
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Avenues of Quantum Field Theory in Curved Spacetime (AQFTCS 2022)
Journal of Physics: Conference Series 2531 (2023) 012002

IOP Publishing
doi:10.1088/1742-6596/2531/1/012002

1

Emergent geometry, torsion and anomalies in

non-relativistic topological matter

Jaakko Nissinen

Low Temperature Laboratory, Department of Applied Physics, Aalto University, P.O. Box
15100, FI-00076 Aalto, Finland

Abstract. I review and discuss aspects of the interplay of emergent geometry and
anomalies in topological semimetals and insulators, focusing on effects of torsion. This
correspondence identifies torsional topological responses in terms of anomalies and anomaly
related hydrodynamic phenomena involving gauge fields and geometry. I discuss how torsional
emergent geometry arises from elastic deformations in crystalline materials and how this
background couples to thee low-energy continuum models inherited from lattice models, utilizing
the semiclassical expansion. Via the coupling of momentum space topology and emergent
vielbein geometry, non-relativistic topological matter can realise new geometrical responses of
mixed gauge-gravitational character. The topological low-energy torsional responses depend
momentum space geometry, lattice momenta and the regularization and UV completion,
provided by the non-relativistic physics and symmetries of topological materials.

1. Introduction: Topological matter and anomalies
Topological matter has robust, protected quantum responses and associated zero modes that are
insensitive to microscopic details, demarcating them from trivial ground states such as ordinary
insulators, superfluids and normal metals. The integer quantized conductivity (in units of e2/h)
of the quantum Hall effect in two spatial dimensions (2+1d) is a prime example. See more from
e.g. the reviews [1, 2, 3, 4] along with other more recent gapped and gapless symmetry protected
topological states.

Quantum field theory (QFT) anomalies can be utilized to classify topological matter
[5, 6, 7, 8], at least in terms of representative if yet idealized low-energy field theory models.
The link to symmetry based classifications of topological matter [9, 10] follows from the
topological responses needed for the anomalous symmetries of the quantum theory [11]. In
general, anomalies can be defined as the sensitivity and interplay of classical gauge and global
symmetries to quantization, such as the chiral anomaly in 1+1d and 3+1d [12] and the closely
related parity anomaly in 2+1d [13]. When mixed gauge-gravitational anomalies are considered
in addition [14], the tenfold classification of symmetry protected topological phases relates to
relativistic anomalies and their descent relations [5]. In this way, early on since the discoveries
of topological matter, the interelations and correspondence between anomalies and topology has
been well-appreciated, much like for the QFT anomalies.

Nevertheless, at least two things in this correspondence are immediately non-evident: QFT
anomalies are characterised as robust and in-escapable consequences of retaining or gauging
certain symmetries in relativistic QFTs, whereas topological phases are (mostly) found in non-
relativistic condensed matter systems which are finite and with well-defined UV completions,
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e.g. certain lattice models and, eventually, atomistic many-body physics. The latter, by
definition, formally do not posses any anomalies. This discrepancy is of course explained by
the fact that anomalies creep in via lattice regularization terms and fermion doubling theorems
[15, 16, 17, 18]. The anomalies, chiral and/or doubler fermions can be placed on e.g. spatially
separated boundaries, interfaces and different lattice momenta, realising the domain wall idea
of anomaly inflow [11]. So, by the so-called t’ Hooft anomaly matching and anomaly inflow, the
low-energy theory simultaneously reproduces the macroscopic topological response and bulk-
boundary correspondence in terms of the anomaly and boundary degrees of freedom saturating
the conservation laws. Yet, for anomalies to classify all topological phases, as they now
are understood, they must go beyond the standard anomalies and the tenfold classification.
In particular, more recent examples of topological phases are often protected by crystalline
symmetries, see e.g. [19], which are non-relativistic discrete spatial symmetries different to
both gravity and internal gauge symmetries, and feature weaker topology than the tenfold
classification. The topological responses for these are missing for the most part, despite the
extensive classifications.

The purpose of this short article is twofold. I place topological semimetals and insulators
with quasirelativistic low-energy models on a background constituting an emergent geometry
with torsion, which can be taken to originate from a crystalline lattice and elastic deformations
(or order parameter textures in topological superconductors and superfluids) with dislocations
(vortices). First, I compare and contrast this low-energy field theory on curved space with
that of strictly relativistic field theories. Second, from this background, I explicitly compute
and identify new classes of mixed gauge-torsional anomalous responses that are allowed by non-
relativistic crystalline symmetries, e.g. in Chern (quantum Hall) insulators [20, 21] and Weyl and
Dirac semimetals [1, 4] (and other related topological phases). This is done directly by using the
semi-classical quasirelativistic continuum models on emergent geometries with torsion. Given a
lattice model whose low-energy theory matches to the quasirelativistic continuum theory, this
gives an approach that is valid both at low and high energies which, in principle, allows to
explicitly compute several proposed anomalous responses in topological semimetals related to
geometry and torsion.

I expect that the correspondence between anomalies and topology is general, although not
yet complete in terms of all known topological phases — this hypothesis somewhat depending
on the working definitions of a topological phase (”weak”and ”strong” symmetry protected
topology [3, 19]) and anomalies as well. Relatedly, these anomalous conservation laws are
what hydrodynamics encompasses and there is a growing set of new anomalous phenomena in
relativistic hydrodynamics beyond QFT [23, 24, 25, 26, 27, 28]. Here anomalous hydrodynamics
is extended for non-relativistic topological matter with torsion. In this respect, one motivation
for the consideration of torsion is to enlarge hydrodynamic anomalies to encompass new
representatives of non-relativistic topological matter, especially crystalline phases. In a strict
sense, any QFT anomaly should be defined in terms of (at least) two ”competing” symmetries
that cannot be simultaneously realised (or gauged) in the quantum theory. The competition
is summarized by associated anomaly polynomials and descent relations. For the purposes of
this article, especially with regards to torsional anomalies, I will be slightly imprecise with
this terminology and refer to an anomaly as the breaking of any classical conservation law.
Nevertheless, only the consideration of perturbative 1+1d chiral anomaly, 2+1d parity anomaly,
and the 3+1d chiral anomaly from QFT are sufficient for this article, see the Appendix for a quick
review. These correspond to the 2+1-dimensional quantum Hall effect and 3+1-dimensional
Weyl and Dirac semimetals, respectively. In particular, comparing the torsional Nieh-Yan
anomaly and the anomalous quantum Hall effect in 3+1d, it can be seen that the non-relativistic
torsional anomalies in the hydrodynamic responses of topological phases are closely related to
chiral U(1) QFT anomalies, yet are distinct, in the same way as anomalous hydrodynamics
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encompasses new phenomena outside but related to QFT anomalies. See Refs. [29, 28] for
discussions about the relativistic case with torsion.

2. Emergent geometry and torsion in topological semimetals and insulators
The topological states sufficient for our purposes are encapsulated by the following family of
lattice model Hamiltonians, in momentum space H =

∑
k Ψ

†H(k)Ψ,

H(k) =
∑
i

dµ(k)Γ
µ =

1

a

d∑
i

viΓ
i sin(kia) +mΓ0 +

r

a

d∑
i

(1− cos(kia))Γ
0 (1)

where a is the lattice constant (say, of a cubic lattice for simplicity) and {Γµ,Γν} = 2δµν

are anticommuting Dirac matrices. The Ψ is a non-relativistic fermion whose indices do not
necessarily correspond to spin but instead e.g., say, to atomic orbitals in a material. The vi
are velocities from nearest neighbour hopping terms. Allowing for anisotropy, the most general
coupling would be vijΓ

i sin(kja). The lattice introduces a UV cutoff ∼ 1/a and the O(r) mass
terms (isotropic here for simplicity) decouple the Dirac fermions around k = 0 from those at
some ki = π/a at the expense of (explicit) axial (chiral) symmetry breaking. Note that this
model is nothing else than lattice Dirac-Wilson fermions and the Lorentz-breaking lattice and
O(r) mass terms vanish in the continuum limit a→ 0 [15, 18]. According to the fermion doubling
theorem, it is impossible to retain a single (chiral) fermion while at the same time preserving
all (chiral) symmetries [16].

