ∞, θ) =

(
O

(
1

r

)
, n1,2

eθ

r
+ O

(
1

r

))
. (55)

The non-Abelian Chern–Simons term generates a current given by

Jµ,a =
Nc

4π
ϵµνρ∂νA

a
ρ =

Nc

8π
ϵµνρ

F
a
νρ, a = 0, 1, 2, 3, (56)

where Fµν represents the field strength tensor of Aµ. Due to the central symmetry of the

vortex solutions, which ensures [Aµ,Aν] = 0, the currents for A±µ simplify to

Jµ,± = Jµ,0 ± Jµ,3 =
Nc

2π
ϵµνρ∂νA

±
ρ . (57)

This allows us to compute the fluxes associated with the vortex

Φ+ =
∫

ϵ0νρ∂νA
+
ρ dx dy = 2πn1, Φ− =

∫
ϵ0νρ∂νA

−
ρ dx dy = 2πn2, (58)

and the corresponding topological charges

Q+ =
∫

J0,+ dx dy = n1Nc, Q− =
∫

J0,− dx dy = n2Nc. (59)

When two vortices are far apart and weakly interacting, their individual fluxes and

charges remain independent. Consequently, the total spin, arising from the combined

contributions of fluxes and charges, is additive

S =
Φ+Q+

4π
+

Φ−Q−

4π
= (n2

1 + n2
2)

Nc

2
, n1, n2 ∈ Z. (60)

The baryon number is defined analogously to the single-flavor case as

B =
Q+ + Q−

Nc
= n1 + n2. (61)
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Clearly, the baryon number corresponds to the sum of the winding numbers of the indi-

vidual flavors, with each flavor contributing independently. For instance, setting n1 = 1

and n2 = 0 replicates the one-flavor scenario, though ϕ2 ̸= 0 still contributes to the vortex

configuration. Conversely, with n1 = n2 = 1, the vortex exhibits a baryon number of two

and a spin of Nc, characteristic of a two-baryon system. Alternatively, choosing n1 = 1 and

n2 = −1 yields a baryon-antibaryon configuration, possessing zero baryon number but a

spin of Nc. Thus, vortices involving multiple flavors inevitably exhibit high spins, with

each baryon or antibaryon contributing a minimum spin of Nc/2.

It is worth noting that vortex solutions with multiple flavors inherently carry high

spins, aligning with suggestions that high-spin baryons are better described using Hall

droplets or vortex configurations. In contrast, the Skyrme model [43] remains more suitable

for describing low-spin baryons. Additionally, LC captures only a specific type of vortex

configuration. Other potential vortex structures, which could display distinct properties,

warrant further investigation in future studies.

In the two-flavor situation discussed above, we considered a vortex configuration

with A0
µ ̸= 0, A3

µ ̸= 0, and A1
µ = A2

µ = 0, which involves the gauge isospin symmetry.

However, if we impose that A0
µ is the only non-zero gauge field component, the Lagrangian

LC simplifies to

LC[φ, A] = |∂µφ− iCµφ|2 −VC(φ
†φ) +

Nc

2π
ϵµνρCµ∂νCρ, (62)

where we rescaled Cµ = 1
2A

0
µ to normalize the coupling between Cµ and φ to unity. The

Higgs-type potential imposes a non-zero vacuum expectation value, φ†φ = Ncv2
> 0,

leading to a theory that corresponds to a CP1 ∼= SU(2)/U(1) × U(1) model with an

additional Chern–Simons term.

The equation of motion for Cµ is given by

i(φ†∂µφ−φ∂µφ†) + 2Cµφ†φ +
Nc

π
ϵµνρ∂νCρ = 0. (63)

Neglecting the dynamical effects of the Chern–Simons term, we can approximate

Cµ ≃ − i

2φ†φ
(φ†∂µφ−φ∂µφ†). (64)

Regardless of the specific value of v, we can rescale φ→ vφ to normalize φ†φ = Nc.

