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Abstract. 1 review and discuss aspects of the interplay of emergent geometry and
anomalies in topological semimetals and insulators, focusing on effects of torsion. This
correspondence identifies torsional topological responses in terms of anomalies and anomaly
related hydrodynamic phenomena involving gauge fields and geometry. I discuss how torsional
emergent geometry arises from elastic deformations in crystalline materials and how this
background couples to thee low-energy continuum models inherited from lattice models, utilizing
the semiclassical expansion. Via the coupling of momentum space topology and emergent
vielbein geometry, non-relativistic topological matter can realise new geometrical responses of
mixed gauge-gravitational character. The topological low-energy torsional responses depend
momentum space geometry, lattice momenta and the regularization and UV completion,
provided by the non-relativistic physics and symmetries of topological materials.

1. Introduction: Topological matter and anomalies

Topological matter has robust, protected quantum responses and associated zero modes that are
insensitive to microscopic details, demarcating them from trivial ground states such as ordinary
insulators, superfluids and normal metals. The integer quantized conductivity (in units of €2/h)
of the quantum Hall effect in two spatial dimensions (2+1d) is a prime example. See more from
e.g. the reviews [1, 2, 3, 4] along with other more recent gapped and gapless symmetry protected
topological states.

Quantum field theory (QFT) anomalies can be utilized to classify topological matter
[5, 6, 7, 8], at least in terms of representative if yet idealized low-energy field theory models.
The link to symmetry based classifications of topological matter [9, 10] follows from the
topological responses needed for the anomalous symmetries of the quantum theory [11]. In
general, anomalies can be defined as the sensitivity and interplay of classical gauge and global
symmetries to quantization, such as the chiral anomaly in 1+1d and 341d [12] and the closely
related parity anomaly in 2+1d [13]. When mixed gauge-gravitational anomalies are considered
in addition [14], the tenfold classification of symmetry protected topological phases relates to
relativistic anomalies and their descent relations [5]. In this way, early on since the discoveries
of topological matter, the interelations and correspondence between anomalies and topology has
been well-appreciated, much like for the QFT anomalies.

Nevertheless, at least two things in this correspondence are immediately non-evident: QFT
anomalies are characterised as robust and in-escapable consequences of retaining or gauging
certain symmetries in relativistic QFTs, whereas topological phases are (mostly) found in non-
relativistic condensed matter systems which are finite and with well-defined UV completions,
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e.g. certain lattice models and, eventually, atomistic many-body physics. The latter, by
definition, formally do not posses any anomalies. This discrepancy is of course explained by
the fact that anomalies creep in via lattice regularization terms and fermion doubling theorems
[15, 16, 17, 18]. The anomalies, chiral and/or doubler fermions can be placed on e.g. spatially
separated boundaries, interfaces and different lattice momenta, realising the domain wall idea
of anomaly inflow [11]. So, by the so-called t’ Hooft anomaly matching and anomaly inflow, the
low-energy theory simultaneously reproduces the macroscopic topological response and bulk-
boundary correspondence in terms of the anomaly and boundary degrees of freedom saturating
the conservation laws. Yet, for anomalies to classify all topological phases, as they now
are understood, they must go beyond the standard anomalies and the tenfold classification.
In particular, more recent examples of topological phases are often protected by crystalline
symmetries, see e.g. [19], which are non-relativistic discrete spatial symmetries different to
both gravity and internal gauge symmetries, and feature weaker topology than the tenfold
classification. The topological responses for these are missing for the most part, despite the
extensive classifications.

The purpose of this short article is twofold. I place topological semimetals and insulators
with quasirelativistic low-energy models on a background constituting an emergent geometry
with torsion, which can be taken to originate from a crystalline lattice and elastic deformations
(or order parameter textures in topological superconductors and superfluids) with dislocations
(vortices). First, I compare and contrast this low-energy field theory on curved space with
that of strictly relativistic field theories. Second, from this background, I explicitly compute
and identify new classes of mixed gauge-torsional anomalous responses that are allowed by non-
relativistic crystalline symmetries, e.g. in Chern (quantum Hall) insulators [20, 21] and Weyl and
Dirac semimetals [1, 4] (and other related topological phases). This is done directly by using the
semi-classical quasirelativistic continuum models on emergent geometries with torsion. Given a
lattice model whose low-energy theory matches to the quasirelativistic continuum theory, this
gives an approach that is valid both at low and high energies which, in principle, allows to
explicitly compute several proposed anomalous responses in topological semimetals related to
geometry and torsion.

I expect that the correspondence between anomalies and topology is general, although not
yet complete in terms of all known topological phases — this hypothesis somewhat depending
on the working definitions of a topological phase ("weak”and ”strong” symmetry protected
topology [3, 19]) and anomalies as well. Relatedly, these anomalous conservation laws are
what hydrodynamics encompasses and there is a growing set of new anomalous phenomena in
relativistic hydrodynamics beyond QFT [23, 24, 25, 26, 27, 28]. Here anomalous hydrodynamics
is extended for non-relativistic topological matter with torsion. In this respect, one motivation
for the consideration of torsion is to enlarge hydrodynamic anomalies to encompass new
representatives of non-relativistic topological matter, especially crystalline phases. In a strict
sense, any QFT anomaly should be defined in terms of (at least) two ”competing” symmetries
that cannot be simultaneously realised (or gauged) in the quantum theory. The competition
is summarized by associated anomaly polynomials and descent relations. For the purposes of
this article, especially with regards to torsional anomalies, I will be slightly imprecise with
this terminology and refer to an anomaly as the breaking of any classical conservation law.
Nevertheless, only the consideration of perturbative 14+1d chiral anomaly, 2+1d parity anomaly,
and the 3+1d chiral anomaly from QFT are sufficient for this article, see the Appendix for a quick
review. These correspond to the 2+1-dimensional quantum Hall effect and 3-+1-dimensional
Weyl and Dirac semimetals, respectively. In particular, comparing the torsional Nieh-Yan
anomaly and the anomalous quantum Hall effect in 3+1d, it can be seen that the non-relativistic
torsional anomalies in the hydrodynamic responses of topological phases are closely related to
chiral U(1) QFT anomalies, yet are distinct, in the same way as anomalous hydrodynamics
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encompasses new phenomena outside but related to QFT anomalies. See Refs. [29, 28] for
discussions about the relativistic case with torsion.