Although the simple lattice model (1) is not realistic for general real materials, its low-energy
behaviour is realized in several topological phases [9, 21]. Accordingly, at large and positive
m ≫ |vi|, |r|, the system is a trivial insulator. The continuum Dirac theory emerges as a → 0
when the mass parameter m/r is close to isolated critical values where some of the eigenvalues
±|d(k)| of H(k) cross zero. When all the eigenvalues are non-zero but some levels have crossed
(so-called band inversions), the system is a topological insulator. At the corresponding critical
points, it becomes a topological Dirac (or Weyl) semimetal. In 2+1d (or 2n+1d), the Dirac
model is a representative for the integer anomalous quantum Hall or Chern insulator, while for
3+1d it is a model for the time-reversal symmetric topological insulator [21, 22]. Extending the
2+1d insulator model to 3+1d with vz = 0,−1 < m/r < 1, we get a Weyl semimetal with Weyl
Hamiltonian [1, 4] ∑

±
H±k⋆(k) ∼

∑
±,i

±v±i σ
i(k ∓ k⋆)i + · · · (2)

close to two Weyl nodes at ±ak⋆ = (0, 0,± arccos[(r+m)/r]) with v± = (vx, vy,±r sin ak⋆z), and
massive doublers when any kx,y = π. The linear continuum expansion is valid when |k−k⋆| ≪ k⋆
and higher-order terms are negligible. The Dirac Fermion at k = 0 has been split to two Weyl
fermions at ±k⋆ via choosing vz = 0, breaking time-reversal and preserving inversion symmetry.
The isolated points ±k⋆ are a topological Fermi surface [1, 30]. This is therefore at time-reversal
breaking Weyl semimetal with a minimum number of two nodes of opposite chirality. When
parity (inversion) is broken instead, the minimum number of nodes is four [4]. This topological
phase is well-defined, since the Weyl Hamiltonian is stable in 3+1d for small perturbations, since
there are 3 parameters k and Pauli matrices involved in the condition |di(k)| = 0 for (2).

2.1. Coupling topological matter to emergent geometry and gauge fields
The low-energy dispersion of quasiparticles in a topological semimetal or insulator takes the
form of a Weyl/Dirac dispersion by general principles from topology [1, 30]. Working directly
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in the continuum limit, let us therefore consider more general Weyl/Dirac action

i∂t −H(k) = m̂+ Γaeµa(k − k⋆)µ + · · · (3)

where e.g. m̂ = m1, in general a matrix of momentum (in)dependent ”masses”, and eµa = ∂da
∂kµ

are the linear momentum expansion coefficients (previously the vij in (1)). The low-energy
dispersion ω2 − k2 − m2 = gµνkµkν − m2 = 0 with metric gµν is determined by the (inverse)
vielbein eµa and is in general anisotropic. A small external electromagnetic field is introduced as
kµ → kµ −Aµ, in addition to the shift k⋆µ, and the spin-connection can enter as well.

Before describing the elastic geometry in detail, let us discuss coupling non-trivial, weakly
varying vielbein coefficients eaµ(x) to the lattice fermions, using the Dirac/Weyl Hamiltonian as

an example [31, 32]. The geometry is eia(x) = e
(0)i
a +δeia(x), where a denotes some lattice indices

with undeformed basis e
(0)a
i , a = 1, 2, 3 w.r.t. some fixed laboratory coordinates i = x, y, z.

Notably, we keep momenta ka as a referring to the undeformed lattice, while deformed momenta
are ki = eai ka in the local coordinates i. For elasticity, a is spatial; a non-trivial ”convective”
e0 = eµ0∂µ ≡ Dt follows from e.g. a moving frame w.r.t. to the medium or periodical driving
with weak coordinate dependence. Schematically, in a semi-classical expansion, the Hamiltonian
changes as [32]

Γa(k − k⋆)a → Γaeia(k̂ − k⋆)i + · · · = Γa(eiak̂i − k⋆a) + · · · (4)

≈ Γa(eiaq̂i − δeai k⋆a) + · · · (5)

with constant k⋆a = eiak⋆i. The lower line (5) follows by expanding k̂i = k⋆ae
(0)a
i + q̂i,

i.e. around the original node k
(0)
⋆i , where now Ãi = δeai k⋆a is small elastic gauge field and

q̂i = (k − k⋆)i is the small momentum coupled to the vielbein eai ; to first order δeiaq̂i vanishes.
The “minimal momentum coupling” (4) was studied in the Ref. [31] and compared to explicit
lattice construction in the presence of strain and found to agree with it and the continuum
limit. On the other hand, the elastic gauge field of (5) is studied in [33, 1, 34, 35, 36, 37] derived
utilizing the same lattice construction. We shall adopt the formalism (4) onwards here, stressing
that they differ only via the approximation from (4) to (5) and/or non-universal constant from
the lattice phonon coupling [32]. For both, the deformation comes from δeai but either eai or Ãi

as the explicit source.
Indeed, it seems that the constant k⋆a can be shifted away by the rotation to ψk⋆ ∼ eik⋆·xΨ

and the difference of (4) to the approximation (5) is innocuous. This however is not the case
in the presence of anomalies (nor the shift for general momentum space integrals)! The related

couplings (4) and (5) have important differences: eiak̂i in (4) depends on momentum and has
the original constant shift ka⋆, whereas the gauge field Ãi[δe

a
i ] in (5) has just constant frame

e
(0)a
i (to lowest order) and no shift k⋆a since only qi enters. Moreover, one gets different results
for geometric phenomena related to the chiral anomaly with the momentum dependence of (4)
leading to non-universal regularization dependent terms, the hallmark of torsional anomalies. In
constrast, anomalies follow from (5) with universal coupling k⋆, playing the role both universal
emergent electric charge and the dimensionful UV scale of Ãi, i.e. Ãi ∼ eAi is a pseudo U(1)
gauge field [37]. Different anomaly expressions derived using the related (4), (5) expressions
have created some controversy in the literature regarding the UV coefficients proportional to
k⋆. A particularly simple way to derive torsional chiral anomalies is to compute the Landau
level spectral flow from (4), see e.g. the Refs. [33, 38, 32]. Any discrepancy to (5) should
be addressed since a common starting point [31, 35] is in terms of the strain induced modified
hopping parameters, e.g. vi → vij [umn] in Eq. (1), with uij in (8). For now, we exclusively
use the ”minimal momentum coupling” (4) and defer more comments on (4) vs. (5) until in
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Sec. 6. Along with the results of [31, 32], we extend it to continuum models derived from
incarnations of (1) and the semiclassical expansion for the effective action finding agreement
when applicable. Since a lot about anomalies and topological phases have been learnt by studying
(weakly) coordinate dependent masses m̂(x), a natural question is to ask what happens if the
emergent frame fields eµa become coordinate dependent eµa(x). What is note-worthy is that the
emergent eµa are more fundamental that the emergent metric gµν in the dispersion, opening the
possibility for torsional physics as the eaµ independent from the connection.

2.2. Torsional elastic geometry
For lattice systems, the continuum formulation allows to interpret the elastic distortions as
sources for an effective vielbein, spin connection and metric. In general, this background
is torsionful and curved in the presence of translational and rotational lattice defects, i.e.
dislocations and disclinations, see e.g. [39, 40, 41, 42] and [43, 44, 38]. For the fermions,
this correspondence amounts to the gauging of smooth translations and rotations at the level
of the background and sources in the continuum theory. This remains valid topological
responses of the effective theory, although of course on the fixed background the smooth lattice
transformations have finite elastic energy breaking the symmetry. We now briefly review the
geometric background from elasticity.

