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Abstract

This thesis contains a local study of quantum field theory from fundamental, opera-
tional, and practical perspectives, with the primary goal of investigating the information
that can be locally extracted from quantum fields. Central to this discussion is how the
fundamental interactions of quantum fields give rise to the very objects that allow us to
probe them. We approach this problem through the concept of localized quantum fields,
which naturally reduce to local probes with finitely many degrees of freedom that can be
accessed in realistic experiments.

Building on this detailed description of localized probes, we apply these to explore
two key aspects of the information locally stored in quantum fields: entanglement and
gravity. In the study of entanglement, we explore the quantification of accessible vacuum
entanglement between two finite regions of spacetime. Our discussion contains both a first-
principles approach based on local field degrees of freedom and an operational framework,
wherein we consider the entanglement that can be harvested by coupling local probes to
independent degrees of freedom of the field.

The study of entanglement in quantum field theory also leads us to classify the regimes
where the quantum degrees of freedom of a field play an active role. Through the use of
an effective quantum-controlled model, we show that the quantum degrees of freedom of
mediating fields are only relevant in relativistic setups involving either high energies or
interactions that are sufficiently localized in spacetime. In setups where these conditions
are not met, a simplified effective model can accurately describe interactions while still
incorporating some key relativistic elements.

Finally, we will discuss the gravitational information locally stored in quantum fields.
Specifically, we will show that the correlations of quantum fields contain full information
about the geometry of spacetime, and how to physically access these degrees of freedom.
While the fact that quantum fields store full gravitational information might suggest the
possibility of a theory in which gravity emerges directly from quantum correlations, we
speculate that gravity may instead be emergent from the entanglement in quantum field
theory.
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Preface

Arguably, the most relevant aspect of a document is its target audience. This being a
PhD thesis, and my primary goal being to be awarded the PhD degree, this thesis should
(and mostly is) written with the committee in mind. However, I would also like for this
thesis to serve as a useful reference for future researchers interested in approaching some
of the tools that I have learned and developed during my PhD. To this end, this thesis
contains reviews of most topics relevant to the discussion here, containing my personal view
on these. In particular, while knowledge of general relativity and quantum mechanics is
assumed throughout the thesis, no previous knowledge of quantum field theory is required
(although it is always welcome) for reading the full content of the thesis: we will instead
review all necessary content of quantum field theory in Chapter 1. A reader familiar with
the content of Chapter 1 is then welcome to skip it, but encouraged to check the conventions
established therein.

The remaining chapters of the thesis all contain a combination of original results and
reviews of relevant related research. In many cases, these are combined in the same Sec-
tion for the purpose of exposition, and in some cases, the reviews themselves smoothly
connect to original results, as some of the original research presented here lies exactly in
the connection between known formulations of different topics. This is particularly true in
Section 2.2, which connects the Fewster-Verch measurement scheme with the operational
formulation of probes in quantum field theory. All parts of the thesis involving reviews of
works in which I did not coauthor will be properly referenced, making clear which content
is not due to my contributions.

Overall, the exposition of topics in this thesis follows a bottom-up approach, starting
from more general definitions and concepts, and then particularizing to concrete applica-
tions. For instance, in Chapter 2, we start with a fully covariant approach to measurements
in quantum field theory, then reduce it to effective models, and only afterwards establish
a connection with explicit physical systems. The same is true in Chapter 3, where we first
give general perspectives on the quantification of entanglement in quantum field theory,
only discussing operational approaches later in the chapter.

Each Chapter in this thesis is divided into Sections containing Segments, rather than
Subsections. The only exception to this rule is Section 2.4, which contains three Subsec-
tions, each split into their respective Segments. The Segments are identified by bold titles
that summarize their main content and can be arbitrarily short. Their main goal is to
clearly organize and divide the content of each section into separate subtopics.

Finally, it is important to disclaim that any topic in theoretical physics can be de-
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scribed at many different levels of mathematical rigour. This is particularly relevant for
the contents of this thesis, as its primary focus is deeply linked with local studies of quan-
tum field theory, which can be formulated with arbitrary levels of mathematical rigour.
For instance, in [55], quantum field theory in curved spacetimes is formulated in terms of
category theory. In this sense, the topics here are not presented with full mathematical
rigour, as we will usually ignore topological considerations whenever they are not directly
relevant to our discussions. Overall, the approach taken here uses the relevant aspects of
local formulations of quantum field theory, skipping excesses in rigour that could hinder
progress toward our main discussions.

Notations and Conventions

In this Section we will briefly summarize the main notations and conventions used through-
out the thesis. Most of these are defined when first used in the manuscript, or fairly
standard, but we summarize them below for convenience.

Spacetime

Spacetime is an oriented smooth 341 dimensional' Lorentzian manifold M with metric g,
and we use the convention that timelike vector fields have negative norm (the east coast
convention with signature (—1,1,1,1)). We usually label coordinates by (2%, z!, 22, 23) =
(t,x), where 2° = t is a positively oriented timelike coordinate and x = (2!, 2%, 23) = (z%)
are spacelike coordinates. Greek indices run from 0 to 3, while Latin indices run from 1 to
3. Events in spacetime are denoted with serif font: x, p, q.

Given O C M, we denote its future and past domain of dependence by D*(O) and
DT (0), respectively. Its domain of dependence is denoted by D(O). We denote its causal
future and causal past by J7(O) and J~(O), respectively. A Cauchy surface for a region
O is a spacelike hypersurface such that O C D(X), and a Cauchy surface is a spatial
hypersurface ¥ such that D(X) = M. The causal hull of a region O is defined as the set
J=(O)NJ*H(O), and a set is said to be causally convex if it is equal to its causal hull. The
causal complement of O is denoted by @' = M\ (J*T(O)N J~(0)).

The Levi-Civita connection is denoted by V, and the volume form is denoted by dV/,
which can be expressed as dV = /—¢gda® A ... A dz® = \/—gd*x, where g stands for the

metric determinant in a given coordinate system. The Riemann tensor is denoted by R,,qz3

!The only exception to this rule is in Section 2.4, where spacetime is taken to be n + 1 dimensional.
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with the convention Ruyaﬂvﬂ = V,V,v, — V,V,1,, the Ricci tensor is R, = gaﬁRWVﬁ,
and the Ricci scalar is R = g"” R,,,,. The Einstein tensor is G, = R, — %R 9. We use the
standard notations for symmetrized and antisymmetrized indices, Ay = %(AW + A,
Ay = 5(Au — Auy).

Synge’s world function is denoted o (x, x’), corresponding to one-half the squared geodesic
distance between events x, X’ that can be connected by a unique geodesic. Its derivatives
with respect to its different arguments are denoted as below

o,=Vyu0, 0y=Vyo, Vyo=o0y,, Vwo=ou, Vu,o=o,y, (1)

as well as their natural extension for higher derivatives.

Spatial hypersurfaces are typically denoted by 3, and their induced volume form is
denoted by d¥. We also denote d¥* = n*d¥, where n* is the future-pointing normalized
vector orthogonal to Y. Throughout the thesis, we will assume that M is globally hy-
perbolic so that it admits a foliation by Cauchy surfaces >, in t € R. In this case, the
coordinate system (¢, ) is such that ¢ parametrizes the Cauchy foliation and x are local
coordinates in ;.

All integrals are assumed to be over the entire domain where their measures is defined,

- / AV f(x) = /M v F(x), / AN F(x) = /2 AN F(x). @)

The Dirac deltas d(x,x’) and §(x, ') are defined incorporating the measures of the spaces
that the arguments belong to:

/dVé(x, x0)f(x) = f(xo), /dE d(x, o) F(x) = F(x). (3)

When M is taken to be Minkowski spacetime, ¥J; stands for an inertial foliation and
(t,x) denotes an inertial coordinate system, where the metric components become 17, =
diag(—1,1,1,1) and V,, = 0,.

Functions, Distributions, and Bi-distributions

The set of complex-valued smooth functions in M is denoted by C*°(M), and the set of
smooth compactly supported functions complex functions in M is denoted C§°(M). The
set of real smooth functions and real smooth compactly supported functions in M are

respectively denoted by C*°(M)r and C§°(M)g.
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A smooth function in spacetime, f: M — C (or R) defines a unique linear functional
acting in C(M):

f(g) = / AV f(x)g(x). (4)

The symbol f then stands both for the distribution f : C*°(M) — C and for the function
f: M — C: if fis evaluated at an event x, it stands for the value of the scalar function f,
and if f is evaluated a function g, it is understood as in Eq. (4). In particular, fg stands
for the scalar function f(x)g(x) and f(g) = g(f) stands for its integral.

Analogously, a smooth biscalar function A : M x M — C defines a unique bilinear
functional in C§°(M):

Alf,g) = / VAV A(x, ) f()g(X). (5)

Moreover, the biscalar function A(x,x’) also defines a unique linear operator acting from

C° (M) to C°(M):
Af(x) = /dV’A(X,X')f(x’). (6)

The symbol A then stands for the scalar function A(x,x’) when evaluated at two events in
spacetime, the bi-distribution A(f, g) when evaluated at two test functions, and the func-
tion Af, when applied to a single test function. We then have the identity A(f, g) = f(Ag).
Given a linear operator L : CP(M) — C®°(M), or a bi-distribution B : C§°(M) x
Cg°(M) — C, we can define formal integral kernels L(x,x’), B(x,x’) such that the iden-
tities f(Lg) = L(f,g) and B(f,g) = f(Bg) hold. When appropriate, we generalize the
definitions of Egs. (5) and (6) for more general spaces of test functions and quotients of
the space C§°(M).

The ideas displayed in Eqs. (4-6) generalize to tensor fields of any rank: if a stands for
any collection of Lorentz indices, a tensor field f*(x) defines a unique distribution acting
in dual fields by

f(9) = / AV f*(x)ga(x). (7)

Analogously, we have a correspondence between bitensors, bi-distributions and linear op-
erators. A bitensor A,y (x,x’) then defines the bi-distribution and linear operators

/

A(f,g) = /dVdV’f“(x)Aaa/(x, XNg* (X)), Af.(x) = /dV’Aaa/(x,x’)f“/(x’), (8)
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also satisfying A(f, g) = f(Ag).

Algebras, Operators and Hilbert Spaces

A x-algebra (which we use synonymously with a unital x-algebra) stands for a complex
vector space A with an associative product of elements denoted by juxtaposition and a
conjugation operation (-)": A — A such that

1. A(aB+ BC) = aAB+ BAB for all o, 3 € C and A, B € A,

2. (@A + BB) = a* AT + §*Bf for a,8 € C, A, B € A, where a* denotes the complex
conjugate of a,

3. (ANt = A forall Ae A,

4. There exists an identity element 1 € A such that 1A = A1 = A for all A € A.
Elements of non-commutative x-algebras will be denoted with a hat. We say that a set of
elements {A;}; generates an algebra A if every element of the algebra can be written as a
linear combination of products of elements in {4;};. If there is a suitable topology in A,

we extend linear combinations to series. Within the x-algebras, we define the commutator
and anti-commutator, respectively,

[A,B]=AB— BA,  {A B}=AB+ BA. (9)

A x-algebra morphism is a linear operation between *-algebras A; and Ay, © : A; —
Aj, such that O(AB) = ©(A)O(B), O(1;) = 1,, O(A!) = O(A)!. If A; = A, we say that
O is an endomorphism. We say that © is a representation of A; if the algebra A, consists
of operators in a Hilbert space.

Hilbert spaces will typically be denoted by .7 when they correspond to quantum sys-
tems. Pure states in . are normalized elements of 7" and will be denoted as with the
standard Dirac notation [¢)), where (1| is the associated linear functional due to the Riesz
representation theorem. A general state is represented by a density operator, usually de-
noted by p: a positive semi-definite operator with tr(p) = 1.

Symplectic Spaces

A linear symplectic space is a vector space V = R?" with a non-degenerate anti-symmetric
bilinear form ©Q—the symplectic form. A basis {ey,€p,, ..., gy €py } of V is called sym-

XXV



plectic if
Q(epiv qu‘) = 51']'7 Q(eqw eq]') = Q(epia epj) =0. (1())

A linear transformation S : )V — V is said to be symplectic if it preserves the symplectic
form: Q(Sv,Su) = Q(v,u) for all v,u € V. That is, if it maps symplectic bases into
symplectic bases. In matrix representation, we can then write

Q:é(g D). Ql:é(g ). a

and a transformation is symplectic if STQS = Q, or, equivalently, if SQ~18T = QL.

The space V can also be seen as a linear manifold, in which case the symplectic form can
be extended to act on tangent vectors. The basis {eg,, €p,, ..., €qy, €py | induce coordinates
& ={q¢',p*, ....,q",p"} in V, so that the symplectic form, seen as a 2-form, can be written
as

N
1 . .
Q_——QadaAdﬁ_—EjdlAdl. 12
5 pdg § i:1p q (12)

Any scalar function f € C*°(V) then defines a unique vector field X through the equation

Xy is called the Hamiltonian flow associated with f. Writing the components of the
inverse symplectic form Q7! as Q% we can explicitly write X; = Q*9,f0s. A function
f € C*(V) is called an observable, and the Poisson bracket between two observables is

defined as
{f, 9} =df(X,) = —Q(X;, X,) = %0, f0sg. (14)

In particular, if f and g are linear observables defined by f(v) = Q(¢s,v) and g(v) =
Q(¢pg,v) for vector fields ¢ and ¢, in V), note that

{f:9} = —Qoy, ¢g). (15)
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Introduction

For the past one hundred years, quantum field theory has stood as the most accurate
framework for the description of matter. From the photons currently being absorbed by
the cones and rods in your retinas to the atoms that constitute these very own cells, all
known matter can be fundamentally understood as excitations and interactions of quantum
fields. However, not everything is fully understood in terms of quantum field theory. Take a
hydrogen atom, for instance. Although quantum field theory describes the electron, proton,
and electromagnetic interaction individually, there is no current formulation that describes
every constituent of the hydrogen atom within this framework. While one can compute
corrections to effective descriptions using quantum field theory [10), , , , ],
no known state describes every part of the hydrogen atom. This matter becomes even
more complicated when one realizes that describing the proton in terms of quark and
gluon excitations is also not feasible—even computing the proton mass is a challenge by
itself [203].

Describing bound states like the hydrogen atom and proton is challenging in quantum
field theory because they cannot be treated as perturbations of free theories, and non-
perturbative methods are limited [18, 207]. On the other hand, with a century of studies
of quantum field theories, one could be led to think that at least we know everything that
there is to know about free theories. This is not the case. For instance, there is still
no effective method for computing the vacuum entanglement between two finite regions
of space. Perhaps even more dramatic is the fact that a formal measurement framework
for (even free) quantum field theories hadn’t been formulated until 2018 [56] (published in
2020). These unsolved questions highlight the inherent richness and complexity of quantum
fields.

It should then be clear that relying solely on quantum field theory limits our ability
to describe most realistic physical systems. One way to proceed is to employ approxi-
mate descriptions—simplified models that, while practical, generally violate quantum field
theory principles (typically through incompatibility with relativity). Although from a fun-



damental perspective, these effective models violate important fundamental laws of our
universe, these incompatibilities may be acceptable if they fall below experimental preci-
sion. Ideally, one would be able to derive these effective models starting from quantum
field theory, and precisely specify their regimes of validity, clearly defining the experimental
conditions under which they apply.

At its core, the work presented here is motivated by the need to reconcile two competing
demands. On one hand, we aim for a description of nature that faithfully adheres to the
principles of relativity and quantum mechanics; on the other, we need models simple
enough for explicit computations and direct experimental applications. Our focus will
be to explore these connections when systems interact with a quantum field in localized
regions of spacetime. Within this context, we focus on two aspects of the information
locally stored in quantum fields: their entanglement structure, and the information about
the background geometry of spacetime locally encoded in quantum field theory. Central
to our discussion is classifying the limits where quantum field theory can be approximated
by effective models and the regimes where the degrees of freedom of quantum fields play a
fundamental role.

The key questions that motivate this work are: How much entanglement is there in
a quantum field between two regions of spacetime? When are the quantum degrees of
freedom of a field relevant? How much information about the background geometry of
spacetime is encoded in quantum fields?

Locally Probing Quantum Fields

Quantum field theory initially emerged from efforts to reconcile quantum mechanics with
special relativity. Early formulations by Dirac, Pauli, and Heisenberg successfully described
many experiments but lacked an axiomatic basis. It was not until Wightman introduced

a formulation based on n-point functions in 1956 [205] that the theory began to be viewed
axiomatically. In 1964, Haag and Kastler established a fully axiomatic approach through
what became known as the Haag-Kastler axioms [78], framing quantum field theory as

a theory of local algebras of operators associated with regions of spacetime. This local
perspective eventually evolved into the field now known as algebraic quantum field theory.

This local formulation of quantum field theory not only provided a rigorous mathe-
matical framework but also led to significant insights that influence our understanding
of quantum fields, such as the Reeh-Schlieder theorem [152], the notion of thermality
through modular Hamiltonians [185], and the universal ultraviolet behaviour of field corre-
lations [90]. Within this algebraic framework, explicit constructions for free field theories



can modelled by associating functions to observables, f +— ¢E( f), with each spacetime
region’s algebra constructed from operators (5( f) whose support lies within that region.
Although these local observables are the fundamental objects of the theory, quantum field
theory was unable to, by itself, assign them an intrinsic physical meaning. It wasn’t until
the works of Fewster and Verch [50] that the flow of information between fields during
interactions was described, linking the functions f to probe observables defined within the
theory. Even then, the role played by the smearing functions cannot be directly related to
physical measurements, as these necessarily involve probes that are either bound states of
relativistic quantum fields with infinitely many degrees of freedom, or that are incompatible
with the axioms of quantum field theory.

It should then be evident that the connection between effective models and fundamental
descriptions becomes particularly relevant in the context of measurements. The fact that
quantum field theory is the fundamental description of matter implies that even the very
apparatuses that are used to measure quantum fields are themselves fundamentally quan-
tum field theoretic objects. This forces us to choose between a fully quantum field theoretic
framework for measurements—which is impractically complex for realistic setups—or the
use of effective models that have some level of incompatibilities with fundamental laws,
but that allow for explicit connections with physically accessible systems. Effective models
also have the advantage of admitting a wider range of explicit applications, leading to an
accelerated discovery of novel experimental protocols that leverage the fundamental fea-
tures of quantum fields. On the other hand, it would be fair to question whether protocols
discovered by making use of effective models are mere artifacts of their approximate de-
scriptions, or whether they could be genuinely implemented and accurately described by
models that respect the underlying principles that rule physics at the microscale.

It is clear that a satisfactory description of measurements in quantum field theory
requires reconciling two demands. First, we need a description of nature that is as faithful
as possible to the underlying principles of fundamental physics. Second, we require models
that are simple enough to allow for explicit computations and direct connections with
experimental setups. Ideally, we are seeking 1) a fully quantum field theoretic description
of how information about a target field is encoded into a probe, that is also described as a
quantum field, as well as 2) a systematic method for reducing the infinitely many degrees
of freedom of the probe to a system with finite degrees of freedom that could be accessed
in a realistic experiment. The Fewster-Verch framework can be used to understand the
flow of information from the target field to a probe, so that the missing key of the puzzle
is having an explicit method to reduce the quantum field theoretic description of quantum
fields to finitely many degrees of freedom. This is essential to study the information locally
stored in quantum fields.



A large portion of this thesis is devoted to bridging between foundational and practical
concepts of probes in quantum field theory. Central to this connection is the concept
of localized quantum fields—quantum field theories influenced by an external, classical
potential that confines them in space. This model will allow us to consider localized
probes described within quantum field theory that also admit a straightforward reduction
to finitely many degrees of freedom, resulting in the physically accessible probes commonly
known as particle detectors or Unruh-DeWitt detectors.

Once this connection is established, we explore two complementary aspects of local
probes in quantum field theory. From a practical perspective, we embrace the effective
Unruh-DeWitt detector models, showing how one can describe a reasonably general lo-
calized quantum system in a background curved spacetime starting from a given physical
non-relativistic system. We then show that coupling this system with an external quan-
tum field defines it as a local probe in the form of an Unruh-DeWitt detector. From a
fundamental perspective, we study localized quantum fields in greater detail, providing a
basis-independent notion for fields to be localized, and discussing properties of fields that
are localized by physically realistic potentials. As an explicit example, we show how to
describe a hydrogen atom by considering a quantum field theoretic model for the electron
under the influence of an external Coulomb potential, and how it naturally reduces to a
local probe of the magnetic field with two degrees of freedom corresponding to the electron
spin.

As a final study of the description of local probes, we apply our findings to the study
of the energy-momentum tensor of localized fields and the constraints imposed on these
models by general covariance. Essentially, general covariance rules out non-dynamical
localizing potentials and general relativity indirectly imposes that these potentials must be
bounded. To demonstrate that these conditions still permit simple, physically consistent
models, we present an analytically solvable example in which a quantum field is localized
by a dynamical classical field and a perfect fluid. Overall, the goal of our studies of
local probes in quantum field theory is to showcase exactly how to describe probes that
both respect the fundamental properties of matter in spacetime and directly correspond
to systems accessible in realistic experiments.

Entanglement in Quantum Field Theory

The quantification of entanglement, even in finite dimensional quantum systems, is still
a current topic of research. It should then be no surprise that this matter becomes even
more complicated in the context of quantum field theories. The two main reasons for quan-
tifying entanglement in quantum field theory are that 1) effectively, quantum fields have
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infinitely many quantum degrees of freedom associated with any subregion of spacetime,
and 2) strictly speaking, quantum field theories do not admit a tensor product factorization
associated to independent degrees of freedom. Since standard entanglement measures rely
on the notion of non-separability between tensor factors, these techniques must be adapted
in the context of quantum field theories. For instance, one can associate subsystems with
commuting algebras of observables rather than factors in a Hilbert space.

Albeit challenging to quantify entanglement in general, a few results are known about
entanglement in quantum field theory. For instance, there is robust evidence that the vac-
uum contains an infinite amount of entanglement between a subregion region of spacetime
and its causal complement [197], and that the entanglement entropy in this case diverges
proportionally to the area of the subregion [180]. One of the reasons that we have results
about vacuum entanglement between a region and its causal complement is that this prob-
lem reduces to computing bipartite entanglement in a pure state, which is the simplest
setup for entanglement analysis. In contrast, much less is known about the entanglement
between two finite subregions of spacetime, which would be an analog to the much more
challenging study of entanglement in mixed bipartite states.

Despite its challenges, quantifying entanglement between two finite subregions is more
physically realistic, as actual measurements of quantum fields take place in regions of finite
size. The entanglement between two finite subregions of spacetime could then conceivably
allow for practical applications in quantum computing and quantum cryptography. As
such, one of our goals in this thesis will be to progress on the topic of quantifying the
entanglement between two non-complementary regions of spacetime and how to explore
methods for accessing this entanglement via localized probes. Specifically, we will discuss
two complementary approaches to the study of entanglement between two finite subregions.

The first method consists of an approach based on localized field modes. In a given
spacetime region, the degrees of freedom of a Gaussian state can be represented through
the expectation values of canonical pairs of smeared field operators. By considering a suf-
ficiently large, but finite, number of modes, these degrees of freedom can be approximately
encoded in a finite-dimensional covariance matrix. This representation then allows one to
employ techniques of Gaussian quantum mechanics to quantify entanglement between two
finite subregions of spacetime. We will consider examples of applications of this method
and review the similar approaches applied to lattice field theories [96, 95, 94, 66], which
suggested a series of results about the entanglement between two subregions.

The second method that we will consider relies on an operational approach, where two
localized probes couple to independent degrees of freedom of the field in an attempt to
extract entanglement from it. This protocol has received the name of entanglement har-



vesting after the modern approach presented in [150]. Beyond reviewing the protocol, we
provide a description of entanglement harvesting using probes modelled by localized quan-
tum fields, yielding an entirely quantum field theoretic description of the protocol. This is
relevant, as implementations using effective non-relativistic probes raised concerns that the
protocol might be an artifact of the approximations rather than physically realistic [159].
We also provide closed-form results for a commonly used setup in entanglement harvesting,
which allows us to easily quantify the entanglement acquired by two detectors, the regimes
in which this entanglement can be associated with the entanglement present in the field,
and to consider asymptotic limits of entanglement extraction. These asymptotic results
also reveal general features of the protocol, and facilitate comparisons with the broader
conclusions drawn in [96, 95, 94, 66].

When are the Quantum Degrees of Freedom of Mediators Relevant?

In a similar manner to how the internal degrees of freedom of bound states in interacting
quantum field theories can be approximated by non-relativistic effective models, interac-
tions mediated by quantum fields can be approximated by direct couplings between sys-
tems. Indeed, most non-relativistic interactions between quantum systems are prescribed
as direct couplings—for example, spin-spin interactions are often modelled as & - 5. This
suggests the existence of a well-defined limit in which the quantum degrees of freedom
of the mediators become negligible, allowing the interaction to be effectively described as
a direct coupling. Identifying these regimes is essential both practically, for simplifying
quantum field mediated interactions, and fundamentally, as they delineate when genuine
quantum field theoretic effects manifest.

To explore the regimes where the quantum degrees of freedom of mediators are not
directly relevant to interactions, we define and discuss a model for a direct-coupling in-
teraction of quantum quantum systems formulated in terms of retarded propagators of
the mediator: the quantum-controlled model. This prescription effectively defines fields
whose degrees of freedom are entirely determined by the quantum systems that source
them. The model is then able to incorporate some relativistic aspects of the interaction
while neglecting the quantum degrees of freedom of the mediating fields. By compar-
ing the evolution of states that interact through fully featured quantum fields with that
prescribed by quantum-controlled models, we find the explicit regimes where mediators’
quantum degrees of freedom are relevant. Overall, establishing the regimes of validity of
the effective quantum-controlled models is an important step towards understanding when
quantum field theory is necessary, as well as for connecting the fundamental descriptions of
interactions with their simplified versions, that yield practical results in realistic physical



systems.

An explicit example where understanding the regimes where the role of quantum de-
grees of freedom of mediators is relevant is in the recent experimental proposals to witness
gravity-mediated entanglement [I8, |. The goal in these proposals is to determine
whether two systems that interact solely through the gravitational field can become entan-
gled. While the experimental results can be used to infer properties of the gravitational
interactions of quantum systems, one must carefully analyze the conditions under which
the experiment would be able to determine whether the gravitational field has quantum
degrees of freedom. By comparing the quantum field description of the gravity-mediated
entanglement proposals with their quantum-controlled counterpart, we find that, under the
proposed experimental parameters, both yield effectively indistinguishable results. This ob-
servation leads us to discuss a subtle point: while an observation of entanglement between
the masses would rule out certain non-quantum models of gravity, it does not by itself
ensure that the gravitational field has local quantum degrees of freedom. We argue that
instead, one requires additional assumptions regarding locality that allow one to reach
conclusions about non-classicality of gravitational degrees of freedom.

The Geometry of Spacetime from Quantum Field Theory

The short-distance behaviour of correlations in quantum field theory is deeply connected to

the background geometry of spacetime [165]. Specifically, the so-called Hadamard condition
imposes that the two-point correlation functions of a quantum field exhibit a universal
singular structure at short distances [134]. This universal ultraviolet behaviour then fully

encodes the information about the geodesic separation between neighbouring spacetime
events, allowing one to recover the background geometry of spacetime entirely from the
correlation functions of quantum fields. In fact, it has been proposed that gravity could
itself be emergent from the correlations of quantum fields [91].

Building on this insight, we describe an operational setup for probing spacetime geom-
etry through measurements in quantum field theory. More precisely, using Unruh—DeWitt
detectors as idealized probes, we show how one can relate correlations between sufficiently
localized detectors to the correlation function of the quantum field that they couple to. By
measuring these correlations, we reconstruct the spacetime metric in a coordinate system
induced by a lattice of detectors that locally couple to the field. We illustrate this recovery
with examples involving detectors in various states of motion and different spacetimes,
showing that the reconstruction becomes exact in the limit where the probes are perfectly
localized and their separation is arbitrarily small. Overall, this example shows that not



only do quantum fields store complete information about the geometry of spacetime, but
that this information is physically accessible through local measurements.

After concretely showing how to recover the background geometry of spacetime from
quantum measurements, we briefly discuss the possibility of rephrasing the geometry of
spacetime entirely in terms of correlations of quantum fields, in an attempt to formulate
a theory where gravity is emergent from quantum field theory. A preliminary analysis
reveals that the main challenge in such a framework is incorporating dynamics—a problem
we were unable to overcome. Instead, we argue that it might be possible to consider a
theory where spacetime is emergent from the entanglement in quantum field theory, as has
been proposed by different authors [198, 50, 30, 29, , 62].

Structure of the Thesis

In the following six chapters, we will discuss the topics described above in detail, starting
with a review of the tools of quantum field theory that will be used throughout the thesis
in Chapter 1. Our goal in this chapter is to connect different formulations of quantum field
theory, as well as setting the conventions that will be used throughout the remainder of
the thesis. In Chapter 2, we discuss local measurements in quantum field theory, and how
each mode of a localized field can be approximated by an effective particle detector model.
In this Chapter, we will study both localized fields and particle detector models in detail.
Chapter 3 focuses on the quantification of entanglement in quantum field theory using
techniques from Gaussian quantum mechanics and the entanglement harvesting protocol.
In Chapter 4, we introduce quantum-controlled models and delineate the regimes in which
the quantum degrees of freedom of fields play a significant role. Chapter 5 demonstrates
that quantum fields encode complete information about the background geometry and
details how local probes can access this information, also discussing the possibility of
a theory where gravity emerges from quantum field correlations. Finally, Chapter 6 is
devoted to a summary, conclusions, and future steps of the research carried on here.

Throughout this thesis, the recurring theme is the search for a harmonious interplay
between the abstract principles of quantum field theory and the pragmatic models that are
indispensable for real-world measurements. Whether it is through the careful construction
of localized probes, the quantification of entanglement, or the effective formulation of
quantum-controlled models, each part of this work aims to illuminate how effective theories
emerge from, and remain consistent with, the fundamental tenets of quantum field theory,
and how to use these tools to explore its essential aspects.



Chapter 1

Quantum Field Theory

Quantum field theory is at the root of our understanding of modern physics. Virtually
everything in our Universe can be thought of in terms of excitations of quantum fields.
The framework is also a century old, implying that there are too many aspects of it to
fully discuss in any one document. The goal of this chapter is to provide a review of
quantum field theory, focusing on its local formulation. Quantum fields are at the heart
of this thesis and this material will be key in every subsequent section, so that it is only
natural to start by fixing notations and conventions in quantum field theory.

During my graduate studies I found it particularly difficult to find references that would
clearly connect different formulations of quantum field theory in a concise manner, and I
am certainly not the first or last PhD student to face this struggle. As such, my hope is
that the content of this Chapter can be useful as a reference to a younger generation of
graduate students wishing to pursue similar research topics to the ones I have focused on
during my PhD. In particular, this Chapter attempts to not overly focus on topological
intricacies within the formulations, instead presenting the main concepts and the formal
aspects that are specifically relevant for the remainder of the thesis. For a more formal
perspective, the book [24] is highly recommended and inspired parts of this chapter.

This chapter is organized as follows. In Section 1.1 we will review properties of the
space of solutions of the classical Klein-Gordon equation. It turns out that one of the
main reasons for clear connections between different formulations of quantum field theory
not to be ubiquitous is the fact that these rely on formulations of classical field theory,
which is a topic that usually receives little attention. Section 1.2 is devoted to the quantum
field theory of a Klein-Gordon field, focusing on three different formulations of the theory in
terms of covariant algebras of observables, bases of solutions to the Klein-Gordon equation,



and algebras of observables associated to a Cauchy surface. Section 1.3 is devoted to a
brief summary of the Hadamard condition and why it is an essential additional ingredient
in quantum field theories. Finally, in Section 1.4, we will briefly go over the formulations
of quantum field theories of more general fields, such as complex scalar fields, spinor fields,
electromagnetism and linearized quantum gravity.

1.1 The Klein-Gordon Equation

In this section we will focus on the example of a classical real scalar field ¢(x) in a globally
hyperbolic 3+1 dimensional spacetime M. We will assume that the dynamics of the field
is associated with the action

S = /dVE, L= —%V“W% - %V(x)qs?, (1.1)

where V(x) is a smooth real function. In particular, V(x) = m? yields a minimally cou-
pled massive scalar field and V(x) = R(x)/6 gives us a conformally coupled scalar field.
Extremizing S with respect to variations of ¢ yields the equation of motion

P¢ = (V, V"=V (x))¢p =0, (1.2)

which we will refer to as the Klein-Gordon equation.

Being a linear operator, the kernel of P is a subspace of the space of smooth complex
functions on M. We denote the space of complex solutions of P¢p = 0 by &, and the
subspace of real solutions by Sg, defined by the condition ¢ = ¢*. Although we will be
looking at a real scalar field, it is convenient to describe S as a complex linear space,
containing both complex and real solutions.

The Klein-Gordon Inner Product
Given two solutions of Eq. (1.2), ¢, ¢s € S, we define

ju(¢1> ¢2) = PIV P2 — $2V 7. (1.3)

Using the equation of motion we see that V,j* = 0, so that the integral of j* along any
Cauchy surface yields the same result provided that ¢; and ¢, decrease sufficiently fast at
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spatial infinity. We define

(61,03) =1 [ ASH(619,00 - 0a9,00) (1.4)

where d>* = n#*d>:, with dX being the induced volume for in the Cauchy surface and n* its
normalized unit normal vector. One can show that the bilinear form above is sesquilinear,
conjugate symmetric, and non-degenerate in S'. For these reasons (-,-) is commonly
called the Klein-Gordon inner product. Importantly, the Klein-Gordon inner product is
not positive definite; thus, it does not define the space S as a Hilbert space.

Bases of Solutions

Our next goal is to find a basis for §. Although the space of solutions lacks the neat
convergence properties of a Hilbert space, it is possible to find subspaces of S where (-, -) is
positive definite, thus obtaining a Hilbert space. We then choose a maximal subspace of S
where (-, ) is positive-definite and denote it by S*. Importantly, there are infinitely many
maximal subspaces of S with positive Klein-Gordon inner product, so that ST is not unique
in any sense. Given a choice of S*, the space of solutions then factors as S = St & S,
where the sum is orthogonal with respect to the Klein-Gordon inner product, which is
negative-definite in S—. That is, given ¢ € S, it can be decomposed as

p=0¢"+¢, (1.5)

where ¢t € ST and ¢~ € S~ with (¢1,¢7) = 0. Also notice that, —(-,-) defines S~ as a
Hilbert space.

Given that ST equipped with the Klein-Gordon inner product is a Hilbert space, we
can find an orthonormal basis {ug}x, where the label k may be continuous, discrete, or
a combination of both, depending on the spacetime geometry and V'(x). Notice that the
Klein-Gordon inner product satisfies

(¢1, P2) = — (7, $3)" (1.6)

Using this property we find that the set {u} }x is an orthonormal basis for S~, so that any

ndeed, if (¢1,¢2) = 0 for all ¢ € S, then ¢1 and n*V,¢; have to be zero along a Cauchy surface.
Using this data as initial conditions for the Klein-Gordon equation yields ¢; = 0.
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¢ € S can be expanded as

b=+ = i(uk, B)ur, — (uf, S (1.7)

k

so that the set {ug,uj} is dense in S and orthonormal in the sense that
(u, ur) = 0(k, k'),  (ug,up) =0, (up,up)=—0(k, k), (1.8)

where §(k, k') denotes the Dirac or Kronecker delta depending on whether k takes on
continuous or discrete values.

Once the basis {ug, uj,} has been chosen, a general real solution in Sg is completely
characterized by the complex coefficients ay = (ug, ¢) = —(uj, ¢), and can be written as

¢ = I Al + QR (1.9)
k

The functions ug are usually referred to as positive frequency modes, while uj, are usually
referred to as negative frequency modes, according to the sign of their norm defined by the
Klein-Gordon inner product?. In the decomposition (1.9), the dynamics of ¢ in spacetime
are entirely encoded in the independent modes ug, so that the coefficients ay represent the
amplitude of the field associated to each mode. In essence, the coefficients a encode the
independent classical degrees of freedom of the field according to this mode decomposition.

Change of Basis

One could instead have chosen a different maximal subspace of S where the Klein-Gordon
inner product is positive-definite, say S°®, with orthonormal basis {vg }x/. This would define
the orthogonal decomposition S = §* @ S§°, and a basis for S would be {vi, v}, }xr, so that
any ¢ € § can also be expanded as

qb = Ibklvk/ + b;;/’U;;/, (110)
k/

2The reason for the name actually comes from the fact that in static spacetimes with a static future
oriented time coordinate ¢, the modes ug with positive Klein-Gordon norm satisfy idur = wpug, for
adequate frequencies wy, while the negative frequency modes satisfy i0,u;, = —wruy,.
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with by = (v, ¢). We can relate this expansion with the one of Eq. (1.9) by noticing that
the functions vy are also in S, so that they admit an expansion for the form

Vg = i kU + Bkl Qe = (U, V), Bk = —(Ugs U), (1.11)
k

where we notice that ag and 8 might be complex, given that the functions vy themselves
might (and in general will) be complex valued. Using ax = (ug, ¢) and Eq. (1.10), we find
that the coefficients ay and by are related by

A = I Oék/kbkf + 6,:/ka/ (112)

k:/

Notice that if Si are non-zero, the positive modes vy will mix the positive and negative
frequency modes uy, and uj, indicating that the subspaces ST and S*® are distinct. Con-
versely, if S = 0 for all k and k', the basis {vg }r and {ug}r would be related by a
unitary operation in ST = S°.

Initial Value Problem

Finding solutions to a typical partial differential equation, such as the one defined by the
Klein-Gordon equation, is usually formulated as an initial value problem. Specifically,
given a Cauchy surface ¥, one considers initial conditions ®,IT € C'*°(X), with the goal of
solving the problem

Pl¢] =0,
ols = 9, (1.13)
n“Vngﬁ\g = H,

where n#* denotes the future oriented normal vector to ¥. This problem can be directly
solved if one has access to a basis {ug, uj}x of the space of solutions. Indeed, expanding
the solution ¢ as in Eq. (1.9), one can obtain the coefficients ag, aj, by computing the
Klein-Gordon inner product at the surface X:

ar = /dE”(u,"c@Mgb — 0, uy,) = /dZ(u,’;H — dn"0,uy,), (1.14)

which is entirely written in terms of the initial conditions and the basis functions.

It is convenient to define the momentum of the field m(x), such that one can write
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7|y = Il in (1.13). To this end, consider a foliation of our globally hyperbolic spacetime
by Cauchy surfaces >;, where ¢ is a global future-directed timelike coordinate and define
the conjugate momentum associated with this foliation as®

r(x)Vh = %, (1.15)

where h is the determinant of the metric induced in the surface >; for each t.

We will now relate the conjugate momentum with the initial conditions, as described
in the initial value formulation (1.13). We can use the foliation ¥; to induce a coordinate
system in M. We pick coordinates (¢, ) so that for each ¢,  are coordinates in the surface
Y. Denoting the normalized field normal to ¥; by n#, we can then write

Oy = Nn + N'0;, (1.16)
where N* = ¢(9;,9;)6%. In the coordinates (¢, ), the metric can then be written as

where, for each ¢, h;; is the induced metric in the surfaces ¥, and N;N* = h;; N'N’. The
metric determinant is then v/—g = Nv/h, where h is the determinant of the induced metric
in the surfaces ¥, with dX = vh d3z.

The metric then decomposes as the orthogonal sum
G = =Ny + Ny (1.18)

with hy, = 6!,0)hi;. The Lagrangian can then be written as

L= %n"vuqﬁn’jquﬁ — %hijvmvjqﬁ — %V(x)gzﬁQ (1.19)
1 , o 1. .. 1
= 5373 ((00)° = 20,0N'0i6 + N'N?0:00;0) — ShVioV ;6 = SV (0)e*,  (1.20)

and the conjugate momentum is found from Eq. (1.15):

11
=

3We choose this definition for the conjugate momentum involving the induced metric in the surfaces so
that it is defined as a scalar rather than as a density.

7(x) (916 — N'Dip)v/=5 = V.. (1.21)
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We then see that the conjugate momentum 7(x) defined in (1.15) is precisely the normal
derivative with respect to the surfaces, n*V,¢, so that 7|s, = II. That is, one can think
of the pair (®,II) € C*°(X) in the initial value problem (1.13) as defining the initial value
of the field and its conjugate momentum. The space of solutions & can then be entirely
parametrized by pairs of functions (®,11) € C*°(X).

Phase Space

One can also study real solutions of the Klein-Gordon equation from a phase space per-
spective. The first ingredient for a phase space description is then a symplectic form €.
The Klein-Gordon equation allows for the symplectic form

e, 6a) = / A5 (a0t — 10,). (1.22)

which is independent of the Cauchy surface due to the fact that V,j*(¢3,¢1) = 0. The
symplectic form € is related to the Klein-Gordon inner product through the expression

(01, 92) = iQ(¢2, 91), (1.23)

which implies non-degeneracy and linearity, with antisymmetry being a consequence of
Eq. (1.6). The symplectic form  then defines the space I'(Z) = C§°(2) @ C5°(X)?* as an
infinite dimensional symplectic manifold with symplectic form

O(@, I ', IT') = /dE(H(w)(I)’(:v) — 3(2)I(z)). (1.24)

We extend the symplectic form to act in the tangent space of the symplectic manifold,
where the corresponding symplectic form can be written as

Q = 0TI A 69. (1.25)

Any smooth function O : T'(X) — R, is then an observable of the theory and gives rise to

the Hamiltonian flow o l) 50 6
X, /dE (5_1157@ B 57@5_11) ' (1.26)

The Poisson bracket between any two observables O(®,II) and Q(®,II) can then be com-

4The choice of spaces C§°(X) can also be replaced by more general spaces of test functions.
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puted by

B B 50 6Q  606Q
{O,Q}—XQ(O)—/dE (6@61’[_51'[6(1))' (1.27)

Two observables O(®,1T) and Q(®,II) will be a canonical pair if
{0,Q} = 1. (1.28)

In this case, we say that O and @) define a mode of the field. This mode is entirely de-
scribed within the two-dimensional symplectic submanifold parametrized by the canonical
coordinates O(®, II) and Q(®, IT).

More generally, if {Oy,...,0,} and {Q, ..., @, } are observables such that
{0:,0;} =0, {0:Q;} =6y, {Qi,Q;}=0. (1.29)

{O1,...,0,} and {Q, ..., @, } define canonical coordinates for a 2n-dimensional symplectic
submanifold, where the pairs (O;, @)y are independent canonical pairs, representing inde-
pendent degrees of freedom of solutions of the Klein-Gordon equation.

Of particular interest are linear observables of the form
F(@) = / ASF(2)d(z), G(IT) = / A5G (2)T(@), (1.30)

whose Poison bracket becomes simply

(F(®),G(IT)} = / dSF(2)G(z) (1.31)

In particular, if [dXF(z)G(x) =1, F(®) and G(II) define a canonical pair. These linear
observables in the field and momentum are more often written as ®(F') = F(®) and I[I(G) =
G(II), corresponding to smeared field and momentum operators, where we understand ®
and II as distributions acting on functions defined in C§°(3). These definitions allows one
to derive what are commonly called the equal time canonical commutation relations for
the field and conjugate momentum:

(®(F), TI(G)} = / A5dY F () G(a'){® (), TI(a')} = / ASF(@)Gx),  (1.32)
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which implies, at the distributional level, that

{P(x),11(z")} = 6(x, 2'). (1.33)

In this description, a general field state is a function that maps observables O € T" to
their expected values. That is, a state is a linear functional p : C*(I'(¥)) — R such that
p(1) =1 and p(O) > 0 whenever O(®,1II) > 0. Any functional of this type can be written
as a formal functional integral of the form

p(O) = / DEDIIp(®, IT)O(®, IT) = (0),, (1.34)

where p(®,II)D®DII is a measure in the phase space I'(X) that is normalized to 1. This
definition of a classical state is a generalization of the notion of a state being a solution
to the Klein-Gordon equation that allows us to consider statistical mixtures of solutions,
encoded in the measure p(®,1I). In particular, one can describe a single solution (®g, I1y)
by considering a Dirac measure of the form po(®,II) = §(® — &o)d(II — Ilp), in which case
the expected value of an observable O(®, IT) becomes simply

(O)po = O(Po,I1). (1.35)

A Covariant Parametrization

We have studied the space & using a basis of solutions approach and a phase space ap-
proach. The basis of solutions approach required a choice of basis {u }x, while the phase
space approach required a choice of Cauchy hypersurface . We will now study a way of
describing solutions to the Klein-Gordon equation in a covariant and choice independent
manner using the propagators associated to the operator P.

The operator P certainly does not admit a unique inverse, as its kernel is the space of
solutions, and thus non-trivial. However, it admits two inverses Gr and G4 that satisfy

PGrf =, PGaf = f, (1.36)

and are uniquely defined by the conditions supp(Grf) C J*(supp(f)) and supp(Gaf) C
J~(supp(f)).

The operators G and G 4 are the retarded and advanced Green’s functions of P. Their
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corresponding integral kernels, Gg(x,x’) and G 4(x,x), satisfy

(V. V" = V(x))Gr(x,X) =
(V. V" — V(x))Galx,

(x,X), (1.37)
(x,x). (1.38)

The propagator Gr(x,x’) is only non-trivial when x is in the causal future of X' (Gr(x,x’)
propagates from x’ to x), while G4(x,x’) is only non-trivial when x is in the causal past

of X' (Ga(x,x") propagates from x to x'). As such, these Green’s functions are related by
Gr(x,xX') = G4(X,x).

The retarded and advanced Green’s functions can then be used to generate solutions
to the non-homogeneous equation of motion:

¢=Grpf or ¢=Gaf = Po=1]. (1.39)

Essentially, Grf is the solution to P¢ = f corresponding to the field that is created by
a source f and G4 f is a solution that starts in the asymptotic past and is fully absorbed
when it reaches the source f. Additionally, any function of the form ¢ = aGrf + 5Gaf
with o + 8 = 1 is a solution to P¢ = f, corresponding to a combination of fields that are
absorbed and emitted by the source f.

Alternatively, a function of the form ¢ = aGrf+BG A f is a solution to the homogeneous
equation of motion whenever a + = 0. We then define the causal propagator

E=Gr—Ga, E(fg) = /dVdV’f(x)E(x, x)g(x) (1.40)

which can be used to generate solutions of the homogeneous Klein-Gordon equation from
compactly supported functions g € C§°(M):

6=Eg= Po=0. (1.41)

This is a covariant parametrization of solutions of the Klein-Gordon equation in terms
of functions defined in spacetime. The map g — FEg is indeed surjective in the space of
solutions with compactly supported initial conditions, meaning that all solutions of the
Klein-Gordon equation can be written as Eg for some g. Moreover, the causal propagator
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is deeply linked to the symplectic form  of Eq. (1.24), as it satisfies®

The equation above also makes it evident that F is antisymmetric, in the sense that
E(f,g9) = —E(g, f). A particular case of this equation is when ¢ = Eg, which gives

o(f) = / AV f(x) = F(6) = A, Ef). (1.43)

The causal propagator can also be expressed in terms of a basis of solutions, {ug,u}}.
Let ¢ = Eg, then we can expand

o= £ =Y (o, Eghun — (v Eg)u (1.44)
k
= iiQ(Eg, uy )ug — QUEQg, ug)ug, (1.45)
k

_ —iiu;;(g)uk — w9, (1.46)
k

where we used Eq. (1.43) in the form ug(g) = —Q(Fg, ug) in the last equality. Writing the
spacetime integrals of ug(g) and uj(g) explicitly, we then find

Bo) = [ v’ Y (i) = i (e X)), (1.47)

which implies that the integral kernel E(x,x’) can be written as

E(x,X) =~ i(uk(X)UZ(X') — ug(Xu(X)). (1.48)

k

Notice that the map ¢g — FEg is not injective. Indeed, same as we have PEh = 0 for
all h € C§°(M), we also have EPh = 0, so that any two functions f and g such that
Eg = Ef differ by Ph for some h € C§°(M). Thus, the space S is instead isomorphic to

®This equation can de derived by noticing that VA(EgV,(Grf) — GrfV,.(Eg)) = fEg (using
Eq. (1.36)) and integrating this result in the spacetime region J~(3) for a Cauchy surface placed in
the causal future of the support of f.
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the quotient space C¢ = C§°(M)/PC§ (M), with the equivalence relation g ~ g + Ph.
The space of solutions is then entirely encoded in the space C¢, and any solution ¢ € S is

uniquely associated to the element g € C¢ such that ¢ = Eg. The analogous statements
hold for real solutions in Sg defining Cg == C§°(M)r/PCF°(M)g.

The space C¢ turns out to be quite useful for defining linear observables in the sym-
plectic space &, with the symplectic form €). Indeed, if f : § — C is a linear observable,
it is defined by a function f € C§°(M), with action

1(6) = / AV F()(x). (1.49)

However, any observable of the form Pf is trivial:

Pf(6) = / AV Pf(x)6(x) = / AV £ (x) Po(x) = 0, (1.50)

where we integrated by parts in the last equality. That is, the set of linear observables is
actually identified with the set of functions in C¢, which neglects elements of the form P f.

The symplectic form €2 then defines a Poisson bracket between any two observables of
the theory. For instance, by noticing that linear observables can be written as f(¢) =
—Q(Ef,¢) and g(¢) = —Q(Eg,¢), we quickly find the Poisson bracket between linear
observables (see (15)):

1f(#),9(0)} = —Q(Ef, Eg) = E(f,9) (1.51)

Same as in our Cauchy surface description, it is common to denote linear functionals by
o(f) = f(¢), understood as (covariantly) smeared field observables, and giving rise to the
covariant commutation relations

{o(f), 0(9)} = E(f, 9)- (1.52)

Indeed, any classical solution ¢ € S can also be seen as a distribution, in the sense that
every function ¢(x) acts on a test function f € C§°(M) as

o(f) = / AV () f(x). (1.53)

The weak solutions of the equation P¢ = 0 are then the distributions ¢ such that ¢(Pf) =0
for all f € C§°(M). When ¢(x) is a well-defined function, the equation P¢ = 0 follows
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from integration by parts. The quantity ¢(f) = f(¢) also has a physical meaning as the
value of the observable f at the solution ¢(x). One can then understand the function f
as defining the effective region of spacetime where an experimentalist has access to the
field—it is impossible to measure a field (even a classical field) at a point: one always
obtains an average value in a region where the measurement takes place. The expression
o(f) would then correspond to the field averaged (or smeared) in a region defined by
the profile of f(x) (if f is a real function). In this sense, when viewing solutions to the
Klein-Gordon equation as the smeared fields in (1.53), the field is a functional that maps
a ‘measurement apparatus’ (codified by the function f(x)) to the physically meaningful
value ¢(f). This is in contrast to the description of an element of the space of solutions
S as an idealized field at a point, represented by ¢(x). We will not get into detail about
how a classical measurement apparatus can effectively access ¢(f), or how it is defined by
a test function f(x). Instead we will devote Chapter 2 to the analogous discussion in the
context of quantum field theory.

A state in this context is also a linear functional that maps observables to their corre-
sponding expectation values, p : f + p(f) such that p(1) = 1 and p(f) > 0 when f(¢) > 0.
The interpretation of states is similar to that in our Cauchy slice phase space formulation,
allowing one to compute expected values through functional integrals of the form

)y = plf) = / Dép(d)£(©), (1.54)

where p(¢)D¢ is again a formal positive measure on S with total measure 1. In particular,
a pure state corresponding to a standard solution ¢q(x) of the Klein-Gordon equation is
represented by the state pg,(¢) = §(¢ — ¢y), so that

oo = F(0) = / AV f(x)olx). (1.55)

A Note About Conventions

We should make a note at this stage regarding conventions for the differential operator P,
the Green’s functions G'g/4 and for the causal propagator, as different authors use different
conventions for each of these. For instance, one can define [58] P = —V,V# 4V (x) instead
of P =V,V#—V(x) (which also depends on the metric signature), PGr/af = —f instead
of PGr/af = f (common in electromagnetism textbooks, such as [30]), and £ = G4 — Ggr
instead of ' = Gr — G 4. Beyond these conventions, different authors might also define
the Klein-Gordon inner product and the symplectic form with a relative minus sign, which
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typically also depend on the convention of whether n# in d¥* = dX n* stands for a future-
directed normalized vector or a future-directed normalized form. Each of these choices
affects countless signs throughout the formulation of classical and quantum field theory,
and it is important to be consistent with these choices. Overall, when comparing results
with other references, all these possible different conventions must be checked.

1.2 Quantum Field Theory of a Klein-Gordon Field

In this section we will describe formulations of the quantum field theory of a real scalar
Klein-Gordon field. We will discuss three different approaches that can roughly be seen
as 1) quantizing the covariantly smeared field operators ¢(f) (1.53), 2) quantizing the
expansion coefficients ay when the field is decomposed with respect to a given basis (1.9),
and 3) quantizing the field and conjugate momentum operators ®(F'), II(G) at a given
Cauchy surface (1.30). Specifically, we will start with the general algebraic formulation of
quantum field theory in terms of x-algebras, and then move on to the effective quantization
of ¢(f), which will naturally lead us to the other approaches.

Algebraic Quantum Field Theory

In the algebraic sense, a quantum field theory can be defined as an association of open
sets of spacetime to *-algebras®, O — A(O). Specifically, the x-algebras are imposed to
satisfy the following axioms:

A1 There exists a unital *-algebra A(M) with identity 1 and, for each open causally
convex set @ C M, there exist algebras A(Q) containing the unit 1 that collectively
generate A(M).

A21If O, C 02, then A(Ol) C A(OQ)
A3 If O is spacelike separated from O,, then [A(O;), A(O3)] = 0.
A4 1f O; C Oy and O; contains a Cauchy surface of Oy, then A(O;) = A(O,).

At this point, it should be mentioned that different authors often add different conditions
for the association of algebras. For instance, for quantum field theories in Minkowski

6In some cases, it is useful to have a well-defined norm in these algebras, which requires that the local
algebras are instead C*-algebras. This is mostly relevant for formal proofs in quantum field theory and
we will not pursue this approach here.
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spacetime, it is common to include an axiom that defines Poincaré symmetries in the
algebras. The axioms presented here are mostly inspired by [58] and [11].

The elements of the x-algebras A(Q) are usually referred to as the observables of the
theory (even if the operators are not self-adjoint). Each of the axioms above condenses a
fundamental aspect of the algebraic formulation of AQFT. A1 represents the key aspect of
this formulation, associating a local algebra to each causally convex open region of space-
time O, so that the full algebra of the theory is nothing but the algebra that contains all the
local observables. A2 is an intuitive property that essentially states that all local operators
in a subregion O; are also localized in any region that contains it. A3 is often referred to
as the microcausality condition, and imposes that causally disconnected observables are
independent. Finally, A4 is related to the dynamics of the theory, stating that two regions
that share the same Cauchy surface can describe the exact same observables.

Overall, conditions A1-A4 are usually seen as the minimal axioms satisfied by any
quantum field theory”. In other words, it is a common conjecture that any quantum field
theory admits a formulation that fulfills the four axioms above.

While the algebras in quantum field theory can be local, the states are defined globally.
A state is a linear functional w : A(M) — C such that w(1) = 1 and w(ATA) > 0. In
the same spirit of our discussion in classical field theory, a state is a functional that maps
observables to their expected value, generalized here for non-self adjoint operators. This
can also be seen as a generalization of the notion of states as unit trace positive density
operators, which allows for states to be defined even when a trace operation cannot be
performed. Alternatively, if p is a density operator, it uniquely defines the state w; by the
functional relation w,(A) = tr(pA).

With this functional definition of states it is also possible to distinguish between pure
and mixed states. A state is called mixed if it can be written as a convex combination of
any two distinct states, and pure states are those that cannot be expressed as a convex
combination of other states.

The useful notion of operations acting on a state can be phrased in terms of operations
in the algebra A(M). Let © : A(M) — A(M) be a *-algebra endomorphism, so that
O is linear, O(AB') = O(A)O(B)!, and ©(1) = 1. In this case © defines an operation
in the algebra of observables A(M) and it induces an operation in states w +— @, with
W(A) = w(@(/l)) The endomorphism © is essentially a generalization of the typical
operation A — Y. VI'AV, with 32, V/'V; = 1, which also induces the transformation

pr=>. VipV;' to density operators.

"Except for minor modifications for explicit constructions, such as anti-commutation relations in A3
for fields of half-integer spin, as we will mention in Section 1.4.
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One can also recover the standard description of states as vectors in a Hilbert space
through the so-called GNS construction [69, ]. In essence, given a unital x-algebra A
and a state w, then there exists a complex Hilbert space F (), a state |Q) € F() and
a representation 7, of A as operators in F(.7) such that

e 7,(A) Q) is dense in F ().
o w(A) = (Qm,(A)Q) for all A € A.

The GNS construction allows one to represent any state as a vector in a Hilbert space which
is fully generated by applications of algebra elements to the vector |2). The fact that every
state can be represented as a vector in a Hilbert space might come as a surprising feature,
given that the construction works even when the state w is mixed. However, the degrees of
freedom of |§2) € F () are only in one-to-one correspondence with the degrees of freedom
of w if the representation is irreducible®. Indeed, it can be shown that a GNS representation
71, of a *-algebra is irreducible” if and only if the state w is pure [92], recovering the standard
notions of quantum mechanics where states are vectors in a Hilbert space, and observables
are associated with linear operators.

Importantly, the GNS representation is not guaranteed to be faithful. For a general
state w, it may be the case that a GNS representation has ﬂw(fl) = 0 for some elements
A # 0 in A(M). In other words, it may be the case that some operators cannot be fully
represented in F (). On the other hand, if a GNS representation is both faithful and
irreducible (w pure), the algebra A(M) can be understood as the algebra of operators
acting in F () without any loss of information. However, even in this case, it will
generally be the case that not all states acting in A(M) can be represented as density

operators in F(J¢), as we will see explicitly later on.

8Given a Hilbert space # and a mixed state p = X|pXe| + (1 — X) [)1)| with orthogonal states
l©), |¥) and 0 < A < 1, one can construct the [58] reducible representation of the algebra B(J#) in the
space J @ A by the association 7;(A) = A @ A. The vector o) = VA|p) @ v/1— X|1) then satisfies
(0| m5(A) [0) = B(A# @ #) and (o|m;(A)o) = tr(pA) for all A € B(s#), compatible with the GNS
construction. Although mathematically sound, this representation is certainly not the standard treatment
employed in quantum mechanics. This is due to the fact that the representation 7, is not irreducible.
Alternatively, one could consider a GNS representation in a purification of the state p, in which case the
Hilbert space would contain more than only the degrees of freedom of the original state.

9Technically, the representation is weakly irreducible if and only if the state is pure [92]. If the *-algebra
happens to be a C*-algebra, weak irreducibility can be replaced by irreducibility [92].
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An Explicit Construction for a Real Scalar Field

We have seen a general formulation of an algebraic quantum field theory. Now we can
focus on the main example of this chapter: an explicit construction of the local algebras
of observables for the case of a real scalar field. As we saw in Section 1.1, the space of
linear observables in the Klein-Gordon theory can be fully parametrized by functions in
Ce°(M). We will then assign each function f € C°(M) to a symbol ¢(f). The x-algebra
A(M) is generated by an identity operator 1 and the symbols QAS( f), with the following
identifications

~

Linearity: ¢(af + B9) ~ ad(f) + Bo(g).

Hermiticity: é(f)T ~ ¢Z(f*)

Equations of Motion: QAS(Pf) ~ 0.

Commutation Relations: [¢(f), ¢(g)] ~ iE(f,g).°

The identifications above then become equalities at the level of the x-algebra!!.

The four conditions above ensure that axioms A1-A4 are satisfied when one considers
the local algebras A(Q) as the algebras generated by QAS( f) with f € C§°(O). Indeed,
properties A1l and A2 follow from the fact that @O; C O, implies C§°(O;) C C§°(Os).
Property A3 follows from the fact that whenever two functions f and g are supported
in spacelike separated regions, E(f,g) = 0. Finally, property A4 is a consequence of
the fact that qAS(Pg) = 0, as this condition implies that the elements (;AS( f) are uniquely
parametrized by functions f that generate different solutions to the Klein-Gordon equation.
Thus, A(O) = A(D(O)), as initial conditions in either O or in its domain of dependence
D(O) can generate the same set of solutions. The condition ¢(Pf) = 0 effectively makes
it so that the elements of A(Q) are generated by elements of Cc(O) = C5°(0)/PC§e(O).

The field operators q%( f) can then be understood as operator-valued distributions. Al-
ternatively, these can be thought of as smeared field operators, a meaning better conveyed
by the formal expression

~

B(f) = / AV f(x). (1.56)

It is important to notice that é(x) in the expression above is not a well-defined operator,
it is rather used as a symbol that, in general, only makes sense when integrated against

ONotice that the commutation relations are compatible with the equations of motion condition since F

is a bi-solution of the homogeneous equation, that is [¢(f+ Ph), p(g+Ph')] = E(f+Ph,g+Ph’') = E(f, g).
10One can also construct a representation in a C*-algebra by instead considering f — e'*(/) giving rise
to the so-called Weyl algebra [58].
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a test function, giving rise to a smeared field operator. Regardless, gﬁ(x) is what is often
called “the quantum field” by many authors, and it turns out to be a useful concept. For
instance, it allows for the formulation of what is usually referred to as the microcausality
condition, a point-based version of axiom A3, stating that observables Oy (x) and Oy(x')
must satisfy

[01(x), 05(x)] = 0 (1.57)
whenever the events x and x” are causally disconnected.

In many ways, the operator ¢(f) in (1.56) is the quantum analogue of the classical
smeared field ¢(f) defined in Eq. (1.53) in the previous section. Indeed, within this for-
mulation of quantum field theory, one can still think of the function f as defining the
region where an experimentalist has access to a quantum field, accessing the correspond-
ing localized observable qg( f)*2. At this stage, one can think that an experimental setup is
defined by a set of test functions {fi, ..., fn}, and that the localized observables that can
be accessed in this setup are {¢(f1), ..., #(f,)}. This is certainly not the whole picture of
measuring quantum fields, but is a valuable intuition to have at this stage.

The construction of the algebras of observables from test functions also allows one to
define algebra operations from isometries. Indeed, if ¢ : M — M is an isometry, then we

~ ~

can define its action on the algebra by ¢.¢(f) = ¢(¢* f), inspired by the fact that

/ AV (x) " f(x) = / AV 0,6 (%), (1.58)

where ©* f(x) = f(@(x)), «d(x) = (o~ 1)*@(x). The operation ¢, can then be extended to
act in the entire algebra A(M) by its action on the generators gzg( )13, This reasoning can
also be applied for one-parameter families of diffeomorphisms, inducing a one-parameter
family of endomorphisms that is particularly relevant for discussions of thermality in quan-
tum field theory'.

More general field observables, such as derivatives of the field operator, can also be de-
fined distributionally through integration by parts in Eq. (1.56). For instance, the smeared

12This will be made explicit in Chapter 2.
13Notice that, in principle, ¢ must be an isometry so that the operation ¢(¢*f) is well defined, as
we must have ¢(Py¢*f) = 0. This happens for diffeomorphisms because ¢*Pf = Py*f, ensuring that

ps0(Pf) =0.
Mndeed, if ¢ is a timelike Killing vector field and ¢y is its flow, a thermal state (or KMS state) with
inverse temperature beta with respect to ¢ is a state that satisfies the imaginary anti-periodicity condition

o.)((i;(f)go(tﬁm*gzg(g)) = w(<pt*¢3(g)g{>(f)) as well as analiticity properties [99, , 77]. Although there is a
rich theory of thermality in quantum field theory, we will not explicitly go into it in the thesis.
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covariant derivative of the field qug can be defined as a distribution acting on compactly
supported vector fields j# by the action

Vo) = $(~V,#) = — / AV H(x) V5" (x) = / WY,06)7"0).  (159)

More general linear field operators can be defined analogously. In particular, the smeared
momentum associated with a foliation with normal vector field n can be written as

~

w(f) = ¢(=Vu(fn")). (1.60)

Non-linear field observables can be constructed using the multiplication operation in
the algebra. For instance, the smeared operator ¢(f)? is simply defined by ¢(f)é(f), and
can be formally written in integral form as

() = / VAV’ f(x) ()X HK) (1.61)

Although non-linear operators such as ngS( f)? are naturally incorporated in the algebra of
observables, some non-linear functions of the field are not part of the algebra at this stage.
For instance, the algebra A(M) does not contain an operator ¢2(f) (not to be confused
with ¢(f)?) that corresponds to

P(f) = / AV F(x)d(x)°. (1.62)

Indeed, operators that involve the square of the field qg( f) can be understood as the irregular
limit of ¢(f)d(g) where g(x') — &(x,x'), which escape the definition of A(M). Limits of
this form usually yield irregular operators with divergent expected values that have to
be regularized. It is common to extend the algebra to allow this type of operators, as
these have an important physical significance. We won’t get into details about this algebra
extension [92], but we will briefly discuss how to compute and regularize expected values
of operators of the form of Eq. (1.62) in Section 1.3.

States and Representations

As previously discussed, a state is a functional w : A(M) — C such that w(1) =1 and
w(ATA) > 0 that maps field observables to their corresponding expected values. In the
smeared operator construction we presented, the expected value of a field operator of the

27



form ¢E( f) can be thought of as an association w : f — C, defining the distribution

— [ #(to), (163

with kernel w(¢(x)). Indeed, a general algebra element consists of sums (or series) of
operators of the form ¢(f1)...¢(f,), so that the expected value of an operator in a state w
is entirely determined by the n-distributions

~

W(G(f1)-.0(fn)) = / AVie Vo f (1) f (%) w0(D (X1 ) (). (1.64)

These n-distributions (or sometimes their kernels) are often referred to as the n-point
functions of the state w, and fully determine it, by construction. It is also common to refer
to the two-point function as the Wightman function, defined as the bi-distribution

W(f.9) = w(o(f)d(9)) = / AVdV' f(x)g(x ) (@(x)0(X)). (1.65)

The integral kernel of the Wightman function is often denoted by W (x,x') = w(¢(x)d(X)).
Notice that due to the equations of motion ¢(f + Ph) = ¢(f), we have that W (f + Ph, g+
PRy = W(f,g) for all h,h' € C3*(M). In other words, W is a weak bi-solution of the
Klein-Gordon equation of motion. Due to the positivity of the state, w(qg(f*)cfﬁ(f)) > 0,
which implies that the Wightman function is a positive bi-distribution, in the sense that

W f) = 0.

The commutation relations also imply the following relation between the Wightman
function and the causal propagator:

In essence, the equation above implies that the antisymmetric part of the Wightman func-
tion of any state is entirely determined by the commutation relations of the theory so that
W(f,g)—Wi(g, f) is state independent. In other words, the Wightman function of a state
is fully determined by its symmetric part. This is also made evident by considering the
decomposition

B(1)0la) = (A1), dla)} + 516(£). b)) (1.67)
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which implies

1 i
where H denotes the Hadamard distribution, explicitly defined by
H(f,g) = w({5(f), d(9)})- (1.69)

The Wightman function of a state is then fully defined by the Hadamard distribution.
Moreover, any symmetric weak bi-solution of the equations of motion H satisfying

\E(f,9)” < H(f, /)H(g,9) (1.70)

for all real compactly supported functions f and g defines a valid Wightman function
corresponding to a state. The condition above is required from positivity of the Wightman
function.