2. Emergent geometry and torsion in topological semimetals and insulators
The topological states sufficient for our purposes are encapsulated by the following family of
lattice model Hamiltonians, in momentum space H = ", WIH(k)¥,

d d
H(k) = Z d,(k)I* = EZWFZ’ sin(k;a) +mI° + 2 Z(l — cos(k;a))T° (1)

where a is the lattice constant (say, of a cubic lattice for simplicity) and {T'*, TV} = 2§*
are anticommuting Dirac matrices. The V¥ is a non-relativistic fermion whose indices do not
necessarily correspond to spin but instead e.g., say, to atomic orbitals in a material. The v;
are velocities from nearest neighbour hopping terms. Allowing for anisotropy, the most general
coupling would be v;;I" sin(k;a). The lattice introduces a UV cutoff ~ 1/a and the O(r) mass
terms (isotropic here for simplicity) decouple the Dirac fermions around k = 0 from those at
some k; = 7/a at the expense of (explicit) axial (chiral) symmetry breaking. Note that this
model is nothing else than lattice Dirac-Wilson fermions and the Lorentz-breaking lattice and
O(r) mass terms vanish in the continuum limit @ — 0 [15, 18]. According to the fermion doubling
theorem, it is impossible to retain a single (chiral) fermion while at the same time preserving
all (chiral) symmetries [16].

Although the simple lattice model (1) is not realistic for general real materials, its low-energy
behaviour is realized in several topological phases [9, 21]. Accordingly, at large and positive
m > |vil,|r|, the system is a trivial insulator. The continuum Dirac theory emerges as a — 0
when the mass parameter m/r is close to isolated critical values where some of the eigenvalues
+|d(k)| of H(k) cross zero. When all the eigenvalues are non-zero but some levels have crossed
(so-called band inversions), the system is a topological insulator. At the corresponding critical
points, it becomes a topological Dirac (or Weyl) semimetal. In 2+1d (or 2n+1d), the Dirac
model is a representative for the integer anomalous quantum Hall or Chern insulator, while for
3+1d it is a model for the time-reversal symmetric topological insulator [21, 22]. Extending the
2+1d insulator model to 3+1d with v, =0,—1 < m/r < 1, we get a Weyl semimetal with Weyl
Hamiltonian [1, 4]

> Hip, (k) ~ Y tvfo'(EFh)i+- (2)
+ +,i

close to two Weyl nodes at +ak, = (0,0, & arccos[(r+m)/r]) with v* = (v, vy, 27 sin ak,,), and
massive doublers when any &, , = 7. The linear continuum expansion is valid when |k—k,| < ki
and higher-order terms are negligible. The Dirac Fermion at k = 0 has been split to two Weyl
fermions at £k, via choosing v, = 0, breaking time-reversal and preserving inversion symmetry.
The isolated points +k, are a topological Fermi surface [1, 30]. This is therefore at time-reversal
breaking Weyl semimetal with a minimum number of two nodes of opposite chirality. When
parity (inversion) is broken instead, the minimum number of nodes is four [4]. This topological
phase is well-defined, since the Weyl Hamiltonian is stable in 3+1d for small perturbations, since
there are 3 parameters k and Pauli matrices involved in the condition |d;(k)| = 0 for (2).

2.1. Coupling topological matter to emergent geometry and gauge fields
The low-energy dispersion of quasiparticles in a topological semimetal or insulator takes the
form of a Weyl/Dirac dispersion by general principles from topology [1, 30]. Working directly
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in the continuum limit, let us therefore consider more general Weyl/Dirac action
i0p — H(k) =m + Tl (k—ko)p+--- (3)

B _ Odg
@ = ok
are the linear momentum expansion coefficients (previously the v;; in (1)). The low—energgz
dispersion w? — k? — m? = g kuky, — m? = 0 with metric g"” is determined by the (inverse)
vielbein el and is in general anisotropic. A small external electromagnetic field is introduced as
k, — k, — A, in addition to the shift k,,, and the spin-connection can enter as well.

Before describing the elastic geometry in detail, let us discuss coupling non-trivial, weakly
varying vielbein coefficients eZ(:B) to the lattice fermions, using the Dirac/Weyl Hamiltonian as

an example [31, 32]. The geometry is e () = e +det (z), where a denotes some lattice indices

where e.g. m = m1, in general a matrix of momentum (in)dependent "masses”, and e

with undeformed basis ego)a, a = 1,2,3 w.r.t. some fixed laboratory coordinates i = x,y, z.
Notably, we keep momenta k, as a referring to the undeformed lattice, while deformed momenta
are k; = el'k, in the local coordinates i. For elasticity, a is spatial; a non-trivial ”convective”
ep = €0, = Dy follows from e.g. a moving frame w.r.t. to the medium or periodical driving
with weak coordinate dependence. Schematically, in a semi-classical expansion, the Hamiltonian
changes as [32]

Tk — ky)a — D% (k — k)i + - - = D€l ki — kxa) + - - - (4)
~ I‘a(efl(ji —0elkyq) + - (5)
with constant ky, = e'ky;. The lower line (5) follows by expanding ki = k*aego)a + G,

i.e. around the original node kf{?), where now A; = defk.q is small elastic gauge field and

Gi = (k — ky); is the small momentum coupled to the vielbein e?; to first order Sel G; vanishes.
The “minimal momentum coupling” (4) was studied in the Ref. [31] and compared to explicit
lattice construction in the presence of strain and found to agree with it and the continuum
limit. On the other hand, the elastic gauge field of (5) is studied in [33, 1, 34, 35, 36, 37| derived
utilizing the same lattice construction. We shall adopt the formalism (4) onwards here, stressing
that they differ only via the approximation from (4) to (5) and/or non-universal constant from
the lattice phonon coupling [32]. For both, the deformation comes from def but either ef or A;
as the explicit source.

Indeed, it seems that the constant k,, can be shifted away by the rotation to ¢y, ~ e* =¥
and the difference of (4) to the approximation (5) is innocuous. This however is not the case
in the presence of anomalies (nor the shift for general momentum space integrals)! The related
couplings (4) and (5) have important differences: €’k; in (4) depends on momentum and has
the original constant shift kq, whereas the gauge field A, [0e¢] in (5) has just constant frame

6(0)(1

;" (to lowest order) and no shift k., since only ¢; enters. Moreover, one gets different results
for geometric phenomena related to the chiral anomaly with the momentum dependence of (4)
leading to non-universal regularization dependent terms, the hallmark of torsional anomalies. In
constrast, anomalies follow from (5) with universal coupling k., playing the role both universal
emergent electric charge and the dimensionful UV scale of 4;, i.e. A; ~ eA; is a pseudo U(1)
gauge field [37]. Different anomaly expressions derived using the related (4), (5) expressions
have created some controversy in the literature regarding the UV coefficients proportional to
ks. A particularly simple way to derive torsional chiral anomalies is to compute the Landau
level spectral flow from (4), see e.g. the Refs. [33, 38, 32]. Any discrepancy to (5) should
be addressed since a common starting point [31, 35| is in terms of the strain induced modified
hopping parameters, e.g. v; — Vij[umns) in Eq. (1), with w;; in (8). For now, we exclusively
use the "minimal momentum coupling” (4) and defer more comments on (4) vs. (5) until in
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Sec. 6. Along with the results of [31, 32], we extend it to continuum models derived from
incarnations of (1) and the semiclassical expansion for the effective action finding agreement
when applicable. Since a lot about anomalies and topological phases have been learnt by studying
(weakly) coordinate dependent masses m(x), a natural question is to ask what happens if the
emergent frame fields e, become coordinate dependent e (x). What is note-worthy is that the
emergent e}, are more fundamental that the emergent metric g,, in the dispersion, opening the
possibility for torsional physics as the e}, independent from the connection.