The elastic distortion is given as

x′a = xa + ua(x) (6)

where a = 0, . . . , d label lattice directions (again, for spatial lattices u0 = 0). The xa are the
undeformed, reference lattice directions which we for simplicity take to be aligned with the

reference (i.e. laboratory) spacetime coordinates xµ, µ = t, x, y, z, . . . , i.e. xa = δaµx
µ ≡ e

(0)a
µ xµ.

With respect to this coordinate reference frame, the elastic deformation introduces the change
of coordinates

eaµ =
∂x′a

∂xµ
= e(0)aµ + ∂µu

a (7)

from which the symmetric and antisymmetric strains are

uab :=
1

2
(∂aub + ∂bua), ũab :=

1

2
(∂aub − ∂bua). (8)

The ũab is a rotation and since uniform rotations do not contribute to elastic energy, can be
dropped out from first-order elasticity. For this reason uab, representing acoustic phonons, is
often sufficient. For generality, however, we retain the coupling with the emergent vielbein eaµ,
never only the symmetric strain. Dislocation defects are encoded as multivalued δeaµ = ∂µu

a

such that T a = (dea)µν = 1
2(∂µe

a
ν − ∂νe

a
µ) = (d2ua)µν ̸= 0. The rotational disclination defects

Ra
b ∼ d2(ũab)µν , equal to dislocation dipoles, are confined [45] in the presence of crystalline

order. These tensors correspond, respectively, to emergent torsion and and curvature from
elastic deformations, see (9), (10) and (11) below.

We now add local microstructure corresponding to a local orientation degree of freedom and
parametrize the local orientation with the Galilean spacetime transformation x→ x′′ = Θx+u,
where Θa

b = 1+θab is a (spatial) rotation independent of ua. Note that eaµ in (7) does not include
the full change x′′ of x, only the translation part ua. The central quantity is the (unsymmetrized)
strain tensor from the x→ x′′ transformation,

wa
µ = x′′ − x = ∂µu

a + θaµ = uaµ + ũaµ + θaµ (9)
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where, for small ua and θab, the total local rotation is θ̃aµ ≡ ũaµ+θ
a
µ is the sum the antisymmetrized

strain and rotation tensors. We added the antisymmetric field θab to keep the total local rotation
independent of ua (i.e. ũab). Rotations θab are zeroth order in gradients and power counting.
This translates to the vielbein eaµ and spin connection ωµab being independent. The non-zero
θab has various physical interpretations: test disclinations, the microrotation field of Cosserat
elasticity [46], the gauge freedom related to the interrelations translations and rotations (i.e.
torsion and curvature) [40], the ambient curvature of the space where the lattice is embedded,
or finally, contribution from corners, vortices and other singular points [47, 48].

Gravitationally, the geometry from the transformation (9) seems harmless and “pure gauge”
but the incorporation of dislocations and disclinations necessitates torsion and curvature,
meaning multivalued/singular ua and θ̃ab [40] and test disclinations can be introduced via non-
trivial θ within first order elasticity. Depending on the detailed application and elastodynamics,
the contributions from the local rotations θ̃ needs to be analyzed case-by-case. In the simplest
case, local hopping overlaps change as a function of the distance only, i.e. only uij [31], however
for anisotropic orbitals, also the local rotation θab affects the hopping elements.

To summarize the elastic quantities and the emergent geometry, we let x′′ = Θx+ u around
undeformed flat space lattice. Then

eaµ = δaµ + ∂µu
a, Γλ

µν = ∂µ∂νx
′′λ = ∂µ∂νu

λ + ∂µθ
λ
ν , ωa

µb = eaλΓ
λ
µνe

ν
b + eaλ∂µe

λ
b = ∂µθ

a
b. (10)

The equations must be supplemented by local continuity conditions, so that the local metric
compatible geometry is consistent with (10) and the parallel transport, ∇µ = ∂µ + Γ̂µ,

[∇µ,∇ν ]V
λ = Rλ

µνρV
ρ − T λ

µν∇λV
ρ. (11)

where torsion is T a ≡ 1
2T

a
µνdx

µ ∧ dxν = 1
2(Γ

a
µν − Γa

νµ)dx
µ ∧ dxν = dea + ωa

b ∧ eb and curvature

Ra
b ≡

1
2R

a
bµνdx

µ∧dxν = 1
2 [∂µΓ

a
νb+Γa

µcΓ
c
νb− (µ↔ ν)]dxµ∧dxν = dωa

b+ω
a
c∧ωc

b, in differential

form notation. For example, we can require that O(∂3u, ∂3θ) terms are zero so that the metric,
curvature and torsion are continuous and consistent with parallel transport with the tetrad and
connection in (10) to that order in derivatives. See e.g. [40, 38] for more discussions about
torsional geometry in our context.

3. Semiclassical expansion of the quasirelativistic low-energy continuum theory
3.1. Low-energy continuum theory
Assuming the elastic frame coupling (4) and armed with the background (10), I write the
low-energy theory for a non-relativistic fermion Ψ with semi-classical Hamiltonian H(x; k) as
[1, 30, 21]

S =

∫
d3xdtΨ†[iDt −H(x;k)]Ψ ≃

∑
k⋆

∫
ed4xψk⋆

(x)[iDk⋆(x) + m̂k⋆ ]ψk⋆(x) + · · · (12)

where ≃ represents the (semi-classical, weakly coordinate dependent) low-energy continuum
limit and · · · are non-linear corrections and/or interactions, see e.g. Refs. [31, 34, 49, 32, 50,
51, 52, 53] for extensive discussions how this limit can be taken.

The original low-energy fermions are Ψ(x) ∼
∑

k⋆

1√
e
ψk⋆(x) and ψk⋆ = eik⋆·xϕ(x), where

ϕ is slowly varying, are close around some collection of inequivalent Brillouin zone (BZ) wave
vectors k⋆, such as the origin, corners or a Fermi node (or in general any Fermi surface). Note
the shift of ψk⋆ by k⋆ in momentum space, so that The Dirac mass m̂k⋆ is the energy scale of the
low-energy quasiparticles, representing the energy gap for insulators and absent for semimetals.
Correspondingly, the Dk⋆(x) is the emergent low-energy Dirac operator close to k⋆

Dk⋆(x) = γaeµa(∂µ + ω̂µ + iqAµ + ik⋆µ). (13)
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The low-energy Dirac form follows by general principles from topology [30] and the various
quantities entering this operator are:

{γa, γb} = 2ηab flat space gamma matrices

ηabeµae
ν
b = gµν emergent vielbein

Aµ, k⋆µ ≡ eaµk⋆a U(1) gauge field and Fermi/BZ momentum (14)

ω̂µ ≡ 1
2ω

ab
µ Σab emergent spin connection with generators Σab

and ω̂µ ≡ ωa
µb = eaν∂µe

ν
b + eaλΓ

λ
µνe

ν
b a metric compatible spin connection, which however, does

not necessarily coincide with the torsion-free Christoffel connection, Γλ
µν ̸= Γ̊λ

µν . In the same
fashion, the emergent rotation generators Σab do not necessarily match the Lorentz generators
γab =

i
2 [γa, γb] [48]. I emphasize that the original system (12) is in flat space and the EM gauge

field Aµ is fundamental, in contrast to the emergent geometric fields.

