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the kinematical cut in the ¢* plane. When you work
in the W plane this is out in the open. It is true that
you can find functions which are functions only of
g* but we prefer to work with the whole amplitude
because that is the one which has the simple unitarity
properties. I do not contend that you can not work
in the ¢* plane; I am sure you can, but I do not feel
it will afford any advantages to us in our partial
wave procedure.

OPPENHEIMER : One gains the impression that by
this time next year some comparison between the
various methods, all of which are trying to do the same
thing and adopt the same philosophy, will be in
order, but at the moment it is a little premature to
do that.

Wick : Regarding Hamilton’s method, is this the
same thing that Oechme wrote about in the Physical
Review Letters?

HamiLToN : The singularities inside the circle
correspond to the singularities in Oehme’s second sheet
and in order to find the discontinuity across these
singularities you have to use the second sheet for the
purpose of crossing, so really effectively what I have
done is equivalent to Oehme’s dispersion relation.

SHIRKOV : I only want to stress that surely the choice
of variable is not the principal point because you can
always change the variable; but ¢* is, I believe, the
most convenient one because you do not have such a
complicated situation in the complex plane. The second
point I want to stress is that the problem of the
approximation in the unphysical region arises here
also, and here I return to the point from which I
started some hours ago; in order to get the well-
behaved equation we did not integrate over all this
region to get the partial wave equations, but we ex-
panded the amplitude of the first process near the
point C = —1.

THE NN-r= AMPLITUDE ®

D. Y. Wong

Lawrence Radiation Laboratory, University of California, Berkeley, California

In the same spirit as the dispersion approach to the
pion-pion and the pion-nucleon problems, 1 shall
now describe the determination of the NN to =n
amplitude in terms of known singularities of the func-
tion. I should mention that this work is done in col-
laboration with Ball of Berkeley. We are mainly
concerned with the region where the energy of the
nucleon-antinucleon system is not too far from twice
the pion mass. This region is of some immediate

interest since it is expected to give a substantial
contribution to the absorptive parts of the nucleon
form factor, the pion-nucleon amplitude and also
the nucleon-nucleon amplitude. Let us denote the
square of the nucleon-antinucleon center-of-mass
energy by t. For any partial wave of a given angular
momentum and spin, the singularities in the z-plane
are : the branch cut due to the exchange of a single
nucleon starting at ¢ = 4u*(1 —u?/4m?); the exchange

(*) This work was done under the auspices of the U.S. Atomic Energy Commission.
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Fig. 1 Feynman diagram for NN—anx.

of a nucleon plus a pion starting at t = 0; etc. The
threshold for the production of two pions is at = 4°.
From this threshold to the production of more than
two pions, the (NN|nn) amplitude has the same
phase as the {(mn|nn) amplitude, since

Im { NN|znn) ~{NN|nn>*{nn|nn)

in this region.

Frazer and Fulco ! were the first to write down
partial wave dispersion relations for the NN to nx

amplitude. They considered the two p-wave ampli-
tudes in some detail. For convenience, they took the
combination

Iy=o {+[+>+p{+H=>
Iy =0 (+[+)+fK+]=>

where the symbol <{-+|+> denotes the nucleon-
anti-nucleon annihilation amplitude in a given helicity
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Fig. 2 Singularities in #-plane.

state and o, f# are kinematic factors which are known
functions of #.  They have shown that I'; contributes to
the nucleon charge form factor and I', contributes to
the magnetic form factor. Frazer and Fulco took a
“ one-pole 7 approximation for the nn p-wave and
determined the phase of the (NN|nn)> amplitude
on such basis. They considered the nucleon pole
term exactly and estimated the * rescattering” cut
(the exchange of a nucleon plus a pion) by a -function
approximation for the pion-nucleon (3, 3) amplitude.
They found it necessary to introduce a cut-off on the
left-hand cut in order to obtain convergent integrals.
It turned out that the magnetic amplitude (I',) is
insensitive to the cut-off. They then chose the p-wave
nn parameters to fit the magnetic form factor. How-
ever, the charge amplitude was quite dependent on
the cut-off. What I would like to report first today
are two modifications of the Frazer-Fulco solution.
(I) A “two-pole ” approximation is taken for the nn
p-wave with a repulsive outer region plus an attractive
inner region as discussed by Chew. (2) The values
of I'y and I', in the neighborhood of =0 are
determined by the pion-nucleon fixed-momentum
transfer dispersion relation in the neighborhood of
forward scattering. The left-hand cut of I' is calcula-
ted in the same manner as Frazer and Fulco except that
we terminate the rescattering cut at t = —26u° (where
the nN partial wave expansion diverges) and replace
all remaining cuts by a pole which is adjusted to give
the correct value of I' in the neighborhood of ¢ = 0.
Of course, this phenomenological pole can also com-
pensate for part of the inaccuracy in the rescattering
cut.