At this stage, it is also convenient to define a bi-distribution that plays a central role in
interactions in quantum field theory: the Feynman propagator. The Feynman propagator
evaluated at a state w is the bi-distribution

Gr(f.g) = / AV F(x)Gr(x, X )g(x), (L.71)

where for any positively time oriented time coordinate ¢, we define the kernel

Gr(x,xX) =W(x,x)0(t —t") + W, x)0(t' —t). (1.72)
with the formal identification W (x,x') = w(¢(x)(x)) we then see that the kernel of the
Feynman propagator is a time-ordered two-point function, ordering the product of two
field operators so that the operator evaluated with the larger value of temporal component
always comes first. Also notice that if x and x" are spacelike separated, the operators ¢(x)

and ¢(x') commute. Using the decomposition (1.68) we can also decompose the kernel
Gr(x,x') as

Gr(x,X') = %H(x,x’) + %(GR(X, X))+ Ga(x, X)), (1.73)

where we used E(x,x)0(t —t') = Gr(x,x) and E(X,x)0(t' —t) = Gr(X,x) = Ga(x,X).
From Eq. (1.73), we define the symmetric propagator as the bi-distribution A(f,g), with
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kernel'?
A(x,X') = Gr(x,X) + Ga(x,X). (1.74)

The Feynman propagator can then be written in terms of the Hadamard distribution and
the symmetric propagator as

Gr(1.9) = 3H(f.9) + 3A(f.0). (1.75)

Same as the Wightman function, all the state dependence of the Feynman propagator is
encoded in the Hadamard term, as A(f, g) is defined directly through the Green’s functions
associated with the equations of motion. This fact leads to the definition of the time ordered
product of two linear field operators ¢(f) and ¢(g):

A 1 - ~ i
T(G(N09) = 5{0(). d9)} + 5A(F 9)1. (1.76)
The time ordered product can be generalized to more general field operators, but we will
refrain from mentioning such generalizations, as they will not be explicitly used in the
thesis.

’ Distribution name \ Symbol \ Alternative Form \ Description ‘
Retarded Green’s function Gr %A + %E Retarded propagation from x’ to x
Advanced Green’s function Ga %A - %E Retarded propagation from x to x’
Causal propagator E Gr—Ga Projector into space of solutions
Symmetric propagator A Gr+ Gy Symmetric exchange between x and x’
Hadamard function H State dependent correlations
Wightman function %4 %H +5F Field’s correlation function
Feynman propagator Gr %H +35A Time-ordered correlation function

Table 1.1: Distributions in quantum field theory used throughout the thesis and their
descriptions.

Of particular interest are states often referred to as quasifree states, in which the odd-
point functions vanish, and the expected values of products of even numbers of field opera-
tors are determined by the Wightman function through Wick’s theorem. A quasifree state
turns out to be nothing but a zero-mean Gaussian state, as we will explicitly see when we
discuss a representation of localized field modes. Thus, a quasifree state is entirely deter-
mined by it’s Wightman function W(f, g) (or, equivalently, by its Hadamard distribution

5Notice that due to (1.39), the symmetric propagator can be used to generate solutions to the non-
homogeneous equation, as we have PAf = f.
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H(f,g)). Also notice that each symmetric weak bi-solution of the Klein-Gordon equation
uniquely defines a Hadamard distribution, and thus, a quasifree state.

One way of defining a pure quasifree state, as well as its associated GNS construction,
is by decomposing the state of solutions as the orthogonal direct sum & = ST ® S~
mentioned in the previous section. As we will see, this decomposition naturally defines a
state w. Indeed, given a basis of solutions {ug,u}} for S such that {ug}y is a basis for ST,
the bi-distribution defined by the kernel

W(x,x') = Iuk(X)UZ(X/) (1.77)

k

is positive and satisfies

W(f.0) = Wio.f) = [ avav'sio (Iuk<x>uz<x'> - u;;<><)uk(><’))g(><’) (1.78)
=iB(f.9). (L.79)

so that it indeed defines a Wightman function. Therefore W(x,x') in Eq. (1.77) defines a

~

quasifree state w through w(¢(f)o(g)).

We can explicitly build a GNS representation for w by noticing that S* is a Hilbert
space with respect to the Klein-Gordon inner product. Indeed, let K : S — S* be the
projection, with action

Moreover, we can parametrize the set ST by functions f € Cg, through ¢ = KEf. Then
the inner product between two solutions in ST with respect to the inner product induced
by the Klein-Gordon inner product is

(KEf, KEg) = i(uk, Ef)*(ux, Eg) = gfuk<f*>uz<g> (1.81)

k k

= / dvdy’ f*(x)(Iuk(x)u;;(X/))g(X/) =W(f".g). (1.82)

For convenience, from now on we denote J# = ST, and its states KEF by |f), with the

inner product (f|g) = W(f*,g).
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Although 57 is still not the Hilbert space of the GNS construction associated to the
state w, it is the first step to define it. We define the Fock space F () by

F(H) = éff@% (1.83)

n=0

where " = 7 © ... ® A is the n symmetric'® tensor product of 7 with itself. The
space #° is then a one-dimensional vector space, which is spanned by a vector |2). This
turns out to be the state in the GNS construction that satisfies 7t,(A4) = (Q|7m,(A)Q). To
define the representation of A(M) it is enough to define the representation of smeared
field operators of the form ¢(f) which generate A(M). These are defined as

~

ma(o(f)) = a(f) +a'(f), (1.84)

where a' and @ are smeared creation and annihilation operators satisfying
a(f).a' (@) =w(f.91,  lalf).alg)] = la'(f),a'(g)] =0, (1.85)
with a(f)" = af(f*). Their actions in vectors of F(#) is defined by
a'(f)|¥) < |f) © W), (1.86)

where ® denotes the symmetrized tensor product. In particular, the conditions above
imply that the state |Q2) is the unique state satisfying a(f)|Q2) = 0 for all f € C¢. It is
also important to stress that usually a(f) and a'(f) are not elements of 7t,,(A(O)) for any
bounded region O, instead being global operators in 7, (A(M))!".

In this GNS representation, it is possible to express the kernel qg(x) that defines the
operator-valued distribution ¢ as

m(60) = Y. () + a0, (1.87)
k
where the creation and annihilation distributions can be written as

o) = Yowthan ) =Y uitnal (189

k k

16The symmetrization over the Fock space reflects the fact that the scalar field is bosonic so that its
states are symmetric under exchanges.
'"This is a consequence of the Reeh-Schlieder property, which we discuss in Chapter 3.
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The operators ax and dL are what many commonly refer to as the annihilation and creation
operators, and they satisfy the canonical commutation relations

[ag, af,] = 0(k, KN, [ag, ar] = [a),al,] = 0. (1.89)
It is also common to drop the symbol 7, in Eq. (1.87), and to refer to ¢f(x) as “the quantum
field”, keeping in mind that it only yields a well-defined operator when integrated against
a test function f. From these expressions, it can be quickly verified that

QU (S())a(6(9)) 19) = W (f, 9), (1.90)

where W is the bisdistribution with kernel given by Eq. (1.77). That is, this is the GNS
representation of the state w defined by the two-point function

w(d(f)dlg) = W(f.9). (1.91)

The representation 7, makes it so that the association f — 7, (¢( f)) fulfills the same
conditions as the association of functions in C¢ to algebra elements f — ¢(f). In particular,
the canonical commutation relations give

~

[ma(6(f)): Ta((9))] = iE(f, 9)- (1.92)

This representation is also (weakly) irreducible, implying that the state w is pure. More-
over, GNS representations built from decompositions of the space of complex solutions,
S = ST @S are typically faithful, meaning that all operators from the algebra can indeed
be represented as linear operators in F (7). However, not all states in the algebra can be
represented as vectors (or even density operators) in this GNS construction. Indeed, we
will soon see that different choices of orthogonal decompositions of S lead to non-unitarily
equivalent representations, which are able to describe different states.

The direct sum decomposition of the Fock space (1.83) also induces a partition of the
Hilbert space into eigenvectors of the so-called number operator. The number operator is

defined by
N = i al an, (1.93)

k

and it is a well-defined operator in this GNS representation, with eigenvalues corresponding
to each natural number, including 0. Specifically, its eigenvectors are states |¢,,) that only
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have components in the subspace " in the direct sum decomposition (1.83):

N ‘wn> =n |wn> . (1'94)

Equivalently, the number operator essentially counts how many operators a'(f) have to be
applied to the vacuum state to produce |1,,), or, in other words, it counts the number of
collective excitations that a given state has in all of its modes. For this reason, we refer to
the collection of eigenvectors of N associated to the eigenvalue n as n-excitation'® states.
Notice that every normalized state in F () must have a finite value for the expected
number operator, by construction of the Fock space (1.83).

In particular, a 1-excitation state is defined by a function f € C¢, and can be written
as |f) = a'(f)]0). Indeed, as we saw in the construction of 77, the one-excitation space is
exactly the space of positive frequency Klein-Gordon equations S*. For future reference,
we note that if wy is the algebraic form of |f), then its Wightman function reads

wr(d(9)o(h)) = {flo(g)o(W)If) = W g, k) + W (g, YW (S, 1) + W (f*, g)W (h, ). (1.95)

It is important to highlight that the construction discussed in this Segment is explicitly
dependent on the choice of decomposition of the space of solutions into positive and neg-
ative frequencies. For instance, if one chooses a different basis for the space of solutions,
say {vr, Vi }r that decomposes S = S* @ S°, this would give rise to a GNS representation
with respect to the quasifree state @, defined by the Wightman function

W(f.g) = i o (F)v (9). (1.96)

k/
The associated smeared creation and annihilation operators would then be b(f) and bf(f):
0 =Y w51 =Y il (197
1% 1%

so that R R R
o 6(0) = Y. v+ 0 0B (1.98)

kl

The state |€2) representing @ would then be defined by the condition b(f)|€2) = 0.

18 A more usual name is n-particle states, and we will embrace it in Minkowski spacetime, when there is
a clear notion of particles and a preferred vacuum.
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If both representations are faithful and irreducible, the smeared creation and annihi-
lation operators of each representation can be lifted to the algebra. Then, using that the
modes {vk, vyt and {ug, uj bk are related by Eq. (1.11), one can also formally relate the
creation and annihilation operators:

&k: = Zé ak’kl;k’ + B;::/ki)T/ (199)

k/

In this case, we will have

(V) = jf Bl (1.100)

We thus have that @ can be represented in as a state in the GNS representation of |(2) if
and only if the integral above converges. Also notice that if any of the coefficients Sy # 0,
the positive frequency spaces S® and ST are indeed distinct. This showcases that different
GNS representations are generally not unitarily equivalent, in the sense that there might
be no isometry that would be able to map F () to F () mapping operators in one Fock
space to the other and |Q2) to a valid state. This example also showcases that the number
operator N does not correspond to a physical observable with intrinsic meaning, instead
being a relative operator that explicitly depends on the state w.

The Vacuum State and Particle States

It is common to use the notion of a ‘vacuum state” in quantum field theory. However, dif-
ferent authors disagree on the definitions that must be fulfilled for a state to be considered
a vacuum. Arguably, the few universally agreed properties that a state must satisfy to be
a vacuum state are to be a quasifree and a pure state. Unfortunately, these properties are
not enough to characterize a unique state, and are fulfilled by infinitely many states, most
of which do not deserve to be called a vacuum. Originally, the notion of vacuum was used
for free fields in Minkowski spacetime, where there is a single state which is invariant under
spacetime translations'®. The Minkowski vacuum also happens to be the state of minimum
energy, as seen by inertial observers. Before discussing vacua in more general spacetimes
and settings, let us briefly discuss the quantum field theory for a massless Klein-Gordon
field in Minkowski spacetime, the Minkowski vacuum and its GNS representation.

Assume that M is Minkowski spacetime and consider a Klein-Gordon field with equa-
tion of motion V,V*¢ = 0, defining the theory of a free massless Klein-Gordon field. The

191f the Klein-Gordon differential operator P is also translation invariant.
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Green’s functions of the operator P = V,V# can be explicitly computed in this case, and
in an inertial coordinate system (¢, ), their kernel can be written as

AN _i . oyt 2 _ N2 4 _; /I . /
Gr(x,x) = 27r5< (t—t)VY +(x—ax))0t—1t) = 47r|1:—a:’|5(t t+ |z — '),

AN _i _ oyt 2 _ N2 /I - - /I _ . /
Ga(x,x') = 27?5( (t—t) +(x—a))0{t —t) = o :c’|5(t t— |z — ).

(1.101)

From the expressions above, we see that Gr(x,x') = Ga(X,x), as well as the fact that
GRr(x,x") = 0 whenever x is in the causal past of x'. The causal propagator can be obtained
through E(x,x') = Gg(x,X') — Ga(x,X).

The Minkowski vacuum can be defined by a specific decomposition of the space of
solutions of the Klein-Gordon equation. The typical way to define this decomposition is
by choosing the orthonormal basis {ug, uj }r of S defined by

1 ik-x 1 efik-x

Uk (x) = COEENS up(x) = COEENS (1.102)

j

where k is a label in R3, k = (wg, k), we = |k| and k - x = n,,k"z”. The basis {ug, u} }x
of Eq. (1.102) is typically referred to as the plane wave basis of solutions. One can quickly
verify that this basis is orthonormal with respect to the Klein-Gordon inner product, in
the sense that

(u, up) = 0@ (k — K),  (up,up) =0, (up,up) =—0®(k—FK). (1.103)

This mode decomposition then defines a unique pure quasifree state wy such that its Wight-
man function is defined by

1 1
Wo(x,x') = /d?’kuk(x)u,*c(x’) = lim

im -— 1.104
0t 4m2 —(t —t/ —ie)2 + (x — x')?’ ( )

where the regulator e is necessary to ensure that the bi-distribution is well defined when
evaluated at functions with overlapping support. In particular, we can decompose

1 1
72 (—(t— 1) + (@ — a)?)

Wo(x,x') = PV ( ) - ﬁsign(t —)5(—=(t—t)+ (z—2)?),

(1.105)
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where PV denotes the principal value and sign(u) is the sign function®. The state wy is then
invariant under Poincaré transformations, as the Wightman function depends only on the
invariant spacetime separation between events?'. Also notice that using the decomposition
of the Wightman in terms of the plane wave basis, we can write

Wl = [ @eun(ui(o) = ooy [ STk R k). (1106)

where f defines the Fourier transform of the spacetime function f:

f(k) = / d*x f(x)e™ (1.107)

with k = (w, k) and k - x = n,, k'z".

The GNS representation 7y of the Minkowski vacuum wy follows the construction pre-
viously outlined, defining the space ST as the Hilbert space ) with inner product

{(flg)y =W(f" 9), (1.108)

giving rise to a Fock space F(.74), and defining smeared creation and annihilation operators
a and a'. This gives rise to the familiar representation of the field operator ¢(x),
A 1 d3k
o(p(x)) =
0(¢( )) (27T)3/2 \/m

(eik'xak + e—ik‘X&L> , (1.109)

and the condition ag |0) = 0 defines the vector |0) that realizes the GNS representation of
the Minkowski vacuum. This GNS construction is not only irreducible, it is also faithful,
so that it can represent all operators in the algebra A(M) as operators in F(74)).

The number operator in F(.74)) is then given by
N = /d3k al an, (1.110)

As previously mentioned, its eigenvalues are natural numbers, including 0, and any state in
4™ in the decomposition (1.83) is an eigenvector of N with eigenvalue n. In particular,

20This expression is obtained from lim,_, o+ ﬁ = Find(z) + PV%.

21 There are different ways of verifying this independence by considering a representation of the Poincaré
group in the algebra, but it ends up being ultimately equivalent to the invariance of the kernel of the
Wightman function.
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we have N |0) = 0. In this GNS representation, it is common to refer to an eigenstate of the
number operator N with eigenvalue n as an n-particle state. For instance, 1 particle states
are elements of 74, fully parametrized by functions in C¢ (or, equivalently, by elements of
S7T), and can generally be written as

[fy =al(f)]0) = /dgkui(f)dL 0) - (1.111)
Normalization of |f) implies that

(fLfY = (0la(f)al (£)10) = Wo(f*, f) = 1. (1.112)

Alternatively, writing (k) = ui(f), we find

f) = / Pro(k)al0),  (f1f) =1 / Crlpk)P =1 (1113)

Higher particle states with higher particle number can be obtained by applying multiple
operators a' smeared by different functions to |0).

The definition of the Minkowski vacuum describing the absence of particles, as well
as the definition of particles themselves, both proved very useful for numerous different
reasons. For instance, the particle number operator is deeply related to the Hamiltonian (to
be discussed soon), being directly linked with resonances in inertial apparatuses that couple
to the field for sufficiently long times. In these regimes one can also describe interactions
in terms of particle emission and absorption, relating these with energy quanta. Similarly,
an inertial system in its ground state does not become excited when adiabatically coupled
to the field in the Minkowski vacuum, confirming the intuition that the vacuum represents
the “absence of particles”.

Although these concepts are typically useful, the examples where they apply require
regimes of inertial observers coupled to the field for sufficiently long times, which is usually
the regime of particle physics. This is not the regime where we want to discuss quantum
field theory. Instead, we want to consider local couplings that can happen in arbitrary
finite regions of spacetime. In particular, these couplings do not have to be associated
with inertial observers. In fact, as we will discuss in Chapter 3, even the Minkowski
vacuum produces excitations in inertial probes that couple to the field for a finite time.

The definition of a vacuum and particles becomes even more ambiguous in more general
spacetimes, where there is usually no reason to privilege a subspace of S rather than
another. Given any mode decomposition {ug,u}} one obtains a unique state w, and its
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associated GNS construction and Fock space. Still, there is no reason to choose a basis
{ug, uj} over any other basis {vg, vy}, which would instead define a state w,. And even
worse, we saw that GNS representations associated with different decompositions of S
are usually not unitarily equivalent, implying that it is typically not possible to represent
the state w, in the GNS construction defined from the decomposition {vg, v;}. Moreover,
the creation and annihilation operators effectively create mode excitations when acting in
the vacuum, and the modes are intrinsically global-—each mode is defined by its initial
conditions in a whole Cauchy surface. In summary,

“Particles are a global and relative concept,
ill defined in a local approach to quantum field theory.”

Where does this leave us? If the notions of particles does not apply to local quantum
field theory and the notion of vacuum is ambiguous, how should we approach quantum
field theory? The answer to this question is actually rather simple: our goal is not to
define particles or vacuua: it is to predict what happens in a physical setup. A choice-
independent approach that can be taken is as follows. First identify the initial state w of
the field before an experiment is performed. This could be done by measuring different field
observables which restrict the possible initial states. For instance, if one has good reason
to believe that the state is quasifree, one should attempt to recover expected values such
as w({d(f),#(g)}), which entirely determine the state. Once the state is determined, one
typically applies an operation to the field during an experiment. For instance, one could
conceive an experiment that applies the operation U = ) to the field (for a real f),
thus affecting field observables through ¢(f) — Ut (f)U, or, equivalently, changing the
state by w(+) — @(+) = w(UT - U). After the experiment is performed, an experimentalist
would then have access to the expected value of a collection of field observables Ay, ..., A,
in the state w. The expected values w(/l,) would then be the outcome of the experiment.
Overall, the notions of particles and vacua, although useful, are not necessary. All we need
is to be able to describe the initial state of an experiment, as well the operations performed
in it and the observables that we have access to.

Localized States and Field Modes

When we first defined states in the context of quantum field theory, we mentioned that,
unlike observables, states cannot be locally defined. This is a consequence of the fact
that given a causally convex region O, the local algebra A(Q) is a type III von Neumann
algebra, implying that there exist no finite rank projectors and a trace operation cannot
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be defined. Consequently, one cannot define a reasonable notion of state associated with
local algebras A(O).

Although local states in quantum field theory are not well defined, one can still talk
about local quantum degrees of freedom of a given state. This can be done by considering
local canonical canonical pairs associated with the field theory. For instance, consider
compactly supported functions f;, g; such that supp(f;),supp(g;) C O fori =1,..., N that
satisfy

[B(f:), )] =105, [D(f), S(f)] = [(g:), D(g;)] = 0. (1.114)
In other words, we must have E(f;,g;) = d;; and E(f;, f;) = E(gi,g;) = 0, which define
(¢(f:),#(g;)) as independent canonical pairs. One can then create a natural mapping
between the canonically conjugate observables

~

é: (Qg(fl)aqg(gl)v"‘7¢(fN)7<g(gN>)T (1115)

and a real phase space R?" with symplectic form 2. Picking canonical coordinates £ =
(¢4, p, ..., ¢, pY), we can then write

Qop = évg ((1) _01> : (1.116)

j=1

The explicit relation between the classical phase space and the collection of canonical pairs
E is given by the map ) X
Z(€) = Qupe’=2, (1.117)

which translates the canonical commutation relations in phase space to those in the sub-
algebra of operators:
(=2, 2] =101, (1.118)

where Q% denotes the components of the inverse symplectic matrix.

In the phase space formalism, the expected values of operators that are exclusively a
function of ¢(f;), #(g;) can be determined by the Wigner function associated with the
state. In other words, given a state w, the degrees of freedom associated to the modes

~ A~

o(fi), #(gi) can be fully described in terms of the Wigner function:

1 : ’ B¢
Wo(€) = /d2zv§rem(s,£)<e @)

(27T>2N w

(1.119)

The Wigner function defines a quasi-probability that can be used to compute expected
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values of operators that are a function of the smeared fields E. Indeed, if Ae A0) is any
Weyl-symmetric polynomial in ¢(f;) and ¢(g;), A = A(E), the expected value of A in w
can be computed through the integral

w(A) = /d2N§ W, (€)A(E). (1.120)

This formulation becomes increasingly simplified in the case where w is a quasifree
state??, so that its Wigner function becomes a Gaussian of the form

1 N
1,74 — 6_5 (o )aﬂfﬂ’ 1.121
(&) T (1.121)

where =1 denotes the inverse of the matrix o, with components
o = w({E~,Z%). (1.122)

The covariance matrix o then satisfies & > iQ2~! and contains all information about the
quasifree state w. This formulation then reduces the problem of handling the degrees of
freedom associated to the modes gE( fi)s qg(gz) to a system described by Gaussian quantum
mechanics.

However, it can be challenging to find functions f;, g; that satisfy the conditions E(f;, g;) =
0;; and E(fi, fj) = E(gi, g;) = 0. This task becomes simpler when one considers an equiv-
alent representation of the quantum field theory in terms of algebras of smeared field and
momentum operators along a Cauchy surface. Indeed, an alternative formulation of the

quantum field theory of a scalar field can be given in terms of the association of functions
F,G € C§°(%) to operators ®(F') and II(G) where

A~

[D(F),I1(G)] = i/dEF(az)G(m), [D(F), ®(Q)] = [II(F),II(G)] = 0, (1.123)

in analogy with the Poisson bracket in (1.32). This association, together with the com-
mutation relations above, give rise to the *-algebra Asx(X), generated by complex linear
combinations and products of the operators ®(F") and II(G) and the identity 1. The oper-

22This formulation can also be applied to any Gaussian state even if it has non-zero one-point function
with minor changes.
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ators ®(F) and II(G) can then be interpreted as smeared field and momentum operators
O(F) = / Ad(x)F(x), II(G) = / AXTI(x)G (). (1.124)

The algebra Ayx(X) turns out to be analogous to the algebra A(M), being able to represent
any operator in the quantum field theory. We can also define local algebras associated to
subsets of the Cauchy surface 3: if ¥, C X, we define the local algebra Ax(X,) as the
algebra generated by the elements 1, @(F), f[(G) with F,G € C3°(%,)

The equivalence between this Cauchy slice formulation and the algebras of operators
constructed from functions f € C5°(M) is established by Eq. (1.43), extended to operator-
valued distributions:

A~

O(f) = QU Ef) = /dE(Ef n'V 6 — oV, Ef) = —d(G) + [I(F), (1.125)

where F' = Eflsy,, G = n*V,Ef|s. Notice that the canonical commutation relations are
then consistent, in the sense that any functions f,g € C§°(M) define F = Ef|g, G =
n"V,Ef|s and F' = Egly, G' = n*V,Eqgls, so that
[6(f), 0(9)] = [=B(G) + (F), =&(G") + TI(F")] = ~[[1(F), (G")] — [&(G), [1(F)]
= i/dZ(F(m)G’(w) — Fl(x)G(x)) =iQ(Ef, Eg) =iE(f,g). (1.126)

Thus, the local algebra Asx(X,) is equivalent to the algebra A(D(X,)), associated to the
domain of dependence of ¥,.

Using the Cauchy surface formulation, finding canonical pairs ®(F) and ®(G) reduces
to the task of finding functions Fj, G; in C§°(M) such that

/ ASF(@)G) (@) = 6. (1.127)
or simply finding functions F; such that
[ E=E@E @ = b, (1.128)

in which case the set ®(F}), II(F;) will be canonical pairs. Each of these pairs can then be
mapped into covariantly smeared field observables ¢(f;) and ¢(g;) with f; and g; satisfying
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Efils =0, n*V,Efi|ls = —F; and Eg,|s = F;, n*V,Eg|s = 0.

1.3 The Hadamard Condition

Although we discussed that, in general, there is no unique notion of vacuum in quantum
field theory, there is an argument for why one should consider a privileged state. The
argument is related to expected values of operators such as ¢>(f) in Eq. (1.62). As an
example, let us explicitly attempt to compute the expected value of <;32( f) in the Minkowski
vacuum. Using (1.62) we can could write

wo(P2(f)) = / AV AV Wo(x,xX') f(x)5(x, x'). (1.129)

However, we can see from Eq. (1.104) that Wy(x,x') is divergent as X' — x, yielding a
divergent result for this expected value. This is very unfortunate, given that operators of
this form have important physical significance in quantum field theory. For instance, the
classical Hamiltonian density for a Klein-Gordon field in inertial coordinates (¢, x) is

M) = 5 (060)) + 5 (Vo) (1.130)

where V denotes the spatial gradient along the surfaces of ¢t = const. One can then write
the Hamiltonian density operator in the context of quantum field theory as the operator-
valued distribution with kernel

(1.131)

A~

Expected values of the form wy(H(f)) then involve the coincidence limits of derivatives of
the Wightman function (1.104), which are also divergent.

One way of handling expected values of singular operators such as <£2 (x) is by choosing
a reference state, say wp, and by instead defining the formal operator

~

02 (f)= () —wol* ()L = w(:d*(f)) = w(d(f)) —wo(6*(f)).  (L.132)

The expressions above are divergent and require explanation. If the state w has Wightman
function W (x,x’), it might be the case that w(x,x) = W (x,x') — Wy(x,x') is regular in the
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limit X' — x. If this is the case, Eq. (1.132) should be understood as
w2 (f):) = /de(x,x)f(x). (1.133)

The operator :qp( f): is called the normal ordered squared field operator. However, at this
stage it is not entirely clear when (or if) the difference of Wightman functions, w(x,x’)
above would be finite. However, if w can be represented in the GNS representation of
the Minkowski vacuum wy, one can indeed show that the divergent part of W (x,x’) and
Wo(x,x') cancel in the coincidence limit of X' — x?3. However, as we currently stand,
Eq. (1.132) does not provide a well-defined value for the expectation value of qu( f)in a

general state.

The solution to this issue is to impose an additional condition that must be satisfied
by any state in the theory, the so-called Hadamard condition, which we state below.

Hadamard Condition [90]: Let t be a positively oriented timelike coordinate. For any
x, X' contained in a convex normal neighbourhood, the Wightman function for a Hadamard
state can be written as

D1/2 /
W(x,x') = lim —(X’X>

/ N ,
i To ey V00X 08(0c X)) 1w, X), (1.134)

where o = o(x,X')+2ie(t(x) —t(x'))+€? is the reqularized Synge’s world function, D(x,x') =
det(—o,,) is the van Vieck-Morette determinant, ¢ is a parameter with units of length, and
we use the convention that the branch cut for the logarithm lies along the negative real azis.
Additionally, the functions v(x,x") and w(x,x") admit an expansion of the form

v(x,x') = Zvn(x,x’)a(x, X\, w(x,x') = an(x,x’)a(x, X", (1.135)

with all coefficients being reqular in the limit X' — x.

The Hadamard condition essentially imposes a specific type of singularity structure for
the Wightman function. Imposing that all states in the theory satisfy the Hadamard
condition automatically implies that the difference between two Wightman functions is
well defined in the limit X' — x. As a matter of fact, it can be shown that the difference

W(x,x') — W(x,x') is a smooth function. It is then clear that definition (1.132) can be

Z3This is a consequence of the fact that states in F(J%) can be written as finite applications of the
smeared creation and annihilation operators af(f), a(f) for f € C§°(M).
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extended to more general operators if we restrict ourselves to Hadamard states.

The Hadamard condition for the Wightman function is essentially inspired by the be-
haviour of the Minkowski vacuum Wightman function. Indeed, for a massive scalar field
of mass m, one can write its Wightman function W, (x,x") as

W (x,X) ! m® [(my/ 20 (x,)) log (2m?o(x,x')), (1.136)

= lim

e—0+ 8120, (x,X) - 872 my/20(x,x)

where I;(z) denotes the modified Bessel function of the first kind for Re(z) > 0, and
we consider the analytical extension of I1(1/z)/v/z. In Minkowski spacetime we can also
write o.(x,x') = —(t —t' —ie)? + (& — ')? in inertial coordinates. Notice that the leading
order divergence is the same as that of a massless field (1.104). The logarithm part gives
both imaginary and real contributions, with the imaginary term corresponding to the
modifications to the Green’s propagators, making them non-zero for timelike separated
events, and its real part adding the corresponding term to the Hadamard distribution.
In curved spacetimes, the effect of the logarithm term in Eq. (1.134) is similar, resulting
in violations of the Hyugen’s principle (timelike propagation of massless fields*!) in more
general spacetimes.

One could be tempted to interpret the term w(x,x’) in (1.134) as the state dependent
term. However, the parameter ¢? in the Hadamard condition is arbitrary, so upon a change
{ — {, we can rewrite the Hadamard condition as

D1/2 /
W(x,x') = lim —(X’X)

/ N /j2 ~ /
0 B0 (o x) v(x,x) 1og(ae(><,x )/t ) + w(x,x), (1.137)

where .
W(x,x') = v(x,x)Nog(£?/0*) 4+ w(x,x), (1.138)

which also satisfies the condition (1.135). Thus, the w(x,x’) term cannot be directly in-
terpreted as the state dependent term: unless one fixes a specific parameter ¢ in the
expression (1.134), the term w(x, x’) is not uniquely defined.

The Hadamard condition is essentially the statement that regardless of the background
spacetime, a quantum field has a universal UV behaviour, matching that of quantum
fields in Minkowski spacetime. Alternatively, one could say that the Hadamard condition
states that locally all quantum fields behave like the Minkowski vacuum. In this sense, the

24 A scalar field is said to satisfy the strong Hyugen’s principle if its retarded and advanced Green’s
functions Gg(x,x") and G 4(x, x") are only non-zero when x and x” are connected by null paths [118, 184, 178].
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Hadamard condition can be seen as the quantum field theoretical version of the equivalence
principle, and holds a deep connection between quantum field theory and gravity, as we will
discuss further in Chapter 5. Moreover, it has been argued that the Hadamard condition
is necessary for quantum field theory [54].

From this point on, we will assume that every state in a quantum field theory satisfies
the Hadamard condition. With this convention, given a reference state wy, we define the
normal order of a product of two field operators as the formal expression

0 (f)i= 6 (f) — wo(@* ()L, (1.139)

with the understanding that its expectation value evaluated at a given state w is defined
by

w(:q@z(f):) = /dVdV’(W(x, x') — Wo(x, x’))f(x)é(x, x), (1.140)

where W (x,x) is the Wightman function of w and Wy(x,x) is the Wightman function of
the reference state wy. The expression above is well defined due to the singularities of
the Wightman functions coinciding, and the difference W (x, x") — Wy(x,x") being a smooth
function. One can also generalize the normal ordering for more general products of field
operators, but we will not require these throughout the thesis, so we refer the interested
reader to [92].

Normal Ordering in GNS Representations

The normal ordering simplifies significantly when we consider a GNS representation as-
sociated to a positive mode decomposition {ug}r and use the associated state |2) as the
reference state. In this case, every operator in the GNS representation can be written
in terms of creation and annihilation operators (1.89) d and al.. The normal ordering

of a product of n creation operators, dLl,..., dLn and m smeared annihilation operators

Qg ,--5ag;, (in any particular order) then gives d;cl e &Ln&ki -+ - ag . Extending the action
of the normal ordering by linearity we then obtain the general expression for its action in

this representation. For instance,

H(x)%: = i:(uk(x)uk/ (X) gy + wl () g (X)ak g + g (X)uf (X)agal, +uh(x)ug, (x)&L&L,):
k.k!
= i <uk(x)uk/ (X)ain + wf () (X)akar + ug(X)up (X)ak, ar + wj (x)ug, (x)a,ta;)

kK’
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— P(x) — Z’j e () (%), (1.141)

where in the first equality, only the order of the third term was changed, and we used
the commutation relations in the last equality to recover the definition (1.139) by noticing
the formal equality (0| ¢(x)2|0) = W(x,x) and (1.77). This form of the normal order-
ing is indeed the standard definition of the normal ordering operation presented in most
introductory quantum field theory textbooks (e.g. [111]).

For instance, in the GNS representation of the Minkowski vacuum, we can compute the
normal ordered Hamiltonian by integrating the normal ordered Hamiltonian density along
a surface ¢t = const. For a free massive field of mass m, this gives

H(t): = % / B :<(8tq25(x))2 + (Vé(x))? +m2q3(x)2): (1.142)
= % / Pk wy, :(akaL + a;ak): (1.143)
=/d3kwk ajcak, (1.144)

where wr = v k? + m? and we used the integral representation of the Dirac delta, as well
as the canonical commutation relations (1.89). Also notice that the Hamiltonian, and thus
the specific energies associated to each mode, are then dependent on the reference state
chosen for the normal ordering. This is perfectly fine for the Hamiltonian, as one does
not typically measure the energy content of a system, but rather the difference in energy
compared to other states in that system. Thus, using (1.144) to compute expected values
of the Hamiltonian creates no physical issues. This is the case for many situations where
the normal ordering is required. An important exception is when one tries to consider the
effect of a quantum system in the gravitational field, where the total energy and momentum
are responsible for sourcing gravity.

The Hadamard Condition and General Relativity

With the Hadamard condition, we can not only define the expected values of the operator-
valued distributions :gz§2( f): but also the expected values of unsmeared operators such as
:¢2(x):. Indeed, given that W (x,x') — Wy(x,x') is a smooth function in spacetime, we have
that

w(:p%(x):) == lim (W (x,X) — Wp(x, X)) (1.145)

x/—x
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is well defined. The same holds for any derivatives of the field:

w(:V,0(x)V,0(x):) = lim V,V, (W (x,x) — Wy(x,x)). (1.146)

x/—x

The fact that we can define the expected values of operators defined pointwise has a
significant consequence: one can write the expected value of the stress-energy tensor of the
field pointwise. Indeed, the classical stress-energy tensor of a scalar field with equation of
motion defined by P = V#V, — V(x) can be written as

T (%) = 0u0(x)0yd(x) — 31w (0ad(x)07G(x) + V (x)H(x)) , (1.147)

so that defining w(x,x") = W(x,x') — Wy(x,x"), we can write the expected value of the
normal ordered stress-energy tensor of a state w as the smooth function

(T (x):) = lim ((aﬂay, — 10w (020 + V(%)) w(x, x')) . (1.148)
We can then write the expected value of the source term of the semiclassical Einstein’s
equations: R

G = 8mlaw (T (x):), (1.149)
where Ef, = G is the Planck length. In this sense, the Hadamard condition is the key to
approaching the problem of how quantum fields source gravity.

It is important to notice that the semiclassical Einstein’s equations (1.149) do depend
on a reference state (or, more generally, on a regularization scheme). Essentially, the
reference state wy used to compute the normal ordering is postulated as a state that does
not gravitate, in the sense that wo(:TW(x):) = 0. One might think that, in some cases,
there might be good reasons for postulating that a particular state does not gravitate. For
instance, it may seem natural to assume that the Minkowski vacuum does not generate
any gravitational field. However, there is no experimental evidence that the vacuum of
Minkowski spacetime does not gravitate. As a matter of fact, the large-scale structure of
the Universe indicates that whichever quantum state dominates the stress-energy tensor
of the Universe in the absence of matter yields an energy tensor with negative pressure.
Overall, we have no unique way of prescribing the source of Einstein’s equations from
quantum field theory, and no clear indication of the regime of validity of semiclassical
gravity?®. Arguably, due to the challenges and ambiguities in prescribing the stress-energy

25Some authors have argued that a reasonable condition for semiclassical gravity to be approximately
valid would be for states such that the fluctuations in :7),, (x): are significantly smaller than its expected
value. However, this condition fails for the reference state itself.
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tensor within quantum field theory, one could state that

“quantum field theory in curved spacetimes does not uniquely prescribe how a quantum
field affects gravity; it only prescribes how gravity affects quantum fields.”

1.4 More General Fields

We will now briefly go over the generalizations of the discussions of this chapter for fields
of higher spin and gauge fields. We will keep four main examples in mind, as these will be
the most relevant ones for this thesis. The examples will be of a complex scalar field, spin
1/2 fermionic fields, electromagnetism, and linearized quantum gravity. For simplicity, we
will only discuss these examples in a Minkowski background.

The Quantum Field Theory of a Complex Scalar Field

We will now briefly mention the algebra construction associated with a complex scalar
field. The theory for a complex scalar quantum field can be defined similarly to that of
a real scalar field. Indeed, a classical complex field is simply a complex solution 1) to the
equation P = 0, which can be derived from the extremizing the action associated with
the Lagrangian

L=V, V" — V(X)) (1.150)
One can build the local algebras of observables associated to a complex field by assigning
each complex function in C3°(M) to symbols ¢(f) and ¢f(f). The *-algebra A(M) is
generated by an identity operator 1 as well as the symbols ¢(f) and ¥'(f) = @@(f*)T, with
the identifications

Linearity: ¢(af + 8g) ~ ai(f) + 5 (9).
Equations of Motion: 1) (Pf) ~ 0.
Commutation Relations: [{(f),(g)] ~iE(f,g),
[W(f), 4 ()] ~ 0,
[V (f),¥(g)] ~ 0.

Notice that when compared to the algebra of a real scalar field, the Hermiticity condition
has been removed, and the commutation relations change. The map f ~ '(f) as defined
above is also linear and represents the smeared conjugate field.
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A basis of solutions of the Klein-Gordon equation {ug,u}} also defines unique pure
quasifree state w for a complex field theory, as well as its associated GNS representation.
The state w is defined by the Wightman function

wlb(D100) = Y (el (1.151)

k

The analogous to the expression (1.87) for the field ¢(x) in this GNS representation is

U(x) = iuk(x)ak + uj(x)bl, (1.152)
k

where we now have two sets of creation and annihilation operators, satisfying the commu-
tation relations

[&kw &L’]

(k, KN, ag, aw] = [aL, al,] =0, (1.153)
[lA)k,lA)L,] ) '

=0 1

— 6(k, k)1, [bk, b = [bL, bL] = 0. (1.154)
The state [€2) in the GNS representation of w is then the unique state such that a [€2) = 0
and by |©2) = 0 for all k.

In the context of a complex field, the operators a and d}; are associated with creation

and annihilation of particles, while the operators Bk and Z;L are associated with creation
and annihilation of antiparticles.

The Quantum Field Theory of a Dirac Spinor

In 341 Minkowski spacetime, a Dirac spinor ¢ (x) can be represented as a four-component
complex field ¥*, with a € {1, 2, 3, 4}, with a representation of SLy(C) (the universal cover
of the Lorentz group SO(1,3)). A Lorentz transformation A acts on spinors according to

W*(x) = S[AJ"(A™), (1.155)

where S[A] is given by S[A] = exp(3w,,5") and S* are the generators of the SLy(C)
action. Notice that for any values of pu,v € {0,1,2,3}, each of these generators is an
operator in spinor space. They can be conveniently expressed in terms of the so-called
gamma matrices, defined by the Clifford algebra relation

VY + At = 2 (1.156)
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where 7, = diag(—1,1,1,1) is the Minkowski metric in diagonal form. The generators
SH can then be written as S* = Z—i[fy“, ~*]. In the Dirac representation the y-matrices can

be written as,
1 ; o
0 __ 2 i
V= ( _12), = (_O_i > : (1.157)
1,2

where o = (0!, 02, 03) denote the Pauli matrices and 1, is the 2 x 2 identity matrix.

The operator 7° also defines a natural conjugation operation that faithfully maps
spinors into their dual:

D(x) = P(x) = PF(x)7". (1.158)
As such, every element of the spinor cotangent bundle can be uniquely written as Y(x) for
its corresponding spinor ¥(x). The action of a co-spinor ¥(x) in a spinor ¢(x) is denoted
simply as ¥(x)p(x) = ¥T(x)7°¢(x). Alternatively, we can interpret a co-spinor field as a
distribution, acting on compactly supported spinor fields according to

www:/ﬂwmmw (1.159)

The dynamics of a free spinor field 1(x) of mass m. is obtained by extremizing the
action associated with the real?® Lagrangian density

2 = 000, —m) — (8,0 + by, (1.160)

N —

written in inertial coordinates (¢, ). The equations of motion resulting from variation of
the Lagrangian with respect to 1) and v are, respectively,

Py = (iv"0, —me)p =0, (1.161)
Py = —(i0, 47" + ¢Ym,.) = 0. (1.162)
Denote the kernel of P and P by S and S, respectively, corresponding to the space of

spinor and co-spinor solutions, respectively. The conjugation operation also establishes a
connection between P and P: Py =0 < Py =0, mapping S to S.

The operators P and P also define unique retarded and advanced propagators, Gg,

20Tt is essential to have a real Lagrangian density so that operators derived from it, such as the stress-
energy tensor and Hamiltonian are also real, and give rise to Hermitian operators upon quantization.
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G4, Gr and Gy, satisfying
PGrf=PGaf=f,  PGrf=PGaf =T, (1.163)

so that Grf is supported in the causal future of supp(f) and G4 f is supported in its
causal past. From the retarded and advanced Green’s functions, we can define the causal
propagators

E=Gpr— Gy, E=Gp— Gy, (1.164)

related by Ev = Ev. Same as in the scalar case, the causal propagator is antisymmetric,
in the sense that

V(EQ) = —¢(EY). (1.165)

Given any compactly supported spinor f, E'f is a solution to the homogeneous equation
of motion. Moreover, all solutions with compactly supported initial conditions can be
written as Ef for some compactly supported spinor f. The analogous statements hold
for co-spinors. At the same time, if S§° denotes the set of compactly supported smooth
spinors (and Sg° the co-spinor analogue), the space of solutions to the Dirac equation is
in one to one correspondence with the space S5°/PSg°, and Sg°/ PSS, while parametrizes
all solutions of Py = 0.

Within the space of solutions of the Dirac equation, we can define a positive-definite
inner product. Given a Cauchy surface X, we define

00) = [ dz,ov. (1.166)
and the fact that a“(éwp) = 0 if ¢ and ¢ are solutions of the Dirac equation implies that
the inner product (1.166) is independent of the choice of Cauchy surface. Importantly,
unlike we had with the Klein-Gordon equation, the inner product defined in spinor space
is positive. The Spinor inner product satisfies the analogue of Eq. (1.42) for spinors:

O(EY) = i(E¢, Ep) = —¢(E9). (1.167)

A general basis of solutions to the Dirac equation in Minkowski spacetime consists of
sets of orthonormal spinors u, ¢(x) and v, (x) labelled by p € R?* and s = 1,2 satisfying

104up s(X) = wplp s(X) and 10,vp s(X) = —wpvp s(X), with w, = /p? + m?. Explicitly, we
have

<up,s; up’,s’> = 535’5(3) (p - p/), <Up,s; Up’,s’> = 635’5(3) (p - p/), <up,37 Up’,s’> = 0. (1168>
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A general solution in § can then be written as

»(x) = Z / d*p (bp,sup,s(x) + c;’svp,s(x)) , (1.169)

where by, = (ups, 1) and ¢, = (vp,, 1) are complex coefficients defined by the initial
conditions in a Cauchy surface. The explicit expressions for u, s(x) and vp 5(x), as well as
multiple useful properties can be found in standard texts [111].

Similarly to the explicit construction for a real scalar field that we saw in Section 1.2,
one can construct a quantum field theory for a Dirac spinor in terms of associations of
compactly supported test functions to elements in an algebra. However, in this case we

consider two sorts of associations: 1& and @;, where z@ acts on co-spinors g — Qﬂ(g) and
v acts on spinors, f +— (f), satisfying ¥(f)t = zﬁ(f) The algebra of operators is then

defined by formal products and sums of operators 12( 1), Qﬂ(g) and an identity element 1,
satisfying the following conditions:

Linearity: ¢(af + 3g) ~ at)(f) + Bib(9),
d(af +89) ~ au(f) + Bulg).
Equations of Motion: 1Z(Pf) ~ 0.
O(Pf) ~ 0.
Anticommutation Relations: {¢(f),9(g)} ~if(Eg)1,
{d(f), ¥(9)} ~ 0,
{0(f). (e} ~ 0.

The anticommutation relations are the most distinguishing aspect of the algebra, which
gives rise to the Pauli exclusion principle and ensures that self-adjoint operators of the

>

~

form ¢ (f)y(f) are commuting when spacelike separated. In this case one can also think
of ¥(f) and zﬁ( f) as smeared spinor field operators through the formal expressions

wﬁzfﬂwwwm mﬁz/uwwﬂﬁ (1.170)

Finally, a basis up s(x) and v, s(x) induces a GNS representation of a state |0) so that
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the field can be represented as
A~ 2 ~
(x) = Z / d*p (bp’sup,s(x) + ép,svp,s(x)> , (1.171)
s=1

where the creation and annihilation operators by, s, bL ) Cp.ss éL . satisfy the anticommutation
relations

{bpss0f, 3 = 000D (p = 1), {éps el ) = 0,00 (p—p), (1.172)
{bp,m bp,y} = {bpm ép,S’} = {bp,& él),s’} = {b;ra,sa ép,S’} = 0. (1.173)

The vacuum associated to this decomposition is then defined by the condition I;pﬁ |0) =
Cps|0) = 0 for all p and s. Same as in the scalar case, the operators associated to the
positive frequency solutions, I;p75 and IA)L’S create and annihilate particles, while the operators
Cps and é;s create and annihilate antiparticles.

There is much more than could be said about spinor fields, but we refer the reader to
the standard references [111] for practical information and to [l 1] for a formal definition
of quantum field theories of spinor fields in globally hyperbolic spacetimes. The remaining
information regarding spin 1/2 fermions that will be required in this thesis will be presented
as necessary.

Gauge Quantum Fields

Gauge field theories are significantly more complex than the theories that we have explored
so far. There are also many different approaches to gauge fields, and this review chapter
is already too long as is. Our goal here is merely to give an overview of the quantum
field theories that we will use later on, and to provide an overview of how to construct
gauge-invariant algebras of observables from an algebraic perspective. For simplicity we
will stick to Minkowski spacetime with inertial coordinates for this discussion.

We will focus on two theories here: electromagnetism and linearized quantum gravity.
Classical electromagnetism is a gauge theory associated to the Lie group U(1) for the four-
potential A,(x). The four-potential can be seen as the connection of a principal®” U(1)
bundle associated to the U(1) group action on complex fields 1 (x) — e i9*®q)(x), where Q

2"For more about I refer the reader to Frederic Schuller’s “Lectures on the Geometric Anatomy of
Theoretical Physics”.
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is its associated charge. The covariant derivative associated with this gauge transformation
is Dy = 0,0 +iQA,.

The dynamics of the electromagnetic potential are determined by the Lagrangian

1
L=—-F"F

4 nz Fuu = auAV - 0,A (1174)

v4lp,

where F),, is the electromagnetic tensor, or, equivalently, the curvature in the U(1) bundle.
It can also be written in a basis-independent form as F = dA, which also makes it evident
that the Lagrangian is unchanged by A +— A + dx for any smooth function x(x) (usually
assumed compactly supported).

The associated equations of motion are
PA” = 0,0"'A” —0"0"'A, = 0,F" =0, (1.175)

which are also invariant under the gauge transformation A, — A, + d,x. This uncon-
strained degree of freedom in the classical equations of motion creates a series of com-
plications when describing the degrees of freedom of the theory, resulting, for instance,
in non-unique Green’s functions, as well as other ambiguities. One way of approaching
this issue is by identifying the gauge-invariant observables in the theory. These can be
motivated by looking at the coupling of electromagnetism with a four-current j*.

When a charged four-current j* is present, its coupling to the electromagnetic field
can be described at the level of the action by the additional term —j*A, in the La-
grangian (1.174), resulting in the equation of motion

Q™ = 5 (1.176)

which automatically implies that the four-current must satisfy the conservation equation
V,j* = 0. This condition then implies gauge independence of contractions of the form

A(j) = /dVAH(x)j“(x). (1.177)

Indeed, under a gauge transformation A, — A, + 9,x,
A(j) = AG) + /dV3uX(X)j“(X) = A() - /dVX(X)VuJ'“(X) = A@). (1.178)
We then define the set of conserved four-currents J = {j* € C5°(M) : V,j* = 0}, where
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we allow j* to be complex for generality. In this context, gauge invariant solutions of the
equations of motion can be thought of as elements on the dual J*, so that a solution A,(x)
defines a unique distribution of the form of Eq. (1.177). In this context we can define
unique retarded and advanced Green’s functions satisfying PGrj = j and PG 45 = 7, in
the sense that Ggj and G 4j are the unique elements of J* satisfying the non-homogeneous
equation of motion supported in the causal past and future of supp(j), respectively.

From this point on, we can build a quantum theory in the usual manner by assigning
symbols A that act on conserved currents in J by j — A(j) and, together with the identity,
generate an algebra of observables satisfying the conditions

Linearity: A(aj + 85') ~ aA(j) + BA(j"),
Hermiticity: A(j)" ~ A(5%).

Equations of Motion: A(Pf) ~ 0.
Commutation Relations: [A(j), A(j")] ~ iE(j, j'),

where £ = G — G4 is the retarded propagator, and we allow f to be any compactly
support vector field in the condition A(P f) = 0. Here we again can think of the quantum
field Au(x) as an operator-valued distribution, acting on compactly supported conserved
currents according to

A(j) = / AV A, (x)7*(x). (1.179)

This construction avoids most complications regarding gauge, allowing states to be defined
exactly as in Section 1.2, making the gauge invariance of the theory manifest from the
construction of the algebra of observables itself.

We can use this same concept to quickly formulate the quantum theory for linearized
quantum gravity. One can describe small metric fluctuations in Minkowski background by
considering

gull = nuy + \Y% 87T€phuug (1180)

where ¢, = VG is Planck’s constant and h,u. is a symmetric tensor. We choose these
conventions for the metric perturbation h,, so that it has units of energy, the same as
scalar and vector fields so that similar expressions to the retarded and advanced Green’s
functions can be used for its associated equation of motion. The Planck length then also
provides a suitable expansion parameter for the metric perturbations.

The action that dictates the dynamics of the metric is the Einstein-Hilbert action, with

Lagrangian £ = %, where R is the Ricci scalar. Using g, as in (1.180), the associated
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equation of motion (to leading order in ¢,) becomes
Phy, = — (801(9@53‘) — %no‘b’@#@,j — %(55(55&,8" — %nw,(ﬁo‘(?ﬁ — 770‘5808")) hes = 0. (1.181)

Notice that according to the definition above, Ph,, = —G,. We choose this convention so
that the Green’s function for the linearized metric perturbation does not pick up a negative
sign with respect to our conventions for a scalar field. As expected, the theory for the
linearized metric tensor h,, is invariant under infinitesimal diffeomorphisms. Concretely,
this implies that for any vector field {#, the equations of motion are invariant under h,,,
hyw + 0,6, + 0., where §, is the vector field that generates the local diffeomorphism.

Same as in electromagnetism, this gauge invariance imposes a conservation equation for
any current that couples to h,,. The coupling of matter with linearized metric perturba-
tions is incorporated at the Lagrangian level by the addition of the term —%\/géphw,T‘“’,
derived from varying the Einstein-Hilbert action with respect to the metric. The non-
homogeneous equations of motion then become

Ph,, = —V8xl,T,,. 1.182
i ptu

The divergenceless condition of the Einstein tensor, V*G,, = 0 then implies that the
stress-energy tensor must also satisfy V#T* = (. Inspired by the electromagnetic case, we
define the space of divergenceless symmetric tensors of rank (0,2), T = {7}, : V,T* = 0},
so that if h,, is a solution of Ph,, =0 and T"” € T, then

h(T) == / AV B ()T (x) (1.183)

is gauge-invariant.

Identifying solutions to the equation of motion with distributions on 7, we find retarded
and advanced Green’s functions G and G 4, and define the causal propagator

Eul/a/ﬂ/ (X, X/> = (GR)#VO/,Q/(X,X,) - (GA)HVa/ﬁ/(X, X,) (1184)

as usual. The explicit expressions for the retarded Green’s function can be found in Ap-
pendix G. We then create the association T € T + h(T). The elements h(7T") and 1 are
then used as the generators for an algebra with the following conditions:

Linearity: h(aT + BT") ~ ah(T) + Bh(T"),
Hermiticity: h(T) ~ h(T*).
Equations of Motion: fL(Pf) ~ 0.
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Commutation Relations: [2(T), h(T")] ~ iE(h, 1),

where, same as in the electromagnetic case, we allow f to be any symmetric rank 2 tensor
in the condition h(Pf) = 0. The operators in the algebra can then be seen as the gauge

invariant operators

MT) = / AV, ()T (x). (1.185)
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Chapter 2

Locally Probing Quantum Fields

In the previous section, we discussed quantum field theory and defined states, observ-
ables, and expected values. However, quoting [116],

“From the retinas of our eyes to solid state sensors at the LHC),
we never measure a quantum field other than by coupling something to it.”

The goal of this chapter is to describe how one can access expected values in quantum field
theory through local probes, giving special focus to the connection between quantum field
theoretic and effective descriptions of the probes.

We start with a brief review of the issues with measurements in quantum field theory
in Section 2.1, and then focus on local probes, starting with the description of a localized
quantum field probing a free field in Section 2.2. We then simplify this description to reach
the widely used Unruh-DeWitt detector model and explore its properties in Section 2.3.
Section 2.4 is devoted to connecting descriptions of non-relativistic quantum systems in
curved spacetimes to particle detector models. In Section 2.5, we consider more realis-
tic probes localized by physical external potentials and study a quantum field theoretic
description of a Hydrogen atom as a localized probe. In Section 2.6, we will discuss the
stress-energy tensor of a localized field and how general covariance requires one to dynam-
ically describe the mechanisms responsible for the localization of the probe.

2.1 Measurements in Quantum Field Theory

In this Section, we will discuss measurements and operations in quantum field theory, and
how these can lead to an incompatibility with relativistic causality. We will also discuss
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the Fewster-Verch framework, a fully field theoretic description for the process of obtaining
information about a quantum field by coupling it to a probe that is also described within
quantum field theory.

State Updates and Causal Operations in Quantum Field Theory

An ideal measurement in quantum theory is typically formulated in terms of a set of
projectors lf’j such that > i ]5] = 1. Each label j then defines a possible outcome of the
measurement, and given a pure state |1), the probability of outcome j can be computed
using the Born rule

p; = (| Py |). (2.1)
If the outcome j is obtained, one updates the state accordingly by considering V) —
aP; [¢), where o* = p;1 is a normalization constant. Interestingly, the state update is

a non-linear state operation, so that it cannot be derived from the linear dynamics of
quantum theory.

This non-linearity persists when more general types of measurements are considered,
such as measurements defined by operators M; such that 3, M ]TMj = 1. Describing the
state of the target system by a density operator p, the probability of each outcome is given
by

pj = tr <[)M]TM]~>, (2.2)

and after obtaining outcome j the state is updated to p; = oczMjﬁM]T, again with o* = p;'.
If the outcome of the experiment was not recorded, the state is updated non-selectively to
p=> ; Mj pM ; . Fundamentally, the lack of linearity of the state update associated with a
selective measurement is a consequence of the non-deterministic aspect of quantum theory;,
implying that one is unable to tell which of the possible outcomes will take place until the
measurement is performed. It is only after the result of the experiment is learned that
one can apply the state update rule, which is not prescribed by the deterministic state
evolution in quantum theory. Indeed, the so-called measurement problem in quantum
mechanics [9, ) , 07] is associated with the fact that there are no clear mechanisms
within the theory that determine whether a measurement takes place.

In the context of quantum field theory, state updates can be implemented in terms of
algebra endomorphisms © : A(M) — A(M), updating the state according to w +— w
such that w(-) = w(O(-)). The operation © would then correspond to a physical process
realized in a region of spacetime. In particular, given operators Mj € A(M) such that
> M;MJ — 1, the operation ©(A) = > M;AMJ- defines an algebra endomorphism
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analogous to the state update corresponding to a non-selective update. One could then
import the definitions from measurements using density operators, defining a measurement
by a set of operators satisfying », M;Mj = 1, assigning probability p;, = cu(]\Z]T M]) to
each outcome, so that the state update after obtaining outcome j would be given by
wi(-) = pj_1 w(Mj - M;). One issue with this reasoning is that states in quantum field
theory are global in nature, so that a state update could effectively affect the expected
values of observables that are arbitrarily far away from the measurement region.

Figure 2.1: Schematic representation of a spacetime diagram of the setup considered by
Sorkin in [179].

The first to notice that state updates in quantum field theory can become a real issue
was Rafael Sorkin in [179], when he showed that a projective measurement performed at
a Cauchy surface could lead to faster-than-light signalling between two parties. Specifi-
cally, Sorkin considered a setup where two spacelike separated localized observers A and
B interact with a field and a selective measurement is performed at a Cauchy surface ¥ in
the causal future of A and causal past of B, as shown in Fig. 2.1. He then showed that a
selective measurement at ¥ could make the expected values of observables localized in B
depend on the operations that were performed in A. This would imply that it is possible
for A to send a signal to B, allowing for spacelike separated observers to communicate.
As pointed out in [179], any “measurement” that allows for such causality violations to
take place must not correspond to a physical process, giving these the label of “impossible
measurements”. The fact that general state updates in quantum field theory may lead to
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lead to causality violations has become known as the Sorkin problem.

It turns out that Sorkin-type problems are not exclusive to projective measurements
performed in Cauchy slices. As pointed out in [I7], the situation initially proposed by
Sorkin can be generalized to the case where one considers operations in two spacelike sep-
arated regions, O, and Oy, and in an additional finite region O that is causally connected
to both O, and Oy, as illustrated in Fig. 2.2. Essentially, some operations performed

in Oy might lead to expected values of observables in Oy to be dependent on operations
performed in O,.

Figure 2.2: Schematic representation of a spacetime diagram of the setup considered in [17].

For concreteness, we will consider an explicit example of operations in regions O,, Oy
and O that lead to Sorkin-type problems in the case of a real scalar quantum field theory.
Given a self-adjoint operator A € A(M), define the endomorphism

Ui(B) =4 Be 4, (2.3)

Endomorphisms of this type have been called unitary kicks associated with the observable
A in [89]. One can compute the action of U; on smeared field operators ¢(g) through

U (d(g)) = ed(g)e ™ = —id, (eiﬁeiséa(g) 6—1A>

, (2.4)

s=0
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and from the Baker-Hausdorff-Campbell formula, we find that

ei/leiséefi/l _ eiséefs[A,B}f%s[A,[A,B]H,.. (2.5)
, .

where the remaining terms in the exponent of leading order in s involve more commutators

of the form [A,...,[A, B]...]. From this expression, we then find the action of operations

of the form L{(Z;(f)n on field operators by noticing that [¢(f)", ¢(g)] = niE(f, ¢)p(f)" 1, so

~

that [o(f)", [0(f)", #(g)]] = 0, and all commutators in (2.5) vanish, except for the first.
This yields A ) )
Usryn(9(9)) = 0lg) — nE(f, g)o(f)"". (2.6)

In particular, for n =1 we find that the unitary kick Uy, shifts the operator o(g) by
the classical solution ¢y = E'f:

~

Uy 1, (9(9) = 0l9) = E(f,9)1 = (g) + ¢7(9)1, (2.7)
where we obtain the last equality from —E(f,g) = E(g, f) = g(Ef) = g(¢5) = ¢¢(g). It
turns out that the operators Uy ;) are causal, as shown in [89]. On the other hand,

Uy 2 (0(9)) = b(9) = 2E(f,9)8(f) = ¢(9 — 2E(f, 9) ) (2.8)

can lead to Sorkin-type problems if applied in the region O in Fig. 2.2. Indeed, assume
that the operation ©, = Uy, ) is performed in region O, (with f, € C°(0,)), resulting
in the state w,(+) = w(O4(+)) and that the operation ©¢ = Uy ). is applied to the field
at region O, with fo € C3°(O.). The updated state after both interactions, w, will be
given by w(-) = wa(Oc(-)) = w(O,(Oc(+))). The corresponding operation 6, o O will
then affect smeared field operators according to

©, 06 (Cg(g)) = ué(fr\) <u<z3(fc)2 (&(g))) - Z/{Qg(fA) <§5(9 —2E(fe, 9)fc)> (2.9)
= Qg(g) - QE(fc,g)Cg(fc) — E(fs, )1+ 2E(fy, fo) E(fe, 9)1. (2.10)

We can now show explicitly that the operation ©,, local to the region O, can affect
expected values of operators localized in the region Oy due to the operation O, even though
O, and Oy are spacetime separated. Consider g = f5 € C§°(Og), so that ¢E(g) = QAS(fB)
is an observable in Oy. We then have E(fs,g) = E(fs, fs) = 0 due to O, and Oy being
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causally disconnected. However, we still have

~

0,000(0(fs)) = O(fi) — 2E(fo, fo)O(fe) + 2E(fu, fo) E(fo, fo)1. (2.11)

For instance, if the initial state w is quasifree, we will then have

~

@ ((fs)) = 2E(fs, f) E(fe, f5), (2.12)

which explicitly depends on f,. We then see that if there is causal contact between O, and
O and between Oy and O, the expected values of operators localized in B might depend
on operations performed in A, even if the regions O, and Oy are causally disconnected.

This shows that not all operations in the local algebra of observables respect causality,
and some operations might lead to Sorkin-type problems. Relevant progress was made
in [89] regarding the classification of causal operations in quantum field theories for free
Klein-Gordon fields. However, classifying the operations that do not lead to causality
violations in general quantum field theories is still an ongoing research topic. Overall,
one needs to be careful when considering operations and measurements in quantum field
theory, given that general local operations can lead to causality violations, implying that
these cannot be realized by any physical process.

The Fewster-Verch Measurement Framework

A possible solution to Sorkin-type problem was introduced by Fewster and Verch in a
series of manuscripts describing measurements in quantum field theory [56, 52, 53, 57].
Essentially, their measurement scheme considers a measurement that is induced by the
interaction with another quantum field. The scheme is entirely covariant and fully prevents
any Sorkin-type issues. We will now briefly describe the Fewster-Verch framework.

Consider two quantum field theories, for a field 45 that one intends to measure, and for
a detector field (%D that will be used to perform an effective measurement in the field ngS
In principle, the field theories associated with gg and ngﬁD are entirely decoupled, and their
local algebras of observables factor as a tensor product A(M) @ Ap(M). However, the
only way for measurements in the field gED to be able to acquire information about QAS is
by considering an interaction between the two theories. We then define an, in principle
completely different, quantum field theory in which the fields gzg and (/BD are coupled within
a region contained in a compact causal diamond K = D(K). This theory is associated to
an algebra of observables C(M), corresponding to the coupled field theory.

It is important to stress that, in principle, the coupled and uncoupled theories are
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associated to entirely different algebras. However, given the assumption of a compactly
supported interaction, the algebras C(M) and A(M) ® A, (M) are isomorphic “before”
and “after” the interaction. More precisely, defining the regions M* = M\JF(K), it is
possible to define *-algebra isomorphisms v* : AM*) @ A,(M*) — C(M*). Indeed,
in the regions M* the algebra associated to the coupled theory is essentially the algebra
of an uncoupled theory between QAS and QASD, with C(M%*) corresponding to the algebra of
observables “after” and “before” the interaction takes place'. Moreover, due to property
A4, we have that A(M*) @ Ap(M*) = AM) @ Ap(M) and C(M*) = C(M), so that

the maps 7+ extend to the entire coupled and uncoupled algebras.

The isomorphisms ~* effectively allow one to work with the uncoupled algebras outside
of K. For instance, before the interaction a product state w ® wy, of the uncoupled algebra
corresponds to a unique state w in C(M) satisfying (7~ )*w = w ® wy. Explicitly:

w(v (A®B)) =w @wy(A® B) = w(A)w,(B) VA e AM) and Be A,,  (2.13)

or equivalently, @ = ((77)"!)*w®wy. The state w can then be used to describe the system
before and during the interaction. Moreover, w is also a valid state after the interaction
takes place, although it cannot be related to w ® wy, by the pullback through (y~)~'.
Instead, one can use w to compute expected values of any observable in the uncoupled
theory after the interaction using v, which is well defined in M™. For instance, one can
compute the expected value of an observable B e Ap(M) in the uncoupled theory after
the interaction by importing it to the coupled theory using the map v*. Specifically, the
operator 1 ® B in AM) ® Ap(M) is mapped to the operator Be =7 (1 ® B) € C(M).

The expected value of Be in the state that was initially w ® wp and went through the
interaction is then given by

w(Be) =w@wp((v7) (1 @ B)). (2.14)
This naturally defines the scattering endomorphism
0= )" AM) @ Ap(M) = AM) @ Ap(M). (2.15)

Importantly, © acts trivially in local algebras located in regions that are causally discon-
nected from K, which implies that this framework only prescribes non-trivial changes in
the free theories in the causal future of K. Additionally, any local interaction between

INotice that “before” and “after” do not correspond to the causal future and causal past of the inter-
action region, rather “after” stands for the complement of the causal past of the interaction region and
“before” to the complement of its causal future.
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quantum fields in line with this description cannot give rise to Sorkin-type problems. For
a related discussion about this topic, see [20]. The scattering map here is playing the role
of the unitary time evolution operator associated with the interaction, described entirely
in the uncoupled theory: (A ® B) ~ U} (A ® B)Uy.

One can then define the effective final state of the detector field QASD after the interaction
with the field ¢ (prepared in the initial state w) as the functional wy : A,(M) — C with
action defined by

wp(B) = w® wy(0(1 ® B)) = w(Be). (2.16)

Notice that the final state of the detector explicitly depends on the initial state of the
target field, w. Consequently, the expected value of B in the final state of the detector
will contain information about observables and expected values of operators of the field
0. In fact, one can find the precise observable in A(M) whose expectation value matches
wp(B).

We can extend the action of states in Ap(M) and in A(M) to the full uncoupled
algebra A(M) ® A, (M) by defining their action in operators of the form A ® B:

wp(A® B) = wy(B)A, (2.17)
w(A® B) =w(A)® B (2.18)

and extend the action to the full uncoupled algebra by linearity. The actions defined in
Eqgs. (2.17) and (2.18) essentially represent a partial expectation value. Then, the operator
By = wp(B¢) is such that

~ A A

w(B4) = w(wy(Be)) = w(wp(O(1 ® B))) = w ® wy(O(1 ® B)) = wy,(B). (2.19)

In other words, the observable in A(M) whose expected value in the initial state w coincides
with the expected value of B in wy, is B4 = wp(Be). Equivalently, a measurement of the
probe observable B induces a measurement of the observable B4 = wy,(O(1 ® B)) in the
field ¢.