3.2. Semiclassical expansion
The gauge invariant (one-loop) effective action for anomalous currents is summarized as

Seff [Φ] = iTr ln[ /D − M̂ [Φ]] = i
∑
n

(−1)n

n
Tr

[
G0(p)/Φ(x)

]n
. (15)

Here Tr includes phase space integrals over coordinate dd+1x and momentum space
dd+1p/(2π)d+1, G0(p) is the (time-ordered, Feynmann) propagator of the unperturbed,

translation invariant Hamiltonian and M̂ [Φ] is any classical coordinate dependent background
field Φ perturbation, contracted in the trace with proper (gamma) matrix representations
of (12). Once the denominators are expanded, we are left with expressions like 1

p2−m2Φ =

Φ 1
p2−m2 +

1
(p2−m2)2

[p2,Φ] and [pµ,Φ(x)] = −i∂µΦ(x) from which the momentum and coordinate

space traces can be disentangled by moving all momentum terms, say, to the left. Seff [Φ] reduces
to a gradient expansion in the perturbing fields Φ(x) times momentum space integrals [54]

Seff [Φ] =

∫
d4p

(2π)4
F (pµ) ·

∫
d4xf(Φ, ∂µΦ, . . . ). (16)

Here F (p) is a polynomial momentum space tensor contracted with f(Φ, ∂µΦ, . . . ), a local field
tensor expression, as allowed by the (anisotropic) non-relativistic symmetries. Of course, in
relativistic theories, F (p) = F (p2) and f(Φ, ∂µΦ, . . . ) = f(Φ, ∂µΦ, . . . ) by Lorentz invariance.
In calculations, we further expand f(Φ, ∂µΦ) in Φ = Φ0+δΦ, where Φ0 represent some reference
background fields. It is important that the momentum space prefactor

∫
BZ d

4pF (pa) retains its
from under (small) elastic deformations which enter the coordinate space expression in terms of
the Φ(x) = ea[ua], where ua are the (small) distortion fields in coordinate space. Finally, the
expansion (15), (16) is equivalent to semi-classical Greens functions with Moyal products, or the
computation of vacuum polarization diagrams in the limit of external momenta q → 0. See the
Appendix for a review of chiral anomalies and the expansion (16).

For the background (14) in (12), Φ(x) = Aµ(x), e
µ
apµ, ω

a
µb etc. and we can evaluate

Jµ =
1

e

δSeff
δAµ

, J µ
a =

1

e

δSeff
δeaµ

, Sµ
ab =

1

e

δSeff
δωab

µ

(17)

corresponding to electric current, emergent stress-momentum and angular-momentum. Since eaµ
couples to i∂µ ∼ pµ, J

a
µ is always a stress-momentum. However, the emergent Sµ

ab depends on
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the physical identification of the symmetry generators Σab (the degree of freedom of the colums
of Ψ). More generally, the emergent fields in (12) can be of various origin, I focus on crystalline
systems. Another example is inhomogeneous tensor order parameters in unconventional (non
s-wave) superconductors and superfluids and/or coupling to ambient geometry [1, 55, 56]. The
vielbein and spin-connection could also simply be taken to represent abstract quantities set to
flat space values at the end of the calculation or e.g. thermal gradients [57, 58, 27].

4. 2+1d quantum Hall effect and polarization with torsion
Now I calculate electromagnetic and geometric responses utilizing the semiclassical expansion
for continuum models with simplest ingredients from the non-relativistic lattice. That is, we
assume linearized spectrum but allow for anisotropies, finite node momenta, as well as a finite
validity for the linear models. The linear approximation can be extended if all Fermi momenta
are small and the boundary conditions for propagators of the all relevant bands tend to some
constant values at higher momenta, allowing the unwinding of the BZ T 3 × R → R3,1. This is
often unrealistic in materials, in contrast to lattice models of relativistic theories. Any simple
lattice model like (1) should be matched to detailed k · p expansions of realistic band structures,
including many bands. In addition, the presence of extra massive fermions in the periodic BZ
should be accounted for while keeping track of possible UV divergences or cutoffs for torsion in
the low-energy theory.

4.1. Quantum Hall conductivity and torsional Hall viscosity in 2+1d Chern insulator
As a warm-up to using (16), let us take a 2+1d Chern insulator with the continuum model of
(1) near k = 0 with mass m̂ = m1,

L2+1d = ψ(γaeµa∂µ −m)ψ. (18)

The lattice model (1) this corresponds was detailed in [22, 21, 38, 31] and including doublers,
has four massive Dirac fermions in total. The terms from slowly varying perturbation δ/eµpµ =
−δ/eapa are

Seff [e
a, A] =

i

2
Tr

[
1

/p−m
δ/eapa

1

/p−m
δ/ebpb

]
+
i

2
Tr

[
1

/p−m
/A

1

/p−m
/A

]
+
i

2
Tr

[
1

/p−m
δ/eapa

1

/p−m
/A

]
+
i

2
Tr

[
1

/p−m
/A

1

/p−m
δ/eapa

]
,

The cross terms vanish if we assume that p⋆ = 0 by antisymmetry of
∫
dpa, see below, leaving

i

2
Tr[ /Ai/∂ /A

m

(p2 −m2)2
] +

i

2
Tr[/ei/∂/e

mpapb
(p2 −m2)2

]. (19)

We use tr(γµγνγλ) = −2iϵµνλ in 2+1d and performing the momentum space integrals with
standard regularization [59], we get

Seff [A, e
a] = CA(m)

∫
A ∧ dA+ CT (m,Λ)ηab

∫
ea ∧ deb, (20)

where A ∧ dA = ϵµνλAµ∂νAλd
3x, ea ≡ eaµdx

µ etc. in differential form notation, and

CA(m) = 4π

∫ ∞

0

dp

(2π)3
mp2

(p2 −m2)2
= − 1

8π
sgn (m) (21)

CT (m,Λ) = −4π

3

∫ Λ

0

dp

(2π)3
mp4

(p2 −m2)2
=

Λm

6π2
+ sgn(m)

m2

8π
+O(m/Λ). (22)
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This corresponds to the results in Ref. [38] and need to be further regularized. According to
the parity anomaly [13], the CA must be 1/4π quantized in the absence of strong interactions
(fractionalization) and, even worse, the torsional term is diverges with UV cutoff ∝ Λ. In Ref.
[38], these coefficient were regulated with massive Pauli-Villars fermions, e.g. the O(r) doublers
of the lattice model (1), leaving just

C̃A(m) =
sgn(m)± 1

8π
, C̃T (m) =

sgn(m)± 1

8π
m2. (23)

Since this is a (torsional) quantum Hall response, there are massless boundary 1+1d fermions
with the chiral and torsional momentum anomaly related to the gauge non-invariances at
the boundary. In contrast to the full coordinate transformations, the elastic dreibein can be
transformed independently of the coordinates. Accordingly, the non-trivial ea as elastic dreibein
transform ea → ea + dua under smooth elastic transformation in 2+1d bulk, to arrive to

δSeff,1+1d[A, e
a] = −C̃A(m)

∫
λF − C̃T (m)ηab

∫
uaT

b, (24)

This leads to the the anomalies

d ⋆ J =
1

4π
F, d ⋆ Ja = −m

2

8π
T a . (25)

where d ⋆ J ≡ ∂µ(eJ
µ)d4x and d ⋆ Ja ≡ ∂µ(eJ µ

a )d4x are the current and elastic stress-
momentum covariant divergences, respectively. The former is the standard (covariant) anomaly
from the 2+1d U(1) Chern-Simons term. The latter torsional boundary anomaly follows
also via the anomaly inflow picture for general coordinate transformations [38], although the
torsional CS term is both gauge and general coordinate covariant and therefore does not have
any consistent anomaly in the 2+1d bulk. Interestingly, it seems that the emergent, elastic
gauge transformation δea = dua captures the same information as gauging full coordinate
transformations in the presence of the U(1) anomaly. Similar gauge transformations were
discussed in terms of chiral elasticity in [60].