2.2. Torsional elastic geometry

For lattice systems, the continuum formulation allows to interpret the elastic distortions as
sources for an effective vielbein, spin connection and metric. In general, this background
is torsionful and curved in the presence of translational and rotational lattice defects, i.e.
dislocations and disclinations, see e.g. [39, 40, 41, 42] and [43, 44, 38]. For the fermions,
this correspondence amounts to the gauging of smooth translations and rotations at the level
of the background and sources in the continuum theory. This remains valid topological
responses of the effective theory, although of course on the fixed background the smooth lattice
transformations have finite elastic energy breaking the symmetry. We now briefly review the
geometric background from elasticity.

The elastic distortion is given as

' = 2% + u(z) (6)

where a = 0,...,d label lattice directions (again, for spatial lattices u’ = 0). The 2% are the
undeformed, reference lattice directions which we for simplicity take to be aligned with the
reference (i.e. laboratory) spacetime coordinates z#, u =t,z,y,2,..., l.e. % = 53:[;“ = eLO)ax”.
With respect to this coordinate reference frame, the elastic deformation introduces the change
of coordinates

a ax/a a a
= = e,(LO) + dyu (7)

from which the symmetric and antisymmetric strains are

1 1
Ugh 1= 5(8aub + Opig), Ugp = 5(8aub — Opug). (8)

The g4 is a rotation and since uniform rotations do not contribute to elastic energy, can be
dropped out from first-order elasticity. For this reason wug,, representing acoustic phonons, is
often sufficient. For generality, however, we retain the coupling with the emergent vielbein ey,
never only the symmetric strain. Dislocation defects are encoded as multivalued dej, = J,u®
such that T = (de®),, = 3(9uel — dye%) = (d®u®),, # 0. The rotational disclination defects
RY ~ d*(@%),w, equal to dislocation dipoles, are confined [45] in the presence of crystalline
order. These tensors correspond, respectively, to emergent torsion and and curvature from
elastic deformations, see (9), (10) and (11) below.

We now add local microstructure corresponding to a local orientation degree of freedom and
parametrize the local orientation with the Galilean spacetime transformation z — 2" = Ox + u,
where ©% = 1+6% is a (spatial) rotation independent of u®. Note that e}, in (7) does not include
the full change 2" of , only the translation part u®. The central quantity is the (unsymmetrized)
strain tensor from the z — z” transformation,

wh = 2" —x = du® + 05, = uj, + ), + 0, 9)
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where, for small u® and 6%, the total local rotation is 53 = uy,+0], is the sum the antisymmetrized
strain and rotation tensors. We added the antisymmetric field 8, to keep the total local rotation
independent of u® (i.e. wg). Rotations 6, are zeroth order in gradients and power counting.
This translates to the vielbein ej; and spin connection wyqp being independent. The non-zero
0.p has various physical interpretations: test disclinations, the microrotation field of Cosserat
elasticity [46], the gauge freedom related to the interrelations translations and rotations (i.e.
torsion and curvature) [40], the ambient curvature of the space where the lattice is embedded,
or finally, contribution from corners, vortices and other singular points [47, 48].

Gravitationally, the geometry from the transformation (9) seems harmless and “pure gauge”
but the incorporation of dislocations and disclinations necessitates torsion and curvature,
meaning multivalued/singular u* and % [40] and test disclinations can be introduced via non-
trivial 6 within first order elasticity. Depending on the detailed application and elastodynamics,
the contributions from the local rotations # needs to be analyzed case-by-case. In the simplest
case, local hopping overlaps change as a function of the distance only, i.e. only u;; [31], however
for anisotropic orbitals, also the local rotation 6, affects the hopping elements.

To summarize the elastic quantities and the emergent geometry, we let 2/ = ©x + u around
undeformed flat space lattice. Then

ey = 0, + dyu”, F;/\w = 0,0,2" = 9,0,u™ + 0,07, Wy = eifzyeg + eSduep = 9,0%. (10)
The equations must be supplemented by local continuity conditions, so that the local metric
compatible geometry is consistent with (10) and the parallel transport, V, = 0, + Iy,

[V, Vo VA =Ry, VP —T), VaV?. (11)

where torsion is T% = %Tﬁydm“ Adx’ = %(FZV = Ij,)dat Adx” = de® + w A e’ and curvature

Ry =1 S dTH Ndz” = 30,0, +T5.L5, — (1 < v)|dat Ada¥ = dw +w, AwS, in differential
form notation. For example, we can require that O(9%u, 330) terms are zero so that the metric,
curvature and torsion are continuous and consistent with parallel transport with the tetrad and
connection in (10) to that order in derivatives. See e.g. [40, 38| for more discussions about

torsional geometry in our context.

3. Semiclassical expansion of the quasirelativistic low-energy continuum theory
3.1. Low-energy continuum theory
Assuming the elastic frame coupling (4) and armed with the background (10), I write the

low-energy theory for a non-relativistic fermion ¥ with semi-classical Hamiltonian #(x; k) as
[1, 30, 21]

S = / d*xdt W [iD; — H(a; k)W =) / ed'aipy, (2)[iDg, (@) + g, ., (2) + - (12)
k.

where ~ represents the (semi-classical, weakly coordinate dependent) low-energy continuum
limit and --- are non-linear corrections and/or interactions, see e.g. Refs. [31, 34, 49, 32, 50,
51, 52, 53] for extensive discussions how this limit can be taken.