The Fewster-Verch framework can also be used to prescribe a state update for the field
ng. However, as we discussed previously, the notion of state updates creates an ambiguity
regarding the spacetime region where the state update should be performed. Instead, it is
simpler to think of conditional probabilities for consecutive measurements, which removes
this ambiguity without loss of predictive power.

Arguably, the Fewster-Verch framework does not address the question of measurements
in quantum field theory—it merely prescribes an interaction-picture type of evolution for
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states of two quantum field theories, finding observables in each theory that are correlated.
In other words, although the Fewster-Verch framework is able to correlate the expected
values of a probe field to those of the target field, it does not address how one would
measure the probe, which is itself also modelled by quantum field theory. In some sense,
one could say that the Fewster-Verch framework reduces the measurement problem in
quantum field theory to the standard measurement problem in quantum theory. Overall,
the Fewster-Verch framework still relies on the fact that

“Someone, somewhere, can measure something.”

With the “something” being an observable B in the detector field algebra after the inter-
action with the target field.

It is important to stress that the Fewster-Verch framework relies on the interaction
between target and probe taking place in a compact region of spacetime. Indeed, the maps
7+ between the uncoupled and coupled algebras and the scattering endomorphism © can
only be defined if there are Cauchy surfaces where the uncoupled and coupled theories
coincide (see A4). Strictly speaking, this assumption does not apply to most physical
theories in our universe (e.g. the electromagnetic interaction cannot be switched off).
Nevertheless, one could effectively use the Fewster-Verch framework assuming an adiabatic
switching of the interaction, which one could expect to be able to describe interactions that
last for sufficiently long times.

The requirement that the interaction happens over a compactly supported region of
spacetime is typically implemented by an external function that defines the interaction
region. Indeed, the prototypical toy model for the application of the Fewster-Verch mea-
surement scheme is a theory for real scalar fields ¢ and ¢, defined by the Lagrangian
density

L= _%8;%258#(? - %au¢DaM¢D - mTZD(ii - AC(X)(bD(ﬁ- (2'20>

where A is a coupling constant with units of energy squared and ((x) is a non-dynamical
compactly supported test function?, whose support defines the interaction region K. In

2The function ¢(x) could be replaced by two dynamical fields ¢(x) = 11 (x)12(x) which are non-zero
only in a finite region around different light-light curves that intercept at a point, so that the product
1 (x)2(x) would only be non-zero in a compact causally convex region. However, if the fields ¥; and 1)
are described as quantum fields, it is not clear whether it is possible to have an uncorrelated state between
the fields qS, qSD, ¢1 and 1/}2 or to construct scattering maps that act only in the algebras of qb and ¢D
Alternatively, one could describe 11 and 15 as classical fields, in which case a semi-classical approximation
would be required to determine their dynamics during the interaction.
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this example, it is also possible to compute the action of the scattering endomorphism in
smeared field operators of the form ¢(f) and ¢, (f) explicitly.

Overall, the Fewster-Verch framework prescribes the interaction between two quantum
fields, a target field and a probe field, under the assumption that the interaction takes place
in a compact spacetime region. The formalism uses a scattering map © that corresponds to
the unitary evolution undergone by both fields, which provides a final state for the probe
and field after the interaction takes place. It is a measurement scheme in the sense that
observables in the probe field measured in its final state correspond to the expected value
of an induced field operator in the target field. Given that it is entirely prescribed in terms
of local interactions of relativistic quantum fields, the formalism is local and does not suffer
from Sorkin-type issues. Importantly, the formalism is fairly general and can be applied
to any quantum field theories defined according to A1-A4.

2.2 Localized Quantum Fields as Probes

In the Fewster-Verch formalism, the detector is prescribed as a dynamical quantum field ngSD.
However, solutions of the Klein-Gordon equation typically propagate at the speed of light,
implying that the states that define the detector would also spread in space. For instance,
solutions of V,V#¢ = 0 in Minkowski spacetime propagate only along light-like paths. A
one-particle wavepacket |f) = a'(f)|0) is in one-to-one correspondence with the classical
solution of the complex Klein-Gordon equation projected into its positive frequency part:

Kf(x) = /d?’ku,’;(f)uk(x), (2.21)

with ug(x) being the plane waves in (1.102), which propagate along the null direction
(wk, k). These states are not localized in a finite region of space, being more akin to a
(polarization of a) wave of light, and certainly not defining a “localized detector”.

One could instead consider localizing the state |f) by considering a massive field that
satisfies an equation of the form (V,V# —m?)¢ = 0. In fact, this was explored in [71].
However, even the modes ug(x) of a massive field spread throughout all the future lightcone
of their support so that their support increases with time.

One way of obtaining a truly localized quantum field is by considering a field confined
by an external potential. Ideally, one would even consider a field confined to a finite
spatial region so that its solutions are compactly supported. An idea of this type was
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first considered by Unruh in his seminal paper [1941], and we will briefly describe it here
following a formalism similar to the one considered in [139].

Localized Quantum Fields

Consider that the globally hyperbolic spacetime M possesses a time-like Killing vector
field £ such that X, is a foliation by Cauchy surfaces which is orthogonal to £. One can
then pick coordinates (¢, ) such that ¢ is the flow of £ and @ are coordinates in 3, for each
t. The metric can then be put in the form

g = —B(x)*dt* + hy;(z)dz'da’, (2.22)
where h;;(z) is the induced metric in each ¥;, being constant in time due to the fact that

t is a Killing flow. We then define the field ¢, through the Lagrangian density

1 2 1
Ly = —50ub0d" 6 — L — SV (@)63, (2:23)

where V' (x) is an external potential formally defined by

V(z) = {20 i ; g (2.24)

with U C R? being an open convex set. The region U then defines the worldtube T' = {x =
(t,x) : & € U} and the potential V(x) effectively imposes Dirichlet boundary conditions
for the field ¢, at the boundary 0T, with ¢, = 0 in M\T.

The equation of motion for the field ¢,, arising from (2.23) then becomes
Py = (V, V" —m? — V(x))pp = 0. (2.25)

The differential operator P, then defines retarded and advanced Green’s functions, £ and
E; satisfying P,ELf = f, with EZ f supported in J*(supp(f)). The causal propagator is
then E, = Ef — E.

Due to the timelike symmetry that the spacetime is assumed to satisfy, the space
of solutions also admits a convenient basis decomposition. In the coordinates (¢, ) the
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equation of motion can be recast as

52 Pg i85 4\ — B2(m2 _
O+ =01 (BVRI0;0) — 5 (mi + V(@) =0, (2.26)
and we can find a basis of solutions using separation of variables uy,(x) = v, (t)Py(x),
where the equation of motion can be rewritten as

agvn(t) o 2 _ﬁ

wm() T T Vh

where w,, is a constant. We can define the linear differential operator

__ B g
L =m0 <B\/ﬁh aj<1>) + B2m2d (2.28)

acting in smooth functions in L?*(¥;) that are 0 outside of T'N 3;. The operator L is
self-adjoint in a suitable domain of L?(3;) and has a discrete positive spectrum A2 with
eigenfunctions ®,,(x). Eq. (2.27) then gives

0; (BVRRI0;0n()) + B2(md +V(@)0n(@),  (227)

Wn = [An| and w,(t) = eFnt, (2.29)
so that the basis of positive frequency solutions can be written as
Un(x) = e 79D, (x). (2.30)

Normalization according to the Klein-Gordon inner product then imposes

/dE B(m) Y ()2 = ——. (2.31)

2wy,

The quantum field theory for ¢A>D can be built as in the explicit algebraic construction
based on smeared field operators discussed in Section 1.2, with small modifications due to
the fact that the classical solutions are supported in 7. For instance, in the operators (;3D( f)
will satisfy ¢p(f) = 0 for all f supported outside of T'. Indeed, we will have A(Q) = {1}
for any O non-overlapping with 7', so that A(ONT) = A(M) for any region O that
contains a Cauchy surface®. Specifically, the basis {u,,, u},} of the space of solutions gives
rise to a state |0p), as well as its GNS representation in the Fock space F (7)), where the

3This association is technically not completely well defined, as we have the issue of defining éD( f) when
f has a support that overlaps T" and its complement. The natural choice f — f|r might lead to divergences
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field operator can be written as
On(x) = D lntin(x) + afuf, (%) (2.32)

There are relevant consequences to the fact that the modes wu,(x) are discrete. First,
we have that the operators a, and a, are well defined in the algebra A,(M) and do
not necessarily need to be smeared against a test function. Indeed, denoting the causal
propagator associated with the differential operator P, in (2.25) by E;, and writing u,, =
Eygn for compactly supported functions g,, we can write (using (1.43))

(n = (Un, §) = 1Q(dn, uj,) = idn(g5), (2.33)
ify, = —(uj, &) = =1, un) = —idp(gn)- (2.34)

Given that the functions g, are compactly supported in this case, the operators a, =
do(igr) and af, = ¢p(—igy) are well defined in algebra Ay (M), unlike the creation and
annihilation operators associated to continuous mode solutions. The creation and anni-
hilation operators of this confined theory also satisfy the discrete canonical commutation
relations
[d'm diu] = On.n/, [dna dn’] = [&L’ &L’] =0. (235)
In particular, the states
|n) = al |0p) (2.36)

are normalized and constitute an orthonormal basis of the one-particle Hilbert space 5.

The Fock space F(.74,) also factors in a special way when one has discrete modes.
Indeed, the state |0,) factors as a tensor product of the form

100) = ) [05) , (2.37)

where each [0,,) is defined by a, [0,) = 0, and represent no occupation in the mode n.
The operators a, and @], then each act on their respective “vacua”, |0,), with a/, creating
excitations in the mode labelled by m This induces a decomposition of the Fock space

due to discontinuity. In any case, provided that we remain restricted to functions with support in 7', this
construction can be used.
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F(74) as a tensor product of the form

F() = R A, (2.38)

n

where 77, is simply the Hilbert space associated with each mode, spanned by states of
the form (a )™ |0,), with m € N, representing m excitations in the mode labelled by n.
In summary, a basis for F(.74,) is constructed with each basis element indicating how
many excitations it contains in each mode. In this case, the normal ordered Hamiltonian
associated to the foliation can be written as

H = / FPay/=g T n'n’ =Y wnalin, (2.39)

assigning energy w,, to each mode.

A physical realization of this model would correspond to a scalar field in a perfectly
reflecting cavity whose motion in spacetime defines the worldtube 7. The state |0p) rep-
resents the case where none of the modes u,, is excited, and one could argue that this is a
vacuum state of the field, as seen by an observable comoving with the cavity, in the sense
that it is the eigenvector of the Hamiltonian with minimum energy. Each state |n) could
be interpreted as a one-particle state within the cavity.

Notice that the facts that 1) the creation and annihilation operators a,, and a], are well
defined algebra operators, 2)|n) = al, |0,) are normalized states, and 3) the decomposition
of the Fock space as a tensor product of the Hilbert space associated to each mode, are all
direct consequences of the fact that there exists a discrete orthonormal basis of solutions
of the Klein-Gordon equation. As such, these results are valid whenever one considers the
GNS representation of the field associated to a discrete orthonormal basis of solutions to
the equations of motion. In particular, these results can hold even if the spacetime is not
static.

As an explicit example in Minkowski spacetime, we consider a perfectly reflecting cubic
cavity of side d. Considering inertial coordinates (¢, x), define U; = [0, dJ* and the potential

V(z) = {20 i ; g;’ (2.40)
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A basis of spatial solutions of the wave equation with this potential can then be written as

D, () = V%f (&) fos (9) o (2), (2.41)

where the functions f,(u) are given by

fulu) = \/g Sin<7%u>, (2.42)

and the corresponding eigenfrequencies are

2
W = \/m2 + %(n% +n2 +n2), (2.43)

with n = (ng,ny,n.), n; € N*.

Localized Quantum Probes

We can now consider the case in which we use a localized field, as described above, to probe
a target quantum field. For concreteness, we will stick with the example of a minimally
coupled massive Klein-Gordon field under the influence of the potential (2.24), giving rise
to a field confined in a finite region of space?!. We can now consider the quantum field
theory for a target field qAﬁ that we intend to probe through the field (/ED. Specifically, we
consider the theory defined by the Lagrangian density

1 1 2 Vv
L= 20,00 — L0000 - "0t - YD a(gg0. (24

2
where X is a real coupling constant with dimensions of energy squared and ((x) is an
adimensional® compactly supported function, defining the region of spacetime where the
interaction between the fields ¢, and ¢ takes place as the causal hull of supp((), K. This
then configures a particular case of the Fewster-Verch measurement scheme, where we
consider the detector field (;BD probing the free field qg Importantly, in this case, the
detector field is localized in the worldtube T', corresponding to a compactly supported

4By finite region of space we mean that the restriction of ¢(x) to a (and thus any) Cauchy surface has
compact support.

5We choose ((x) to be dimensionless so that one can keep the intuition that ((x) = 1 corresponds to
the case where the fields are always coupled.
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detector.

Our next goal will be to find the final state of the detector field, @y, after the interaction
with the field ¢. We can do this perturbatively, using the results of [56], which show that
the scattering endomorphism acts in smeared field operators of the uncoupled algebra

A(M) ® A, (M) according to
() ®L+1®u(g) =o(f) @1+ 1 (), (2.45)

where the functions f and § can be computed from f and ¢ using the causal propagators
E and FE}, associated with the equations of motion of the respective fields qb and qu, as well
as the total propagator associated with the interacting theory. For convenience, we will
omit the tensor product with the identity in A(M) ® Ap(M) so that

O(S(f) + du(9) = S(f) + (7). (2.46)

Whenever f and g are supported in M™ = M\ J~(K), the dependence of the functions
f and ¢ in f and ¢ can also be computed perturbatively in A. Indeed, in [50], it was found
that whenever f, g are supported in M™, to second order in the coupling constant, they
can be written as

F=F+XE;g+NCE; ((Gaf) + O(N), (2.47)
G= 9+ MNGaf + ) CGA(CES g) + O(N®), (2.48)

where G4 is the advanced propagator for the field ¢ and E the advanced propagator
for the field ¢p. In the equation above, multiplication by the function ((x) is denoted by
juxtaposition and the application of G4, EJ to arguments involving products of functions
has been denoted with parenthesis, so that (Gaf = ((x)Gaf(x) and (E, g = ((x)E; g(x).

We can now proceed with the Fewster-Verch prescription and compute the final state
of the detector field wy perturbatively in A. We assume that the initial state of the two
fields is uncorrelated, of the form w®wy,. From (2.16), the action of the detector field state
wp, in a detector observable QASD(g) after the interaction can be written as

~

@ (Pn(9)) = w ® wp(O(1 @ $(9))), (2.49)

where

~ ~

O(1® dn(9)) = ¢(f) + ¥n(9) (2.50)



and, to second order in lambda,

f=XE; g+ 0 (2.51)
G=9+NCGaA(CE;g) + O0\Y. (2.52)

We then find

Do (9n(9)) = wo(o(9)) + A (G(CE; ) + Nwn(d6(CGa(CEL 9)) + O(N).  (2.53)

The result above shows explicitly how expected values in the final state of the detector
field contain information about expected values of observables of the field ¢ in the state w.
For instance, if one knows the value of wy(¢y(g)) before the measurement takes place, the

~

leading order in A corrections to this value after the interaction directly yields w(¢(CE, g)).

Although Eq. (2.53) illustrates the idea behind measurements using the Fewster-Verch
framework, it is still abstract and somewhat particular—Eq. (2.53) gives 0 if w and wy
are quasifree. Using the compatibility of the scattering endomorphism with the algebraic
structure of A(M) ® Ap(M), we can also compute expected values of more general oper-
ators in the detector field. In particular, let us consider the expected value of a product of
operators of the form (;ASD( f )(;ASD(g) When restricted to operators in A, (M), the scattering
endomorphism essentially maps

~

Pn(9) = Do(9) + AO(CE; g) + N6n(CGa(CEy g)) + O(X%). (2.54)

Assuming w and wy, to be quasifree states we can then apply (2.54) to obtain

@p(00(F)Pn(9)) = wo(@o(F)n(g)) + Nw(S(CE; F)o(CEy g)) (2.55)
+ X (w0 (Bo()do(CGA(CE, 9))) +wn(Bo(CCAWCES ))dn(9))) + O,

Let us now consider functions f = —ig,, and g = ig;,, supported in the causal future
of the interaction region K D supp((¢), such that g, give rise to the localized modes (2.32)
through u,, = Fyg,. We then have that

O(f)d(9) = d(gn)dn(g) = alan (2.56)

is the occupation number operator associated to mode m. Specifically, having access to
the expected value of af a,, corresponds to having access to “how many particles” the field
ngﬁD contains. We can now compute the expected value of the number operator after the
interaction. Due to g, being in the causal future of supp(¢), we have that within the
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support of ¢, uy = Engn = —E, gn, so that

CE, gn = —CEngn = —(Cy. (2.57)
Using the result above, Eq. (2.55) becomes
@@l n) = wWo (@ 0m) + Nw(P(Cun)d(Cur)) (2
— iINwy (@l 60 (CGa(Cuy,))) + iXwp (D5 (CGa(Cun) )in) + O(A) (2.
= W (@fin) + Nw(D(Cun)d(Cuy,)) (
—iZGA Ctim, G, )wn (@ i) + G a (G, Cuiy o (0,1, (

+IZGA Cu,, Cm)wp (@l dn) + Ga(Clim, Ctig)wp (Gmin) + ONY),  (2.62)

where we used the expansion (2.32) in the last equality.

This expression considerably simplifies if the initial state wy, is the vacuum state of the
detector, |0p), in which case wy(Anlm) = wp(al,dm) = wp(alal ) =0, and wy(al,a,) gives
the probability of creating a particle at the mode u,,. In this case Eq. (2.55) yields simply

@ (@l an) = Nw(B(Cun)p(Cus)) + O(NY). (2.63)

That is, when the field gz:SD starts in its vacuum state, each mode n will have leading order
probability Aw(¢(Cun)d(Cuy,)) of becoming occupied after the interaction with the field
¢. We can also write the mode excitation probability explicitly as a spacetime integral:

@ (@l Gn) = N2 / AV AV C(X) P (2)C (X)) D (2 e W (x, ') + O(NY), (2.64)

where W denotes the Wightman function of the quasifree state w in the theory for the
target field ¢. The integral above can be seen as a time Fourier transform of the smeared
two-point function. Defining Ap(x) = ((x)®,(x) and AE(x) = eF“riA,(x) we can write
the excitation probability of the mode n as

@y (ahan) = W (A, AL) + OY). (2.65)

Notice that the operators that we assumed to have access to in the detector theory
were defined by the compactly generating functions g,, which do not seem to have an
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intrinsic physical meaning on their own, but give rise to the operators a,, = ¢A>(ig:‘l) and
al, = qg(—ign). On the other hand, the field operators that we ended up having access to
were ¢(Cuy) and ¢(Cuk), which are smeared by both the interaction profile ¢(x) and the
shape of the modes of the detector field u,(x). When we first presented the quantization of
a Klein-Gordon field in Section 1.2 we mentioned that we should think of smearing function
f in field operators of the form ¢E( f) as defining the region where an experimentalist has
access to the field. Here we are seeing that indeed, the shape of a detector (and the region
where it couples to the field) give rise to these smearing functions.

A More Familiar Model for the Dynamics

The method for computing the updated state outlined above, based on the Fewster-Verch
framework, allowed us to find the leading order action of the updated detector field state
in any observable of its algebra. However, it would be useful to find a representation of
the final detector state in terms of the GNS construction based on the state |0p). Indeed,
there is a more familiar method of computing the action of the scattering endomorphism
© on states and operators in terms of an interaction unitary time evolution operator.
Unfortunately, this method is not fully well defined in terms of the algebra A(M)® A, (M),
and a formal connection between it and the map © has not yet been fully established.

In a conventional treatment to the interaction between the fields QAS and gng, one can
assign the interaction Hamiltonian density

Hi(x) = A (x) o (x) @ () (2.66)

to the time evolution generated by the interaction. Importantly, the Hamiltonian density
H(x) does not correspond to a well-defined smeared field operator in the algebra A(M) ®
Ap(M), as it involves a direct product of fields. As a consequence, the computations
that will follow are technically not fully well defined in the algebras of observables of the
uncoupled theories. However, due to the fact that the modes of gﬁn are discrete, using the
GNS representation of ¢, associated to |0,), we can use the decomposition (2.32) and write

Hi(x) = Y A (un(X)an + up (x)ik) @ d(x) (2.67)

= M09 D ntn(x)9(x) + iy, () H(x)- (2.68)
That is, the spacetime integral of the Hamiltonian #;(x) can be written as the formal
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series

/ AV H; (x Azangb Cup) + af,d(Cul), (2.69)

whose expected value in states w ® wy, is finite, provided that wy can be represented in the
GNS construction associated with |0p).

Following the prescription of time evolution in quantum mechanics, the interaction
Hamiltonian density gives rise to the unitary time evolution operator

Ur=Texp (—i/dV?—L(x)) = Z [7}”), (2.70)
n=0
where
09 =1, 0= —i/dvﬁf(x), (2.71)

R (—i)”/dV1...an”;':L(xl)...’;':[(xn)G(tn—tn_l)..ﬂ(tg —ty), forn > 2, (2.72)

and ¢ is any future-directed time coordinate. Notice that because [H;(x), H;(x')] = 0 for
causally disconnected x and X/, the integral above is independent® of the specific choice of
future-directed timelike coordinate t. The operators of the theory then evolve according to
A Ul AU;, which induces the time evolution in the states w ® wy () = w @ wyp (U] - Uy).
One can then identify that the relationship between the scattering morphism and the time
evolution operators is given formally by G)(A) = U}/AXU 7.

The perturbative treatment for U; indeed corresponds to the one found using the maps
©. For instance, to leading order, we have

Uldo(9)U1 = dolg) + UM dn(g) + do(g) U + O(N?). (2.73)

We can compute the leading order effect in the detector observable ngS(g) by using (2.32):

U 60(g) + o(@US = NS (and(Cun) + L b(Cul)) (e (@) + wip(g)aly)  (274)

nn’

6Indeed, for U 1(2), if t and s are two future-directed timelike coordinates, one can split integral over
M x M into integrals over the regions C' C M x M where events are causally connected and S C M x M
where the events are causally separated. For x1,x2 € C' we have 0(to —t1) = 0(s2 — s1), and for xq,x2 € S
we have ﬁ;(xl)’}:LI(xQ) = 7:l1(xQ)7:l1(x1), so that the time ordering operation is irrelevant under the integral
over the symmetric set S.
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1/\2 s (9)am + try (9)itly ) (and(Cun) + ahd(Cus,))
= 1)‘2 ana 1 an’an)(ﬁ@un)u:ﬁ(g) + (@i — dn/dn)qg(Cu;)un(g)

=AY B(Cun)un(9) — (Cuy,)un(g)
= =X (c %Zu;t,(g)un - un<g>u;z> = ~\O((Evg) = A(CE, ),

where we used the commutation relations (2.35) and the last equalities follow from ex-
pressing Ej, in terms of the basis u,, as in (1.48) and using (E,g = —(E7 g for g supported
in J*(K). We then find that

Ulon(9)Ur = dnlg) + Ab(CE; ) + O(M), (2.75)

matching the leading order results of (2.54) for ©(¢p(g)). One can verify that this result
also holds to higher orders, but we will refrain from performing these computations here
for conciseness.

As a second verification, let us show that using U; gives the result of Eq. (2.63) under the
assumption that the initial state is of the form w®w, with w quasifree and wy, corresponding
to |0p). To second order in A we have

w ® wo(Ufal anl;) = wp(al dn) + wo(w(OM1al a,, + a;anﬁ,ﬁ”)) (2.76)
+ wo (WUl + a4, U + UMal a,UM)) + O(N).
= wy (w0 akan ) + O(N),

where in the last equality we used that wp(afA) = wy(Ad,) = 0 for all operators A
when w, is the vacuum of the localized field. Expressing U 1(1) as in Eq. (2.71) we obtain
wo(w(UlanUf")) = Nu($(Cun)d(Cuy,)), matching Eq. (2.63).
Overall, we can use the unitary time evolution operator to compute the final state of the
detector field (bD We can simplify matters even further by considering faithtul irreducible

GNS representations for both theories gZ)D and gb where the initial states of each field can
be represented as density operators p, o = |0,)(0p| and py, representing the algebraic states
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equivalent to wy, and w. In this case, one can write the detector’s final state as
oo = tro(UrpoU7) bo = Poo @ P (2.77)
Po r'e(Urpoly ), Po = Pp,0 & Py, .

where trg represents the partial trace with respect to the degrees of freedom of the field ngS
Eq. (2.77) also matches the results obtained using the scattering endomorphism © acting
directly in the algebras of observables.

We can compute the final state of the fields using the power series of the time evolution
operator, giving the final state in the form:

poe = o+ P+ pP + O(N?), (2.78)

with
sV = TW 50 + poTOF, (2.79)
PP = Uy + UW p, 0D 4 po U (2.80)

Notice that because the interaction Hamiltonian is linear on ¢(x) and the field starts in a
zero-mean Gaussian state, we have tr((x)pg) = w(d(x)) = 0, so that the term ) does
not contribute after the partial trace over the degrees of freedom of gb( ). The term p®
can be written as

59 =2 [ Vaveece) (9005 0mdn(x)5x) (281)
= 00 (X) 90 (X)B(x)(X ) o0t — )
— oo () ()RS — 1))
Partial tracing over the free field ¢(x), and using po = |0,}0p|® g, We then obtain
trg(p®) =N? / AVAV'C(R)CK)W (. X) (oK) 10,05 1 (x) (2.82)

= G0 3u() [0a)0s| (¢ — 1)
— 100001 30 (x)3u(x)6(E 1) ).

where W (x,x') = w(¢(x)d(x')) is the Wightman function of the field ¢(x) in the state w.
Equation (2.82) then yields the leading order corrections to the state of the fields after
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their interaction. However, this equation is not particularly illuminating. We can instead
look at the final state of the probe field at a given mode n.

Let us then assume that we only have access to one mode of the localized field ¢p(x)
described in the subspace .7, for a given m, which labels an eigenfrequency w, and its
corresponding eigenmode u,(x). Denote by ¢ the complement of this Hilbert space in
the tensor product decomposition of Eq. (2.38), so that the detector field’s Fock space
factors as F(74)) = 4, @ HL.

The density matrix p, g = |0p)(0p| then admits the decomposition

0, X0 | = ® |0m O | = Pr.0 ® \O%X gz"? (2.83)

m,m/ (m,m/)#(n,n)

where Ién,O = |On><0n‘

The final state that we have access to will then be given by the partial trace over of the
final state of the detectors system over both the target field ¢ and the Hilbert space JZ:

fn = trg e <Uﬁofﬂ> . (2.84)

Physically, the restriction of the field to the space .77, can be realized experimentally if one
only has access to excitations of the localized field with energy w,,. For instance, consider
an electromagnetic cavity which contains photodetectors that can only measure ‘photons’
that have energy w,. Effectively, an experimentalist would only have access to the space
I, providing physical meaning to the partial trace operation above.

The next step is to trace the result of Eq. (2.82) over the space .#,¢, which we assumed
to be inaccessible. To perform this computation, we write

~

O(¥) =D dm(x),  dm(X) = e (X) + a5, (%), (2.85)

so that

~

1 e (qu(x)d;D(x')) =3 e (&m(x)qzm, (x’)> . (2.86)
From Eq. (2.37), the vacuum |0,) can be decomposed in terms of the ground state of each

mode. Noticing that each ¢,,(x) term only contains one creation and one annihilation
operator, we then find that for (m,m’) # (n,n),

b (G (X) e (X) 10)00] ) = Gt (X) 5 (X ) (2.87)
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which is simply a multiple of the initial state of the mode n. For m = m/ = n, the
trace over .77,y simply gets rid of the components of the state in 7, without affecting the
components in 7.

Using these results it is possible to trace Eq. (2.82) over the space ¢, which yields

pr=pno+ N / AVAV'C()C (X)W (x,X) (can(x’)ﬁn,odBn(x) — () on (X )bt —1') (2.88)
— Pr0®n (3 (O 1))

+ N pno Z /dVdV’C(x)((x')W(x,x')um(x)ufn(x') (L—0(t—t)—0(t'—t)) + O(XY).

m#n

Notice that the last term cancels, given that 6(t — ') + 6(t' — t) = 1. Defining the normal-
ized states

ln) =@} 10n) . [2n) = by, [On) (2.89)
we can further write the final state p,, as
prn = (1= NW(Cun, Cuy,)) [0n)0n] + MW (Cun, Cuy,) [1n )14 (2.90)

— 2 G (G, Cul) [20)0n] — 2Gr(Ctin, Cun) [0n)2n] + O(NY),

where we used the explicit expansion (2.32), as well as
/dVdV’C(X)C(X')uZZ(X)uZ(X')W(X7X')G(f —t') = 3G p(Cuy,, Cuy)- (2.91)

The Feynman propagator terms also arise in the Fewster-Verch formulation. This can
be seen by noticing that
—NGp(Cuy, Culy) = (antin)p, - (2.92)

Indeed, evaluating Eq. (2.55) at f = g = ig}, and using the expansion for the field QASD
in (2.32), we find

@ (Antin) = =N w(G(Cup)(Cuy)) — INGa(Cuy, Cup,) (2.93)
= —NW(Cuy,, Cup,) — INGa(Culy, Cus) = = NG r(Cui, Cuy), (2.94)

matching the result obtained using the time evolution operator.
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At this stage, it is possible to reinterpret the final result by considering the following
effective scalar Hamiltonian density

~ ~

Her() = A () (x)0(x) = A(A; (¥t + A (x)atf) D), (2.95)

where we defined

A (%) = ((¥)un(x), and  Aj(x) = (A, (x))". (2.96)

n

The operator ﬂeﬁ(x) only acts on the Hilbert space of the field gg(x) and on the Hilbert space
H;,, which is effectively a harmonic oscillator with frequency w,,. Defining the unitary time
evolution operator

Ut = T exp (—1 / dvﬁeﬁ(x)> : (2.97)

it is possible to show that the leading order result for p,, in Eq. (2.88) can be rewritten as
fn = tr, (Ueﬂ(ﬁn,o ® ﬁ¢)U§H> + O\, (2.98)

That is, to second order in the coupling strength, it is possible to reproduce the final state
of ¢p(x) in each individual subspace 7%, by considering a linear interaction between a
harmonic oscillator with the quantum field ¢(x), considerably simplifying the interaction.

2.3 Unruh-DeWitt Detector Models

The discussion of Section 2.1 suggests that one can define a simplified “detector” model
for a quantum field by restricting their attention to a specific mode of the detector field
v, accessing the expected values of operators of the form ¢(pu,) and ¢(pur,). This is the
idea behind what have become known as Unruh-DeWitt detectors, after Bill Unruh [191]
and Bryce DeWitt [10]. The term Unruh-DeWitt detector has been used to describe
many different models, and different authors may use it with a slightly different meaning,
sometimes referring to the whole class of models or to its simplest version. Our goal in
this section is to describe a general formulation of Unruh-DeWitt detectors, and to explore
specific examples that will help build intuition about these models.

General Particle Detector Models

We will now define particle detector models. Broadly speaking, a particle detector model
consists of a quantum system (modelling the detector) that interacts with a quantum field
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in a localized spacetime region. In the description of particle detectors, one also has to
provide a local timelike coordinate 7 that determines the evolution of the system.

We start with the definition of a particle detector that couples to a Lorentz scalar
self-adjoint operator in a globally hyperbolic 341 dimensional spacetime M. A particle
detector of this type is defined by

1. A positive-oriented local time coordinate 7;
2. A quantum system associated with a Hilbert space .7, with Hamiltonian FID(T);

3. A self-adjoint operator-valued compactly supported” spacetime function J (x) acting
on ) —the detector’s smeared monopole moment—supported in the region where
the local coordinate 7 is defined;

4. The kernel O(x) of a self-adjoint Lorentz scalar operator-valued distribution f — O(f)
in the x-algebra associated with a quantum field theory;

5. A coupling constant A;

With the structures above, we define the time-evolved monopole J(x) by introducing the
dynamics due to the Hamiltonian Hy, to J(x) through the Heisenberg equation

97 . o.J
95 g9
ig- =0 Hol +i-

(2.99)
with initial conditionAj|T:0 =J | 7=0- Thaii is, we incorporate the time evolution generated
by the Hamiltonian H,, to the operator J(x). The particle detector model is then defined
by the interaction Hamiltonian density

Hi(x) = M(x)O(x), (2.100)
which generates time evolution with respect to 7. This simple model turns out to capture

the essential features of interactions of systems with quantum fields.

Looking at conditions 1.-5. one could define the interacting fields gZA> and ggD defined by
the Lagrangian (2.20) as a particle detector model. Indeed, one can consider 1. 7 = ¢,
where (¢, x) are coordinates such that ¢ is the flux of a timelike Killing vector field and @

"This requirement is generally relaxed, allowing J (x) to be a sufficiently localized spacetime function,
rather than compactly supported.
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are coordinates in the associated foliation, 2. the Hilbert space F (7)) defined in (2.38)
and the corresponding field Hamiltonian

Hy =) wniin, (2.101)

3. J(x) = p(X)¢p(0,2), 4. O(x) = ¢(x), and 5. the coupling constant A. This would
formally reproduce the detection model discussed in the previous section, with the caveat
that the monopole operator J(x) = p(x)¢p (0, ) is not a regular operator-valued spacetime
function.

Rather than attempting to encompass the field detection models we have been dis-
cussing so far, the goal of a particle detector model, as defined here, is to allow one to
consider simpler probes for quantum fields, which can be described using more standard
quantum mechanics techniques. This has the advantage of simplifying the descriptions of
measurements in quantum field theory, as well as allowing one to apply standard quantum
information techniques to the probes. Particle detectors also facilitate the descriptions of
quantum information protocols that use quantum fields as intermediates and allow one to
quantify important aspects of the probes after the interaction, such as their mixedness and
entanglement between different probes. As we will see, the price we will have to pay for
the considerable simplification provided by particle detectors is that the operations imple-
mented in a quantum field theory by detectors will not usually be safe from Sorkin-type
problems.

Along the lines of simplifying the interaction discussed in the previous section, instead
of reproducing the full interaction of the detector field by after interacting with the field o,
one can define a particle detector model that reproduces the leading order results obtained
for a given mode m of the detector field. Consider 1. 7 =t as in (2.22), 2. J4 = 2,
(defined in Eq. (2.38)) together with the Hamiltonian H, = wpd],dy,, 3. the operator

J(x) = (00 (Pn(@)an + @5, (x)al,), (2.102)

4. the field operator gg(x) and 5. the coupling constant A. With these choices, we find the
interaction Hamiltonian density

~

Hi(x) = A (X) (P () iie ™t + B ()l e (x), (2.103)

n

which exactly matches the effective Hamiltonian found in (2.95). If the modes ®,,(x) are
real, it is typical to define the spacetime smearing function A, (x) = ((x)®,(x) so that the
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interaction Hamiltonian density becomes

~

Hi(x) = My (X) (ane”“m + af e“n!)(x). (2.104)

Particle detector models that can be put in the form of Eq. (2.104), with a, and a],
satisfying [Gn, al,] = 1 are usually called harmonic-oscillator Unruh-DeWitt detectors® [34,

) ) ? ]

What is commonly accepted as the simplest model of an Unruh-DeWitt detector is the
two-level Unruh-DeWitt model. It can be obtained by considering any positively oriented
timelike coordinate 79, % = C2, H, = Q6%6~, and the operator J(x) = A(x)/i, where
ft = 6% + 6 is the detector’s monopole moment. Here 6& are su(2) raising and lowering
operators, satisfying 676~ + 6767 = 1 and (6%)? = 0. The function A(x) is real and is
usually called the spacetime smearing function. It is usually defined as having dimensions
of a spatial density, making the coupling constant dimensionless. Its profile defines the
region where the detector interacts with the field. The interaction Hamiltonian density
then becomes

Hi(x) = M) (Y61 +e767)p(x). (2.105)

The Hamiltonian H, defines its eigenvectors |g) and |e) as the ground and excited states,
respectively, and the energy gap of the system is 2.

The two-level Unruh-DeWitt detector has become the basic tool for implementing quan-
tum information protocols in quantum field theory. It can be thought of as the qubit of
relativistic quantum information, analogous to the fundamental role played by qubits in
quantum computing. As such, the two-level Unruh-DeWitt detector will be the main model
that we will utilize throughout this thesis to probe quantum fields. We will discuss it in
more detail briefly.

One can also generalize the notion of particle detectors to the case where a detector
couples to any operator in a quantum field theory. For this definition we require not only
a timelike coordinate 7, but also a locally defined orthonormal frame. A fairly general
particle detector can be defined by

1. A positive-oriented local time coordinate 7 and an orthonormal frame e, defined in
the region where 7 is defined;

2. A quantum system associated with a Hilbert space 4%, (7) with Hamiltonian H,:

8t is also usual to assume that A is dimensionless and A(x) is a spatial density in these models.
9Tt is common to pick this timelike coordinate as the Fermi normal coordinate time associated to a
given worldline z(7). We will discuss more about this in Section 2.4.
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3. An operator-valued spacetime tensor field

A

J(X) = JOr=ng 5 (X)eq, @ ... Qeq, @M ® ... @ e (2.106)

where for each a1, ...au,, f1, ..., B and x, j"‘l'“a"ﬁl,,./gm (x) is an operator acting on &),
supported in the region where the local coordinate 7 is defined;

4. The kernel Og, o, 7?7 (x) of an operator-valued distribution f*1-nz 5 s O(f)
in the x-algebra associated with a quantum field theory;

5. A coupling constant A;

We define the operator-valued tensor j(x), of the same rank as J(x) by imposing the
Heisenberg equation (2.102) component by component in the e, basis. The interaction
Hamiltonian density generating time evolution with respect to 7 is then defined as

Hi(x) = Aj(x) - O(x) + Hec., (2.107)

where - denotes Lorentz contraction, and we add the Hermitian conjugate, given that
neither O(x) or j(x) need to be self-adjoint. We fix the frame e, here so that the quantum
theory for the detector does not need to be defined relativistically. Of course, if j(x) can
be associated with the kernel of an operator-valued distribution in a relativistic quantum
field theory, the choice of frame is irrelevant.

One example of particle detector that fulfills the definition above is that of a linear
complex scalar field detector, introduced in [133]. Given that it is a scalar field, one need
not pick an orthonormal frame, and we can pick 1. any positively time oriented coordinate
7,2. M) =C%and H, = Q676", 3. J(x) = A(x)6", where A(x) is a complex spacetime
smearing function, 4. (the conjugate of) a complex scalar field ¥f(x), and 5. a coupling
constant A. The resulting interaction Hamiltonian density is

Hi(x) = AAX)EY 6T (%) + A*(x)e 6 (x)). (2.108)
In [133] it was shown that this model can reproduce some features of the interactions of

nucleons with neutrinos [193].

A last example that we will mention at this point is that of a two-level Unruh-DeWitt
detector linearly coupled to the momentum of a scalar field. This model can be defined
by picking 1. a positively time oriented coordinate 7, and a frame e, such that ey = n is
normal to the surfaces of constant 7, 2. 5% = C? and H, = Qot6~, 3. the tensor valued
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field operator J(x) = A(x)(6 4 67 )n, 4. the derivative of a real scalar field, V,¢(x), and
5. a coupling constant A. The resulting interaction Hamiltonian is then

~

Hi(x) = M) (Y61 + e 67"V ,6(x), (2.109)

where we can identify the momentum operator 7(x) = n“VMqAS(X). Notice that this model
could also be defined as a scalar model coupled to the scalar operator (x), but we men-
tioned it in this context for the purpose of illustrating the role of the frame e, with a
specific example.

The definition presented above is sufficiently general to describe nearly any physical
interaction with a quantum field, such as the interactions of atoms with the electromagnetic
field [151, 64, |, the interactions of nucleons with neutrinos [193, , |, and the
interaction of quantum systems with linearized quantum gravity [51, , ].

The Dynamics of Particle Detectors

We can now study general features of the interaction of a detector with a quantum field
observable. For simplicity, we will keep our discussion to the case of detectors coupled to
a scalar self-adjoint field operator O(x) Having the interaction Hamiltonian density 7; (x)
from Eq. (2.101), it would be natural to expect that dynamics will be given by a time
evolution operator U; of the form

U = T exp (—i/dvﬂf(x)), (2.110)

where T exp is the time ordered exponential, defined in (2.70). However, the time ordered
exponential is only independent on the prescription of time parameter if H;(x) satisfies the
microcausality condition [H(x), H(x)] = 0 for causally disconnected x and x'. Indeed, we
can write

THIGOH(K) = L) 1 ()} + A (x), (<) lsign(t — ). (2.111)

If s is another positively time oriented coordinate, we have that sign(t —t') = sign(s — ¢')
whenever x and x” are timelike separated. However, for spacelike separated events, the time
coordinates might not have the same order. Thus, unless [H;(x), H;(x')] = 0 when x and
x" are spacelike separated, replacing t — ¢’ by s — s’ in (2.111) will generally yield different
operators. That is, the time ordering operation is only uniquely defined if 7:[1(x) satisfies
the microcausality condition.
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For a particle detector with Hamiltonian density given by A 1(x), if x and x are spacelike
separated, we have

[H:(), H1(X)] = N [1(x), 1690 ()O(x'), (2.112)

where we used that O(x) satisfies the microcausality condition, as a consequence of axiom
A3. Equation (2.112) shows that unless the j(x) satisfies the microcausality condition, the
time evolution operator cannot be defined by Eq. (2.70).

The fact that the detector’s monopole moment typically does not commute with itself
at spacelike separated points is an important feature of the definitions of particle detectors
given here. Indeed, if j(x) satisfies the microcausality condition, the association of com-
pactly supported functions f +— j(f) through spacetime integration defines local algebras
of observables that fulfill conditions A1-A3 of Section 1.2'°, essentially defining it as a
quantum field theory. In other words, the only types of particle detectors that fulfill the
microcausality condition are those defined by quantum field theories, effectively containing
infinitely many degrees of freedom. Instead, a usual particle detector is a simpler system,
containing at most a finite number of quantum degrees of freedom. For this reason, it is a
common saying that “particle detector models are non-relativistic”.

Indeed, even the harmonic oscillator model, which reproduces the microcausal interac-
tion of quantum fields to leading order, violates the microcausality condition. This is due
to the fact that a mode of a localized quantum field corresponds to a quantum degree of
freedom that is extended in space. Thus, the model (2.101) couples one degree of freedom
to all spacelike separated points within the support of the corresponding mode, introduc-
ing an effective interaction that couples to the field at multiple spacelike separated points
simultaneously. This is also not in contradiction with the microcausality axiom A3, as the
operators a, = é(ig:;) and their conjugate are localized in the whole worldtube and are
not associated with an operator density. Overall, no individual mode of the field satisfies
the microcausality condition, only their collective.

We then need a specific way to describe the dynamics of a particle detector. We define
the time evolution of the system with respect to the time parameter 7 as

U, = ﬁexp(—i / dV?—L(x)) => 0", (2.113)

10 A4 is not necessarily fulfilled, as it depends on the specific dynamics defined by H,,.
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where 7, exp is the time ordered exponential with respect to the time parameter 7:
09 =1, 0®=—i / AV H;(x), (2.114)
Ui = (—i)"/dV1...an’;‘:[(xl)...’z':[(xn)H(Tn —Tp1)ob(r— 1), forn>2.  (2.115)

It is important to stress that this is a prescription. The fact that the time evolution
operator is only defined in a given frame is a consequence of the fact that the definition
of detector models allows the detectors to be non-relativistic systems that have only a
single quantum degree of freedom associated with a whole spatial slice. This is in contrast
to quantum fields, which effectively have degrees of freedom associated to every point of
space. The time parameter 7 typically defines the rest space of the system, where a non-
relativistic approximation can be used to describe it. In other words, one should not expect
a particle detector model to yield accurate predictions if one chooses a time parameter 7
that cannot be approximated as the proper time of the detector. We will discuss this in
detail in Section 2.4, where we will see how to describe non-relativistic quantum systems in
curved spacetimes and how to describe a particle detector starting from a physical system
undergoing a predetermined trajectory in spacetime.

Having a clear definition of the time evolution operator in the context of particle de-
tectors, we can now discuss the dynamics implemented by the interaction with the field
observable O(x) To that end, we will assume that the initial field state w can be repre-
sented in a given GNS representation of the corresponding field. This allows us to write
the field state previous to the interaction as a density operator ps in the Fock space of
¢2. We consider the detector to be in a state py o, such that the initial field-detector state
before the interaction is given by po = pp,o® pe. The final state of the detector-field system
can then be written as a series expansion in the coupling constant A:

oo = UrpoUS = po + UV po + poU DT 4 U@ jy + TV 0D 4 5,0 + 0(N3). (2.116)

Explicitly, we have

(W jy = —i / AV j(x)p00 ® O(X)p = (0O, (2.117)

A ~

U®pg = —\? / AVAV'O(T — 7)j(x)i(X ) pno © OO )py = (U1,

)

~

UW poU M = N2 / dVdAV'3(x)pn0j(X') @ O(x)pO(X).
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The final state of the detector is obtained by taking the partial trace of each term in the
expression above with respect to the field: p, = trg(pp.s):

A

trg (UM o) = i / AVw(O(x))j(x)ppo = (trs(poU V), (2.118)
trs (TP fg) = —A? / AVAV'w(OX)O()O(T — 7)j(x)i(X)poo = (trs(pU PN,

b, (0D polTDT) = 2 / AV AV w(OROK)) i) 0i(x),

~ ~

where we denoted the kernel of the distribution w(O(f)) by w(O(x)), the kernel of the

bi-distribution w(O(f)O(g)) by w(O(x)O(X)) and performed a change of variables x <+ X’
in the last equation.

The results in (2.118) are as far as we can go in computing the final state of the
detector without further assumptions regarding the specific detector model considered. At
this stage we can interpret the interaction with the quantum field as a quantum channel
that maps ppo — pfp, applying the gate 7(x')pp0j(x) weighted by the two point function

~

w(O(x)O(xX')), the gates j(x)j(X') pp,0 and pp, 07(x")(x) weighted by w(O(x)O(x'))0(T—7") and
the gates 7(x)pp 0 and pp 0j(x) weighted by the one-point function w(O(x)). Importantly, the
localization of the operators j(x) defines the region where the one and two point functions
of the observable O(x) are being probed. That is, the final state of the detector will contain
information regarding the expected value of products of O(x) smeared against the functions

that define the spacetime profile of j(x).

The Two-Level Unruh-DeWitt Detector

To see a more explicit example of a particle detector, let us study the final state of a
two-level Unruh-DeWitt detector after the interaction with the field. We consider the
model defined in Eq. (2.105) of a two-level particle detector, with time-evolved monopole
A1) = (€776 + €961) coupled to the amplitude of a scalar field O(x) = ¢(x). In
this case, we can solve more explicitly for the dynamics of the detector, using j(x)j(x') =
AX)AX)ENT=)5F 67 4 7255+ in Eq. (2.118):

try (UM po) = —iA / AV () A(X) (69767 + 7767 iy o, (2.119)

try (U@ pg) = —\2 / AVAV'W (x,X)0(T — T )A(X)A(X) (X )6+ 67 4+ e 5764) 5,
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try (W polr M) = )2 / AVAV'W (x, X YA)A) (€Y 6% + e 67) po o (69767 + e 767).

When recombining these terms and writing the final state for py, it is convenient to
represent ppo and gy in terms of Bloch vectors, writing

1
1l+a-6), jo==(1+a-6), (2.120)

pD,0:§( 2

where a = (a*,a?,a%), a = (a*,aY,a%) with ||a|| < 1, ||a|| <1 and 6 = (6,,6,,0,) is the
vector of Pauli matrices. Plugging Eq (2.120) in (2.119) and using standard commutation
relations between the sigma matrices, we find that the relationship between a and a is
given by

a* =a” — 2a° Im(X) — (a” Re(N — K) 4 o’ Im(N + K)) (A%, (2.121)

+0
@’ = a’ — 2a” Re(X) — (¢’ Re(N + K) — a” Im(N — K)) + O(N?), (2.122)
a* = a* +2(a” Im(X) + @’ Re(X)) — (a*(L™ + LY) = L™+ L) + O(N°),  (2.123)

)_
)_

where, denoting A% (x) = A(x)e* ¥ we can write

X = M(G(AH)) = A / AV (3(x)) A(x)e", (2.124)
LF = Nw(p(AF)P(AT)) = A2 / AVAV'W (x, X )A(X)A (X ) e =), (2.125)
K = Nw(@(AT)p(AT)) = N2 / AVAV'IV (x, X ) A(X) A (X )X+, (2.126)
N =)? / AV AV (x, X)A(X)A(X ) eI, (2.127)

and we used ¢ *T)0(r — 1) + e UT=TO(1 — 1) = U7l to write the expression for N
See [171] for a similar derivation.

We can now analyze the detector’s final state in detail. Equations (2.121) and (2.123)
for the components of the Bloch vector of the final density state p,, show a clear asymmetry
between the components aligned with the z-axis and the components orthogonal to z. This
asymmetry is due to the fact that the qubit’s internal dynamics are associated with the
Hamiltonian H, = £(1 +6.). Intuitively, one can think of the qubit detector as a spin in
the presence of a (quantum) magnetic field aligned with the z-axis. The coupling with the
field (ﬁ(x) then takes place in the plane orthogonal to z, which can be seen by rewriting the
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interaction Hamiltonian (2.105) as

~

Hi(x) = AA(x)(cos(Q7) 6, — sin(Q7)d,)d(x). (2.128)

One can then think of the amplitude of the scalar field (represented by ¢(x)) as imple-
menting an effective magnetic field in the rotating direction n(7) = (cos(27), —sin(§27), 0).
Indeed, if one replaces ¢(x) in (2.105) with a classical field ¢(x), the interaction becomes
the same as that of a spin with a classical magnetic field of strength ¢ (x) aligned with the
rotating axis n (7).

The field’s two-point function is also sampled within the support of A(x), encoded in
the terms £+, K and N. In particular, when the field state w is quasifree (so that X = 0),
its excitation probability matches Eq. (2.64), obtained when we considered a localized
field interacting with é Indeed, assuming that the detector starts in its ground state
Poo = |9)g| (described by the Bloch vector @ = (0,0, —1)), we find that a* = a¥ = 0 and

' =—-1+2L"4+0\) = pp=(1—L")|gNg| + L |efe| + O\, (2.129)
so that the detector’s leading order excitation probability is given by
(6767 )5 = L7+ O\ = XPW(A,AT) + O(\Y). (2.130)

Noticing that the Wightman function is non-zero in C¢, we then find that the excitation
probability is always non-zero for compactly supported A(x) such that A* # Pf*. We
then find that the two-level Unruh-DeWitt detector generally has a non-zero probability
of becoming excited after coupling to a quantum field. Alternatively, if the detector starts
in its excited state, ppo = |e)e| (described by the Bloch vector @ = (0,0, 1)), we have

a* =a¥ =0 and

G =1-2LT+00N\Y) = po=(1—L")|eNe| + LT [gXg| + ONY). (2.131)
Its leading order deexcitation probability is then
(67615 = LT+ O\ = XPW(AT, A7) + O\Y). (2.132)

The excitation and deexcitation probabilities are related by 2 — —(2, as this changes the
roles of the ground and excited states.

Finally, notice that we can see the explicit dependence on the choice of the time pa-
rameter 7 in the time ordering operation in the observable N, which implicitly depends
on (1 — 7'). Indeed, choosing another time parameter s for the time ordering operation
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would amount to the change
ST s UG5 — &) 4 TGS — ) (2.133)

in the integrand of . From Egs. (2.121) and (2.122), we notice that the specific choice of
time ordering operation is relevant to the final state of the detector (to second order in \)
whenever a” # 0 or a¥ # 0, or equivalently, whenever p, o does not commute with the free
Hamiltonian Hy. The fact that the choice of time parameter for the prescription of the

time evolution operator can be neglected when [p;, o, H,] = 0 has been first noted in [117],
where this difference has also been quantified.

Explicit Examples in Minkowski Spacetime

We can interpret the final state of a two-level Unruh-DeWitt detector more explicitly
when we consider this setup in Minkowski spacetime. Specifically, we consider inertial
coordinates (¢, ) and the real massless scalar field with equation of motion V,V*#¢ = 0.
We consider the time parameter 7 = t and assume that the initial field state w can be
represented in the GNS construction associated with the Minkowski vacuum. We also
assume that the spacetime smearing function A(x) factors as

A(x) = (1) F(), (2.134)

so that the switching function x(¢) defines the time profile of the interaction, and the
smearing function F(x) defines its spatial profile. Both of these are assumed to be real.
In the case where the function F(x) is mostly supported in a finite region of space, we
can think of F'(x) as defining the shape of the detector, which is constant in the inertial
frame (t,x), so that this setup then corresponds to an inertial two-level Unruh-DeWitt
detector in Minkowski spacetime. We will discuss how to assign a state of motion and
shape for detectors from physical systems in more detail in the next section when we
consider non-relativistic systems in spacetime and how they give rise to particle detector
models.

Given that the state w is assumed to be in the GNS representation of the Minkowski
vacuum, its Wightman function can be written as

W(x,x') = Wy(x,x') + w(x,x), (2.135)

where Wy(x,x') is given by Eq. (1.104) and w(x, x’) is a symmetric regular two-point function
that solves the Klein-Gordon equation in both arguments. Importantly, noticing that the

94



final state of the detector depends directly on the Wightman function W (x,x’), we see
that the vacuum effects (encoded in Wy(x,x')) will always be present in the final state of
the detector, regardless of the field state. In other words, the effect of the state w on the
detector always adds to the vacuum effects—the vacuum is always present.

Using the decomposition of the vacuum Wightman in terms of the plane wave basis of
solutions, we can then write (1.106)

Wold™A%) = s [ e [5(k] + QFIFR (2.136)
Wod* ) = s [ G Rk = (k] + IFRE 130
Wolh*. A7) = s [ S R(k] = PIF@R (2.138)

where we denote by tilde the space and time Fourier transforms compatible with the
spacetime Fourier transform (1.107):

(W) = / dtx(t)e ™, (2.139)

F(k) = / dPxF(x)e*®, (2.140)

so that /~X(w~7 k)= )Z(%;)F(k:) and we used that x(¢) and F(x) are real, so that y(—w) =
X*(w) and F(—k) = F*(k).

From Egs. (2.136) and (2.138), we can see that under the assumption that neither
X(t) or F(x) are oscillatory, the vacuum deexcitation probability is always larger than the
vacuum excitation probability. Indeed, for real non-oscillatory x(t) and F'(x), we have that
IX(|k|)|? and |F(k)|* peak at k = 0. In turn, this implies that the integrand in (2.138)
exhibits a resonance when |k| = 2, maximizing the value of x(|k| — ). This resonance
indicates that a particle detector with energy gap () emits wavepackets with momenta
centred around |k| = €. On the other hand, the integrand in Eq. (2.136) does not present
any resonances for €2 > 0, showcasing the intuitive fact that the probability of exciting an
inertial detector after an interaction with the vacuum is much less than the probability of
deexciting it.

We can also analyze the interaction of a particle detector in its ground state with a
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one-particle wavepacket | f), defined by a function f € Cg,

1) =010 = [ @kui(nal o). 2.141)
From Eq. (1.95), we can then write the term that defines the excitation probability as
Wy(A™, A%) = Wo(A™, AT) + Wo(A™, V(S A¥) + Wo(f*, AT Wo(A*, f),  (2.142)

and we can compute Wo(A~, f), Wo(f*, AT), Wo(f*, A7), Wo(A™, f) from Eq. (1.106):

WolA™ 1) = comrs [ (| + P 0TI, ), (2,143
Wl A%) = s [ SRR (K + DG, (2140
Wl A7) = ooy [ ST R (R P (), (215)

WolA". 1) = corss [ SrR(K| ~ DF (], k). (2.146)

where f (k) denotes the four dimensional Fourier transform defined in (1.107). One can
analyze the integrals above in terms of resonances between the Fourier transforms of
f(—|k|,—k) and (k| + Q)F(k), which also cause resonances in the detector’s excita-
tion probability. We will study these resonances with an explicit example later in this
section.

We can make our analysis even more explicit by considering specific shapes for the
interaction region defined by the functions x(¢) and F(x). Let

2 ei%
x(t)=e2,  F(z)= o (2.147)

such that ¢ is a parameter with units of length that controls the spatial localization of
the detector and T is a parameter with units of time that controls its time duration. The
normalizations of x(t) and F(x) are chosen as above so that

lim y(t) =1,  lim F(x) = 6® (), (2.148)

T—oo o—0

so that the limit of constant interaction in time and the pointlike limit can be easily
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considered later on.

Notice that the choices of Eq. (2.147) make A(x) not compactly supported. This does
not create any divergences in our results, as A(x) is a sufficiently fast decaying function,
and as such, the evaluation of W in A is well defined. However, this prevents one from
considering that the detector interacts with the field in a given region of spacetime if
one thinks of a “region” as a subset of M. Nevertheless, we can still consider that the
detector is localized and that its localization is defined by the profile of A(x), so that the
detector mostly probes the field where A(x) has a non-negligible value. We will discuss more
about the interpretations and consequences of non-compact supported spacetime smearing
functions throughout the thesis, but for now, we use the choices in Egs. (2.147) as our
prototypical example of particle detectors.

With the choices of Eq. (2.147) we can compute Wy(A%, AT) explicitly. For convenience
define
P(Q) = ¥Wo(A™,AT) = P(-Q) = NXWy(At, A7), (2.149)

so that P(£2) corresponds to the detector’s vacuum excitation probability and P(—%) to
the vacuum deexcitation probability. The Fourier transforms of F'(x) and x(t) are then

(W) = V2rTe 2™, (2.150)
F(k) = e 271, (2.151)

and we can compute P(§2) explicitly:

2 2,—02T? 2 204 2
py= Ll (i VG =N Cupy S UL R (2.152)
A7 (T? + o0?) VT? + o2 VI? + o2

For concreteness, we plot P(f2) for different values of o in Fig. 2.3, where positive values
of € correspond to the vacuum excitation probability and negative values of {2 to the
deexcitation probability. We see that the excitation probability decays to 0 as QT increases
and that the deexcitation probability P(—€2) has a resonance peak when Q ~ 1/0. That
is, when the energy gap of the detector matches the inverse size of the detector—which
corresponds to the characteristic frequency of the field that resonates with the detector.

Equation (2.152) also allows us to compute relevant asymptotic limits. First, one
can consider the limit 6 — 0, in which case the smearing function F'(x) yields F(x) —
§@)(x), defining what is commonly called a pointlike detector. Although the functions
A*(x) become singular in this limit, it is still possible to evaluate the excitation and
deexcitation probabilities. Indeed, whenever x(t) is a continuous function, the application
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Figure 2.3: The two-level Unruh-DeWitt detector’s leading order excitation probability as
a function of QT for different values of o.

of the Wightman function to A*(x) is well defined, even in the pointlike limit, and we find

2
lim P(Q)) — =T (1 — AQTPT (1 — erf(QT))) . (2.153)
o—0 47T

Although the pointlike limit might yield physical results in some regimes, it is always safer

to work with a regular finite-sized particle detector and take the pointlike limit at the end if

convergent. For instance, Eq. (2.153) suggests that the excitation probability is unbounded

as a function of QT', as the peak of the deexcitation probability would happen at 2 ~ 1/0,

which in the pointlike limit corresponds to {2 — oo.

Another relevant limit is that of long times, T" — oo. This process corresponds to
a usual particle detection setting, where the detector is switched on for arbitrarily long
times. Even though this limit can be associated with physical processes, the limit of
T — oo of (2.152) is singular. Indeed, we have

T o —
1_>mOo e e+ er R e (=), (2.154)

so that the asymptotic limit of Eq. (2.152) yields

QQT —0252
lim P(Q) ~ —2T¢ 7

lim N U] (2.155)

98



The expression above yields 0 for 2 > 0, giving the expected result that an inertial particle
detector that starts the interaction in the ground state and interacts with the vacuum
for long times does not become excited. However, Eq. (2.155) yields a divergent result
for the deexcitation probability. This simply tells us that this regime falls outside of the
perturbative treatment we employed, as the deexcitation probability grows proportionally
to T. Instead, it is common to compute the deexcitation rate of a detector F(—2), defined

as
P(—Q) A2Qe~

F(=Q) =1l =——0(-Q). 2.156

(~9) = Jim —— 309 (2.156)

The transition rate can be thought of as the rate that an excited detector emits particles

at, and yields a finite result. Eq. (2.156) tells us that maximal particle emission is obtained

when the energy gap of the detector is of the same order as its inverse size, peaking at

Q=1/20.

We can now study an explicit example of particle detection, where the detector inter-
acts with a one-particle wavepacket. With the choices of (2.147) we have Wy(A™, f) =
Wo(f*, AT) and Wo(f*, A7) = Wy(A™, f), so that we can define

q(Q) = Wo(A™, f) = Wo(f*,AY) = q(—Q) = Wo(f*, A7) = Wo(AY, f), (2.157)

and defining f(k) = f(—|k|, —k), we can write

0252

T d3k 1 22 _1p2 2 Te 2a2 d3k 1 2702 Q\2
0) — /_f o) So?IkI? ~LT2(kl+0)? _ / (e b (M 5
1) (2m)s J 2|k (k) (27)3 2|k| (k)

(2.158)
with a = /1 + 02/T?%. We can then see that for 2 > 0, the terms ¢(—) will contribute
the most when |k| ~ Q/a?, and the values of Q that yields the maximum value for the
integral are those that match the peaks of f(k), also corresponding to the energy of the
positive frequency classical solution corresponding to |f).

We can see this explicitly by choosing
y, _ Akolboirt
Verf(|ko|d)

where Ny ensures (f|f) =1 (see Eq. (1.113)). Intuitively, |f) corresponds to a wavepacket
centred at momentum ko, with width 1/4 in momentum space. In essence, | f) is a localized
wavepacket that moves along the direction determined by kj and reaches the origin at ¢ = 0.
The energy of |f) is then determined by |ko|, as the expected value of the normal ordered

f(k) = Noe~ 20" lk—kol”, (2.159)
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Hamiltonian (1.144) evaluated along the surface ¢ = 0 yields

Kol

He|f) = — . 2.160
L) = s (2.160)
In the case where J|kg| > 1 (corresponding to sharp momentum localization at k), we

have that its energy is simply |ko|. We can compute ¢(2) in closed-form:

22N —% o282 02 (52143 _QTQ
0= g (T (1t ()

252 2 2 2
T (g (TIRLEOT ) )
VAT

where 8 = /1 + (62 + 02)/T2. Although at first unhinged, we can interpret the function
q(€2) by analyzing the relationship between the variables €, |kgl|, §, 0 and T'. For instance,
under the assumption that d|kg| > 1, we can approximate the error functions in (2.161)
by their asymptotic value at oo, lim,_, erf(u) = 1, yielding the approximation

2 2
1671’271'%6_905 262 Q\2
~ —e_ 2[32 (|k0|+ﬁ>

B/ |kold 7

where we also approximated Ny &~ 4|k0|é5 3ri. For Q > 0, ¢(€2) is monotonically decreasing
with |ko| and €, so that ¢(£2) does not present any resonances. On the other hand, we can
now clearly see the peak of ¢(—Q) at |ko| = Q/a?. In particular, in the case where the
detector is pointlike (0 — 0), we find a@ = 1, so that resonance is achieved exactly when
the energy of the wavepacket |f) matches the energy gap of the detector, |ko| = 2. Also
notice that Eq. (2.162) yields finite results both in the pointlike limit (¢ — 0) and in the
limit of long interaction times (7" — oo). This resonance effect associated with detecting
a particle of similar energy to the detector’s energy gap is what is usually called a particle
absorption process, justifying the name “particle detectors”.

() (2.162)

The Gapless and Delta-Coupled Unruh-DeWitt Detectors
Every example of local probes that we have discussed so far has been treated perturbatively.

Indeed, most models cannot be solved non-perturbatively. However, there is an exception
to this rule when the internal dynamics of the detector are trivial, corresponding to the
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so-called gapless detector models (with 2 = 0). Although this case has been studied in
different setups [101, |, the lack of internal dynamics makes these models trivial for
some relevant applications of particle detectors, as we will see in Chapter 3. Nevertheless,
they are a useful tool for extrapolating perturbative results and for studying degenerate
subspaces of localized probes.

Before going through the computations with gapless detectors, let us discuss the phys-
ical interpretation of this limit of the Unruh-DeWitt model. One of the applications of
particle detectors is to provide a definition of the concept of particles measured by an
observer. This is done by considering a detector in a given state of motion and associating
its excitations with detection of field quanta. However, it is necessary to have an energy
gap to claim that energy from the field was absorbed and, thus, to make statements about
“detected particles”. Gapless detectors do not share this property and, therefore, cannot
be used to discuss particle absorption/emission. Nevertheless, gapless detectors can be
used to extract field correlations more precisely than gapped detectors can.

Intuitively, one can think of an Unruh-DeWitt detector as a spin-1/2 system with an
energy gap (), which is put to interact with a scalar field. The energy gap €2 in the case
of a spin system can then be thought of as the result of applying an external (classical)
magnetic field to the spin. In terms of the Bloch sphere, the effect of the energy gap is to
add a constant rotation around the axes of the magnetic field. While this constant rotation
is in place, the qubit is then put to interact with a quantum field, and the field fluctuations
effectively generate another axis of rotation, also exchanging quantum information with
the detector. With a gapless detector, the only “rotation” that takes place is due to the
interaction with the quantum field. This is why, intuitively, gapless detectors can be better
at extracting field correlations, as the only effect that they are sensitive to is the quantum
field itself. This intuition is also aligned with the continuous variables studies of [121].

Finally, notice that the lack of an energy gap does not prevent one from defining excited
and ground states, as one can always consider that a magnetic field is applied before and
after the interaction, but not while it is taking place. For this reason, we can maintain the
notation {|g) ,|e)} for the basis of the qubit system, and we will keep the nomenclature of
“ground” and “excited” states for the eigenvectors of 6767, even when Q = 0.

We now consider the case where a single two-level Unruh-DeWitt detector interacts with

a scalar field, with the assumption that €2 = 0. In this case, the interaction Hamiltonian
reduces to ) R

Hi(x) = M)/ (%), (2.163)

and here we will consider that [ is any constant operator in the qubit’s Hilbert space. The
fact that [i is time-independent implies an important technical fact: we will now have the
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microcausality condition fulfilled by the interaction Hamiltonian 7 1(x). Indeed,

~

[H1(x), Hr ()] = NXACOAX) 2 [d(x), d(x)], (2.164)

which will always commute whenever the points x and x’ are spacelike separated due to
the field satisfying the microcausality condition (1.57). This fact prevents the previously
discussed incompatibilities with relativity from taking place.