4.2. Topological polarization in a 2+1d TRB semimetal
There is a symmetry protected semimetal in 2+1d with a closely related response, which serves
as an illustration of a gapless model with geometric response related to torsion. The Dirac model
for this is (found e.g. low-energy graphene [43, 44])

L′
2d+1 =

∑
p⋆

ψ[γaeµa(i∂µ − p⋆µ −Aµ) + δm⋆]ψ (26)

there are symmetry protected Dirac nodes at p⋆, where the system is gapless. The mass
δm⋆ → ±0 is a small symmetry breaking parameter (e.g. PT symmetry), whose role will
become clear below. Now consider also the mixed terms, with fixed p⋆,

Seff = iTr

[
1

/p− /p⋆ + δm⋆
δ/eapa

1

/p− /p⋆ + δm⋆

/A

]
= Tr[

(/p− δm⋆)pa

[(p− p⋆)2 − δm2
⋆]
2 /e

a/∂ /A] (27)

The momentum space integral is for the mixed term and the torsional Hall viscosity term, similar
to (23), are∫

d3p

(2π)3
paδm⋆

(p− p⋆)2 − δm2
⋆

=
sgn(δm⋆)

8π
p⋆a,

∫
d3p

(2π)3
δm⋆papb

(p− p⋆)2 + δm2
⋆

=
sgn(δm⋆)

8π
p⋆ap⋆b, (28)
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by a shift the integration variable to p → p + p⋆ and small δm⋆. We now want to consider
difference between phases with opposite signs of small δm⋆, similar to the well-defined differences
(23). All possible symmetry breaking terms give

Seff =
sgn(δm⋆)

8π

∑
p⋆

∫
A ∧ dA+ 2p⋆ae

a ∧ dA+ p⋆ap⋆be
a ∧ deb (29)

see the recent papers [61, 62] for a lattice calculations of these terms. The new mixed
term represent the jump of the topological polarization dipole-moment with value Pa =∑

p⋆
sgn(δm⋆)

p⋆a
2π , summed over the nodes across the δm⋆ = 0 [63, 64, 61]. Note that usually

there are several nodes by fermion doubling. In the presence of the parameter δm⋆ → ±0 the
link between the Chern number C̃A and polarization difference Pa is well-known [21], here the
torsional terms are in addition regulated via the momentum scale p⋆. For non-zero torsion
T a = dea, the action is not gauge invariant and requires jump of charge j0 = −Pab

a at
dislocations with Burgers vector ba [65, 66, 67] due to zero modes. The last term is an analog
of the torsional Hall viscosity term, the jump of which across δm = 0 is possible for the gapless
system with non-zero p⋆ and implies a stress density on dislocations [38, 68].

5. Time-reversal breaking Weyl semimetal: anomalous quantum Hall effect and
torsional anomaly
Let us derive the 3+1d anomalous quantum Hall and torsional Hall viscosity Weyl semimetal
responses building on the 2+1d results of Sec. 4.

Consider the time-reversal breaking (TRB) Weyl semimetal (WSM) i.e. two Weyl nodes at
p = ±p⋆, with node separation 2p⋆. The low-energy continuum model is, valid around some
finite neighbourhood around the nodes,

STRB =

∫
d4xe ψγaeµa(Dµ − γ5p⋆µ)ψ + . . . (30)

where with Dµ = ∂µ − iAµ and ψ = (ψ+ ψ−) is the sum of two antichiral Weyl fermions ψ± of
(2) at ±p⋆ = ±p⋆ẑ. The idea is to do the phase space integrals at constant (p− p⋆)z ̸= 0 where
the 2+1d model is massive.

5.1. AQHE in TRB Weyl semimetal
For this subsection, the tetrad eµa and p⋆ are constants and the electromagnetic Aµ is a slowly
varying field in the gradient expansion. The relevant term for AQHE is

Seff [A] =
i

2
Tr

[
1

/p− /p⋆γ
5
/A

1

/p− /p⋆γ
5
/A

]
=

∑
γ5=±1

i

2
Tr

[
(/p− /piγ

5)

p2⊥ − p2i
/A±

(/p− /piγ
5)

p2⊥ − p2i
/A±

]

Now we use pµAν − i∂µAν +Aµpν , pick the γ5 = +1 part and tr(σµσνσλσρ) = 2iϵµνλρ, leading
to

2iϵµνλz Tr

[
(p− p⋆)z
(p2⊥ − p2⋆)

2
Aµ∂νAλ

]
.

As advertised, the momentum space integral splits and we are left with, m± = (p∓ p⋆),∫
dpz

2π

∫
BZ

d3p⊥
(2π)3

−m+(pz)

(p2⊥ −m2
+(pz))

2
= −

∫
dpz

2π

isgn m+(pz)

8π
.
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This integral is zero when integrated over the BZ by antisymmetry around p⋆. This is expected
since original integral cancels by antisymmetry in pz as well, after a shift of integration variable.
In the limit where we extend to pz ∈ [−∞,∞], this becomes the ambigious cancellation of two
shifted and linearly divergent integrals, much like the original chiral anomaly [12]. Nevertheless,
we proceed and add the other chirality γ5 = −1, giving

Seff [A] =
1

8π2

∮
dpz[sgn m−(pz)− sgn m+(pz)]

∫
d4x ϵzµνλAµ∂νAλ

=
1

8π2

∫
d4x ϵzµνλ2p

(0)
⋆z Aµ∂νAλ. (31)

Surprisingly, this integral is finite. More carefully, we regularize the d3p⊥, dpz integrals, e.g.
by including by including the two-dimensional doublers with mass O(r) from (1) and (2), and
obtain the finite 2+1d Hall conductance (23). We could pick either sign, which differ by a sign
and a translation by a reciprocal lattice vector, corresponding to additional 3+1d integer QH
states, cf. (44) and [69]. Here the upper sign occurs, yielding an identical answer to (31). In
general, this response can be written as

Seff [A] =
∑

i∈nodes

χipia
8π2

∫
ea ∧A ∧ dA (32)

where piae
a = piae

a
µdx

µ is along the node vector pi. Moreover, noting that p
(0)
⋆µ couples like A5µ,

(31) gives the (covariant) axial anomaly (A.8). The coefficient is

∑
i

χipia
8π2

=
Na3(p)

8π2
=

∫
dpa
2π

∫
d3p⊥
24π2

tr[(G0dG
−1
0 )3]. (33)

Na3(p) is the invariant that counts the right-handed minus left-handed nodes G−1
0 (ω = 0, p) = 0

along pa [1]. Physically this is the Chern number or Berry flux [4] between the Weyl nodes
at ±p⋆, where each section is a 2+1d integer quantum Hall state, cf. (23) and [70, 69]. The
relation of (32) was linked to the chiral anomaly [17] in [71, 72] and implies the existence of
chiral boundary modes connecting the projections of the nodes at surface BZ called Fermi arcs.
It also implies that in the presence of screw dislocations, there must be dislocation bound Fermi
arc-like modes in order to cancel the gauge non-invariance for T a ̸= 0 [73, 68, 74].