The original low-energy fermions are W(z) ~ > ﬁlﬂk* (z) and v, = e*Tp(z), where
¢ is slowly varying, are close around some collection of inequivalent Brillouin zone (BZ) wave
vectors ky, such as the origin, corners or a Fermi node (or in general any Fermi surface). Note
the shift of ¢k, by k. in momentum space, so that The Dirac mass mg, is the energy scale of the
low-energy quasiparticles, representing the energy gap for insulators and absent for semimetals.
Correspondingly, the Dy, () is the emergent low-energy Dirac operator close to k.,

Dy, (v) = VCL@ZL(au + a’u + iun + ik*u)‘ (13)
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The low-energy Dirac form follows by general principles from topology [30] and the various
quantities entering this operator are:

", Vb} = 277ab flat space gamma matrices

ﬁabeﬁf ey =g emergent vielbein

Aps by = € kxa U(1) gauge field and Fermi/BZ momentum (14)
Wy = %wzbZab emergent spin connection with generators X,

and w, = wzb = epouey + e‘j\I‘ﬁyeZ a metric compatible spin connection, which however, does
not necessarily coincide with the torsion-free Christoffel connection, 1"/);1, # Ff;l, In the same
fashion, the emergent rotation generators >,; do not necessarily match the Lorentz generators
Yab = [Ya, ) [48]. I emphasize that the original system (12) is in flat space and the EM gauge
field A, is fundamental, in contrast to the emergent geometric fields.

3.2. Semiclassical expansion
The gauge invariant (one-loop) effective action for anomalous currents is summarized as

(="

n

Sett[®] =i TrIn[Ip — M[®]] =iy |

n

Tr [Go(p)B(2)]" . (15)

Here Tr includes phase space integrals over coordinate d%'z and momentum space
dp/(2m)4* Go(p) is the (time-ordered, Feynmann) propagator of the unperturbed,
translation invariant Hamiltonian and M [®] is any classical coordinate dependent background
field ® perturbation, contracted in the trace with proper (gamma) matrix representations
of (12). Once the denominators are expanded, we are left with expressions like ﬁ@ =
‘1)],2_1m2 + (p2_1mQ)2

space traces can be disentangled by moving all momentum terms, say, to the left. Seg[®] reduces
to a gradient expansion in the perturbing fields ®(z) times momentum space integrals [54]

[p?, @] and [p,, ®(x)] = —i0,P(z) from which the momentum and coordinate

4
Seit[@] :/(;lﬁlF(pu)-/d‘le((I’?c‘)M@,...). (16)

Here F(p) is a polynomial momentum space tensor contracted with f(®,0,®,...), a local field
tensor expression, as allowed by the (anisotropic) non-relativistic symmetries. Of course, in
relativistic theories, F(p) = F(p?) and f(®,0,®,...) = f(®,0,9,...) by Lorentz invariance.
In calculations, we further expand f(®,0,®) in ® = ®¢+ P, where @ represent some reference
background fields. It is important that the momentum space prefactor fBZ d*pF(p,) retains its
from under (small) elastic deformations which enter the coordinate space expression in terms of
the ®(x) = e?[u?], where u® are the (small) distortion fields in coordinate space. Finally, the
expansion (15), (16) is equivalent to semi-classical Greens functions with Moyal products, or the
computation of vacuum polarization diagrams in the limit of external momenta ¢ — 0. See the
Appendix for a review of chiral anomalies and the expansion (16).
For the background (14) in (12), ®(x) = Au(x), eapy, wy, etc. and we can evaluate

o ldseff
e b4,

ldseff wo_ l(sseff

JH , b= 5
a a a
e 5€u e 5wu

Ja = (17)

a
i

couples to 0, ~ p, Jy, is always a stress-momentum. However, the emergent Sgb depends on

corresponding to electric current, emergent stress-momentum and angular-momentum. Since e
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the physical identification of the symmetry generators X, (the degree of freedom of the colums
of ). More generally, the emergent fields in (12) can be of various origin, I focus on crystalline
systems. Another example is inhomogeneous tensor order parameters in unconventional (non
s-wave) superconductors and superfluids and/or coupling to ambient geometry [1, 55, 56]. The
vielbein and spin-connection could also simply be taken to represent abstract quantities set to
flat space values at the end of the calculation or e.g. thermal gradients [57, 58, 27].

4. 241d quantum Hall effect and polarization with torsion

Now I calculate electromagnetic and geometric responses utilizing the semiclassical expansion
for continuum models with simplest ingredients from the non-relativistic lattice. That is, we
assume linearized spectrum but allow for anisotropies, finite node momenta, as well as a finite
validity for the linear models. The linear approximation can be extended if all Fermi momenta
are small and the boundary conditions for propagators of the all relevant bands tend to some
constant values at higher momenta, allowing the unwinding of the BZ T2 x R — R*!. This is
often unrealistic in materials, in contrast to lattice models of relativistic theories. Any simple
lattice model like (1) should be matched to detailed k - p expansions of realistic band structures,
including many bands. In addition, the presence of extra massive fermions in the periodic BZ
should be accounted for while keeping track of possible UV divergences or cutoffs for torsion in
the low-energy theory.

4.1. Quantum Hall conductivity and torsional Hall viscosity in 2+1d Chern insulator
As a warm-up to using (16), let us take a 2+1d Chern insulator with the continuum model of
(1) near k = 0 with mass m = ml,

Lor14 = E(vaefl‘ﬁu —m)y. (18)

The lattice model (1) this corresponds was detailed in [22, 21, 38, 31] and including doublers,

has four massive Dirac fermions in total. The terms from slowly varying perturbation d¢!p, =
—0¢%p, are

1

a _ 1 a
Seele?, Al = = Tr [p—m5¢ Da

5 _1m5¢bpb] + % Tr { AA]

p p-—m p-m
+% Tr b_lmM“pap_lmA] + % Tr {MAMM%] 7

The cross terms vanish if we assume that p, =0 by antisymmetry of [ dpq, see below, leaving

LT APA ] o Ty ) (19)

(p? —m?)? (p? —m?)?

We use tr(y#9Yy*) = —2ie”* in 24+1d and performing the momentum space integrals with
standard regularization [59], we get

Set[A, €] = Ca(m) /A AN dA + Cp(m, N)nagp / e A de, (20)

where AN dA = e“”’\Au&,A,\dg:ﬁ, e® = ejdz! ete. in differential form notation, and

* d mp? 1
Ca(m) = 47r/0 (25)3 W _pm2)2 = —g,sen (m) (21)
T A m 4 2
@wmm——to(ﬁ;@Ljﬁp 4 sa(m) ™+ O(m/A). (22)
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This corresponds to the results in Ref. [38] and need to be further regularized. According to
the parity anomaly [13], the C'4 must be 1/47 quantized in the absence of strong interactions
(fractionalization) and, even worse, the torsional term is diverges with UV cutoff oc A. In Ref.
[38], these coefficient were regulated with massive Pauli-Villars fermions, e.g. the O(r) doublers
of the lattice model (1), leaving just

~ sgn(m) + 17 c

Ca(m) = = r(m) = Mm?

