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Abstract The significance of the radial velocity effects on
the leading-order gravitational frequency shift in some spe-
cial cases was reported recently. This paper investigates the
gravitational shift of frequency of light propagating in the
equatorial plane of a radially moving Kerr–Newman black
hole up to the second post-Minkowskian order, and discusses
the radial velocity effects on the second-order contributions
to the frequency shift. It is found that a new radial velocity
effect appears in the second-order Schwarzschild contribu-
tion to the frequency shift, in contrast to no radial velocity
effect in the first-order contribution, when both the emission
and reception events are far away from the lens. Velocity
effects on the gravitational frequency shifts induced respec-
tively by the lens’s electrical charge and spin are also ana-
lyzed.

1 Introduction

The translational motion of a gravitational system makes
a difference on the propagation of electromagnetic sig-
nals, which is the so-called velocity effect [1,2]. The issue
of velocity effects on the gravitational frequency shift of
light was discussed in many papers [2–11]. Birkinshaw and
Gull [3] studied the transversal velocity effect of cluster of
galaxies and showed that the gravitational frequency shift of
light is proportional to the low transverse lens velocity and
the deflection angle of light. Since this pioneering work, the
conclusion that the transversal velocity effect on the gravita-
tional frequency shift is dominant relative to that of the radial
lens motion has been well established in the full relativistic
framework [2,6,7].

Recently, the radial-velocity effects on the leading-order
gravitational frequency shift induced by a constantly mov-
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ing Schwarzschild black hole were re-examined, and these
effects are found to be necessary for the scenarios when
the light emitter or the receiver is near to the gravitational
lens [12]. As shown in Ref. [12], these velocity effects under
these circumstances were, for example, of the order of mag-
nitude of 10−9, which is larger than the observational preci-
sion of current detectors. For example, the precision of the
Cassini for measuring gravitational frequency shift is about
∼ 10−14 [13–15]. The Cassini is a sophisticated spacecraft
orbiting the ringed planet and its main mission is to explore
the Saturnian system, including measuring the plasma den-
sity, magnetic field, temperatures and atmospheric composi-
tion in Saturn’s atmosphere, as well as studying its largest
moon Titan. It bases on the Doppler shift of light signals to
and from the spacecraft to determine its speed and the signal
timing to measure its distance. When the spacecraft passes
behind a massive central body (e.g. the Sun) on its cruise
to Saturn, whether the body moves or not, these techniques
can be also used to detect frequency shifts caused by grav-
ity with a high accuracy. Highly precise measurements of
these velocity effects are thus indeed possible by missions
such as the Cassini. Considering the rapid progresses made
in the gravitational-frequency-shift measurements (such as
the ground-based [16–21] and satellite-based [22–24] mea-
surements), we expect that the velocity effects on the second-
order contributions to the gravitational frequency shift might
also be detectable in future. Thus, a full theoretical treat-
ment of the gravitational shift of frequency of light due to a
radially moving lens in the second post-Minkowskian (PM)
approximation is necessary.

In this work, we extend the method of Ref. [12] to deriving
the gravitational frequency shift of light propagating in the
equatorial plane of a radially moving Kerr–Newman (KN)
black hole, and concentrate on the radial-velocity effects on
the second-order Schwarzschild, Kerr, and charge-induced
contributions to the frequency shift. We find that for both the
emission and reception events far away from the lens, the
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radial velocity effect makes a significant correction to the
second-order Schwarzschild frequency shift, although this
effect on the first-order one can be usually neglected.

The structure of this article is as follows. In Sect. 2, we
adopt the weak-field metric of the moving KN source to cal-
culate the equatorial frequency shift up to the 2PM order.
Section 3 gives the discussions of the velocity effects on the
second-order contributions to the frequency shift. Section 4
presents a summary. Our discussions are restricted in the
weak-field, small-angle, and thin lens approximation.

Throughout the paper, Latin indices run from 1 to 3, and
natural units in which G = c = 1 are used.