This results in

Cµ = − i

2

(
φ†

c ∂µφc −φ†
c ∂µφc

)
, with φc =

φ√
Nc

. (65)

Introducing the parameter mi = φ†σiφ with i = 1, 2, 3 and m2 = 1, and considering a

stable finite-density system with quark chemical potential C0 = 2µq (the factor of 2 arises

from two quark flavors), the Chern–Simons term becomes

Nc

2π
ϵµνρCµ∂νCρ ≃ −Ncµq

i

2π
ϵij∂iφ

†∂jφ = Ncµq
1

8π
ϵijm · (∂im× ∂jm), (66)

showing explicitly that the Chern–Simons term on the η′ domain wall reduces to the Wess–

Zumino–Witten (WZW) term. At low energy, the vector field can be integrated out, leaving

an effective CP1 model with a WZW term. For general flavors N f ≥ 2, the effective theory

generalizes to a CPN f−1 model. The CPN f−1 model inherently possesses a hidden global

U(1) symmetry, which allows for the introduction of an Aµ field by gauging this symmetry.

A noteworthy phenomenon is the emergence of a domain wall Skyrmion phase under

rotation [99,100], where domain walls consist of η′ and π0 meson fields. In the two-



Symmetry 2025, 17, 477 16 of 25

flavor case, the conventional (3 + 1)-dimensional Skyrmions flow into (2 + 1)-dimensional

domain walls, transforming into baby skyrmions [101–104]. The induced effective theory

on the domain wall is a CP1 model with a WZW term. Thus, our vortex picture for baryons

partially aligns with the domain wall Skyrmion description. Additionally, under a magnetic

field, domain-wall skyrmion chains can emerge [99,100,105–118].

5. Topological Chiral Bag Model

Baryons are successfully constructed as vortices on the (2 + 1) dimensional η′ domain

wall, with the flux of the U(1) Chern–Simons field serving as a measure of the baryon

number. A natural question arises: what is the source of the flux in (3 + 1) dimensions?

Such sources should interact with the η′ field and induce the corresponding baryon number.

In Section 2.2, we reviewed the chiral bag model with the η′ boundary condition, where

the color charge flow-out effect was identified and subsequently resolved. Moreover, the

η′ field experiences a sharp discontinuity at the bag surface, effectively rendering the

boundary a domain wall. Thus, our investigation of the η′ domain wall can be applied to

enhance the understanding of the chiral bag model.

Since the bag boundary behaves as a domain wall, it is reasonable to hypothesize that

the dynamics of quarks confined within the bag induce baryon number on the bag surface.

In fact, the quarks confined inside the bag act analogously to monopoles, with their flux

inducing baryon numbers on the η′ boundary [43,44,46,81,82]. The outflow of color charge

is accompanied by that of baryon number, requiring the introduction of a counterterm to

preserve one-form gauge invariance [119].

5.1. Confined Monopoles Inside the Chiral Bag

The core idea of the chiral bag model is to impose a boundary condition that not only

confines quarks and gluons within the bag but also connects to the dynamics of the mesons

outside. If we only consider the pseudoscalar isosinglet η′ meson field, the boundary

essentially becomes a domain wall. The dynamics on the bag surface should be induced by

the physics inside the bag, making the confined quarks essential for a complete description.

To describe a color singlet formed by quarks inside the bag, a mechanism that causes

confinement is necessary. It is worth noting that in Equation (17), color charge is induced

when a non-zero color magnetic field crosses the surface with a constant η′. One can further

conjecture the existence of monopoles inside the bag, which generate significant color

magnetic fields on the bag surface. Since gluons are governed by the SU(Nc) Yang–Mills

theory, quarks inside the bag can be modeled as monopoles, whose condensation leads to

confinement. It is suggested that the classification of monopole charges follows the discrete

group ZNc , which is the center of the gauge group SU(Nc). The topological properties

of SU(Nc) gauge theory can then be described within the framework of topological field

theory [119–121]. Using a magnetic Abelian Higgs model, the discrete gauge group ZNc

can be embedded in a U(1) theory.