- (23)

Since this is a (torsional) quantum Hall response, there are massless boundary 1+1d fermions
with the chiral and torsional momentum anomaly related to the gauge non-invariances at
the boundary. In contrast to the full coordinate transformations, the elastic dreibein can be
transformed independently of the coordinates. Accordingly, the non-trivial e* as elastic dreibein
transform e* — e® 4+ du® under smooth elastic transformation in 2+1d bulk, to arrive to

0Seti11alA, €] = —Ca(m) / AF — Cp(m)na / uaT?, (24)
This leads to the the anomalies
1 m?
= —F = ——T° . 2
d*J e d*J, o (25)
where d x J = 9,(eJ*)d*s and d x J, = O,(eJdi')d*x are the current and elastic stress-

momentum covariant divergences, respectively. The former is the standard (covariant) anomaly
from the 2+1d U(1) Chern-Simons term. The latter torsional boundary anomaly follows
also via the anomaly inflow picture for general coordinate transformations [38], although the
torsional CS term is both gauge and general coordinate covariant and therefore does not have
any consistent anomaly in the 2+1d bulk. Interestingly, it seems that the emergent, elastic
gauge transformation de* = du® captures the same information as gauging full coordinate
transformations in the presence of the U(1) anomaly. Similar gauge transformations were
discussed in terms of chiral elasticity in [60].

4.2. Topological polarization in a 2+1d TRB semimetal

There is a symmetry protected semimetal in 241d with a closely related response, which serves
as an illustration of a gapless model with geometric response related to torsion. The Dirac model
for this is (found e.g. low-energy graphene [43, 44|)

/2d+1 = ZE[’Yaeg(iau = Pap — Ap) + oMy (26)

DPx

there are symmetry protected Dirac nodes at ps, where the system is gapless. The mass
om, — =0 is a small symmetry breaking parameter (e.g. PT symmetry), whose role will
become clear below. Now consider also the mixed terms, with fixed py,

1 (p - 5m*)pa

Segt = 1T p—p.+om. A] =7~ ond

0¢“Dpa

404 (27)

1
p_p*+5m*

The momentum space integral is for the mixed term and the torsional Hall viscosity term, similar
to (23), are

/ d3p DOy sgn(ém*)p / d3p OMyPapb _sgn(dmy)
*Qa

@rp (p—p)2—om2 8 27)2 (p—p)? +0m2  8x

DPxaPxb; (28)
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by a shift the integration variable to p — p 4 px and small dm,. We now want to consider
difference between phases with opposite signs of small dm,,, similar to the well-defined differences
(23). All possible symmetry breaking terms give

omy
Sog = sgn(dm.) 3 / ANAA + 2pae® A dA + prapape® A de® (29)
DPx

8

see the recent papers [61, 62] for a lattice calculations of these terms. The new mixed
term represent the jump of the topological polarization dipole-moment with value P, =
>_p, sen(dmy) 52, summed over the nodes across the dm, = 0 [63, 64, 61]. Note that usually
there are several nodes by fermion doubling. In the presence of the parameter ém, — +0 the
link between the Chern number C4 and polarization difference P, is well-known [21], here the
torsional terms are in addition regulated via the momentum scale p,. For non-zero torsion
T® = de?, the action is not gauge invariant and requires jump of charge j° = —P,b% at
dislocations with Burgers vector b® [65, 66, 67] due to zero modes. The last term is an analog
of the torsional Hall viscosity term, the jump of which across dm = 0 is possible for the gapless
system with non-zero p, and implies a stress density on dislocations [38, 68].

5. Time-reversal breaking Weyl semimetal: anomalous quantum Hall effect and
torsional anomaly
Let us derive the 34+1d anomalous quantum Hall and torsional Hall viscosity Weyl semimetal
responses building on the 2+1d results of Sec. 4.

Consider the time-reversal breaking (TRB) Weyl semimetal (WSM) i.e. two Weyl nodes at
p = *£p,, with node separation 2p,. The low-energy continuum model is, valid around some
finite neighbourhood around the nodes,

STRB = /d4a?e @fy“eg(Du — 75p*u)1/1 + ... (30)

where with D, = 0, — A, and ¥ = (¢4 _) is the sum of two antichiral Weyl fermions ¢+ of
(2) at +p, = £p,2z. The idea is to do the phase space integrals at constant (p — p). # 0 where
the 24+1d model is massive.

5.1. AQHE in TRB Weyl semimetal
For this subsection, the tetrad €4 and p, are constants and the electromagnetic A, is a slowly
varying field in the gradient expansion. The relevant term for AQHE is

. . 5 o 5
ﬂ[ Lot A]:Z;Tr[(p Pﬂ)A (p pﬂ)Ai

Set[A] = +
) p_¢*75 p_lﬁﬂs NS =41 pi_pz? pi_p?

N | <.

Now we use p,A, —i0,A, + A,py, pick the v° = +1 part and tr(¢F0"5 0?) = 2ie"**, leading
to

%M’ Ty [(p_p*)ZA 9 AA} .
(1 —p2)2 "
As advertised, the momentum space integral splits and we are left with, my = (p F py),

/ dp* / dpy  —ma(pe) / dp® isgn m (p:)
21 JBz

™ Jpz (2m)3 (p7 — mZ(p.))? 2r  8n

10
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This integral is zero when integrated over the BZ by antisymmetry around p,. This is expected
since original integral cancels by antisymmetry in p, as well, after a shift of integration variable.
In the limit where we extend to p, € [—00, 00|, this becomes the ambigious cancellation of two
shifted and linearly divergent integrals, much like the original chiral anomaly [12]. Nevertheless,
we proceed and add the other chirality 4% = —1, giving

1
Set[A] = 32 j{dpz[sgn m—(pz) —sgn my(pz)] /d4$ A AL0, Ay

= # dz ez“”AZp(O)A#&,A)\. (31)
Surprisingly, this integral is finite. More carefully, we regularize the d3p,,dp, integrals, e.g.
by including by including the two-dimensional doublers with mass O(r) from (1) and (2), and
obtain the finite 24-1d Hall conductance (23). We could pick either sign, which differ by a sign
and a translation by a reciprocal lattice vector, corresponding to additional 3+1d integer QH
states, cf. (44) and [69]. Here the upper sign occurs, yielding an identical answer to (31). In
general, this response can be written as

%ﬁ;"/e“/\AAdA (32)

i€nodes

(0)

where pioe® = piqej,dz” is along the node vector p;. Moreover, noting that py,, couples like A5,
(31) gives the (covariant) axial anomaly (A.8). The coefficient is

e L r[(GodGy ). (33)

XiPia _ Naz(p / dp, d m
Ng3(p) is the invariant that counts the right-handed minus left-handed nodes G, l(w =0,p)=0
along p, [1]. Physically this is the Chern number or Berry flux [4] between the Weyl nodes
at £p,, where each section is a 2+1d integer quantum Hall state, cf. (23) and [70, 69]. The
relation of (32) was linked to the chiral anomaly [17] in [71, 72] and implies the existence of
chiral boundary modes connecting the projections of the nodes at surface BZ called Fermi arcs.
It also implies that in the presence of screw dislocations, there must be dislocation bound Fermi
arc-like modes in order to cancel the gauge non-invariance for 7% # 0 [73, 68, 74].