I will now give the value and derivative of I', and
I', at t=0 as calculated from a one-subtraction
pion-nucleon dispersion relation. The subtraction
constants are related to pion-nucleon scattering lengths
and the dispersion integrals involve pion-nucleon
partial cross sections which are expressed in terms of
combinations of total cross sections and the (3, 3)
amplitude in such a way that the J = 3/2 states
(ps;, and .ds),) are taken into account exactly. We
believe that such a combination is more accurate
than the (3,3) amplitude alone since the second
resonance is probably in the J = 3/2 d-state. The
following table is a summary of the value and deriva-
tive of the I'’s and the contributions from various
terms :
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Scattering Lengths Dispersion
Born Term Inlt)egral Total
s p d
I | —0.1055 —0.0339 — —| —0.0012 —0.141
T',0) 0.0238 —0.0002 —0.0319 | —| 0.0041 —0.0042
I'(0) 0.00533 0.00135 003820 | —| —0.00186 0.0430
Iy (0) —0.00562 —0.00010 —0.00258 71 —0.00036 ?
The scattering lengths are taken from the analysis with
of Barnes et al. ) and Hamilton and Woolcock ¥. It ro
is clear that I',(0) is most accurately determined. Vo= Z—Il ;
The uncertainty in I',(0) and I",’(0) mainly comes from
the inaccuracy of the small p-wave scattering lengths. N = Ay _szz

If the small p-waves are ignored, we find I',(0) =
0.0033 and I','(0) = 0.0348. The uncertainty from
the dispersion integral is considerably smaller. We
have checked this point by a comparison with the
corresponding integrals where only the (3, 3) p-wave
is kept. Since the d-wave scattering lengths are yet
unknown, we can only estimate the order of magnitude
of I',’(0) from the no-subtraction formula which gives
I,'(0)~—0.005. Fortunately, it turns out that the
phenomenological pole in the I', amplitude is very
weak and the amplitude on the right is quite insensitive
to the position of this pole. Hence we can adjust
the position and residue of the pole in I'; to give the
normalized value and derivative at ¢ = 0, and adjust
only the residue of the I', pole to fit the normalized
value leaving the position arbitrary as long as it is
beyond ~ —15.

Now that we have the formalism set up, we can
compute the I"’s and the two-pion contribution to the
vector part of the nucleon form factors for any given
set of nn parameters in much the same way as the
Frazer-Fulco calculation. A typical set that gives the
observed magnetic moment form factor is: v; = 60,
v, =4,4, = 0.3, 4, =0.31 (in pion units) where
we have taken the p-wave nn amplitude to be

v+t
\/ 2 gésiné = N/D
v

- s
v+vy vtV

D =1—-y[Av,K(vy, =v)= A, K(v5, — V)]

and K(a, b) is the kernel defined by Chew and Mandel-
stam. This set of parameters gives a resonance at
t~14. The two pion contribution to the charge turns
out to be ~209, of the total charge. The smallness
of this charge is due to the cancellation of the phenom-
enological pole and all other terms in the normalized
I’y amplitude. The pole is found to be situated at a
very high energy region but gives far greater (negative)
contribution to the electric charge than the contribu-
tion (positive) from the rescattering cut. This leads
to our belief that although the I'; amplitude is still
quite sensitive to the uncertainty in the normalization,
we have at least obtained a I',(¢) qualitatively more
reliable than the function given by Frazer and Fulco.

I shall now turn to the question of the compati-
bility of our nm parameters with the dispersion theory
of Chew and Mandelstam®. For any given set of
p-wave parameters, we can determine one or more
sets of s-wave parameters, by using the so-called
*“ almost exact ” crossing conditions in the neighbor-
hood of the nn symmetry point.

Our present solution with v; =60 and v, =4
gives a negative p-wave amplitude at the symmetry
point and is inconsistent with the Chew-Mandelstam
theory. However, this situation may be improved by
moving the attractive pole farther to the left.
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Should we be able to obtain an s-wave nx solution
in this way or in any other way, we can immediately
construct the s-wave {NN|nn) amplitude in much
the same manner as the p-wave problem. The normal-
ization at ¢ = 0 plays an even more important role
in the s-wave problem. In fact it serves to suppress
the nucleon pole term which is known to give a super-
fluously large fourth order potential in the nucleon-
nucleon scattering problem. In closing, I should men-

tion that it is quite probable that a p-wave nr resonance
will give a substantial contribution to the “ medium
range ” attractive force between two nucleons but it
is unlikely that the resonance will ever produce a
repulsive core. However, there is still a possibility
that a one-subtraction formula including the one-
and two-pion exchange terms in the nucleon-nucleon
problem may simulate the effect of a hard core in
the physical region.
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DISCUSSION

CHEW : Wong passed over rather quickly a fairly
serious embarrassment for the calculation, and that
is the fact that the dynamical solutions of the p-wave
problem which Mandelstam and 1 have obtained
have never given a sharp resonance of as small a
width as implied by the calculations of Ball and Wong.
The point is, as Frazer and Fulco emphasized in the
original calculation, that the contribution to the
magnetic moment goes inversely with the width of the
resonance and you need' quite a narrow resonance
if you want to get the full anomalous moment from
the two-pion state. This fact is reflected in Wong’s

result that A, wants to be negative; that means that
the pion p-wave amplitude is negative a little bit to
the left of the origin and increasing rapidly, which
means a very sharp resonance. We cannot possibly
get that kind of behavior out of the dynamical
solution. We have to be content with a width that
gives only about half of the magnetic moment, I
would say, and this is a serious difficulty with the
present scheme.

OpPPENHEIMER : This leaves room for the four-pion
state.