A consequence of the simple expression for the commutator [H;(x), H;(x)] is that the
time evolution operator for the detector and field can be solved non-perturbatively using
the Magnus expansion [15]. In essence, due to the fact that [[H;(x), H;(x')], H(x")] = 0,
we have that [17]

U = T exp (—i/dV”;':ll(x)) = 01102 (2.165)
where
6, = —i / AVH;(x) = —iNid(A), (2.166)
~ 1 A A
6, = -3 / AVav'ot — ) [Hi(x), #i ()] (2.167)
A,
= —i5 A" Gr(A, ), (2.168)

A~

where we used that [p(x), ()] = iE(x,x) and 0(t — t')E(x,X) = Gr(x,x). We can then

write the time evolution operator for the detector-field system as
U; = e Mid(8) o—i*G (2.169)

where we used that [ji, ji*] = 0 to separate the exponentials and we denoted G = ’\2—2GR(A, A)

We will again assume that the detector and field start in an uncorrelated state py =
Po,0 @ Pg, Where py is a representation of a quasifree state w for the quantum field. In this
case, one can compute the final state of the detector by tracing over the field’s state,

po = try (UzﬁoU}) (2.170)

= e 0 g <€—im¢3<A> (Fno ® p ¢)61Aﬂ¢3(/&)> (0.
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with G = ’\726' r(A, A). We proceed with the computation using the identities

e~ MM = cos(AG(A)) — iisin(AG(A)),
w(eD) = w(eos(d(/)) = e VD,
P10 pidlg) — eiéﬁ(f-ﬁ-g)e%E(f,g)’
w(cos®(9(f)) = e ID cosh(W(f, ), (2.171)
so that we find

P :w(0052(Aé(A))e’WgﬁD,oei’ﬁg + w(sinz(Aé(A))e’img/} Poo fie#*9 (2.172)
—e 0 (e7¢ cosh(&)pn,o + € C sinh(£) i foo f1) g,

which establishes a quantum channel acting in the qubit with & = A>W (A, A). In the case
of i = 67 4+ &, this quantum channel is a bit-flip channel with parameter p = e~¢sinh(&).

One can also compute the parameters £ and G in the case where the detector is inter-
acting with the Minkowski vacuum of a massless scalar field, with the spacetime smearing
function (2.147)

| 2

2 e 202

A(x) = x(t)F(x) = e 212 5 2.173
(x) = x(O)F(x) 2n0?)? (2.173)
We obtain:
T/o 1

where again o« = /14 02/T?2. Notice, in particular, that the purity of the state py is
entirely determined by the parameter £. Indeed, if p, starts in a pure state, we find

tr(p2) = e *(cosh(2€) + M?sinh(2¢)), (2.175)

with M? = tr((fippo)?). The qubit’s purity is then a decreasing function of £&. Using
that ¢ increases with T, we can see that the purity of the state decreases with T" and
asymptotically reaches its minimum value when & — A\?/4m, unless [pp o, i} = 0, in which
case the evolution is always unitary for the detector, as it starts in an eigenstate of the
Hamiltonian. We also see that the stronger the coupling, the more mixed the detector
state is, as € oc A\2. The fact that the detector, in general, ends in a mixed state shows that
it generally becomes entangled with the field.
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A particular case of a gapless detector is that of a delta-coupled detector, where A(x)
is an irregular function supported along a Cauchy slice. Given a Cauchy foliation X, a
delta-coupled detector is defined by a spacetime smearing function of the form

A(x) = nd(1 — 70)F (), (2.176)

where x are coordinates in X, and 7 is a parameter with units of time. Due to the
distributional properties of the Wightman function and the retarded Green’s function,
even with a singular A(x) such as in Eq. (2.176), the integrals of the form W(A,A) and
Gr(A,A) are convergent if F'(x) is sufficiently regular. Thus, the final state of a delta-
coupled detector is also given by (2.172). Also notice that if one considers internal dynamics
for a delta-coupled detector, the effect of these dynamics amounts to a shift of the form
o g = U ,ELU T with unitary U, so the energy gap does not amount to any significant
change to the dynamics. In this sense, all delta-coupled detectors behave as if they were
gapless, regardless of their internal dynamics.

2.4 Non-relativistic Quantum Systems as Particle De-
tectors

Although, at this stage, we have a rather general definition of particle detectors, we have not
yet explicitly discussed how one can interpret the detectors as physically realistic systems.
In this Section, we will present the results of [130], which provide a consistent way of
describing a localized non-relativistic quantum system undergoing a timelike trajectory in
a background curved spacetime. Namely, using Fermi normal coordinates, it is possible
to identify an inner product and canonically conjugate position and momentum operators
defined in the rest space of the trajectory for each value of its proper time. This framework
then naturally provides a recipe for mapping a quantum theory defined in a non-relativistic
background to a theory around a timelike trajectory in curved spacetimes by reinterpreting
the position and momentum operators and by introducing a local redshift factor to the
Hamiltonian, which gives rise to new dynamics due to the curvature of spacetime and the
acceleration of the trajectory. We then apply our formalism to particle detector models,
that is, to the case where the non-relativistic quantum system is coupled to a quantum
field in a curved background. This allows one to write a general definition for particle
detector models, which connects the abstract definitions discussed in the previous section
to physically realizable systems.

Exclusively in this Section, we will consider the more general case where spacetime is
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an n + 1 dimensional manifold.

2.4.1 Local Rest Frames in Curved Spacetimes

The first step in describing a non-relativistic quantum system in curved spacetimes is to fix
a frame such that the dynamics of the system can be approximately described using non-
relativistic physics. This frame is the Fermi normal coordinate system, which we review in
this Section.

Fermi Normal Coordinates

Let M denote an n + 1 dimensional spacetime with Lorentzian metric g, and consider a
timelike trajectory z(7) in M, parametrized by its proper time 7 € (Tmin, Tmax)'*- The Fermi
normal coordinates around the trajectory z(7) are coordinates which are able to describe
physically relevant quantities associated with an observer undergoing the trajectory. The
Fermi normal coordinates are also useful because one can expand the metric components
in a neighbourhood of the curve in terms of the curvature of spacetime and the trajectory’s
proper acceleration.

The time component of the Fermi normal coordinates is defined as the proper time of the
curve, 7. In order to define the spacelike coordinates, x, we first pick an orthonormal frame
e, (7o) in the tangent space to a given point of the curve, Ty M such that ef (7o) = u* (7o)
is the four-velocity of the curve. Then, we have

g<eu7eu) = Nuv (2177)

where 7, = diag(—1,1,1,1). The next step is to extend this frame along the curve z(7).
To do this, we transport the vectors e, (7p) via the Fermi transport:

D(eﬂ)a

T+ 2a°u”(e,,) 5 = 0, (2.178)

where d% denotes the covariant derivative along z(7) and a* = % is the proper acceleration
of the trajectory. The Fermi transport takes into account the natural motion of the curve in
order to transport vectors between different tangent spaces. Notice that because u,a* = 0,
the four-velocity is always Fermi transported along the curve. Thus, Fermi transporting

1 The formalism also allows for the case where Tmin = —00 and Tiax = 00.
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the frame e, (79) along z(7) gives a frame e,(7), such that eff = w* for all 7. This frame
will be referred to as the Fermi frame.

We define the spacelike Fermi normal coordinates « = (z!,...,2") as follows. Let N,
denote the normal neighbourhood of p: the set of all points which can be connected to p by
a unique geodesic. For a given 7, we define the rest surface ¥, C N, as the set reached
by all geodesics starting at z(7) with tangent vector orthogonal to u*. The surfaces %,
correspond to the local rest spaces around z(7) and define a local foliation of spacetime
around the curve. Let p € X, for some 7, then we assign coordinates (7,z1,...,2") to
pif p= eXpZ(T)(xiei(T)), where exp,(,, denotes the exponential map at the point z(7).
The Fermi normal coordinates are well defined in the world tube 7 = (J %, around
the trajectory so that any point x € T can be identified as x = (7,x). A consequence
of the definition is that the proper distance of a point x to the curve z(7) is given by
r = \/0;;x'a) so that proper distances from z(7) can be computed using the Euclidean
norm of the spacelike Fermi normal coordinates.

It is important to mention that although the time parameter of the Fermi normal
coordinates is the proper time of the trajectory z(7), in general, it does not correspond to
the proper time of the other trajectories defined by & = const. In fact, in a general curved
spacetime the vector 0, is not normal to the surfaces X, and not normalized if x # 0.

It is also useful to define a local orthonormal frame associated with the Fermi normal
coordinates by extending the Fermi frame to the tube 7. For a given event x € T, we
define the extended Fermi frame e, (x) by parallel transporting the vectors e, (7) along the
geodesic contained in X, that connects z(7) to x. This process then defines an orthonormal
frame at every point within the region 7.

It is also possible to find an expression for the metric components in Fermi normal
coordinates in terms of an expansion on the physical distance of a point to the curve,

r = /0;;x'xl. The expansion reads [110]

Grr = — (1 + ai(T)xi)Q - ROin (T)xixj + O(rg)’

2 .
gri = —gRojik(T)Ijxk + O(r3)’
1
i = 0ij — gRikjl(T)wkxl +0(r?), (2.179)

where a,(7) and R,,.3(7) denote the components of acceleration and curvature in Fermi
coordinates at z(7). This expansion is valid if |@| is sufficiently smaller than both the
curvature radius of spacetime and 1/a, where a = ,/aFa, is the magnitude of the proper
acceleration of the curve. The expansion of Eq. (2.179) has found many uses in the
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literature, such as providing a treatment for extended bodies in general relativity [11, 13,

|, finding the energy level shift on a hydrogen atom due to curvature [120, , ],
describing the motion of point charges in curved spacetimes [1416], and, more recently,
describing localized non-relativistic systems in curved spacetimes [1 16, , , D, , 0].

The Fermi bound

In this Segment, we define, estimate, and discuss a quantity with units of length, which we
name the Fermi bound. The Fermi bound is essentially the maximum radius that a system
centred at the curve z(7) can have in order to be completely described in terms of Fermi
normal coordinates.

We first define the 7-Fermi bound. Consider the set of spacelike geodesics which connect
z(7) to the boundary of .. The 7-Fermi bound ¢, is defined as the minimum proper
length of maximally extended geodesics in this set. In essence, it is the largest radius that
a spacelike ball B C T,(;)M orthogonal to u*(7) can have so that exp,(B) C X,. Thus,
any system defined in ¥, which is centred at z(7) and contained in a ball with a proper
radius smaller than £, can be entirely described using Fermi normal coordinates. There are
two parameters that control the size of £,. The curve’s acceleration effectively bends the
surfaces Y, so that some geodesics overlap after a length of 1/a, even in flat spacetimes.
Meanwhile, spacetime may be positively curved, which makes nearby geodesics converge
so that they overlap after a certain distance. Overall, £, is controlled by the curve’s
acceleration and the curvature of spacetime. A schematic representation of the region
delimited by the 7-Fermi bound within each rest space can be found in Fig. 2.4.

The Fermi bound /¢ is defined as the infimum of the 7-Fermi bounds. That is,

¢ =inf (.. (2.180)

Each of the 7-Fermi bounds defines a bound for the size of a system in 3., which can
be described in terms of spacelike Fermi normal coordinates. Thus, the Fermi-bound is a
bound for the size of a system centred at the curve z(7), which can be entirely described by
Fermi normal coordinates at all times. The Fermi bound also defines a world tube around
the trajectory, where systems that can be entirely described in Fermi normal coordinates
may have support. This tube is defined as the region spanned by all geodesics contained
in 3, which have proper length smaller than the Fermi bound ¢ for each .

An illustrative example of Fermi normal coordinates and the Fermi bound can be
obtained for a uniformly accelerated trajectory in Minkowski spacetime. Consider inertial
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Figure 2.4: Schematic representation of the region delimited by the 7-Fermi bound (in
yellow) within each constant 7 surface 3, (in gray).

coordinates (¢, x,y, z) and a uniformly accelerated observer undergoing a trajectory z(7) =
(1 cosh(ar), sinh(ar),0,0). Then, the Fermi normal coordinates around z(7) are the
Rindler coordinates (7, x), with & = (X, y, z). The metric in these coordinates reads

g=—(1+4+aX)*dr?* +dX?* + dy* + dz*. (2.181)

From this expression, one can see that the metric becomes degenerate at X = —1/a, which
corresponds to the events of the form (0,0, y, 2) in inertial coordinates. These are also the
events where the Fermi normal coordinates break down. Given that the proper distance
is given by the Euclidean distance in the spacelike Fermi normal coordinates, we see that
the Fermi bound for a uniformly accelerated trajectory is ¢ = 1/a. The Fermi normal
coordinates and the Fermi bound around a uniformly accelerated trajectory in Minkowski
spacetime are depicted in Fig. 2.5.
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Z(7)

1/a

Figure 2.5: Fermi normal coordinates for a uniformly accelerated trajectory in Minkowski
spacetime.

More generally, in Appendix B we show that under the conditions where the expansion
of Eq. (2.179) is valid, it is possible to estimate the Fermi bound from below by

1

(2 inf | ————
oo (a + v AR) ’
where a = /a,a" is the norm of the four acceleration of z(7) and Ap is the largest positive
eigenvalue of the operator — Ry, if there are any. This estimate can be useful for providing
bounds for the regime of validity of frameworks which use Fermi normal coordinates. Notice
that for the case of uniformly accelerated trajectories in Rindler space, this estimate is
exact.

(2.182)
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2.4.2 Non-relativistic quantum systems in curved spacetimes

We now have the tools that will allow us to write a framework that allows one to describe a
localized non-relativistic quantum system in curved spacetimes. We will work with systems
that can be described by a wavefunction in an n dimensional space and by internal degrees
of freedom defined in a finite dimensional space.

A single particle in non-relativistic quantum mechanics

To later obtain a generalization to curved spacetimes, let us start by considering a system
that can be described in terms of a wavefunction in a non-relativistic setup. We will
assume that the system can be described in a Hilbert space 7 = 74 ® J, where J¢
is associated with the position degrees of freedom of the particle (its wavefunction), and
4 is a finite dimensional Hilbert space associated with its additional internal degrees of
freedom (for instance its spin). Then, the canonical variables associated to the position
degrees of freedom in % are the position and momentum operators, #* and p;. These
satisfy the commutation relations

[2",5;] = i6;1. (2.183)

When translating this description to curved spacetimes, it will be useful to work in the
position representation of such system. Let |x) denote the (non-normalizable) eigenstates

of & = (2',...,2"), and let |s) be any basis for 4. Then any state |¢)) can be written as
0 =3 [ e (sl la.s). (2.154)
We define ¢*(x) = (x, s[t)) as the wavefunction representation of |¢) in the basis |s).

Normalization of the state [¢) then implies

(W)= / d'zd'z (V" (&))" (@) (@'|2) (]s)

-3 / (6 (@) 0 ()00,

- [@avi@e@ -1, (2.185)
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where we denote 15(z) = dy41* (), and we used Einstein’s summation convention from
the second to third lines. That is, the components 1)*(x) can be seen as elements of L*(R").
In fact, we have % = L?(R"), where the isomorphism is |¢) — ¢(z) = (z|¢). In the
space L?(R™), the position operator acts in the wavefunctions as multiplication,

(x| 3" ) = 2"y (), (2.186)

and the momentum operator acts according to

(@] p; [¥) = —10;(). (2.187)

From Eqs. (2.186) and (2.187), it is clear that the commutation relations of Eq. (2.183)
are satisfied.

We assume that the dynamics of the system are prescribed by a self-adjoint Hamiltonian
H(&,p,{3;},t), where {3;} denotes any collection of operators acting in %% and ¢ denotes
a possible external time dependence on the Hamiltonian. This Hamiltonian then generates
unitary time evolution according to Schrodinger’s equation,

1 () = () (o) (2.188)

where we have omitted the dependence of H in , p and {§;} to lighten the notation.
Equivalently, one can write the time evolved state in terms of the time evolution operator
Ul(t, to), defined by |o(t)) = U(t, o) [1(t9)) so that Schrodinger’s equation gives

d - .
iUt 1) = HOU (8, to), (2.189)

which can be shown to define a unitary operator U (t,t0). In fact, the solution to Eq.
(2.189) reads

U(t,ty) = Texp (—i/dtﬁ(t)) : (2.190)
where 7 exp denotes the time ordered exponential.

Finally, an important remark needs to be made regarding the system’s Hamiltonian.
Given that we will later provide a framework that allows one to approximately describe the
non-relativistic system in a general relativistic setup, it will be important to consider the
total energy of the system, which takes into consideration its rest mass. This essentially
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amounts to adding a term mc?1 to the non-relativistic Hamiltonian'?, where m denotes
the rest mass of the system. For instance, a particle of mass m under the influence of a
potential V' (x) should be associated to the Hamiltonian

N ﬁ2

H=m+_—+V(x). 2.191

L v (2191)

Notice that the introduction of the rest mass does not influence the dynamics of the system,
given that it amounts to an overall shift in the energy levels.

A localized non-relativistic quantum system in curved spacetimes

We now provide a framework for describing the localized quantum system from the previous
Segment undergoing a timelike trajectory z(7) in a given (n + 1) dimensional background
spacetime M. We assume that the quantum system is localized in space at each in-
stant of time. This corresponds to the assumption that there exists a timelike curve z(7),
parametrizing the events around which the quantum system is localized. For convenience,
we will refer to z(7) as the trajectory of the system. We then assign Fermi normal coor-
dinates (7, &) around the curve z(7), so that the local rest spaces of the system are the
surfaces >, defined by constant values of the 7 coordinate. Our goal here is to define the
Hilbert space for the wavefunctions at each value of the time coordinate 7 as L*(3,) with
a suitable integration measure. However, there are some important remarks that have to
be considered.

First, we notice that X, is only locally defined and does not extend past the normal
neighbourhood of z(7). This means that if one wishes to consider wavefunctions completely
defined in L?*(%,), then one must consider functions which are defined in a finite-sized box
or, equivalently, that the potential which traps the system is infinite outside of a region
centred at & = 0 with radius smaller than the Fermi bound ¢. This condition can be relaxed
if the potential is strong enough so that the effective localization of the system is mostly
within a radius ¢ of the trajectory. Within this relaxed assumption, one loses information
about the “tails of the wavefunction”. Nevertheless, if these tails can be assumed negligible
compared to the values of the wavefunction in the region where the surfaces X, are well
defined, the description is approximately valid. Overall, we will call the assumption that
the wavefunction is completely localized in each of the X, surfaces the assumption of Fermi
localization, and the assumption that the wavefunctions are approximately localized within
the X surfaces will be called approximate Fermi localization. It is important to note that a

2we reintroduced the factor of ¢ here for clarity.
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physical (finite) trapping potential cannot produce wavefunctions that are Fermi localized,
only approximately Fermi localized.

Second, it is important to mention that the formalism developed here is not a funda-
mental description and cannot be valid for a system with arbitrarily high energies. In fact,
an important assumption for our model is that the non-relativistic energy of the system is
sufficiently small compared to its rest energy. This can also be formulated as the assump-
tion that /(p?) is small compared to the system’s rest mass m, or, in other words, that
the system’s average velocity /(02) is small compared to the speed of light. As we will
discuss, this assumption will ensure that the dynamics introduced by the motion of the
system and the spacetime curvature reduce to corrections previously found in the literature
in similar setups.

The first step to formulating our description for a non-relativistic system in curved
spacetimes is to appropriately determine the inner product in L?(3;). The natural choice
is to define the inner product as the integral with respect to the measure of the surfaces
Y,. That is, for ¢(x) and ¢(x) defined in X,

(4, 6), = / A8 " ()6 (x), (2.192)

where d¥ = /gs(7, ) d"x is the invariant volume measure in ¥, with g5, being the deter-
minant of the induced metric in the rest surfaces ¥,. Here we see that the assumption of
Fermi localization ensures that the wavefunctions above are well defined within the surface
and can be integrated in Eq. (2.192). Approximate Fermi localization then ensures that
only the tails of the wavefunctions are neglected in Eq. (2.192). More than a geometrical
and natural inner product, (¢, ¢), defined above is obtained when one considers the re-
duction of Dirac spinors to wavefunctions defined in local rest spaces, as was done in [130].
We will also see that the inner product of Eq. (2.192) allows one to define a consistent
quantum theory, with self-adjoint canonically conjugate position and momentum operators
for the system.

Under the assumption of Fermi localization, one can then find position and momentum
operators defined in terms of their actions in wavefunctions ¢ (x) € L*(X,). We define
the position operator & = #’e;, where e; denotes the extended Fermi frame and the 2% are
defined through their action on wavefunctions as

&' () — 2(x). (2.193)

The equation above is simply the generalization of the idea that each component of the
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position operator multiplies the wavefunction by the components of &, here in Fermi normal
coordinates. Physically, the definition of Eq. (2.193) is justified by the fact that in Fermi
normal coordinates, |x| = y/d;;xa’ corresponds to the proper distance between a point
and the center of the curve. It is also important to mention that the components of the

position operator defined above are also self-adjoint with respect to the inner product
defined in Eq. (2.192).

The momentum operator in the position representation can also be defined by its action
on wavefunctions ¢ (x) € ¥,. We define its components by

—1

raw (@), (2,191

Although the factors of 1/4 may seem out of place at first glance, they are necessary for
the p; operators to be self-adjoint with respect to the inner product of Eq. (2.192). In
fact,

pjY(x) —

w50, = | dnw@w(m)@@ ((9s)%0(=))
= —i/d”a:(gg)}lz/}*(a:)aj <(92)i¢(w)>
=i [ @2, ({910 (@) (9)
_ /d”az (—io ((gz)%w»* (95)
= /d”a: gs, ((g;;}laj ((92) W@)) o(x)

= (B, 9)r, (2.195)

PN

¢(x)

PN

¢(x)

N

where we have integrated by parts in the third equality and the boundary terms vanish
under the assumption of Fermi localization'®. Not only are the momentum operator com-
ponents defined in Eq. (2.194) self-adjoint, but they also satisfy the canonical commutation

13Under the assumption of approximate Fermi localization, one would then obtain boundary terms of the
same order as the terms lost in the inner product, yielding approximately self-adjoint p; operators. In order
to obtain a fully consistent framework, one can then effectively truncate approximately Fermi localized
wavefunctions so that their dynamics can be approximated by that of compactly supported wavefunctions.
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relations with the position operator of Eq. (2.193):
Py — it (@) — 1059 (). (2.196)

Thus, the Z* and p; operators defined here are valid generalizations of the position and
momentum operators of quantum mechanics. Indeed, given any non-relativistic quantum
system described in terms of its position and momentum operators & and p, one can
describe it around a trajectory z(7) for a fixed 7 by considering its wavefunction to be in 3.,
and interpreting the corresponding position and momentum operators as Eqgs. (2.193) and
(2.194). We remark that canonically conjugated position and momentum operators fully
define a quantum theory for a wavefunction at a given time, so that the description provided
here is indeed enough for describing the position degrees of freedom of the quantum state
around the trajectory z(7).

To fully describe the system in curved spacetimes, one also requires to describe the
additional internal degrees of freedom of the system contained in the collection of operators
{8;} in this more general setup. Given that these degrees of freedom are internal to the
particle, we describe them in the same Hilbert space 7, with no modifications to the
inner product when one goes to curved spacetimes. Notice, however, that although their
description will not change, it might be necessary to introduce different dynamics for the
{8;} operators in order to describe their evolution in curved spacetimes'. This will be
further discussed when we consider time evolution in this framework.

The treatment given so far allows one to describe a non-relativistic quantum system
in curved spacetimes at a given surface >,. However, we have not yet mentioned how
time evolution can be implemented in this description. In other words, we have yet to
describe a Hamiltonian formulation in this setup. First, notice that at each value of the
time parameter 7, the wavefunctions are defined in a different Hilbert space L*(%,). This
adds extra complications when writing Schrodinger’s equation, as one cannot differentiate
states with respect to time via a limit of infinitesimal differences, since ¥ (79 + d7, ) and
(19, x) are defined in different Hilbert spaces. To make sense of Schrédinger’s equation
in this setup, we must locally extend the wavefunctions defined in ¥, so that we obtain
a function ¢ (7, x) for 7 € [19, 70 + €) for a small £ > 0. It is then possible to compare its
values at different 7’s so that differentiation can be performed. This essentially amounts
to differentiation of a scalar function locally defined in spacetime with respect to the time
parameter 7.

At this stage, one could naively think that given a Hamiltonian H (z,p,{5:},t) for a

For instance, the dynamics of the spin of particles can be affected by spacetime curvature in a non-
trivial way, as discussed in [126, , D, 6].
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quantum particle in a non-relativistic setup, it is enough to replace its dependence on
x, p and {5;} as described previously, together with the replacement ¢ — 7 in order
to write Schrodinger’s equation. However, an important missing ingredient also has to
be considered: redshift. As mentioned in Subsection 2.4.1, the time parameter 7 only
corresponds to the proper time of an observer along the curve z(7), but not locally around
it. This implies that the time evolution at each point of space should contain a redshift
factor associated with the time dilation of the foliation defined by the X, surfaces. In
Appendix C, we compute the corresponding redshift factor. It is given by

1
’7(7_7 w) - ’gTT - g‘rigTjg” ‘ 2 ) (2197)
where g denotes the inverse of the induced metric in the X, surfaces.

In a classical system, one would take this redshift factor into account by multiplying
the local Hamiltonian of the system by ~(7,x), giving rise to the effective Hamiltonian
~(, a:)f[(az,p, {s;},7). In a quantum setup, one would then be tempted to describe the
Hamiltonian as (7, &)H (&, p, {5}, 7), promoting the space dependence in (7, ) to the
position operator @. However, this product will not necessarily be self-adjoint due to
the dependence of H on p. To obtain a self-adjoint Hamiltonian, one could then use the
Weyl quantization prescription [202] for the Hamiltonian (7, &) H (&, p, {3;},7), or use the
Moyal product [122]. A simpler way to handle the self-adjointness problem is to define the

Hamiltonian via a symmetrization as

A2, p, {5:),7) = % (+(r. @) B (@, p, {3}, 7) + He) (2.198)
Although different quantization methods might, in principle, give different Hamiltonians,
in Subsection 2.4.2 we will argue that the Hamiltonian can be well approximated by
H(&,p, {5}, 7) +ma;i(1)i’ + 2 Rojo;(z(7))#'#7, where m is the rest mass of the system.
Moreover, this approximate correction is also independent of ordering ambiguities and
yields the same result for any quantization prescription chosen.

Having the system’s Hamiltonian properly prescribed, we are at the stage where we can
write Schrodinger’s equation. We first write Schrodinger’s equation for a system with no
extra spin degrees of freedom. That is, in the case where the Hilbert space J7 is trivial,
and the system can be entirely described by its wavefunction. In this case, Schrodinger’s
equation can be written simply as

P .
IEQZJ(TPCC) = H("ﬁuzi 7-)1/}(7—7'7’.)7 (2199>
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where the & and p operators act in (7, &) according to Eqs. (2.193) and (2.194). We
remark that although it might look like the newly introduced dynamics and the extra
factors in the differential operator p give rise to a much more complicated differential
equation, one can instead use the commutation relations between & and p in order to find
the solutions to Schrédinger’s equation (as is usually done with the quantum harmonic
oscillator, for instance).

To write Schrodinger’s equation when the system also has internal degrees of freedom in
J;, we write states in the Dirac notation, with |¢)) € AT @ A, where AT = L3(%,) for
each 7. In this context, the position eigenvectors are |x) such that ©*(7,x) = (x, s|t)(T))
and a decomposition of the identity in the position basis can be written as

1= Z/dZ |z, s}, s| . (2.200)
In terms of Dirac’s notation, we can then write Schrédinger’s equation as

i ) = A ) (2.201)

where the 7 differentiation in the position spaces is understood via the local extension of
the wavefunctions, and we omitted the dependence of J# in &, p and {$;} for simplicity.
This equation also defines unitary operators U(T, 7o) by U(7,70) [2(70)) = |¢(7))'.

Finally, we comment on the possible need to perform additional changes to the Hamilto-
nian H , apart from the redshift factor and the replacement of the position and momentum
operators for their definitions in Egs. (2.193) and (2.194). These additional changes could
come from interactions of the other internal degrees of freedom of the system (encoded in
the {8;} operators) with curvature and acceleration. Although it is not possible to give a
general recipe for adapting general operators to curved spacetimes, the framework provided
here can accommodate these changes in each case with minor modifications. For instance,
in [136, 5, 6], a fermionic particle in curved spacetimes is described, and the coupling of
its spin with curvature is obtained. This could be implemented here by adding terms to

151t is important to keep in mind that this family of unitary operators acts in different Hilbert spaces.
That is,

U(r,70) : A @ A — AT @ A4 (2.202)
(70)) — [¥(7)),

where %ﬁ(m) and %((T) denote the L? spaces at X,, and X, respectively.

117



the Hamiltonian of Eq. (2.198) corresponding to this interaction.

Figure 2.6: Schematic representation of the model for localized non-relativistic systems in
curved spacetimes, with wavefunctions defined in the local rests paces.

Overall, in this Segment, we completed one of the main goals of this Section: we
provided a consistent description for a localized non-relativistic quantum system in curved
spacetimes. A schematic representation of the model obtained is displayed in Fig. 2.6.
Throughout the remainder of the Section, we will discuss consequences and applications
of this formalism.

Discussion of the regime of validity of the model

In this Section we discuss the regime of validity of the framework presented in Subsection
2.4.2, and discuss the compatibility of the model with the framework of general relativity.

First, we remark once again that for the formalism presented in the Segment above to
be applied, the non-relativistic quantum system must be sufficiently localized within the
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Fermi bound of the trajectory, ¢. For instance, the formulation works for systems which are
compactly supported with support contained in a sphere of radius smaller than ¢. However,
in order to perfectly trap a quantum particle, one requires an infinite potential, which is
an unphysical assumption. If the potential is finite but strong enough to approximately
Fermi localize the system, the formalism can still be applied by neglecting the tails of the
wavefunction outside of a sphere of radius ¢. Although one expects to lose some information
about the system, the loss due to this approximation can be controlled by analyzing the
tails of the wavefunctions associated with the relevant states of the system.

It is possible to quantify the regime of validity of the theory using the estimate for the
Fermi bound of Eq. (2.182). Consider a non-relativistic quantum theory, which we wish to
describe around a trajectory z(7) in curved spacetimes. We will work under the assumption
that the system is strongly supported within a region of radius R(¢). The notion of strong
support has been used by Eduardo Martin-Martinez to characterize functions that decay
quickly with some characteristic scale since 2015 [150]. In the context of our framework,
a state of a quantum field will be said to be strongly supported within a region of radius
R(e) if the expected value of a set of observables of interest can be computed to precision &
by performing spatial integrals of the wavefunctions in a spatial ball of radius R(e) centred
at z(7) for each 7. The collection of observables of interest will explicitly depend on the
system under consideration and on the observables that are relevant to the predictions one
wishes to compute in each setup.

Within the assumption that the relevant states of the system have strong support within
a region of radius R(e), the condition for our framework to be applicable is R(e) < ¢, and
the errors in the description are controlled by the parameter . Assuming the system to
be sufficiently localized with respect to the curvature of spacetime and the trajectory’s
acceleration, one can then use the estimate of Eq. (2.182), which gives the approximate
condition

1
= a+vVAr ’
where Ap is the largest positive eigenvalue of —Ro;; and a denotes the maximum accelera-
tion of the system along its motion. If the trapping potential which localizes the system is
sufficiently strong, a good estimate for the localization of the system is \/(&?) so that the
framework can be applied when /(22) < 1/(a + v/Ar). However, different systems might

require different methods of estimating their localization depending on the specific shape
of the trapping potential.

R(e) (2.203)

Another important assumption for our setup is that the energy of the system is non-
relativistic (that is, sufficiently smaller than the system’s rest energy). Although this
assumption is not explicitly required in order to construct the formalism, it is important so
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that the prescribed Hamiltonian of Eq. (2.198) is able to accurately predict the relativistic
corrections to the internal dynamics of the system. In fact, we will later show that, under
this assumption, the framework yields the most relevant relativistic corrections for the
description of wavefunctions in curved spacetimes found in [136]. Moreover, we remark
again that other relativistic modifications to the prescription of Eq. (2.198) might be
required, which take into account the relationship of the internal degrees of freedom of the
system with the geometry of spacetime and the trajectory’s motion.

We now comment on the relationship between the non-relativistic quantum theory
and the framework of general relativity. In our model, we assumed that spacetime is
not affected by the quantum system. This assumption is reasonable, provided that the
stresses and energy of the quantum system are small enough, in which case their effect on
the spacetime metric can be neglected. This a usual assumption even when considering
relativistic quantum theories in curved spacetimes, so it is natural to expect that this
assumption also has to be made in our treatment. Moreover, considering the effect of
superpositions of quantum systems in a background spacetime has been argued to lead to
superpositions of spacetimes [70], but these fall beyond the scope of our discussions.

Finally, we comment on the relationship of our model with causality and what is missed
in this treatment. The formalism developed here allows one to consider the effect of the
local geometry of a curved spacetime in the dynamics of a quantum system locally via
the dependence on the position operator . Although this interaction affects the system’s
position degree of freedom locally, in a non-relativistic setup, this effect changes a single
degree of freedom (the system’s wavefunction) at each value of 7. In essence, this means
that the local effect of curvature in each portion of the system affects it instantaneously in
its own frame, implying that information within this quantum system propagates acausally.
This is expected from any non-relativistic quantum theory and is also the case for our
framework. The consequences of this causality violation have been carefully studied in
the literature in similar setups (see e.g. [117, 36, 76]). An expected consequence of this
violation is the ability of non-relativistic systems to signal between spacelike separated
points, violating causality at the order of their effective size. For instance, when coupling
these systems to a quantum field, one would find that the operations performed on the field
would, in general, lead to the Sorkin-type problems discussed in Section 2.1. We remark
that no physical system should be able to signal faster than light, and this can be seen as
another bound for the regime of validity of our framework, similar to what happens with
specific non-relativistic quantum systems in curved spacetimes [l 14, , 36, 37].

Overall, we conclude that the framework presented in this Section can be employed
to accurately describe non-relativistic quantum systems provided that 1) the system is
sufficiently localized with respect to the Fermi bound, 2) its non-relativistic energy is suffi-
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ciently smaller than its rest energy, and 3) one is not interested in its uses in communication
protocols between regions which are spacelike separated by proper distances which are of
the order of the size of the system.

The coincidence limit and first order corrections

We will now describe the first order corrections emerging due to the motion of the system
and spacetime curvature due to the addition of the redshift factor in Eq. (2.197).

In [136], a non-relativistic quantum formalism has been presented for the approximate
description of a localized fermionic particle in curved spacetimes. The authors then traced
over the spin degrees of freedom of the particle, obtaining the free Hamiltonian for a
localized non-relativistic wavefunction added to corrections in terms of curvature and ac-
celeration. For systems such that their non-relativistic energy is much smaller than their
rest mass, the most relevant correction terms found were ma;z* and %Rol‘gji’ii'j . These
corrections were also found in [21, , 0, 0], among others. We will now show that to first
order in curvature and acceleration, these corrections are also the ones provided by the
formalism presented in Subsection 2.4.2.

The new dynamics introduced by the formalism we presented are due to the introduction
of the redshift factor in the original Hamiltonian, which localizes the quantum system.
Using the expansions of Eq. (2.179), we can write the redshift factor as

. 1 .
y(r, ) =1+ a;x" + §Rgi0j$’x3 +O(r®). (2.204)

Considering only the first order corrections in Eq. (2.198) due to spacetime curvature and
acceleration (which are also the corrections to second order in the system’s localization),
one obtains the approximate Hamiltonian

1 ) N

Notice that the Hamiltonian H (1) can be split into two contributions: the rest mass of the
system and its non-relativistic energy, associated with an operator Hyy(7) which contains
its kinetic and potential energies,

H(1) = m + Hu (7). (2.206)

The assumption that the system’s degrees of freedom are non-relativistic then implies that
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its non-relativistic energy is much smaller than its rest mass, (Hyx(7)) < m. In particular,
this implies that the terms of the form (a;#" + 3 Roi;2°47) Hyx(7) in Eq. (2.205) contribute
much less than the terms which involve the rest mass of the system. In fact, reintroducing
units of ¢, the term a;z" picks up a factor of 1/c¢*, while the factor of Ryo;#'@’ is of the
order of the ratio of the size of the system by the curvature radius of spacetime. It is then
safe to neglect these terms in most non-relativistic setups.

Under these approximations, we can write
(aiii + %Rol'ojii'i.i'j)]:[<7') ~ m(ali’l + %Roz‘oji'ii’j) s (2207)

so that the Hamiltonian that promotes time evolution with respect to the time parameter
T can be written as

H(r) ~ H(7) + ma;(r)i + %RW (r)add (2.208)
Notice that the correction terms arise from the product of the rest mass term m1 with the
redshift factor. Due to the fact that the rest mass term in the Hamiltonian is proportional
to the identity and that (7, &) only depends on x, the leading order relativistic correc-
tions to the Hamiltonian are independent of the ordering ambiguities that might show up
(See Eq. (2.198) and related discussions). The Hamiltonian of Eq. (2.208) also precisely
matches the coupling of a localized system with curvature used in [21, ] and the most
relevant corrections found in [136]. However, in [130], other corrections of the order of ac-
celeration and curvature times the system’s non-relativistic energy are also found. These
extra corrections are not naturally taken into account in our formalism, and can be ne-
glected if the non-relativistic rest energy of the system is sufficiently smaller than its rest
mass. If, on the other hand, one wishes to consider these corrections, it is enough to add
them to the prescription of the Hamiltonian in Eq. (2.198).

Eq. (2.208) gives a Hamiltonian that is naturally self-adjoint under this non-relativistic
approximation. Eq. (2.208) also gives a simple expression for I:I(T), with a quadratic
correction to the Hamiltonian H (7). This approximation is valid provided that the energy
of the system is much smaller than mc? and that the system is more localized than both
the curvature radius of spacetime and than ¢?/a, where we reintroduced the factors of ¢ in
order to make the limits of validity more explicit.
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A uniformly accelerated quantum harmonic oscillator in constant curvature
spacetimes

In this Segment we exemplify the formalism developed in this section to a harmonic oscil-
lator with uniform proper acceleration in a constant curvature spacetime. For convenience,
we will assume the spatial dimension to be n = 3 in this example.

The Riemann curvature tensor in a constant curvature spacetime takes the shape

R,uz/aﬁ = Q(guaguﬁ - g,uﬁgz/a)a (2209)

where « is a constant, related to the Ricci curvature by a = R/12. The sign of R deter-
mines whether spacetime is positively (R > 0) or negatively (R < 0) curved, corresponding
to deSitter and anti-deSitter spacetimes, respectively. In particular, in Fermi normal coor-
dinates associated with a trajectory z(7), we obtain

ROin(Z(T)) = —O./(;Z'j, (2210)

so that Rol-oji%j = —ax? which is the relevant quantity for the redshift factor (7, )
that influences the Hamiltonian of the system.

The Hamiltonian for a quantum harmonic oscillator with frequency w and mass m can
then be written as Eq. (2.191) by taking V(x) = mw?x?/2. That is,

~9 2

2 b mw= .o

H=m+ 2 . 2.211
Mt ot (2211)

To describe the system in a background curved spacetime, we must then have that the
particle is localized in a region sufficiently smaller than the Fermi bound. A quantum
harmonic oscillator is localized in a region of the order of \/(%?) = k//mw, where k =
v/2(n) + 1. We then use the approximation derived in Appendix B for the Fermi bound,
¢ 2> 1/(a+ \/Ar), where \g is the largest negative eigenvalue of Ry;;. Using Eq. (2.210),
we find that Ag = max(0, —«). Thus, the formalism developed in this section can be
applied if the relevant states for the setup satisfy

K 1

< .
vmw a+4/|a|

If the spacetime is positively curved, we can then describe the system if the frequency of
the harmonic oscillator is larger than a?k? /m. If spacetime is negatively curved, curvature
reduces the Fermi bound so that one must have a frequency larger than (a++/R/12)%k?/m.

(2.212)
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In either case, we will assume that the frequency of our harmonic oscillator is large enough
so that we can employ our formalism.

Employing the approximation of Eq. (2.208), we then obtain the Hamiltonian of the

system
- mao 2 mw?
H=mtma & g2 P 22,
2 2m 2

Given that all terms in the Hamiltonian above are quadratic, it still defines a quantum
harmonic oscillator. In fact, H can be rewritten as

(2.213)

H _ma® + P + mw” —a) &+ 2 (2.214)
= m — - . .
2W? —a)  2m 2 w? —«

From the equation above, we can see that the resulting theory is a harmonic oscillator with
frequency w’ given by w? = w? — a, with wavefunctions shifted by the vector —a/w”?. The
acceleration of the system and curvature of spacetime also shift the energy of the ground
state by —ma?/2w".

Notice that if the curvature of spacetime is too large (with R > 0), then it is possible
that the effective potential generated by deSitter curvature is larger than the trapping
potential of the oscillator, which would result in the particle accelerating away from the
center of the coordinate system. In this regime, the wavefunction of the system cannot be
considered to be localized, and the condition of Fermi localization breaks down, in which
case this formalism would not be suitable for its description.

On the other hand, anti-deSitter spacetime creates an effective trapping potential for
the particle and increases the frequency of the oscillator. This phenomenon has also been
seen for a localized fermionic system in [130], where it was also found that the curvature
of anti-deSitter spacetime can be responsible for trapping the particle even when w = 0.

2.4.3 Application to Particle Detector Models

We finally have all the tools to relate the framework presented in Section 2.4.2 to the
formalism of particle detector models. In this Section we formulate a general notion of a
non-relativistic particle detector based on the coupling of a given non-relativistic quantum
system with a quantum field.
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General non-relativistic particle detector models

To describe a particle detector model from the framework presented in Section 2.4.2, we
require two extra ingredients apart from the non-relativistic quantum system: a quantum
field theory and an interaction between the quantum field and the localized system. In
this Section, we will refer to the non-relativistic quantum system as “the detector”.

The interaction of the detector with a field is prescribed in terms of an interaction
Hamiltonian which couples to an operator-valued distribution of a quantum field theory, say
Ob(x), where b stands for any collection of Lorentz indices. To produce a scalar interaction
Hamiltonian, one must have an operator in the detector’s Hilbert space, which is a tensor
of the same rank as that of O’(x). We define the tensor operator as ji(t) = ji°(7)E,, where
() is an operator in %((T) ® # and Ej denotes the orthonormal frame for tensors of
the same rank as O¥(x) built from the extended Fermi frame e,. We further assume /i°(7)
to be only a function of the operators &, p and {$;} and of the time parameter 7. For
convenience, we will work in the interaction picture from now on, so that i°(7) includes
the free time evolution associated with the detector’s free Hamiltonian I:I(T) Then, the
interaction Hamiltonian is prescribed in the interaction picture as

~

H(1) = My(r, &)1} (1)O"(7, @) + H.c., (2.215)

where O(7, ) denotes the components of the operator O°(x) in the frame E,'¢ evaluated in
Fermi normal coordinates around the curve z(7), and the replacement of the dependence
in the (classical) coordinates & by the quantum position operator & formally means

A

O'(r, &) = / a5 0% (r, @) [z )], , (2.216)

where the subscript 7 in |&)(x| denotes time evolution with respect to the detector’s
free Hamiltonian: |z)z| = Ut(7)|x)x|U(r) with U = Texp(—ifT I:I(T’)dr’>. In Eq.
(2.215), (7, @) denotes the redshift factor of Eq. (2.197) and i} (7) denotes the dual field
to (7).

We can show that this system satisfies the general definition presented in Section 2.3
whenever the interaction Hamiltonian is diagonal in position basis. That is, whenever
(@'| i} (7) |z) = fil (1, 2)0(z, '), where i} (7, ) acts only on . This happens whenever
ﬂZ(T) is only a function of the position operator . Indeed, in this case we can insert

16We consider Ob(x) and fi°(7) to be written in the orthonormal frame E; in order to avoid unnecessary
metric prescriptions in the contraction.
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position identities (2.216) in the interaction Hamiltonian (2.215) to recast it as

~

Ay (r) = A / A5y (r, @)l (, @) O (7, &) || + H.c., (2.217)

where we notice that \/—gd"x = (7, )d¥ in Fermi normal coordinates. The interaction
Hamiltonian density is then

Hy(x) = Apf (7, 2)OP(x) + H.c., (2.218)

identifying /i) (7, ) as the operator valued tensor j(x) in Eq. (2.107).

We can further expand the Hamiltonian by assuming that there are no internal degrees
of freedom associated with .4 and that the detector’s free Hamiltonian H is independent
of 7 and has discrete energy eigenvectors, |¢,) with energy eigenvalues £, with H [Yn) =
E,. |¢). The eigenfunctions are defined as v, (7, ) = (x|, (1)) = e ETe),(x), where we
write the wavefunction at 7 = 0 as 1, (x). In the eigenbasis of the free Hamiltonian, the
interaction Hamiltonian reads

Hi(r)=X\) / A" /=g V(@) ()"0 () O (%) [0 b | + Hee,  (2.219)

where Q,,, = E, — E,, is the energy gap between the states labelled by n and m. Then,
in order to draw a better comparison with the previous models in the literature (See e.g.
[116, 117, 129]), we define the spacetime smearing tensors (A, )°(x) = ¥, (x)¢F, () pb(x).
We can then write the Interaction Hamiltonian as

Hy(r)=X) / "2/—g (M ) () OP ()€ T |4, Wby | + Hec., (2.220)

which is a generalization of the original result connecting wavefunctions and particle detec-
tors in [195]. The integrand in the expression above can be identified as the Hamiltonian
density. In fact, most recent studies that consider finite-sized particle detectors in curved
spacetimes (for instance [1106, , 36, , , , , , , ]) prescribe the
interaction of the detector with the field in terms of the Hamiltonian density in order to
highlight the locality of the theory. In the approach presented here, locality is implemented
in terms of the dependence on the position operator of the non-relativistic quantum system.

Overall, the model of Eq. (2.215) for the interaction of a localized non-relativistic
quantum system with a quantum field represents the most general interaction between
a non-relativistic quantum system localized around a trajectory and an operator in a
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quantum field theory. The considerations about the description of non-relativistic quantum
systems in curved spacetimes from Section 2.4.2 (including its regimes of validity and
covariance of the model) also apply to the general particle detector models presented here
and naturally impose a limit for the regime of validity for these models.

Although the model of Eq. (2.215) is very general, and as we will see, can recover many
models in the literature, it is not able to implement some features of specific models in
the literature, especially when it comes to delocalization of the center of mass of detectors,
which was considered in [183, ], for instance. This delocalization would amount to
describing the curve z(7) quantum mechanically, which would require slight changes in our
formalism.

As we will show in the examples below, standard particle detector models used in
the literature can be recovered from the model of Eq. (2.215) by choosing an appropriate
quantum system, together with the detector and field operator that mediate the interaction.

The Scalar Unruh-DeWitt model

The simplest scalar Unruh-DeWitt model found in the literature consists of a two-level
system coupled to a real scalar quantum field ngﬁ(x) according to the interaction Hamiltonian
density of Eq, (2.105). The interaction of Eq. (2.105) can be recovered from the general
model of Eq. (2.215) from any non-relativistic quantum system by restricting it to two
levels and neglecting the terms of the interaction which commute with the detector’s free
Hamiltonian. Consider a localized quantum system that is entirely described by its position
degrees of freedom and has (7 independent) discrete energy levels F,, with eigenstates [i,,).
We prescribe the interaction with the quantum field by the Hamiltonian

~

H(7) = M(7, &) f(7,2)$(, &), (2.221)

where f(x) = f(7,z) is any real scalar function evaluated in Fermi normal coordinates.
We then identify the operator fi(7) = f(7, &) and the field operator O(x) = ¢(x), so that
Eq. (2.221) reads

(1) =AY [ v A (IS [ (2.222)

with Q,,, = E, — E,, and Ay, (X) = ¥k ()Y () (T, 2).

Restricting this system to two energy levels with an energy gap €2, say n = g and m = e,
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we obtain the Hamiltonian
(1) = 3 [ oy =5 60 (s 0™ [0 + A0 1)
+ Ay (0) [0+ Aee) [0 ),

where we split the terms that do not commute with the free Hamiltonian in the first
line and the terms that do in the second line. As previously mentioned, to recover the
Unruh-DeWitt model, we neglect the terms that commute with the detector’s free Hamil-
tonian. This is a reasonable assumption if one is mostly interested in the excitation and
de-excitation of the detector, as these terms do not contribute to energy level excitations to
leading order in perturbation theory. In order to recover the Unruh-DeWitt model, we as-
sume that 1, (x):(x) = ¥ (x)e(x), so that A(x) = Age(x) = Agy(x), and the interaction

Hamiltonian reads

A

ii(r)=A /d”w——gA<x><emf|¢e><¢g|+e-im|wg><we|)<%<x>. (2.223)

Denoting 6 = |1 )¢, and 6~ = |ty )(¢0¢|, one then identifies the exact same Hamiltonian
density from Eq. (2.105).

It is worth mentioning that instead of neglecting the part of the interaction Hamiltonian
which commutes with the detector’s free Hamiltonian, one could alternatively model an
auxiliary internal degree of freedom for the detector in % = C? in order to recover
the Unruh-DeWitt model. Then, by adding an energy gap for states |0),|1) € C?* one
could choose the ground and excited states as W;> = |1y,0) and [¢)) = |¢, 1) and
pa(r,x) = g(@)(67 (1) + 6 (7). These choices, together with the reduction to the two
dimensional subspace spanned by |¢;> and [¢]), reduce the model of Eq. (2.215) to Eq.
(2.105) exactly. Thus, we have argued how the general particle detector model from Eq.
(2.215) can be used to recover the most used particle detector model in the literature by
picking a quantum system which yields the corresponding spacetime smearing function
A(x).

Finally, we mention that one could choose any other scalar operator for O(x), such as
)2 (x):, which would give detector models studied in [35, , 162], for instance. Moreover,
the quantum field theory that this detector couples to can be more general than a scalar
field theory. For instance, for a spinor field 1)(x), the operator O(x) can be chosen as

O(x) = 1) (x)(x): , which would recover other models studied in [35, 161, 162], for instance.
A generalization of the reduction presented here can also be carried naturally for the case
of complex scalar fields, recovering the scalar models of [193, , 132]. Overall, the model
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of Eq. (2.215) can be used to recover any coupling of a non-relativistic systems with a
scalar quantum field, or with a scalar operator in a more general quantum field theory.

The light-matter interaction

To recover models of particle detectors based on the light-matter interaction, and to ex-
tend these to curved spacetimes, we consider our non-relativistic quantum system to be a
hydrogen atom. That is, its free Hamiltonian is prescribed as

2 2

A p e
Hatom -

2m,  4r|z|’

(2.224)

where m, is the reduced mass of the electron, and e is its fundamental charge. This
Hamiltonian admits bound states |1,;,) labelled by three quantum numbers, with n € N,
0<I<n—1,—1<m<I sothat Hyom [nim) = En [thnim), where E, = —a%m./2n? and
a denotes the fine structure constant.

The interaction of an atom with a background quantum electromagnetic field then
defines a particle detector model, where a localized non-relativistic quantum system (the
atom) couples to a quantum field (the electromagnetic field). Although there are different
ways of prescribing this interaction [64, ], here we will focus on the so-called dipole
interaction, where, for inertial motion in flat spacetimes, the interaction Hamiltonian can
be written as

Hi(t) = —ed - E(t, &), (2.225)

where E (t, ) is the electric field in the frame of the atom. It is important to mention that
the Hamiltonian of Eq. (2.225) only accurately models the interaction of an atom with the
electromagnetic field in some regimes'”. The Hamiltonians from Eqs. (2.224) and (2.225),
together with a description of the electric field, then determine a particle detector model
for an inertial atom in flat spacetime.

In order to consider this system undergoing a trajectory z(7) in curved spacetimes,
we must first check the conditions for the framework presented in Section 2.4.2 to be
applicable. That is, we must have that the system is more localized than the Fermi bound
of the curve and that its non-relativistic energy is sufficiently smaller than its rest energy.
For an electron in an atom, we have |E| ~ 13,6eV and m, ~ 0.5MeV, so this approximation
is valid. In order to address the localization of the atom, we use that an atom’s extension
in space can be approximately bounded by 1/|F|, where E is the average energy of the

1"The interested reader can check [64, 104] for more detailed discussions.
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state considered. Assuming the Hydrogen atom to be in the state |1,;,), and using the
estimate for the Fermi bound of Eq. (2.182), we find that a regime where the formalism
can be used for this description is when

r 2n? - 1
|E.]  a®me  a++VAg

That is, an atom is well described undergoing an accelerated motion in curved spacetimes
if its proper acceleration added to the square root of the largest eigenvalue of —Ry,o; is
smaller than a?m,/2n?. For instance, for a hydrogen atom in its ground state undergoing
uniformly accelerated motion in a flat spacetime, we obtain that its acceleration must be
smaller than 10?*m/s?. This acceleration is large enough for probing an Unruh temperature
as large as 10K, for instance.

(2.226)

Under the Fermi localization assumption, our framework then allows us to describe
an atom undergoing a trajectory z(7) in a curved spacetime. We promote the & and p
operators according to Eqgs. (2.193) and (2.194), and take into account the redshift factor
discussed in Eq. (2.197) in the Hamiltonian, which introduces new dynamics to the atom

due to its acceleration and due to the curvature of spacetime. These can be approximated
by Eq. (2.208).

In order to describe the coupling of the atom with the field, one must prescribe the
interaction of Eq. (2.225) covariantly, evaluating it in Fermi normal coordinates, and
replacing @ — &. We start by discussing the operator E (1,x). The effective electric field
seen by an observer with four-velocity v# can be written as

E*(x) = F* (x)v,. (2.227)

E#(x) is then always a spacelike vector orthogonal to v#, so that the electric field is defined
in the rest space associated to the observer. The electric field associated to observers
that move along constant @ curves in Fermi normal coordinates can then be written as
EF(x) = F"(x)u,(x), where ut(x) = (0;)*//|g--| is the four-velocity of observers moving
along lines defined by & = const. The position vector @ in the dipole interaction can then
be associated with the position vector in Fermi normal coordinates, & = z'e;. Thus, the
classical interaction Hamiltonian between the atom and the field can be written as

Hy(1) = —ey(7, 2)2' Ei(1, x), (2.228)

where we added the classical redshift from Eq. (2.197) and the contraction x!E; naturally
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generalizes the dot product from Eq. (2.225). The quantum Hamiltonian then reads

~

Hi(t) = —ey(r,2)2"E,(T,2), (2.229)

where x# = (0, z%). Notice that this Hamiltonian is self-adjoint because it is only a function
of the position operator . In terms of the /i operator defined in Eq. (2.215), this particle
detector model couples to the electromagnetic field strength, F),,(x), so that the " (7)
operator that defines it is p*”(7, &) = ##u”(r, &) and the coupling constant is given by
A = —e. Thus, we have shown how to describe the light-matter interaction in curved
spacetimes as a particular case of the particle detector model of Eq. (2.215).

2.5 More Realistic Localized Probes

When we introduced localized probes for quantum fields, we started our discussion by con-
sidering a real scalar quantum field that is confined to a finite region of space in a globally
hyperbolic spacetime. Although this model was useful for gaining insight into how to apply
the Fewster-Verch framework in an explicit example of measuring a quantum field, it is not
an entirely physical model, as one cannot physically realize an infinite trapping potential.
As a matter of fact, when we considered particle detectors in Section 2.3, we quickly gave
up on the strict requirement of compactly supported probes for our applications. A more
realistic model would consider a bounded confining potential, in which case the field modes
would not be compactly supported, and there would exist an energy threshold after which
the field modes become continuous. The goal of this section is to consider more realistic
field probes, starting with a discussion of localized fields that are not compactly supported,
then discussing the mixed spectrum of quantum fields, and finally analyzing a quantum
field theoretic description of a hydrogen atom, and how to reduce this description to a
probe of the magnetic field.

Non Compactly Supported Localized Fields

Let us start by considering a generalization of the compactly supported field described in
Section 2.2. We consider a static globally hyperbolic spacetime M such that the metric can
be decomposed as in Eq. (2.22) in coordinates (¢, ), where t corresponds to the flux of a
timelike Killing vector field and « are global coordinates in the Cauchy surface orthogonal
to the flow. We consider a real scalar quantum field $D with dynamics associated to the
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Lagrangian
1 m2 , 1 9
L, = —évungV’“‘qﬁD By o5 — §V(a:)¢D, (2.230)

where the function V(x) is a smooth confining potential such that m2 + V() > 0. Being
confining here means that there exists a timelike curve z(7) such that V(x) — oo as
0(z(1),x) — oo for all 7. That is, a confining potential is one such that V' (x) — oo as x
goes to spatial infinity.

The equations of motion for ¢, take the same shape as Eq. (2.25) and a basis of solutions
can be found by separation of variables as in (2.27). The relevant differential operator for
the separation of variables in this case is

p i 2/ 2
Lo = -0, (5\/% 8jc1>> + B2 (m2 + V(z))d (2.231)

acting in a subdomain of L?(3;) where it is self-adjoint. The fact that V(x) is confining
then implies that the spectrum of L is discrete, giving rise to positive'® eigenvalues A2 and
eigenfunctions @, (x), so that one can write the basis of positive frequency solutions as in
Eq. (2.30):

Up(x) = et d,, (x), (2.232)

where ®,, satisfies the normalization condition (2.31) and wy, = |Ay|.

The confining potential V'(x) essentially implies that the functions u,(x) are localized
in space, in the sense that u,|s € L*(X) for any Cauchy surface 3. The quantization of
this theory can then be obtained by the standard procedure outlined in Section 2.2, and
one can find a GNS representation associated with the state defined by the positive modes
{tn }n, where the field operator can be written as

(/BD(X) = Z U (X) gy, + 10 (X)) (2.233)

The creation and annihilation operators G, and a, then satisfy the discrete commu-
tation relations (2.35), so that the tensor product factorization of the Fock space as a
tensor product also holds (2.38). If |0,,) is the vacuum state associated with the mode de-
composition {uy,, u} }n, then the states obtained by repeated applications of the creation
operators are also normalizable. In essence, most results valid for a compactly supported
field trapped by an infinite potential are still valid in this non-compactly supported case,

18This fact comes from the condition that V (x) is positive is a consequence of the fact that m2+V (x) > 0.
If this condition was violated, it could give rise to unstable field modes with imaginary frequency.
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with the exception that here we have regular local algebras of observables that can properly
map any function f € C5°(M) to operators ¢(f).

Even though the mode functions u,, are not compactly supported in this case, the
operators G, and @, can still be seen as regular operators in the *-algebra, similar to what
we had in the compactly supported case. Indeed, as we mentioned, one can extend the
algebra by considering smeared field operators acting on more general test functions of
sufficient rapid decay. We can indeed find suitable functions g,, such that u,, = FEygn, so
that the relations a, = ¢(ig}) and af, = ¢(—igy,) in (2.33), (2.34) still hold, and the creation
and annihilation operators associated to each mode are indeed well defined operators in
the x-algebra.

The field ngSD is localized in the sense that each of its modes is localized around the
minima of the potential V' (x). It would be better to have a basis-independent way of
checking whether a quantum field is localized. One definition for a field to be localized
could be given as follows. Given an event xg, denote its normal neighbourhood by N,
and consider an orthonormal basis e, at T, M such that ey o< J; in the static coordinates
(t,z). Denote the Riemann normal coordinates centered at xo constructed from the basis
ea by y®, such that an event x € N, has coordinates y® if x = exp, (y”es). Define

ly = sup({r : exp,, (y*ea) € Ny, Vy* such that [Jasy®y’| <r}), and £ = inf L.
X0

(2.234)
We will assume that £, # 0. Given a compactly supported function f(y®) in R* with
support compact contained in {(y*) € R* : [0,5y°¢°| < l:}, define f,,(x) = f(y*(x)), the
pushforward of f by the Riemann normal coordinates centered at xo. We can then say
that a state wy is localized with respect to a foliation 3, if for each y € M and n € N, and
each fixed real smooth compactly supported function f,

~

Hm  wy(dp(fx,)") =0, (2.235)

o (yx0)—00

where the limit is taken keeping xq in the same surface ¥; asy. If every state in a quantum
field theory is localized with respect to a given foliation, then one could say that the field
is localized.

The idea behind this definition lies in the fact that the smeared field operators ¢( fy, ) can
be thought of as the field operators that an experimentalist comoving with the foliation 3,
would have access to if probing the field in spacetime regions of size smaller than /. If, for
a fixed shape f, all the expected values of measurements vanish when f is taken to spatial
infinity, one could then say that the field is localized. We show that the condition (2.235)
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is satisfied by Gaussian states that can be represented in the GNS representation (2.233)"
in Appendix D. Also notice that the localization condition (2.235) is immediately satisfied
by compactly supported localized fields, and it is violated by any field with translation
invariance, such as a free Klein-Gordon field with equation of motion V,V#¢ — m2¢p = 0
in Minkowski spacetime. Importantly, notice that the condition (2.235) does not violate
the Hadamard condition, as the functions f,, are kept fixed in the limit. In essence, the
convergence of (2.235) is not uniform.

For an explicit example of a non-compactly supported field, we can consider a field in
Minkowski spacetime under the influence of a quadratic potential. Specifically, we consider
inertial coordinates (¢, ) and a the time-independent potential

V(z) = = (2.236)

The parameter ¢ has dimensions of length and controls the strength of the potential, with
smaller values of ¢ corresponding to stronger potentials. The equations of motion for the
field then become

|z?
(a,taﬂ —m2 — v P(x) = 0. (2.237)
The differential operator L, in this case, is
2 o, |z
L=—V"+m}+ . (2.238)

with eigenfunctions labelled by n,,n,,n. € N given by

Bo(&) = o o (0o () (). where [ () = ==

and H,(u) denote the Hermite polynomials. The eigenfrequencies w,, are characterized by
the eigenvalues of L, and are explicitly given by

Hy(u/0),  (2.239)

3
N
~

2 3
Wy, = \/m%—i_g_? (nx+ny+nz+§>. (2.240)

The quantization of the field using the basis of solutions u,(x) yields a field operator of

9this result is valid whenever the mode functions ®,,(x) asymptotically decay exponentially with the
proper distance between events.
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the form (2.233), where the index m is given by n = (n,,n,, n,) with n;, € N.

We can analyze the spatial localization of the modes of the quantum field in this
example. We see that all modes are exponentially decaying as e~1=*/262 " That is, the
parameter ¢ which is inversely related to the strength of the potential V() is also related
to the spatial localization of the field. However, highly energetic modes will be less localized,
as it is well known that the region where the Hermite polynomials are non-negligible grows
as v/2n + 1. One way of seeing that this field is localized is by noticing that each of the
relevant modes for a given physical scenario is exponentially localized.

Fields with Discrete and Continuum Spectrum

While a compactly supported field is unphysical due to its infinite potential outside of a
region, a potential that goes to infinity at spatial infinity is an idealization, as all known
potentials become at most constant at infinity: all laboratories have a finite size and finite
energy. That is, one would expect only a discrete (or even finite) number of sufficiently
low energy modes to be localized, while the remaining modes would be scattering states.

In the context of a static spacetime and the decomposition of the equation of motion
in terms of the self-adjoint operator L in (2.238), this is to say that L must have a mixture
of discrete and continuous eigenvalues, with the discrete eigenvalues being below a certain
threshold. Let us then assume that L possesses a discrete set of eigenvalues A%, with
eigenfunctions ®,,(x) parametrized by the discrete index m, in addition to a continuous
spectrum parametrized by k € R?, v, with generalized eigenfunctions @ (), so that
A2 < v} for all n and k. One then obtains a basis of positive frequency solutions of the

equations of motion given by {uy,, Uk }nk, Where

Up = e 9D, (), Up(x) = e "k Dy (), (2.241)
where w,, = |A\,| and wg = |vg|. Normalization with respect to the Klein-Gordon inner
product then implies

1 1
/ S 8710 () P (X) = O, / A B 0 (2) D (x) = 5—3*) (k — K').
2wn ’ 2wk
(2.242)

The basis of positive frequency solutions {uy, Uy }n x defines a vacuum state |0,) as well
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as its GNS representation, where the field operator can be written as

Oo(x) = (tn(x)an + uj,(x)al,) + /d3k (Uk(X)&k + U:Z(X)&L) 7 (2.243)

n

where the creation and annihilation operators labelled by discrete indices n satisfy discrete
commutation relations, and the creation and annihilation operators associated with con-
tinuous indices satisfy continuous commutation relations. Consequently, the operators a,,
and a, are well defined within the algebra and give rise to normalized states |n) = af, |0,).
This is certainly not the case for the operators a, and dL, which have similar behaviour to
the creation and annihilation operators associated to the Minkowski vacuum.

The mix of continuous and discrete basis of solutions makes it so that the the Fock
space F(7#,) does not factor entirely as a tensor product of the different field modes, as
we had in Eq. (2.38). Instead, the vacuum state factors as

105) = <® |0n>> ® |Ocont) (2.244)

where |0,,) are the zero occupation states in each mode defined by ay, [05,) = 0 and |Ocont)
is the state defined by G |[Ocont) for all continuous labels k. The Fock space then factors as

F(H) = <® %) ® F(Hont)- (2.245)

The resulting quantum field g%D is then certainly not a localized field, as it contains
modes that are not integrable in L?(3;). Indeed, due to the continuous modes not be-
ing integrable in ¥, the localization condition (2.235) is violated. However, this GNS
representation induces a natural decomposition of the field into discrete and continuous
modes:

qu (X) - leoc(x> + écont(X% (2246)
with

Do) = 3 (tn (i + w5 ()L) ,  Beone¥) / @k (Vs + U003y ) . (2:247)

n

While neither (/5100 or qgcont are quantum fields individually, states of this quantum field
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theory satisfy the localization conditiAon (2.235) with the replacement QASD — $10C20. In other
words, observables associated with ¢y are localized in space, while operators associated
with ¢eons are not.

One can then consider the discrete part of (ﬁD to be a localized probe, while ngcont
corresponds to propagating modes. Indeed, the modes Uy correspond to scattering states
that can be produced if the field qBD acquires sufficient energy. One can draw an analogy
with an electron bound to an atom interacting with an external electromagnetic pulse: if
the energy of the pulse is sufficiently small, the electron will remain bound to the atom
but with a different energy level, described by a bound state of the form |n). On the
other hand, a highly energetic electromagnetic pulse may cause the electron to escape the
atom instead, making it more accurately represented by a wavepacket supported involving
a continuous sum over states of the form al, |0,).

A Realistic Example: The Hydrogen Atom as a Localized Quantum Field

We will now describe a realistic example using the tools discussed so far: an electron
bound to a hydrogen atom. One can describe a hydrogen atom as an electron field under
the influence of an external Coulomb potential. Although the Coulomb potential is not
smooth (or bounded from below), it admits well-defined discrete field modes with energies
wy < 0 and continuous modes for wy > 0, allowing one to describe it with the tools of
the previous sections. In order to find the discrete modes explicitly, we will consider this
example in Minkowski spacetime using inertial coordinates (¢, ). The content of the next
Segments has been discussed in [171].

One can couple a Dirac spinor to electromagnetism by considering the U(1) gauge
transformation associated with the charge —gq,

Y(x) > 99My(x), (2.248)

which is generated by the electromagnetic four-potential A = A,dz*. The corresponding
Lagrangian density for a Dirac spinor ¢ minimally coupled to an electromagnetic four-
potential A, is

L = G(y" Dy — )b — %LFWFW | (2.249)

Here ¢ = ¢4, D, = 0, —igA, is the covariant derivative with respect to the U(1) gauge
transformation, and F},, = 0,4, — 0,A,, is the electromagnetic field strength tensor.

