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ABSTRACT

Statistical thermodynamics in a particular form
derived from high energy physics is used to describe
thermodynamical properties of what might have
our universe before its energy density became
lower than nuclear density. The main features

even 1if 1t started with infinite energy
density,it never had a temperature greater
than T, = 160 MeV (1.86x1012 ©K), which is
the universal highest temperature in this
theory;

for very large energy density the pressure
is not, as in usual theories, proportional
to the energy density but only to its loga-
rithm;

inside each elementary volume Vo (mnucleon
volume) the energy fluctuates by an amount
of the order of the total energy contained
in Vg For infinite energy density this
fluctuation does not vanish as in ordinary
theories, but tends to AE/E ~ 0.4. The
conjecture is proposed that smaller but
still substantial fluctuations of the ba-
ryonic quantum number may go along with
the energy fluctuations.
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INTRODUCTION

Methods of statistical thermodynamics have recently been applied
with success to high-energy interactions of hadrons. It seems that the
same methods can be applied to macroscopic situations as they may appear

in astrophysics under extreme circumstances.

The results presented here will modify, in particular, the behaviour
of "the early universe'". The consequences for very dense matter in the
ordinary sense (superdense stars) are not yet clear. The early universe,
to which the present thermodynamics would apply, would be omne with total

baryon number zero (or at least very small compared to the total number of
baryons + antibaryons). It would be a universe that can be described as a
very general black-body radiation containing all sorts of particles includ-

ing hadrons as the most essential ingredient.

We shall use natural units4#f = ¢ = k (Boltzmann's constant) = 1.
A table in the Appendix gives the conversion between these units and CGS
units for some of the more interesting quantities. Here is just an

illustration:
density: 1 g cm™®® 4.311 x 10 ° MeV" @9)

so that the density of a nucleon, mp/Vo A 6 x 10° MeV"*, corresponds to
about 1.4 X 10'* g em™>. Here we made use of the "nucleon volume" Vo =

= (4m/3) m}s = 1.59 x 107% MeV™?® which will turn up frequently in the following.

In the new accelerator at Serpukhov (Russia), protons of 70 GeV
hit others at rest; there, during = 10 23 sec, the total energy density
in the centre-of-mass frame of the collision reaches twelve times that
of the proton at rest. In cosmic-ray collisions, densities a hundred

times greater occur. We try to describe what happens in such situations.

In these collisions two things are mixed up with each other: a
particular kind of thermodynamics and strong collective motions along
the collision axis. While the latter are of no interest in astrophysi-
cal applications, we must mention them here because they have been used --
and are being used -- as an argument against employing statistical
thermodynamics to such processes. If that were so, then we could not
reach any conclusion about what kind of thermodynamics applies. What I
wish to affirm is that these collective motions have only the effect of

Lorentz—-transforming isotropic thermodynamic momentum distributions into
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the observed very forward-backward peaked ones. There does not exist
any theory that allows one to calculate the velocity distribution of
this collective motion from first principles, but let us be content
with the fact that such a velocity distribution can be described pheno-
menologically, and that therefore we have a means of disentangling

thermodynamics and collective motions.

Incidentally, the simplest way of disentangling them is to consider

only quantities that are independent of the collective motion, such as
* multiplicities of various kinds of particles;

% distribution of the transverse components of the momentum
of the particles produced in the collision.

The very fact that particles —— at not very high energies, mainly pions ——

) in 1948 to apply statistical

are abundantly produced has led Koppe1
thermodynamics to the production process. Two years later, Fermi?)
published something similar, and for that reason one speaks not of the
"Koppe statistical model' but of Fermi's*). These models and many
later refinements were rather successful in those features that do not
depend on collective motions. The most important of these refinements

3) “) had to be treated as

was that excited states of baryons and mesons
particles —— in spite of their short lifetime. In our present thermo-
dynamics we go even further in admitting all excited states of hadronms,
including those not yet discovered. This thermodynamics, which is a
consequent extrapolation of earlier ones (including phase-space models),
explains very simply and in agreement with experiments the behaviour

of the above-mentioned multiplicities and transverse momentum distribu-
tions. The latter are of primary interest because the transverse mo-
mentum distribution follows closely a Boltzmann distribution (which is
already a strong hint towards thermodynamics) Vv exp (-p,/T). The dif-
ficulty only is that one should expect T to grow with the fourth root of
the total collision energy as in a decent black-body radiation; but
instead, accumulated experience over the last 10 years shows that T
tends rapidly to a limiting value T, of the order of 160 MeV, when the
energy goes to the highest values hitherto encountered in cosmic-ray

‘experiments. Already at 30 GeV we have T v 120 MeV.

%) 1 am grateful to V. Telegdi for having made me aware of that historical
injustice.
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The multiplicities again follow a law Vv exp (-m/T), as one expects

in a situation where thermodynamics governs; but here again: T - Ty.

If thermodynamics can be applied at all -- and this is postulated
on the basis of the experimental evidence —- then it has to explain the
above-mentioned features. It turns out that the "limiting temperature"
is the simple consequence of taking all resonance states into account as
if they were particles. This has far-reaching consequences for the
equation of state. It also leads to the conjecture that there are no
elementary hadrons, but that each one consists of all others (at least

for m » «),

In this paper we cannot enter into details about foundations of the

new thermodynamics. The whole theory has been worked out and applied to

5)

high—-energy in physics in five papers ’. These are

"Statistical Thermodynamics of strong interactions at high

%
energies I, II ), and ITI" (henceforward referred to as I,IIL,III).
"On the hadronic mass spectrum'.

"Hadronic matter near the boiling point'"; this latter and the first

chapter of II can serve as an easily readable introduction.