To describe the monopoles confined within the bag, we can follow the method pro-

posed in [119]. Consider a complex scalar field Φ that carries Nc magnetic charges, with

Ã representing the magnetic dual gauge field of the usual U(1) gauge field. The gauge

covariant derivative is expressed as

DΦ = (d− iNc Ã)Φ. (67)

The complex scalar field Φ represents the monopole density and is assumed to have a

Higgs-type potential, resulting in a non-zero vacuum expectation value ⟨|Φ|⟩ ≡ υ > 0. In
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the low-energy region, Φ = υeiφ, and the action is dominated by pure gauge configurations

satisfying

DΦ = i(dφ− Nc Ã)υ ⇒ dφ− Nc Ã = 0, (68)

which precisely describes the discrete ZNc gauge theory. By dualizing the magnetic field Ã

back to the electric description via the usual gauge field A, one obtains the action of a BF

theory [122]

S =
i

2π

∫
dÃ ∧ (dA− NcB). (69)

This action possesses a 1-form gauge symmetry parametrized by a 1-form λ, which satisfies

the quantization condition over a closed 2-surface, in this case, the bag surface Σ

1

2π

∮
dλ ∈ Z, A→ A + Ncλ, B→ B + dλ. (70)

This implies that the magnetic charge ∆m added into the bag must be a multiple of the

condensed monopole charge Nc

m =
1

2π

∮
dA→ m +

1

2π

∮
Ncdλ = m + jNc, j ∈ Z. (71)

Now, let us consider what happens when the η′ field crosses the bag surface. This

situation arises due to the transformation similarity between the η′ field and θ, leading to

vacuum transitions between different branches. As shown in Equation (20), the η′ and θ

fields together exhibit multiple vacua labeled by n, resulting in the presence of domain

walls. In the SU(Nc) Yang–Mills theory with a θ-term, ’t Hooft anomaly matching dictates

that each vacuum label n is associated with a topological term in the action [123]

S =
i

2π

∫
dÃ ∧ (dA− NcB) +

Ncθ

4π
B ∧ B− Ncn

2
B ∧ B. (72)

To derive the interaction between η′ and the gauge fields A and B, we shift θ → θ + N f η′

and then set θ = 0. The action becomes

S =
i

2π

∫
dÃ ∧ (dA− NcB) +

NcN f η′

4π
B ∧ B− Ncn

2
B ∧ B. (73)

By naively setting η′in = 0 inside the bag and η′Σ = 2π outside, the bag boundary effectively

behaves as an η′ domain wall, where N f η′ undergoes a 2πN f shift. Since a shift of ∆η′ = 2π

corresponds to a topological shift of ∆n = N f , we interpret the bag surface as a domain

wall where vacuum branches transition with ∆n = N f . Consequently, the bag surface

separates two different vacua, and the effective action is not invariant under 1-form gauge

transformation

∆S = − i

2π

∫
d

[
nλ ∧ dA +

nNc

2
λ ∧ dλ

]
+

iNc

4π

∫
dn ∧ (2λ ∧ B + λ ∧ dλ). (74)

The first term is a total derivative and does not contribute here since our bag surface is a

closed surface. However, the second term develops a contribution on the bag surface

∆Ssurface = − iNc

4π

∫

Σ
(2λ ∧ B + λ ∧ dλ). (75)

To maintain gauge invariance, the dynamics on the bag surface must be non-trivial. Based

on arguments from N = 1 supersymmetric Yang–Mills theory [40], it is suggested that on

the bag surface, there exists an SU(Nc)N f
Chern–Simons theory. Due to level-rank duality,
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an SU(Nc)N f
Chern–Simons theory is identified with a U(N f )−Nc Chern–Simons theory,

leading to the effective action proposed in [123]

SΣ = − i

4π

[
Nc tr

(
AdA− i

2

3
A

3

)
+ 2 tr(A)dA

]
, (76)

where A is a 1-form U(N f ) gauge field that transforms as

A→ A− λ1N f×N f
. (77)

It is straightforward to verify that, under the 1-form gauge transformation, the contribution

from the bag surface SΣ exactly offsets ∆Ssurface.