20The proof of Appendix D only depends on the fact that the modes ®,,(x) decay sufficiently fast, so
that the conclusion still holds for ¢jc.
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To describe the electron field in an atom, we model the nucleus as a non-dynamical
static point charge with four-current density j#(x). The full Lagrangian for the theory then
becomes

— 1
L =YD, — me) — ZFWFW —j"A,. (2.250)
The corresponding equations of motion are
My = Ju — @, (2.251)
(id —me )y = —qAy. (2.252)

The solutions for the four-potential A, can be written as a sum of the solutions to the free

part A and the part sourced by the nucleus A™™

Ay = AF) 4 AR (2.253)

which satisfy
oM FEiom) = j,, (2.254)
O F ) = —qpy, ). (2.255)

We assume that the nucleus is at rest with respect to the inertial frame (¢,2) and
prescribe
7 (x) = Qu's® (z), (2.256)

where u* = (1,0,0,0) is the four-velocity of the nucleus and ) = ¢Z is its charge. The

pointlike charge then sources a Coulomb potential A™™ (1), where r = |z| is the radial

coordinate centered at the nucleus, r = v/z%x;. In the Coulomb gauge, the potential is
given by
Alatom) (¢ ) = @ (2.257)
h T) = = Uy )

The electron orbitals can be found by solving the equations of motion for the 1(x) field
only considering the Coulomb potential sourced by the nucleus:

0 = (i + g A (x) = m )Y (x). (2.258)

To obtain the basis of solutions for the electron, we can split the time and space components
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of the equation in this inertial frame,

1001 (x) = (="' 0; = 7°me — gAo(r)) Y (x) - (2.259)

A general solution can be found by looking for static solutions, which are eigenfunctions
of the Hamiltonian

Hatom = (—17°7'0; +~"me — qAo(r)) . (2.260)

That is, we look for solutions to the following time-independent Dirac equation,

Hatom¥ () = EY(z) . (2.261)

The Hamiltonian H,.p, is analogous to the familiar Hamiltonian of a Schrodinger hydrogen
atom. In this case, the Hamiltonian acts on a spinor-valued field, and its eigenfunctions
correspond to the classical static solutions.

The solutions to this eigenvalue problem can be classified in terms of eigenvalues of a
set of operators (acting on classical spinor fields) that commute with Hagom. The following
operators are relevant to this problem:

J=L+ZX, L=-irxV, zz(g 2) (2.262)

corresponding to total angular momentum (J), orbital angular momentum (L), and spin
(X). In addition, we define the parity operator,

Py(t,z) =" (t, —x). (2.263)

Both the parity operator and the total angular momentum operator commute with the
Hamiltonian H,iom, as well as J.,

[Ja Hatom] = [Jza Hatom] = [P, Hatom] =0. (2264)

Together with Haiom, their eigenvalues are enough to label all bound stationary solutions
of Dirac’s hydrogen atom. Notice that although the total angular momentum is conserved,
the orbital angular momentum (L) and spin (X) are not. The solutions of the equation of
motion can, therefore, be labelled by four quantum numbers, n, 7, m, and p, defined by

P njmp = 35 + 1 ¥njmp (2.265)
Jenjmp = Mbnjmp , (2.266)
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Pwnjmp = pwnjmp 5 (2267)
Hatom¢njmp - Enquz)njmp» (2268)

where
mMe

1+ L ;
(n—j—%-‘r (5+3) —(Za)2)

and « is the fine structure constant. The quantum numbers n, j, m, and p take the discrete
values

E,; = (2.269)

n=1,2,.., (2.270)
1 1
= . on—= 2.271
J=gr g, ( )
m=—j,—(G—1),...j—1,5, (2.272)

L ifj=n—1/2
p:{+’lj n-1/2, (2.273)

+1, if j#£n—1/2

Notice that, unlike the case of Schrodinger’s hydrogen atom, in Dirac’s atom, the energy
levels depend on the total orbital quantum number j.

As with any time-independent spherically symmetric external potential Ag(r), the four-
component Dirac eigenfunctions 1, can be split into two two-component bispinors,

) (0.0
bom@) = (2006 ) (2214

Here the functions g,,(r) and f,;(r) define the effective localization lengthscale of the
modes and §2;,,; are the spinor spherical harmonics [75, 12], where [ labels orbital angular
momentum according to LQQjml = ({4 1)Qju. In Eq. (2.274) [ and I’ can take the values
of j + % [ and ' are related by the parity eigenvalue p = +1 through I’ — [ = p.

The operator Hgaiom also possesses a continuous spectrum for E > m,, representing
scattering states. These can be labelled by a continuous parameter £ > 0 and the quan-
tum numbers j,m,p. The corresponding eigenfunctions can be classified by the sign of
the eigenvalues of the operator i9;. We will notate them as wy;m,(x) for positive frequen-
cies (electron states) and vyjm,(a) for negative frequencies (positron states). The explicit
expressions for the scattering solutions can be found in [75].

We can then write a general solution of Eq. (2.258) as a mode expansion in terms of the
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solutions ¥ (x), as well as a continuous set of unbound solutions ug(x) and vg(x), where
we use the multi-indices N = (n, j,m,p), k = (k,j,m,p) and k is a continuous parameter.
Overall, a general solution of the equation of motion can be written in terms of coefficients
bN, bk and Cl as

Y(x) =) bne VYN () + i (bke™ P ug(x) + che™ o)) . (2.275)

k

The classical theory for the field ¥ (x) under the influence of a Coulomb potential can
then be used to define a quantum field theory for the field zﬂ(x), as discussed in Section 1.4.
This quantum field theory will then have a unique quasifree state wy invariant under time
translations with respect to w”, defined by the mode decomposition of Eq. (2.275). This
state will then give rise to a GNS representation, defining a Fock space for the electron
states. Effectively, this process corresponds to promoting the coefficients in (2.275) to oper-
ators, by — ISN, b, — Ek, cx — C. The operators l;N, l;k, Cr are the annihilation operators
and ZA)E\,, ISL, éL are the corresponding creation operators. These operators are defined by

the canonical anti-commutation relations,

{6]\[7 ZA)J][V/} — 5NN’7 (2276)
{br, b} = 0(k, K'), (2.277)
{e,¢l,} = 0(k, K). (2.278)

Equation (2.276) reflects the fact that the discrete modes ¥ () are orthonormal according
to the Dirac inner product

The creation and annihilation operators define the vacuum |0) associated to wy by by |0) =
bi |0) = ¢, |0) = 0 for all N and k. The electron quantum field can then be written as

P(x) = bne NN () + i (éke—iEktuk(m) + e;eiEkfuk(w)) . (2.280)
N k

In the context of this quantum field theory, the Hamiltonian density that prescribes the
dynamics of the electron field under the influence of the Coulomb potential is

~

Fatom (x) = 0(x)(—i70; + me + gA“™ ) (x), (2.281)
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not to be confused with the operator H.i,m, which is a differential operator that acts
in classical solutions of the equation of motion. The corresponding Hamiltonian of the
quantum theory for the fermionic field under the influence of the Coulomb potential can
be found by regularizing?' and integrating the Hamiltonian density along a spatial slice
t = const. We regularize the Hamiltonian by subtracting its expected value in the vacuum
|0) defined by the expansion of Eq. (2.280):

A

:Hatom:: /dgw (ﬁatom(x) - <O’ ﬂatom<x) |0>>
= Enbiyby + i Ee(Blbn + léw). (2.282)
N k

The eigenstates of the Hamiltonian can be constructed by repeated applications of the
creation operators on the vacuum state |0), and these eigenstates span the field’s Fock
space, F,. The one-particle states of the theory are

IN) = bly |0), (2.283)
’ka +> = BJlrc |0> ) (2.284)
|k, —) = ¢l [0) . (2.285)

Notice that the states |k,+) are not normalizable, as they correspond to the continuous
spectrum of Hgiom. Therefore, the scattering states are not physical, although they form
a useful basis for the study of scattering processes. On the other hand, the bound states
|IN) are localized physical states, satisfying

(N|N') = dnnr. (2.286)

These states correspond to electrons bound to the hydrogen atom with quantum numbers
N = <n7j7 m7p)

While Eq. (2.280) allows one to describe an electron in terms of a fully featured quantum
field, it does not describe aspects of the electron-proton interaction. For instance, the
hyperfine splitting in the electron energy levels comes from the interaction of the spins of
the proton and electron through the magnetic field, which is not present in the description

21Game as in the scalar field case, the Hamiltonian density 7:latom(x) is quadratic in the field operator

7ﬁ(x)7 so that it requires to be normal ordered with respect to a given reference state. We pick the vacuum
|0) for the normal ordering.
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above??.

The lack of the description for the degrees of freedom of the proton in this model also
implies that the bound states in the hydrogen atom are electron states. This is unlike the
Schrodinger atom description, where one defines both centre of mass and internal degrees
of freedom for the system, mixing the electron and proton wavefunctions [104]. That is, the
bound states of a Schrodinger atom do not correspond to the electron degrees of freedom
per sé, but to a combination of the electron and proton systems. In order to obtain this
feature in a quantum field theoretic description, one would need to consider both the
electron and proton as fermionic fields, which would require more sophisticated bi-spinor
techniques [33] and falls beyond our current goals.

Finally, notice that although the electron field is fully relativistic, this model clearly
privileges the reference frame of the nucleus. This implies that the solutions of the elec-
tronic field are not Poincaré invariant, instead only being invariant under time translations
in the direction of the nucleus four-velocity u* and rotations around the origin in the nu-
cleus’ rest space. However, the lack of Poincaré covariance is to be expected: no localized
system can be invariant under translations or arbitrary boosts. On the other hand, sym-
metry under arbitrary transformations generated by the Poincaré group can be restored
by also applying these transformations to the nucleus (j#(x)) and Coulomb field. In other
words, the field representation of Eq. (2.280) is valid in any inertial frame where the nucleus
current density takes the shape of Eq. (2.256).

Our next goal throughout this section will be to describe the coupling of the spin of an
electron in a hydrogen atom to an external electromagnetic field. We will do so by first
restricting the spinor field to a single spherically symmetric orbital, and then considering
its coupling with electromagnetism and recasting it in a familiar manner.

Reducing a Relativistic Atom to a Spin 1/2 System

We will now reduce the quantum field description of the Hydrogen atom presented above to
an effective two-level system. To do this, we restrict the quantum numbers of the fermionic
field (2.258) to two degrees of freedom corresponding to the one-particle sector of the s
orbital of an atom.

In the usual Schrodinger description of a Hydrogen atom, the s orbitals are defined
by the vanishing of the quantum number associated with orbital angular momentum (I =

221t is possible to effectively implement the hyperfine splitting by considering an additional C? quantum
degree of freedom corresponding to the proton spin and introducing an appropriate dipole coupling with
the field ¥(x) [75].
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0). However, in the Dirac description, the orbital angular momentum does not define a
quantum number, as it does not commute with the atom Hamiltonian. Instead, in this
description, the s orbitals correspond to the quantum numbers j = 1/2 and p = +123. The
two degrees of freedom in a given s orbital are encoded in the magnetic quantum number
m, which can take the values m = j:%. For instance, the 1s orbital corresponds to the
subspace defined by the quantum numbers n = 1 and j = 1/2, which imply p = +1.

To reduce the quantum field description to a specific s orbital, we fix the quantum
number n = ny. For convenience, we introduce the following notation for the operators
and states associated with the quantum numbers (n, j, m, p) = (no, %, i%, +1):

bT = bno,%,%ri’l’ b\L = bno,%,7%,+1' (2287)

) = [rno, 3, 3, +1) = B110),

) =m0, 5, =3, +1) = bl [0).
The fact that the modes of the field () are discrete implies that the states |1) and |} ) are
normalized (see Eq. (2.286)). |1) and |]) form an orthonormal basis for the two dimensional

subspace that they span, % = C2. Within this subspace, we define ladder operators &
and 6_ as

(2.288)

b= VUL, 6= (2.250)
and the operators
Op =04 +0_, (2.290)
o, = —i(64 —0d_), (2.291)
0, =04,0_—0_04, (2.292)

which satisfy the su(2) algebra commutation relations

(67, 6,] = 2ie, " 64, (2.293)

23To compare the orbitals defined by a Dirac hydrogen-like atom with the ones in the Schrédinger
description, it is necessary to employ non-relativistic approximations. These are usually done through
a Foldy-Wouthuysen [60, 75] transformation. In this framework, the top two components of the Dirac
spinor, which have well-defined orbital angular momentum, are dominant. This implies that, in the non-
relativistic approximation, the Dirac spinor describing a state with j = % and [ = 0 has positive parity
since the dominant top component has [ = 0 and the bottom component has I’ = 1, yielding p = I'—1 = +1.
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so that they act as the Pauli operators in 7% and their matrix representation in the basis
{1, ]4)} takes the form

. 0 1\ . 0 -1\ . 1 0
Oy = (1 O> , Oy = (i 0) , 0, = <O _1> . (2.294)

We define the projector into the subspace 7,

Bo= 1+ 1. (2:295)

The projector P, can be used to reduce operators acting on the Fock space F,, to /% = C2.
For instance, consider an operator acting on the Fock space F, of the form,

~ fas ~

M(x) = Y (x)O0(x)p(x) , (2.296)

where O(x) is an operator that acts on (the classical) spinor space. Let Myn/(x) =
YN (x)O(x)¥n(x), where N, N’ are labels for the quantum numbers (n, j, m, p) intro-
duced in the previous section. The operator M (x) can be generally written as

M(x) = > Mnni(x)biybnr (2.297)

N,N’

The action of the projector P, on the operators ZA)E\,ZA) n in this expansion can be written in

the basis {|1),[})} as

PSZA)EV(A)NIPS = Z Z 5mN5m’N’ |m><m'| y (2298)
me{t,{} m'e{t,l}

so that applying the projector P, on Eq. (2.296) yields

My(x) == PM(x) Py = M (x) [1) (1] + My (x) [1) (4]

+ My () 1) (T + My () [ (2.299)
with matrix representation
Ty = (M) Myy(x)
Ml (Mw(x) Mu(x)) ‘ (2:300)

From this point on, we use the subindex s to indicate projection to JZ.
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As an example, consider the second-quantized Hamiltonian (2.282). We can build its
projection on the subspace 7, Hatom s = =P HatomPS7 given by

Huoms = Y Enbl by = By + Eblb, . (2.301)

mil

Notice that since we are not considering any hyperfine interactions or any external elec-
tromagnetic fields, spins up and down have the same energy, Fy = E|, yielding a ]:Iatom,s
proportional to the identity in J#. Defining F, := Ey = E|, a matrix representation for
the atom Hamiltonian in this subspace is then

~ - EO 0 - ~
Hatoms = ( . Eo) — Eol. (2.302)

Reducing the electron field theory to the two-dimensional J# subspace considerably
simplifies its dynamics by disregarding particle creation effects and transitions to higher
energy modes. Although the states |1) and |]) still represent mode excitations of a rel-
ativistic field, it is important to remark that the projector P, is non-local in spacetime.
This is because projectors of the form [1)(1], |{)(}| are intrinsically non-local, leading to
covariance and causality violations which are controlled by the size of the localization of
the field modes. This phenomenon has been discussed in Section 2.2, and is simply an
example of the general fact that restricting a quantum field theory to modes of energies
below a certain cutoff in a given frame introduces causality violations [117, 27, |. Nev-
ertheless, the reduction of the field theory to the subspace 7% is justified whenever one
considers processes that effectively take place at low energy and affect only the s orbital,
such as the interaction of a spin in an s orbital with an external electromagnetic field that
does not produce mode excitations. It is in this regime where one obtains the leading order
relativistic corrections to the hydrogen-like atom [12, 75].

An Electron Coupled to an External Electromagnetic Field

As an example of the application of the reduction method introduced in the previous
section, we derive the Zeeman Hamiltonian

H =-v6-B, (2.303)

for the interaction of a spin with an external electromagnetic field starting from the quan-
tum field theoretic description of the electron. The coupling of a fermionic field with elec-
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tromagnetism is encoded in the Lagrangian density of Eq. (2.249), which contains the inter-
action term between 1 (x) and an external electromagnetic field AEth) (x) (see Eq. (2.253)).
For simplicity, for the remainder of this Section, we will denote the external field simply

by A, (x). The interaction Lagrangian density can then be written as
Z1(x) = q(x) AX)Y (x). (2.304)

In the quantum field theory description of ﬁ(x), we can then write the associated Hamil-
tonian density as

~

Hi(x) = —qt () A (). (2.305)
The interaction Hamiltonian due to the external field A,(x) is obtained by integrating

Eq. (2.305) over the slice t = const.,

A

Foat) = —g / P () AK)D() (2.306)

where the quantum field @E(x) is given by Eq. (2.280). The interaction Hamiltonian He
can be projected to the J7, subspace using the projector P, from the previous section. It
reads

H,(t) = P,H. ()P, (2.307)
—0 Y Y [ @i @Awb(a) ) ],

me{t} m'e{t|}

where the time dependence of the modes 14 and 1| cancels, as E+ = E|. The states ¢1(x)
and ¢, (x) are solutions to the time-independent Diac equation, and can be explicitly
written as

9(r)5z 0
@) =] iy I (2.308)
@) =i e |0 W@ =] i | '
—if(r) if(r)577]
where @ = (z,y,2) and r = |z|. Importantly, the mode functions f(r) are significantly

smaller in magnitude than the mode functions g(r), with f(r)/g(r) = O(a). For instance,
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when ny = 1, the radial functions g and f are

g(r) = kyag 2727190 (r ag)? 1, (2.309)
F(r) = kaag® e~ 27 (1 Jag) Pt (2.310)
with ag, 8 k1 and ko defined as
1
ag = : B=1-22a2, (2.311)
MeQ

1] 1+ 1-8
k=207, | —— ko = —kyy| —2, 2.312
! \/ T(1+26) 2 "\1+5 (2312)

where g is the Bohr radius. In this example one can see that the functions f(r) are
significantly smaller than ¢(r) by noticing that ky = O(«), while k; is O(1).

Substituting the solutions (2.308) in the interaction Hamiltonian density (2.307), we
obtain

f(r)g(r)

2rr

() = q/d3x & (@ x At 2)). (2.313)

It is possible to rewrite H;(t) as a smeared version of the Zeeman Hamiltonian (2.303)
added to a boundary term by using the following vector identities

Vixv =V x (Ypv) —pVxwv, (2.314)
u- (Vxov)=(Vxu)-v—V-(uxwv). (2.315)

Let us first define the useful function ¢(r) in terms of the radial functions f(r) and g(r)
by the conditions

Vo(r)=—="—"=x, lim ¢(r)=0. (2.316)

r—00
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Using V(r) = 9,¢(r)x/r, the unique solution to Eq. (2.316) can be written as®*,
o(r) = — / dr F(r)g(r). (2.318)
We can then recast the interaction Hamiltonian as

H(t) = % /d3a:6' (Vo x A(t,x)) . (2.319)
Using (2.314) we obtain a dependence on B =V x A:

- (VbxA)=0-(Vx(pA) -V x A)
=—-po-B+o-(Vx(dA)). (2.320)

where the term & - (V X (pA)) can be recast as a boundary term using (2.315):

o (Vx(pA))=-V
= -V (

(®A) +(V xa) oA
(bA)), (2.321)

where we used V x & = 0, given that & is independent of . The boundary term can be
safely neglected due to the fact that ¢(r) decays exponentially as r increases.

o X
o X

Plugging the result of Eq. (2.320) in the Hamiltonian (2.313) and neglecting the bound-
ary term, we obtain

i) = —L /d% o(r) & - B(t,z). (2.322)

The interaction Hamiltonian above can be seen as a generalization of the Zeeman effect,
which takes into account that the magnetic field that couples to the spin is smeared by the
function ¢(r).

The Zeeman interaction in its familiar form can be obtained by assuming that the
magnetic field is approximately homogeneous within the localization of the atom in the
same spirit as in the dipole approximation [168]. Indeed, if B(t,z) = B(t), the radial

2For instance, when ng = 1 we can write ¢(r) explicitly in terms of the incomplete gamma function
(s, t):

21— 32

YOS e

I'(28 —1,2r/ag). (2.317)
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integral of ¢(r) factors out. We compute this integral in Appendix E, resulting in

0t =—-L6. B (1 - %/Oodrr2f2(r)) . (2.323)

2m, 0

Using the fact that f(r) = O(«), and defining the spin operator S = 26, we find

~

H(t) = —mié - B(t) + 0(a?). (2.324)
To leading order in the fine-structure constant «, this is the Zeeman Hamiltonian for the
ground state splitting of a Hydrogen atom. The higher order corrections in « are defined
by the specific shape of the mode functions f(r). Equation (2.322) effectively gives the
corrections to the electron g-factor due to the fact that the electron is localized in an atomic
orbital. This effect has been first noted by Breit in the case of hydrogen-like atoms in [22].

Notice that the leading order corrections in «a to the Zeeman Hamiltonian presented
above are of order O(a?), while it is well known that corrections from QED interactions to
the electron g-factor are of first order in a.. To introduce these QED corrections, it would
be enough to incorporate the renormalized interactions obtained from higher loop QED
considerations [10, , , , 121].

Finally, notice that the reduction of the QED interaction Hamiltonian to Eq. (2.322)
presented above is also valid when the electron field is under the influence of any spherically
symmetric electric potential Ag(r). This can be seen by noticing that localized mode
solutions with quantum numbers j = 1/2 and p = +1 take the form of Eq. (2.308) with
different radial functions f(r) and g(r) determined by Ag(r). This would allow one to
consider more general models for the nucleus, such as incorporating a finite size, and
Eq. (2.323) would still describe the coupling of a spin with an external electromagnetic
field as well as the corrections arising from the different shapes of the electron orbitals.

Effectively, when considering a quantum magnetic field B (x), our results have shown
explicitly how to reduce a fully relativistic theory for the electron to a two-level particle
detector model coupled to the magnetic field. Indeed, this model has been studied in
detail in [171], but we will not focus on its specific properties here. The main point of
this example is to showcase that the connection between fundamental and operational
perspectives of measurements in quantum field theory is not merely theoretical, but also
applies to physically realistic systems that are typically used in experimental setups.
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2.6 The Stress-Energy Tensor of Localized Probes

In this Section, we will discuss a fundamental aspect of the description of localized quantum
fields: their stress-energy tensor. We will discuss the necessity to dynamically describe the
localizing potential in these theories and present a model for a localizing potential that
interacts semiclassically with a quantum field, localizing it in space. The results of this
section are based on [137].

External Potentials Break General Covariance.

The classical stress-energy tensor associated with the field ¢, (x), whose equation of motion
is defined by the Lagrangian given by Eq. (2.23) is

Ty = 0,¢n0, ¢ — %g,w <3Q¢D8Q¢D +mZe? + V(x)qb%). (2.325)

By writing the expression above for the quantum field ngSD and taking expected values
of the operator-valued stress-energy tensor, (TW> (with the appropriate renormalization
methods [11, 39]), one could claim that this is how the field ¢,, gravitates. However, there
is an important matter which is not addressed in this description: what is the physical
origin of the potential V(x)? Whatever is the physical system that sources the potential
V(x), both the source and the energy associated with V' (x) will contribute non-negligibly
to the total stress-energy tensor in the spacetime. Moreover, if the source of the localiza-
tion potential V' (x) is not taken into account, the field theory associated to Eq. (2.325)
irredeemably breaks general covariance. Indeed, the stress-energy tensor of Eq. (2.325) is
not covariantly conserved:

My = 0,0 (0"0, — m?2 — V(%)) — %gbiayv (x), (2.326)

which yields 9T}, = —1¢20,V (x) on shell. That is, the only potentials that would produce
a theory fully compatible with general covariance are constant, being unable to localize

the field modes of ¢p,.

One option would be to consider that V(x) is generated by another scalar field. In
that case, V(x) would be replaced by V' (¢¢(x)) and, for any fixed solution for the field ¢,
the potential which would affect ¢, would be a function of ¢(x). In that case, the full
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Lagrangian of the theory would be

1 my 5 Vi(ge)
L=-— 5 uﬁbDaMCbD - 7¢D - 9

1 m?2
QS?) - 5 u¢08M¢c - TCQ% (2'327)
and the associated stress-energy tensor would be

T;w :au¢Dau¢D + au¢cau¢c - %g/u/ <8a¢Daa¢D + m%cb% + V(¢c)¢% + aa¢caa¢c + m?ﬂ%)a

(2.328)
which is covariantly conserved on shell. However, the solutions of the Klein-Gordon equa-
tion for ¢, will generally not be confined to a finite region of space and will propagate
away. One way to prevent this would be to find a fine tuned solitonic solution for the fields
¢p and ¢.. Unfortunately, this would imply that small changes to the system (such as
when ¢, interacts with an external field) would likely break the bound system, leading to
the fields ¢ and ¢, propagating away.

An alternative way of keeping the field ¢ localized in space would be to consider an
external potential Vi(ax) which localizes it. This would amount to adding a term of the
form —3V(x)¢2 to the Lagrangian, which would allow for a bound solution for ¢.. One
would then naturally wonder what is the physical system that sources the potential V. and
what are its contributions to the stress-energy tensor. One could, of course, introduce yet
another scalar field ¢y and to add another interaction of the form V' (¢;)¢2, but this would
quickly lead us to a rabbit hole, where one would always need to add another localized
field to source the effective potential that localizes the previous one.

A possible alternative solution to this puzzle (as we will show throughout this Section)
is to introduce matter with two degrees of freedom—a perfect fluid, for instance. One
degree of freedom would be responsible for the localization of the field ¢ regardless of the
state of the field ¢, and the other one would depend on the equations of motion and a
boundary condition. As we will see, the additional matter with two degrees of freedom
would allow a stable solitonic solution for the fields ¢. and ¢,, maintaining the shape of
the solution ¢ (and thus of the localizing potential V' (¢.)), regardless of the state of ¢y,.

A Comment on Localization

Before presenting an explicit example of a general covariant localized quantum field, let us
discuss the implications of the fact that the external potential must be incorporated in the
stress-energy tensor of the theory to compactly supported fields. Strictly speaking, one can
only have modes of the field that are compactly supported in the limit where the external
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potential goes to infinity outside of a given region. In this case, the associated stress-
energy tensor would also diverge pointwise. This implies that, at the very least, the energy
density associated with this system would be infinite. Taking the Hoop conjecture [187, 59]
seriously, we conclude that

“A general covariant model for a perfectly localized field is a black hole.”

This fact implies that all general covariant formulations of localized probes in quantum
field theory must have infinite support in space. At the same time, it does not seem
reasonable to assume that it is possible to perfectly control the mechanisms responsible for
localizing the interactions of quantum fields. This would imply the field observables ¢(f)
with compactly supported f € C§°(O) could technically not be probed, as the functions f
are defined by the spaces of the probes and their interaction regions. Instead, we would be
restricted to accessing only operators qg( f) that do not belong to any local algebra (only
to the global A(M)), with non-compactly supported functions f. In this case, one must
use the profile of the functions f to determine effective regions where one has access to the
field, determining how much access one has to each region by the value of |f(x)| within
it. In essence, this suggests that a better notion of “regions” in quantum field theory
could be given in terms of functions of fast decay, rather than by subsets of spacetime.
This would allow one to incorporate the fact that accessing the field in a sharp spacetime
region is an idealized scenario while maintaining some notion of localization. A concrete
implementation of this idea, as well as its implications to fundamental concepts, such as
causality, will appear in a future work.

A Consistent Semiclassical Description for a Particle Detector

A description of a localized quantum field which takes into account the physical system
that localizes it can be formulated in terms of a Lorentz invariant action in Minkowski
spacetime. The full Lagrangian depending on the scalar field ¢,, a complex® field 9
that produces an effective potential responsible for the localization of ¢, and on the fluid
configuration is given by

L= = 50utn0"00 = 326, = G106}
_ a/ﬂvz)é@“@bc — mg|¢0’2 . ‘/C<|¢C|2) + (1 . M’¢C|2)£ﬂuid7

25We chose a complex-valued field so that a time-independent potential and energy-momentum distri-
bution (which basically depends on |1¢(x)|?) can be obtained when 1) is in a stationary state.

(2.329)
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where 1 is a coupling constant with units of squared length, « is a dimensionless constant,
my, and mc are the masses of the fields ¢, and ¢ and V(|¢)c|?) is a self-interaction term
for the field .

The role of the Lagrangian in this description is two-fold. It gives rise to the
energy-momentum of the fluid and appears explicitly on the equations of motion for )
due to the non-minimal coupling between the fluid and the field ¥. In this way, the exact
form of the on-shell Lagrangian £ turns out to be essential. There are several possible
on-shell real Lagrangians (all of them giving rise to the same energy-momentum tensor).
The most common options are £14d = P [167] and £ = —p [23], where P and p are the
proper pressure and the proper energy density of the fluid. The transition between these
two Lagrangians is made through the addition of a surface integral in the fluid action,
i.e., the Lagrangian is modified by a total derivative term [23]. This clearly affects its
on-shell value without affecting the equations of motion. Also, by considering the fluid as
constituted by particles with fixed rest mass and structure (solitons), the average on-shell
Lagrangian turns out to be of the form [¢]

Eﬂuid

ciid — pivid — 5 1 3P, (2.330)
i.e., the trace of the stress-energy tensor
T = (p+ Pluyu, + Pgp,. (2.331)

In all cases, for the fluid to be modelled by a collection of particles, the equation of state
w = p/p must satisfy 0 < w < 1/3.

The equations of motion for the fields ¢, and 1. are given by

(0 —mp — alve]*)¢n =0, (2.332a)
- o
(D —mg = Fo([the]?) — plM — §¢§> e =0, (2.332D)
where we defined
Ful(ef?) = 2 (2.333)
C C 8|¢C’2 . .

Notice that Eq. (2.332b) shows explicitly how the Lagrangian of the fluid £ affects the
equations of motion for ).

The equations of motion for a perfect fluid minimally coupled to gravity are equivalent
to VAT = 0 along with the conservation of particle number [167]. However, in our case,
the fluid is also coupled to matter fields. Hence the equations of motion for the fluid turns
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out to be given by the conservation of the full stress-energy tensor in the spacetime, i.e.,
VvV, " = 0, where

T o—_ 2 0(y/—gL)
T Vg g

1
- “(bDa"(bD +2 Re(ﬁmﬂéaﬂﬂc) - égmx (aa¢Daa¢D + miqﬁ% + Oé|"¢)c|2¢§ (2334)

+ 20,050 + 2mEicl? + 2Ve([Yel?)) + (1 — e TR

We can then compute its divergence,

0T = (O —m — altcP) o]

+2Re { [(D—m2 = Fullel’) - pe™ — 562 )wec| o0} (2:339)
+(1— NWCF)aHTSSid - NTSSidaH|¢C‘2 + N'Cﬂmdaz/|1/}c|2a
where we added and subtracted L1409, ¢ |? to explicitly factor the equation of motion for
the field ¢¢. Using the equations of motion (2.332), the first and second lines in Eq. (2.335)

vanish, and we see that the divergencelessness of T}, is ensured provided that the perfect
fluid stress-energy tensor satisfies

(1= ple T — P 0" [hel® + pL™0, [l = 0, (2.336)

which turns into a differential equation for u,, p and P.
We are interested in using the field ¥ to source a time-independent potential for the
field ¢,. This can be obtained if v is of the form
Ve(x) = W (z). (2.337)
Below we will analyze a particular case which allows this ansatz for ¢ to be a solution to
the equations of motion.

We will now analyze the case where the field ¢y is such that ¢2(x) = g(x) is time-
independent in a given inertial frame. In the semiclassical context ¢ (x) would be replaced
by the renormalized expected value of ¢2, (:¢%(x):), which is time-independent whenever
¢ED is in an eigenstate of its Hamiltonian (e.g., if @ = 0 and qBD were in its vacuum state, we
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would have g(x) = 0). In this case, the equation of motion for ¢.(x) = e“*W(x) reads
<wg —m2 4V f(:n))\lfc(m) —0, (2.338)

where we defined

A%

C

g4

f(x) = ﬂﬁﬂuld + 59(5’7) + Fo(x), Fe(x)
Notice that once g(x) is fixed and the potential V. is chosen, the fluid Lagrangian com-
pletely determines f(x). Thus, U.(x) is an eigenfunction of the operator —V? + f(x).
Recalling that we are interested in localized solutions, we should look for eigenfunctions
with negative eigenvalues:

(V% 4 f(x))Vo(x) = —\2We(x). (2.340)

Hence, Eq. (2.337) is a stationary localized solution to the equations of motion provided
that

wZ=md — A2, (2.341)

with m?2 > A\2.

Due to the fact that |1)¢(x)|? = |¥c(x)|? is time-independent in this case, it is natural
to impose that the fluid described by TS}}id undergoes motion in the 0; direction, and that
both p and P are time-independent. We then find that the 0—th component of Eq. (2.336)
is trivial, while

T = o, P (2.342)

and Eq. (2.336) becomes a differential equation for P,
(1= W Be)OP — pdh|W2P + (f(@) — Sg(x) — Fo(a)OHWP =0 (2.343)

where f, g, and |¥|* are given.

Finding a solution P for the above equation also gives us the proper energy density of
the fluid (p) through the equation pL™4 + Sg(x) + Fi (|¥o]?) = f(x). In particular, the
proper energy density of the fluid depends on the choice of the on-shell Lagrangian £%d
(i.e., the choice of the non-minimal coupling between the fluid and ).

We consider two on-shell Lagrangians given by £ = —p 4 3nP so that n = 0 for the
choice £ = —p and n = 1 for £iid = Tfuid — _ 5 1 3P26 We can then find the equation

26We will not consider Lagrangians that are independent of p (such as £%d = P) so that the energy
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of state of the fluid, relating p and P, in terms of the functions g(x), Fi(x) and f(x):

pzSnP—i—gg(a:)—i-M—@.

2.344
24 p Iz ( )

For a given time-independent configuration of the field ¢,, this solution is stable and
satisfies 0*T),, = 0 in the whole spacetime. In particular, notice that the function f(x)
is independent of the choice of g(x), so that different ¢’s yield different pressures P and
proper energy densities p for the fluid. Also notice that whether T Mﬂ;ﬁd satisfies energy
conditions or not will explicitly depend on the choices of f(x), g(x) and V(x). Ideally,
to ensure localization of the whole system (in the sense that T},, goes to zero at spatial
infinity), one would require that both p and P go to zero at infinity, so that the integration
constant arising in Eq. (2.343) is not arbitrary.

An Explicit Example of a Localized Quantum Field

In this Section, we will present a concrete example of a realization of the time-independent
model constructed above. The first step is to pick the state of the classical field, which
will source the external potential for the quantum field ¢,(x). The explicit example we
will construct will be spherically symmetric, so we use spherical coordinates (¢, 7,6, ¢) and
choose the state for the field 1 (x) to be

Ye(x) = %ei““t sech(%), (2.345)

so that the effective potential generated by 1(x) on ¢, is given by

(6% T
afuie]? = 7 sech” <Z) . (2.346)

This implies that the equation of motion for the field ¢, becomes

(D —m? — %sech2 (%)) » = 0. (2.347)
We also find that
1 2 , 2 tanh(f)
V2‘I/c(w) = (6_2 — 6_2 sech2 (Z) — g—QTZ> \IJC(-’B), (2348)

density can be determined from £1"d,
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so that it has the shape of the eigenvalue equation (2.340) with

2 ztanh(%)

flx)=f(r)= n sech’(%) — E (2.349)

and the corresponding eigenvalue A\ = 1//, so that (V? — f(x))¥. = AcW¥.. We also find

the frequency wc from Eq. (2.341)
1
We =/ m2 — 7 (2.350)

For convenience, we assume that (:¢2(x):) = g(x) = 0 here so that we can pick £id and
the potential Ve (|1)c|?) as

2 2\2 fuid _ 2 tanh(7)
Vo(lel?) = =(le)?, LM = B (2.351)
so that F.(x) is given by
2
Fo(x) = —2Ye(x)]* = —— sech?(%), (2.352)

and Eq. (2.339) is satisfied. Notice that both £ and V. (z) are both smooth bounded
functions in space. Equation (2.340) then holds provided that ¢(x) is given by Eq. (2.345).

We now solve Eq. (2.343) for the pressure P and Eq. (2.344) for the energy density
p. Due to spherical symmetry and time invariance of the system, we have P = P(r) and
p = p(r). The differential equation for P becomes

2utanh(%)P(r) B 4tanh2(%)
((—p + €2 cosh® (%)) 2 (—p 2 cosh®(%))’

P'(r) + (2.353)

The solution for P(r) can be written as

P(r) = —— o) / TG, (2.354)

where

G(r) = ‘ , (2.355)



and we picked the integration constant such that lim, ., P(r) = 0. Unfortunately, no
known closed expression for the integral of G(r) is known. The energy density can be
found by using Eq. (2.344), which yields

2 tanh( )

p(r) =3nP(r)+ R (2.356)

In order to have a concrete model, we will also pick a value for the constant u. However,
not all values for 4 will yield a physical model. Notice that for u > ¢2, the solution for
P(r) is divergent at r = £arcsech(¢?/|u|). Provided that p < ¢2, the solution for P(r) is
smooth, positive and decreasing. It is also important to ensure that the energy density of
the fluid is positive. First, notice that for large r, p(r) behaves as 7, so that we must have
p > 0 to ensure p(r) > 0. Given that P(r) is positive and smooth for u < €2, u € (0, (?)
ensures that p(r) > 0 for all r.

One can go a step further and demand that the null, weak, strong and dominant energy
conditions are satisfied by the fluid, imposing that p+ P >0, p+3P > 0 and p—|P| > 0.
Given that both p and P are positive, the only condition that adds extra constraints is

—|P| > 0. We find that p — |P| > 0if 2/u > 3(n — 1)P(0), and P(0) can be computed
in closed form [1]:

4 (41og(A) — 40¢'(=3) — 1 — Llog(2
P(O) _ ( g( ) C( ) 3 45 g( )) = 90 (2357)
(0 — p) (02 — )

where ( denotes Riemann’s Zeta function and A is the Glalsher constant, yleldlng go ~
1.53971. We then find that p(r) — |P(r)| > 0 if either n > 3, or if p < T g For
instance, if n = 0 we have that p(r) — |P(r)| will only be p081tlve if 0 < p < 0.565017¢2.
In Figs. 2.7 and 2.8 we plot p + P, p+ 3P and p — |P| for values of the constant u that
respect the energy conditions.

Fig. 2.9 shows that 0 < w := P/p < 1/3 for both n = 0 and n = 1. This is especially
important for the case n = 1, where the fluid is constituted by particles with fixed mass
and structure. In any case, the fluid is composed of non-exotic matter content. Finally, as
expected, both quantities are localized around the origin within a lengthscale characterized
by the parameter /.

With these classical solutions for the fields ¢¢(x), and for the fluid parameters p(r) and
P(r), the field ¢, experiences the effective potential

V(r)= %sech2 <2) . (2.358)
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Figure 2.7: p+ P, p+ 3P, p — |P] as a function of r/¢ for n = 0 and p = (?/5.

From here on, we pick & = —6. The equation of motion for the field ¢, can then be solved
by separation of variables. The operator

L=-V?— —sech’(%) (2.359)

possesses one eigenfunction with negative eigenvalue and a continuous spectrum in [0, co).
The Klein-Gordon normalized eigenfunction of L and its respective eigenvalue are

/3 tanh(%) 1
(I)l(r) = 87]'&,()[) rcosh(%) s M1 = _K_Q (2360)

We label the generalized eigenfunctions in the continuous spectrum of L by vk, (), where
k%/¢? is the corresponding eigenvalue, and [, m are the usual angular momentum labels.

The corresponding quantum field éD can then be written as

~

Do (x) = (aiwlt@ (r)ar + eiw@*(r)aT> (2.361)

+ Z/dk lwktvklm< )bklm + elwktUZlm( )bzlm) !

where w; = /m2 — z% and wy = {/m2 + ’;—;. Notice that the modes vy, (x) are not

localized, as they do not belong to L?(IR?), as they are associated with scattering states.

160



10 p+ 3P

p—|P|

Figure 2.8: p+ P, p+ 3P, p — |P] as a function of /¢ for n =1 and p = (*/5.

The Stress-Energy Tensor of a Particle Detector

We now describe the stress-energy tensor of a Unruh-DeWitt detector that matches the
description of Section 2.6. The energy-tensor for this configuration can be written as
Eq. (2.334), with the replacement ¢, (x) — ggD(x), giving rise to an operator-valued energy
momentum tensor TW. One can then obtain a classical stress-energy tensor by taking the
expected value of the normal ordered energy tensor

A

() = (T = (00l T [00) (2.362)

where pp, denotes the state of the detector field gZ;D and we choose to use as a reference state
the vacuum?’ of the field ¢y, (x). For convenience, we define

A ~ ~ 1 ~ ~ o
150 = 0,000,060 — 9 (8a¢D8“¢D + m§¢i), (2.363)
~ 1 R
Ti'e = =5 gwalel*op, (2.364)
Ty = 2Re(9,050,0c) = G (Oats0* Ve + mi|tbe|* + Vo([vel?))
T = —plye T, (2.365)

27In order to obtain a finite value for the stress-energy tensor, one requires to choose a renormalization
scheme. We choose the reference state |0,) for convenience, but another natural choice would be to consider
a subtraction using the Minkowski vacuum.
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Figure 2.9: w := P/p for n = 0 and n = 1 with the choice u = ¢?/5.

so that the stress-energy tensor of the detector can be expressed as the sum
T — A¢D A¢D"/)C 1/10 wcﬂUid fluid
T =T + Too¥e + T + Trivid 4 piiuid, (2.366)

Notice that only Tl‘f’; and T ,f’,ﬁ’w“ are operator valued. However, all terms that contain
dependence on the fluid indirectly depend on the state of the field ¢, through the function
g9(x).

As an explicit example, we consider a harmonic oscillator Unruh-DeWitt detector in-
teracting with a free massless quantum field according to the interaction Hamiltonian

H(x) = M) (e¥al + e %a)p(x). (2.367)

We consider the detector to have the spacetime smearing function

o2 ] 3 tanh (%)
Alx)=e 8mlwy rcosh (%) (2.368)

This spacetime smearing function corresponds to a detector modelled by the bound mode
2

®,(r) in Eq. (2.360) and a switching function ((x) = e~ 217 that controls the time profile
of the interaction with the parameter T'. This detector is well modelled (to leading order)
by the field ¢y, interacting with the field ¢ when Q = w; = \/md — 4%, as discussed in
Section 2.2.
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The detector is modelled by the combination of the field ¢, the fluid, and the field qED,
which models its internal dynamics. When the detector is in its ground state, the field ¢y, is
then in its vacuum state, |0,). We assume that the free field ¢ is in a state denoted by /.
The stress-energy tensor of the detector is then a combination of the stress-energy tensor of
the quantum field ¢, the classical field 1, and the perfect fluid. In the vacuum state |0p),

~ ~ Op Al
we have (: T2 :) = (: 22" :) = 0, so that the stress-energy tensor TJU,> = (0p| Tt |Op)
can be written as
[0b) — v pefluid fluid
T =Ty + 1Ty + T, (2.369)

with p given by Eq. (2.356), P given by Eq. (2.354) and v (x) given by Eq. (2.345). This
results in a 7}, of the form

T/,|L(I)/D> = pO(T>uuuV + RO(T)T;LTV + 7)0 (T)Q,u,lu (2370)
whereu = e, r =e,, ) = egy®ey+e,®ey in the normalized spherical frame e; = 0y, e, = 0,
ey = %69, ey = ﬁ&ﬁ. The energy tensor is then diagonal in spherical coordinates, and

po(r) = T u,u, corresponds to the energy density in this frame, Ro(r) = THr,r, is
the radial pressure, and Py(r) = T+Q),, is the pressure in the angular directions. Their
explicit expressions are

oo(r) = 2Sec£};2(%)mg N (1 _ %W) p(r), (2.371)
Rofr) = 20 (1 - ”Sef(%)) P(r)
Pol(r) = —ZS’%T@ - (1 — %EQQ)) P(r),

where p(r) and P(r) are the energy density and pressure of the perfect fluid. The plots
of po(r), Ro(r), and Py(r) can be found in Fig. 2.10. We see that the radial and angular
pressures assume negative values, but it is simple to check that all energy conditions are
verified. Notice that these results are independent of any specific property of the field ngSD,
as they correspond only to the system responsible for generating the trapping potential
(which depends on mg, ¢, and the parameters of the fluid).

Given the pressures Ro(r) and Py(r) we can calculate the pressure deviator II(r) [100].
This quantity is defined as the traceless part of the the spatial components of the energy
momentum tensor. It measures the difference from the matter content described by po(r),
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Figure 2.10: po(r), Ro(r), and Po(r) for n =0, p = 2/5, me = 3.

Ro(r) and Py(r) and a perfect fluid modelled by a gas of particles. It can be calculated
through the Landau decomposition [100]

T = pugt, 4 (p0r) + Ty + () — J) (2572
where
1) = 2 (Rofr) — Pyfr)) = 5 2R L)

_ Ro(r) + 2770(7").

; (2.373)

p(r)

In Fig. 2.11, we plot II(r)/p(r) as a function of r/l. We observe that the radial pressure
approaches zero as r — oo, indicating that 7}, does not represent a perfect fluid, even at
infinity.

The detector’s first excited state is |1,) = &J{ |0p). To compute the stress-energy tensor
when the detector is in this configuration, one could perform the same procedure as that of
Section 2.6, using g(x) as the renormalized expected value of ésg, so that the fluid absorbs
the dependence on g(x). We have

9(@) = (Lo]: 200+ 1) = (1u]d2 00 Lo} — (0p]d2(x)[05) = SR COSITT) 5 g7

Tr2wpl

The energy density and pressure of the perfect fluid are then changed to p;(r) and Pi(r),
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Figure 2.11: The pressure deviator II(r) /p(r) for n =0, p = €2/5, m¢ = 2.

given explicitly by

1 o0
Pi(r) = B / Gi(r), (2.375)

02 — 1y sech?
where G1(r) = G(r) + AG(r) with G(r) defined in Eq. (2.355), and

9 tanh®(%) sech* (%)
AG(r) = — yEcyEa. (2.376)
The energy density will then be given by
p1(r) = 3nPy(r) — L9 (2.377)
where
i 2 tanh(7 Q@
fluid e T/éf) — @g(a;). (2.378)

Computing the expected value of the renormalized stress-energy densities (:Tj’;:) and
<:Tl‘f3¢0:>, one obtains a stress-energy tensor of the form

T = py (r)uuuy, + R (r)rury + Py(r)Qu, (2.379)

where p;(r), R1(r), and P;(r) play the same role as po(r), Ro(r), and Py(r) in Eq. (2.10).
However, their expressions are cumbersome and do not provide any important insight. The
plots of these quantities (when the detector is in its excited state) are displayed in Fig. 2.12.
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Figure 2.12: py(r), R1(r), and Py(r) for n =0, p = €2/5, me = %, and m,, = 2.

Final Remarks

We end this Section by stressing that the model for a general covariant t localized quantum
field discussed above is a toy model in the sense that, at least in principle, it does not
correspond to any known physical system. The model also has drawbacks, such as the
fact that it does not have a total finite energy (due to the 1/r decay in p(r)), as well as
the fact that this localized field technically does not allow one to dynamically switch the
interaction with an external field. This means that this model is still not capable of fully
describing the process of locally probing a quantum field ngS However, this is an example
of a localized field with a well-defined stress-energy tensor and shows that it is possible to
conceive a general covariant localized probe that fulfills many properties that are desired
for physical systems.
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Chapter 3

Entanglement in Quantum Field
Theory

Entanglement is typically seen as a key feature of quantum theories, and its applications
range from interpretations in quantum foundations to a resource in quantum computing.
However, its properties are still a topic of current research, even in finite dimensional
systems. Specifically, there are very few explicit results about entanglement in quantum
field theory.

The goal of this chapter is to discuss entanglement in quantum field theory, focusing on
how to quantify it and how to probe it. We will start with a brief review of entanglement
in Section 3.1, and we will discuss the challenges and general results related to entangle-
ment in quantum field theory in Section 3.2. In Section 3.3, we will discuss methods of
quantifying entanglement between two finite regions of spacetime in quantum field theory.
In Section 3.4, we will discuss how one can use the local probes discussed in Chapter 2
to attempt to extract entanglement from a quantum field, in a protocol that has become
known as entanglement harvesting. In Section 3.5, we will discuss some general results of
the protocol and how they relate to some results of Section 3.3.

3.1 A Very Brief Review of Entanglement

Entanglement in quantum mechanics is typically introduced through the notion of sep-
arability in a tensor-product structure. For instance, consider two subsystems A and B
with Hilbert spaces .77, and J7;, so that the total Hilbert space of the composite system
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is A = J, @ . A pure state [¢) € S is then said to be separable if there exist states
[v,) € H, and |¢y) € H such that

) = ) ® [t) (3.1)

In this case |¢,) fully determines the outcomes of any measurement of observables in 2,
and |v¢y) determines the outcomes of measurements in ;. Pure separable states are
those that do not possess any correlations between systems A and B, in the sense that
(A® B)y, = (A)y, (B)y,. A pure state is said to be entangled if it is not separable, in which
case there are no local pure states in 77, and 7 that fully determine the outcome of local

measurements in A or B. A typical example of an entangled state is when 4, = %, = C?

with bases {|0),|1)} and
1

V2

A standard way of quantifying entanglement in pure bipartite systems is by computing
how much information is lost about |¢)) when one only considers local measurements in .7,
or in 4. For instance, |¢) in (3.2) is a maximally entangled state, as p, = try(|JY)Xv¢|) =
P = trg(|)(@]) = 31. The fact that the reduced states of [¢)) in J; and J, are maximally
mixed indicates that the partial states contain no information about [4)).

|¥) (100) + [11)). (3.2)

This lost information can be computed through the entanglement entropy

Se([oX]) = S(pa) = S(X¢]) = S(pa) = S(pa), (3.3)

where p, = try(|1)Xv]), ps = tra(|)e)|) are the partial states of 1)) with respect to A and
B, and S denotes the von Neuman entropy

S(p) = — tr(plog ). (3.4)

which can be intuitively seen as a quantifier of the uncertainty associated with p, be-
ing 0 for pure states. The entanglement entropy is then 0 for any separable pure state,
indicating that [¢) is entangled whenever Sg(|)v|) # 0, and the maximum value of
the entanglement entropy is log(n), where n = min(dim(J#,), dim(74,)). In particular, if
dim(J#4,) = dim(s4,), a pure state that maximizes the entanglement entropy is called a
maximally entangled state (e.g. the state |¢) in (3.2)).

The discussion of entanglement becomes slightly more involved when one considers
mixed states. This is due to the fact that mixed states might be composed of classical
mixtures of unentangled states, which can contain classical correlations between the partial
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states in A and B. Overall, a bipartite mixed state is separable if it can be written as
p=D_pib @ ph, (3:5)

where pi and p! are states in % and 4. A non-separable state is then said to be
entangled. In this more general case, Sg(p) is not enough to quantify whether p is entangled
or not, as the partial states p, and pg might not be enough to fully describe the state p
even if it is separable, due to classical correlations.

Nevertheless, one can still use some notion of the entanglement entropy to quantify the
entanglement of mixed states through the entanglement of formation. The entanglement
of formation is defined as

Er(p) = miﬁ) ZPz‘SE(WiX%Da (3.6)

Pi,|i

where the minimum is taken over all p; > 0 and pure states |¢;) such that
p=> pili)ei] . (3.7)

In other words, the entanglement of formation corresponds to the minimum entanglement
entropy of decompositions of p in terms of pure states. It gives the minimum amount of
entanglement that the pure states must have to compose p. Unfortunately, the optimization
of Eq. (3.6) makes the entanglement of formation very challenging to compute in practice,
even in low dimensional quantum systems.

Another way of quantifying entanglement in mixed states is the distillable entangle-
ment, which codifies how many maximally entangled pairs can be extracted from n copies
of p. Essentially, one can distinguish between classical and quantum correlations by clas-
sifying correlations that can and cannot increase through local operations and classical
communication (LOCC) [200, 33]. The entanglement between two systems then cannot
increase under LOCC, in the sense that no sequence of local operations acting on the
individual systems can increase the entanglement between them, even if these operations
depend on classical parameters related to the other system. In this context, the distillable
entanglement of p is defined as the asymptotic rate of maximally entangled states that
can be extracted from n copies of p. Needless to say, the distillable entanglement is also
not computationally friendly. Interestingly, one can show that the distillable entangle-
ment is upper bounded by the entanglement of formation, implying that not all bipartite
entanglement in a state can be distilled.
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One practical way of quantifying entanglement is through the negativity. Essentially,
the negativity relies on the fact that the operation of transposition is positive, but not
completely positive. In other words, the partial transposition operation p, ® pg +— p ® P
(and extended by linearity) can map a density operator p to an operator that is not
positive. We denote the partial transpose with respect to B by p™. The fact that partial
transposition always maps separable states into positive operators implies that states with
negative partial transpose must be entangled. This is known as Peres’ criterion, after [113,

|. Moreover, one can use the negative eigenvalues of the partial transpose to quantify
entanglement. Denoting by o (p), the set of negative eigenvalues of p™, the negativity of
a bipartite density operator p is defined as

: 5l ~ 1
N = Y =1 (3.9
Aeay ()
where || - ||; denotes the trace norm ||A||; = trvV/ AtA. Tt is also convenient to define the
logarithmic negativity
Ex =log 2N +1) = log(||45]]1), (3.9)

which also yields the maximum of log(n) for maximally entangled states when dim(7#,) =
dim(.74;) = n. It can then be shown that the negativity does not increase under LOCC [199)]
and that the logarithmic negativity is an upper bound to the distillable entanglement.
However, the negativity is not always a faithful measure of entanglement, in the sense that
not all entangled states have zero negativity. Indeed, in Hilbert spaces ¢, and J7; with
dimensions greater than 2, not all entangled states lead to non-positive partial transposes.
However, in the particular case where %, = #, = C? (or whenever dim(J4) +dim(4) <
5), the negativity is a faithful entanglement measure.

If even in bipartite systems quantifying entanglement can become tricky, it should
come as no surprise that entanglement in systems with more than two parties is even more
challenging. Indeed, systems with more than two parties can have multiple different kinds
of entanglement between the different parties [17, 28]. This is perhaps better exemplified
with the |GHZ) and |W) states in a three-qubit system:

_ L L
VB V2

The |WW) state essentially corresponds to a case where each pair of qubits is equally entan-

gled with each other. Indeed, N'(p¥) = N(pl) = N(p',) = 1(v/5 — 1), and |W) is the

tripartite state that maximizes the negativity between all pairs. On the other hand, |GH Z)

W) (1100) 4 ]010) + [001)), IGHZ) = —(|000) + |111)). (3.10)
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is such that neither of the reduced bipartite systems is individually entangled with each
other, as pGH% = pGHZ = pGHZ = 1(|00)00| + [11)(11]) are separable. In a way, the state
|GHZ) contains entanglement that involves all parties simultaneously, and if any qubit is
lost, all information about the state is lost. However, performing a local measurement in
one of the parties associated to the eigenspaces of 7, in the state |GHZ) yields maximally
entangled states for the remaining parties—this fact will be important later on when we

discuss recent progress regarding entanglement in quantum field theory.

As the number of parties becomes larger, new types of entanglement arise, making the
classification of entanglement in n-partite systems still an active topic of research [73, ,

.

3.2 Challenges of Quantifying Entanglement in Quan-
tum Field Theory

Given the challenges of quantifying entanglement even in finite dimensional Hilbert spaces
with a finite number of parties, it is to be expected that the quantifying entanglement
in the context of quantum field theory makes the situation even worse. A way of seeing
why this is the case is by thinking of the analogy between a massive real scalar quantum
field and a lattice of interacting quantum harmonic oscillators [130], where one assigns one
oscillator degree of freedom to each point of space—quantum field theory can be thought
of as a limit of an infinite-partite system with infinite dimensional Hilbert spaces. Overall,
the worst-case scenario for entanglement analysis.

In many instances, it is not suitable to think of quantum fields in terms of lattices of
harmonic oscillators attached to each point of space; instead, quantum field theory is an
association of algebras of observables to regions of spacetime. However, in this context, the
standard tools for studying entanglement do not apply. In fact, in this case, it is not even
clear what one means by quantifying entanglement in a quantum field theory, as one does
not have a tensor product decomposition, or even different states associated with different
parties. Although we only have one state and no tensor product decomposition, we can
still find methods to effectively assign independent quantum degrees of freedom to spacelike
separated regions of spacetime, and thus compute the entanglement between these regions.
For the purposes of this chapter, “quantifying entanglement in quantum field theory” will
refer to quantifying entanglement in one state between two regions of spacetime. We start
by discussing some known results about entanglement of the Minkowski vacuum in two
causally complementary regions.
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Vacuum Entanglement between Complementary Regions

Although the standard techniques of quantification of entanglement cannot be straightfor-
wardly applied in quantum field theory, there are strong arguments that states in quantum
field theory are highly entangled. In particular, the Minkowski vacuum is argued to contain
an infinite amount of entanglement, as we will discuss here.

A simple argument for why the Minkowski vacuum must contain entanglement between
complementary regions of spacetime is the fact that its correlation function w0(¢( f )qb(g))
is non-degenerate. This implies that degrees of freedom associated with any two spacetime
regions are always correlated. While correlations cannot be associated with entanglement
in general (they might be classical correlations), we note that the Minkowski vacuum is
a pure state. This implies that any correlations between independent degrees of freedom
that fully describe the state are not due to classical mixtures, and must necessarily be
quantum in nature. In particular, this implies that the vacuum must contain entanglement
between a region O and its causal complement 0" = M\ (JT(O) U J~(0)). While this
informal argument can be used as evidence that the vacuum is entangled, we can refine it
by analyzing the Reeh-Schlieder theorem:

Reeh-Schlieder Theorem | , 78]: Given a causally convex bounded set O, let Ty be the
GNS representation of the Minkowski vacuum |0). Then |0) is both cyclic and separating
for my(A(O)).

In the theorem above, we say that a vector |¥) in a Hilbert space % is cyclic with
respect to a subalgebra A of linear operators on ¢ if A |U) =0 = A=0foral Ae A
We say that |¢) is separating for A if the set A |¥) is dense in 5. The Reeh-Schlieder
theorem then implies that given any bounded region O, 1) there are no local operators
in A(QO) that annihilate the vacuum, and 2) that every state in F (7)) can effectively be
produced by applying local operators in A(Q) to the vacuum.

The Reeh-Schlieder theorem then implies that although the local algebra A(Q) only
captures a subset of the degrees of freedom of the quantum field theory, its action on the
vacuum is sufficient to effectively produce any state. Noticing that states in quantum field
theories are globally defined, this implies that there are localized operators in A(Q) that
can produce field excitations in regions arbitrarily far away from O when applied to the
vacuum. At first glance, this fact might look incompatible with relativistic causality, but
it is important to stress that general operators in A(Q) cannot simply be applied to the
vacuum. Indeed, only unitary operators could potentially arise from well-defined operations
in the algebra whose action in |2) produces another pure state, and even so, not all unitary
operators correspond to physical processes, as discussed in Section 2.1. Instead, one should
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see the cyclicity of the vacuum as evidence that it contains entanglement between any two
regions.

To understand why one can argue that a cyclic and separating state is entangled,
it is instructive to consider what these concepts entail in the case of a finite dimensional
bipartite system. Let .57 and 7% be two Hilbert spaces of dimension n and 7 = 74 ® 76.
In this context, a vector [¢)) € F is cyclic for the algebra of linear operators of the form
Ay ® 1, if and only if |1)) has maximal Schmidt rank, in the sense that there exist bases
{li1)}, and {|iz)}, of JA4 and 4 such that

W) = ZQ/%' |iviz) , (3.11)

with all ¢; # 0. It is then clear that the action of all linear operators acting on 1,
Ay =35 Aji [71)(k1], can generate any state of 5 by acting on |¢), as

A [Y) = Z Ajibi | Jriz) - (3.12)
ij

The equation above also shows that, in this finite dimensional case, any cyclic state is also
separating, as A |¢) = 0 implies Aj;;¢; = 0 for all 4, j, leading to A =0 from the fact that
1; # 0. The decomposition of Eq. (3.11) also automatically implies that [¢) has non-zero
entanglement entropy. This discussion also generalizes to infinite dimensional separable
Hilbert spaces (with bounded operators A, ).

In the more general context of quantum field theory, where one cannot decompose the
Fock state as a tensor product corresponding to different regions of spacetime, the state-
ment that the vacuum is cyclic and separating can then be seen as a generalization of
the concept of vectors of maximal Schmidt rank, indicating that the Minkowski vacuum
contains a high amount of entanglement between a bounded region and its causal com-
plement. Indeed, there are good arguments for why the vacuum entanglement between a
region and its causal complement is not only high, but infinite. For instance, in [197] it
was shown that by considering arbitrary states |p,) and |pg) in any two Hilbert spaces .73
and 7, an arbitrary target state |U) € S ® 74, and € > 0, it is possible to find unitaries
U, € A(O) @ B(A,) and U, € A(O') ® B(#), such that

0.00010) © o2) @ o)) = 10) @ [9)|| < e (313)

In particular, this result implies that it is possible to find local unitaries that produce any
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entangled state in 7, ® 77, to arbitrary precision by coupling system A to the vacuum in
region O and system B to the vacuum in O'. Unfortunately, the results of [197] are not
constructive, so it does provide an explicit form for the unitaries U, and Us.

Quantifying Entanglement Between Two Non-Complementary Regions

The entanglement between a region and its complement is, in many ways, physically in-
accessible: when probing any features of quantum fields, we are always restricted to local
measurements at finite energies. While the entanglement between complementary regions
is infinite, analyses of entanglement entropy between a region and its complement in lat-
tice field theories show that most of the entanglement is localized at the boundary of
the regions and that the entanglement entropy is given by A/4¢?, where A is the area of
contact between the regions' and e is the lattice separation, corresponding to a UV cut-
off [180, , 49, 38]. This quantity diverges as ¢ — 0T, confirming that the entanglement
between a region and its causal complement is infinite. However, it also gives very little
useful information about the physically accessible entanglement between two regions—one
cannot realistically access the degrees of freedom of a quantum field in sharp regions, and
in this example, the infinitely thin overlap between the regions is the relevant region where
the entanglement is localized.

For the remainder of this Chapter, we will then focus on quantifying entanglement
between two non-complementary regions, when there is a non-zero distance between them.
Not only will this get rid of the “infinite entanglement” between the regions, but it will
also yield entanglement that is, at least in principle, physically accessible. However, this
introduces a series of challenges in the quantification of entanglement. Indeed, while there is
plenty of evidence that the Minkowski vacuum contains entanglement between a spacetime
region and its causal complement, these arguments do not immediately imply that the
vacuum contains entanglement between two non-complementary regions. In this case the
Reeh-Schlieder does not provide much useful information, as being cyclic and separating
only evidences entanglement between bipartitions. The theorem of [197] also does not
apply unless O is the causal complement of O. Finally, the simple argument that the
vacuum contains correlations between any two regions also does not imply that two finite
regions are entangled with each other, given that the state that represents the degrees of
freedom of each region cannot be assumed to be pure?.

!Specifically, A is the area of the spatial region Yo (contained in a Cauchy surface) such that D(Xo)
is the smallest causal diamond that contains the causal hull of O.

2As a matter of fact, the reduced state to two regions cannot even be formally defined due to the type
IIT nature of local algebras.
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In summary, given two causally disconnected regions O, and Oy with respective causal
complements O, and O}, the arguments that apply to complementary regions only ensure
that there is entanglement between degrees of freedom in O, and O/, (resp. B). Even though
Oy C O, it is not a guarantee that the field degrees of freedom of O, and Oy are entangled.
This can be seen by noticing that the vacuum state of Minkowski spacetime is a pure state
that can be fully described by its degrees of freedom in O,, Oy, and Qe = (O, U Oy)'.
This means that the problem of quantifying the entanglement between the two regions O,
and Oy can be intuitively thought in terms of quantifying tripartite entanglement of a pure
state, or, in terms of quantifying bipartite entanglement with mixed states. Both of these
cases are much more challenging than the case of pure bipartite states.

Throughout the remainder of the chapter, we will focus on two ways of quantifying
entanglement between two non-complementary regions in quantum field theory. The first
approach will be to identify field degrees of freedom localized in two regions and to attempt
to quantify the entanglement between them. The second approach will be to use localized
probes to attempt to extract entanglement from a quantum field, inferring entanglement
in the field from the entanglement acquired by the probes.

3.3 Field Entanglement between Localized Modes

In this Section, we will discuss an approach for quantifying entanglement between two
finite regions of a quantum field theory by analyzing entanglement between degrees of free-
dom localized in each region. Specifically, we will consider degrees of freedom associated
with canonical pairs in the respective regions, allowing us to use tools of Gaussian quan-
tum mechanics for computing the entanglement between local field modes explicitly. This
section is based on the results of [3], but we will also summarize the methods discussed
in [96, 95, 94, 66], which have yielded important results regarding entanglement in quantum
field theory.

Local Degrees of Freedom Associated to Two Regions in QFT

One way of quantifying entanglement between two spacetime regions O, and Oy is by
utilizing the phase space quantum mechanics techniques described in Section 1.2. Let us
consider the explicit case where the regions O, and Oy are causal diamonds®. To ensure

3In this case, If O, and Oy are any sets contained in O, and Oy, respectively, their associated algebras
can be fully represented in A(O,) and A(Og) by A2.
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that the degrees of freedom in the regions O, and Oy are independent, we assume that the
two causal diamonds are spacelike separated.

One can then find a Cauchy surface ¥ that overlaps O, and Oy, such that ¥, C ¥ is a
Cauchy surface for O, and ¥z C ¥ is a Cauchy surface for Oy. Canonical modes in each

of these regions can be defined by considering sets of functions F, ;, G, in C§°(X,) and
Fyi, Gg,; in C§°(X5) such that

/dZFM(cc)GA,j(az) = (52']‘, /dEFBﬂ-(a:)GB’j(a:) = 045, (314)

giving rise to the independent canonical pairs (®(F, ), II(Gy;)) and (®(Fy.), I1(Gy,)).

If the sets of functions are maximal linearly independent sets in C§°(%,) and C§°(3s),
it is then possible to fully represent the degrees of freedom of the field in the regions
O, and Oy in terms of the field and momentum operators smeared against the functions
Fyi, Gai, Fuiy Gy, In this case, the sets of modes (@(FM), f[(GAJ;)) fully encompass all
degrees of freedom of O, (respectively, for B). One way of finding such a maximal linearly
independent set would be by considering F,; = G,; as an orthonormal basis of smooth
compactly supported functions in the real Hilbert space L?(X,), defining the complete set
of modes (®(F,,),II(F,;)). With the analogous procedure for B, we would obtain the
complete set of field modes (®(Fy;), [I(F;)), which are independent of the modes in A.
Although this approach would fully represent the degrees of freedom of a quantum field,
the standard techniques of Gaussian quantum mechanics would not be applicable in a
straightforward manner to this infinite dimensional case.

A

We can instead look for a finite, but sufficiently large, number of modes (®(F} ;), f[(F wi))
and (®(Fy,),I(F,;)), with i = 1,...N in each region. This would allow us to describe a
quasifree state w within the familiar domain of finite dimensional Gaussian quantum me-
chanics, where there are simple and effective techniques to quantify entanglement between

independent degrees of freedom.