2 Gravitational frequency shift due to a radially moving
KN source

2.1 The weak-field metric for a radially moving
Kerr–Newman black hole

Let {e1, e2, e3} denote the orthonormal basis of a 3D Carte-
sian coordinate system. The rest frames of the observer and
the lens are denoted by (t, x, y, z) and (X0, X1, X2, X3),
respectively. The angular momentum vector J of the lens is
assumed to be J e3. The harmonic metric of a moving KN
black hole with a constant radial velocity v = ve1 up to the
2PM order reads [25]:

g00 = −1 + 2 (1 + v2)γ 2M

R
− M2 + γ 2(M2 + Q2)

R2

−4 v γ 2 a M X2

R3 + v2 γ 2(M2 − Q2) X2
1

R4 + O(M3), (1)

g0i = γ ζi − v γ 2
(

4 M

R
− M2 + Q2

R2

)
δi1

−v γ (M2 − Q2) X1
[
Xi + (γ − 1) X1δi1

]
R4

+2 (γ 2 − γ + v2γ 2) a MX2 δi1

R3 + O(M3), (2)

gi j =
(

1 + M

R

)2

δi j + v2γ 2
(

4M

R
− M2 + Q2

R2

)
δi1δ j1

+ (M2 − Q2)
[
Xi + (γ − 1)X1δi1

] [
X j + (γ − 1)X1δ j1

]
R4

−vγ

[
ζi δ j1 + ζ j δi1 + 4(γ − 1)aMX2δi1δ j1

R3

]
+ O(M3),

(3)

where δi j denotes Kronecker delta, γ = (1 − v2)− 1
2 is

the Lorentz factor, and
X2

1+X2
2

R2+a2 + X2
3

R2 = 1. M , Q, and
a ≡ J/M are the rest mass, the electrical charge, and
the angular momentum per mass of the lens, respectively.
ζi = 2aMX j εi j3

R3 , with εi jk being the Levi-Civita symbol. The

relation M2 ≥ a2 + Q2 is assumed to avoid the naked sin-

gularity of the black hole. The coordinates X0, X1, X2, and
X3 are related to t, x, y, and z by the Lorentz transformation

X0 ≡ T = γ (t − vx), (4)

X1 ≡ X = γ (x − vt), (5)

X2 ≡ Y = y, (6)

X3 ≡ Z = z. (7)

2.2 Moving-KN frequency shift up to the 2PM order

For simplicity, we consider the gravitational frequency shift
of light which is restricted in the equatorial plane (z = ∂

∂z =
0) of the moving Kerr–Newman black hole, as shown in
Fig. 1. b is the impact parameter. The spatial coordinates
of the light emitter A and the receiver B are denoted in
the observer’s rest frame by (xA, yA, 0) and (xB, yB, 0),
respectively, with yA < 0, xA < 0, and xB > 0. The ini-
tial velocity of a photon, parallel to the lens’s velocity v, is
assumed to be w|x→−∞ (= e1). The locations of A and B
are denoted in the lens’s rest frame by (XA, YA, 0) and
(XB, YB, 0), respectively.

The frequency shift of a photon between emission and
observation is defined by [6,7,27–29]

Δν

ν
≡ νB

νA
− 1 = dτA

dtA

dtA
dtB

dtB
dτB

− 1. (8)

Here, τA and τB are the proper times of the light emitter and
the receiver, respectively, and tA and tB denote respectively
their coordinate times. For the case of the light emitter and
the receiver being static (vA = vB = 0) in the observer’s
rest frame, the explicit forms of dτA

dtA
and dtB

dτB
up to the 2PM

order are given as follows:

dτA

dtA
=
[

1 − 2(1 + v2)γ 2M

RA
+ (1 + γ 2)M2 + γ 2Q2

R2
A

+4 v γ 2 a M YA

R3
A

− v2γ 2(M2 − Q2) X2
A

R4
A

] 1
2

, (9)

dtB
dτB

=
[

1 − 2(1 + v2)γ 2M

RB
+ (1 + γ 2)M2 + γ 2Q2

R2
B

+4 v γ 2 a M YB

R3
B

− v2γ 2(M2 − Q2)X2
B

R4
B

]− 1
2

. (10)

The analytical form of dtA
dtB

up to the 2PM order can be
obtained from the following gravitational time delay induced
by the moving KN black hole [26]

tB − tA = xB − xA + Δ(tB, tA), (11)
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Fig. 1 Schematic diagram for the equatorial propagation of light in the
gravitational field of the moving KN black hole. We assume that light
takes the prograde motion relative to the lens’s spin. The gravitational

deflection is greatly exaggerated to distinguish the light path (red line)
from the unperturbed path (dashed horizontal line)

with

Δ(tB, tA) = (1 − v) γ

⎡
⎣ 2 M ln

⎛
⎝
√
X2
B + b2 + XB√

X2
A + b2 + XA

⎞
⎠

+
4M2

(
XB − XA +

√
X2
B + b2 −

√
X2
A + b2

)

b2

+ 15 M2 − 3 Q2

4b

(
arctan

XB

b
− arctan

XA

b

)

+ 4 M2

⎛
⎝ 1√

X2
A + b2

− 1√
X2
B + b2

⎞
⎠

+ M2 − Q2

4

(
XA

X2
A + b2

− XB

X2
B + b2

)