To investigate the dynamics on the bag surface for the topological field, we observe

that A couples with A, behaving like a background field for the dynamical bag surface.

Explicitly applying Gauss’s law on the bag surface yields

dA− iA2 = −dA

Nc
1N f×N f

. (78)

Thus, the vector field A acquires magnetic flux

1

2πN f

∫

Σ
tr(dA) = − 1

2πNc

∫

Σ
dA, (79)

indicating that only the U(1) part of A acquires flux. Since A describes the monopole

density inside the bag in a topological manner, we can restrict the complex scalar field Φ on

the bag surface as ϕ = Φ|Ω. The field ϕ inherits a Higgs-type potential V(ϕ∗ϕ) from Φ and

minimally couples with A. For the one-flavor case, we can write down an effective theory

at leading order on the bag surface

∫

Σ
|dϕ− iaϕ|2 − Nc

4π
ada−V(ϕ∗ϕ). (80)

where we use a to replace A for the one-flavor case. This is precisely the Chern–Simons–

Higgs theory conjectured to exist on the η′ domain wall, as described in Equation (30),

with vortex solutions proposed to represent baryons or multi-baryon structures in (2 + 1)

dimensions. For the multi-flavor case, the theory generalizes to a non-Abelian one

∫

Σ
|dφ− iAφ|2 − Nc

4π
tr

(
AdA− i

2

3
A

3

)
−V(φ†φ), (81)

where φ = (ϕ1, ϕ2, . . . , ϕNf )T is a complex field with Nf components, the same as Equation (44).

Thus, we see that there indeed exists a duality for the Chern–Simons theory shown in

Equation (48) on the η′ domain wall [40,41]. Under level-rank duality, the dual SU(Nc)N f

Chern–Simons theory emerges on the bag surface. Notably, the counterterm added to seal

off the color leak, shown in Equation (19), is also expressed as an SU(Nc)N f
Chern–Simons

theory coupled to η′. A bold but natural conjecture is that these two Chern–Simons theories

are identified, providing deeper insight into the chiral bag model.

5.2. Block the Outflow of Color Charge

We have seen that if confinement is assumed to be caused by monopoles, one can

place the monopoles inside the bag. The topological properties can be described by a

ZNc gauge field A, whose flux measures the quantity of confined monopoles. On the bag

surface, a U(N f )−Nc Chern–Simons theory is induced concerning the new dynamical field
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A, which also carries non-zero flux. However, as shown in Equation (79), the corresponding

flux quantity has an opposite sign, indicating that the bag surface should contain anti-

monopoles. This arrangement effectively seals off the color leak for the chiral bag model,

as shown in Equation (19).

Now, let us focus on the quantities of monopoles inside the bag and on the bag surface.

In the previous section, we chose η′in = 0 inside the bag and η′Σ = 2π outside. For a

more general bag model boundary condition, we consider both η′Σ and η′in to be arbitrary.

The effective theory on the bag surface, as shown in Equation (76), should be modified as

follows:

SΣ = −
(

η′Σ − η′in
2π

)
× i

4π

[
Nc tr

(
AdA− i

2

3
A

3

)
+ 2 tr(A)dA

]
, (82)

where the flux relation from Gauss’s law, Equation (79), remains unchanged, but the shift

in η′ introduces the Witten effect [124]. The monopoles inside the bag carry the magnetic

field BA = dA/Nc, and when this passes through the bag surface, BA interacts with η′,
generating the electric charge QA

dQA

dη′Σ
=

d

dη′Σ

∮

Σ
dSEA · n =

1

8π2

∮

Σ
dSBA · n, (83)

where we have implicitly fixed η′in.