Having 2N + 2N = 4N degrees of freedom associated to the collection of modes
in A and B, we split the classical phase space where they can be represented as a di-
rect sum R*™ = R?Y @ R?Y with the 4N dimensional symplectic form Q (analogous to
Eq. (1.116)), with the first factor associated associated to operators defined in the re-
gion O, and the second factor associated to operators in Oy, and canonical coordinates
e = (gL, pt, g oY, gk pl, Y, pl). The association Z(£) = Q,p6°Z* then creates

‘By a maximal linear independent set we mean that the only F € C§°(%,) satisfying Fy ;(F) =
G,i(F)=0 Viis F(z) =0, and the analogous statement for B.
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the correspondence

g O(Fh),  gh— O(Fuy), (3.15)

) )

pi = ﬂ(FAi)7 pfg = ﬂ(FAi)7 (3-16)

) )

representing the canonical modes in a phase space.

The covariance matrix o of a quasifree state w then factors as

_ (9~ M
o= (UT U'B) : (3.17)

where o, and o are the covariance matrix associated to the modes in A and B individually,
and n is a matrix of correlations, defined by the blocks

771’]' — (<{?(FAZ)’ C?(FBJ>}>0J <{CI3(FA,Z'>’ I}(Ea,j)}%) ) (3.18)
({II(F), @(Frg) e ((IH(Ew ), TI(Faj) b

Regarding the entanglement analysis, the simplification brought by the restriction to a
finite number of modes gives a rather simple quantification of bipartite entanglement. It
turns out that for Gaussian bisymmetric states® the Peres-Horodecki separability criterion
is not only a sufficient but also a necessary condition [176, 170]. This means that in these
Gaussian scenarios, separable states are exactly those with a positive partial transpose
(PPT), and therefore, the negativity and the logarithmic negativity are faithful entangle-
ment monotones.

We can compute the negativity associated to the representation of the state w by
defining the covariance matrix of the partial transpose with respect to B, o', as the result
of reversing the sign of the momenta associated with system B:

o' =1,eT)o(1,aT,), (3.19)
where

TBzé(g °). 3:20)

5These are bipartite Gaussian states that are invariant under internal permutations of modes within
either side of the partition.
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The negativity is then entirely determined by the symplectic spectrum® of o', {v1, ... v}
N

Ey =) max (0, log, ). (3.21)
=1

Moreover, the symplectic spectrum of o', is simply given by the absolute value of the
eigenvalues of iQ2o ', and can therefore be computed in a straightforward manner. From
Eq. (3.21) we see that the modes in A and B will be entangled if and only if o' has at least
one symplectic eigenvalue strictly below 1, i.e., if and only if the condition ' > iQ~! is
violated, in which case o' would not define a state.

Having the tools to quantify entanglement in quantum field theory, we can move forward
with applying these techniques to specific examples. As the tools discussed here suggest,
there are no general expressions for the entanglement between two localized regions in
quantum field theory, and most of what is known applies only to specific examples, focusing
mostly on the Minkowski vacuum of a real scalar quantum field.

Entanglement between two Spacetime Regions

We will now focus on quantifying entanglement of the Minkowski vacuum of a real scalar
field, wy <> |0). The setups that will be discussed here were first used in this context
in [1], where the authors studied entanglement between two modes (®(F,),II(F,)) and
(®(F,),TI(F,)), defined by non-overlapping spherically symmetric spatial smearing func-
tions F, and Fj; (among other more general examples). The functions F,(x) and Fj;(x)
were defined along a spatial slice t = 0 in inertial coordinates (¢, ). The functions F, and

F, considered were spherically symmetric’ with no overlapping support, prescribed as
Fi(x) = FO(x —x,), Fy(x) = FO(x — ), (3.22)

with

FO@) = N; (1~ %) 01— fel/R). (3.23)

6Notice that the symplectic eigenvalue is composed of pairs {xv;};. When we refer to the symplectic
spectrum, we will mean the positive symplectic spectrum, consisting only of {v;};.

"The studies in [1] were conducted in spacetimes of different dimensions, but we will focus on the case
of 3+ 1 Minkowski spacetime.
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where |z, — x| > 2R, § > 1 and

1 [(5 +26)

Ny = ——
T ARV T+ 20)

(3.24)

ensuring normalization according to (1.128). The functions F,(x) and Fy(x) are then
compactly supported within the sphere of radius R centered at x, and xj, respectively.
Although not of class C*°, these functions possess |d| derivatives, peaking at * = x, and
x = x5 respectively, and decaying to 0 at the boundary of the spheres where they are
supported. The functions F® (x) are particularly convenient for the Gaussian quantum
mechanics approach, as the expected values of the smeared field operators can be found in
closed form [1].

Although there is reasonable evidence that the Minkowski vacuum is a highly entangled
state, the studies of [1] found that no such modes (®(F,),II(F,)), (®(F,),II(Fy,)) are ever
entangled in 3+ 1 dimensional Minkowski spacetime. In other words, although the vacuum
is a highly entangled state, entanglement in quantum field theory is not as ubiquitous as

one might have expected.

A natural generalization of the example studied in [1] would be to instead consider
many different field modes localized in a given region of spacetime. An attempt in this
direction was considered in the collaboration [3], where we studied entanglement between
multiple sets of modes in two spacelike separated regions. Specifically, we considered the
modes that correspond to initial conditions F,(x) and Fy(x) at different times®. That is,
if 3, denotes the Cauchy surface defined by ¢ = ¢y, the modes considered correspond to
the smeared field operators

d, (F,) = /E AXd(x)F,(x), I (F,) = /Z AXTI(z) Fy (), (3.25)
o, (F,) = /E _quA)(zc)FB(a:), I, (F,) = /Z .dEf[(:c)FB(cc), (3.26)

for multiple values of ¢;, corresponding to different Cauchy surfaces and F,(x), Fy(x)
given by Eq. (3.22). Importantly, we assume that the values of ¢; are picked so that there
exist two spacelike separated causal diamonds O, and Oy that contain supp(F,) N>, and
supp(Fy) N Yy, for all ¢;, respectively for A and B (see Fig. 3.1).

8The motivation for this choice of modes in [3] stemmed from the fact that two spacelike separated
particle detectors coupled to the Minkowski vacuum for finite times can become entangled. We will discuss
this idea in more detail in the next Segment.
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Figure 3.1: Schematic representation of the localization of the spatial modes in spacelike
separated regions O, and Oy. The arrows indicate the operation of moving the modes
by solving the equations of motion corresponding to each initial condition to find the
corresponding position and momentum of each mode in the surface t = 0.

By choosing field and momentum operators at different times, we have that for each
t;, the modes (®y,(F,), 1L, (FL)), (D, (Fy), 0, (Fy)) belong to the algebra A(;). In par-
ticular, for t; # t;, the pairs (@ (F4),II; (F,)) and (ﬁ)tj(FA),f[tj(FA)) belong to differ-
ent algebras. We can still compare them both by noticing that each of the operators
Ci)(FA/Bﬂ-) and ﬂ(FA/BJ-) correspond to covariantly smeared field operators (ﬁ(fA/BJ), gzg(gA/B,i)
through (1.125), where

EfA/B,i|Eti =0, EgA/B,i
nuqufA/B,i|Eti = —Fyp, nuqugA/B,i

Eti - A/BJ (327)
5, = 0. (3.28)

Consequently, we have é(fm),é(gA,j) e A(O,) and @(fm),(i(g&j) € A(Oy), so that the
operators associated with the modes labelled by A and B commute. However, this choice
of modes has the unfortunate consequence that different pairs within each region, say

~ ~ ~ ~

(O(fai), ¢(gasi)) and (&(fsj), #(ga;)), might not be commuting. This can be mapped
to our standard Gaussian quantum mechanics formulation by performing a symplectic
Gram-Schmidt procedure?, which results in independent modes within each region. The

9The Gram-Schmidt procedure can become computationally challenging depending on the number of
modes considered.
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explicit computation regarding characterization of the modes can be found in [3]'°, and
the Gram-Schmidt algorithm can be found in, e.g. [95].
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Figure 3.2: Logarithmic negativity quantifying the entanglement between the two sets of
N modes associated with detectors A and B, as a function N, when the separation between
the centres of the regions A and B is |x, — 5| =T + 2R.

The specific setup used in [3] considered N Cauchy surfaces, parametrized by

. T+ i
2 N-1

T, (3.29)

with @ € {0,1,..., N — 1}, the shape functions in (3.22) with the parameter 6 = 2 when
the separation between the causal diamonds O, and Oy is minimal: |z, — x| = T + 2R.
The logarithmic negativity as a function of the number of modes considered is displayed
in Fig. 3.2. The plot shows that the entanglement between the two sets of modes in
each region is zero unless sufficiently many modes are considered (equivalently, unless NV is
sufficiently large). We also see that as different modes are considered (with different choices
of t;), the negativity does not monotonically increase; instead, it first oscillates and then
asymptotes to a constant value. This is indicative that the different choices of local modes

ONotice that in [3] the modes were represented in a single algebra A(X), associated to a single Cauchy
surface, rather than in the covariant algebra A(M). These methods are, of course, completely equivalent.
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in A and B contain different components of whichever modes are responsible for most of
the entanglement between the two regions—simply increasing the number of modes while
changing all of them does not guarantee that the most entangled modes between the two
regions can be more faithfully represented.

The result displayed in Fig. 3.2 demonstrates that there is indeed vacuum entanglement
between two causally disjoint regions of spacetime. Also notice that due to the fact that
we only considered specific types of modes, the logarithmic negativity displayed in Fig. 3.2
is merely a lower bound for the entanglement between the two regions.

To Which Field Modes do Probes have Access to?

We have now explicitly seen that the vacuum of a quantum field theory possesses entangle-
ment between two finite spacelike separated regions. However, this does not immediately
imply that one can access this resource. As we discussed in Chapter 2, one accesses a
quantum field through interactions with localized probes, but it is not yet clear which
specific set of modes a probe has access to.

For instance, consider an inertial two-level Unruh-DeWitt detector in Minkowski space-
time, defined by the interaction Hamiltonian density

H(x) = M) (67 + e H67)d(x),  A(x) = x(t)F(x), (3.30)

where x(t) is the switching function and F'(x) is the smearing function, written in inertial
coordinates (t,x). For convenience, we also assume that F' is a real positive function,
normalized in L*(R3). The interaction Hamiltonian associated to the interaction of the
detector with the field can be obtained by integration in the spatial variables «:

Hi(t) = Mx(t) (6T + e767) /d3:cF(m)g5(x) (3.31)
We can then identify the operator

d,(F) = / PaF(z)o(t, ), (3.32)

which naturally shows up in the interaction Hamiltonian.

The detector then directly couples to the operators defined by CE(F ) (with ¢ in the
support of x(¢)) in the algebra A(O), where O is a causal diamond that contains the support
of A(x). The set ®,(F') for ¢t € supp(x(t)) can then be mapped to a single Cauchy surface,
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say t = 0, where each operator @t(F ) in general corresponds to a mixture of smeared
field and momentum operators. Alternatively, this uncountable set of field operators can
be represented in the algebra A(O). Interestingly, the detector modelled by (3.30) does
not directly couple to the field’s conjugate momentum ﬂt(F) at each surface. Instead, an
inertial particle detector is naturally associated with the inertial time coordinate t, and
the operator f[t(F ) appears in the relationship between H 1(t + dt) and H 7(%):

Hy(t+ 6t) — Hy(t)
5t

= M(AT (x)6T+AT ()67 )Py (F)+MAY ()6 +A7 ()67 )L (F)+O(5t).

(3.33)
One could then argue that the operator f[t(F ) is indirectly probed by an Unruh-DeWitt
detector. Overall, to describe the dynamics of an inertial detector with the field, it would
also be a natural choice to select canonical pairs of the form (®,(F), II,(F)) whenever F is
a real function normalized in L*(R?).

Indeed, the original motivation in [3] for considering modes with constant shape in
different time slices was to attempt to quantify the entanglement between modes that two
particle detectors with spatial shape F'(x) couple to, and compare it with the entanglement
that can be acquired by the probes. In this sense, the logarithmic negativity displayed in
Fig. 3.2 can also be seen as an upper bound to the entanglement that can be acquired
by detectors that couple to the field with spacetime smearing functions x(¢)F,(x) and
X(t)Fy(x). Indeed, in [3], it was shown that the entanglement that can be acquired by
detectors in this setup was orders of magnitude smaller than the field entanglement between
the field modes considered in Fig. 3.2. We will discuss more about the entanglement that
can be acquired by two detectors coupled to the field in Section 3.4.

Recent Progress and Future Steps

We conclude this section by mentioning recent results regarding entanglement in quantum
field theory due to the contributions of Natalie Klco’s group. We will briefly summarize the
techniques presented in [95] and the results obtained in [96, 94, (6], as these are particularly
relevant for the next steps of research related to vacuum entanglement in quantum field
theory, as well as for ideas discussed in the next chapter.

The references [96, 95, 94, 66] all take a slightly different approach to entanglement in
quantum field theory, by exploiting the fact that a real scalar quantum field can be ap-
proximated by a lattice of coupled harmonic oscillators. Within this lattice, the oscillators
at each site determine canonical modes of the lattice field theory, which can then be repre-
sented in a finite dimensional phase space. Although the degrees of freedom represented in
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Klco’s approach are different from the ones that we have discussed so far, the techniques
presented in [95] and later applied in [96, 94, (6] can be directly translated to our setup,
where the modes are defined by smeared field and momentum operators. For this reason,
we will present these techniques in the context of our setup.

First we notice that in the Minkowski vacuum wy, given a flat Cauchy surface > and
any functions F, G € C§° (%),

A

wo({&(F), IH(G)}) = 0. (3.34)

This result implies that given any set of independent modes (®(F,),II(E})), (with i €
{1,..., N}), the covariance matrix associated with wy takes the form

G11 0 G12 0 e GlN 0
0 Hll O H12 . e 0 HlN
Ggl 0 G22 0 .. GQN 0
oy = 0 H21 0 HQQ Ce 0 HQN , (335)
GNI 0 GN2 0 R GNN 0
0 HlN O HQN e 0 HNN
where
Gij = wo({®(F), ®(F))}),  Hij = wo{IL(F),TI(F})}). (3.36)

In other words, if Py : RY — R*V and Py : RY — R?Y are linear operators defined by

Py(q',...q") = (¢,0,¢%,0,...4".0),  Pu(p',....p") = (0,p",0,p° ...,0,p"), (3.37)

we can write

where (G);; = Gy; and (H);; = H;;. It turns out that many other operations in o also
decompose in terms of G and H. For instance, the (positive) symplectic spectrum of o
is given by the eigenvalues of vV G H, which also coincide with the eigenvalues of Vv HG.

This factorization becomes particularly useful when one wishes to check entangle-
ment between two parties. Indeed, consider commuting modes (®(F),;),I(F,;)) and
(O(Fy;), II(Fy,)) for i € {1,..., N}, associated to commuting algebras A(O,) and A(Oy).

Then the covariance matrix associated with the Minkowski vacuum also factors as (3.35),
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now a 4N x 4N matrix, with G and H containing the correlations of the field and momen-
tum operators between all modes labelled A and B. The operators Py and Py naturally
generalize to this higher dimensional space. In this case, the partial transpose with respect
to B can be written as

o, = PGP} + PpH' P}, (3.39)
where H' = C,HC}, and Cj, is given by
(4 9). 30

effectively mapping II(F, ;) — —II(F};). Thus, the symplectic eigenvalues of o) are given
by the eigenvalues of vV GH?T. Moreover, the operators G and H' can be used to find sets
of modes that fully encode the negativity between systems A and B, as follows.

Let {VJ-F}]-:L_,QN be the symplectic eigenvalues of ag , ordered in increasing order, so
that the eigenvectors of H' G and GH" are (I/]r)Q. The eigenvectors of H' G and GH' can
then be used to characterize the modes associated to the eigenvalues of o that are smaller
than one. The modes associated with eigenvalues smaller than one will then correspond
to each negativity core. Let vg j, vir; € R*Y be the eigenvectors

HFGVq>’j = (V;)2V¢,,j, GHFVH,J' = (V;)2VH7j. (341)

Each pair of vectors (Ppve. j, Pvir;) in the symplectic space R*Y is then associated to an
eigenvalue V]-F of VGHTY, corresponding to possible negative eigenvalues of the partially
transposed covariance matrix. We can use the vectors ve ; and v ; to build a symplectic
operation that is local in A and B and maps each pair ((i)(FA/BVj),ﬂ(FA/BJ)) to a corre-

sponding canonical pair of operators that are associated to a negativity core.

To build the symplectic transformation, the convention used in [95] normalizes the
vectors Vg j, vir,; by imposing the conditions

2N
vy Gvgj=v:, Vv H vy =v} Vo Vi . = 1 (3.42)
.5 Q.5 — Vi IL,j ILy — %5 ®,5V11,; — 42N :

Jj=1

The basis {ve;,vi;} is in general not symplectic. This can be fixed by applying the
symplectic Gram-Schmidt procedure to it, producing a basis {ug ;, ur,; }. We then construct
the change of basis, local in A, S,:

SAPAeé,j = PAP<I>U<I>,ja SAPAeH,j = PAPHUH,j7 (3'43)
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where { P.eg j, Pieg;} is the basis associated with the modes (®(F, ;), I(F})). For con-
venience we define P, and P; as the projectors in A and B, so that 1 = P, & P;. The
matrix representation of S, in the basis {P,es ;, Pyes ;} is then

(PyPpug )T
(PyPrum,)T
S, = : . (3.44)
(PyPpug N)T
(PyPrunn)T

Finally, we define the transformation Sy by reversing the modes in S,:

0 ... 0 1,
S,=RS,R, R= . (3.45)
0 1, ° :

The symplectic transformation that maps the covariance matrix to the modes associated
to the negativity is then
S=8,8S5;:, (3.46)

so that the covariance matrix o, = So ST represents the vacuum in this “negativity ba-
sis”. Within o7, the first canonical mode in A is entangled with the last mode of B, and
contribute to the total logarithmic negativity with — log(z/jr). Overall, the canonical pair j
(with 1 < 5 < 2N) in A will be entangled with the canonical pair 2N 4+1— 7 in B, and these
contribute additively to the logarithmic negativity whenever l/jF < 1. This method allows
one to fully classify which modes contribute to the non-bound entanglement between the
modes, as well as how much each mode contributes to the negativity.

Applying these techniques to lattice field theories, Prof. Klco’s group was able to show
numerous results about entanglement in quantum field theory (extending their results to
the limit of the continuum). We will summarize some of the most relevant conclusions
obtained in their recent works below.

Exponential Decay of Entanglement: In [96, (0], it was argued that the entanglement
between two spacetime regions decays exponentially with the distance between them, even
when the field is massless with polynomially decaying field correlations.

UV-IR Connection: Also in [(0], it was argued that vacuum entanglement between two
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regions exists, even when the regions are arbitrarily separated. Moreover, the further apart
the regions are, the more energy the local modes that maximize the negativity must have.
This fact was called the UV-IR connection [96].

GHZ-Type Entanglement: In [01] it was shown that it is possible to recover a poly-
nomial decay (for massless fields) in the entanglement between two causally disconnected
regions, provided that one performs a selective measurement to the field in the region
complementary to the two regions of interest. This result indicates that the vacuum en-
tanglement behaves similarly to the GHZ state: when one considers entanglement between
only two regions, the remaining degrees of freedom of the field are effectively traced out,
creating mixedness in the local modes. However, when a local measurement is performed in
the complementary region, one can recover entanglement between two regions that behaves
like the field’s correlations. This behaviour for the entanglement between two regions and
their complement is similar to that observed for a GHZ state (3.10), indicating that vac-
uum entanglement is genuinely multipartite, indiscriminately entangling all neighbouring
regions.

Overall, the tools developed in [95] and discussed above give a clear pathway to study
entanglement in quantum field theory and suggest natural steps forward. For instance,
applying Klco’s techniques to the approach of localized field modes would allow one to find
the specific sets of local modes é( fasi), qAb(gA /i) that contain complete information about
the negativity between two finite spacetime regions. This could also be used to indicate
the specific local probes that should be utilized to extract entanglement from the vacuum.
These are topics that are currently being studied and have the potential to provide insight
into our understanding of vacuum entanglement and even lead to practical applications.

3.4 Operationally Accessing the Entanglement in QFT

An alternative way of quantifying the entanglement in quantum field theory is by quantify-
ing the entanglement that can be acquired by probes that couple to a field. The concept of
utilizing localized probes to access entanglement in quantum field theory was first consid-
ered by Valentini in 1991 [190], later studied by Reznik and collaborators in the 2000’s [154],
and a modern approach was introduced by Pozas-Kerstjens and Martin-Martinez in [150],
when the protocol took the name of entanglement harvesting. The typical protocol of en-

HThe name stems from the fact that when the separation between the regions is large (the field modes
between them are in the IR range), the local modes that encode the entanglement between the regions
must have energies in the UV range.
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tanglement harvesting considers two particle detectors that couple to a localized quantum
field in an attempt to extract entanglement from the field.

Throughout the last decade entanglement harvesting has been studied with two-level
Unruh-DeWitt detectors in a variety of spacetimes, considering different states of motion
for the detectors and different states for a real scalar quantum field [155, , , ,

, , 80, 81, , , , , 79, 72, 31]. The protocol has also been studied with
more general detector models that couple to different quantum fields, studying entangle-
ment harvesting from the electromagnetic [151], neutrino [132], gravitational fields [110],
among other generalizations [01, , ]. In this Section, we will describe the protocol of
entanglement harvesting, starting with the formulation first presented in [13%], which uses
two localized quantum fields as probes, and later presenting the simplified formulation in
terms of particle detectors, which has become the standard approach to the protocol.

Two Localized Probes Coupled to a Quantum Field

We will now consider two localized real scalar quantum fields ¢,(x) and ¢u(x) in 3 + 1
dimensional Minkowski spacetime, under the influence of confining potentials V,(x) and
V(@) coupled to a real massless scalar quantum field ngﬁ The theory of the three field qu,
QASB, and ngS is described by the Lagrangian

= —30,00" ) — 30,020" 6 — §(m} + Va(@))d% — 50,060" S5 — 5(mi; + Vi (@)
— A (X)Pa9 — A(u(X)Pn0, (3.47)

where (,(x) and (3(x) are spacetime smearing functions that are localized in spacetime.
For convenience we assume for now that (,(x) and (;(x) are compactly supported in causal
diamonds O, and O;. As a consequence of the confining potentials, both fields will have
discrete modes uy,, (x) = e “nt®,, (x), Up,(x) = e “mt®,, (x), labelled by the discrete
indices n, and n; and admitting expansions of the form (2.233). This gives rise to the
vacuum states |0,) and |0;) for each field.

The fields then interact linearly with a free Klein-Gordon field quS(x), so that the inter-
action Hamiltonian density of the interacting theory can be written as

Hr(x) = A (X)) 0 (x) + Ay (X)(x) I (x) - (3.48)
Hoa(x) Hru(x)

By picking initial states for the system of the three fields éA(x), ggB(x), and gg(x), one can
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then compute the final state of the probe fields by applying the time evolution operator
Ur = T exp (—i / dvﬁf(x)) = T exp (—i / AV (Ha(x) + 7:1173(x))) (3.49)

and tracing over quﬁ, analogous to the calculation performed in Section 2.2. Our goal is to
quantify the entanglement in the final probes state after the interaction with the field.

The computation of the final state of the probe fields qu and gEB follows steps analogous
to (2.78). We consider the initial state

/30 = |OA><0A| ® |0B><OB| ® ﬁd» (3-50)

where p, is a zero mean Gaussian state for the field gzg(x) in a suitable GNS representation.
The calculation is straightforward, but tedious, and was first performed in this context
in [138]. We present these explicit computations in Appendix F. In summary, to leading
order in A\, each mode m, and my evolves independently, according to the interaction
Hamiltonian densities

Hon,et(X) = AQ2 (x)B(x), Honet(x) = AQ" (x)b(x), (3.51)

where
Q) (x) = Ay(x)emlat + A (x)elmtall, Aa(x) = G (x), (3.52)
Q?LH(X) = AB(x)e_i“’”BtdiH + A7 (x)ei“’"ﬁtdit, As(x) = (g (x)CDiH (x). (3.53)

with a | dfj\, a, , and dfﬂt being the creation and annihilation operators associated with

excitations in the modes n, and m, for the respective fields ¢, (x) and ¢,(x). This shows
that when the localized fields start the interaction in their vacuum state, each individual
pair of modes of localized quantum fields effectively behaves as particle detector models to
leading order in perturbation theory. In this case, where the probe fields are scalar fields,
they specifically correspond to harmonic oscillator particle detectors.

Let us then focus on two specific modes labelled by n, and n;, and define the normalized
states

1

1) =al |0,,), 2.) = —=al al 10,.), 3.54

[14) = Gy, [On,) 12,) 3 o 0n,) (3.54)
1

1s) = @k, [0n,),  [26) = —zah,al, [0n,). (3.55)
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Let pay denote the final state of the modes n, and ny, obtained using the initial state (3.50).
To leading order in perturbation theory, p,; only acquires components in the subspace
spanned by {[04),]14),124)} ®{|0s), |15) , |2s)}. In this basis we can write the final density
operator in matrix form as

Pan = (OM 87“) + O\, (3.56)
2X7 2X2
where

1-L,—-L, 0 K 0 M* 0 K}

0 L., 0 (L) 0 0 0

Ky 0 0 0 0 0 0
M = 0 £, 0 L, 0 0 0], (3.57)

M 0 0 0 0 0 0

0 0 0 0 0 0 0

Ka 0 0 0 0 0 0
L, =\ / AVAV A (x)A, (X ) e @mt=ent 7 (x X'y = N2W (A7, A), (3.58)
K= =25 [ dVAV/A (A (X)e“m T Gp(x,X) = =25Gr(AF, AS), (3.59)
M= -\ / AV AV A, (x) A (X )el@mttomt) Gr(x ) = = X2Gp(AT, A)), (3.60)

where AF(x) = ef@mt A (x), and W and G denote the Wightman function and Feynman
propagator of the field ¢ in the state pe- In the expressions above, I, J € {A,B}. The £,
L, K4 and Ky terms are local to each probe, while the terms £,5, and M correspond to
the correlations acquired by the two probes. Also notice that £, and £, correspond to

the excitation probability of the individual field modes n, and n;.

We can then quantify the entanglement present in the final state of the detectors (if
any). Noticing that the final state in Eq. (3.56) is a mixed state (as each field mode becomes
entangled with the field ¢), we pick the negativity (3.8) as an entanglement quantifier. For
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the state given in Eq. (3.56), it reads

N (pn) = max (0, \/ M2 — (S8 - ”Aé‘**‘) + O\, (3:61)

Moreover, if the detectors’ local terms are the same (i.e., £,, = L., = L), Eq. (3.61)
simplifies to N (p,5) = max(0,| M| — L7). Overall, the entanglement in the state of the
detectors is a competition between the non-local M term and the local noise terms £,
and £,

Interestingly, since at leading order in perturbation theory, different modes of the probe
fields do not interact with each other, each pair of modes may acquire some amount of
entanglement, and not only the two modes labelled by n, and n,. This means that the
amount of entanglement that the two localized quantum fields can acquire is lower bounded

by Eq. (3.61).

Notice that the computations Appendix F also indirectly show that the analogy between
particle detectors and modes of localized quantum field theories presented in Section 2.2
also holds when multiple localized quantum fields are considered. In particular, this implies
that the results for the final detector state and negativity immediately carry on to the case
of two harmonic oscillator detectors coupled to a scalar quantum field.

Entanglement Harvesting vs. Communication

It should be no surprise that two systems coupled to a quantum field can become entangled.
For instance, two spins interact electromagnetically through the magnetic field sourced by
each, resulting in an effective interaction Hamiltonian that directly couples their spins and
is well known to generate entanglement. However, the mechanism that allows the spins
to become entangled in this case is communication through the field, which requires the
systems to be causally connected. In this example with spins, both probes are coupled
to the same field degrees of freedom, and this type of scenario cannot be used to infer
entanglement between different field degrees of freedom.

12The argument that entanglement at leading order is always a competition between local noise and the
correlation term M can be made even if the detectors are not identical since we can bound N using

p— _ —_ 2 — —_ — — - - -
N(ﬁAB) < \/|./\/l2 n (Laa 4£BB) B ﬁAA;-,CBB < M|+ |Los . Lo . EAA;_»CBB < M|, (3.62)

so that we obtain N (pag) < |M|. This argument was taken from [106].
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To extract entanglement from the field, the detectors must not be coupled to the same
field degrees of freedom. In other words, the entanglement between the probes that couple
to the field in regions O, and Oy can only be associated with field entanglement between the
respective regions if the algebras A(O,) and A(Oy) commute. For instance, the algebras
will commute whenever O, and Oy are spacelike separated'®. When [A(O,), A(Oy)] = 0,
one can then fully associate any entanglement acquired by the probes to entanglement that
was previously present in the field between regions O, and Oy, configuring the protocol
that has become known as entanglement harvesting.

At this stage notice that if the supports of (,(x) and (;(x) are spacelike separated, the
interaction Hamiltonian densities Hy ,(x) +Hs(x) commute. This implies that the unitary
time evolution operator factors as

0= Uvolhng Uy = Toxp (—i / dv;qI,A/B@) | (3.63)

Although the total unitary time evolution operator U; factors as a product acting locally
in A and B when the interaction regions are spacelike separated, this does not ensure that
the final state of probes A and B will be separable once we trace over the fields degrees
of freedom. Essentially, the unitaries U 2,6 and IA]B7¢ will entangle the degrees of freedom of
A (resp. B) to the degrees of freedom of the field g% in the coupling region defined by the
profile of (,(x) (resp. B). If these local degrees of freedom of ¢ are sufficiently entangled
between regions A and B, it is then possible that the final state of the fields A and B
will be entangled after the interaction. In other words, entanglement harvesting can be
understood as an entanglement swap operation, where the probes A and B attempt to
extract entanglement between the degrees of freedom of the field g% in the regions defined
by the support of (,(x) and ((x).

However, as discussed in Section 2.6, compact support is an idealization, and any
realistic description for the modes of a quantum field will necessarily extend itself through
all space. Whatever mechanism is responsible for localizing the interaction between the
probes and field will also not be able to fully suppress the interactions. This is to say
that in the example of the previous Segment, the assumption that the interaction profiles
(a(x) and (3(x) are compactly supported is an idealization. Instead, it is likely that in
any realistic scenario, both detectors will couple to the whole algebra of observables of
the target field A(M), and that the spacetime smearing functions A,(x) will be non-zero
throughout all spacetime.

BHowever, in the case of a massless field in Minkowski spacetime, any two regions that are not connected
by lightlike geodesics also fulfill this condition, allowing for timelike entanglement harvesting [160].

192



We then need a method to classify which entanglement acquired by the probes is gen-
uinely harvested, and which entanglement is acquired through communication. This classi-
fication was first done in [191], where the negativity of Eq. (3.62) was split into two distinct
terms, corresponding to entanglement through communication and entanglement extrac-
tion from the field. We will take a slightly different (but equivalent) approach here. The
classification of the different contributions to entanglement between the probes can be done
in terms of the propagators involved in the entanglement between the detectors, which can
be split into state dependent and state independent parts (see (1.68) and (1.75)). Specifi-
cally, the M term in Eq. (3.62) can be decomposed in terms of the Hadamard distribution
and the symmetric propagator:

A2 i\2
M= —NGp(Af AT) = =S HATAY) — - AT A7), (3.64)

The decomposition above separated the state dependent terms in the propagator M (en-
coded in H) and the state independent terms (encoded in A). Only the term H (A}, Af) can
encode entanglement in the field, given that A(A}, A{) is state independent: it represents
the entanglement that is acquired between the probes when they are causally connected
via symmetric exchanges through the field. Also notice that whenever the supports of
AL(x) and Ag(x) are spacelike separated, A(Af, Af) = 0. We can extend this concept to
the case where two detectors interact with the field in non-compactly supported regions.
Essentially, entanglement acquired by the probes can be mostly tied to the entanglement
in the field ¢ whenever A(fy, fi), E(fa, fis) are negligible in comparison to N (js) for all
functions f, related to detector A and functions f; related to detector B. Equivalently,
it N (pas) denotes the negativity of final state of two probes setting Gg(fs, fs) — 0, and
Gr(fs, fa) — 0, the condition so that the entanglement between the probes can be traced

back to the field is that N(pap) &= N (pas)-

For instance, in the setup of the previous Segment, we have

~ N o 2 N BE
N (prs) = max (o, ¢ JHALADE - (555 - ‘“;‘:BB) +OM),  (3.65)

and we will have N (pas) ~ N (pas) if 2|A(AT,Af)| < N(psp). This condition can be
fulfilled by considering systems that are sufficiently separated in space (or in time, for a
massless field in Minkowski spacetime).

193



Explicit Examples

For concreteness, we now present specific examples of entanglement harvesting using two
localized quantum field theories. Specifically, we consider the lowest energy modes of 1)
fields under the influence of quadratic potentials and 2) fields in cubic boxes with Dirichlet
boundary conditions, as described in Sections 2.2 and 2.5. We will see that, indeed, it is
possible for these localized quantum fields to extract entanglement from the vacuum of a
free Klein-Gordon field in 3 + 1 Minkowski spacetime.

As our first example of fully relativistic entanglement harvesting, we consider two lo-
calized quantum fields in Minkowski spacetime under the influence of potentials V, (x) =
|z|?/2¢* and Vi(x) = Vi(x — L), where L = |L| denotes the proper distance between
the centers of the trapping potentials. In essence, the two quantum fields are identical,
apart from a spatial shift in the potentials that confine them. Under these assumptions,
the energy levels of each field take the form of Eq. (2.240), with their lowest energy levels

being wp, = wo, = /M2 + 3/(2.

Both fields will interact with a free scalar field (/g(x) according to the interaction Hamil-
tonian of Eq. (3.51), where the functions (,(x) and (s(x) will be prescribed as

7'rt2

(X)) = (u(x) = e 212, (3.66)

This corresponds to interactions that are adiabatically switched on and peak at ¢ = 0.
The effective time of the switching is controlled by the timescale 7. The reason that we
consider (,(x) = (3(x) independent of the spatial coordinates is that the effective spacetime
region where the localized fields interact with ¢(x) is defined by the product of ¢, (x) with
the mode localization of the fields. The spatial localization of the modes together with the
time localization of (,(x) then gives an overall interaction which is localized in spacetime
for each mode.

We consider the three fields to start in their respective vacua, |0,) ® |05) ® |0), and we
assume that we only have access to the localized fields” mode excitations with the lowest
energy, wo, = wp, = 2. The negativity of the final state of the probes, r,5, takes the same
form of Eq. (3.61), and in the case where the excitation probabilities are the same (as we
are considering here), it becomes

N(pp) = max(0, M| — L) + O(\Y), (3.67)
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where the £~ and M terms are given by
L= X / AV AV A, (x) A (< )e 20T (x, ) = A2 (AS, A, (3.68)
=\? / AV AV Ay (x)Ap (X)e W (x,x') = N2W (A5, AL,
M=-N / AVAV AL (x) A (X)X G p(x, x) = =N2W (AT, AT,

with Q = /m? + 3/¢% and the spacetime smearing functions are given by

3 >
M) = G024 (o) = ¢ 55 ) med
Ap(x) = G(x)Pg () = Au(t,z — L). (3.69)

We then see that the effective size of the interaction region can be estimated by looking
at the standard deviation of the space dependent Gaussian function in Eq. (3.69). In this
case, the spatial size of the interaction region can be estimated to be o ~ ¢, so that smaller
values of the parameter ¢ that defines the confining potential correspond to more localized
detectors.

A2T2N ()

2.x10_31§ 0= 03T

15x10°1} 0 =0.35T

1.x10'31§ ¢ =0.4T

5.x10_32; — ¢ =0.45T
' A

13.2 13.4 13.6 13.8 14.0 14.2 14.4

Figure 3.3: The negativity of the state of two localized quantum fields confined by a
quadratic potential when restricted to their lowest energy after interacting with a massless
scalar field. The negativity is plotted as a function of the energy of the modes ) =
/m? + 3/¢%2. The time duration of the interaction 7" is used as a scale. The separation
between the detectors’ interaction regions for these plots is L = 5T.
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We focus on the case where the interaction regions are approximately spacelike sepa-
rated'?, so that entanglement acquired by the localized modes via communication can be
neglected. For this reason, we consider L = 57" in the specific example that we explore
here, where we verified that A(Af, AY) is 6 orders of magnitude smaller than N (p,s. In
Fig. 3.3, we plot the entanglement acquired by the localized modes as a function of their
energy gap. The plot is what is expected for the behaviour of entanglement harvesting
in the Minkowski vacuum, where there is a threshold in the energy gap below which no
entanglement can be extracted. For QT above this threshold, the entanglement peaks and
quickly decays.

A2T2N (pp)

1.%102) \ PR
8.x10728} S
6.x10‘26:- d = 0.498T
4.x107%F d = 0.496T
2.x107%6¢

. ‘ ‘ : - QT

3 4 5 6 7

Figure 3.4: The negativity of the state of two localized quantum fields in boxes of sides
d when restricted to their lowest energy mode after spacelike interaction with a massless
scalar field. The negativity is plotted as a function of the energy of the localized mode,

Q = y/m?+3n/d?>. The time duration of the interaction 7" is used as a scale. The
separation between the detectors’ interaction regions for these plots is L = 4.57.

As a second example, in Fig. 3.4, we consider the case where two massive fields in cubic
cavities of size length d with Dirichlet boundary conditions interact with a free massless
scalar field. The box localization was discussed in Section 2.2. We consider the same
choices of (,(x) and (5(x) as in Eq. (3.66). We also restrict the localized fields to the lowest
energy mode 1, = 1, = (1,1, 1), with energy wy = wj = /m? 4 372/d?. To ensure that
communication between the detectors is negligible, we pick d ~ 0.57 and consider the
distance between the cavities to be given by L = 5T". The negativity in this case can be
seen in Fig. 3.4 as a function of the energy gap of the 1,, 1; modes of the fields. The
behaviour of the negativity is similar to most cases of entanglement harvesting in spacelike

4 Even though the Gaussian tails of the switching are technically infinitely long, using these switchings
is effectively equivalent to considering compactly supported switchings.
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separated regions. We see more entanglement in this setup due to the smaller choice of
L, which can be taken in this case because the communication between the detectors is
naturally smaller due to the compact support of the modes in space.

Entanglement Harvesting with Unruh-DeWitt Detectors

We will now review the protocol of entanglement harvesting in a context similar to the
one discussed in [150], which could be considered the standard modern description of
the protocol. This description uses two two-level Unruh-DeWitt detectors coupled to the
amplitude of a real scalar quantum field. We will describe the protocol in a general globally
hyperbolic spacetime, and later restrict it to inertial detectors in Minkowski spacetime for
explicit examples.

As discussed in Section 2.3, the first step to define an Unruh-DeWitt detector is to
define a timelike coordinate 7 that will be used to prescribe time evolution. With two
detectors, one must pick a single timelike coordinate 7 to prescribe the evolution of both
detectors. This is because the unitary time evolution operator will generally involve time
ordered interactions that involve products of spacetime smearing functions associated to
each detector, and a single notion of time ordering must picked. For instance, one could
define two two-level Unruh-DeWitt detectors by defining two trajectories z,(7,) and zg(73)
with respective energy gaps 2, and {25, such that the spacetime smearing functions A, (x)
and Ay (x) are supported the regions where the Fermi normal coordinates associated with
each trajectory is defined. The interaction Hamiltonian density for the interaction of the
two detectors with a real scalar quantum field ¢ can then be written as

Hi(x) = ML (xX) (9767 + e N6 ) h(x) + My (x) (€06 + e 6 )h(x)  (3.70)

acting in J4 @ 74 @ F () with 4, = 7, = C* and F () being the Fock space of the
field ¢ in a suitable GNS representation. To fully define the model, we will also assume
that it is possible to find a time coordinate 7 that coincides with both 7, in the support
of A,(x) and 7 in the support of Ag(x). This is generally possible in globally hyperbolic
spacetimes if the supports of A,(x) and Ay(x) do not overlap by choosing appropriate time
parametrizations such that the events z,(7, = 0) and zy(7; = 0) are spacelike separated.

We can compute the final state of the detectors after the interaction by applying the
time evolution operator

U= T,exp( —i [ dVH(x) ). (3.71)
(= faveo)

For simplicity, we will consider the case where the detectors start in their respective ground
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states and the initial state of the field is a quasifree state w, represented as the density
operator pg, so that the initial state of the complete system is pg = |gaXga| @ |gs)gs| @ Py
To leading order in A, the final state of the two detector system can be written as

1-L,—L; 0 0o M

A _ 0 E];B (EA_B)* 0 2
Pas = 0 L. Lo 0 + O(X%) (3.72)
M 0 0 0

in the basis {|g.) , |ea) }®{|gs) , les) }. The expressions for M and L;; are analogous to (3.58)
and (3.60), with M = —XN2Gp(AT,A}) and £, = N2W (A7, A}) and AF(x) = A(x)eH 7.
In this case, the leading order negativity between the two states is also given by Eq. (3.62),
and our previous analysis of entanglement harvesting applies equally to the case of two
two-level Unruh-DeWitt detectors that start their interaction in the ground state.

Notice that when the detectors start in their ground state, the final state of detectors
system does not depend explicitly on the time ordering with respect to 7, so that the results
in this setup are covariant to leading order in A. Indeed, in [117], it was shown that even
when multiple detectors are considered, if their initial state commutes with their collective
free Hamiltonians, their final state is independent of the choice of time parameter that
prescribes the evolution. More generally, in [107], it was shown that the negativity of the
final two detectors state is independent of the time ordering operation for any choice of pure
state (although the final state might not be). Specifically, it was shown that considering

the initial state pAO = ’¢A><¢A‘ ® |'l/}]3><’lp[;‘ & ﬁd) with

), = cosa, |ga) — et sin o, lea), 1Y), = cos g |gs) — e sin ay, les) (3.73)

the final state of the detectors can be written as

1 . Egen Egen X* y* (Mgen)*

R X Egen Egen O
o= 5 om0 |re, e
Meen 0 0 0
where
L& = NW (cos® oy A] — e P sin® a; A cos® g AT — e sin® ay A]) | (3.75)
ME™ = NG (cos® ay A — 6215-" sin a, A7, cos® ap AT — PP sin? o A 5 (3.76)
and the X and ) terms explicitly depend on the choice of time parameter 7 [107]. The
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leading order negativity of the state above then reads

gen gen 2 gen gen
N (pas) = max (0, \/ [ Meenj2 — (ELEED) i) + O, (3.77)

The fact that the expression above depends only on M8 and L£&™ then shows that the
leading order entanglement between the detectors is indeed independent of the specific
choice of time parameter 7.

An Explicit Example with two-level Unruh-DeWitt detectors

We now study an explicit example of entanglement harvesting with two-level Unruh-DeWitt
detectors. We will consider the case where the detectors are inertial in Minkowski space-
time, defined by the prototypical spacetime smearing functions

Jac|2 le—L|2
2 T 202 (t—t9)2 €~ 202
As(x) = e (267;2)3, Ap(x) = ¢ o f W;) (3.78)

written in inertial coordinates (¢, ). This choice defines the interaction regions of the de-
tectors to be spacetime Gaussians of spatial width ¢ and effective time duration controlled
by the parameter T'. The interaction regions are shifted in space by L and in time by t,
with respect to the inertial frame. Due to the fact that the spacetime smearing functions
of Eq. (3.78) differ only by spacetime translations, we find that £, = £, = £. This sce-
nario has been studied multiple times in the literature (see e.g. [150, , , , 123]).
However, it was only in the ¢ — 0 limit that analytical results were found for the rele-
vant smeared bi-distributions necessary to compute the negativity. While the £ term can
be evaluated analytically and is given by Eq. (2.138), to numerically evaluate G(A}, A{)
effectively, one usually writes, in momentum space [150],

)\QTQGiQtO 2 2 02 2\2
G(AF, A = — /d|k| |ke|e~ 1Ko o= (T HEDT gine(|k||L|) (3.79)
T

l‘klto o 1‘k|t0
X ( erfc (1|k|T 2T> + e'®erfc <1|k|T + 2T> )

which, up to this point, could not be solved in terms of elementary functions.

On the other hand, the results of [131] (that we display in Appendix A) give the exact
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value of the relevant propagators in this case. We find

272, —O2T2 i (Ll +t0)? (Ll te? B
G(Ai_7 A—B’—) — NT=e el to 6_4(?"2-:—32)erﬁ (’I/‘——i_to) + 6_4(17:2""22) erfi ( ‘L’ tO )
8Vl LIVT? + o 2VT7 + o2 2T § o

(L] +tg)? 2 _ 2 (IL|—tg)? 2 2
—1i (e_Al(LT%%erf (—‘L’T foo ) + 6_4(LT42+tc%erf (—‘L’T + to0 )) >

2T o\ T? + o2 2T o/ T? + o2
(3.80)

We have also checked that the numerical integration of Eq. (3.79) matches the results of
Eq. (3.80) for numerous parameters |L|, to, T, 0 and 2. Combining the equation above
with Eq. (2.138), one then finds a closed-form analytical expression for the negativity. In
particular, for the case where there is no time separation between the interactions, tq = 0,

we obtain, with a = /1 + 02 /7172,
) A2~ T o T LI\? L\’ OT o2r2 Qr
N (pas) = — (ﬁae 1277 |L|\/erf (2|oa|7) + erfi <2|0J|’> + \/Z a7 erfc (a) -1/,
(3.81)

4ra?

whenever the quantity above is positive.

We can now explicitly check for which values of the parameters L, T, ¢ and 2 the
communication between the detectors is negligible. The imaginary part of the Feynman
propagator at tyg = 0 reads

—Q2T2
T _ L2 |L|
LAAF, AN = S e qrmerf | 2 ). 82
HAWEADI = e e (o) (3.52)

We then see that the erf term in Eq. (3.81) comes exclusively from the signalling between the
detectors. Eq. (3.82) can then be used to estimate the signalling between the detectors, so
we are looking for situations that configure entanglement harvesting, in which N'(p,z) > 0
and 1[A(AY, A})| < N (pas). From the expression above, one also confirms the exponential
decay of the signalling between two Gaussian detectors, which was seen in [37].

In Fig. 3.5, we plot the negativity and the signalling contribution as a function of the
detectors’ energy gap for 0 = 0.017 when the detectors are separated by a distance of
|L| = 57. We find that the negativity becomes an order of magnitude larger than the
signalling from the moment at which it peaks, and this ratio continues to increase as Q7T
increases.In this setup, one can safely associate the entanglement between the detectors to
field entanglement whenever QT > L/2T.
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Figure 3.5: The negativity and signalling contribution for two detectors interacting with a
massless scalar field in Gaussian spacetime regions separated by |L| = 5T, with detector
sizes o0 = 0.017".

3.5 General Results of Entanglement Harvesting

In this final Section we will review general results regarding entanglement harvesting, and
discuss how the observed entanglement that can be harvested by localized probes relates
to the general results about entanglement in quantum field theory discussed in Section 3.3.

No-go Theorem for Entanglement Extraction

As we have seen, two causally disconnected detectors can end up entangled through their
interaction with a field. Indeed, many different scenarios were found where spacelike sepa-
rated detectors can extract entanglement from a quantum field (see e.g. [155, , , ,

, , 80, 81, , , , , 79, 72, 31]). On the other hand, there are also many
regimes where spacelike entanglement cannot be harvested. In particular, there are families
of such scenarios where the harvesting of entanglement is forbidden that are covered by a
no-go theorem [175], which we briefly summarize below.

When two detectors interact with the field in spacelike separated regions, we can factor
the unitary time evolution U; as

Ur = UpyUsy = UpgUss, (3.83)

where U 16 acts only on detector A and on the field, and UB¢ only acts on B and on the field.
We can factor Uy as such because field operators smeared against the interaction regions A
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and B commute (as the supports of A, and Ay are spacelike separated and the field satisfies
the microcausality condition), and because observables that act on detector A commute
with observables of detector B. Notice that because the unitary U, factors as the product
of two unitaries that act on systems A and B separately, U, is unable to directly couple
A and B. However, as we previously mentioned, the field degrees of freedom supported in
the interaction regions A and B can be entangled, which might allow entanglement to be
exchanged between the field in regions A and B and the detectors.

The no-go theorem in [175] points out specific cases where the unitary time evolution
prescribed by the interaction with the field can be written as a simple-generated unitary.
That is, when U, = e "®Xs o [J, = e Mu®Xe for operators m, and rh, that act in
the respective detectors Hilbert spaces and field observables X, and Xj localized in each
detector’s coupling regions. In this case, it is possible to show that at least one of the
commuting quantum channels implemented in each detector is an entanglement breaking
channel, implying that the two detectors end up in a separable state after their interaction

with the field. In these cases, entanglement harvesting is not possible.

The two notable cases where U, and U, are simple-generated unitaries are the case of
two-level gapless detectors and the particular case of two-level delta-coupled detectors.

In the case of gapless detectors, we have 2, = Q0 = 0 so that the free evolution of the
detectors’ monopole moments is trivial: fi,(t) = . In this case, [H;(x), Hr(x)], H;(X")] =
0, so that the unitary time evolution operator for each detector can be computed using the
Magnus expansion [119, 101]:

UA7¢ = ei%\ e—i)\ﬂw;(/\/\)’ UB@ = ei‘PB e—i)\ﬂqu(/\u)’ (384)

for real phases ¢,, ps. The unitaries (A]A,(b and (A]B,(;) are then simple-generated unitaries,
thus implementing an entanglement breaking channel, as explicitly discussed in [175].

As we discussed in Section 2.3, the delta-coupled case is a particular case of gapless
detectors. As such, it is not possible to harvest entanglement with two spacelike separated
delta-coupled detectors. Explicitly, in the delta coupled limit, the spacetime smearing
functions can be written as A;(x) = nd(t — ¢;)Fi(x), where t; are the times at which the
(sudden) couplings happen. 7 is a parameter with dimensions of time, and Fi(x) is a
smearing function that defines the spatial profile of the interaction regions. We then have

~

U, 5= e—iAnﬂ,\(t,\)ézA(E\)7 Upo = e_iAnﬂH(tH)étB(FH)’ (3.85)

which are simple-generated. Notice, however, that it is possible to harvest entanglement if
the detectors’ coupling is given by multiple sudden interactions, that is, when the coupling
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is described by a linear combination of a sufficiently large number of terms, each represented
by a delta coupling [118].

Overall, the no-go theorem implies that the detectors must have non-trivial internal
dynamics to be able to extract entanglement from a quantum field, and that detectors
must couple to the field for a sufficiently long time to become entangled with each other.
In particular, the no-go theorems also imply that our techniques for solving the dynamics
of detectors non-perturbatively cannot be applied to the entanglement harvesting protocol.
This fact significantly limits our ability to study the protocol in more general settings, such
as the limit of large coupling constants, which could provide significant optimizations to
entanglement harvesting.

The Behaviour of Entanglement Harvesting with Distance and the UV-IR Con-
nection

Although obtaining general results about the entanglement harvesting protocol is challeng-
ing, explicit examples might be used to confirm the general results about the behaviour
of vacuum entanglement in quantum field theory discussed in Section 3.3. In particular,
we will briefly show that the example of entanglement harvesting in Minkowski space-
time (3.81) confirms the exponential decay of entanglement with distance, as well as the
fact that there is entanglement between any two regions, and that entanglement harvest-
ing also displays a UV-IR connection. These three results involve the asymptotic limit of
|L| — oo of the setup, which we will now focus on.

Having the analytical expression for the negativity allows one to estimate the behaviour
of the entanglement that can be harvested by detectors that couple to a massless field in
the limit of large |L|. This is done by considering the asymptotic expansion of Eq. (3.80).
One finds

[G(AL, AD)] =

Ao~ VT (T2 27%(T? + o?)

o P + T +O(|L|~ )). (3.86)

Notice, however, that the term above must be larger than the local vacuum excitations of
the detectors to ensure that any entanglement can be harvested at all. The vacuum noise
is independent of |L|, but, as has been shown first in [106], there is always a large enough
value of the energy gap (2, which allows the Gaussian detectors to harvest entanglement.
To see which value of € maximizes the negativity, we differentiate Eq. (3.61) assuming
o < T, and set the result to zero, which yields the same asymptotic result for ) that was
first found in [106]: QT ~ |L|/(2T).
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In other words, the value of {2 that maximizes the entanglement that can be extracted
by the detectors is proportional to the distance between them. This can be seen as the
analogue of the UV-IR correspondence for the entanglement harvesting setup, showcasing
that the detectors must have arbitrarily high energies to be able to extract entanglement
from regions asymptotically separated in space.

Having the optimal value of 2 allows us to evaluate the negativity at said energy
gap, and to consider the asymptotic limit of the resulting expression. We find that for
QT ~ |L|/(2T), the negativity is positive, and has the asymptotic expression

2

R AN2e" a2 T* T6 L2
N(pAB) = TW -+ O (We 4T2) . (387)

The fact that the negativity is positive confirms that two detectors can be used to extract
entanglement from any two arbitrarily separated regions of a quantum field. In this limit,
of course, the communication between the detectors is negligible, as they are too far away
to signal to each other'”. This result then confirms that not only are any two indepen-
dent regions of a quantum field are entangled, but that this entanglement is accessible to
localized probes.

Finally, Eq. (3.87) also gives the asymptotic behaviour of the entanglement between
the two regions. The maximum entanglement that can be harvested by a pair of inertial
detectors that couple to a massless field in Gaussian spacetime regions decays as (e C/4,
This decay is certainly faster than a simple exponential decay, was argued in [96], but, as
we previously discussed, the entanglement that a pair of detectors can extract is upper
bounded by the entanglement present in the field, so it is no surprise that the decay of the
negativity in (3.87) is faster than exponential. This faster decay rate of entanglement with
the distance also showcases how unoptimized the specific setups described in Section 3.4
are, and begs the question of what the optimal setup for the protocol of entanglement
harvesting would be.

5Indeed, the signalling term, in this case, decays as e~ 1EI°/277
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Chapter 4

When is Quantum Field Theory
Necessary?

Although quantum field theory is the most accurate description of matter, many physical
setups do not require a full description in terms of quantum fields. An example of this
fact is the effective description of external potentials as classical fields that we employed
in our discussions of localized fields. In this Chapter, we will discuss an effective theory
that allows one to describe two systems that interact via a quantum field that neglects
the degrees of freedom of the field mediating the interaction while maintaining some rel-
ativistic aspects of the interaction. The explicit model that we will discuss here will be
referred to as the quantum-controlled model. It was introduced in [135] in an attempt to
understand the roles that quantum degrees of freedom of a quantum field actively play
in relativistic quantum information protocols, such as entanglement harvesting. We will
define the model in Section 4.1, and study the limit in which it approximates interactions
through quantum fields in Section 4.2. As an application of the model, in Section 4.3 we
will use the quantum-controlled model to describe the recent proposals of gravity mediated
entanglement experiments introduced in [18, 109].

4.1 Quantum-Controlled Models

A simple but pedagogical example is the interaction of two spins (labelled by A and B),
usually modelled by the J-coupling:

Hy(t) = —JG4(t) - &4(t), (4.1)
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where o, and a; are the sigma vectors associated to each system. This is a direct coupling
between the spins, which certainly does not take into account relativistic aspects of the
interaction. However, physical couplings compatible with relativistic principles must be
local.

The interaction between spins (4.1) turns out to be a consequence of the fact that each
of the spins locally couple to the magnetic field. Indeed, in Section 2.5, we discussed a
quantum field theoretic description for an atom and how this description naturally gives
rise to a coupling of effective spin degrees of freedom with an external quantum magnetic
field. Effectively, a spin at @y couples to the magnetic field according to the interaction

~

Hi(t) = —7 (1) - B(t,xo). (4.2)

One way of understanding the J-coupling locally (but without invoking the quantum de-
grees of freedom of the magnetic field) is to consider that each spin couples locally to the
magnetic field at their respective locations x, and xy:

Hy\(t) = —y64(t) - B(t,x,), Hio(t) = —y6,(t) - B(t, ), (4.3)

where B(t, x) denotes the magnetic field at each point of spacetime. Due to the local cou-
plings (4.3), each spin sources a magnetic field associated with a magnetic dipole —y&, /s.
Using a non-relativistic approach, we can write

» g o A T—T,
BA(t,.’,C) = m (O'A — B(O'A . ($—$A))m) y (44)
BB(t7w) = 47?‘331 513_13’3 (6'13 - 3(&3 : (w_wB)) \;—_:ZBP> .

One can then recover a more general form of the J-coupling by replacing B in Eq. (4.2) by
the magnetic field sourced by the spins, B B, +B,, i ignoring the self-interaction terms:

2

Hi(t) = Y(Ho (1) + (1) = —m (6.0 6u() = 522 (6u() - 7) (6u(t) - 7))
(4.5)

where we defined r,; = x, — . The added factor of 1/2 arises due to the energy stored
in the magnetic field itself. This extra factor has been discussed in more detail in the
Appendix of [180] for the case of a scalar field and the discussion naturally generalizes to
linear couplings in more general field theories, such as electromagnetism.

Notice that the magnetic fields B, /g in (4.4) are not quantum fields in the typical sense.
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In fact, the “fields” defined in Eq. (4.4) do not have any independent degrees of freedom:
they instead propagate the degrees of freedom of A and B to all points of spacetime in a
non-relativistic manner. In this sense, the degrees of freedom of the “field” B are entirely
determined by the quantum sources A and B.

The model presented above for the non-relativistic interaction of spins through a mag-
netic field is what inspires the quantum-controlled model (qc-model), which we present
below.

The Quantum Controlled Model

Consider a globally hyperbolic spacetime M and two non-relativistic quantum systems
A and B described with respect to the trajectories z,(7,) and zy(7;) according to the
formulation presented in Section 2.4. Here 7, and 7, denote their respective Fermi normal
coordinate times, and we assume each system to be defined in non-overlapping worldtubes
around z, and z, so that we can consider a single global timelike coordinate 7 such that
7 = 7, within the support of system A and 7 = 7 along the support of system B. Also
consider a free classical field theory for a tensor field ¢ with equation of motion P¢ = 0,
and a (also tensor-valued) real observable O(x) = L¢(x), where L is a linear operator.

We assume that the classical field couples to systems A and B through couplings of the
form Aj.(x)-O(x) and Ajs(x)-O(x), where j,(x) and Jz(x) are (ideally compactly supported)
tensor-valued self-adjoint operator currents® that incorporate the free dynamics of systems
A and B (that is, satisfying Eq. (2.102)). The coupling of each system with the classical
field is then associated with the respective Hamiltonian densities?

Has(x) = Malx) - Ox),  Hyp1(x) = Ma(x) - O(x). (4.7)

Using the Hamiltonian density above, one can find the effect of the classical operator
O(x) in systems A and B by applying the time evolution associated with each of the local

In the context of the description provided in Section 2.4, each component of the operator-valued
currents in their respective extended Fermi frame would be written as

() = / S SO0 s, () = / A £ (%) |aa)eo] (4.6)

where f2(x) and f7(x) are scalar functions in spacetime for each Lorentz index a.
20ne can generalize these interactions to the case where the operator currents are not self-adjoint and
O(x), but we will restrict ourselves to the real self-adjoint case for simplicity.
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Hamiltonian densities. In a sense, this is a classical version of a particle detector model,
where the field ¢(x) is classical.

If the field were coupled to a classical current j(x) with a coupling of the form j(x)-O(x),
one would be able to find the backreaction in the field ¢, by solving the equations of motion

Pé = L*j, (4.8)

where L* is the linear operator defined by

/ AV Lo(x) - j(x) = / b(x) - L*5(x). (4.9)

To leading order in the coupling constant, the effect of the source j(x) on the field can be
computed through the field’s retarded Green’s function, Gg by

¢(x) = GrL"j(x), (4.10)

In particular, the leading order linear operator O(x) sourced by systems A and B can be
written as

O(x) = Grj(x) = LGrL*j(x). (4.11)

Essentially, j(x) is the effective source for the operator O(x), and G = LGRL* is its
effective Green’s function. For instance, in the case of the coupling of spins previously
discussed, ¢ corresponds to the electromagnetic potential A, j corresponds to a magnetic
dipole, L = V x is the curl so that L*j yields the four-current associated with the dipole.
The operator G applied to j then gives Ampére’s law.

In the context of the interactions of the quantum systems A and B with the field ¢, we
then define the quantum-controlled observables

Ou(x) = / AV'Gr(x %) - n (), (4.12)
Os(x) = /dV’CN}’R(x, X') - Je(X).
These are essentially a generalization of the quantum-controlled magnetic fields sourced by
the spins A and B in (4.4), incorporating the retarded propagation of the field ¢. Notice
that we have not considered the coupling constant A\ in the definitions for the qc-fields

in (4.12). This will be convenient for writing the interaction Hamiltonian density in the
qgc-model.

208



The gc-model for the interaction between the spins is then defined by the interaction
Hamiltonian density

Hael) = 2 (1400 a0 + 1) - 016)) (4.13)
= % dv’ (jA(X) - Gr(%,X) - Ja(X) + 75(xX) - Gr(x,X) -jA(x')> . (4.14)

The quantum-controlled model then considers a direct coupling between systems A and
B that ignores self-interactions and respects the causal propagation of signals imposed by
the relativistic description of the background spacetime. For instance, if j,(x) and j;(x)
are spacelike separated, 7:[QC (x) identically vanishes, and no interaction between A and B
takes place. However, the qc-model is not fully compatible with relativistic causality, as
was discussed in detail in [186]. We will briefly mention more about this incompatibility
later in this chapter.

Notice that the time evolution of systems A and B generated by the qc-model is unitary,
reflecting the fact that only systems A and B participate in the interaction. This is unlike
the case where the interaction is mediated by a field with quantum degrees of freedom,
which also becomes entangled with the sources. The qc-interaction is also second order
in the coupling constant. This is due to the fact that it directly couples the currents,
which are each proportional to the coupling constant. The interaction then incorporates
the dynamics of the classical field ¢ through the retarded propagators, but it does not
incorporate its degrees of freedom, instead propagating the sources themselves. Also notice
that the qc-interaction Hamiltonian density (4.14) satisfies

/ AV Hge(x) = % / AVAV 5, (%) - Alx,X') - (X)), (4.15)

where A(x,x') = Gr(x,x) + Ga(x,X) = Gr(x,x') + Gr(X,x) is the symmetric propagator
associated with the observable O(x). This implies that the leading order results from the
gc-model depend exclusively on the symmetric propagator.

At this stage, the qc-model is an ad-hoc description, as we have not yet shown that
it can approximate interactions mediated by quantum fields. The goal of Section 4.2 will
be to address this point with a concrete example where the qc-model is analogous to a
two-level Unruh-DeWitt detector.
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The Quantum-Classical Analogue of a Two-Level Unruh-DeWitt Detector

We will now describe the qec-model for the interaction of two two-level systems via a scalar
field. This model is in many ways analogous to the interaction of two two-level Unruh-
DeWitt detectors. For simplicity, we will also restrict this example to a real massless
scalar field in Minkowski spacetime and assume the qubits to undergo comoving inertial
trajectories. We associate a Hilbert space H; = C? to each system and consider their free
dynamics to be implemented by the free Hamiltonians

H,=Q6t67, H,=0676;, (4.16)

where we are assuming for simplicity that the qubits have the same energy gap €.

The interactions with the field are prescribed by picking the observable O(x)?
An(x)6() and Aja(x)6(x), where

Ia(x) = As(X)aa(t),  Ja(x) = Ag(X)fs(t), with [, (t) = %5 o +e lmc?l_, (4.17)

where (¢, ) are inertial coordinates, making this model analogous to an inertial two-level
Unruh-DeWitt model. The qc-interaction Hamiltonian density for the systems can then
be written as

)\2

7:[(1(7 (X> 2

AV (A3 (YA () itr (1)1 () G (%, ) + Ay ()M (K i (1) () Gir(x, X))
(4.18)

The dynamics of the pair A, B are determined by the interaction unitary time evolution
operator, prescribed with respect to the inertial time parameter t¢:

0 = T exp (—i / dV”r’:[qC(x)) 1 / AV H (%) + OO,

In the basis {|gags) ,|ga€s) , |€ags) ,|eses)}, such that o, |g)) = |e;) and 6;" |e;) = 0, this
unitary can be written to leading order in the coupling constant as

0 0 —M:
0 1

0 A o o | Tonn. (4.19)

Ms 0 0 0

3In this case the operator L is trivial and we have Ggr = Gg, A = A.
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where

_ N2 i\2

Mo === [ dVAV'EHFIN (A () A% X) = —-A(AT AY),
N7 1,iQ(t—t") / / iA? + A—
NC = —7 dVdV'e AA(X)AB(X )A(va) = _7A(AA7AB)’ (420)

where A; = e A (x), as usual.

If the two systems start in their ground state, po = |ga)ga| @ |gs)gs|, then, after the
interaction, the state of the quantum systems is given by p = UpoU'. To fourth order in
the coupling )\, we obtain

1—|Mc* 0 0 M;
. 0 00 O 6
po = 0 00 o |Ton. (4.21)
Mo 00 [M?

We again note that p. above is a pure state due to the fact that the evolution of two
quantum systems interacting through a qc-field is unitary. Indeed, the final state of the
systems can also be written as p. = |¢)(1)|, where the state vector |¢)) is given by

|gags) + M |eaes) 6
= O\ 4.22
vy - Lo Latlon) o (122

to fourth order in .

4.2 When can Quantum Field Theory be Approxi-
mated by a QC Model?

Having defined quantum-controlled models and studied the dynamics in a particular ex-
ample, we now have the tools to compare a qc-interaction with interactions mediated by
quantum fields. In this Section, we will consider explicit examples that allow us to con-
clude the regimes where one can approximate interactions mediated by quantum fields by
the simpler unitary evolution provided by the qc-model. This comparison can be made
in a straightforward fashion when one analyzes the entanglement that can be acquired in
each description, which we will analyze below. For studies of different relativistic quantum
information protocols, we refer the reader to [135].

211



Entanglement in QC-Models

We will now consider two pointlike two-level quantum systems directly coupled according
to the quantum-controlled model described in Section 4.1. We have seen that if the qubits
start in the ground state, the final state of the system is given by Eq. (4.21). In particular,
the relevant matrix elements of the final state are proportional to the M, term, which
is given by an integral of the symmetric propagator A(x,x’), which automatically implies
that if the interactions of qubits A and B are causally disconnected, then the qubits’s state
is unaffected. In particular, for a massless field in a spacetime that respects the strong
Huygens’s principle [184, , |, Gr(x,xX') and G 4(x,x’) are only non-zero when x and
x" are lightlike separated, and there is no “leakage” of the propagators inside the lightcone.
In this case, two qubits can only affect each other when interacting via a qc-field if their
interactions are at some point lightlike separated.

It is possible to quantify the entanglement acquired by the qubits via communication
through the propagation of the qc-field. In order to quantify the entanglement of the final
state of Eq. (4.21), and as usual, we choose the negativity as an entanglement quantifier.
The partial transpose of the state of Eq. (4.21) has a single negative eigenvalue, —| M|,
so that its negativity reads, to leading order in A,

2
NG = M| = S AL A, (4.23)

From the expression above, we also confirm that when the qubits’ region of interaction
are not causally connected, they will also not be entangled (see the definition of M, in
Eq. (4.20)). Also notice that the negativity in this case precisely matches the quantifier of
entanglement acquired via communication discussed in Section 3.4.