THE THERMODYNAMICAL MODEL OF STRONG INTERACTIONS

In astrophysical applications we can forget about the collective mo-

tions. For the moment we shall concern ourselves with hadronic black-

body radiation, and only at the end add the contributions due to weak

and electromagnetic interactions. In our hadronic black-body radiation,
all kinds of hadrons are produced in just the same way as light quanta
are produced in the usual electromagnetic black-body radiation. Of
course we shall employ relativistic statistical mechanics so that the
energy of a particle with mass m is vp2Z + m2 . We shall use the Gibbs
canonical ensemble, and the main tool will be the partition function
Z(T,V), which is related to the free energy F(T,V) by

F(T,V) = =T 1n Z(T,V) . (2)

The numbers NY of particles of the kind Y are not given numbers but are

determined by the thermal equilibrium, therefore

*) Together with J. Ranft.
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That is, all chemical potentials for all kinds of particles are zero

(our chemical potentials are relativisticy calling the ordinary ones

Ug, ours are UY = Yo + mY = 0 which corresponds to u°Y = -mY in the
ordinary case). Putting all uY = 0 leads immediately to baryon conser-
vation, since My = Oge Similarly, strangeness and charge are conserved.
Hence, total baryon number = total strangeness = total charge = 0. All
these conservation laws are fulfilled only in the average, because "using"
chemical potentials and putting them zero means treating particle numbers
on the level of a canonical ensemble just as if they were on the same
footing as energy. One can deal with particle numbers also on the micro-
canonical level by requiring exact conservation laws, for instance if one

wishes to calculate production rates; this has been done in (III).

In order to calculate the partition function, we need a model of the
hadronic black-body radiation. It is the following: we treat the par-
ticles present in V as free, non—interacting particles. The whole of

strong interaction dynamics then enters in just two conditions:

% Particles can be created or absorbed spontaneously and
instantaneously according to the local conditions; thus
heat need not travel via kinetic energy transport, as
in a classical gas, but can propagate via virtual par-

ticles with the velocity of light.

* The kinds of particles -- uniquely identified by their
mass —— that are allowed to participate are exactly
those that are the massive eigenstates of strong inter-
actions: pions, kaons, nucleons, hyperons, and all -

all! - their resonant states.

By allowing spontaneous creation and annihilation of all possible
hadrons, we have eliminated the strong interactions from our partition
function and can now deal with undetermined numbers of all kinds of free
hadrons. We have, of course, to know the allowed kinds of particles,
namely the hadronic mass spectrum p(m) dm, which says how many different
states there are between m and m + dm. Once this spectrum is known, the

partition function can be calculated (I):
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0. labels the momenta and y the kinds of particles; an = exp (—Vp; + mé/T)

Vory = occupation numbers; 0 ... ® for bosons, 0,1 for fermions.

From this partition function we get all interesting quantities along

standard rules.

What, then, is the hadronic mass spectrum on which everything now

depends?

For the low-lying states it is known experimentally; in recent years
the resonance hunting has yielded an ever—growing population of states, but
below 1000-1200 MeV this population is now constant. Above this region
new states continue to be discovered, and the heaviest ones reach a mass of
more than 3000 MeV in the baryon case and more than 2000 MeV in the meson
family. No known principle of physics stands against the possibility that
this goes on and on -- in fact we have every reason to believe that it goes
on, since generally in nature everything that is not explicitly forbidden
is realized. Let us now remember the object, which we wish to describe
by statistical thermodynamics as hadronic black-body radiation: it is
physically nothing other than a lump of highly excited hadronic matter
staying together just long enough, in a small enough space region, to allow
the strong interactions to establish an equilibrium between their possible

modes of existence (asymptotic states with definite particle numbers).

Thus our very postulate that statistical thermodynamics can be ap-
plied implies that we believe in the existence of such highly excited
lumps of hadronic matter, which then decay within v 10 2? sec according
to just the statistical laws derivable from the partition function (4).
The lumps of matter at which we aim have masses from a few to a few hun-

dred GeV and higher.
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Now comes the main point: these lumps of hadronic matter -— we shall
call them fireballs —- decay statistically into pioms, kaons, nucleons,
hyperons, and -- according to hypothesis -— into resonances of those.

But so also do the high-mass resonances that we know experimentally; a
6 .
glance at the tables published by the Particle Data Group ) shows this.

We claim then that between the resonances and our fireballs there is no
difference of principle, and that the latter are the natural continuation
of the former. Now, calling all of them fireballs (including pions, nucleons,

etc.), we formulate the basic postulate, valid in the limit of large mass:
A fireball is

a statistical equilibrium (hadronic black-body radiation) of un-

determined numbers of all kinds of fireballs, each of which, in turn, (P)

is considered to beAD

It turns out that this postulate, which interpolates between two estab-

lished experimental facts, determines our thermodynamics completely.

This is seen by rewriting the partition function (4) in the simplified

form (which contains all essentials)

Z(VT)=ep [pm) F(%.T‘)dm} (sa)

with a known function F(m,T). On the other hand, every book on statistical

mechanics tells us that one may also write

/ (VT) - So-(lm) e T oduw (5b)
¢

where 0(m) dm is the number of states of the "main" fireball between m and
m + dm. Since p(m) counts also the number of states between m and m + dm,
these two functions must in some sense be the same, if our postulate (P)

shall hold —- at least for m > ., A detailed discussion [see (I)] shows

that one can only require

i ¢ ()
n T (m)

= 1 form-e (6)
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which says that the entropy of a fireball is a unique function of its
mass, and that this function is the same for the main fireball as for its
constituents; thus in the sense of thermodynamics all fireballs are alike,
except for their mass. I like to call the postulate (P) "asymptotic boot-

strap" because it says that there are no elementary hadrons; each one con-
sists of all others.

The mathematical conclusions drawn from formulae (5a,b) and (6) are

straightforward [cf. (I)]: from closer inspection we see that F(m,T) falls

off asymptotically like m /e exp (-m/T), so that

o0

ZW6T) = exp [ [P T | = [rtmye ¥ us ™
4 o

This is consistent with formula (6) if and only if both p and 0 grow ex-

ponentially; in particular

lenid

sil2

plm) =>

M0

Now we have everything we want: for low lying resonances the mass spectrum
is experimentally known; for very large m we know its asymptotic behaviour.
It is easy to guess a formula that has the right asymptotic form and even
fits the actual (smoothed) mass spectrum down to m = 0; one such formula
is

™m

Te

Plm) = e

' 2\ 5/
(M&c-r/m ) It
(9)
3
a=2.63 ¢+ 10" MeV A; To = 160 MeV; mo = 500 MeV

Figure 1 shows how nicely this fits. One can read off the constants a

and T, rather accurately (mo has no physical significance). The figure
shows: the part of the spectrum (< 1200 MeV) that is well known, indeed

grows exponentially, and the higher part of the spectrum tries to

improve its behaviour over the years.

If we now use this information, then we can calculate ln Z explicit-

ly, and although it is apparently a partition function of free particles,
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the main properties of strong interactions are present in it because of
the mass spectrum and its peculiar asymptotic behaviour.