5.2. Nieh-Yan torsional anomaly in a TRB WSM
The AQHE response features the elastic tetrad field as a “spectator” and implies dislocation
bound zero modes. A natural question is whether and intrisically torsional response related to
the chiral Nieh-Yan anomaly [75] is possible [38, 76, 49]. To derive this, assume the model (30)
with non-trivial ea = e(0)a + δea. The response is

Seff [e
a] =

∑
i∈nodes

i

2
Tr[

1

/p− /pi
σaδeµapµ

1

/p− /pi
σbδeνbpν ] (34)

Again, we use σaδeµapµ = −σµδeaµpa and arrive to

Seff [e
a] =

∑
i

i

2
Tr[

papb
(p− pi)4

(/p− /pi)(−i/∂δ/e
aδ/eb)] (35)
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Performing the matrix traces, the momentum space integral of interest is of the form

−Tr

[
p⊥ap⊥b + p2∥a,b

[p2⊥ + (p− pi)2∥]
2
(p− p1)∥δµ,∥e

a
ν∂λe

b
ρ

]
iϵµνλρχi (36)

where χi is the chirality of the node i. The first and second terms are proportional to∫
d3p⊥
(2π)3

p⊥ap⊥b(p− pi)∥

[p2⊥ + (p− pi)2∥]
2
=

4π

(2π)3

∫ Λ⊥

0
dp⊥

p4⊥ηab/3(p− pi)∥

[p2⊥ + (p− pi)2∥]
2

=

[
Λ⊥(p− pi)∥

6π2
− sgn

(p− pi)
2
∥

8π
+O(m/Λ⊥)

]
η⊥ab (37)

∫
d3p⊥
(2π)3

p2∥(p− pi)∥

[p2⊥ + (p− pi)2∥]
2
=

4π

(2π)3

∫ ∞

0
dp⊥

p2⊥p
2
∥(p− pi)∥

[p2⊥ + (p− pi)2∥]
2
= sgn

p2∥

8π
(38)

in the directions p⊥ perpendicular to pi, where Λ⊥ ≫ (p − pi)∥ is a UV-cutoff and sgn ≡
sgn (p− pi)∥. These are diverging and need regularization. Integrating over the node direction,
we are left with ∫ Λ∥

−Λ∥

dp∥

2π

Λ⊥(p− pi)∥

6π2
= −

piΛ⊥Λ∥

6π3
→ 0, (39)

∫ Λ∥

−Λ∥

dp∥

2π

sgn

8π
(p− pi)

2
∥ =

piΛ
2
∥

8π2
(40)

∫ Λ∥

−Λ∥

dp∥

2π

sgn

8π
p2∥ =

piΛ
2
∥

8π2
+ even in pi terms (41)

where Λ∥ is a UV cutoff along the Weyl node vector pi. Performing the integrals, we used the
regularized 2+1d Hall viscosity result (23) for (37) and (38). In general the cutoff Λ = Λ∥ is
dictated by the validity of the linear model (30), even though momentum integrals are finite on
the lattice with Λ ∼ 1/a. Summing over the nodes, this leads to

Seff [e
a] =

Λ2ηab
8π2

∑
i

∫
ed4x ϵµνλρχip

(0)
iµ e

a
ν∂λe

b
ρ =

∑
i

Λ2

4π2

∫
piae

a ∧N (42)

where in terms of the full Nieh-Yan form N = ea ∧ Ta [75].

Noting p
(0)
iµ plays also the role of the axial gauge field A5µ, this effective action implies a

non-relativistic version of the covariant torsional Nieh-Yan anomaly (A.13) [75, 76, 49, 32]. In

terms of torsional Hall viscosity [38, 31, 35, 49], it implies that d ⋆ Ja = p⋆aΛ
4π2 dN for Ja = δSeff

δea ,

cf. Eq. (A.13). Interestingly, by antisymmetry of ea ∧ eb, the non-linear effective action is zero
if ea is non-zero only along pFa. The ensuing 3+1d anomaly, however, can be then derived from
a ea ∧ dN term in 4+1d, mimicking the 4+1d U(1) CS term for ea. Finally, Note however that
the expression (42) rests on Lorentz breaking symmetries, making the generalization to the RHS
of (A.13) not in general well-defined. For more discussion see [49].

5.3. Related crystalline insulators in 3+1d
Finally, I discuss how to connect the results (32), (42) to results on other 3+1d topological
states. The TRB WSM is an intermediate state between two time-reversal breaking insulators,
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the trivial and weak 3+1d topological Chern insulator. Namely the two Weyl nodes can be
gapped with mass m and annihilated when they overlap in the BZ. The trivial insulator is
obtained when the nodes meet at p⋆ = 0, whereas the non-trivial state follows when the nodes
meet at the zone boundary as ±p⋆ → ±π/a. Effectively this a chiral rotation equal to eiGa·x/2

along p⋆a, where Ga = 2π/a is a reciprocal lattice vector. Then, see the Appendix,

Seff [e
a, A] = σHa

∫
ea ∧A ∧ dA+ ηHa

∫
ea ∧N (43)

where now, m being the insulating gap,

σHa =
Ga

8π2
, ηHa = G′

a

Λ2

8π2
+G′′

a

m2 log( Λm)

8π2
. (44)

These are the 3+1d Hall conductivities [77, 69, 78] and viscosities [38, 31] with in general integer
multiplicities of elementary reprocical lattice vectors Ga, G

′
a, G

′′
a and protected by crystalline

symmetries like p⋆a. Note that due to the mass term, there is additional logarithmic term which
was studied in [68]. Our results imply that Ga = G′

a = G′′
a, i.e. the coefficient are equal up

to the unknown scales Λ2 and m2 log( Λm) for the simple TRB Weyl model. The continuity of
both σH and ηH is similar to the continuity the torsional Hall viscosity (23) in terms of the
gap/mass parameter m. In contrast, from 2+1d parity anomaly, there is a jump for the Hall
conductivity in 2+1d. Here it is removed by the fact that in 3+1d, the anomaly is integrated
along the the third direction p⋆ ∼ Ga, signalling weaker crystalline protected topology [3] (the
preferred lattice direction).

6. Relation to other recent work
With the main results Eqs. (23) [38], (29) and (42) [49] involving torsion, their relation to
(44), I now discuss some overlapping results from the literature. Torsion in topological matter
has been discussed in many references, e.g. [43, 44, 79, 38, 80, 32, 50, 81]. These feature
different results and models, from strictly relativistic models to non-relativistic systems similar
to this review. A common approach to elastic deformations involves so-called pseudo-gauge
fields [37, 82], related to torsion by (4) and (5). These are nothing else that the translational
gauge field Ãi ≡ p⋆aδe

a
i , due to the elastic deformation. This gauge field introduces the UV

cutoff p⋆, which here is replaced by Λ with the assumption that Λ ≪ p⋆ due to the validity of
the linear expansion |p− p⋆| ≪ p⋆. The Ã becomes independent from the elastic geometry only
if we allow deformations δp⋆a(x) of the Fermi momentum independent from δea. While this is
certainly feasible, this was not considered here. Instead, the Fermi node momentum p⋆a was
a constant UV parameter of the low-energy theory, and also subject to elastic deformations in
terms of non-trivial ea. In the Ref. [52], it was moreover shown that the correct expansion of
the continuum theory is around the original, undeformed Fermi point p⋆a. Finally, the recent
paper [53] discussed precisely this UV sensitivity in lattice model but without torsion. They
also took the spin-connection to depend strictly on ea, in contrast to Eq. (10). Their result
was that due to the UV parameter p⋆ ∼ 1/a, the consistent truncation of the theory is in terms
of the translational gauge field Ãi, while all other terms are small in gradient expansion. This
is precisely what we here discussed in terms of emergent torsion of (4), (5) and is absent in
relativistic models, since a non-zero p⋆a breaks Lorentz symmetry. Indeed, for the continuum
limit derived from lattice, one usually needs to assume p⋆ ≪ 1/a so that the linear expansion
remains valid in the presence of deformation.

Here I discussed lattice systems (1) with massive doublers as regulators, while torsional
emergent geometry emerges in directly in many-body continuum systems in topological
superfluids (and superconductors) [49]. Namely, the torsional anomaly is realized in chiral
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Weyl superfluid 3He-A and the anomaly coefficient has been experimentally verified [49, 83], see
also [33, 1]. Finally, in relativistic systems, the diverging torsional anomaly term (A.12) can
be removed by a counter term without breaking any additional symmetries. In non-relativistic
topological matter, this is determined by the UV completion and UV cutoff parameters Λ are
well-defined a priori. Relativistic models with UV torsional terms were discussed also in [84].
Notwithstanding, at finite temperatures and chemical potentials, relativistic and non-relativistic
systems feature anomalous currents from torsion [85, 86, 87, 88, 50], similar to the chiral vortical
effect induced in hydrodynamics by chiral QFT anomaly [23, 29, 27]. These were discussed in
the Ref. [28] to which we guide the reader. The non-relativistic anomaly terms are similar to
these in that they feature UV parameters in the hydrodynamic responses.