+ 2 aM

b

⎛
⎝ XA√

X2
A + b2

− XB√
X2
B + b2

⎞
⎠
⎤
⎦+ O(M3),

(12)

where XA = γ (xA − vtA) and XB = γ (xB − vtB). For the
case of vA = vB = 0, Eq. (11) yields [7]

dtA
dtB

= 1 − ∂Δ(tB , tA)
∂tB

1 + ∂Δ(tB , tA)
∂tA

, (13)

where ∂Δ(tB , tA)
∂tA

and ∂Δ(tB , tA)
∂tB

can be calculated from

Eq. (12) as follows:

∂Δ(tB , tA)

∂tA
= v

1 + v

⎡
⎣ 2M√

X2
A + b2

+ 4M2

b2

⎛
⎝1 + XA√

X2
A + b2

⎞
⎠

+3(5M2 − Q2)

4
(
X2
A + b2

) + 4M2XA − 2aMb(
X2
A + b2

) 3
2

+ (M2 − Q2)
(
X2
A − b2

)
4
(
X2
A + b2

)2
⎤
⎦

+O(M3), (14)

∂Δ(tB , tA)

∂tB
= − v

1 + v

⎡
⎣ 2M√

X2
B + b2

+ 4M2

b2

⎛
⎝1 + XB√

X2
B + b2

⎞
⎠

+3(5M2 − Q2)

4
(
X2
B + b2

) + 4M2XB − 2aMb(
X2
B + b2

) 3
2

+ (M2 − Q2)
(
X2
B − b2

)
4
(
X2
B + b2

)2
⎤
⎦

+ O(M3). (15)

Moreover, the 1PM form of X2 is given by [26]

X2 = y = −b

⎡
⎢⎢⎣1 −

2M

(√
X2

1 + b2 + X1

)

b2

⎤
⎥⎥⎦+ O(M2),

(16)
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which yields

RA =
√
X2
A + b2

⎡
⎢⎢⎣1 −

2M

(√
X2
A + b2 + XA

)

X2
A + b2

⎤
⎥⎥⎦+ O(M2),

(17)

RB =
√
X2
B + b2

⎡
⎢⎢⎣1 −

2M

(√
X2
B + b2 + XB

)

X2
B + b2

⎤
⎥⎥⎦+ O(M2).

(18)

The substitution of Eqs. (9), (10) and (13)–(18) into Eq. (8) yields
the explicit form of the gravitational frequency shift up to the 2PM
order caused by the moving KN source:

Δν

ν
= (1 + 2v − v2) γ 2

⎡
⎣ M√

X2
B + b2

− M√
X2
A + b2

+ 2M2XB(
X2
B + b2

) 3
2

− 2M2XA(
X2
A + b2

) 3
2

⎤
⎦

+v (M2 − Q2)b2

4(1 + v)

[
1(

X2
A + b2

)2 − 1(
X2
B + b2

)2
]

− (1 + 2v − v2)2γ 4M2√
X2
A + b2

√
X2
B + b2

+ 4 v M2

(1 + v) b2

⎛
⎝ XB√

X2
B + b2

− XA√
X2
A + b2

⎞
⎠

+ (2 + 3v − 5v2 − 3v3 + 3v4) γ 4 Q2

4

(
1

X2
A + b2

− 1

X2
B + b2

)

+ v ( M2 − Q2 )

4 (1 − v)

[
X2
B(

X2
B + b2

)2 − X2
A(

X2
A + b2

)2
]

+ γ 4 M2

4

×
(

10 + 23v − 5v2 − 7v3 + 3v4

X2
B + b2

− 6 + 7v − 13v2 + 9v3 − v4

X2
A + b2

)

+ 2 v2γ 2a M b

⎡
⎣ 1(

X2
B + b2

) 3
2

− 1(
X2
A + b2

) 3
2

⎤
⎦ . (19)

Actually, Eq. (19) can also be expressed in terms of the quantities in
the observer’s rest frame (t, x, y, z). First, we adopt the following
forms of XA and XB up to the 1PM order [26]

XA = (1 − v) γ xA + O(M2), (20)

XB = (1 − v)γ xB − 2 vM

1 + v
ln

[
SB + (1 − v)γ xB
SA + (1 − v)γ xA

]
+ O(M2),

(21)

with

SA ≡
√

(1 − v)2γ 2x2
A + b2, SB ≡

√
(1 − v)2γ 2x2

B + b2.