5.2. Nieh-Yan torsional anomaly in a TRB WSM

The AQHE response features the elastic tetrad field as a “spectator” and implies dislocation
bound zero modes. A natural question is whether and intrisically torsional response related to
the chiral Nieh-Yan anomaly [75] is possible [38, 76, 49]. To derive this, assume the model (30)
with non-trivial e® = e(?)% 4 §e®. The response is

) 1 1
Seg[e?] = —Tr[ a%elp Jbéegp,,] (34)
ieges 2 % o ’¢’L “p - sz

Again, we use 0%elp, = —otdeyp, and arrive to

Surle®) = 3 5 Tl ) (i o) (35)

7
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Performing the matrix traces, the momentum space integral of interest is of the form

DlaDP1b + pﬁa,b

3 + (p — )]

5(p— p1)5u,|€$8w';] i M (36)

where y; is the chirality of the node i. The first and second terms are proportional to

/d3pl praPib(p—pi)) 4w /Al P 1ab/3(p — pi))|
COEF + —p)f2 @RSy TR - p)
A — Di - i2
B L IS
dps  PI—P) 4w g PP —p) P
[ Grrs o= p7E - o ), Wi - " (%)

in the directions p; perpendicular to p;, where A; > (p — p;)| is a UV-cutoff and sgn =
sgn (p — p;)|- These are diverging and need regularization. Integrating over the node direction,
we are left with

M dpy AL (p — pi) pil 1A
/A| 21 672 R b )
A dp) sen il
[ 2z o-mi- @
A
A dp|sgn o piAﬁ .
/A ﬁST | = 52 4+ even in p; terms (41)

where A is a UV cutoff along the Weyl node vector p;. Performing the integrals, we used the
regularized 241d Hall viscosity result (23) for (37) and (38). In general the cutoff A = A is
dictated by the validity of the linear model (30), even though momentum integrals are finite on
the lattice with A ~ 1/a. Summing over the nodes, this leads to

A2 A2
Seg[€?] = 87:7;b Z/ed4x e"””xz'pgz)eﬁﬁxeﬁ = Z ) /piaea NN (42)
i i

where in terms of the full Nieh-Yan form N = e* AT, [75].
Noting pz(-g) plays also the role of the axial gauge field As,, this effective action implies a
non-relativistic version of the covariant torsional Nieh-Yan anomaly (A.13) [75, 76, 49, 32]. In

terms of torsional Hall viscosity [38, 31, 35, 49], it implies that d x 7, = & =0l N for J, = et

4r2 oe®
cf. Eq. (A.13). Interestingly, by antisymmetry of e® A e, the non-linear effective action is zero
if e is non-zero only along pr,. The ensuing 34+1d anomaly, however, can be then derived from
a e” AdN term in 441d, mimicking the 44+1d U(1) CS term for e®. Finally, Note however that
the expression (42) rests on Lorentz breaking symmetries, making the generalization to the RHS
of (A.13) not in general well-defined. For more discussion see [49].

5.3. Related crystalline insulators in 3+1d
Finally, T discuss how to connect the results (32), (42) to results on other 3+1d topological
states. The TRB WSM is an intermediate state between two time-reversal breaking insulators,
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the trivial and weak 341d topological Chern insulator. Namely the two Weyl nodes can be
gapped with mass m and annihilated when they overlap in the BZ. The trivial insulator is
obtained when the nodes meet at p, = 0, whereas the non-trivial state follows when the nodes
meet at the zone boundary as +p, — £7/a. Effectively this a chiral rotation equal to ¢'Gae/2
along p.q,, where G, = 27/a is a reciprocal lattice vector. Then, see the Appendix,

Segele?, A] :aHa/e“/\AAdA+77Ha/e“/\N (43)
where now, m being the insulating gap,

Ga ! A2 //"TL2 log(A)
=gz Mo = oy TG

OHa
These are the 3+1d Hall conductivities [77, 69, 78] and viscosities [38, 31] with in general integer
multiplicities of elementary reprocical lattice vectors G, G, GY and protected by crystalline
symmetries like p,,. Note that due to the mass term, there is additional logarithmic term which
was studied in [68]. Our results imply that G, = G| = G, i.e. the coefficient are equal up
to the unknown scales A% and m? log(%) for the simple TRB Weyl model. The continuity of
both op and npy is similar to the continuity the torsional Hall viscosity (23) in terms of the
gap/mass parameter m. In contrast, from 2+41d parity anomaly, there is a jump for the Hall
conductivity in 24+1d. Here it is removed by the fact that in 34+1d, the anomaly is integrated
along the the third direction p, ~ G, signalling weaker crystalline protected topology [3] (the
preferred lattice direction).

6. Relation to other recent work
With the main results Eqs. (23) [38], (29) and (42) [49] involving torsion, their relation to
(44), I now discuss some overlapping results from the literature. Torsion in topological matter
has been discussed in many references, e.g. [43, 44, 79, 38, 80, 32, 50, 81]. These feature
different results and models, from strictly relativistic models to non-relativistic systems similar
to this review. A common approach to elastic deformations involves so-called pseudo-gauge
fields [37, 82], related to torsion by (4) and (5). These are nothing else that the translational
gauge field 4; = Pxadef, due to the elastic deformation. This gauge field introduces the UV
cutoff p,, which here is replaced by A with the assumption that A < p, due to the validity of
the linear expansion |p — p,| < p,. The A becomes independent from the elastic geometry only
if we allow deformations dp.,(x) of the Fermi momentum independent from de®. While this is
certainly feasible, this was not considered here. Instead, the Fermi node momentum p,, was
a constant UV parameter of the low-energy theory, and also subject to elastic deformations in
terms of non-trivial e®. In the Ref. [52], it was moreover shown that the correct expansion of
the continuum theory is around the original, undeformed Fermi point p,,. Finally, the recent
paper [53] discussed precisely this UV sensitivity in lattice model but without torsion. They
also took the spin-connection to depend strictly on e?, in contrast to Eq. (10). Their result
was that due to the UV parameter p, ~ 1 /a, the consistent truncation of the theory is in terms
of the translational gauge field A;, while all other terms are small in gradient expansion. This
is precisely what we here discussed in terms of emergent torsion of (4), (5) and is absent in
relativistic models, since a non-zero py, breaks Lorentz symmetry. Indeed, for the continuum
limit derived from lattice, one usually needs to assume p, < 1/a so that the linear expansion
remains valid in the presence of deformation.