7. Conclusions and Discussion
I reviewed how geometry and torsion enters the low-energy field theories corresponding to non-
relativistic topological matter. The torsional background geometry is provided by the continuum
elasticity with dislocations (and disclinations) and is emergent, i.e. the ambient geometry is flat
and the fields are provided by the surrounding material medium. In particular, the torsion
couples to the finite node momenta p⋆ allowed in non-relativistic systems. The ensuing torsional
responses include 2+1d Chern insulators and 3+1dWeyl/Dirac semimetals and their descriptions
in terms of the parity and chiral anomalies, respectively. The main results are Eqs. (23), (29) and
(42). These all feature non-universal UV parameters p⋆ and Λ, needed for torsional anomalies.
Along the way, I compared and highlighted the differences of non-relativistic continuum models
of topological matter to relativistic field theory and lattice models. Given a (realistic) lattice
model, the anomalies should be possible to compute explicitly and compared with experiments,
much like [49, 83] in chiral Weyl superfluid 3He-A. Interestingly, the torsional anomalies are
not sharply quantized and can be non-zero even in the trivial phases [31]. This translates to
the non-universal dimensionful coefficients needed for torsion and the associated non-quantized
stress-energy-momentum transport, as compared to gauge fields and charge transport. The
mixed torsional responses with electromagnetic fields are interesting, since e.g. the AQHE
requires Fermi arc states at all momenta −p⋆ ≤ p ≤ p⋆ [69], potentially restricting also purely
torsional transport coefficients as in Eq. (23) and the related expressions (32), (42) in 3+1d.
An immediate consequence of the mixed torsional responses is that they modify the electro- and
elastodynamics of these materials [31, 81, 64] and are inherently tunable due to the non-universal,
“unquantized” coefficients, yet being protected by topology.

I should note that the relativistic torsional terms have been long controversial and
relativistically, only recently elucidated in the hydrodynamic form at finite temperature and
chemical potentials, see e.g. [87] and references therein. The results discussed here can,
however, be linked to other more well-defined anomalous responses and, importantly, are well-
defined in non-relativistic models with cutoffs to the low-energy effective theory in contrast to
relativistic QFT. The responses were derived from the semiclassical expansion and correspond
to hydrodynamic responses sensitive to QFT anomalies. They essentially follow from the chiral
anomaly for U(1) fields with some important differences related to the dimensionless nature
of ea, its coupling to momentum pa, and the presence of extra UV coefficients, present in any
realistic model for non-relativistic topological matter. Here the effects concretely followed from
the finite Fermi momenta in the BZ and anisotropic lattice symmetries. I focused on torsion,
whereas related crystalline curvature terms were discussed in [48].

Put differently, the characteristic of torsional terms is their sensitivity to momentum space
topology and geometry. The torsional terms (29), (42) couple to the chiral Weyl dipole and it is
possible to describe similar terms for other types of momentum space multipole charges as well,
providing different crystalline symmetries unique anomalous responses in terms of the emergent
crystalline geometry. For so-called higher-order insulators and semimetals, see e.g. [19], even
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more terms are possible and will likely involve combinations of several different responses
related to the emergent geometry. Notwithstanding, any true (hydrodynamic) anomaly term
should come with its respective anomaly polynomial and descent relations that quantifies the
impossibility of realizing or gauging all symmetries in the quantum theory [25, 26]. Here we
just directly derived the effective actions in 3+1d, utilizing knowledge of the familiar 3+1d
chiral anomaly and parity anomaly in 2+1d. The extension of the effective actions in terms of
anisotropic 4+1d Chern-Simons like terms with vielbeins and torsion is desirable. In general, the
elastic gauge symmetries ea → ea + dua are related to higher-form symmetries that enumerate
different lattice directions, planes and (hyper)surfaces [89]. The associated responses require
torsional geometric gauge theories with translational and rotational fields in a non-relativistic
and crystalline setting, see e.g. [78, 64, 90, 48, 63, 89, 62]. These responses, symmetries,
anomalies and their anomaly polynomials in topological matter will be discussed elsewhere, see
[84] for discussion for a relativistic model.
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Appendix A. The chiral anomaly
Here we review the chiral anomaly term to introduce the standard anomaly term and fix
notations. The following sections detail the anomaly and the semi-classical expansion.

The Dirac action coupled to a axial mass term, U(1) gauge field and gravity is

SDirac[ψ,ψ] =

∫
d4xe

[
1

2
ψγaeµaiDµψ + h.c.− ψM(ϕ)ψ

]
where eµa is the inverse vielbein, the metric is eaµe

b
νηab = gµν and Dµ = ∂µ + iAµ + iω̂, cf. (13)

and (14). The axial mass term is M(ϕ) = meiϕγ
5
= m(cosϕ+ iγ5 sinϕ) where 0 ≤ ϕ < 2π is a

parameter.
In general, the axial current is not conserved but suffers from quantum anomalies,

∂µ(ej
µ
5 ) = 2iemψγ5ψ + anomaly(ϕ) . (A.1)

The mass term explicitly breaks the chiral symmetry, while the anomaly term is proportional to
ϕ, since naively M(ϕ) → m via axial gauge transformations δA5 = mi∂µϕ/2. This breaks the
conservation law by quantum fluctuations and classifies topological responses [5]. Alternatively,
the anomaly term is given as the Jacobian of the path-integral measure, cf. [59],

lnD[ψ,ψ] → lnD[ψ,ψ] + Sanom[ϕ], (A.2)

where

Sanom[ϕ] = ϕ

[
q2

8π2

∫
F ∧ F +

1

192π2

∫
trR ∧R

]
. (A.3)

The trivial insulator and topological insulator are found for m > 0 and m < 0, and
cannot be continuously rotated while preserving the symmetries. We can start with the mass
M(ϕ = 0) = m and consider the chiral rotation ψ → eiϕ/2γ5ψ with m → M(ϕ). The axial
mass M(ϕ) adiabatically connects e.g. the trivial TRI insulator with m > 0, i.e. ϕ = 0 to the
topological TRI insulator with m < 0, i.e. ϕ = π by breaking the TR symmetry for ϕ ̸= 0, π
[21].
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Appendix A.1. U(1) and gravitational anomaly terms from the semiclassical gradient expansion
We can derive the gauge and gravitational anomaly contributions in a mechanical fashion by
using the gradient expansion (15) and M(ϕ) ≈ m(1 + iϕγ5). The relevant terms give

Seff [A] = −iTr[ 1

/p−m
q /A

1

/p−m
q /A

1

/p−m
imϕγ5] (A.4)

separating momentum and coordinate space traces gives

4i5q2m2ϕϵµνλρTr[
1

(p2 −m2)3
∂µAν∂λAρ] =

ϕq2

8π2

∫
d4xϵµνλρ∂µAν∂λAρ, (A.5)

in agreement with Eq. (A.3). For the gravitational term, we can evaluate Seff [ω] in the special
case where the spin-connection ωab = ωab

µ dx
µ and Rab = dωab +ωa

c ∧ωcb are non-trivial but the
vielbein eaµ and metric are constant. To lowest order, the terms in R ∧R are

− i

3
Tr[

1

/p−m
1
2 /ω

abσab
1

/p−m
1
2 /ω

cdσcd
1

/p−m
imϕγ5]

=
i3m2ϕ

3

4

2242
23ϵµνλρTr[

1

(p2 −m2)3
∂µω

ab
ν ∂λωρba] =

ϵµνλρ

192π2

∫
d4x tr(∂µων∂λωρ). (A.6)

This term gives directly the 2nd order term of 1
192π2R ∧ R in (A.3). Covariant and consistent

mixed gravitational anomalies differ by an arbitrary multiplicative coefficient, depending
whether the mixed anomaly is derived from anomaly polynomial with either unbroken gauge or
diffeomorphism transformations or their mixture. In (A.6) we computed just the coefficient of
the lowest order term.