(22)

Substituting Eqs. (20), (21) into Eq. (19), up to the 2PM order, we
obtain

Δν

ν
= (1 + 2v − v2) γ 2

[
M

SB
− M

SA
+ 2(1 − v)γ M2

(
xB
S3
B

− xA
S3
A

)]

+ 2v(1 − v)2(1 + 2v − v2)γ 5M2xB
S3
B

ln

[
SB + (1 − v)γ xB
SA + (1 − v)γ xA

]

+γ 4M2

4

×
(

10 + 23v − 5v2 − 7v3 + 3v4

S2
B

− 6 + 7v − 13v2 + 9v3 − v4

S2
A

)

− (1 + 2v − v2)2γ 4M2

SASB
+ v (M2 − Q2)

4(1 + v)

(
x2
B − b2

S4
B

− x2
A − b2

S4
A

)

+ 4 v (1 − v)2 γ 3 M2

b2

(
xB
SB

− xA
SA

)
+ 2 v2γ 2 a M b

(
1

S3
B

− 1

S3
A

)

+ (2 + 3v − 5v2 − 3v3 + 3v4) γ 4 Q2

4

(
1

S2
A

− 1

S2
B

)
. (23)

If all of the second-order contributions are dropped, Eq. (23)
reduces to the first-order frequency shift caused by a radially moving
Schwarzschild black hole [12]

Δν

ν
=
(

1 + 2v − v2
)

γ 2M

(
1

SB
− 1

SA

)
, (24)

which is consistent with the result obtained by the method
of the Liénard–Wiechert gravitational potential [7], as shown
in Appendix A. For the case of no translational motion of the lens
(v = 0), Eq. (23) reduces to the second-order KN frequency shift

Δν

ν
= M

⎛
⎝ 1√

x2
B + b2

− 1√
x2
A + b2

⎞
⎠+ 5M2 − Q2

2(x2
B + b2)

− 3M2 − Q2

2(x2
A + b2)

− M2√
x2
A + b2

√
x2
B + b2

+2M2

⎡
⎣ xB

(x2
B + b2)

3
2

− xA

(x2
A + b2)

3
2

⎤
⎦ . (25)

In addition, it can be seen from Eq. (23) that the gravitational fre-
quency shift induced by the charge Q can be written as

Δν

ν
= (1 + 2v − v2)γ 2Q2

2

(
1

S2
A

− 1

S2
B

)

+vγ 2Q2b2

2

(
1

S4
B

− 1

S4
A

)
. (26)

3 Radial velocity effects on the second-order
contributions to the frequency shift

Since the radial velocity effect on the leading-order gravitational
frequency shift has been discussed [12], we now focus on the radial
velocity effect on the second-order contributions to the frequency
shift.
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Fig. 2 ΔM2 (v), Δa(v), and
ΔQ(v) plotted as the functions
of the radial velocity v of the
lens respectively in linear scale
(left column). For the
convenience of display of the
nonrelativistic cases, we also
show |ΔM2 (v)|, |Δa(v)|, and
|ΔQ(v)| vs v respectively in
log-log scale (right column),
with a sample domain
[ 1.0 × 10−8, 0.99 ] for v. As an
example, we set
{xA, xB} = {−10b, 5b}
(red), {−1.0 × 105b, 10b} (thin
blue), {−10b, 1.0 × 105b}
(dotted green),
and {−1.0 × 105b, 2.0 × 105b}
(dot-dashed purple) for four
different scenarios. Here,
b = 1.0×105M , a = 0.1M , and
Q = 0.01M are chosen

(a) (b)

(c) (d)

(e) (f)

3.1 Analytical forms of the radial-velocity effects

The comparison between Eqs. (23) and (25) results in the explicit
forms of the radial-velocity effects as follows:

ΔM2 (v) = 2v(1 − v)2(1 + 2v − v2)γ 5M2xB
S3
B

ln

[
SB + (1 − v)γ xB
SA + (1 − v)γ xA

]

+ 4v(1 − v)2γ 3M2

b2

(
xB
SB

− xA
SA

)

+ 2(1 + 2v − v2)γ M2

1 + v

(
xB
S3
B

− xA
S3
A

)

+γ 4M2

4

(
10 + 23v − 5v2 − 7v3 + 3v4

S2
B

− 6 + 7v − 13v2 + 9v3 − v4

S2
A

)
− ( 1 + 2 v − v2 )2 γ 4 M2

SA SB

+ v M2

4 ( 1 + v )

(
x2
B − b2

S4
B

− x2
A − b2

S4
A

)

− 2 M2

⎡
⎣ 5

4 (x2
B + b2)

− 3

4 (x2
A + b2)