Meanwhile, the dynamical field A on the bag surface also possesses non-zero flux due

to Gauss’s law, leading to the corresponding electric charge QA

dQA

dη′Σ
=

d

dη′Σ

∮

Σ
dSEA · n =

1

8π2

∮

Σ
dSBA · n, (84)

where BA = tr(dA)/N f . According to the flux relation in Equation (79), we find

dQA

dη′Σ
+

dQA

dη′Σ
= 0. (85)

We observe that BA corresponds to the U(1) part in flavor space associated with

baryon number conservation symmetry, so the electric charges QA and QA both correspond

to quark number or baryon number. Therefore, we have a non-zero dQA baryon number

flowing out from the bag once η′Σ is time-dependent, similar to the color charge leaking

reviewed in Section 2.2. Fortunately, the topological field theory on the bag surface con-

tributes the same quantity but with opposite sign for the baryon charge, dQA, effectively

blocking the leak!

In fact, the dynamical field A on the bag surface was originally proposed to preserve

gauge invariance, which necessarily implies charge conservation. On the other hand,

multiples of Nc monopoles condense to cause confinement and must carry color charge.

Note that, here monopoles behave similarly to quarks, but we do not identify them explicitly.

The nature of the baryon number carriers remains unclear; both quarks and gluons are

possible, and all baryon numbers we consider are induced. The leakage of baryon number

is accompanied by color charge leakage, and we can replace the baryon number charge

with the color charge in Equation (86)

dQa
G

dη′Σ
=

d

dη′Σ

∮

Σ
dSEa

G · n =
1

8π2

∮

Σ
dSBa

G · n, (86)

which matches the color charge leakage found in Equation (17) after absorbing the coupling

constant g. Similarly, the Chern–Simons field theory U(N f )−Nc on the bag surface, dual

to SU(Nc)N f
, contributes the same quantity but with opposite sign for the color charge,
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−dQa
G, which precisely cancels the color charge leakage. Thus, the Chern–Simons theory in

Equation (82), initially introduced to maintain gauge invariance, also acts as a counterterm,

as seen in Equation (19). Under level-rank duality, these two forms of topological theory

describe the same physical phenomenon from different perspectives.

We have seen that, on the one hand, the SU(Nc)N f
Chern–Simons theory on the

bag surface blocks the color charge leakage, restoring gauge invariance and ensuring

confinement. On the other hand, the dual U(N f )−Nc Chern–Simons theory introduces

quark number, with the same magnitude but opposite sign relative to the quarks inside the

bag. Combining these contributions yields a chiral bag model for baryons with zero net

baryon number. Thus, an additional mechanism is required to generate baryon number in

the chiral bag model.

If we set η′in = 0 inside the bag and η′Σ = 2π outside, the theory on the bag surface

becomes independent of the choice of the interior configuration, as shown in [123]. Addi-

tional fields can also exist on the bag surface. While we have focused on the chiral bag’s

interior, where quarks are represented by monopoles, the exterior of the bag is equally

interesting as it hosts meson fields acting as background fields.

On the bag surface, a dynamical U(N f ) vector field exists, suggesting that the vector

meson fields in flavor space behave similarly. The vector meson field V interacts with the

dynamical field A on the bag surface [123]

SΣ = −
(

η′Σ − η′in
2π

)
(87)

× i

4π

∫

Σ

[
Nc tr

(
AdA− i

2

3
A

3

)
− Nc tr

(
VdV − i

2

3
V3

)
+ 2(tr(V) + tr(A))dA

]
.

The vector meson field transforms as

V → V − λ1N f×N f
. (88)

Thus, the action is invariant under both 1-form and 0-form gauge transformations.

Applying Gauss’s law to V, we derive a flux relation similar to Equation (79)

1

2π

∫

Σ
tr(dV) = −

N f

2πNc

∫

Σ
dA. (89)

Focusing on the U(1)B part of the vector meson field, VB = tr(V)/N f , we find that the

Witten effect on V gives the baryon number Qin

Qin = −
(

η′Σ − η′in
2π

)
× 1

2π

∫

Σ
tr(dV) = N f

(
η′Σ − η′in

2π

)
× 1

2πNc

∫

Σ
dA. (90)

For simplicity, consider N f = 1, η′in = 0, η′Σ = 2π, and 1
2π

∫
Σ

dA = Nc. This setup

represents a chiral bag model for a one-flavor baryon. Outside the bag, the flux of the

vector meson field V, induced on the surface, extends to infinity or terminates on another

chiral bag as an anti-baryon.