Appendix A.2. U(1) axial anomaly
Finally, to gain more insight to the derivative expansion, let’s evaluate the contributions to the
effective action related to the axial anomaly. The axial U(1) coupling is /A5 ≡ γµγ5A5µ and for
the purpose quickly obtaining the anomaly, we simply replace i∂µϕ/2 ∼ A5 in (A.5),

S
(m)
eff [A,A5] =

q2ϵµνλρ

4π2

∫
d4xA5µAν∂λAρ, (A.7)

d ⋆ J5 =
q2

4π2
F ∧ F. (A.8)

where d ⋆ J5 = ∂µ(ej
µ
5 )d

4x. In detail, this effective action is derived from the five-dimensional
analog of (A.4) with the replacement of i∂µϕ/2 ∼ A5, since the 4+1d Chern-Simons term is
the only local effective action that can produce the anomaly in 3+1d [11, 25, 26]. This action
is gauge invariant up to boundary terms and produces the consistent anomaly in 3+1d; when
also the contribution from the boundary fermions is added, the covariant anomaly (A.8) follows
[11, 26]. We recall that the anomaly is determined by the m-independent contribution of finite
m terms, in accord with the fact that the anomalous Ward identity arises from the regularization
dependent cancellation of linearly diverging diagrams or, equivalently, from the contribution of
Pauli-Villars regulator fermion introduced to cancel the diverging terms. This will be different
for torsion, see (A.13).
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Appendix A.3. Semiclassical expansion with torsion

Let us now assume ω̂ = 0 and non-trivial torsional tetrad eaµ = e
a(0)
µ +δeaµ(x), where e

(0)a
µ are flat

space vielbein. To first order, the distinction between coordinate and local orthonormal indices
of γµ = eµaγa or pa = eµapµ is not important. The anomaly term is now

−iTr[ 1

/p−m
iϕγ5

1

/p−m
γaδeµapµ

1

/p−m
γbδeνbpν ] (A.9)

We use the relation γaδeµapµ = −γµδeaµpa = δ/eapa. The relevant term is UV diverging,

Seff [e
a, ϕ] = −4i m2ϕϵµνλρTr[

papb
(p2 −m2)3

∂µe
a
ν∂λe

b
ρ] =

−ϕm2 log( Λm)

8π2

∫
d4xϵµνλρ

1

4
T a
µνTaλρ.

(A.10)

where we used the fact that the extra momentum factors pa, pb need to contract pairwise to ηab
for the desired term. Now the anomaly induced axial mass term depends explicitly on m2 and
logarithmically on the UV cutoff Λ.

We derived the responses assuming vanishing spin-connection. By Lorentz invariance, the
Nieh-Yan form N = ea∧T a with dN(ea, ωab) = T a∧Ta−Rab∧ea∧eb enters. The axial anomaly
terms becomes the same with logatrithmic divergence

S
(m)
eff [A5, e

a] =
−m2 log( Λm)

4π2

∫
A5 ∧ ea ∧ Ta. (A.11)

this term was studied in [68] and replaces the term (A.7) for gauge fields. Moreover, disctinct
from gauge fields, the m-independent torsional anomaly term is non-zero and quadratically
diverging. Similarly, the massive 4+1d Chern-Simons like effective action from five dimensions
is linearly UV diverging. The divergence can be cancelled with appropriate regularization, e.g.
Pauli-Villars fields. The resulting finite coefficient is proportional to the five-dimensional mass-
squared m2

UV, an UV scale for the four-dimensional fermions. In a condensed matter setting,
this represent a higher-dimensional topological insulator with gap mUV ∼ Λ in terms of the
boundary fermions, as related by anomaly inflow. Accordingly, gathering all diverging terms,
we arrive to the Nieh-Yan anomaly term [75]

Seff [A5, e
a] =

Λ2 −m2 log( Λm)

4π2

∫
A5 ∧ ea ∧ Ta (A.12)

with the anomaly in covariant form

d ⋆ J5 =
Λ2 −m2 log( Λm)

4π2
(T a ∧ Ta −Rab ∧ ea ∧ eb). (A.13)

Notice the dimensionful and non-universal coefficient, needed due to the canonical dimensions
of ea. The above terms are anomalies from geometry (i.e. gravity), with UV sensitivity that
break no other symmetries than the already anomalous A5. Moreover, if Lorentz invariance
holds to arbitrary scales for Dirac/Weyl fermions, Λ → ∞ in vacuum. Therefore, they can and
should be subtracted with counter terms [29], unlike the finite gauge or gravitational anomalies.
However, at non-zero chemical potential and temperature, torsional contributions are possible
even in relativistic systems [28]. In contradistinction, for condensed matter systems there is the
possibility of anisotropic Lorentz breaking terms and UV completion of the (quasi)relativistic
fermionic theory, where Λ is a well-defined and finite cutoff parameter [38, 49].
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[42] C G Böhmer and Y Lee, Math. Mech. Solids 26, 513 (2021)
[43] A Mesaros, D Sadri and J Zaanen, Parallel transport of electrons in graphene parallels gravity, Phys. Rev.

B 82, 073405 (2010)
[44] F de Juan, A Cortijo, M A H Vozmediano, Nucl. Phys. B828, 625 (2010)
[45] A J Beekman, K Wu, V Cvetkovic and J Zaanen, Phys. Rev. B 88, 024121 (2013)
[46] R A Toupin, Arch. Rational Mech. Anal. 17, 85 (1964)
[47] J Zaanen, F Balm, A J Beekman, SciPost Phys. 13, 039 (2022)
[48] J May-Mann and T L Hughes, arXiv:2108.00008 (2021); J May-Mann, M R Hirsbrunner, X Cao, and T L



Avenues of Quantum Field Theory in Curved Spacetime (AQFTCS 2022)
Journal of Physics: Conference Series 2531 (2023) 012002

IOP Publishing
doi:10.1088/1742-6596/2531/1/012002

19

Hughes, arXiv:2209.00026 (2022); S-J Huang, J Yu, R-X Zhang, arXiv:2211.03802 (2022)
[49] J Nissinen, Phys. Rev. Lett. 124, 117002 (2020)
[50] L Liang and T Ojanen, Phys. Rev. Research 2, 022016(R) (2020); Phys. Rev. Research 1, 032006(R) (2019)
[51] F de Juan, M Sturla, and M A H Vozmediano, Phys. Rev. Lett. 108, 227205 (2012)
[52] G Wagner, F de Juan, D X Nguyen, Landau levels in curved space realized in strained graphene, SciPost

Phys. Core 5, 029 (2022)
[53] M M Roberts, T Wiseman, Phys. Rev. B 105, 195412 (2022)
[54] I J R Aitchison and C M Fraser, Phys. Rev. D 31, 2605 (1985); C M Fraser Z. Phys. C 28, 101 (1985)
[55] O Golan and A Stern, Phys. Rev. B 98, 064503 (2018)
[56] QD Jiang, TH Hansson, F Wilczek, Phys. Rev. Lett. 124, 197001 (2020)
[57] A Shitade, Prog. Theor. Exp. Phys. 2014, 123I01 (2014)
[58] A Gromov and A G Abanov, Phys. Rev. Lett. 114, 016802 (2015)
[59] M E Peskin and D V Schroeder, Introduction to Quantum Field Theory, West View Press (1995)
[60] A Gromov, Phys. Rev. Lett. 122, 076403 (2019)
[61] H Yoshida, T Zhang, and S Murakami, Phys. Rev. B 107, 035122 (2023)
[62] Y Zhang, N Manjunath, G Nambiar, M Barkeshli, arXiv:2211.09127 (2022)
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