− 1

2
√
x2
A + b2

√
x2
B + b2

+ xB(
x2
B + b2

) 3
2

− xA(
x2
A + b2

) 3
2

⎤
⎦ , (27)

Δa(v) = 2 v2γ 2a M b

(
1

S3
B

− 1

S3
A

)
, (28)

ΔQ(v) = (2 + 3v − 5v2 − 3v3 + 3v4)γ 4Q2

4

(
1

S2
A

− 1

S2
B

)

− v Q2

4(1 + v)

×
(
x2
B − b2

S4
B

− x2
A − b2

S4
A

)
− Q2

2

(
1

x2
A + b2

− 1

x2
B + b2

)
, (29)

where ΔM2 (v) and ΔQ(v) denote the velocity effects on the
second-order Schwarzschild and charge-induced contributions to
the frequency shift, respectively. Δa(v) denotes the frequency shift
induced by the velocity-rotation coupling. Notice that Eq. (25) indi-
cates the second-order Kerr frequency shift is zero. Equations (27)–
(29) apply to both non-relativistic and relativistic (such as v = 0.5)
motions of the lens.
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Fig. 3 ΔM (v) and ΔM (vT )

plotted as the functions of v and
vT respectively in linear scale
(left column). We also show
|ΔM2 (v)|, |Δa(v)|, and
|ΔQ(v)| vs v respectively in
log-log scale (right column).
{xA, xB} = {−10b, 5b}
(red), {−1.0 × 105b, 10b} (thin
blue), {−10b, 1.0 × 105b}
(dotted green), and
{−1.0 × 105b, 2.0 × 105b}
(dot-dashed purple) for four
different scenarios are assumed
for comparison.
b = 1.0 × 105M is preset

(a)

(b)

(c)

(d)

3.2 Magnitudes and possible detection of the
radial-velocity effects

In this subsection, we discuss the magnitudes of the radial-velocity
effects on the second-order contributions to the frequency shift, and
analyze the possibilities of their astronomical detection

3.2.1 General cases

We first discuss the magnitudes of the radial-velocity effects for
arbitrary radial velocity v of the lens. Figure 2 shows ΔM2 (v),
Δa(v), and ΔQ(v) as the functions of v in four astronomical sce-
narios. The left column is presented in linear scale (|v| ≤ 0.99)
while the right one is in log-log scale (v ∈ [ 1.0 × 10−8, 0.99 ]).

It can be seen from Fig. 2b that the magnitudes of ΔM2 (v)

exceed the precision ∼ 10−14 of the Cassini [13] for most cases.
For example, ΔM2 (v) will be about 4.5 × 10−13 if xA = −10b,
xB = 5b, and v = 5.0×10−4 (a nonrelativistic radial velocity) are
assumed. It indicates that the radial velocity effect on the second-
order Schwarzschild contribution to the frequency shift of light may
be detected by near future high-accuracy detectors with a relatively
large possibility.

According to Fig. 2c or d, we can see that the magnitudes of
Δa(v) may be larger than the Cassini’s precision only when the lens
has a relativistic radial motion. For instance, |Δa(v)| will exceed
1.0 × 10−14 when v > 0.38 for the case of xA = −10b and xB =
1.0 × 105b. The possibility of detecting Δa(v) via current projects
is thus rather small. In addition, it can also be seen from Fig. 2e
or f that there is no possibility of detection of ΔQ(v) by current
detectors, since its magnitudes are much smaller than the Cassini’s
precision. It is only by using the ultrahigh accuracy techniques in
future that we may observe these two correctional effects.

However, it should be pointed out that our discussions depend
on the choice of the intrinsic parameters of the central body, which

implies these velocity effects will be more evident and a easier
detection of them if M, a, and Q become larger.

In addition, we emphasize that the requirements for their realis-
tic detections are more demanding. For instance, the radial velocity
of the Sun during the Cassini experiment in 2002 is not larger than
0.0001 in the geocentric frame and 5×10−8 in the barycentric frame
of the solar system [15,30,31]. The corresponding precision of the
measurements for ΔM2 (v) should be at least better than 8.0×10−16

in the geocentric frame and 3.2 × 10−19 in the barycentric frame,
for the case of xA = −10b, xB = 1.0×105b and b = 1.0×106M
(as an example). Therefore, if we wish to detect conservatively the
radial velocity effects on the second-order contributions to the fre-
quency shift in future actual measurements, the central body should
move at a higher radial velocity (e.g. |v| > 1.26 × 10−3, for the
case of xA = −10b, xB = 1.0 × 105b and b = 1.0 × 106M), or a
better precision for measurements is required.