The most striking consequence of formula (8) is, of course, that T,
is the highest temperature allowed in this thermodynamics, because 1ln Z

exists only for T < Ty, and diverges logarithmically when T - Ty.

As strong interactions are virtually present everywhere, this T, is
a universal highest temperature for equilibrium states (an electron-
positron gas initially at T > Ty will, after some time, create pions, etc.,
and then cool down to T < Ty; that is: it was not in an equilibrium state

initially).
Our results are then:
a) The three propositions:

* there are no elementary hadrons; each of them consists of

all others [postulate (P)];
* the hadronic mass spectrum grows exponentially;
* there exists a universal highest temperature ;

these three propositions are nothing other than three different wordings

of one —- perhaps the —- basic property of strong interactions.

b) The partition function and all thermodynamic distributions derivable

from it are now well-defined calculable functions of T and V.

CHECKING AGAINST EXPERIMENTS

In papers (II) and (III) we have worked out the detailed consequences
of this model and compared them to the experiments. We list here a few of
these checks, in a summary way, in order to give the reader some confidence

in the model.

First of all: the exponential growth of the mass spectrum is a some-

)

* . . .
what shocking result ’, and it is reassuring that the experimental spectrum
indeed grows exponentially in the region below 1200 MeV (that is: where

we are rather sure to know it well) (see Fig. 1). It could have behaved

very differently! (Think of electromagnetic and weak interactions.)

Secondly: our mass spectrum implies the existence of a

highest  temperature To -- and that 1is just what has been observed

*) Which very recently has been derived independently and differently
also in other theories of strong interactions7).
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in the transverse momentum distribution of secondaries produced in high-
energy collisions. But if our model is any good, then our limiting tem-
perature Ty, as read off from the mass spectrum, must coincide numerically
with the one observed in the transverse momentum distribution when the
collision energy becomes very large -- indeed, both turn out to be about
160 MeV. In (II) we have derived a formula for the average transverse
momentum as a function of the mass of the emitted particle and of the
temperature T (which is itself a known function of the energy density).

It reads

m
' Ks —
< P¢ (.m"r) S =\/’7/Q TmT _/7_—_<__—'_—_) (10)

K2 (%)

and the comparison with experiments is shown in Fig. 2, where indeed pions
from the highest énalysed cosmic-ray energies lie on the curve for o

T = 160 MeV. At 10-30 GeV collisions, T should be about 120 MeV (this
follows from the calculable energy-temperature relation, see Figs. 9 to
11) and 7, K, p lie on the corresponding curve. A nice detail: protons,
in pp collisions, need not be created; therefore they can emerge from the
"cold" peripheral regions of the collision; antiprotons, on the other
hand, are newly created and since the creation rate goes like exp (-2m/T)
they can come only from the "hottest" interior region. Therefore p should
have larger transverse momenta (heat motion) than protons, as indeed they

do in Fig. 2.

Thirdly: the total production rates of all kinds of particles can be
calculated from the partition function. They are proportional to exp (-m/
T) for single production (like pions) and to exp (-2m/T) for pair produc-
tion (like proton—antiproton pairs). Details have been worked out in (II)
and (III), and there the conservation laws for baryon number and strange-
ness have been treated on the microcanonical level; the factor 2 in the
exponent of pair production rates comes from that. Figure 3 shows the
total charged multiplicities as calculated from the theory, compared to
bubble chamber and emulsion results. Figure 4 shows the same for heéyy
pair production rates. Taking the two figures together, the production
rates from pions to antideuterons drop by a factor " 1010, and over this
whole range the calculated rates agree with the experimental ones within

some 307.



_10_

Fourthly: if pairs of particles -- such as K + K -- are produced,
one can calculate their invariant mass distribution f(M2?) dM?, where
M? = (PK + PK)Z (P = four momentum). Figure 5 shows the comparison with
the experimental distribution in 1.2 GeV/c pp annihilation. The two
curves correspond to the assumptions that the two particles are created
at the same place a), or far apart from each other b). '"Local' strange-
ness conservation is clearly favoured. This may have the consequence for
astrophysics that in spite of large energy-fluctuations (see below), we must
not expect large fluctuations of the baryon number within volumes much larger

than 1 fermi in radius.

Fifthly: by supplementing the thermodynamical model with a phenomeno-
logical description of collective motions, detailed momentum distributions
(magnitude and angle) can be calculated. The velocity distribution of
these collective motions is a function whose form one can guess by intui-
tion and then parametrize. In fact one needs two such functions of quite
different shape, one for the newly created particles and one for the
throughgoing ones (protons in pp collisions). It was possible to describe
with two such functions (the same two for all kinds of secondaries and
of all energies from 12 to 70 GeV) the detailed angular and momentum dis-
tribution of all measured spectra, with satisfactory to excellent agree-

ment. Figures 6 and 7 show comparison with experiments in two cases.

Whilst so far all things that one can reasonably calculate from such
a model agree with the corresponding experiments, it.is not true that
this proves the model to be correct. The point is this: the model affirms
that the mass spectrum grows exponentially ad infinitum, and this can
clearly never be verified by any experiment. Indeed, if we assume that
p(m) grows exponentially up to some mass M and then is cut off, we can
always choose M large enough to fit all experiments. In that case, Ty
is no longer the absolute highest temperature, but still at T = Ty a
marked change of behaviour will occur. To illustrate this I have assumed
such an exponential spectrum growing like exp (m/Ty) but cut off at M,
and calculated a slightly simplified partition function and frombit the
energy density €, which then becomes a function of T and M. Figure 8
shows the resulting set of curves €(T,M) in a logarithmic scale. M = «
is our model. One sees that for finite M the curves change slope near
T = T,. One can then ask: how large must M be in order that T cannot

much exceed the value of 160 MeV for the highest analysed cosmic-ray
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energies? Now in such events (primary energy v 10° GeV) the energy den-
sity is of the order of 10'! MeV", and the measured transverse momenta
limit T to { 170 MeV. Thus M % 10,000 MeV. In other words: all presently
known experiments could be fitted with a theory of our kind but with a
mass spectrum growing exponentially up to M g 10 GeV. It is important to
note that the actually known mass spectrum grows exponentially only up to
1200 MeV, and that the corresponding curve of Fig. 8 does not show the
slightest indication of anything particular happening around T ¥ Ty. The

conclusion is then that the mass spectrum must grow exponentially much

further beyond 1200 MeV, in fact up to at least 10,000 MeV.