To link the bag surface theory with the exterior, η′ must couple to the vector meson.

The effective interaction term for the meson field is

i
Nc

8π2

∫
η′ tr(dVdV). (91)
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This term appears in the hidden Wess–Zumino term [125,126], with related physics dis-

cussed in [59,81,82]. The baryon number outside the bag, Qout, is proposed as

Qout = −
∫

Ξ

(
dη′

2π

)
× 1

2π
d tr(V), (92)

where the integral is taken over the space outside the bag, labeled Ξ. The total baryon

number of the bag is then Q = Qin + Qout.

It is worth noting that in [59,81,82], the dynamical U(N f )−Nc vector field A is di-

rectly identified with the vector meson fields. However, this identification is premature.

Here, we observe that both A and V exist on the bag surface and cannot be distinguished

based solely on their positions. Nevertheless, only V extends to the bag’s exterior and

should be identified with the vector meson fields, in terms of the hidden local flavor

symmetry [126–128].

On the bag surface, there exist two vector fields, A and V, both carrying flux but

with opposite signs. This configuration results in baryon numbers of equal magnitude

but opposite sign, effectively canceling each other. This suggests the possible existence

of a meson cloud assembled on the bag surface, comprising a quark and an anti-quark,

which resembles a dipole structure excited by the monopoles inside the bag. Thus, a baryon

can be understood as a monopole surrounded by a meson cloud. If the singularity of the

monopoles can be eliminated by certain methods, the meson cloud could be identified as

a baryon. Indeed, the soliton structure formed from the pion field, famously known as a

skyrmion, can be interpreted as a baryon. Our description of the chiral bag model provides

an explanation for why skyrmions are understood as baryons. However, incorporating

the pion field requires modifying the chiral bag boundary condition [29,48,129,130], which

introduces additional complexities and warrants further investigation.

6. Conclusions and Discussion

As extensively discussed above, the concept of baryons as topological solitons is widely

accepted. For multiple flavors, baryons are described as skyrmions in (3 + 1) dimensional

spacetime, while for a single flavor, baryons manifest as quantum Hall droplets constructed

from an extended, meta-stable configuration of the η′ field in (2 + 1) dimensions [43] or as

vortices on (2 + 1) dimensional η′ domain walls.

The relation between skyrmions and one-flavor baryon construction has been inves-

tigated [81,82]. However, constructing a one-flavor baryon from the soliton perspective

in (3 + 1)-dimensional spacetime remains an open problem, requiring further attention.

Moreover, while ample evidence suggests that the topological soliton structure of the meson

field gives rise to baryons, the precise mechanism by which high-energy QCD flows to the

low-energy effective theory remains unclear and warrants further study [16,24,59,60]. This

phenomenon appears to be closely tied to chiral symmetry breaking and the generation of

Nambu–Goldstone bosons.

The role of vector mesons is particularly significant; under level-rank duality, vector

mesons can be interpreted as dual gluons. However, identifying the physical content

of the scalar field in strong dynamics remains challenging, as it is in the fundamental

representation of SU(N f ). Since the level-rank duality with scalars is associated with an

assumed non-trivial infrared fixed point [42], the dual theory with scalars might have close

connections to the recently developed chiral-scale effective theory of strong interactions,

which is based on the assumed nonperturbative infrared fixed point of QCD [131,132].

An environment that realizes this relationship/duality is dense nuclear matter, where

the vector manifestation point [133,134] may exist, or where chiral symmetry may be

realized in a vector mode [135], such that the vector meson fields become massless. In
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this case, the scale symmetry locked to the infrared behavior of strong interactions may

emerge [136]. These unresolved questions merit further investigation.
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