Here I discussed lattice systems (1) with massive doublers as regulators, while torsional
emergent geometry emerges in directly in many-body continuum systems in topological
superfluids (and superconductors) [49]. Namely, the torsional anomaly is realized in chiral
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Weyl superfluid *He-A and the anomaly coefficient has been experimentally verified [49, 83], see
also [33, 1]. Finally, in relativistic systems, the diverging torsional anomaly term (A.12) can
be removed by a counter term without breaking any additional symmetries. In non-relativistic
topological matter, this is determined by the UV completion and UV cutoff parameters A are
well-defined a priori. Relativistic models with UV torsional terms were discussed also in [84].
Notwithstanding, at finite temperatures and chemical potentials, relativistic and non-relativistic
systems feature anomalous currents from torsion [85, 86, 87, 88, 50], similar to the chiral vortical
effect induced in hydrodynamics by chiral QFT anomaly [23, 29, 27]. These were discussed in
the Ref. [28] to which we guide the reader. The non-relativistic anomaly terms are similar to
these in that they feature UV parameters in the hydrodynamic responses.

7. Conclusions and Discussion

I reviewed how geometry and torsion enters the low-energy field theories corresponding to non-
relativistic topological matter. The torsional background geometry is provided by the continuum
elasticity with dislocations (and disclinations) and is emergent, i.e. the ambient geometry is flat
and the fields are provided by the surrounding material medium. In particular, the torsion
couples to the finite node momenta p, allowed in non-relativistic systems. The ensuing torsional
responses include 241d Chern insulators and 34+1d Weyl/Dirac semimetals and their descriptions
in terms of the parity and chiral anomalies, respectively. The main results are Eqs. (23), (29) and
(42). These all feature non-universal UV parameters p, and A, needed for torsional anomalies.
Along the way, I compared and highlighted the differences of non-relativistic continuum models
of topological matter to relativistic field theory and lattice models. Given a (realistic) lattice
model, the anomalies should be possible to compute explicitly and compared with experiments,
much like [49, 83] in chiral Weyl superfluid He-A. Interestingly, the torsional anomalies are
not sharply quantized and can be non-zero even in the trivial phases [31]. This translates to
the non-universal dimensionful coefficients needed for torsion and the associated non-quantized
stress-energy-momentum transport, as compared to gauge fields and charge transport. The
mixed torsional responses with electromagnetic fields are interesting, since e.g. the AQHE
requires Fermi arc states at all momenta —p, < p < p, [69], potentially restricting also purely
torsional transport coefficients as in Eq. (23) and the related expressions (32), (42) in 3+1d.
An immediate consequence of the mixed torsional responses is that they modify the electro- and
elastodynamics of these materials [31, 81, 64] and are inherently tunable due to the non-universal,
“unquantized” coefficients, yet being protected by topology.

I should note that the relativistic torsional terms have been long controversial and
relativistically, only recently elucidated in the hydrodynamic form at finite temperature and
chemical potentials, see e.g. [87] and references therein. The results discussed here can,
however, be linked to other more well-defined anomalous responses and, importantly, are well-
defined in non-relativistic models with cutoffs to the low-energy effective theory in contrast to
relativistic QFT. The responses were derived from the semiclassical expansion and correspond
to hydrodynamic responses sensitive to QFT anomalies. They essentially follow from the chiral
anomaly for U(1) fields with some important differences related to the dimensionless nature
of €%, its coupling to momentum p,, and the presence of extra UV coefficients, present in any
realistic model for non-relativistic topological matter. Here the effects concretely followed from
the finite Fermi momenta in the BZ and anisotropic lattice symmetries. I focused on torsion,
whereas related crystalline curvature terms were discussed in [48].

Put differently, the characteristic of torsional terms is their sensitivity to momentum space
topology and geometry. The torsional terms (29), (42) couple to the chiral Weyl dipole and it is
possible to describe similar terms for other types of momentum space multipole charges as well,
providing different crystalline symmetries unique anomalous responses in terms of the emergent
crystalline geometry. For so-called higher-order insulators and semimetals, see e.g. [19], even
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more terms are possible and will likely involve combinations of several different responses
related to the emergent geometry. Notwithstanding, any true (hydrodynamic) anomaly term
should come with its respective anomaly polynomial and descent relations that quantifies the
impossibility of realizing or gauging all symmetries in the quantum theory [25, 26]. Here we
just directly derived the effective actions in 3+1d, utilizing knowledge of the familiar 3+1d
chiral anomaly and parity anomaly in 2+1d. The extension of the effective actions in terms of
anisotropic 4+1d Chern-Simons like terms with vielbeins and torsion is desirable. In general, the
elastic gauge symmetries e* — €% 4+ du® are related to higher-form symmetries that enumerate
different lattice directions, planes and (hyper)surfaces [89]. The associated responses require
torsional geometric gauge theories with translational and rotational fields in a non-relativistic
and crystalline setting, see e.g. [78, 64, 90, 48, 63, 89, 62]. These responses, symmetries,
anomalies and their anomaly polynomials in topological matter will be discussed elsewhere, see
[84] for discussion for a relativistic model.

Acknowledgements: This work has been supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
Agreement No. 694248) and by Academy of Finland (grant 332964).

Appendix A. The chiral anomaly
Here we review the chiral anomaly term to introduce the standard anomaly term and fix
notations. The following sections detail the anomaly and the semi-classical expansion.