Corresponding curves can easily be drawn for the pressure, etc. —-—
they will all look quite similar. Thus we have to expect that for all
relevant quantities the deviations of our present theory from conventional
ones will start at about T 43 100 MeV or so, and become very marked above

150 MeV -- even if M should not be infinite but only R 10 GeV.

It should be stressed that although M g 10 GeV can fit all present
experiments, will furthermore yield practically the same quantitative re-
sults as our theory (M = ®), and will even have remarkable effects on
functions interesting to astrophysics (such as pressure), it is an unsatis-
factory and inconsistent assumption. This has been discussed in the paper
"Hadronic Matter Near the Boiling Point" 5) (p. 1035), and will not be re-
peated here. The main argument is that assuming any finite value for M
would divide the world of fireballs into two classes with fundamentally
different properties, one with m < M and the other with m > M. As long
as no physical principle is known, which would justify such a distinction
of two classes, the only self-consistent assumption is M = «; this is

equivalent to our postulate (P). And that means:

As long as our theory (with M = ®©) is not ruled out by contra-
dictory experimental evidence, fireballs of arbitrarily large
mass are allowed. In particular the early universe may be con-
sidered to be just such a fireball, and its properties can be
described by the partition function as long as its density is
not much lower than the nucleon energy density; that is, as

long as strong interactions are prevalent.

I1f we say that there is no limitation to the mass of a fireball, then this

is understood as a statement about strong interactions. Clearly the total
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mass of the universe is an upper limit, and general relativity may even

provide a distinction of two classes of fireballs. We do not consider these

problems here.

THERMODYNAMICAL PROPERTIES
OF A FIREBALL

The programme of this section is to calculate first the partition
function and from it the energy and the pressure. We shall express the
pressure as a function of T and also as a function of the energy density.
For all these quantities we give asymptotic formulae for T - Ty. As the
"universal fireball" (as we shall call it) has time enough to develop an
over—all equilibrium between strong, electromagnetic, and weak forces, the
latter two contributions will be made explicit.

4.1 The partition function
of hadrons

The partition function as given by formula (4) has been calculated
as follows: below m v 1000 MeV we know the detailed mass spectrum p(m;n)
from the compiled particle data®). There we write the mass spectrum as
a finite set of § functions at the right mass values and with the right
multiplicities; this yields a finite sum. Above m = 1000 all terms except
n = 1 of the sum in formula (4) can be neglected and thus p(m3;l) = Ppose +
+ pFermi = p(m) can be used in the form (9). The integral can be calculat-
ed numerically. For very large m, the asymptotic form (8) of the mass spec-

trum and of the Hankel function K, (m/T) can be used; we then obtain

>0 1cce
: o VT 1 . 2 N
G Z(T )= 5 5 5 (o)t K (n ) e
= c
M /T
. PN Iy W
¢ K, (F)du
@Ul f}h°)5/+ L( T-) (11)
Adecct
X (1
,"'TC'T J due - "“(T Tc)
+ (4 \ = | m
M

Mo is chosen according to the required precision, 20,000 for example. The
first two parts are found by numerical computation, the last is the expo-
nential integral _
T £ (M, BT
CL\I t ~— e

2 %

T T :
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For T + Ty the first two parts become a finite constant, whilst the last

0 (Io. T
i 10.'F———l:

4

term diverges like

We introduce the variable t = T/Ty; then

_—_—- - A, ) ) b —_ ]
& (55T ) = - L (e 1)+ oo pile o £ 2

Thus the whole can be written
, o vV ]4(&)- 6 (jt_ ()]
beZ(1T)= %L w et

t=1/To 3 Vo = —‘% m® = 1.59 x 107° Mev™? (12)

3
Og = aVo(To/ZTT)/2 Y 5,38 (dimensionless) ,

where H(t) is finite for t - 1. Having thus separated out the diverging

part, we may approximate the numerically given function
H(t) = )z_—i— (/,(,LZ(V,T) + Lo (1t J‘) (13)
(4

by some simple function of t. We thus found a good approximation for
H(t) in the interval between 0.5 < t < 1 with v 0.47 maximal and Vv 0.1%

average error. It reads:
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0.034225

t - 1.065 (14)

H(t) = 1.8479 - 3.7433 t -

This, inserted into formula (12), yields an approximation for 1ln Z that

can be easily differentiated or integrated. All decimal places of formula
(14) must be used, as there is large cancellation of terms among each

other and with the logarithm. The maximum error in 1ln Z is v 127 (at

t = 0.5) and then the error drops rapidly (0.8%Z at t = 0.7; 0.1 at t = 0.96).
This approximation must not be used below t = 0.5, but below t = 0.5 the
hadronic black-body radiation becomes anyway uninteresting [see Figs. 9

and 12].

4.2 The total partition function including
weak and electromagnetic forces

For t > 0.5 the electron mass is negligible; therefore we have as con-
tributing zero-mass particles Y, V, e with weights 2 for Yy, 4 for v (Ve,
- - + . .
Vs vﬂ’ vp) and 4 for e (e, two spins). Furthermore y is a boson, the

others are fermions. Thus in this case

—_ . ]

%Yve Cnnfn):z Li"-g*('l) J ’(?(“”) (15)

With this mass spectrum inserted into formula (4) we obtain

: oo VT, 23
\ T = - £ .
Lo Z'g{\«'e ( , ) o T t (16)

which, of course, could have been copied from any textbook. One might
doubt whether neutrinos really participate in the equilibrium, because they
escape so rapidly from the interaction region except when the density is
extraordinarily high. But the point is that just when they are created,
they have already the right equilibrium momentum distribution —-- whether
they escape soon afterwards or not. However, even if they do, this will

occasion only a slight change in the numerical factor in front of t® in
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formula (16); and since this whole contribution becomes negligible for

t > 1, where 1n Z diverges, we need not discuss this question any

hadron
further.