In contrast with ΔM2 (v), Δa(v), and ΔQ(v), Fig. 3 gives the
magnitudes of the radial-velocity effect ΔM (v) and the transversal-
velocity effect ΔM (vT ) on the leading-order gravitational fre-
quency shift of light, which have been given analytically in Ref. [12]
as follows:

ΔM (v) =
(

1 + 2v − v2
)

γ 2M

(
1

SB
− 1

SA

)
− M√

x2
B + b2

+ M√
x2
A + b2

, (30)

ΔM (vT ) =
2vT γT M

(
vT + b+vT xA√

x2
A+b2+2 vT b xA

)

√
x2
A + b2 + 2 vT b xA + xA + vT b

−
2vT γT M

(
vT + b+vT xB√

x2
B+b2+2 vT b xB

)

√
x2
B + b2 + 2 vT b xB + xB + vT b
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+ (1 + v2
T ) γT M√

x2
B + b2 + 2 vT b xB

− (1 + v2
T ) γT M√

x2
A + b2 + 2 vT b xA

− M√
x2
B + b2

+ M√
x2
A + b2

, (31)

where vT is the magnitude of the transversal velocity v = vT e2 of

a moving Schwarzschild source along y-axis, γT = (1 − v2
T )− 1

2

denotes the Lorentz factor for the transversal motion, and the zeroth-
order relations yA = −b+O(M) and yB = −b+O(M) have been
considered.

3.2.2 The low-velocity limit

We now consider the radial motion effects for four special scenarios
in the low-velocity approximation, under which the second- and
higher-order terms in velocity are omitted and Eqs. (27)–(29) can
be simplified.

(a) The scenario for xA 	 −b and xB 
 b
For the common astronomical scenario in which both the light
emitter A and the receiver B are far away from the moving lens,
Eqs. (27)–(29) reduce to

ΔM2 (v) = 8vM2

b2 , (32)

Δa(v) = 0, (33)

ΔQ(v) = 0, (34)

where the terms with the factor v/xiA or v/xiB (i = 1, 2, 4) have
been dropped since they are much smaller than the term with the
factor v/b2.

It can be seen that under this scenario, a radial velocity effect

(i.e., 8M2v
b2 ) on the second-order Schwarzschild frequency shift

appears, although the radial velocity effect on the first-order one
can be indeed neglected [2,6,7]. To some extent, this effect is sim-
ilar to the famous formula Mv⊥

b for the transversal velocity effect
on the first-order frequency shift, with v⊥ being the transversal lens
velocity. For the case of M/b = 0.0001 (weak-field), the magni-
tudes of this effect are 8.0 × 10−11 and 8.0 × 10−13 for v = 0.001
and 0.00001, respectively. Therefore, it is possible to detect this new
effect, since its magnitude may still be comparable to the precision
(∼ 10−14) of the Cassini in the weak-field and low-velocity limit.

(b) The scenario for xA ∼ −b and xB 
 b
If the x position of the light emitter has the same order of magnitude
as the impact parameter b while the receiver is far away from the
lens, Eqs. (27)–(29) are simplified to

ΔM2 (v) = 4 v M2

b2

⎛
⎝1 − xA√

x2
A + b2

⎞
⎠− 2 v M2xA(4 x2

A + b2)

(x2
A + b2)

5
2

−vM2

4

[
7

x2
A + b2

+ 13x2
A − b2

(x2
A + b2)2

]
, (35)

Δa(v) = 0, (36)

ΔQ(v) = v Q2

4

[
3

x2
A + b2

+ 5x2
A − b2

(x2
A + b2)2

]
, (37)

where the terms with the factor v/xiB (i = 1, 2, 4) have been
dropped.
(c) The scenario for xA 	 −b and xB ∼ b
When the light emitter is far away from the lens and the observer is
relative close to it (xB ∼ b), Eqs. (27)–(29) then reduce to

ΔM2 (v) = 4vM2

b2

⎛
⎝1 + xB√

x2
B + b2

⎞
⎠

+vM2

4

[
23

x2
B + b2

+ 21x2
B − b2

(x2
B + b2)2

]

+2vM2
{

xB

(x2
B + b2)

3
2

⎡
⎣1 + ln

⎛
⎝
√
x2
B + b2 + xB√

x2
A + b2 + xA

⎞
⎠
⎤
⎦

+ 3 x3
B

(x2
B + b2)

5
2

}
, (38)

Δa(v) = 0, (39)

ΔQ(v) = −v Q2

4

[
3

x2
B + b2

+ 5x2
B − b2

(x2
B + b2)2

]
, (40)

where the terms with the factor v/xiA (i = 1, 2, 4) have been
dropped.