We consider a concrete example with a massless real scalar field in Minkowski spacetime
and a specific spatial and temporal profile for the qubits, which undergo inertial comoving
trajectories separated by a distance L = |L|, where L is the separation vector between
them. We will first prescribe the spacetime smearing functions as

M) = x(£)0P (), (4.24)
Au(x) = x(t — t0)0¥ (x — L), (4.25)

where
x(t) = e 0T (4.26)

With these choices, the systems are pointlike, ¢, is the time delay between the switchings,
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t/T

Figure 4.1: Setup for the configuration of the detectors as a function of the angle 6.

and T controls the time duration of the interactions. The interaction of qubit A is centred
at the origin of the coordinate system, and the interaction of qubit B is centred at the
event (to, L). This choice makes the interaction non-compactly supported. Same as in
the previous example we considered with detectors coupled to quantum fields, the main
consequence of this choice is that, in principle, the qubits will always be in causal contact
due to the tails of the Gaussians. However, 99.9999% of the area of the switching function
is concentrated in an interval of width 77T centred at the Gaussian peak. We then define
the interval [t,, — 3.5T,t,, + 3.5T] as the strong support of the Gaussian, where t,, is its
peak value. As we have discussed, signalling outside this region will be negligible compared
to the effect of the interaction when the strong supports are lightlike separated.

We will analyze the negativity acquired by the qubits as we position system B around
different events of the form (L sin(6), L cos(f),0,0) parametrized by the parameter 6 €
(0,7/2), as shown in Fig. 4.1. In Fig. 4.2 we plot the negativity in the qubits state as a
function of 8. We consider the distance between the systems to be L = 107", which ensures
that the strong support of the Gaussians is spacelike separated. As we can see, there is no
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entanglement until a certain value of 6, where the qubits stop being effectively spacelike
separated. We then see a peak of the negativity when the interaction regions are lightlike
separated at @ = 7 /4. Notice that the plot is not completely symmetric with respect to
the § = m/4 axis because the interaction regions are smeared in time, which slightly breaks
the symmetry.

N(pe)/N?
1.4x107%4F

1.2x107%4}
1.x10724}
x107%°
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4.
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o
oo | 5t
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Figure 4.2: Plot of the negativity in the qubits state as a function of the angle 6 for
QT =10, L = 10T for the Gaussian switching functions.

Entanglement through quantum fields

We can now consider the entangling protocol outlined above in the case where the qubits
are coupled to a real scalar quantum field, that is, when the qubits are two-level Unruh-
DeWitt detectors. This essentially defines an entanglement harvesting protocol, where we
also allow the detectors to be causally connected. This is not an issue, as our goal here is
not to extract entanglement from a quantum field but rather to obtain results that can be
compared to the gc-interaction.

Considering two inertial Unruh-DeWitt detectors initially in their ground states coupled
to the vacuum state of a real scalar quantum field, the final state of the detectors to leading
order will be given by Eq. (3.72), and the negativity of their final state will be given
by Eq. (3.61). Specifically, for detectors with spacetime smearing functions related by a
spacetime translation interacting with the vacuum of Minkowski spacetime, the leading
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order negativity of the final state py is given by the simplified expression
N(pp) = max(0, (M| — L), (4.27)

where L~ = L, = L, as a consequence of the detectors being identical. As discussed
in Section 3.4, the negativity reflects the competition between the non-local terms arising
from M = XN2Gr(A, A}) and the local noise term £ = N2W (A, A]) = N2W(A;, A).
This local ‘vacuum’ noise term is present only in the case where the field is quantum, as
can be seen comparing Eqs. (4.23) and (4.27).

In order to draw a fair comparison between the quantum-controlled and the truly
quantum models, we consider the same choice of spacetime smearing function of Eqs. (4.24)
and (4.25), and plot the negativity as a function of ¢ in Fig. 4.3. Unlike the quantum-
controlled case, and aligned with the discussions of Section 3.4, here we have that even when
the detectors’ interaction regions are fully spacelike separated (6 = 0), it is still possible
for them to become entangled. This is precisely the entanglement that is extracted from
the field, and not acquired by the detectors via communication. Namely, this is a feature
of the protocols of entanglement harvesting that explicitly depends on the field’s quantum
degrees of freedom. We also see a peak when the interaction regions are lightlike separated
due to the entanglement that the detectors acquire through communication via the field.

N(pp) /N
1.2x10724}
1.x10724F
8.x107%
6.x107%°
4.x107%°F

2.x107%°

o

o | Y+

=N
|

Figure 4.3: Plot of the negativity in the detectors state as a function of the angle 6 for
QT =10, L =ty = 10T for Gaussian switching functions.
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When are the quantum degrees of freedom of the field negligible?

As we discussed, a legitimate question that can be asked about the quantum-controlled
model is whether it can reproduce the phenomenology of the fully quantum model in some
regimes. If the qc-model is to hold any physical value, it should indeed be able to reproduce
the same physics as the fully quantum model in the regimes where the quantum features
of the field do not play any relevant role. To answer this question, we will now compare
the two models, giving special attention to the regimes where the quantum field model can
be well approximated as a qc-model.

We choose to do this comparison for the the study of the entanglement acquired by
two detectors when they interact with the field. The question of whether a model where
the field is not fully quantum can predict that two systems that interact with the field get
entangled is certainly relevant [I11], and this comparison showcases the differences that
appear in other more general protocols when considering two quantum systems communi-
cating through a quantum field.

The scales relevant for addressing the regimes where qc-fields can approximate quantum
fields are the detectors’ spatial separation L, their time separation, ty, their energy gap €2
and the time of their switching, 7. The relevant dimensionless parameters are then L/T,
to/T and QT. We already saw that as L/T increases past to/T and as to/T increases
past L/T, the entanglement acquired by the detectors decreases (the further from light
contact, the less entanglement between the detectors there will be in both models), so
that the optimal rate L /t, is approximately 1 making the detectors approximately lightlike
separated. We also saw that the quantum field case can feature entanglement even when the
detectors’ interaction regions are spacelike separated, which is impossible in the quantum-
controlled case. In this sense, one of the conditions that is required for the quantum
field to reduce to the quantum-controlled model is that the detectors have to be causally
connected. This imposes a restriction on the parameters L/T and ty/T. The study that
remains to be conducted is what are the conditions over (27" which allow the fully featured
quantum field case to be well modelled by the quantum-controlled field scenario.

A main difference between the cases where the field has quantum degrees of freedom
or not is the fact that fully featured quantum fields can produce local noise excitations
in the detectors. This local noise is a consequence of the detectors becoming entangled
with the field itself, which decoheres their state. The decoherence results in a decrease
in the entanglement between the detectors, as they share part of the entanglement with
the field. This can be seen in Eq. (4.27) for the negativity of the detectors, where we see
that the vacuum noise £~ contributes negatively to the entanglement acquired by them.
It is then clear that a condition so that the true quantum case can be mimicked by the
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quantum-controlled case is that the £~ term is much smaller than the nonlocal M term.
This condition can be achieved if QT > 1 (see Fig. 2.3), or, in other words, in the limit
where the interaction time is much larger than the characteristic time scale of the detectors.
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Figure 4.4: Plot of the negativity in the detectors state for both the classical and quantum
cases as a function of the angle 6 for L = ¢y = 107", and multiple values of Q7" for Gaussian
supported switching functions.

Another condition for the quantum field and qc-field models to behave similarly is that
M =~ M. Noticing that

M = NGp(ALAL) = S HALAD) + FANLAY) = SHALAD) + Mo (4.28)

we see that the condition M ~ M, is equivalent to the statement that the imaginary
part of the propagator contributes significantly more to the M term than its real part.
In Fig. 4.4 we show plots for the negativity as a function of # for the setup of Fig. 4.1
for different values of Q7T considering both the pointlike spacetime smearing function with
Gaussian switching of Eq. (4.26). We see that when the detectors’ interaction regions are
lightlike connected, it is possible to get more entanglement between the detectors when
their interaction is via the qc-field than when the detectors interact via the quantum field.
As we mentioned earlier, this is due to the local noise, which decreases the entanglement
acquired by the detectors when they interact with a quantum field. That is, although we
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always have |[M| > | M|, we also have £ > 0, which allows the negativity in the quantum-
controlled case to surpass that of the quantum case when £ is comparable to |[M]. In
Fig. 4.4, we also see that under the assumption that Q7 > 1, the quantum field and
qc-field models give similar predictions when the detectors’ interaction regions are causally
connected (0 ~ 7/4).

Overall, we can conclude that the fully quantum case can be well modelled by the
quantum-controlled case only if three conditions are satisfied: 1) the systems involved
in the protocol must be causally connected (T' > L), 2) the interaction time with the
mediating field has to be much larger than the characteristic time scale of the detectors
(T > 1/Q), and 3) the interactions with the field have to be sufficiently weak (A < 1).
The third condition is necessary to avoid the major discrepancies between classical and
quantum physics that take place for high energies, which are not implemented simply by
the retarded Green’s function of the classical field theory for ¢.

Finally, notice that if the three conditions above are satisfied, then the density operator
of Eq. (3.72) obtained in the fully quantum case reduces to the density operator obtained
in the qc-model in Eq. (4.21). Indeed, assuming the three conditions, we have |£,| < £ <
|M|. Then, to leading order in A\, we have

(1-2C7)/IM] 0 0 MM 100 M

i = M| 0 L)IM] (Las)*/|IM] 0 1o 00 o

P 0 Ly/IM|  L/|M]| 0 “lo o0 o]
M/IM] 0 0 0 M 00 0

which is the leading order result from Eq. (4.21). That is, the three assumptions discussed
above ensure that the classical model can be used to approximate the interaction with the
quantum field.

Two gapless detectors interacting with a scalar quantum field

For a second comparison between the models, we consider the cases where the qubits are
gapless, {2 = 0. In this case both the Unruh-DeWitt and the quantum-controlled models
can be solved non-perturbatively, yielding a more clear comparison.

We start by considering two gapless Unruh-DeWitt detectors, so the total interaction
Hamiltonian density is given by

~

Hi(x) = MiaAa (X)3(x) + MinAp(x) (), (4.29)
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In this case a similar method to that used for one gapless detector can also be applied.
This case has been studied in [I01] under the assumption that the interaction of one of
the detectors happens before the other. We will not make this assumption here and will
instead obtain results for arbitrary interaction regions for the two detectors, as was done
in [131].

The Magnus expansion can be used to compute the time evolution operator. We find

A

0, — ort6s, (4.30)
where
O, = —i / AVH; (%) = —iMind(Ay) — iNisd(Ay), (4.31)
o, — _% / AVAV'O(t — ) [FL (), Fr (X)) (4.32)
— _%2 AVAV'O(t — ) [p(x), p(x)] (ﬂiAA(x)AA(X’) + fiafin s (}) A (X)
i A ()AL (X) + A () As(x)
_ _§ </1§GR(AA, AW + 3G r(As, As) + fiafis (Gr(As, Ap) + Gr(As, ML) )

~

where we used that 6(t —t')[p(x), d(X')] = iGr(x,X), and that the operators /i, and i, com-
mute. We then denote A,; = N2A(A,, Ag), G = ’\;GR(AA,AA), and Gy = ’\;GR(AB,AB),
so that Eq. (4.31) allows us to write

O, = —if2G, — ifi2Gy — %ﬂAﬂBAAB' (4.33)

The fact that the commutator [#;(x), H;(x')] commutes with #;(x") implies that only ©,
and ©, are non-zero in the Magnus expansion so that the unitary time evolution operator
reads

U, = e—dxﬂAé(AA)—dAﬂBé(Aﬁ)6—4ﬂ§9A6—4ﬂ§986-%ﬂAﬂwﬁAB, (4.34)
where we used that [@1,@2] = 0 to separate the exponentials. One can also use the

Baker-Campbell-Hausdorff formula in order to factor U; as
0y = e~ Nnd(An) p=iNund(An) 8305~ i73n e—%ﬂAﬂB(AArEAB)

—iAf 5 —i AAA A —ip? Af.AQ B 7iAAAB A-’\B EAB
— o Md(An) o —INIn (M) RGN 1R Gn o — G finfin (Bast Ein) (4.35)
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where E,; = A?E(A,, Ay), and we have

(AAB - EAB) = )\QGA<AA> AB) = )\2GR(AB7 AA)a (4'36)
(Aup + Eas) = NX2Gr(Ax, Ap) = N2G4(Ag, Ay). (4.37)

N— D=

To compute the final state of the two detectors after tracing the field, it is more con-
venient to work with the expression from Eq. (4.34). Assume that the initial state of
the detectors-field systems is pg = papo ® pw, Where, as usual, j,, is the representation of
a quasifree state w in the quantum field theory. We further assume that 42 = 2 = 1,

so that the effect of the local unitaries e~ 9\ 11505 hecomes negligible. Given that the

L s
unitary e~ 2/#e7ae

the unitary

commutes with the field-dependent term, we can separate the action of
U, = e Mind(A)—iNind(As) (4.38)
from the rest. To proceed with the computations, we denote the eigenstate of ji, and fi;
by |£4) and |%5), so that
U(j)pAOUJ, — e*i)\ﬂAﬁfA’(AA)*i)\ﬂBdA)(AB)ﬁoei)\ﬂAdA)(AA)+i)\ﬂB<i§(AB)

D e VR Y SO AT S INT (AT B

HA pB=%
phoph==+

The next step is to trace over the field to obtain the state 7,5 = tr¢(f]¢/30f];). We find

Opp = Z w (61/\(%(““#%1&”e_i/\(z)(MAAA+HRAR)> </~LAMB| Pa,0 |M;NB’> |MA/~LB><M;/~LB’|

pa,pB=%E
phouh==+

ix2 / / A2 / / 2
§ : S E(p\Aa+phAs,puaAa+usAp)— 5 A— W )AA+ (s —pl)A ~ / /
e 2 (A As+ps A paAa+psAg) D) [ (pea—pel ) Aat(pa— 1) A | <”A“B| pAB,O |”A“B’> I”A”B><”A”B’| ,

HaAuB==E
whoprp==%

where we used

)

w (eixé(f>ema5<g)> _ o B0 -EW(f+e.f+9) (4.39)

and we denoted || f||2 = W(f, f). We can now incorporate the unitary e~ 2"/*4+* again so
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that the final state of the detectors is given by
i i
N L NN L (4.40)
Once again, notice that the final state of the qubits is entirely given in terms of bi-

distributions of the quantum field smeared against A, (x) and Az(X).

Finally, we write p;;, 7,7 = 1, ..., 4 for the components of p,5 ¢ in the basis {|+,+5) , |[+1—5)
,|—ats) s |—a—n5)}, so that the final state of the detectors state can be written (in this same
basis) as

P11 e—QWBB-&-i(EAH—AAH)plQ e—QWAA—i(EAH-&-AAH)pB 6—2(WAA+WBB+HAH)p14
R . 6*2W33*1(EAB*AAB)p21 022 6*2(WAA+WBB*HAB)p23 E*QWAA‘Fi(EAB‘FAAB)pQ‘l
pAB - e*QVVAA‘Fi(EABJFAAB)pgl 672(W‘\A+WBB7HAB)p32 p33 672WBBfi(EAB7AAB)p34

6_2(W\A+WBB+HAB)p41 6_2W\/\_i(EAB+A.\B) e_2WBB+i(EAB_AA\B)

P42 P43 P44

(4.41)
For each of the bi-distributions W, H, E/, and A, we use the convention A,; = A2A(A,, Ap).

The Gapless Quantum-Controlled Model

The quantum-controlled version of this gapless model is defined by the interaction Hamil-
tonian density

A A2

Hac(x) = E,ELA,&B / AV (AL (X)As(X)Gr(%,X) + As(x)As(X)GR(x,X)) . (4.42)
We then have that, in the gapless case, the Hamiltonian density commutes with itself at
different times, so the unitary time evolution operator can be computed as the exponential

i

U, = exp (—i/dV?—A[QC(x)) = e zfninBan (4.43)

Writing again p;j, i,j = 1,...,4 for the components of p,p 0 in the basis {|+.+s) , |[+a—s)
,|—atn),|—a—n)}, the final state of the qubits can then be written as

P11 671A”P12 671A”P13 P14
iA iA
pom |Gz em e (1.44)
C —_— i . .
e'=4 p3y _Z32 gss e'=4 p3y
pa1 e p e T pyg P44
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We chose to write the density matrix explicitly to allow for a straightforward comparison
with Eq. (4.41). Notice that by setting H and E to 0 in Eq. (4.44), one obtains the
quantum-controlled result from its quantum field theory counterpart. While it is clear
that H is related to the state dependent terms in the theory, the causal propagator is
fundamental in Eq. (4.41) to ensure causality in the interaction. We can see this explicitly
by looking at the reduced density operators of A and B. Using that A + F = 2Gr and
A — E = 2G4, we find

efiAQGR(AAyAB) i)‘ZGR(AA»

P11 T P22

A p13+e
Pa = ei/\QGR(AA,AB)pgl _|_e—i,\2GR(AA,AB)

Ag)
/’24) . (4.45)
P42 P33 + Paa

—iIX2G R(Ap,Ay) IN2GR(Ap,Ax)
© p34> . (4.46)

where the sum and difference of A,z and E,; make sure that p, only depends on retarded
propagation from B and p; only depends on retarded propagation from A. This also implies
that whenever we have E,; # 0, the qc-model will predict some level of causality violation.
This does not imply that the model cannot be applied; it simply means that one has to
make sure that the causality violations are below a certain observable threshold. For a
detailed discussion of causality in the gc-model, see [136].

P11 T P33

B P12 +¢€
Pr = ei)\QGR(AB,AA)le + eIV GRr(An,AL)

P43 P22 + Pas

~

Comparison Between the Gapless Models

Let us now consider an explicit example, where i, = 67+ 6, fis = 6 + 06, , the detectors
undergo inertial trajectories in Minkowski spacetime, and interact with the vacuum of a
massless scalar field in Gaussian spacetime regions. For convenience, we use the same
spacetime smearing functions as in (3.78) with ¢y = 0. We will assume both detectors to
start in their ground states, with piso = |ga)(9a] ® |gs)(gs|. Notice that in this setup, the
spacetime smearing functions differ only by a shift in space, making E,; = 0, so that the
gc-model does not imply any causality violations.

As we did in the example of entanglement harvesting, we will be interested in checking
the conditions so that the detectors can end up in an entangled state. To check this, we
plot the eigenvalues of the partial transpose of p,; in Fig. 4.5 as a function of the effective
interaction time 7' for three different values of the coupling constant (solid lines) as well
as the eigenvalues of pf (dashed lines).

Keep in mind that the detectors are entangled if and only if the partial transpose of
their density operator has a negative eigenvalue. Notice that in this example, for small
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Figure 4.5: The solid lines correspond to the eigenvalues of the partial transpose of the
detectors final state p's, when the detectors start both in their ground state, as a function
of the interaction time T, scaled by the detectors’ separation |L|. The dashed lines are the

eigenvalues of pf, obtained using the qc-model. We picked o = 0.05|L| for these plots.
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values of the coupling constant A, the behaviour of the state evolved through the qc-
model is very similar to the interaction with the quantum field. This is because, for small
coupling constants, the detectors are not subject to too much noise, and they are able to
communicate through the field without getting too entangled with the field itself.

Also notice that for small values of T', the detectors cannot become entangled in either
model. This can be seen in the extended plots on the top right of Fig 4.5, which display

the region ‘% < 1. The fact that the detectors interacting with a quantum field cannot
become entangled when 7' < |L| is in agreement with the results of the no-go theorems
proven in [119, |, where it was proven that gapless detectors cannot harvest if their

interaction regions are spacelike separated. The fact that the detectors start becoming
entangled for T' < |L| is merely an artifact of the non-compact support of the Gaussian
switching functions considered, in which case there is still enough causal contact for the
detectors to become entangled. Importantly, regardless of the coupling constant, we find
that the detectors are only able to become entangled for 7" 2 0.7|L|, showing that the
detectors’ inability to communicate is independent of how strongly they couple to the
field.

We continue our comparison between the models in this specific example by computing
the explicit difference between the final density operator p,; and the operator p.. In
Fig. 4.6, we plot the squared Hilbert-Schmidt norm? of the difference p,s — po for different
values of )\, using the same setup as we considered before. In the figure, we see that the
norm of the difference quickly goes to zero as \ decreases. We can also notice that in the
limit of T" — oo, the difference between the two evolutions becomes a constant.

Given that we have access to analytical expressions for both p,; and p., we can also
compute the asymptotic behaviour of ||p,s — pc| |3 in the limit where ¢ < |L| and T >> |L|
(with the assumption of o7 < |L|?). In this limit, we find that the result is independent
of o, |L|, and, of course, T. We find

o, 1 IC I I C BT
lim ||pas — pollis = = <5—|—€ ~ —2e « +4e 7 —8e 2#).
T—o0 : 8
We plot this result in Fig. 4.7. Also notice that the behaviour of the above limit for A — 0
is given by

. R R A
Th_rfolo |[Pan — pCHE{S = 72 + O()\6)> (4.47)

4The Hilbert-Schmidt norm is defined as ||121HHS = /Tr(ATA).

224



[19a6 — Pellis

0.20 f\ —A=035
0.15 A=1
0.10 A=15
0.05 A=

T

9 4 6 s 10 |L]

Figure 4.6: The squared Hilbert-Schmidt norm of the difference between the density op-
erators p,s and p for o = 0.05|L| considering detectors that start in their ground state.
The dashed lines correspond to their asymptotic limit as 7" — oo.

suggesting that, indeed, in the regime of small coupling constants, the evolution is well
modelled by the unitary U..

Jim [[pas — el
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0.4+
0.3

0.2}
0.1+

1 1 1 1 A
2 4 6 8

Figure 4.7: The limit of the asymptotic behaviour of the squared Hilbert-Schmidt norm of
the operator p,; — pc. This limit only depends on .

From these examples, we reinforce the conclusion that, indeed, the qc-model can be a
good approximation for interactions mediated by quantum fields in the limit of long times
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and small coupling constants.

The Role of Quantum Degrees of Freedom of Mediators

Our initial motivation for the definition of qc-models was to simplify the description of
the interactions between quantum systems by neglecting the local degrees of freedom of
quantum fields. On the other hand, the qc-model gives rise to a criterion that allows one
to evaluate whether or not the quantum degrees of freedom of the mediating field actively
participate in the interaction between two localized systems. Explicitly, we can conclude
that

“the quantum degrees of freedom of mediators do not play an active role
in setups that are accurately described by a gc-model.”

Throughout this Section we saw that experiments that involve weakly coupled sources
that are causally connected for long times can be accurately described by quantum-
controlled interactions. Hence, these are the regimes where the quantum degrees of freedom
of the mediators do not play an active role. In particular, this implies that one can only
access the quantum degrees of freedom of a field in the regimes of either strong couplings
or short interaction times. While it is to be expected that high energy interactions require
quantum field theory for an accurate description, the condition of long interaction times
seems to imply that the local degrees of freedom of quantum field theories only manifest
themselves in relativistic setups, where the precise spacetime positioning of the probes and
their causal contact is relevant.

This quantification of the regimes where quantum field theory is necessary points out
that high-energy physics and local operations in quantum field theory are exactly the two
relevant cases where the fundamental aspects of quantum field theory play a significant
role. On the other hand, in some sense, these two fields of study are opposites: high-
energy physics typically considers arbitrary long interaction times in the limit of high
energies, while studies of local operations in quantum field theory usually consider finite
time interactions in the low-energy regime. As such, the treatment of quantum field theory
employed in these two cases also explores different properties of quantum fields.

One could then wonder whether there are any experiments that could be performed
outside of these regimes that can be used to probe the quantum degrees of freedom of a
mediating field. In other words, it might be possible to devise an experiment that does
not explicitly rely on the local quantum degrees of freedom of a field but still depends on
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its quantum features. Indeed, recent proposals of table-top experiments suggest that it is
possible to probe quantum features of the gravitational field in regimes of weak coupling and
long interaction times. We devote the next Section to the discussion of these experiments
and which assumptions are necessary to bypass the constraints that we discussed in this
Section.

4.3 Applications to Gravity Mediated Entanglement

In this Section, we will use the fact that experiments that can be described by the qc-model
do not explicitly rely on the quantum degrees of freedom of mediators to discuss the recent
proposals of measuring gravity mediated entanglement first presented in [18, |. Even
though the experimental proposals are within the regimes of long interaction times and
small couplings, these experiments have been claimed to witness quantum behaviour of the
gravitational field.

The original proposals of |18, | consider two particles that undergo a superposition
of two paths, as shown in Fig. 4.8 and interact only through the gravitational field. Due
to differences in distance between the paths, it is possible that the particles end up in an
entangled state after their interaction. For concreteness, one could think of the particles as
two neutrons and split their paths by applying a magnetic field with a constant gradient.
The neutrons would then interact gravitationally for a finite time and could be recombined
through the application of another magnetic pulse. If the two neutrons are sufficiently
shielded from other interactions and are measured to be entangled, one could then conclude
that the gravitational field was responsible for entangling them. At this stage, the original
proposal has been thoroughly studied, and many different setups have been considered [953,

, 19] in the literature. However, in this Section, we will focus on the original proposal,
as it contains the essential features shared by the other proposals.

In a simplified description, one can describe the experiment by considering two pointlike
particles labelled by i € {1, 2} with masses m; and my, whose centres of mass are quantum
and can undergo two possible trajectories each, zg,(t) and zp,, (t). We associate each possible
trajectory to states |R;) and |L;) (see Fig. 4.8). During the relevant part of their interaction,
the effective non-relativistic Hamiltonian that describes their interaction is simply the
gravitational potential between each path:

. Gmim

H;(t) = E - 2 [p1p2)XP1p2l - (4.48)
|2, (1) — 2p, ()]

p1€{L1,R1}

p2€{L2,Ra}
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Figure 4.8: Schematic representation of the gravity mediated entanglement setup, where
two particles labelled by i = 1,2 can undergo a superposition of two trajectories, zp,(t)
and zg, (t), corresponding to quantum states |L;) and |R;).

One then typically considers the following superposed initial state for the two particles:

) = (L) + R0 (La+[Ra)) = 5 (TaLa) +EaRa) +Ra L) +[RaRa)). (449)

V2 V2
Time evolution of this initial state then gives the (in general not separable) final state
L —i —i —i
‘Q/Jf> = 5(6 Pryry ’L1L2> +e Prymg ’L1R2> +e Pryig |R1L2> +e Pryrg |R1R2>), (450)

where

T
Dy = — / at (4.51)
0 |Zp1 (t) — Zpy <t>|

and T denotes the time interval for which the particles remain in a superposition of tra-
jectories. Overall, the final state of the particles can be entangled, with negativity given
by

N(|¢f><¢f|) = max (O’ %Sin(% ((I)L1L2 + (I)R1R2 - (I>L1R2 - CI)R1L2))>' (452)

Moreover, in the limit where the paths are approximately inertial while undergoing the
superposition of paths and the smallest separations between the paths is between the right
branch of particle 1 and the left branch of particle 2 with |z, — 2., |, |2, — 21|, |21, — Zry| >
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Zn, — Z1,| = T2 (see Fig. (4.8)), we have

m2

1 _iGml
Wf> ~ 5 (‘L1L2> +e r12

"[LiRa) + [RiLa) + [RiR2)) ) (4.53)

which becomes a maximally entangled state if the interaction time is given by

TTr12
T=—""7—. 4.54
Gm1m2 ( )
The important remark made in [18, | was that an experiment of this type might be

realizable with current technology with reasonable values for the particles’ masses, separa-
tions and times. The greatest experimental challenge would be to control the decoherence
that the particles would experience due to other forces while allowing the masses to interact
for the desired time T, of the order of seconds. It was then argued that if entanglement
was found in the final state of the two particles, this would be evidence of the quantum
behaviour of gravity, as

“f gravity were a classical field, it could never entangle two particles”.

We will discuss the exact assumptions that can lead one to the conclusion that the grav-
itational field is quantum from the results of the experiments at the end of this Section.
In what follows, we will describe the experiment, first with a full quantum field theoretic
approach, and then with a quantum-controlled model. From these results, we will discuss
the possible implications of the experiment and the role played by the quantum degrees of
freedom of the gravitational field in the proposed setup.

A Field Theoretic Description of Gravity Mediated Entanglement

We start by describing a single fermionic particle (such as an electron/neutron/proton)
undergoing a superposition of paths within a quantum field theoretic framework. Specifi-
cally, we will focus on the specific case where a magnetic field is applied for a finite time
T, used to split the possible paths of an electron®. The equation of motion for a Dirac
fermion ¢ of mass m under the influence of an external electromagnetic potential A, can
be written as

(i —m + qA)yp = 0. (4.55)

5We assume that the magnetic field switches on with a positive gradient along the z-axis, which splits
the paths of spins up and down, then switches to a negative gradient along the z-axis, recombining the
paths (see Fig. 4.8).

229



We will work under the assumption that the external magnetic field gives rise to localized
mode solutions ug s(x) and vy s(x), where s = 1, 2 is the spin polarization and k is a discrete
label (due to localized solutions), such that each of the spin polarizations in localized around
a different trajectory. The labels k are then associated with the different modes within
each path. We can then represent the electron quantum field as

D)= YD ()b + ks (¥)af, . (4.56)

se{L,rR} k

where ZAJLVS, IA),M are the creation and annihilation operators associated with electrons and
&Ljs, ak,s are associated with the positron states. The vacuum of this theory is defined by
bres [0) = éiges [0) = 0.

We will then focus on the description of an electron in modes labelled by ko and
s = L, R, so that s = L corresponds to a trajectory that splits to the left and s = R

corresponds to a trajectory that splits to the right, and both paths recombine after a
timescale T

The coupling of the fermionic field with gravity is given by the interaction Hamiltonian

density ) R )
Hi(x) = =X T (x): hyw(x), (4.57)

where \ = %\/ 8rG = V2ml, , izuy(x) is the linearized gravitational perturbation, as de-
scribed in Section 1.4, and 7T w18 the normal ordered stress-energy momentum tensor of
the field ¢ (x), explicitly given by

~

TR (x):= % (:E(x)'y(“i({?”)qﬂ(x): —|—H.C.> : (4.58)

Expanding the fermionic field in terms of the creation and annihilation operators, we find

T 00 =33 Re(Whs ()7 0w ()5, b + Re(Or,s ()7 #i0" 0 (x)) iy g

s,s'e{L,rR} k,k’
+ Re (T s (x)y#i0" vp o (x>>13;5ak,75/ + Re(Tg,s (x)7 10 gy o (x))d;rwl;k/,s/
(4.59)
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Restricting to the (ko, s) positive frequency subspace, we obtain the induced observable

2

T 00 = Y Ty o (b, bk (4.60)
s,s'€{L,R}
where
Tklfoy,s,s’ (X) = Re(ﬂk0,8<x)’7uiayuko,s’ (X)) (461)

Under the assumption that the two paths determined by the modes (ko,1) and (ko,2)
are such that the paths are disjoint, we have T,f:,s’s, (x) = 0 whenever s # s’ while the
trajectories are split. While the trajectories are the same, we have T,’::svs, (x) independent
of s or s’. During the relevant part of the experiment, we then have

T (x) = T, (x)b]

ko,L,L ko,L

Do + Th o (X)b

ko,R,R ko,R

Diey - (4.62)

For simplicity, we define
HL = b;rs:g,Lbkmb HR = b;ca,R,kaaR’ AQW(X) - TlgOV,L,L(X)7 Agy(x) = Tlg:,R,,R(X)? (463)
so that the interaction Hamiltonian can be written as

Hi(x) = =AY ()T A (x) — AN () TR, (). (4.64)

Not much changes when one considers a fermionic two-particle system, with each par-
ticle being able to undergo a superposition of paths in different regions of space, which we
conveniently label 1 and 2. In this case the external potential that acts in the fermionic
field has two distinct non-interacting parts, such that the mode solutions for the fermionic
field of matter can be expanded as

D0 = Y Y ull b + v 0@t + DT 3wl (b + v (x)(ad)f. (4.65)

se{L,r} k se{L,r} k

The derivation of the interaction Hamiltonian in this case follows a similar approach to
that of one single particle. The difference in when two particles are considered is that we
will be looking at the two-particle subspace spanned by the states

ILiL) = (b)) (B )10y, ILiRs) = (b)) (6 )T 0), (4.66)
[RiLo) = (b )T (02 )T |0y, IRiR2) = (b )T (B )T]0) . (4.67)
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Here, the labels 1 and 2 determine the branch of superposition that the particles undergo,
and the labels L and R determine on which side of the setup of Fig. 4.8 the particle is
localized. Also notice that under the assumption that the L and R modes of the field are
non-overlapping, we can effectively assign a tensor product structure to the field decom-
position in regions L and R°. This allows us to effectively treat this reduced subspace as a
tensor product, with respective vacua |0) = |0,02), where the states |L;) = (BS)L)T |0) and

IR;) = (ZAJE;)R)T |0) span the individual particles’ Hilbert spaces.

Expanding the operator 7" (x) given by Eq. (4.58), and reducing it to the subspace of
interest with the same assumptions as in the one-particle case, we obtain an interaction
Hamiltonian with the linearized quantum gravitational field that takes the form

Hi(x) = =AY (OTIE P, (%) = AL (I Ty (%) = ALY (OTIE By, (x) = AALY () TLE T (%),

(4.68)
where the expressions for each one of the terms above is analogous to Eq. (4.64) with the
appropriate indices 1 and 2. In terms of the eigenstates |L;) and |R;), we have I11" =
[LiLal, T = [Ri)(Ril.

We can now find the final state of the system of the two particles. Considering the
initial state (4.49), we can obtain the final state of the system, assuming that the linearized
gravitational field starts the interaction in the vacuum state. After the interaction, we trace
out the gravitational degrees of freedom to obtain the final state of the two particles after
they recombine, ps. This results in a mixed state for the two masses, as the particles
become entangled with the gravitational field itself. To simplify the result, we assume
that all trajectories are related by rotations and translations in space, so the local vacuum
effect in each trajectory is the same. Under this assumption, the leading order negativity
is computed in Appendix H:

N(pc)= %2 (‘GL1L2+ Griro— Grire—Grirs

—z) OO, (4.69)

where L is a local noise term associated with the individual particle’s interaction with the
gravitational field vacuum—corresponding to gravitational decoherence, given by integrals

SFormally one cannot do this, but this can be done if one assumes, for instance, that there exists an
infinite potential barrier for the field 1) between the two regions, which is not an unreasonable assumption
in the case of the GME proposals, as one has to shield any other forms of entanglement between the
particles.
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of the vacuum Wightman function W, 5 (x,X') local to each particle—and
Gpips = Gr(hy,, Ay,) = / AVAV' AL (x)(G ) ywars (x, X )AL (X), (4.70)

where G is the Feynman propagator for the linearized gravitational field.

A Quantum-Controlled model for Gravity Mediated Entanglement

We will now study the description of the GME experiment in terms of a quantum-controlled
model. The associated interaction Hamiltonian density in this case is”

Hoox) = A2 D> (AB(x)D12,(x) + AL (x)BPL (x)) [p1p2)pipa (4.71)
p1€{Li,R1}
p2€{L2,Ro}

Where PP (x) denotes the retarded propagation of the stress-energy tensor of each system,
ie.,

P (x) = / AV G a1 (1, X YA (). (4.72)

This approach can be thought of as the relativistic unapproximated version of the inter-
action Gmyms /|1 — &2|, which, as we previously mentioned, does not explicitly consider
the quantum degrees of freedom of the gravitational field.

Since the Hamiltonian density (4.71) commutes with itself at different times. The
time-evolution operator is simply given by

UI = exp (—i/dV’l:[Qc(x)> = Z N Briry [p1p2XP1p2| | (4.73)

p1€{L1,R1}
p2€{L2,R2}
where

Apip = AN, Ay,) = / AVAV/ A2 (%) A yarg (X )ALF (X)), (4.74)

Using the initial state for the particles (4.49), we obtain the following final density

"Notice that the qc-interaction Hamiltonian picks up a factor of 2, as the linearized gravitational field
sourced by a stress-energy tensor is given by h = —vV8rGGRrT ), = —2AGRrT,., due to Eq. (1.182).
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operator after the interaction

Po =~ Z X (Brira=Rares) [P1P2X 12| - (4.75)

p1€{L1,R1}
p2€{L2,R2}

The entanglement between the two particles can be evaluated through the negativity of
the state p., which reads

+O(\Y). (4.76)

1N

N0 = goin(%
)\2

= Z ‘AL1L2+AR1R2_AL1R2_AR1L2

AL1L2+ ARle_ AL1R2_ AR1L2

With the typical choice of paths for the GME experiment, the above quantity is non-
zero. Moreover, using the relationship of the Feynman propagator with the symmetric
propagator (1.75), we find that Eq. (4.76) matches (4.69) when one ignores the noise terms
L and the state dependent part of the Feynman propagator (encoded in the Hadamard
distribution). Comparing with the initial description given in (4.52), we also see that
iy ~ Apip,-

What can Gravity Mediated Entanglement Tell us about Quantum Gravity?

For the choices of parameters initially proposed in the setup [18, |, the ratio of the
time duration of the interaction 7" and the distance between the systems is at least of the
order of 10'2. This is precisely the limit at which the quantum field theory model can be
well described by a quantum-controlled model, as we saw in Section 4.2. One also has
E,.», = 0 1in this case for p; € {L;, R;}, so that the qc-description is safe from causality
violations (see [186] for more on this topic). This essentially implies that the results in
this experimental setup are independent of the local quantum degrees of freedom of the
gravitational field.

However, as pointed out in a series of works [18, , , 112], the GME experiments
can be used to probe quantum aspects of the gravitational interaction using an argument
based on an additional assumption regarding locality. To fully understand the argument,
it is important to distinguish between two fundamentally different notions of locality. The
first notion comes from the description of spacetime and is deeply linked with causality.
It states that operations happen at events in spacetime, and do not affect other events
which are causally disconnected from them. We will call this notion event locality. The
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second notion of locality comes from quantum mechanics and states that operations that
independently affect two quantum systems must be separable. We call this notion system
locality [65]. The notion of system locality alone is agnostic about causal structure or
any underlying notion of spacetime. Although these notions of locality are different, there
is a particular framework that links the two: in quantum field theory, the postulate of
microcausality makes it so that two systems can only become entangled through event-
local interactions, ensuring that system locality can only be violated when event locality
is satisfied.

Under the assumption that the gravitational interaction also establishes this link be-
tween event locality and system locality, one can conclude more about the results of the
experiment. In this case, a mediator for the gravitational interaction is required in order
to not violate system locality: we need mass A to couple to the field and then the field to
carry quantum information to mass B, otherwise we would have action-at-a-distance. In
summary, this assumption then becomes equivalent to assuming (the very reasonable idea)
that the gravitational field has local degrees of freedom, which rules out a direct interaction
between the masses, such as the one prescribed in the qc-model. In other words,

“If gravity has local degrees of freedom that can entangle two masses,
then these degrees of freedom cannot be classical.”

Without the assumption of locality, the experiment does not, however, rule out the possi-
bility that the gravitational interaction is not described by mediators, and instead works
very differently from all other known interactions.

Although the assumption gravity has local degrees of freedom might seem reasonable
(and it is), it is important to highlight that the only known framework that successfully
links the notion of event locality and system locality is quantum field theory. One could
then argue that this assumption ends up being equivalent to assuming that the gravitational
field is described as a quantum field in the first place. This ends up configuring a circular
reasoning, if the intention is to witness quantum degrees of freedom of gravity.

This, however, does not undervalue the GME experiment as a means to understand
the relationship between gravity and quantum matter. There is currently no experimental
data about how quantum systems source gravity, or how two quantum systems interact
gravitationally®. Regardless of any additional assumption, the GME experiments could
determine whether gravity can entangle two quantum systems, which would be, by itself, a

8 Although the interaction of quantum systems with the gravitational field sourced by classical matter
has been known since the COW experiment [34].
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great achievement in theoretical and experimental physics. For instance, this result would
be enough to rule out semiclassical gravity, or the Didsi-Pensrose collapse models |11, ],
as fundamental descriptions for the gravitational field sourced by quantum matter, which
have not yet been confirmed experimentally.
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Chapter 5

The Geometry of Spacetime from
Quantum Field Theory

In this Chapter, we will discuss the relationship between the Hadamard condition and the
geometry of spacetime, as well as the possibility that the gravity might be emergent from
quantum field theory. In Section 5.1, we will show how the Hadamard condition contains
all information about the geometry of spacetime, discussing how to physically access the
geometry through quantum measurements in Section 5.2. Section 5.3 is devoted to the
discussion of whether a theory where spacetime is completely replaced by the correlations
of quantum fields could be defined. Section 5.4 is devoted to a brief discussion about a
formulation of spacetime in terms of entanglement in quantum field theory.

5.1 The Hadamard Condition and the Geometry of
Spacetime

The Hadamard condition imposes a universal UV behaviour to the correlations of a quan-
tum field. If the equivalence principle states that measurements at highly localized regions
of spacetime behave as they would in flat space, the Hadamard condition imposes the same
for quantum field theories. Given this connection between the Hadamard condition and
the equivalence principle, it should be no surprise that the Hadamard condition is deeply
linked with general relativity and the geometry of spacetime. In this Section, we will see
that not only is that the case, but that the Hadamard condition also implies that the
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correlations of a quantum field contain full information about the geometry of spacetime,
and can perhaps even completely replace the role played by the metric.

In 2015, the then PhD students Mehdi Saravani and Siavash Aslanbeigi took the the
course AMATH 875, delivered by Prof. Achim Kempf at the Perimeter Institute. During
this period, the three made the discovery that one can write the spacetime metric in terms
of the Feynman propagator [165]. Equation (10) of [165] states’:

LT -1)"2 a9 o i
95W) = =3 [W] lim 557 (G@0)77). >

This result showed that, at least in principle, one could replace the description of the
geometry by the correlations of quantum fields [91].

It turns out that Eq. (5.1) is a consequence of the Hadamard condition, as first pointed
out in [134]. As a matter of fact, one can quickly derive it from the expansion that defines
the Hadamard condition (1.134) by noticing that in the limit of x' &~ x, the dominant
diverging term of the Wightman function is 1/,

1 1
WxX)r s = oxxX)~ S W (X x)’

820 (x,x") (5:2)

One can then rewrite the spacetime metric in terms of the coincidence limit of Synge’s
world function, g, (x) = —limy_,x 0,0,,0(x,X’), yielding

1 o a0 1
u(X) = =g lim ( B0 927 W, X,>) : (5.3)

Given that the Hadamard condition implies that the correlations of a quantum field behave
inversely proportional to the geodesic separation between events, it should be no surprise
that one can recover the metric from these correlations. Indeed, the essential information
encoded by the metric is exactly how distances behave infinitesimally. Equation (5.3) then
tells us how to connect the correlation functions of a quantum field with the background
metric.

In a sense, any physical property that has a scaling behaviour that depends on the
distance between two points can be used to recover (at least some) information about the
geometry. For instance, one could consider a classical charged particle in spacetime. The
charge would then source a Coulomb field that would decay with the inverse of the geodesic

ldenoting G(x,x') = Gr(x,x') in a spacetime of dimension D.
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separation between a test charge and the source. By measuring the Coulomb field, one
would then be able to recover o(x,x’) locally around the source, and thus the (spatial)
metric. One could then wonder whether there is anything special about Eq. (5.3).

It is important to stress that any measurement of distances and time separations gives
direct information about the geometry of spacetime, as these measurements provide values
of o(x,x") between events. The collection of all possible measurements of space and time
will then always allow one to recover spacetime, regardless of how these measurements are
performed. However, there are two important features of Eq. (5.3) that make it significantly
more appealing than utilizing other effective “rulers” and “clocks”. The first feature is that
the Wightman function can measure both space separations and time intervals: one single
object directly gives us both quantities. And the second, and perhaps most important,
feature is the fact that whether we choose to measure W (x,x’) or not, it is always there.
From the point that a quantum field theory is defined, its correlation function is defined
everywhere in spacetime, regardless of the (Hadamard) state that the field is at. The
fact that the UV behaviour of quantum correlations is universal implies that the distances
between all events in spacetime are automatically encoded in the quantum field theory
itself.

Can One Replace the Geometry by the Correlations of Quantum Fields?

In 1687 Newton revolutionized physics, starting the tools necessary to begin to study dy-
namics. Newton showed us that gravity was a force, and we learned that the Moon is falling
to the Earth in the same way that an apple falls from a tree. It took three centuries for
our understanding of gravity to change. The next revolutionizing discovery came in 1915,
when Einstein showed that gravity was not a force, but instead the concept of spacetime
itself, and it so happens that spacetime can be curved. Indeed, after General Relativity,
the concept of “measuring gravity” fundamentally changed. What Newton would have
called “the gravity on Earth’s surface”, 9.8 m/sQ, ended up being the acceleration of a
static observer that is uniformly accelerated away from the center of the Earth due to
electromagnetic repulsion. Instead, in the context of General Relativity,

“gravity 1s simply where things are, in both space and time,”

and gravity measurements are then any measurements of relative distances and time in-
tervals, entirely encoded in o(x,x’).

When Einstein first conceived the concept of what we now call Minkowski spacetime, it
was in an attempt to put the theory of electromagnetism and Galilean mechanics together.
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It turned out that the only way of making them compatible was by considering a deep
link between space and time, which resulted in Special Relativity. In modern times, we see
quantum field theory and general relativity being incompatible, and naturally leading us
to the Hadamard condition. One could then wonder whether the Hadamard condition can
tell us more about gravity, similar to the way in which Maxwell’s equations turned out to
imply relativity.

Indeed, as first suggested in [91], one could potentially phrase spacetime as a differential
manifold M and a correlation function W (x,x’), obtaining the corresponding metric from
the limit (5.3). However, this argument might seem circular: the Wightman function is
defined by a formulation of quantum field theory in terms of smeared field operators QAS( f),
which itself depends on equations of motion in a background spacetime. However, this does
not need to be the case if one instead considers some type of background-independent quan-
tum field theory. For instance, one could start with spacetime as a differential manifold
M (without an a-priori metric), and define a quantum field theory as a linear association
f— o(f) satisfying o(f)! = ¢(f), and the local algebras A(O) generated by ¢(f) and 1
with f € C§°(0O), without explicitly imposing the equations of motion or commutation re-
lations. Instead, one would rebuild the causal structure of spacetime from the commutating
algebras. In this case, one would still have a Wightman function W (f, g) = w(o(f)d(g))
and its subsequent kernel W (x,x'). From W(x,x'), one could then define a metric for
spacetime, based on (5.3), which would be compatible with the causal structure obtained
from the commutation of the local algebras. At this stage, it is not clear which restrictions
would have to be imposed on the algebras A(O) in this sort of background independent
theory to recover a standard quantum field theory on a Lorentzian manifold. However,
it is certainly the case that if M admits a metric that makes it globally hyperbolic, then
there exist associations of local algebras (such as the ones built in Section 1.2) that would
allow for such construction.

Following this idea, one could potentially start with a background-independent quan-
tum field theory and a differentiable manifold M and define a Lorentzian metric from
Eq. (5.3). Valid states in this theory would then be the states that yield the same back-
ground metric, implying that they satisfy the Hadamard condition with respect to the
corresponding background geometry. In this formulation, gravity would be an effective
theory, and its classical degrees of freedom would instead be associated with the “vacuum”
degrees of freedom of the field (;B(x) For instance, a gravitational wave would correspond
to differences in the short-scale behaviour of W (x,x’). By construction, these short-scale
differences would be present in the correlations of all states of the quantum field theory.

The idea of defining the spacetime from correlations of quantum fields is, at the very
least, an idea worth pursuing. However, as we will discuss in Section 5.3, it seems that the
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simple formulation based on Eq. (5.3) fails to satisfy some desired features for a theory
that describes the coupling of quantum fields with gravity. Before addressing the conse-
quences of considering a formulation for gravity emergent from quantum correlations, we
will first study an explicit setup where one can recover the geometry of spacetime from
measurements of quantum fields.

5.2 The spacetime geometry from quantum measure-
ments

In this Section, we will discuss the results of [131], which provide a concrete method for
determining the geometry of spacetime when one only has access to local measurements of
a quantum field. This is an operational approach to the concept of replacing the metric of
spacetime with the correlations of quantum fields, showing that one can measure distances
and time separations through localized measurements of short-scale quantum correlations.

Measuring Two-Point Correlations of a quantum field

The first step will be to show how two-level Unruh-DeWitt detectors can be used to recover
the correlations of the field. We start by considering a family of functions A, ,(x) € C*°(M)
that approximates a Dirac delta centered at p in the limit of ¢ — 0, in the sense that

lim A, (f) = lim [ dVA,,(x)f(x) = f(p) VfeCZ(M). (5.4)

o—0 ’ o—0

For instance, in Minkowski spacetime, an example of such a function would be
_ (x=p)?
e 202

Apo(x) = (271'_02)2’ (5.5)

where (x — p)? = (2° — p%)? + (x — p)? (notice that this is not a Lorentz contraction) and
x#, p* denote the coordinates of x and p in an inertial coordinate system. In this case,
if p # q are two events in spacetime that are not in null separation, one can recover the
Wightman function W (p, q) as the limit

W(p,q) = }TIL% W(Ap,mAq,a)a (56)
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where we note that W (p, q) is a finite number whenever o(p, q) # 0 due to the Hadamard
condition (1.134).

The result (5.6) suggests a simple method for approximating the Wightman function
between two points using particle detectors. Consider two two-level Unruh-DeWitt detec-
tors that interact with a real scalar field according to the interaction Hamiltonian (3.70),
with spacetime smearing functions? given by

AL(x) = Ay, 0 (%), Ap(x) = Ay, 0 (%), (5.7)

for two spacelike separated events x, and xg, and sufficiently small o, controlling the exten-
sion of the interaction both in space and time. If the detectors start their interaction with
the field in their ground state and the field is in a quasifree state, the leading order final
state of the detectors p,; will be given by Eq. (3.72). We can then compute the correlations
between the monopole moments i, and [i; when one performs measurements of detector
A at 7, = t, and of detector B at 7, = t5. The correlation is given by

(ia(t) i (ts)) 5y = 2Re(e T LT) 49 Re(eH M0 HRM M) + O(AY) (5.8)
= 20% Re (e X HBL (AT AF) — BB G (AR AT)) + O,

where AT(x) = eFUmA, L (x), AF(x) = e %A, (x). In the limit o — 0 of the terms in
the expressions above we will obtain the Wightman function and Feynman propagator, as
well as the exponentials e &) eFHWm() eyaluated at the center points of the interac-
tions: x = x, and x = x. For convenience, denote 7,(x,) = 7, and 7(xz) = 7, (not to be
confused with the measurement times ¢, and ¢;). Taking the limit o — 0, we have

lim WAL, AF) = e B0y () lim Gr(AL, Af) = ™5 117 (x, xy),
oc—0 oc—0

(5.9)

where we used that both the causal propagator and the symmetric propagator vanish
for spacelike separated events, implying W(x,,xs) = G(Xy,%5) = %H (Xa,Xg). Plugging
Eq. (5.9) into Eq. (5.8) we then find

(fun(ta) fos(ts)) ooy = 4N sin(Qa (7, + 1)) sin(Qp (7, + 1)) W (X4, X5) + O(AY). (5.10)

It is then clear that one can recover W(x,,xs) from the correlations of two detectors by
choosing appropriate measurement times. In particular, by choosing t, = (2n + %)W — Ta,

2Notice that with this choice of spacetime smearing functions, the coupling constant has units of energy.
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ty = (2m + %)W — Ty, We can simply write

W (x050) = gt o)), + OO, (5.11)

It is important to disclaim that, in principle, the Unruh-DeWitt model is not well de-
fined in the limit ¢ — 0, which corresponds to an interaction at a given event in spacetime.
Indeed, in this case, each detector’s individual excitation probability diverges. However,
for sufficiently small o, the result of Eq. (5.11) approximately holds. In summary, when
two Unruh-DeWitt detectors interact with a scalar quantum field in small regions local-
ized around spacelike separated events x, and xg, the correlations between their monopole
moments become proportional to the field correlations W (x,, xg).

We can also recover the Wightman function between two timelike separated events
by considering a single Unruh-DeWitt detector. This result was first shown in [35] and
then applied in [131]. To see this explicitly, consider a detector with spacetime smearing
function of the form

A(X) = AXLU(X) + AX2,U<X) (5'12)

with timelike separated x; and xo, and for convenience, let us assume that x; is in the
causal past of x. Essentially, this corresponds to a detector that interacts with the field
twice, once locally around x; and the second time around x,. It is then natural to assume
that the timelike coordinate that defines the Unruh-DeWitt detector is the Fermi normal
coordinate time associated with a trajectory z(7) that passes through x; at 7 = 73 and at
X9 at T = To.

Let us assume that the detector is initially in its ground state and that the field is in a
quasifree state. Then, the detector’s leading order excitation probability after interacting
with the field at x; and x5 is

Pry = NW(A7, A7) = N (W(AT,AY) + W(AT,AS) + W(AyAT) + W (A3, A7), (5.13)
with AF(x) = e A, ,(x). For convenience, define P; = A2W (A;, Aj), corresponding to

the excitation probabilities if the detector had interacted with the field only in the region
around x;. We can then rewrite

1
WAL AD) + W (A A)) = E(Pm - P - PR). (5.14)

Although in the limit ¢ — 0, the probabilities P35, P; and P, are divergent, the expression
on the left-hand side is finite for all o, implying that the difference P;s — P, — P, is also
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finite even in the limit of ¢ — 0. In this limit we obtain W (A, AJ) — e M=) (x;, x5)
and W(Ay,AT) = M=) (xy,x1), so that we find

1
COS(QAT) RQ(W(Xl, XQ)) + SiIl(QAT) Im(W(Xl, X2)> = 111)1’(1) w(Plg — P1 — PQ), (515)

with A7 = 7 — 7. Equation (5.15) shows that one can recover both the real and the imag-
inary parts of the Wightman function between two timelike separated points by comparing
Py and Py, P,. Although the limit ¢ — 0 is divergent, Eq. (5.15) holds approximately
for sufficiently small o. Overall, we showed that it is possible to use particle detectors to
recover W (x,x') for any two events that are either timelike or spacelike separated.

The setup

The results of the previous Segment show that it is possible to obtain the exact form of the
Wightman function in different points of spacetime if we have precise enough measurements
of the correlations between sufficiently localized Unruh-DeWitt detectors. Combining these
results with the fact that the background metric can be recovered from the correlations of
quantum fields, we can now show how it is possible to recover the spacetime metric from
local measurements of quantum fields.

We propose the following setup to recover the spacetime metric by locally measuring a
quantum field:

1. Couple local probes to a quantum field.
2. Measure the correlation between the probes at different spacetime points.

3. From the correlation between the detectors, compute the field two-point function
between the corresponding events.

4. Compute the metric by taking the coincidence limit in Eq. (5.3).

Although these steps might, in principle, seem simple, one must be careful with their
implementation. Indeed, to obtain the spacetime metric with some precision, the limit
of step four needs to be taken with enough precision. This relies on coupling probes
separated by small enough spacetime intervals, so that the limit can be approximated well
enough. In practice, this requires significant control of the probe systems. However, in
principle, it is possible to recover the spacetime metric with arbitrary precision using this
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procedure, provided that the probes are small enough and their coupling with the field can
be controlled with enough precision.

For the remainder of this Section, we will consider Unruh-DeWitt detectors in different
spacetimes. We will consider detectors that are either pointlike or sufficiently small, that
couple fast enough to the quantum field. This allows us to use the approximations (5.11)
and (5.15). We will compute the (experimentally accessible) correlation function between
detectors placed in a local region of spacetime separated by a coordinate separation L and
adapt Eq. (5.3) to this discrete setup. In essence, given that the interaction happens very
approximately pointlikewise in spacetime, we will effectively have access to the Wightman
function associated with a discrete lattice of points. We then take the discrete derivative of
the Wightman function using the points in the lattice given by the center of the interaction
of the detectors®.

In our setup, we will assume that the experimentalist can use a coordinate system
x* = (2°, 2%) to label the events in spacetime where the measurements take place, but does
not have access to any local notion of space or time separation. In other words, with this
information, it is possible to label events, but it is not possible to compute any physical
spacetime distance. Mathematically, this is saying that spacetime can locally be regarded
as a 4-dimensional manifold, but that there is no known spacetime metric. Our goal is to
use particle detectors that interact at events which are labelled with values of a# = (2, %),
and from the readouts of those detectors, infer spacetime metric components in the lab
coordinates.

We consider a set of N* detectors parametrized by (j;,js,]j;) Where each j; runs from
1 to N. For simplicity, let us work under the assumption that the detectors undergo
trajectories associated With the coordinate system x*, so that they move along the curves
x' = xj = const. Then, z; are the constants that determine the spatial coordinates of each
detector This snnphfymg assumption will allow us to easily compute the metric in the x*
coordinates.

We consider that each detector interacts Ny times with the field. The time coordinate
of the center points of the interactions will be given by 2% = 2{ , with j, running from 1 to
Ny, corresponding to the values of time where the interactions happen. In this setup, we
obtain a 4-dimensional lattice of points labelled by (jo,j;,]ja,J3) associated to the events in
which the detector interactions take place. A schematic representation of the setup can be
found in Fig. 5.1. We can then measure the detectors simultaneously at spacelike surfaces

determined by z° = const. This allows one to obtain (from the readouts of the detectors)

3We will also explicitly analyze the effect of a finite region of interaction in our last example
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Figure 5.1: The setup described in Subsection 5.2, where a lattice of particle detectors
evolves through time and interacts with the field, effectively creating a spacetime lattice
from the centres of interaction regions.

an approximation to the correlation function of the quantum field W (x,x’) when x and x’
are events in the lattice.

As discussed, to recover the spacetime metric, we will employ the discrete derivative of
the Wightman function. We can obtain it directly from experimentally measurable detector
data from the local measurements centred at the points parametrized by j = (jo,j1,J2,J3)-
We denote the coordinates of the interaction point (z{ , ] 27,27 ) by @}, so that after
measuring the quantum field with the particle detectors, we obtain W (x;,x;) for all values

of the multi-indices j and [.

To write the discrete derivative in a simple way, we define the object

1, =(0,...,0,1,0,...,0). (5.16)
——

pn—1

With this convention and the labelling xl“ for the coordinates of the events, given a scalar
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function f(x), it is possible to write its discrete derivative as

of o f) = F5)

© ~ L
81‘ X=X; "L'JJrlu x;

(5.17)

Intuitively, Eq. (5.17) compares the value of the function f(x) at nearby points and divides
it by the coordinate lattice separation. To recover the spacetime metric, we will compute
the derivatives of the function (W (x,x'))~!. Its discrete derivative at (x;,x;) with respect
to its different arguments can be written as

9 0 W1 (%) W1, xe01,) = WG, X)) = W (XG4, x0) + W (x5, x0)
) X=X; ™~

OxH Oxv —) (xf+1“ — i) (@q, — a7)

(5.18)
This expression should give an approximate form for Eq. (5.3), so that we expect to recover
the spacetime metric in the case where the detectors are separated by small enough values

of the coordinate separation x!' x!

i+1, i

To simplify the formalism for a proof of principle, we will assume the detectors to be
separated by a coordinate distance L in all directions (including the time direction). We
can then rewrite Eq. (5.18) using that the coordinates of xj,1, are z}'+ L 1,,. It is important
to remark that in this case, the parameter L does not represent physical spacetime interval
separation; it is merely a coordinate parameter. However, continuity ensures that when the
coordinate separation between events goes to zero, so does the spacetime interval between
them. For this reason, Eq. (5.18) will be used in the examples we study below, so we assume
that the detector coordinate separation is L in all directions in the coordinate system that
determines their trajectories. It is then expected that if L is small enough, Eq. (5.18) will
yield a good approximation for the spacetime metric once the numerical factor from Eq.
(5.3) is included. In fact, as we will see in the following examples, for pointlike detectors
the metric will be precisely recovered when L — 0, and very approximately recovered for
smeared detectors when the distance between detectors approaches the detectors size.

Inertial Pointlike Detectors in Minkowski Spacetime

In this first example, we consider the spacetime (unknown to the experimenter) to Minkowski,
with a real massive scalar quantum field in its vacuum state.

We then consider the inertial coordinate system x = (¢, @)= (¢, z,y, z), and build the
lattice of particle detectors in a local region of spacetime according to our setup. For
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Figure 5.2: Estimation of the metric coefficients in terms of the coordinate distance between
detectors, L, for inertial comoving detectors in Minkowski spacetime.

simplicity, in this first example, we consider detectors that interact via delta couplings
in space and time. In this case, it is possible to recover the Wightman function of the
quantum field exactly. We can then use Eq. (5.18) to approximate the spacetime metric.
We obtain the estimates for the metric shown in Figure 5.2. It is possible to see that
the readouts of the detector approximate the metric coefficients as the distance between
the detectors decreases. Moreover, the imaginary part of the approximate (experimentally
obtained) metric goes to zero faster than the real components as L — 0, so that we are
only left with real expressions, which yield the expected value g, = diag(—1,1,1,1).

Uniformly Accelerated Pointlike Detectors in Minkowski Spacetime

We now consider uniformly accelerated pointlike detectors probing the Minkowski vacuum
of a massless scalar field. The goal of this example is to see whether it is still possible to
recover the spacetime metric in different coordinate systems built from particle detectors in
different states of motion. We then consider Rindler coordinates (T, X, y, z) in Minkowski
spacetime, associated to the inertial coordinates (¢, ) from Subsection 5.2 by

(5.19)

t = X sinh(aT),
x = X cosh(aT),

with X > 0 and T € R. The Minkowski line element in this coordinate system then reads

ds® = —a®>X2dT? 4 dX? + dy® + d2°. (5.20)
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Figure 5.3: Metric coefficients obtained from the correlation function of the quantum field
in Minkowski spacetime with accelerated detectors. The metric coefficients are plotted
as a function of the coordinate aX of the detectors. The detectors were separated by a
coordinate distance L = a~! in the top plot and L = 0.1a™! in the bottom plot.

The lattice of detectors which is associated to this coordinate system is such that each
detector follows a trajectory defined by X = const. with constant values of y and z. That
is, each detector is uniformly accelerated with different proper accelerations. We consider
a massless field, and detectors interacting along different Dirac deltas situated along the
corresponding motions of the Rindler flow. Performing the computation in Eq. (5.18), we
find the estimates for the spacetime metric shown in Fig. 5.3 as a function of the coordinate
X for detector separations of L = a~! in the top plot and L = 0.1a! in the bottom plot.

In the limit of L — 0 we recover the metric exactly, as would be expected. Overall, we
recover the expected behaviour of the metric components with the coordinate distance X
between the detectors. The smaller the value of L, the better the fit between the curves.
Also notice that for higher values of aX, we find more discrepancies between the estimated
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metric components and the actual Minkowski metric. This is due to the fact that the
time separation between the interactions is proportional to aX. Overall, we find that it
is possible to recover the spacetime metric even when the detectors are in different states
of motion, giving rise to different coordinate systems which express the same spacetime
metric. This is a general feature of the setup we have considered: it is generally covariant,
so that regardless of the relative motion of the detectors, one can recover the metric in the
coordinate system associated with their trajectories.

Hyperbolic Static Robertson-Walker Spacetime

Consider the hyperbolic cosmological spacetime with a constant scale factor a. Then the
metric in comoving coordinates coordinates can be written as

ds? = —dt* + a®(dx? + sinh?(x)(d6? + sin? 6d¢?)), (5.21)

We then reparametrize it using the conformal time parameter n = t/a, so that the coordi-

nates read
ds® = a?(—dn? + dx?* + sinh?(x)(d#? + sin? 6d¢?)). (5.22)

Quantizing a conformally coupled real scalar quantum field ¢E(x) with respect to the con-
formal time, we can expand it in terms of creation and annihilation operators,

l
> S <e*i”’“”H;§Z)(X)Yzm(9, @)y + H.c.) : (5.23)

where wy, = k* + p? and p? = a*(m? + (€ — ¢)R), where R is the Ricci scalar, which is
constant in this spacetime. The explicit expression for Hi;)(x) can be found in e.g. [14].

The vacuum Wightman function can then be explicitly computed and reads

W) = 10— X)HP (ul(n = 1) = (x = X)?) (5.24)
’ 8ra?sinh(x — x)[(n —n')* = (x = x)*]’
where H £2) is the Hankel function.

The results of particle detectors separated by a coordinate distance L in the (7, )
coordinates coupled to this spacetime can be found in Figure 5.4. We then see that in the
limit of L — 0, we recover the exact metric coefficients.
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Figure 5.4: Metric coefficients gy, gny, gyn and gy, in terms of the coordinate distance
between detectors, L in the hyperbolic static Robertson Walker spacetime with choices of
mass and conformal parameters such that p = am.

deSitter Spacetime

In this example, we recover the metric of four-dimensional deSitter spacetime by probing it
with particle detectors. deSitter spacetime has a constant curvature with scalar curvature,
R = const. > 0. It is then possible to write the Riemann curvature tensor as

1
R,uzzpo = ﬁ(gupgua - guagup>7 (525>

where ¢ is the curvature radius of the spacetime. This will be the first example we investi-
gate where the metric components explicitly depend on the coordinates we use to prescribe
the detector’s trajectories.

We consider conformal coordinates in deSitter spacetime, so that the metric can be

written as )

l
ds? = = (—dn® + do® + dy® + d2?) . (5.26)
The quantization of a real scalar field with respect to the modes adapted to this coordinate

system yields the following vacuum Wightman function [14]:

1 I, 3 3 (An)? — |Az|?
W (x,x') T (1_1 —v > sec(mv)o Fy (5 +v, 5~V 2,1+ yP . (5.27)

where 5 F7 is the Hypergeometric function and we write x = (n, ) and X' = (1, '), defining
An =n—n" and Ax = x — x’. The parameter v contains the information regarding the
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Figure 5.5: Metric coefficients calculated from the correlation function of the quantum field
in deSitter spacetime. The metric coefficients are plotted as a function of the coordinate
n /¢ of the detectors and we choose v = 9/4. The detectors were separated by a coordinate
distance L = e~"( in the left plot and L = e~ "5¢/2 in the right plot.

mass of the field and its coupling to curvature. It is explicitly given by

VP = Z —12 <%2 + g) . (5.28)

To recover the metric in this spacetime, we consider delta-coupled particle detectors
that undergo trajectories defined by & = const., separated by a coordinate distance L. We
consider these detectors to interact at conformal times that are multiples of L. In Fig.
5.5, we plot the metric approximation for two values of L as a function of 7. As expected,
when L — 0, we approximate the function +¢%/n* with high precision. Also notice that the
method yields better approximations for larger values of 1/¢. This is due to the fact that at
a given fixed value of conformal time 7, the proper space separation between neighbouring
detector trajectories is given by %L, which is smaller for larger values of 7/¢.

The Half Minkowski Space with Dirichlet Boundary Conditions

In this example we study the effect of boundary conditions in our protocol for recovering the
spacetime metric. We analyze a massless Klein-Gordon field in the half Minkowski space
x = (t,z,y,z) with z > 0 and Dirichlet boundary conditions at z = 0. This effectively
restricts the basis of solutions for the Klein-Gordon equation and changes the field’s two-
point function. The vacuum state that respects the symmetries of this spacetime then
yields the Wightman function [14, 177]

W)= L L1 (5.29)

820 8mlo,’
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where 0 = o(x,x’) and 0, = 0.(x,x’) are given by
o= (—(t=tVP+@-2V+y—-y)+(=-2)%,

O =

(=t +(@—2")+ -y +(z+2)7). (5.30)

N =N

Then, it is possible to verify that whenever x or X’ lies at the plane z = 0, W (x,x’) = 0, as
expected due to the Dirichlet boundary conditions.
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Figure 5.6: Metric coefficients calculated from the correlation function of a massless quan-
tum field in the half Minkowski space with Dirichlet boundary conditions at z = 0. The
metric coefficients are plotted as a function of the coordinate ratio between their z coordi-
nate and the separation between the detectors, L.