The muon mass is about 100 MeV; thus it cannot be assumed to be equal

to zero. Putting pu(m,n) = -(-)n e 48(m - mU) we find from formula (4):
2 VT, | T2 =) My 1 ]
PP, - M Pa) L M - _)
MZ/L(V’,I )— ——Tc'z_—-—' tL%‘ m2 K?.( T, t (17)

This has been evaluated numerically with a relative error of < 107*. [We
may remark here that one can now check whether putting m, = 0 is a good
approximation to formula (17) with m inserted there; the error is less
than 1%.] Of course one expects that 1n Zu will be roughly proportional
to t3, similar to 1n Zyve° The following third-order polynomial is an

approximation to Eq. (17) with < 10™"* relative error:

1n Z (Vq,T) = 0.03923791 - 0.2392164 t
u
(18)
-0.0188072 t2 + 2.509236 t°

The leading term is indeed t®. Note that this is for V = Vo; multiplica-
tion by V/V, gives 1ln ZU (V,T) —— as always. The total partition function
of our universal fireball is then the sum of formulae (12), (16), and (18).
In order to see what the relative contributions are, one may look at

Fig. 12, where the pressure is shown. Since P = (T/V) 1n Z, 1ln Z (V,T)

can be inferred from these figures by multiplying by V/(tTy) (which is in
0.5 <t £1 almost a constant) so that Fig. 12 indeed shows also the be-

haviour of the various partition functions.

With t >~ 1 we obtain from formulae (12), (16), and (18) the asymptotic

total partition function for Vp:
&NZM (\/OJ ‘t—"’) =
= oo [H1) - 8 =1)] 4 b Zyoo (821) + & 2, (£ 1)

) 2~ 3
s [137 - B (B-0] s e T Ty 2,29
lo (19)
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Figure 12 shows that this is a good approximation for T/T, > 0.95.

4.3 The energy as function of T/T,

The expectation value of the energy in a volume V is given by

2 D duZ _ T4t Vw2

E(vT)=T St —
T 0t

(20)

We obtain immediately an analytic approximation by simply differentiating
the corresponding expressions for ln Z. We have calculated E(Vy,T); for

any volume V one obtains E(V,T) by multiplication by V/V,.

As the differentiation is trivial we do not write down the full

formula, but for convenience give an asymptotic one for t - 1. It reads
E(V. t=1)= T <4—‘-’>+—1—]+T42u,2~ (¢-1)
:’ [/ ] dt 4—'t Ocu KQQ,/L

(21)

- Tt [-6.5+ 57 ]+ w245 < 10"

{dH/dt)> is a suitable average to make (21) a reasonable approximation
also in the non-asymptotic region. _

Figures 9, 10, 11 show the various contributions to the energy contained
in Vo. The asymptotic formula happens to be a rather good approximation
over the whole range. The hadronic contribution starts to be negligible
below t = 0.5; this is the reason why we did not try to make our analytic
approximation to H(t) valid over a larger range (which would have implied

more terms).

The hadronic part of the energy wins at about t = 0.81 and, of course,
diverges for t -+ 1 where the Yy, v, e, U contribution stays constant and
tends to become negligible (Figs. 10 and 11). If in Fig. 9 one draws a
horizontal line at E/10? = 10 (about the nucleon mass) it intersects the
total energy curve at t ¥ 0.64, the Y, Vv, e, U curve at t ¥ 0.69, and the
hadronic curve at t 4 0.76. That is: at t §y 0.64 the total energy density
is ébout equal to the nucleon density, but about 70% of it is due to Yy, Vv,

e (and a little p); at t ;v 0.69 the y, v, e, U contribution alone already



reaches nuclear density, and the hadron contribution is still only 55 of
it. Note that the energy scale is different in the three figures.

4.4 The pressure as function of T/Tg;
equation of state

We start by considering the pressure as a function of T. The relation
T ' ,
P(T)= —\-/-()MZ = 3:0{; &(,Z(\/o,t) (22)
0

can be written immediately in analytic form using Eqs. (12), (16), (18),
and the asymptotic expression is found from Eq. (19) by multiplication by
To/Vg; it diverges logarithmically for t - 1. As the last term in Eq. (19)
is of order 1 and To/Vy of order 10® we represent P/10® in Fig. 12. Again
the total and partial pressures are shown. The hadronic partial pressure
wins at t = 0.955, whilst the partial hadronic energy already did so at

t = 0.83. The explanation is that at a given energy density there are a
few (heavy) hadrons and many zero mass Y, V, e; since the pressure is, at
a given temperature, proportional to the number density, it is obvious
that the partial pressure of many zero-mass particles can be larger than
that of a few heavy ones even long after the energy density is mainly due
to the heavy particles [at t = 0.955 about 807 of the energy density is
due to hadrons (Fig. 10), whilst their partial pressure just equals that

of v, v, e, U]-

The pressure in this theory is, of course, not a function of the
volume V but only of T =~ therefore Eq. (22) can be considered as the

equation of state of our universal fireball.

It is, however, useful and instructive to express P also as a func-
tion of the energy density. As is well known, in ordinary electromagnetic
black-body radiation the pressure equals %4 times the energy density.

From formulae (20), (16), and (22) we see that this is equally true if
not only Y but also v and e are taken into account. But already for the
U this is no longer so, because this property stems from the fact that
for zero—mass particles the partition function is proportional to exactly
T3, whereas for non-zero mass other powers of T enter. As long as the

number of masses contributing to the spectrum is finite, that is: as long
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as f?p(m) dm < o, then neither is the temperature limited (it is not
limited even for any spectrum growing less than exponentially). Further-
more, since f?p dm < © implies that p decreases, there exists always a
temperature T such that all masses, which really contributé, are small com-
pared to T. In that case we have nearly the mass zero case, and for still

larger T the partition function will have a leading T® dependence:
od

if ff(ﬁu)d/m £
(/)

chen by 7 (VT) = touch- V- T ° 23)

T=Q

and F) —_ 1%

~

<Jm

But as long as this limiting situation is not yet reached, the pressure
will always be smaller than Y4 E/V because then the masses of the particles
are not negligible; they count in the energy balance and therefore the
number of particles is -- for given total energy —— smaller than it would
be for zero masses. Since the pressure is proportional to the number of
particles, it must be smaller than % E/V. This qualitative argumenﬁ
explains why in our theory -- where f?p(m) dm = © and where the tempera-
ture is limited by Ty, so that there are always masses >> T -- why, then,
the pressure is considerably smaller than Y E/V; in fact, as we shall see

now, it is proportional to 1ln (E/V) in the limit E/V > o, T > T,.