(d) The scenario for xA ∼ −b and xB ∼ b
For this case, Eqs. (27)–(29) reduce to

ΔM2 (v) = 4 v M2

b2

⎛
⎝ xB√

x2
B + b2

− xA√
x2
A + b2

⎞
⎠+ 2 v M2xB

(x2
B + b2)

3
2

× ln

⎛
⎝
√
x2
B + b2 + xB√

x2
A + b2 + xA

⎞
⎠

−
v M2

(
4 + x2

B
x2
B + b2 + x2

A
x2
A + b2

)
√
x2
A + b2

√
x2
B + b2

+vM2

4

[
23

x2
B + b2

− 7

x2
A + b2

+ 21x2
B − b2

(x2
B + b2)2

− 13x2
A − b2

(x2
A + b2)2

]
+ 2vM2

×
⎡
⎣ xB

(x2
B + b2)

3
2

− xA

(x2
A + b2)

3
2

+ 3x3
B

(x2
B + b2)

5
2

− 3x3
A

(x2
A + b2)

5
2

⎤
⎦ , (41)

Δa(v) = 0, (42)

ΔQ(v) = v Q2

4

[
3

x2
A + b2

− 3

x2
B + b2

+ 5x2
A − b2

(x2
A + b2)2

− 5x2
B − b2

(x2
B + b2)2

]
. (43)

Figure 4 shows ΔM2 (v) and ΔQ(v) as the functions of xB for
different xA in this scenario.
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(a) (b)

Fig. 4 ΔM2 (v) and ΔQ(v) plotted as the functions of xB for various xA, respectively. As an example, b = 1.0 × 104M , Q = 0.01M , and
v = 1.0 × 10−4 are assumed

4 Summary

In this paper we have calculated the gravitational frequency shift
up to the 2PM order for light propagating in the equatorial plane
of a radially moving Kerr–Newman source. It is found that for the
astronomical scenario where both the light emitter and observer are

far away from the lens, a new radial velocity effect 8M2v
b2 appears

in the second-order Schwarzschild contribution to the frequency
shift, in contrast to no radial-velocity effect in the first-order fre-
quency shift. The velocity effects on the gravitational frequency
shifts induced respectively by the lens’ electrical charge and spin
are also analyzed. It might be possible to detect the radial velocity
effects on the second-order contributions to the frequency shift by
high-accuracy measurements in future.
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Appendix A: Comparison between our formulation with
that obtained via Liénard–Wiechert representation

In this appendix, we compare Eq. (24) with the analytical form of the
first-order gravitational frequency shift obtained from the retarded

Liénard–Wiechert gravitational potential [7]. For comparison, we
consider a point mass M moving with a constant radial velocity
v = ve1 in the observer’s rest frame (t, x, y, z), and follow the
notations used in Ref. [26] for display convenience. According to
the results presented in [7], dτA

dtA
, dtB
dτB

, and dtA
dtB

in Eq. (8) for the
case of the light emitter A (tA, xA) and the receiver B (tB , xB)

being non-moving (vA = vB = 0) are written as follows:

dτA

dtA
=
√

1 − hA00 =
√

1 − 2(1 + v2)γ M

rA(sA) − v · r A(sA)
, (A.1)

dtB
dτB

= 1√
1 − hB00

= 1√
1 − 2(1+v2)γ M

rB (sB )−v·rB (sB )

, (A.2)

dtA
dtB

=
1 − 2M

(
∂sB
∂tB

∂ξ
∂sB

+ ∂sA
∂tB

∂ξ
∂sA

+ ∂t∗
∂tB

∂ξ
∂t∗ + ∂ki

∂tB
∂ξ

∂ki

)

1 + 2M
(

∂sB
∂tA

∂ξ
∂sB

+ ∂sA
∂tA

∂ξ
∂sA

+ ∂t∗
∂tA

∂ξ
∂t∗ + ∂ki

∂tA
∂ξ

∂ki

) ,

(A.3)

with

∂sA
∂tB

= ∂t∗

∂tB
= ∂ki

∂tB
= ∂ki

∂tA
= 0, (A.4)

∂sB
∂tB

= rB(sB) − k · rB(sB)

rB(sB) − v · rB(sB)
, (A.5)

∂sB
∂tA

= k · rB(sB)

rB(sB) − v · rB(sB)
, (A.6)

∂sA
∂tA

= rA(sA)

rA(sA) − v · r A(sA)
, (A.7)

∂t∗

∂tA
= 1, (A.8)

∂ξ

∂sB
= 1√

1 − v2

(1 − k · v)2

rB(sB) − k · rB(sB)
, (A.9)