The Dirac action coupled to a axial mass term, U(1) gauge field and gravity is

1_ _
Sowcli, ] = [ atae | JivekiD,w + he. - D)0

where ¢l is the inverse vielbein, the metric is eZe,’inab = g and D, = 0, + iA, +iw, cf. (13)

and (14). The axial mass term is M(¢) = me'®?” = m(cos ¢ + i7° sin ¢) where 0 < ¢ < 27 is a
parameter.
In general, the axial current is not conserved but suffers from quantum anomalies,

Oyu(ejt) = 2iemapy°tp + anomaly(e) . (A.1)

The mass term explicitly breaks the chiral symmetry, while the anomaly term is proportional to
¢, since naively M (¢) — m via axial gauge transformations 6As = mid,¢/2. This breaks the
conservation law by quantum fluctuations and classifies topological responses [5]. Alternatively,
the anomaly term is given as the Jacobian of the path-integral measure, cf. [59],

In D[, 4] = In D[, 4] + Sanom[¢], (A.2)
where
2
Sanom[(ﬁ]_¢|:8€r2/F/\F+w;ﬂ/trR/\R}. (A.3)

The trivial insulator and topological insulator are found for m > 0 and m < 0, and
cannot be continuously rotated while preserving the symmetries. We can start with the mass
M(¢ = 0) = m and consider the chiral rotation 1 — €'®/2754) with m — M(¢). The axial
mass M (¢) adiabatically connects e.g. the trivial TRI insulator with m > 0, i.e. ¢ = 0 to the
topological TRI insulator with m < 0, i.e. ¢ = 7w by breaking the TR symmetry for ¢ # 0,7
[21].
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Appendiz A.1. U(1) and gravitational anomaly terms from the semiclassical gradient expansion
We can derive the gauge and gravitational anomaly contributions in a mechanical fashion by
using the gradient expansion (15) and M (¢) ~ m(1 + i¢7®). The relevant terms give

= —i1Ir ! L 1 imgy® .
Sanld] = D ad el imon” (A4)

separating momentum and coordinate space traces gives

1 2
maﬂAua)\Ap] = % / A zet P9, AL,0\A,, (A.5)

415 P m2 et T
in agreement with Eq. (A.3). For the gravitational term, we can evaluate Seg[w] in the special
case where the spin-connection w® = wfjbdac“ and R%® = dw® + w® A w® are non-trivial but the
vielbein €? and metric are constant. To lowest order, the terms in R A R are

°w
l 1 1 1
3 Tl"[p o %¢“baabﬂ%¢6dacdp — mlm¢75]
Pm?¢ 4 y 1 kAP
= 3 ﬁQSE’u Ap Tr[mﬁuwzb@\wpba] = W /d43§' tr(ﬁﬂwy&\wp). (AG)

This term gives directly the 2nd order term of 192%}2 A R in (A.3). Covariant and consistent
mixed gravitational anomalies differ by an arbitrary multiplicative coefficient, depending
whether the mixed anomaly is derived from anomaly polynomial with either unbroken gauge or
diffeomorphism transformations or their mixture. In (A.6) we computed just the coefficient of

the lowest order term.

Appendiz A.2. U(1) axial anomaly

Finally, to gain more insight to the derivative expansion, let’s evaluate the contributions to the
effective action related to the axial anomaly. The axial U(1) coupling is A5 = v#v° A5, and for
the purpose quickly obtaining the anomaly, we simply replace i0,¢/2 ~ As in (A.5),

(m) R
Sog [A, As] = o d*xAs, AyOrA,, (A.7)
2
q

where d x J5 = 9,,(ejt)d*z. In detail, this effective action is derived from the five-dimensional
analog of (A.4) with the replacement of i0,¢/2 ~ As, since the 4+1d Chern-Simons term is
the only local effective action that can produce the anomaly in 34+1d [11, 25, 26]. This action
is gauge invariant up to boundary terms and produces the consistent anomaly in 3+1d; when
also the contribution from the boundary fermions is added, the covariant anomaly (A.8) follows
[11, 26]. We recall that the anomaly is determined by the m-independent contribution of finite
m terms, in accord with the fact that the anomalous Ward identity arises from the regularization
dependent cancellation of linearly diverging diagrams or, equivalently, from the contribution of
Pauli-Villars regulator fermion introduced to cancel the diverging terms. This will be different
for torsion, see (A.13).
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Appendix A.8. Semiclassical expansion with torsion
Let us now assume w = 0 and non-trivial torsional tetrad e, = eZ(O) +dej, (), where eg))a are flat
space vielbein. To first order, the distinction between coordinate and local orthonormal indices

of y# = efy* or p, = elp,, is not important. The anomaly term is now
: 1 ) a
—iTr[ iy yoelpy

1 1
p-m p-m p—m

We use the relation y*delp, = —YHoepa = 0¢p,. The relevant term is UV diverging,

’ybdegpl,] (A.9)

1
d4xe“”\pZTguTa>\p.

(A.10)

Seir[e?, @] = —4i m2 et T PaPt 38u636)\61;] =

7 —m?) 577

—¢m?log(£) /

where we used the fact that the extra momentum factors p,, pp need to contract pairwise to 74
for the desired term. Now the anomaly induced axial mass term depends explicitly on m? and
logarithmically on the UV cutoff A.

We derived the responses assuming vanishing spin-connection. By Lorentz invariance, the
Nieh-Yan form N = e® AT® with dN (e?, wqp) = T* ATy — Rap Ae® Ael enters. The axial anomaly
terms becomes the same with logatrithmic divergence

—m2logc( L
ST 45, e%) = mog(m)/Ag, A€t AT, (A.11)

this term was studied in [68] and replaces the term (A.7) for gauge fields. Moreover, disctinct
from gauge fields, the m-independent torsional anomaly term is non-zero and quadratically
diverging. Similarly, the massive 4+1d Chern-Simons like effective action from five dimensions
is linearly UV diverging. The divergence can be cancelled with appropriate regularization, e.g.
Pauli-Villars fields. The resulting finite coefficient is proportional to the five-dimensional mass-
squared m%v, an UV scale for the four-dimensional fermions. In a condensed matter setting,
this represent a higher-dimensional topological insulator with gap myy ~ A in terms of the
boundary fermions, as related by anomaly inflow. Accordingly, gathering all diverging terms,
we arrive to the Nieh-Yan anomaly term [75]

u A2 —m? log(%) “
Sefr[As, €] = yo /A5 ANe AT, (A.12)
with the anomaly in covariant form
A? — m?log(£
ax gy = 221080 (g gy Ry et n e, (A.13)

472

Notice the dimensionful and non-universal coefficient, needed due to the canonical dimensions
of e®. The above terms are anomalies from geometry (i.e. gravity), with UV sensitivity that
break no other symmetries than the already anomalous As. Moreover, if Lorentz invariance
holds to arbitrary scales for Dirac/Weyl fermions, A — oo in vacuum. Therefore, they can and
should be subtracted with counter terms [29], unlike the finite gauge or gravitational anomalies.
However, at non-zero chemical potential and temperature, torsional contributions are possible
even in relativistic systems [28]. In contradistinction, for condensed matter systems there is the
possibility of anisotropic Lorentz breaking terms and UV completion of the (quasi)relativistic
fermionic theory, where A is a well-defined and finite cutoff parameter [38, 49].
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