Indeed, let us take the asymptotic form for E/V, Eq. (21), and neglect

the constant contributions, thus

__> T:)do o __Z__ (24)
t+1 Vo 1- ¢

<im

Now we solve for 1 — t and insert this in the asymptotic formula for P

[Eq. (19) multiplied by To/Vo]; here the constant contributions must not
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be neglected, because the divergence is only logarithmic. Result:

P(e>) = Teke [4(4) « In (222 ) [+ Prpe (E5) |

V. gueps

(25)
= {5,‘”5 [‘1.37 +&°(w5.:5<‘08)]+ 8‘7,73} x 03

where the last constant is due to Yy, V, e, U. We thus have the important

result:

for large energy density (T - To; € > ©) (26)

the pressure is proportional to 1ln €.

Since the logarithm varies slowly, one might doubt whether this asymptotic
formula (25) is anywhere a numerically tolerable approximation. To find
this out, we have calculated P(€) by numerically solving E(T)/V for T and
inserting T(g) in P(T). The results are displayed in Figs. 13, 14 and 15
where we show P/10% as function of the energy density with different scale
of the energy density in the different figures: the value €/10%® & 5 in
Fig. 13 corresponds to € % mp/Vo or to T % 0.64 Ty; the values €/10° %/ 5
in Fig. 14 and €/10'° & 5 in Fig. 15 correspond then to about 10 and 100
times the nuclear density, respectively. The asymptotic formula (curves
A, dotted) gives never really very wrong results, but it starts to become
a rather good approximation only at about 100 times the nuclear demnsity

(T g 0.99 Ty). However, as Fig. 15 shows, the partial pressure due to

Y, V, €, U, though it becomes constant for large energy density, is ''never"
negligible compared to the total pressure, just because the latter di-
verges only v 1n €: even at an energy density 1000 times larger than that
of the nucleon, the Yy, v, e, U partial pressure is still v %, of the total
one (Fig. 15).

SOME REMARKS ABOUT THE

INTERNAL STRUCTURE OF A FIREBALL

When T > Ty, the kinetic energy per particle cannot increase any more,
and the only way to increase the total energy density is to create more
and heavier particles. Since P is proportional to the particle number and

diverges logarithmically, it follows that for T - T, the particle number
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itself must diverge logarithmically, in fact it must be proportional to

1n Z. This divergence is, however, much too weak to account for the di-
vergence of the energy density, which is proportional to (T, - T)"!. Slow
divergence of the particle number N and strong divergence of the energy
(with constant kinetic energy per particle) means then that the average

mass of the particles must itself diverge [see Egs. (37)]: the particles
present are mostly highly excited fireballs themselves! This result is not
so surprising, because it is almost explicitly contained in our postulate
(P) which is the corner-stone of this theory. Yet one might wonder how

this is managed when, as we mentioned earlier, the production rate for
particles of mass m is proportional to exp (-m/T). If T -+ Ty, then clear-
ly the production rate for a particle (fireball)‘of mass m tends to a con-
stant, and to a terribly small one for large mass! How then is it possible
that the average mass of the created particles and their total number should
diverge? The reason is again the exponential mass spectrum p(m) Vv exp (m/To):
for any given m the production rate stays (almost) constant when T -+ T,,

but as there are so many different ones —— infinitely many -- and each one
increases its production rate very little —- infinitely little-- a1l of them
together can yield not only a diverging total number but also a diverging

average mass.

The mechanism is always the same: the exponentially decreasing Boltzmann
factor, which comes from the asymptotic form of the Hankel function, is al-
most compensated by the exponentially increasing mass spectrum; thus we have,

in general, integrals of the type (with A, ..., a set of parameters)

® \ - (E-1)
,I(A)H\JT): F(A)"‘/T)“\"J‘?(A,.\-’WIT\)Q T T M (27)
Mo
where for T ~ T, the function F(A, ..., T) > F(A, ..., Tg) is well behaved
and f(A, ..., m,T) varies less than exponentially in m and is finite for
T = T,. It depends then on the structure of this £(A, ..., m,T) whether for
T > T, the integral over m converges or not; and if not, how it diverges.
For T < Ty it always converges; all the quantities I(A, ..., T) would con-
verge for any T in ordinary thermodynamical theories (i.e. with non—exponen-

tial mass spectrum).

In the following we shall list a few such quantities I(A, ..., T) and
also a few differential ones -— all without proofs [which partly are found

in the paperss) and partly are unpublished; but all are straightfqrward].
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5.1 Energy spectra of particles
(Planck's law)

From formula (4) it follows that the mean occupation numbers are

v = L7 = Xy

X,xg

which by going over to the continuum and replacing the label Yy by m, be-

comes the momentum spectrum

7
- Vi'm p LLP + Mv"lvts
¥M‘P5T)dp— EZTCL 62/7'.* ; [ bvocus J

\/P (29)

( 1)(2 J—-t- 1 ) spin—isospin multiplicity for the

particle in question

[Note: here one sees clearly that our chemical potentials are zero in the
relativistic and -m in the non-relativistic case, because in ordinary
thermodynamics with either given particle number or given chemical poten-—
tial Yo one would have in the denominator an expression exp [(Ekin - o)/
T] + 1, with €rin = p?/2m. We, however, use € = /p? + m? = eéggl) + m, the
ordinary formula written with relativistic kinetic energy would read

exp [(e -m - uo)/T] + 1 and ours is exp (€/T) = 1; thus m + Yo = O.]

5.2 The average number of
particles with mass m

By integrating formula (29) over p one obtains

| 3, m
v ( ')“ 2% m | Kzt‘?‘)q":;z_vzﬂ({,‘f) e v Go

This is the average number of particles of mass m in a volume V if these

particles can be created freely (e.g. pions); if they are bound to be pro-

2

duced in pairs, V° is the number of such pairs (e.g. nucleon - antinucleon

pairs).
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5.3 Average momentum

From formula (29) we find

<P> ~ 9 2mT ks[’). (‘%‘1) = Q \/_2_2”_7
T KQ_ (N?n) Mm>>T w (1)

5.4 Total particle number;
particle number distribution

The average number of created particles with mass in the interval
{m, dm} is

n(m,T) dm = Y(m,T) p(m) dm ,

and the average total number N of particles becomes

N= JHomT)du = (£, G pm)dpdin ~ 8 Z(UT) o

It can be shown that the particle number distribution is almost exactly a

Poisson distribution:

- N N'“

W(M)ce ' N = &LZ(V,T) (33)
m!

j

With P = (T/V) 1n Z we find thus

PV = NT (34)
which formally looks like the equation of state of an ideal gas — only
here N is a function of T in contradistinction to the ideal gas where it
is a given constant.