We then consider pointlike particle detectors at rest with respect to the coordinate sys-
tem x = (¢, z,y, z) separated by a coordinate distance L, which interact with the quantum
field at events separated in coordinate time by L. Following our general procedure, we
estimate the metric coefficients using Eq. (5.18). In Fig. 5.6 we plot the obtained metric
coefficients as a function of the ratio between the coordinate distance z and the separation
between the detectors. As we see, the further away from the boundary, the better the
metric estimation is. Moreover, due to the fact that W(x,x’) = 0 at the boundary, the
computation of Eq. (5.18) yields a divergent result at z = 0, showing that at the boundary,
it is not possible to estimate the metric coefficients. Nevertheless, we highlight that for
any z > 0, the limit L — 0 yields the exact Minkowski metric coefficients.

Overall, we see that the presence of a boundary disturbs the metric estimation, which
fails at the boundary itself. Nevertheless, for any point that is not at the boundary, the
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correlation function of particle detectors can be used to accurately yield the metric of
spacetime, same as in the previous cases.

One-particle Fock states in Minkowski spacetime

In this example, we consider one-particle Fock wavepackets in Minkowski spacetime to
show with an example how the recovery of the spacetime geometry is independent of the
field state. We consider the same setup used when probing the Minkowski vacuum, where
the detectors undergo inertial motion in a frame (¢,x). With respect to these modes, a
general normalized one-particle state |¢)) can be written as

) = / &k f(k)al |0) (5.31)

where f is an L?(R?) normalized function. The two-point function of the field in the state
|1} will be given by (see, e.g., [133])

Wy (x,X') = Wo(x,X') + F(x)F*(X') + F(X')F*(x), (5.32)

where Wy(x,x') is the Minkowski vacuum Wightman function and

1 &k -
F(x) = ot ] e F(k)el . (5.33)
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Figure 5.7: Estimation of metric coefficients obtained using particle detectors in Minkowski
spacetime when a massless field is in a Gaussian one-particle state. The metric coefficients
are plotted in terms of the coordinate distance between detectors, L.
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For a concrete example, we consider the field to be massless (m = 0) and prescribe the
momentum profile function that defines ¢ as a Gaussian centred at k = 0 with standard

deviation o,
1 _ k2
f(k) = W@ 202, (534)

We use delta-coupled detectors interacting in events separated by a time/space coordinate
separation of L. Figure 5.7 shows the value of the approximated metric coefficients ob-
tained from the detector measurements as a function of the separation between detector
interaction events. This allows us to recover the Minkowski metric in the limit where
L — 0. We also find that for larger values of L, the results begin to show state dependence
(compare Figs. 5.2 and 5.7). This is expected since it is only when the detectors are close
to each other that the measurements converge to the metric components independently of
the state.

Smeared detectors probing the Minkowski vacuum

As a final example, we consider non-pointlike inertial detectors probing the vacuum of
Minkowski spacetime in order to recover the spacetime metric. Unlike the point-like case,
it is not possible to recover the Wightman function of the quantum field exactly using
smeared particle detectors. However, if the detectors are small, we can resort to the
approximation pointed out in Egs. (5.11) and (5.15). Although it is expected that smeared
detectors will provide a less accurate measurement of the spacetime metric, these models
represent realistic physical systems that are not infinitely localized.

In this example, we consider a lattice of inertial Gaussian-smeared detectors labelled
by j, whose interactions are centred at sites x; such that spacetime smearing function can
be written as ,

(x=x))

N — ]
06 20

Aj(x) = Z o (5.35)

14

where (x = x)* = 0, (2# — 2{')(z¥ — a¥). For each detector trajectory, we sum over the
different interaction times j,. Notice that this corresponds to an interaction that lasts for

a time equal to the light crossing time of the detector’s spatial profile.

In Fig. 5.8, we plot the approximated metric obtained from detector measurements as
a function of their coordinate separation L, when one considers the approximate Wight-
man function from Eq. (5.11). For detector separations smaller or comparable to 50, the
detectors’ spacetime smearings have significant overlap, and our method does not apply.
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Figure 5.8: Metric coefficients extracted by Gaussian smeared particle detectors in
Minkowski spacetime when the field is in the vacuum state. We have chosen (2 = m,
where m is the mass of the field and o = 1072Q~!. The metric coefficients are plotted in
terms of the proper distance between detectors, L. The vertical line on the left indicates
L =60
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Figure 5.9: Metric coefficients extracted by Gaussian smeared particle detectors in
Minkowski spacetime when the field is in the vacuum state. We have chosen () = m,
where m is the mass of the field and o = 1072Q~!. The metric coefficients are plotted in
terms of the proper distance between detectors, L.

In Fig. 5.9, we show a scaled version of the plot, where the approximated metric is shown
for smaller values of L, and the spurious behaviour for small L. Nevertheless, the metric
is accurately recovered when L is between 50 and 100 even when one considers smeared

detectors.
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Conclusions

The examples discussed above are all able to recover the background metric, regardless
of the state of motion of the detectors or the state considered for the field. These results
show that one can indeed measure distances and times through localized measurements
of the correlations of quantum fields. Regardless of whether it is possible to formulate
a consistent theory of gravity from the Hadamard condition, we conclude that quantum
fields do locally store complete information about the geometry of spacetime. Moreover,
we saw here that this information can, at least in principle, be accessed by physical probes.

5.3 Challenges in Emergent Geometries from Corre-
lations

This section is devoted to discussing the challenges and consequences in formulating space-
time as emerging from the correlations of quantum fields defined through Eq. (5.3). We will
start discussing how one could potentially obtain dynamics for the metric in this formu-
lation, then discuss whether it is possible to recover the semiclassical Einstein’s equations
by considering small changes in the state of a quantum field. We will also discuss what
would happen if one were to consider more than one scalar field. Overall, this section will
show the challenges in obtaining a model for the geometry of spacetime from (5.3) that
could replace general relativity.

Trivial Dynamics and Non-Locality

A physical theory must produce predictions (that hopefully can be tested). The first step
towards this goal is to describe the dynamics of a theory. In the context of using the
correlations of quantum fields to replace the metric through Eq. (5.3), let us assume that
we have a theory for a scalar field g%(x) at a Hadamard state w with Wightman function
W (x,x’). Then, the background metric of spacetime can be written as

1
—— lim 9,0, W™ (5.36)

7'['2 x!—x

Guv =
However, any other state @ that can be represented in the GNS representation of w will

result in the same metric g, (x). Indeed, any Hadamard state in this spacetime will result
in the same background metric. That is to say that the prescription of Eq. (5.3) does not
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give any dynamics for the metric: all states produce the same background geometry. This
implies that, as is, this framework would not allow one to describe how quantum fields
affect spacetime.

One way of resolving this issue (but to introduce many others) would be to not take
the limit of X' — x in Eq. (5.3), instead defining a bitensor

1

- 82

Qv (X, X') = 9,0, (W (x,X')) 1. (5.37)
This bitensor is certainly not a metric, but it satisfies limy_,x ¢,y = g, by construction.
Our goal is to allow for a non-local version of the metric through ¢,,. The idea that
quantum field theory, or even quantum gravity, may be non-local close to the Plank scale
has been widely debated (see, e.g. [16, 7, 32]). We then assume that there is a parameter ¢,
with dimensions of length and of the order of the Planck length, such that for |o(x,x')| = %,
qu defines a “non-local spacetime metric”. Intuitively, one can think of ¢, (x,x’) as
indicating how the tangent vector of the geodesic that connects x to x' changes as one
varies X'. This interpretation comes from an analogy with the bitensor —o, .

One can obtain a standard tensor g, by, for instance, averaging ¢, over a region
Vic{xX,xe M :|o| = %} If e, is a basis at x, let e, denote its parallel transport to X,
and define .

G (X)ete” = — [ dY qu(x,X)e!e”, (5.38)
Vel Jv,
where |V;| denotes the volume of the region, computed with the induced metric*. The tensor
¢ would then be symmetric due to the conjugate symmetry of the Wightman function
and non-generate if W (x,x’). Non-degeneracy is not guaranteed if W (x,x’) oscillates with
a frequency higher than 1/¢, but we will assume that this is not the case and that g,
indeed defines a metric for the analysis that follows.

The effective metric g, would then explicitly depend on the specific field state consid-
ered. Indeed, if the state @ has the Wightman function

W(x,x') = W(x,x) + w(x,x), (5.39)
then, to leading order in w, we have

- 1 -
Quv = _@auau/ (W t—

w

8m2W?2

w

) + O(w?) = qu — 0,0, <W) + O(w?), (5.40)

4This volume ca be infinite, but the average of Eq. (5.38) can still often be taken by considering a
suitable limit.
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which, when averaged according to (5.38) will generally yield a different §,,. On the other
hand, the fact that each state generates a different metric effectively implies that one has
to consider a different quantum field theory at a different spacetime for each update of
Guv, and consider how to relate the different states of the different theories would be an
issue all in itself. We will not focus on these issues for now, as this construction will prove
ineffective before we can get to this debate.

The Minkowski vacuum of a massless scalar field is, however, stable. Indeed, even
without taking the coincidence limit, the Wightman function of the Minkowski vacuum
satisfies

1 _
_@aﬂay,wo Y=, (5.41)

where 7,/ is the parallel transport of the Minkowski metric over the second index. In
particular, this means that ¢,,» = 1,,» and ¢, = 1,,. We conclude that in this formulation,
the Minkowski vacuum of a scalar quantum field would not gravitate. Notice, however,
that this would not be the case for a massive scalar field or for any other state in the
massless theory.

Einstein’s Equations?

If the attempt at defining the metric from correlations is to bear any value, the dynamics
introduced by changing the state of the field must correspond to the dynamics prescribed
by Einstein’s equations, at least in some regimes. To test whether this formulation can
reproduce Einstein’s equations, we consider a real massless scalar field that is at first in
its vacuum state, with Wightman function Wy(x,x’). We then assume that an operation is
applied to the field, updating the state and giving rise to the Wightman function

W (x,x') = Wy(x,x') + w(x,x). (5.42)

This modification to the vacuum Wightman function then creates both a modification to

the metric ¢,,, as well as a change in the stress-energy tensor of the field, ‘T:, where we

28]
use the Minkowski vacuum as a reference state for the normal ordering. For convenience,
we employ inertial coordinates (¢, @) and define og(x,x) = —1(t — t')* + L (x — a')? as

2
Minkowski’s Synge’s world function, so that Wy = 1/8720y.

The expected value of the stress-energy tensor will be given by

(Tt (X)) = lim (8,0, — 2000 )w(x,X). (5.43)

x/—x
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The updated non-local metric will be given by Eq. (5.37):

Qv = —8—71T2(9u8,,/(W0 +w) "t =, — 167% 00w N + O(|oo]?), (5.44)
where we used that o, is of order O(|o|'/?). Notice that the leading order term is confor-
mal, which matches the fact that a massless real scalar field is a conformal theory. The
corrections are also of order oy, which is assumed to be of the order of 5123 = ( in the aver-
aged metric. Our next goal would then be to compute the averaged metric g, and check
whether it satisfies the linearized Einstein’s equations. However, we can see at this stage
that if one were to average ¢,,, we would not obtain terms that involve the derivatives of
w with respect to both arguments, so that the associated linearized Einstein tensor would

not match (:7},,(x):) in (5.43). This should already be enough evidence that this formalism
cannot recover the semiclassical Einstein’s equations even in this simple regime.

Our final attempt will be to assume that it is possible to define a bitensor G/, whose
coincidence limit coincides with G,,,. Although there are infinitely many possible bitensors
that coincide with G, at coincidence, as an example, we pick the linearized G, acting
in a bitensor “metric fluctuation” dg,,, according to

G = 8aa(u5gV’)a - %aual/’(sg - %Dégw,/ - %UW’ (aaaﬂlégaﬁ’ — 0,0%9), (5.45)

analogous to Eq. (1.181). However, simply applying the definition above to Eq. (5.44)
would get rid of oy and produce no leading order results for %,,. In a final final attempt,
we consider that oy is kept constant in g,,,. We then find

G = —81°0; (8@8,,/) — nuu/ﬁaé?o‘/)w(x, x'), (5.46)

where we used that 0,0%w(x,x’) = 0, as the Wightman function is a bi-solution of the
equations of motion. Even with all of the (not necessarily reasonable) assumptions made
to reach this point, comparing Eq. (5.46) and (5.43), we see that these are not proportional.
Moreover, no other reasonable choice of G,,» would yield the desired result. Overall, even
attempting to fine-tune the dynamics, we see that we cannot recover the semiclassical
Einstein’s equations.

Generalization to Other Fields

We end this section by commenting on a final issue regarding the idea of attempting to
interpret Eq. (5.3) as prescribing the metric of spacetime: there are many other fields in
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the universe, not merely a scalar field. The Hadamard condition takes an alternative form
for each type of field, so that fields of all spins have a leading order divergence in their
Wightman function that is controlled by Synge’s world function. This allows one to recast
the metric as a coincidence limit of a power of the Wightman function for each type of
field. However, the Wightman function of non-scalar fields are bitensors, which would
require one to either contract or trace these. While contractions would unequivocally lead
to privileging a frame, the trace operation would involve parallel transport, which could
potentially be implemented, allowing one to recast the spacetime metric in terms of a
coincidence limit of Wightman functions for fields of more general spin.

However, we would once again face the issue of prescribing the dynamics from limits
of the Wightman function. Taking the coincidence limit would yield the same metric for
different fields, however, if different fields are present and affect the metric differently, how
would combine their effects? At this stage, this answer is not clear. The overall conclusion
of this section is that as much as it is interesting that all information about the geometry
is encoded in the UV behaviour of quantum fields, it does not look like one can use this
fact to determine the influence that quantum fields have in their background spacetime.

5.4 Emergent Geometry from Entanglement?

The fact that we were unable to formulate a theory for emergent gravity from the corre-
lations of quantum fields using Eq. (5.3) does not imply that it is not possible to describe
gravity as an emergent phenomenon from quantum field theory. Indeed, there has been an
ongoing debate about the possibility of the geometry of spacetime emerging from entan-
glement in quantum field theories [198, 50, 30, 29, 158, 62]. In this Section, we will briefly
review results that were obtained related to the emergence of spacetime and Einstein’s
equations and speculate on how our discussions about entanglement and emergence could
fit in within this topic.

Perhaps the most clear connection between entanglement and gravity was provided by
Ted Jacobson in [87, 88], where it was shown that it is possible to obtain Einstein’s equa-
tions by imposing thermodynamic equilibrium involving the entanglement entropy. The
derivation in [38] concerns entropy variations in a causal diamond in Minkowski spacetime
(or any maximally symmetric spacetimes), defined as D (%), where 3, is a spacelike surface
produced by geodesics orthogonal to a timelike vector n* with geodesic length /. Essen-
tially, the von Neumann entropy of a state in D(X,) can be split into two contributions,

S = Sarea + Sstate> (547)
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where S,.ea is proportional to the area of the boundary of ¥,, and is formally divergent,
requiring the introduction of a UV cutoff € (this is the entropy associated with the diver-
gent vacuum entropy), and Sgate iS associated with the entropy of the state, neglecting
the vacuum contribution. One can show that keeping the volume of ¥, constant, while
considering small perturbations of the background geometry and of the vacuum,

5Sarea = _%Guvnﬂnya (548)

§Sutate = 21T ymin’, (5.49)

where « is a geometrical factor, 7}, is the variation in (:7},,:) due to the perturbations in
the quantum state, and G, is the Einstein tensor of the perturbed geometry. Eq. (5.49)
relies on the quantum field theory being conformal, but can be generalized under reasonable
assumptions [33]. Imposing that 65 = 0 for all diamonds D(3,) of this form then yields
the semiclassical Einstein’s equations when the cutoff is taken to be the Plank length,
€ =1L, = V/G. The connection between entanglement and gravity is then established by
the fact that the entropy S corresponds to the von Neumann entropy of the state in D(X,).

This fact has led to Cao and Carroll to start a research program where the geometry of
spacetime is emergent from the mutual information between subsystems [30, 29]. Specif-
ically, the proposal of [30, 29] is that given a state p described in a Hilbert space of the
form S = ®;_,7,, it is possible to define effective distance d between the subsystems
labelled by p and ¢ as a function of their mutual information:

I(p:q) = S(pp) + S(pg) — S(Ppq), (5.50)
assigning distance d(p,q) = 0 if the mutual information is maximal, and d(p,q) = oo if
their mutual information is 0. In [29], it was shown that it is sometimes possible to embed

the systems 77, in a smooth manifold, where the distance defined through the mutual
information corresponds to the geodesic distance within this manifold. Specifically, for
states that satisfy an analogue of an area law (redundancy constrained states [200]), a
discrete version of Jacobson’s argument applies, allowing for this framework to, in principle,
yield both spacetime emergence and dynamics for the geometry, compatible with Einstein’s
equations. However, this program is still in its infancy and has numerous challenges to
overcome, such as the conditions that allow a system to be embedded in a 3-dimensional
surface, as well as the Lorentz structure of the associated spacetime.

One particular issue with the program proposed in [29] is that the mutual information
does not quantify the entanglement between two subsystems, unless the combined sys-
tem at p and ¢ is pure. This would imply that classical statistical mixtures would affect
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the geometry of spacetime non-trivially. One could potentially fix this issue by instead
considering that the distance between quantum systems is a function of the entanglement
between them. Indeed, we have seen that there are good arguments for why the entan-
glement between two regions decays with their separation and that a polynomial decay
of entanglement can be achieved by considering measurements in their complement. This
seems to imply that the entanglement between two regions could replace the role played by
the mutual information in the emergence of spacetime. Indeed, it would not be surprising
if one could rewrite an analogue of Eq. (5.3) in terms of the entanglement between two
sufficiently small regions that are separated by distances of the order of the Planck length,
allowing one to explicitly recover the background geometry of spacetime. This is, of course,
a challenge, given how non-trivial the task of quantifying entanglement in quantum field
theory, and even in simpler quantum systems, is.

On the other hand, the idea that the entanglement between two regions can yield
their separation in space would also automatically solve the issue that appears when one
considers many fields in spacetime: a collection of quantum field theories is still described
by a single state, and one could quantify the entanglement of this state between two finite
regions of space to define spacetime separations. The method of replacing the role played
by the mutual information in [29] by an entanglement quantifier between the two regions
would also be fit for Jacobson’s argument, where one could argue that Einstein’s equations
would follow from a thermodynamical equilibrium argument. It would remain to be seen
whether small perturbations on the field’s state would be compatible with this formulation,
yielding Einstein’s equations in a linearized form, as we attempted in Section 5.3.

This approach would also naturally relate to the ER=EPR conjecture, proposed by
Maldacena and Susskind in [105]. Essentially, if the fabric of spacetime indeed emerges
from the entanglement structure of quantum fields, in [10%], it was suggested that one can
interpret what are usually seen as nonlocal quantum correlations between two subsystems
instead as “local” correlations in an effective spacetime that possesses a microscopical
Einstein-Rosen bridge connecting them. Quoting [108], the ER=EPR conjecture states
that “for an entangled pair of particles, in a quantum theory of gravity there must be a
Planckian bridge between them, albeit a very quantum mechanical bridge which probably
cannot be described by classical geometry”. If the geometry of spacetime could be described
as emergent from entanglement in quantum field theory, and the separations between
two regions were defined as inversely proportional to the entanglement within them, a
maximally entangled pair between two separated regions would indeed require one to embed
these systems in a spacetime that has a non-trivial topology, where the systems seem distant
in the external space, but are very close through the Einstein-Rosen bridge.

At this point it should be clear that the first step to tackle the problem of the emergence
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of spacetime from entanglement present in quantum fields is to find a precise way to
determine the entanglement between two regions of a quantum field theory. Thanks to the
results of Klco in [96, 95, 91] (reviewed in Section 3.3), there is a clear path to achieve this
goal and to attempt to formulate a theory where gravity is a consequence of the fundamental
structure of quantum correlations in quantum field theory. Indeed, most of the discussions
held in Section 5.1 also apply to these theories, where the vacuum correlations of the field
close to the Planck scale would give rise to spacetime as a consequence of the Hadamard
condition.
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Chapter 6

Summary and Conclusions

We discussed four main topics in this thesis: how to probe quantum fields in Chapter 2, how
to quantify entanglement in quantum field theory in Chapter 3, how to determine when
the degrees of freedom of quantum fields are relevant in Chapter 4, and how quantum
fields contain full information about the geometry of spacetime in Chapter 5. We will now
summarize the knowledge acquired about each of these topics and point out directions of
future work.

Local Probes of Quantum Fields

It is usual to consider effective non-relativistic systems when implementing operations and
measurements in quantum fields. This approach not only simplifies the description of
measurements in quantum field theory but also directly connects to physically accessible
systems that can be used in realistic setups to measure and operate quantum fields. The
price to pay for these simplifications is that the probes will usually be incompatible with
relativistic principles. In Section 2.2, we described precisely how the effective models of the
probes arise from an entirely quantum field theoretic description, by explicitly connecting
the Fewster-Verch measurement framework to the usual models of particle detectors. We
did so by considering a compactly supported quantum field as a probe, and reducing this
localized field to modes that can be realistically accessed.

These effective models that only consider finite modes of the probe naturally led us
to the definition of particle detector models, or Unruh-DeWitt detectors, in Section 2.3.
While studying the dynamics of these effective models, we found that the reason for the
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incompatibilities with relativity that are present in effective descriptions is that no indi-
vidual mode of a probe field is local: the modes are smeared along the entire region where
the probe is localized, corresponding to one degree of freedom distributed along multiple
spacelike separated points. Given that no finite number of field modes satisfy the micro-
causality condition, this leads to non-covariant dynamics that privilege a time direction
with respect to which the effective model is defined.

We then studied how to describe non-relativistic quantum systems undergoing a given
trajectory in curved spacetimes in Section 2.4. There, it became evident that there is
one privileged time direction with respect to which one should compute time evolution:
the time coordinate that allows the system to be described non-relativistically in the first
place. Using this description, we saw how a particle detector model can be defined from a
physical system coupled to a relativistic quantum field, connecting this formulation with
the typical two-level Unruh-DeWitt detector and with a non-relativistic atom probing the
electromagnetic field. Rather than starting from quantum field theory, this formulation
allows one to start from a system described by non-relativistic quantum mechanics and
embed it into spacetime, allowing one to formulate its interaction with a quantum field
within the particle detector model formalism.

On the other hand, in Section 2.5, we showed that it is not always necessary to employ
non-relativistic models to describe physically realistic probes, as we can instead consider
more general localized fields corresponding to explicit physical systems. In particular, we
discussed fields localized by finite potentials that give rise to non-compactly supported
modes and provided an explicit basis-independent definition of localized fields in terms of
limits of expectation values of observables at spatial infinity. Along the lines of studying
more realistic localized fields, we discussed fields under the influence of not only finite, but
bounded potentials, which generally contain a mixture of localized and scattering modes.
For a concrete example of a physically realistic localized probe, we discussed a quantum
field theoretic description of a hydrogen atom in terms of the electron field bound by a
Coulomb potential, showing how it gives rise to an effective probe of an external magnetic
field.

Finally, we discussed the implications of general covariance for the models of localized
fields used throughout the chapter in Section 2.6. In essence, we showed that considering
a non-dynamical potential for the localization of the probes is incompatible with general
covariance: general relativity requires one to describe all matter through dynamical fields.
On the other hand, incorporating the dynamics of the external potential also adds their
contribution to the stress-energy tensor, which, strictly speaking, rules out any compactly
supported fields, as these require an infinite trapping potential. Analogously, any un-
bounded external potential cannot be consistently described in a background Minkowski
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spacetime, as these would amount to increasing energies at spatial infinity, which would
result in non-trivial effects on the geometry. We then showed an explicit example of a
localized quantum field that is trapped by its interaction with a dynamical quantum field
and a perfect fluid, giving rise to a finite and bounded stress-energy tensor that satisfies
all the energy conditions.

Overall, Chapter 2 consisted of a detailed study of the local probes that can be used
to measure a quantum field. We connected effective and fundamental models and studied
the intricacies of defining localized systems when taking both quantum field theory and
general relativity into account. The natural next step regarding the approach taken in
this Chapter is to formulate a general covariant model for the hydrogen atom. After all, a
non-dynamical pointlike charge and a Coulomb potential both yield infinite contributions
to the energy-momentum tensor of the system. If such a model is found, it would also allow
one to explicitly describe the stress-energy tensor of a hydrogen atom and, potentially, to
study the geometry of spacetime inside the atom. Overall, it would be the first example of
a general covariant model that can describe a realistic localized physical system in terms
of quantum field theory.

Entanglement in Quantum Field Theory

There are many things about quantum fields that are well understood at this stage. Ar-
guably, entanglement is not one of them. Although specific results are known, such as
the fact that the vacuum possesses an arbitrarily large amount of entanglement between
a region and its complement, and that this entanglement is directly related to the area
between the regions, not many results are available regarding the entanglement between
non-complementary regions. In Chapter 3, we discussed why it is non-trivial to quan-
tify entanglement between two finite regions in quantum field theory, and discussed two
methods to approach this problem.

The first method was described in Section 3.3, and consisted of analyzing entanglement
between finite sets of field modes that are localized in two finite causally disconnected
regions. The fact that the vacuum is a Gaussian state allowed us to define independent
field modes in each region and to treat these degrees of freedom using standard techniques
of Gaussian quantum mechanics. Specifically, we considered the modes defined by canon-
ically commuting pairs of field and momentum operators (®(F;), II(F})) smeared against
test functions localized in two non-overlapping subsets of a Cauchy slice. By mapping
the vacuum degrees of freedom associated to each mode to the corresponding covariance
matrix, we discussed how to compute the entanglement between these degrees of freedom.
Using this technique, we considered sets of modes defined by the same smearing functions
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at different Cauchy slices and, after mapping all modes to a single slice, computed the
entanglement between the two regions. We then argued that the entanglement found is a
lower bound for the total amount of entanglement between the regions.

The remainder of Section 3.3 was devoted to reviewing the results of [96, 95, 94, 0],
which provided an explicit method to not only compute the entanglement between localized
modes, but to explicitly find which modes contribute the most to the negativity between
the two regions. The application of these techniques to lattice quantum field theory yielded
numerical results in [96, 95, 94, 66] that led to the conclusions that 1) the vacuum contains
entanglement between any two finite regions and that this entanglement decays expo-
nentially with their separation, 2) the further apart two regions are, the more energetic
the entangled modes are—the so-called UV-IR connection—, and 3) the entanglement in
quantum field theories is mostly of GHZ type, allowing one to increase the entanglement
between two regions by performing measurements in their complement. These conclusions
were later compared with our second approach to quantifying the entanglement in quantum
field theory.

Our second approach to studying the entanglement in quantum field theory was dis-
cussed in Section 3.4, where we considered the entanglement that could be acquired by local
probes that couple to a target field, in the protocol of entanglement harvesting. We started
our discussion of entanglement harvesting by considering two probes modelled by localized
quantum fields and discussed two ways in which the probes can become entangled: either
through communication or by extracting entanglement from the field. By imposing that
the probes must couple to independent field degrees of freedom we concluded that only
when the probes are spacelike separated throughout their interactions can the entangle-
ment in them be traced back to entanglement in the target field. When considering more
realistic non-compactly supported probes, we defined a condition based on the symmetric
propagator that allows one to conclude that the entanglement acquired by the probes was
harvested from the field.

Having the conditions necessary for entanglement harvesting to take place, we studied
explicit examples, first describing the probes as localized quantum fields, and then con-
sidering two-level Unruh-DeWitt detectors. In the example with particle detectors, we
provided closed-form expressions for the leading order final state of the detectors and their
negativity.

Section 3.5 was devoted to summarizing general results of entanglement harvesting.

We started by reviewing the no-go theorems of [175], and then proceeded to show that
the entanglement extracted by local probes in entanglement harvesting are in agreement
with the more general results analyzed in [96, 95, 94, 66]. Specifically, we showed that
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two detectors can become entangled regardless of their spatial separation and showed an
analogue of the UV-IR connection in entanglement harvesting, where the optimal energy
gap that allows detectors to harvest entanglement is proportional to their separation.

Although progress has been made in quantifying entanglement in quantum field the-
ory, still very few general results are known. In particular, the question of “how much
entanglement is there between two finite regions” still only has numerical answers in lat-
tice theories. However, there is a clear path to obtain an answer to this question without
the lattice approximation: considering two non-overlapping spheres B, and By, separated
by a distance L, one can consider bases of real orthonormal functions F,, , € L*(B,) and
F,.. € L*(By), so that the degrees of freedom of the field in the two regions is fully
described by the canonically commuting modes (®(F,, ), II(F,..)) and (®(F,), [I(F,)).
Considering a large finite number of basis elements, one can then 1) quantify the distillable
entanglement between the degrees of freedom in B, and By to arbitrary precision, and 2)
find the spatial and momentum profiles that define the most entangled modes through the
methods of [96, 95, 94]. This is ongoing research which, unfortunately, could not be com-
pleted before submission of this thesis. With these results, one could also determine the
optimal coupling to be considered in the protocol of entanglement harvesting, and perhaps
even allow detectors to harvest significant entanglement from the field, opening the doors
for practical applications of the protocol.

When is Quantum Field Theory Necessary?

Although quantum field theory is the benchmark for fundamental descriptions, not all se-
tups require quantum field theory to be accurately described. In Chapter 4, we discussed
the quantum-controlled model (qc-model), an effective description of interactions that are
mediated by quantum fields that neglects the field’s degrees of freedom, while still preserv-
ing some relativistic aspects of the interaction. We defined the model in Section 4.1 and
discussed its basic properties, such as the fact that it promotes unitary evolution between
the systems, and that systems only interact through the qc-model when in causal contact.

In Section 4.2, we discussed when the quantum-controlled model can approximate in-
teractions mediated by quantum fields. To compare the predictions of both models, we
considered two two-level systems and compared the evolution obtained using a qc-model
and a quantum field description. The analysis of this setup indicated three conditions that
must be fulfilled for a quantum field interaction to be well approximated by a quantum-
controlled model: 1) the interaction duration must be much longer than the separation
between the systems, 2) the interaction duration must be much longer than the character-
istic frequency that determines the systems’ internal dynamics, and 3) the coupling between
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the qubits and the field much be sufficiently weak. We then performed an analysis of the
case where the qubits have trivial internal dynamics, where we solved for the final state of
the qubits in both cases non-perturbatively and confirmed the conditions previously found.

Beyond simplifying the description of interactions mediated by quantum fields, the
gc-model can be used to indicate the limits where the quantum degrees of freedom of
mediating fields play an active role. This allowed us to conclude that it is only in the
regime of either high energies or short interactions that the degrees of freedom of quan-
tum fields play an active role. This led us to discuss the gravity mediated entanglement
experimental proposals of [1&, ], where neither condition is fulfilled, but it is claimed
that the experiment can witness quantum degrees of freedom of the gravitational field. We
described the experimental setup using both a fully featured quantum field theoretic and
a quantum-controlled approach, which led us to conclude that both descriptions are essen-
tially equivalent within the proposed experimental parameters. However, if one assumes
that the gravitational field has local degrees of freedom, it is possible to infer quantum
properties of gravity from the experimental results, as no classical mediators would be able
to entangle two masses. However, we also argued that, in the context of the experiment,
the assumption that gravity has local degrees of freedom might, by itself, imply that the
gravitational field is described by a quantum field theory, leading to circular reasoning.

Although we defined and studied the quantum-controlled interaction between two sys-
tems, nothing prevents one from considering more than two systems coupled through qc-
interactions. An important consequence of this fact would be that, in this case, the effective
evolution of two subsystems would usually not be unitary, as two systems could also be-
come entangled with the remaining probes. It would be interesting to study how well the
gc-model would be able to reproduce quantum field theory when more parties are con-
sidered. Moreover, in analogy with the Feynman-Wheeler absorber theory [203, ], one
could consider effective probes at asymptotic infinity, in which case it might be possible to
incorporate many, if not all, effects related to the quantum degrees of freedom of quantum
fields. Finding conditions under which generalizations of the qc-model could reproduce the
predictions of quantum field theory has the potential to yield different approaches that
could illuminate some of its aspects.

The Geometry of Spacetime from Quantum Fluctuations

In Chapter 5, we explored the deep connection between the Hadamard condition and
general relativity, showing that the universal UV divergence of correlation functions of
quantum fields contains full information about the geometry of spacetime. In Section 5.2,
we constructed an explicit protocol through which one can recover the correlation function
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between any two events in a lattice in spacetime by considering sufficiently localized par-
ticle detectors. Using the data collected from these detectors we showed that it is indeed
possible to approximately recover the background metric of spacetime from these measure-
ments. These results show that particle detectors can also be used to measure space and
time separations, showcasing that measurements of gravity can be rephrased in terms of
quantum measurements of localized probes.

We also discussed the possibility of using the relationship between the Wightman func-
tion and the background metric to formulate a theory where gravity is an emergent phe-
nomenon from correlations of quantum fields. In Section 5.3, we discussed the challenges
that such a formulation would face when attempting to recover the metric dynamics pre-
scribed by Einstein’s equations. If taken at face value, the relationship between quantum
correlations and the metric would be unable to predict dynamics for the geometry of space-
time. This is due to the fact that all states share the same UV divergence, yielding the same
background spacetime. We attempted to resolve this issue by considering non-localities at
the Planck scale, but even with many additional assumptions, we were unable to recover
the dynamics prescribed by Einstein’s equations. The implementation of dynamics is also
hindered when one attempts to consider multiple fields rather than one. Overall, we were
unable to formulate a theory where all aspects of the gravitational field could be captured
by the correlations of quantum fields.

Finally, in Section 5.4, we briefly discussed alternative programs that aim to describe
the geometry of spacetime as an emergent phenomenon. Overall, we argued that it might
be possible to formulate a theory where gravity emerges, not from the correlations in
quantum field theory, but from entanglement therein.

Final Remark

We looked at two complementary aspects of quantum field theory throughout this thesis.
From a fundamental perspective, we studied entanglement in quantum field theory, as
well as the regimes where quantum degrees of freedom are necessary, and how quantum
correlations contain the full information about the spacetime geometry. From a practical
side, we discussed how to use quantum field theory to describe physically realistic low-
energy systems, and how it can be approximated to yield simpler and more familiar models
and interactions. This all shows how rich the theory is: even after a century of studies in
quantum field theory, there sure still seems to be much more to explore.
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Appendix A

Evaluation of Smeared Field
Bi-Distributions on Gaussian
Spacetime Functions

In this appendix we will compute the bi-distributions W (fi, f2), E(f1, f) and H(f1, f2)
evaluated at functions fi(x) defined by parameters (T, t,, €, oy, L;):

7|a:—LéI\2 (y?
e 20 _a=to=
fl(x> = W@ 277 €lﬂlt, (Al)

for general parameters (T4,t1,Q,01,L1) and (Ts,t9, s, 09, Ly). We will also compute
Gr(f1, f2), Ga(f1, f2), A(f1, f2), and Gp(fi, f2) in the case 01 = g9 = 0. Finally, we
will discuss how to generalize our results for the computation of two-point functions that

involve the momentum of a real massless quantum field and more general time derivatives
of the field.

We start from Eq. (1.106), and notice that for the functions

| — Ly |2
e 2"L‘2 ~E0 o
E(w) = W, Xl(t) =€ 2Ty e s (AQ)
I
we have the Fourier transforms
~ . o2 |k|? : (w—00)212
k) = D=5 §(w) = V2nTe i3 (A.3)
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Plugging the results above into Eq. (1.106), we find

. (|k|—Q1)2T2
Tlefl(“ﬂfﬂl)tlf%

(kl+22)2T5  (Ik|—21)2T7
2 2

3
W (1, f2) = (21)*2 / gmkeim“i’”eik«m“Sz’“gneﬂlklmﬂw”“?)QTZQ
T
T Tpeltatitata) /dgkeik~(L1—Lz)e—ilkl(h—tz)e—(a%+ag)lk26_
(2m)? 2|k|
_ TlTQGi(QﬂlJertz) 67@79%27%2 d3k 6ik~(L1*L2)B*i‘k‘(tlfw)e*
(2m)? 2|k|
Tszei(QltﬁtaQ) _@_ﬁ/dw 9 . T
_ e 775 | 2| k|*2sinc(|k|| L|)e kIt
2 2|k
T, Toel(@uti+Qata) o212 o212 ;
_ 1ilze 6*7222*%/d\k|Sin(|k||L|)e*1‘k‘t°€7
27| L|

where L = L, — Lo and ty = t; — t5. Using the result

/ dre e” = VT
0 V2a

and writing sin(|k||L|) as exponentials we find

a“r

_ b2
€ 242 (1 — lerfi

2.2
25T,
3

. o371}
T1T261(Qlt1+92t2) 1 7%

e

(03 +03+T2+T3)[k|?
2

V2a

_ (to—|LI+i(Q1 TP~

(03 +03+TE+T3)|k|?
%eflk\(ﬂszfﬂlT{")

02402 4+T24T3) k|2
we_‘k‘(gﬂg_glq?)

¢ IKI(@TS —uT?).

(A4)

b (A.5)

)

QzTéz))2

Ve~

W(flva) =

2T +T3+02+02)

to—|L|+i(Q T2 —QT3F)

o )

2| L| 2 \/2\/T? + T2 + 02 + 02 V2\/TP+T3 +oi+03
_(t0+\LH»i(91T12—QzT22))2 ) R )
e 2T 4T3 +03+03) 1 —ierfi [ fotlEIHiE0 Ty —QpTy)
V2 /T2 +Ti+03+03
. Q213 Q1 . 2 2.12
Qit1+Q2t0) ,— 22 ——1-1 (to—|L|+i(21 T{ —QT5))
Ty Tttt ata)e= =5 3 — Lo L2 to—|L|+i(Q1 T2~ Q. T2)

2ATZ+T3+03+02)

(&

 AV2|L|\TE+TZ + 0% + 02

_ (to+|L|+i(21TE—9T3)?

—i—erﬁ(

V2\/T2+T3+03+03

)

to+|L|+i(Q1 T2 —Q2T3)

te T e ( V2\/T2+T2+02+032 )
(A.6)
And, as it turns out, we find that
(Qutr4+Qats) — 22TE_21TE (to—|LI+i(2, TZ —05T2))2 . 2 2
Hfy o) = D28 2 20 7 (e e (o (O OoTh)
2v27|L|V/TE + T3 + of + 03 V2V/T} + T3 + of + 03
(A7)

B (to+|L|+i(21 TE—09TF))?

|L| +to + (T — Q1)

2T +TZ+02+02)

+e
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and

22 22
TlTQBi(Q1t1+ta2)6_Q22T2 -an  (toHILIHi(Q TR -297))2  (tg—|L|+i(Qy T2 -057T3))2

e 2TE+T3+07+03) —e 2ATE+TS+0]+03)
2v27|L|\/T} + T3 + 03 + 03

E(fhfz) =

(A.8)

We now move on to the Green’s functions, which will allow us to compute the Feynman
propagator and the symmetric propagator. In order to compute these, we will resort to
integration in spacetime of the spacetime smearing functions, using the expressions for the
Green’s functions of Egs. (1.39). Unfortunately, we will have to consider a more restricted

parameter space where o; = 09 = ¢ in order to solve these integrals. For the retarded
Green’s function, we have

GR(fl,fQ) = /dVdV,fl(X)fQ(XI)GR(X,X/) (Ag)
o o _(t—tp)? , @t )2 r_ o
= Gryes ;3 - /dtdt’d?’md?’m’e*‘ Ll 2Bl o Ty it T ard (_5(t . t|+ |z : z |))
T)30 w|le —x
’7 L — 2 L — :E—:Dl — 2
- 55 /dtd3md3m/6—'m;:‘2ﬂ2 om 2ot oy ~SH (e, L
2(2m) 0 @ — 2]

We now perform the change of variables
1( +v)+ L ! 1( )+ L (A.10)
r=—(u+v , r=—u-v : :
V2 ' V2 '
so that | — 2’| = v/2|v|. Defining L = L, — L, the integral becomes:

2 2
1 |utw|? lu—wv VL2 1 R _ =t _ (t=V2Jv|—t9)
Gr(fi,f2) = —55—=7= | Pud’ve” w2 e a2 dtete 2T (iR (-V2IvD, 213
o

2(2m) V2|v|

(A.11)

1 Cul4 w2 Jul4v?421L12 VBuw L+vEwL ]
3 3
= —72(2 )4 5 d°ud’ve 102 e 102 e 202
T)*0o

V2|l
=tp? ,M

) _a-tp?
X/dtelﬂlte 272 elﬂz(t—\/i|v|)e 272

_ L2

_t—tp? (t—V3|v|—tg)?

e 202 _u? w2 _wl w»rL ] : : -
=———77/h%&mzﬂe%w~m%ﬂﬂ——f(m%% E VIl T g
2(2m)4o V2|

We can now proceed to first solve for the angular integrals in w and v, and then the radial
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integral in |u|, resulting in
\L|2

|2 Mz 2v/202 smh(‘L )2\[0 &nh(lLHvl)
sy [ duldioljulofe e 5

|ul| L] o[ | L] V2|

)2 /Bl )2
X/dteiﬂlte(tz;“%) (i (t—VElo]) ey G
L|?
202
:—ei/d|u\d|v||u|e i smh( Liul
V2r20?|L]?

v|? L
NG 2>e_|202‘sinh(| |v|)
20

Gr(f1, f2) =

V202

_@—tp? _ (t=vZ|v|—ty)?
/dtelﬂlte 272 elQQ(t*\/ﬁlvl)e
L|?

e 252 / v |\fU|L|

2
273

(t—t1)?2 (t—3|v| —to)?
22| L2 g e Smh(LLflM)/dtem%_ﬁewt—ﬂlv)e—#
2m202|L 202

2T2
. (t—tp? (t=v2|v|—tp)?
_ [l (|L|v|> [ ot T o~
2\[7r3/20|L| V202

2
273

\ L

Defining tq = t; — to, the integral in t yields

=t? _ (= V3w —tp)?
/dtelﬂlt 27! 1Qg(t f|v|)

2
273

(A.12)

|2 VZ|v|(tg—i(2 T2 —Q5T2)) t2
vV 2’/TT1T2 Tl‘Q-LTQZ e 0(T12+1T221) 22 - n
\/T2 + T2

e 2(TZ+T3)

T2T2(Q,4+99)2 . (t1 T2 +t5T2)
_T{T5 (21499 175+t T
2(T2+T3) Fi(21+2) TZ4T2

(A.13)
The final integral in |v| is merely a combination of Gaussian integrals. After simplifica-
tions, we finally find

Gr(f1, f2) =

Tl T2 ei(Ql t1+Qs t2) e

4+/27|L|

22 22
_ 92Ty Ty
2

_ (to—|LI+i( TE—05T3))?

e 2(TE+T3+202) <1 + erf (
T2 + T3 + 202

_ (to+|L|+i(Q1 T —25T32))?
+e 2(TZ+T3+202)

|L|(TZ2+T2)4202 (to+i(Q TE —Q2T3))

_ 2

20\/T2+T3/TZ+T3+202 ))

_ |L|(T?+T3) —20° (to+i (0 TF 2 T3))

( 1+erf ( 20/ T2 +T3\/T2+T3+202 ))
(A.14)

Combining Gr(f1, f2) and E(f1, f2), we can then find Ga(f1, f2)

Galfr, f2) = —

4+/2m|L]|

_ (- ILI+i(2 TE -0 T3 ))?
e 2(TE+T3+202)

T2 +T? + 202

1 2

1 + erf [ IEUTE+T)+20 (to+i( TP — 02 T3))
20\/TZ+T3\/TE+T3+202
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20\/T2+T2\/TE+T3+202
(A.15)

(oL TE-022T3))? . . )
fe aGEerEeeed <1 g ( [LI(T24+T2)—20° (to +i(@ T2 - Q2T2)) )>

Finally, we find A(f1, f2) by adding Eqgs. (A.14) and (A.15):

A(f1, f2) = —

. 02T2 Q T2 . 2 2.,2

i(Q1t1+Qots) ,——22 ——1-1 _ (o [L[H T —Q2T5)) .

T Tse e 2 2 . (TP + T 4207 orf |LI(T24+T2)+202 (to+i(0 T2 —QT2))
2v2r|L|\/T? + T2 + 202 20\/ TP +T3 /TP +T3+202

Te 2(TF+T3+202)

(to+|L|+i(Q1 T -5 TF))? .
- orf [ LI HT2) 202 (to i@ T2 -0573)) | |
20\/TZ+T2\/TZ+T3+202

(A.16)

Using Egs. (A.8) and (A.16), one can then find Gr(f1, f2) = H(f1, f2) + 3A(f1, fo).

In order to obtain the field bi-distributions evaluated at the field’s momentum 7(x) =
0;¢(x) rather than at the field’s amplitude smeared in Gaussian spacetime regions, one can
simply differentiate the results of this section with respect to the parameters €2y, {25, using

W(#(f1)0(f2)) = w(S(=0:f1)d(f2)), (A17)

and noticing that for the functions used here

t ot i d to
Ouf1(x) = (—T—f + T—} + 191) fi(x) = Tilzd—Qlfl(x) + (T—} + 191) A, (A18)
That is, one finds that
. ; i d t )
w(7(f1)o(f2)) = _Tled_QlW(flny) - (7712 + 191) W(f1, f2)- (A.19)

Analogous expressions are valid for higher derivatives of the field in both arguments, and
for the other bi-distributions H, E, Ggr, G4, Gr and A. For brevity, we will not write
these explicit expressions here, but they can be straightforwardly computed.
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Appendix B

Estimation of the Fermi bound

In this appendix we present an estimation for the Fermi bound, that is, we find an approx-
imate bound for the maximum radius that a region contained in the rest spaces X, can
have in order to be contained within the normal neighbourhood of the point z(7).

In order to obtain our estimate, we use the expansion of Eq. (2.179) for the metric in
Fermi normal coordinates. It is important to notice that the approximations of Eq. (2.179)
are not only to second order in the distance of points to the curve, but are also the first
order in curvature and acceleration expansions of the metric in Fermi normal coordinates.
In the regime where these expansions are valid, the Fermi bound can be estimated as the
maximum radius such that the metric does not become degenerate. That is, the largest
radius such that the metric of Eq. (2.179) is invertible. A good estimate for the 7-Fermi
bound can be given by considering the largest value of || such that

—(1 + CLiZBi) - ROz‘()inl’j 7& 0. (Bl)

Notice that at & = 0 this gives —1, so that for each 7 we are looking for a bound on the
radius ¢, such that _ o
|ZB| < ET = —(]_ + CLiiCZ) — Rol‘gjl'l,f] < 0. (BQ)

In order to find 4,, let a = v/ a;a* and define

Ap = max (—ROiojxixj) . (B.3)

||

That is, Ag corresponds to the largest negative eigenvalue of Ry;, if there are any, else it
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is zero. We will now show that |
by = ————— B.4
a+ VAR ( )

fulfills the condition of Eq. (B.2). Let |x| < ., then

lz|(a+\/Ar) <1 = 1—alx|>Ag|x|, (B.5)

so that using a;z' > —alz|,
1+ aixi > 4/ )\R|£L'| = (1 + &il‘i)z > )\R|£L‘| > —R0i0j$i$j. (BG)

This gives the desired result 0 > —(1 + a;2°)? — Rpio;x'a’.

We then obtain the approximate lower bound for the 7-Fermi bound,

lr 2 !

TNCL—{— /_>\R7

which is valid for points x such that |x| is sufficiently smaller than the curvature radius
of spacetime and 1/a, which is the regime of validity of the approximation of Eq. (2.179).
Notice that this bound works exactly in the case where there is no spacetime curvature,
giving ¢, = 1/a. The bound for the Fermi bound is then obtained by taking the infimum
of Eq. (B.7) with respect to .

(B.7)
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Appendix C

The Redshift Factor and the Metric

Determinant

The metric in Fermi normal coordinates can be written as
g = g7 d7? + 2g,;drda’ + hyydz'da?.
Then, the inverse metric reads

g =970, 0, +¢g70, ®0;+ g0 ® 0, + g7, ® 9,

where
TT __ ]‘
T Grr = Grigrih’
g = — h¥g.; ’
Grr = Grrgrih™
gij — R4 hlkgrkh]lgﬂ

9rr — ngnghk”

(C.3)
(C.4)

(C.5)

and h" is the inverse of the spatial metric, satisfying h**hy; = §%. The metric determinant

can be written as

\/__ - \/hingigTj - gTT\/g_Za

where gy, = det(h;;).

(C.6)

The redshift factor associated to the foliation 7 = const. is determined by the norm of
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the 1-form dr, which is given by

1
dr|? = ¢ = C.7
| ‘ 9rr — g’rig’rjhw ( )

The redshift factor is then given by

1

o1
’7<X) - m - |g7'7' - gTigTjhlj 27 (08)

so that the invariant volume element of spacetime can be written as

dv = S—T| AdE = dr A (4(x)dE), (C.9)
T

where d¥ = /gy d"x is the measure in the 7 = const. surfaces.
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Appendix D

The Localization Condition for
Quantum Fields

We can show that Eq. (2.235) holds for a localized field in Minkowski spacetime defined
by the Lagrangian (2.23). The Riemann normal coordinates in Minkowski spacetime are
simply inertial coordinates, and we can write the class of functions f,, simply as f,, (¢, @) =
f(t —to,x — xp) in the inertial coordinates (¢, x) where the potential V() is defined. We
will essentially show Eq. (2.235) when this restriction is imposed over the shape regions.
In this case, the limit (2.235) corresponds to the limit |xy| — oc.

Notice that for any compactly smooth real function h, we have

<O ‘¢D(fxo ¢D Zun fxo (Dl)

where the sum is absolutely convergent, as it corresponds to the inner product between
the one-particle states |fx,) and |h) (see (1.95)). We then have

un(f) = / At P f(t — to, @ — a0) B (a)e—nt = / At P (1, )0 (@ + @ )enH0),

(D.2)
Due to the fact that the potential V(x) goes to infinity, we also have that the asymptotic
behaviour of the functions ®,,(x) at large @ is at most exponential [2], so that we can write

/ P f(t, ) (@ + T0) = X (t, To)e /70, (D.3)
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with ~,, > ~* > 0 for a given v* and

lim  xp(t, zo)e ™ 1™l = 0. (D.4)
|:1:o\—>oo
We then find
Un(fxo) _ /dtxn(t, mo)e—iUJn(t+tO)e_’Yn‘$O| — )Zn(wn, wo)e—iUJnt()e_'Yn|$O|7 (D.5)
where Y,, denotes the Fourier transform. Also notice that the eigenvalues of L = —V? +

m?+V (x) with positive V() constitute an unbounded positive sequence, so that w, — oo
as m — 00, also implying that X(wy,,xo) — 0 for each @y, using the Riemann-Lebesgue
Lemma.

We can now take the limit |xo| — oo in Eq. (D.1) using the dominated convergence
theorem, as we have a product of the bounded terms u(h), Xn(wn, Tg)e “ntoe @0l <
Xn(Wn, Tg)e “ntoe=7 @0l in an absolutely convergent series:

lim  (0p] dp(fxo )b (h) |0p) = lim  uf (h)Xn(wn, To)e wrloe™7 1@l = (D.6)

o[ —o00 |&0|—00
n

The result above also holds when h = f,, with an analogous proof, so that we have shown
that

lim  (0p] én(fx)?[0n) = 0. (D.7)
|:I:()‘—>OO
Now notice that due to the vacuum |0,) being quasifree, all other terms of the form
(Op| @n(fxo)™ |0p) either vanish if n is odd or are proportional to (Op| ¢p(fx,)* |0p), thus
showing that the state |0,) is localized with this restriction of shape functions.

Moreover, given any quasifree state in F(74), the expected values of operators of
the form ggD( fx)? will be given by sums and products of W (h, f,,), implying that any
quasifree state in the GNS representation of |05) is also a localized state, from Eq. (1.95).
For a Gaussian state w, that is not quasifree, we can use the fact that we(dp(fe,))? <
wa(do(fx,)?), which also implies that the limit of |&| — 00 of ws(¢(fx,)™) vanishes for all
n.

Finally, notice that although we do not provide an explicit generalization of this result
in general globally hyperbolic spacetimes, it is clear that the result still holds, provided
that the mode functions ®,,(x) are exponentially bounded by the proper distance of xg
and any other event y in the same Cauchy surface, which is achieved by a wide class of
localizing potentials.
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Appendix E

Corrections to the Zeeman
Interaction to Leading Order in the
Fine Structure Constant

The goal of this appendix is to obtain the result of Eq. (2.323), which shows corrections
to the Zeeman effect that depend on the shape of the radial function of the electron field
modes corresponding to the electron state. This amounts to computing the integral of the
function ¢(r), defined in Eq. (2.318), in space.

In Eq. (2.274) we showed the form of the s orbital modes of an electron in terms of the
radial functions f(r) and g(r). When j = 1/2 and p = +1 these radial functions satisfy
the differential equations [75]

% —(E=V(r)+me)f(r)=0, (E.1)
% +25(0) 4 (B = V) —mag(r) = (B2)

where F is the energy level of the given orbital. The differential equations above are valid
for any central potential V(). We can obtain an expression for ¢(r) by multiplying the
first equation by g(r) and the second equation by f(r), yielding

ST (B V) 4 m) (el =0 (€3)
L 2 H0)0(r) + (B = V() — mo) f(r)(r) = 0. (E.4)
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Adding the two equations we find

2 F(r)g(r) = 5 (£0) + () + 10, (E5)

1d
2dr
Integrating the result above from oo to r we find

o) = [ ') = (P + )+ o [t m)

/
o] € Me e ¢] r

where we directly integrated the total derivative using that f(occ) = g(oc0) = 0.
The integral of ¢(r) in space is then given by

[@eoteh == [Carro o) - T [Car [Catre, @0

where we picked up factors of 47 due to integration over the angular coordinates and spher-
ical symmetry of the functions involved. Normalization of the spinor spherical harmonics
and of the mode functions ¥ () implies that

/000 drr?(f2(r) + ¢*(r)) = 1. (E.8)

To handle the double integral, we can reparametrize the region defined by 0 < r < oo and
r<r' <ooas0<71 <ooand0<r <7’ This gives

/OOO dr /TOO dr’§f2(rl) = /000 dr’ /Or, dri—?fQ(T') = %/000 dr' (P2 f2(r') = %/OOO dr 2 f2(r).
(E.9)

Combining the results of Egs. (E.8) and (E.9), we find

/d3a:d>(\:c|) _r /Ooodrﬂf?(m. (E.10)

Me  3Me

Thus, with a constant magnetic field, we find

Hi(t) = i/d%(p(r)&-B(t) -1 (1—f/mdw2f2(r))&-3(t). (E.11)

or 2, 3/

Importantly, this result holds true for modes with j = 1/2 and p = +1 defined by
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any central potential V' (r). The corrections are then entirely determined by the function
f(r) and are of the order of the inverse of the product of the mass of the electron and the
effective localization of the bound states.
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Appendix F

Two Localized Fields Interacting
with a Klein-Gordon Field

Denote the localized fields by ¢EA and ¢?B, and the free field that they both interact with by
¢ in the regions defined by the supports of (4(x) and (;(x), respectively. The interaction
Hamiltonian density of the theory will be prescribed as

~

hr(x) = A(CA(X)QAS(X)QAﬁA(X) + CB(X)qb(X)QASB(X)). (F.1)

We now write the ¢, ; fields with the spacetime smearing functions as

ZCA wup (X)an 4 unr(x ZQ (F.2)
ZgB X)ap + up ZQB (F.3)

where ul(x) = e “ntdA (x), ul(x) = e “ntdP (x), and the field expansion will depend
on the specific boundary conditions and equations of motion. We are working under
the assumption that the field has discrete energy levels, implying that the sums above
are discrete. The field expansions automatically define states |0,) and |0g), which are
annihilated by all operators as, and a,., respectively. We can then write the Hamiltonian

interaction density as

n’

h(x) = 2000 D (Qnx) + Qax)) - (F.4)

n
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In perturbation theory, we then get

U =T exp (—i / deLI(x)) =1+0Y + U+ 0O, (F.5)

where:

oo = / dVh;(x) = —iA / AV ¢(x Z( x) + Q5 ( )) (F.6)

n

U@ =— / AV AV’ hy(x)hy (X)0(t — ')

~ [ aVaviaeaene - ) 3 (Qhp0QK) + Qa5 (X) + QAN EK) + QaIQ (X)),

nm

The final state will be given by
= UpoUT = po 4+ UW pg 4 poU DT + TW s UDT + U@ py + poU DT+ O(N).  (F.9)

We will assume that o = [0,05)0,05] @ fp = poan @ o and that try(UM jy) = 0, so that
the O(\) terms do not contribute to the partial state of the cavities A and B. We then
only need to compute try(UM poU M 4+ U gy + poUPT). We have:

tr(b([j(l)[,o(j(l)f)

=3 [AVAVI X0 Y (@200 @in ) + Q2000 10 Qn () + Q)00 Qi (X) + Q@i ).

nm

(F.10)
and
trg (U@ o) = —)\Q/dVdV’W(x,x’)O(t—t’)
> (@008 000 + Q5 ()2 (<) 00 + Qs (V@ ()0, 00 + Q) Qi 0 )0
(F.11)
where W (x,x') = tr(pgo(x)¢(x)). Notice that
pors = 0405 )X0,05] = (X) 10505, X050%,| = pno (X) 105050505, (F.12)

nm n,m>1
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where [02) and |0}) denotes the ground states of each harmonic of each cavity, and
poo = [0707)0707] (F.13)

is the ground state of the first harmonic in each cavity. We then trace out all cavity
modes except for the first harmonic. That is, we will compute the density operator
try s (ps) = tra(trg (UM pUM U gy + poU), where try denotes the trace over all
cavity harmonics, except the first, for fields A and B.

Overall, we will need to compute the trace of quantities of the form trg (Q3 (x)Q2, (X)) fo.an)-
We know that since @, (x) = (uj, (x)ay, +uy; (x)a,!) for T = A, B. Therefore, the products of
the form @), (x)Q},(x") will only give non-diagonal elements if n = m. When n = m # 1,
we have:

(@ ()@ () [0RXOR]) = (051 @ (0QR(X) [07) = Cu()Ca (X Yup (up” () (F.14)

and

tr5(Qn () Q. () [0 X07,]) = (051 Q7 QR (X) 107) = G ()G (X )up, ()’ (). (F.15)

We find that for n and m different from 1,
67 (Q () Qs (X)P0.a8) = G 01sG ()G (X Y, (X (X ) i 0, (F.16)

where try(Q2(x)QP, (X )jors) = 0 automatically, as it factors into expectation values of
creation and annihilation operators in A and B evaluated at the vacuum. Finally, notice
that when n = m = 1 we do not need to trace over it, because H encompasses every
harmonic except for the first one.

Putting the results above together, we then find that
tr g (trg (UM poU W) :)\Q/dVdV’W(x’,x) (F.17)

X (Q/l\ (X)ﬁD,OQ/l\ (') + QFlg (X)ﬁD,OQF{(X/) + Q? (x)pAD,OQFf (x') + Q?(X)/SD,OQQ (X)
) (G ()G (K, (ur (¢) + Ca(})Ga (X )l () ul (X'))ﬁn,o)

n>1

and
e (trs (0 po)) = —)\2/ AVAV' I (x, X )0(t — ) (F.18)
x (Q’f ()@} (<) pp,0+ Q5 ()QF (X)) pn,0+QF () QS (X) pn,0 + Q5 (X Q3 (X ) v 0
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+ D (GG Y () () + G ()G (X Y, () (X’))ﬁn,o)-

n>1

The last term try(try(poU®1)) is simply the conjugate of the term above. Notice that
the terms proportional to pp o will cancel when all terms are added together. This can be
seen from an explicit calculation using 6(t —t') + 6(t' — t) = 1, or simply by noticing that
each term in the Dyson expansion is traceless due to trace preservation.

The products of terms Q! (x)Q}(X) is given by
QY ()QI(X) = GG ) (wh (¥,
1()uy

We then define the spacetime smearing functions

As(x) = (X uy (%), (F.20)
As(x) = G(x)ub(x), (F.21)

so that the Qll (x) terms read simply as

Q1 (x) = A (x)at + AL (x)ast, (F.22)
Q(x) = Ap(x)af + Aj(x)a. (F.23)

We then see that the final state of the fields A and B can be written as

po = tron(pg) = poo + tro (U puoUfY + 0o + ool ) + OO, (F24)
where
oM = —j / AV he(x), (F.25)
0P =— / AV AV he () hegr(X)O(t — 1), (F.26)
with

het(x) = AQT(X)(x) + AQ(X)d(x) = MM, (¥)at + A (x)ay" + Au(x)a} + Aj(x)ay")(x).
(F.27)

This is exactly the leading order result when one considers the interaction of two harmonic
oscillators interacting with a quantum field ¢(x). That is, the final state of the modes can
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be written as
po = t14(Ur (P ® po)UF) + OXY), U1 = T exp (_i/ v ﬁeﬁ(x>> ' (F.28)

The leading order computations can then be carried on analogously to harmonic oscillator
particle detectors (for details on this calculation, see e.g. [190]).
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Appendix G

The retarded propagator of the
gravitational field

The retarded propagator G o/ (x,x’) can be written as

v / 1 / / / v
Gl;% a/ﬁ/(X,X) = —%Q(t —1 )(S ((t —1 )2 — |.’L‘ — X |2) PH o' B (Gl)
1

— _ _/— —/ 'u'l/// 2
el @ )P, (G.2)

where P is a bitensor. We then have the linearized metric given by g, = 7, + vV87Gh,,,
where

W (x) = —V8&rG / AV G i (%, X)TP (X, (G.3)

where T, 3 denotes the stress-energy tensor of the source. For the case of a pointlike particle
undergoing a trajectory z;(t) with four-velocity uf(¢), it reads

Gz — 2z
TP () = mau (s (1) - Z — 21lE)

u(t)y=g -

(G.4)

so that we obtain

/

St —t' — |z — 21 () )P s (¢)uf (¥).
(G.5)

mi

1
o !
o |

/ AV' G v (x )T () =
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Now, let ¢, be the retarded time such that ¢t — ¢, — |& — z(¢,)| = 0, so that

5(t' —t,)
1-— ’l"l(t ) z'l(tr)’

ot =t = | =z (1)) =
where 71 (t) = (x — 21(t))/|x — z1(t)| and we obtain

%
higy(x

o o5 my VTGP g (8 )l (t,)
T K 157 (X, X ' g .
( ) —V8 /dVGROcB( )T ( ) 47Tu1(t )(1—721(15) Zl( ))|$—Zl((t(;?|7)

The interaction Hamiltonian of a particle labelled 2 with the gravitational potential sourced
by particle 1 will then be

o e e Gmumy Pawsel @0 1) ()
i) = —3VER [ om0 = - 2200) — 21 ()] 0 (tr) (1 — Pz Za(ry))
_ Gm1m2 Q(UMVUS(t)Ulf(tmz))z —1
|Z2<t) — 21 (tT12)| ug<t>u(1)(t7’12)(1 - "212'7‘.'1 (tT12))’
(G.8)

where ¢, is the solution to t — ¢, = |22(t) — 21(t,,)| and 715 = (22(t) — 21(t,,)) /| 22(t) —
z1(tr,)|, and we used Puyarg = Npar Mo +Mus Mvar — Mo - The total interaction between
the two particles is then given by

Gm1m2

(WV ( ) (tT12))2 - 1/2

’z2( ) - zl( r12)’ u (t u ( T‘12)( ":12'21(75“2)) (GQ)

— Gm1m2 (nlw ( ) (tr21))2 — 1/2
|z1( ) - z2( 7‘21>| u (t u ( 7"21)( 7?'12'2‘2(157«21))’

try, is the solution to t—t,,, = |22(t) — 21 (t,,, )| and 791 = (21(t) — 22(try,)) /|21 (t) — 22(try, )|,
and we used Puya/gr = Mo’ v +Mps Mvar — NN p- Notice that in the non-relativistic limit,
we have t,, ~ t,,, ~t, u)(t) = ud(t) = 1 and n,uf (t)uy = 1, allowing one to recover the

non-local Newtonian interaction between the particles:

(Hia(t) + Hai (1)) = —

[\3|,_.

Hi(t) =

(G.10)

Hi(t) ~ _%. (G.11)
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Also notice that
/ dt Hy(t) = 272G / AVAV' (T2 ()G (eI () 4 T2 ()l i (e )T ()
= 27G / dvav’ (Tl (X) G o (3, XV TE P (X) +T§,6,<x/)c:;’ﬂ’w,(x',X)me/))
e / AVAV'T2, () A a0 (3, X T2 (), (G.12)

where A#@H (x, x') = G‘j{'alﬁl (x, X' )+G"% (x,x') and we used G%Bl‘“’(x’,x) = G (x,X).
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Appendix H

Final states in the Quantum Field
Approach to Gravity Mediated
Entanglement

The initial state of the two particles in matrix form in the basis {|L1Ls) , |R1Lo) , | L1 R2) , |R1 R2) }
reads

1111

11111

P=2l1 111 (H.1)
1111

To leading order in the gravitational field, the updated state of the particles evolving with
respect to the qc-interaction can be written as p + 0., where

0 ARlL2 - ALlL2 AL1R2 - A131!12 AR1R2 - AL1L2
(Sﬁ — _ﬁ _AR1L2 + ALle 0 AL1R2 - AR1L2 AR1Rz - AR1L2
¢ 4 | =Arr, + ARy, —ArLir, + ARL, 0 Ar,r, — AR R,
—Arn, + Aryr, —ARri, T Arir, —ArLr, + ArR, 0 i
H.2

313



In the quantum case, the final state of the particles to leading order can be written as
p~+ (0p. + dpy + dp1), where

01 1 2

S 1021

21 10

and
0 O 0 1
R A2 0O 0 —-120
5I0q:Z(HLlR2+HR1L2_HL1L2_HR1R2) 0 -1 0 0]l (H4)

1 0 0 O

where H,,,, denotes the integrated Hadamard function along each pair of paths for particles
1 and 2,

Hpypy = / AVAV' T H e (%, X )T (X). (H.5)

while £, and £, are noise terms due to the interaction of each particle with the vacuum of
the field. These are explicitly given by

Ly, = / AVAV T (B () B (X))o To () = / AVAV'TE (B (D (X))o Tia” (<),
(H.6)
L, = / AVAV T (B () hersr (X))o Th” (X), (H.7)

where, due to the choice of paths, the indices ¢ can be 1 or 2, and still yield the same
result due to the fact that the paths are related to translations and rotations, which are
symmetries of the quantum field theory. Then, the £, term is a local noise associated to
each path, while the £, term represents an interference term associated with each particle
undergoing the superposition of paths. Also notice that due to the fact that the propagator
decreases with distance, we have £; < L., with equality holding only if the paths 1 and 2
are identical. Moreover, these vacuum noise terms decay fast with the interaction time, so
they are negligible for long interaction times. Then we can interpret dp; as a local vacuum
contribution, and dp, can be seen as the additional correlation contribution due to the
quantum nature of the field.
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