∂ξ

∂sA
= − 1√

1 − v2

(1 − k · v)2

rA(sA) − k · r A(sA)
, (A.10)
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∂ξ

∂t∗
= 1 − k · v√

1 − v2

[
1

rA(sA) − k · r A(sA)
− 1

rB(sB) − k · rB(sB)

]
,

(A.11)

∂ξ

∂ki
= 1 − k · v√

1 − v2

[
xiM (sA)

rA(sA) − k · r A(sA)
− xiM (sB)

rB(sB) − k · rB(sB)

]

+ 2 vi√
1 − v2

ln

[
rB(sB) − k · rB(sB)

rA(sA) − k · r A(sA)

]
. (A.12)

Here, the two retarded times sA and sB are related to the emission
time tA and the receiver time tB by the light-cone equations

sA + |xA(tA) − xM (sA)| = tA, (A.13)

sB + |xB(tB) − xM (sB)| = tB . (A.14)

rA(sA) ≡ |r A(sA)| with r A(sA) ≡ xA(tA)−xM (sA) denoting the
distance vector from the retarded position xM (sA) of the moving
lens M to the present position xA(tA) of the emitter. rB(sB) ≡
|rB(sB)| with rB(sB) ≡ xB(tB) − xM (sB) denoting the distance
vector from the retarded position xM (sB) of the moving lens to the
present position xB(tB) of the receiver. k denotes the initial velocity
of an incoming photon at infinity, which is equal to e1 (a unit vector
towards the light receiver) in our scenario. t∗ ≡ tA − k · xA(tA).
ξ = Δ(tB , tA)/2M , with Δ(tB , tA) being given in Eq. (12). We
have used the simplification v(sA) = v(sB) = v and the terms
depending on the lens’ acceleration have been dropped, since the
velocity of the point mass is constant.

Substituting Eqs. (A.1)–(A.3) into Eq. (8) and considering k·v =
v, we can obtain

Δν

ν
=

√√√√ 1− 2 (1 + v2) γ 2 M
RA

1− 2 (1 + v2) γ 2 M
RB

[
1 − 2 (1−v)2 γ M

rB (sB )−v · rB (sB )

]

1 + 2 (1 − v) γ M [ (1 − v) E + F ]
− 1, (A.15)

with

E = k · rB(sB)

[rB(sB) − v · rB(sB)] [rB(sB) − k · rB(sB)]

− rA(sA)

[rA(sA) − v · r A(sA)] [rA(sA) − k · r A(sA)]
, (A.16)

F = 1

rA(sA) − k · r A(sA)
− 1

rB(sB) − k · rB(sB)
, (A.17)

where we have plugged the 1PM form of hA00 and hB00 in terms of the
quantities in the lens’s rest frame [2] into Eq. (A.15). Moreover, the
retarded quantities in Eq. (A.15) are related to the Lorentz invariant
distances RA and RB by [32,33]

RA = γ [rA(sA) − v · r A(sA)] , (A.18)

RB = γ [rB(sB) − v · rB(sB)] , (A.19)

rA(sA) = γ (RA + vXA) , (A.20)

rB(sB) = γ (RB + vXB) , (A.21)

k · r A(sA) = 1

v

[
rA(sA) − RA

γ

]
, (A.22)

k · rB(sB) = 1

v

[
rB(sB) − RB

γ

]
. (A.23)

We then substitute Eqs. (A.18)–(A.23) into Eq. (A.15) and get

Δν

ν
=

√√√√√1 − 2(1+v2)γ 2M
RA

1 − 2(1+v2)γ 2M
RB

[
1 − 2(1 − v)2γ 2M

RB

]

×
{

1 + 2(1 − v)γ 2M

×
[

vRB + XB

RB(RB − XB)
− RA + vXA

RA(RA − XA)

+ 1 + v

RA − XA
− 1 + v

RB − XB

]}−1

− 1

=
1 − 2(1−v)2γ 2M

RB

1 + 2(1−v)γ 2M(vRB−RA)
RARB

⎡
⎣1 − 2(1+v2)γ 2M

RA

1 − 2(1+v2)γ 2M
RB

⎤
⎦

1
2

− 1.

(A.24)

Up to the 1PM order, Eq. (A.24) yields

Δν

ν
= (1 + 2v − v2)γ 2

(
M

RB
− M

RA

)

= (1 + 2v − v2)γ 2

×
⎡
⎣ M√

(1 − v)2γ 2x2
B + b2

− M√
(1 − v)2γ 2x2

A + b2

⎤
⎦ ,

(A.25)

which is the same as that given in Eq. (24).
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