5.5 Average mass and energy
of the particles

The mean energy per particle is
e pupT) pum) dp dm
[ BanlpT) pL) dAp i

£,

(35)

Il
Z\m
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If in fm (p,T) one neglects the *1 in the denominator (which in the inte-
grals is permitted), then 4

€4="f‘% &*j«ffm(/’ir)(’(”“) dpue =
(36)

ﬁf{%n@ﬂ%ﬂe(M% = 3T+ m(T)

Here m(T) is the average mass of the particles present at temperature T.

Thus the average mass can be expressed in either way

f/m f,m (P/T) f’(’m ) dp&‘hu

m(T)= (37a)
[ o (pT) plun ) dp dhse

(37b)

where the first can be calculated exactly and the second is a very good

approximation (*1 neglected). Here one sees that m will diverge just in

the way to match the strong divergence of E with the weak one of N.

5.6 The partial gas of particles
with mass m > u >> T

Consider the partial gas of all particles with mass greater than yu,

where U is so large compared with T, that

/o
pla) = &35/2 "/ o

Km (:vo ) = g e /T (38b)
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can be considered as exact relations. In that case all the following are

also exact relations:

(39)

Since the average mass diverges like (T, - T)~}, it is obvious that for T
near enough to T, the partial gas with masses > | will be dominating; that
means that all formulae (40) become exact in that limit. Therefore these

formulae illustrate the internal structure of the universal fireball.
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5.7 Energy fluctuations

Perhaps the most important property of the universal fireball is that
the local energy fluctuations do not vanish even for € > ©, The relative

energy fluctuations are

A (EE-FEY _ (.I_’ _4_5)’/z
€ " ——) - \erdr

3 E;fl
%o)

= @luz

E = = 7—’2 D —

& oT

Now in our theory E = V * £(T) and therefore

AE oM _ 4(T)

E - Vv VE (41)

where f, g, h are functions of T alone. Thus as long as we keep T fixed
and consider larger and larger partial volumes V inside our universal fire-
ball, the energy fluctuations in these volumes become negligible like

increases T, then AE/E in this volume is proportional to some function

, as one would expect. If, however, one considers a fixed volume and

g(T), which in the limit T > T, need not and indeed does not vanish in our

theory.

As this seems to be an important point, let us first consider a pure
Y, V, e black-body radiation. From formulae (16) and (41) it follows
that

E(V/T)xve, = VoT*

(42)
o 31
= — = Stefan—-Boltzmann constant of yve-gas.

10

Hence with € = E/V = energy density
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g \Erh VG (E)

E

Z

most like e‘/&, which latter would be considered to be the normal behaviour.

That is: forlthe Yve gas, AE/E vanishes for fixed volume like & “° -- al-

Now back to our theory: in the asymptotic case T - T, we can use
formula (21) to calculate AE/E according to formula (41). The result is
for V.= Vo = (41/3) m;3:

AE 1
E} ) \/: = 0.43 (44)
g 2T 1o

and as we know it is v 1//V, we obtain it for any other volume by multipli-
cation by VV,/V. This is a tremendous energy fluctuation inside volumes

of the order of a nucleon volume. It means that if the average energy
density is about, say, 1000 times the nucleon density, then, looking around,
we will see a considerable fraction of volumes Vo containing only a few
hundred, and another considerable fraction of them containing several

thousand nucleon masses!

Whilst for lower energy densities the relative fluctuations even in-
crease (they do so also in ordinary thermodynamics), their absolute effect
becomes less and less important. Numerical results are displayed in

Figs. 16 and 17.

I feel formula (44) to be a very important result, because it leads
to a conjecture (which I have not yet been able to prove or to disprove,

but which seems plausible):

if the total energy contained in an elementary volume V, can
fluctuate so strongly, then it is to be expected that the
baryon quantum number attached to Vo, may also strongly fluc-

tuate (between positive and negative values).

The qualitative argument goes like this:
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* the partigle number fluctuations vanish for T - T, like
AN/N = N—/2 [see formula (34)]; therefore they cannot

be responsible for the large energy fluctuations;

* 1indeed, the particle number increases only logarithmic-
ally and therefore is always '"small" but we know that
the average mass m(T) of the "few'" particles present in
Vo diverges strongly [see formula (39)] and is respons-

ible for almost all of the divergence of the energy;

* we therefore expect that the strong energy fluctuation
is due mostly to a strong fluctuation of the mass values

of the particles present in Vy (we shall prove that below).

Now, if that is so, then it is quite possible that also the baryon number

in Vo, may strongly fluctuate, because nothing prevents the creation of
fireballs with large baryon quantum number B (as large as m/mp); and since,
then, the baryon quantum number of a fireball will be the larger, the larger
is its mass [for equidistribution it would be % m/(mp/g)J, we must expect
that the established large mass fluctuations may be accompanied by some-
what less spectacular but still considerable fluctuations of the total

baryon quantum number of Vj.

This conjectured mechanism could provide for the strong local
variations of the baryon quantum number, which is required in
the first few instants of the universe in order to explain why

not all hadronic matter has annihilated and why galaxies exist 8).

It should be stressed, however, that large variations of B over distances
>> 1 fermi are not very likely, because the baryon number conservation
acts rather locally [see the discussion of the fourth point (mass distri-

bution of KK pairs, Fig. 5)in Section 3].

It remains to show that the mass—fluctuations are indeed very large.

We start with

oL —_—

pA - —
AN = L - 2 &
"M = M m = m® — (__) (45)
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Here formula (38b) has been used with 34T - 3{To neglected. To calcu-

late ;F‘we use formulae (39):

f/lul N (M,T ) duaw N

me = < 4 J!m?&f(au,‘l‘)aém, %6)
f&(w,‘r)m N 4

For T - T, we have

4 1
_ —m($ -7
Mm(mT)= %‘F‘L@ (T TO) (47)

so that

— 2 . 2
e SR T (' S VI LAY w
NdT N d+

9
=--‘j£-£mz . _ﬁ/ =-i£€ = AEZ [see (40)]

d
A EX MY
thus
— 7 —_ 1 T _ 1
mz:.?./.?) A'M?'z Mt — m ‘:‘A__E-—»/nt 49)
N

9 EQ 12 2 _*
aAm ;—;ﬁ....l-—-(m = A/_.()n - (50)
Ay, N=Z K o
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Thus for large N the second term can be neglected and we obtain the asymp-

totic formula
72 .
2 —_
aAm = /M-N_ (1)
K o

Since formula (50) and the second formula (49) are only different in nota-
tion, we can also in formula (49) drop the -m? and obtain the particularly

illuminating relation

AL N am? (52)

which says that in the limit T > T, the energy fluctuations are entirely
due to the fluctuations of the mass values of those particles present in

VOo

CONCLUSION; OPEN QUESTIONS

We have described a "universal fireball', namely a straightforwérd
extrapolation to a macroscopic scale of objects that are very likely to
exist in high—energy physics. Such a universal fireball might well be
what our universe once has been in its very first moments. We have only
described its thermodynamical properties and some structural ones, but

have not made any attempt to combine them with general relativity to yield

a theory of expansion and cooling. The three main features are the following.

a) The temperature was never higher than T, % 160 MeV, and during expan-
sion from infinite to finite energy density it stays very near to
this value for a long while; when the total energy density has drop-
ped to nuclear density, T is still 103 MeV. Thereafter, with further

expansion, it drops much faster.

b) The total pressure (including Yy, Vv, e, U) is, for T > T, and € > o,

not proportional to Ye as in conventional theories, but only to 1ln €.
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c) Inside small volumes of the order of a nucleon volume V,, the energy
fluctuations are roughly of the order of )4 times the total energy
contained in Vo, and remain so in the limit E/Vy - © (T > T,). These
fluctuations are due to fluctuations of the masses of the particles
inside V,. It is likely that they are accompanied by smaller but
still substantial fluctuations of the baryonic quantum number of V.
If this could be proved to be true, it would be a very important clue

to the understanding of how galaxies are formeds).

Here we have not touched at all on a completely different problem, which
probably also will suffer remarkable changes after coming up against the
conventional treatment: that is, the behaviour of cold superdense matter,
where the hadronic mass spectrum weakens the effect of the Pauli principle,
This has élready been realized long ago, but so far nobody seems to have
published results using an exponential spectrum?). Unfortunately the
problem is technically more difficult than the one dealt with in this

paper.
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APPENDIX
Units transformed
{cGS} versus {h =c =k = 1, MeV}
lg =5.612 x 10%2% MevV
lem = 5.068 x 10*° Mev™!
1 sec = 1.519 x 1021 Mev™!
1 MeV = 1.782 x 10727 g
= 5.068 x 10'° cm !
= 1.519 102! sec !

, 1 Mev _ . _ 1.591 11 _cm _ 10 _cm _
check: 1T MeV 1 5 068 x 10 Sec 2.998 x 10 Sec c
Derived quantities:

Density 1 cm ? = 7.682 x 10733 Mev?
lgem™® =4.311 x 10 Mev*
Velocity 1 cm sec” ! = 3.336 x 10 '!
Acceleration 1 cm sec” 2 = 2.196 x 10~ 32 MeV
Force 1 dyn =1.232 x 107° MeVv?
Energy 1 erg = 6.242 x 10° MeV = 624 GeV
Temperature 1°K = 8.616 x 10 '! Mev
1 MeV = 1.1606 x 10!° °k
To = 160 MeV = 1.857 x 10'% °K
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Figure captions

Fig. 1 : The smoothed experimental mass spectrum as it developed from
October 1964 until January 19675(various dotted lines), and

/s

the function p(m) = a(m} + m?) exp (m/Ty) that has the

asymptotic form required by the thermodynamical model.

Fig. 2

oo

The mean transverse momentum <p_L> as function of the mass
of the particle and the temperature of the place from where

it is emitted. T may be considered roughly as the mean

value of the temperature over the interaction region.
Experimental values (12-30 GeV/c) should lie near T ¥ 128 MeV;
antiprotons come from the hét centfal regions, protons also
from the cold peripherical regions of the collision, hence

T5 > TP. Some cosmic-ray data coming from very high primary
energy have been drawn in. They approach the limiting curve
(T = 160 MeV). [The references quoted as 27 are given in

(II) from which this figure is taken.]

Fig. 3 : Comparison of the total charged multiplicities (obtained by
integrating our spectra) with experimental values.
This figure is taken from (II): "our spectra' are calculat-

ed there; the references 21 and 22 are listed there, too.

Fig. 4 : Reduced (in the sense explained in III) production rates

for heavy pairs. For details see (III).

Fig. 5 : Experimental mass distribution f(M?) of KK pairs from pp
annihilation at 1.2 GeV/c compared to two thermodynami-
cal distributions obtained under the assumptions that K and
4 originate from the same or from distant locations, respect-
ively. Details and references are found in (II) from which

this figure is taken;

Fig. 6 : The m lab. spectrum (pp, = 30 GeV/c) with some typical
experimental errors drawn in. Our curves result from a
common ''one essential parameter' - fit together with K and

p. This figure is taken from (II); references are given there.
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p lab. spectrum (po, = 30 GeV/c) with some typical errors
drawn. Our curves result from a common fit to p and m
(only 30 GeV/c data) with three "essential parameters'. This

figure is taken from (II); references are given there.

The energy density €(M,T) if the hadronic mass spectrum p(m)
grows like exp (m/T,) only up to m ¥ M and then tends to
zero. T, becomes exhibited fo;'M R 10 GeV; the presently
(1969) known mass spectrum (M n, 1 GeV) cannot explain the
distinguished role which T, A 160 MeV plays in high-energy
physics. While all results presented here could be obtained
from the assumption M g, 10 to 20 GeV, only M = » (our

model) leads to a self-consistent picture.

The energy/102 in one elementary volume Vy. The various
curves denote:

A: exact total energy (hadrons + Yy, Vv, e, HU);

B: asymptotic formula (21);

C: partial energy of hadrons;

D: partial energy of vy, v, e, U.

In this energy scale mP lies near to 10.

The energy/10® in one elementary volume Vo,. The various
curves denote:

A: exact total energy (hadrons + Y, Vv, e, W3}

B: (dotted) asymptotic formula (21);

C: partial energy of hadrons;

D: partial energy of Yy, v, e, U.

In this energy scale mp lies near to 1.

The energy/10* in one elementary volume V,. Here the exact
(A), the asymptotic (B) [formula (21)] and the hadronic con-
tribution (C) become equal and the non-hadronic contribution
(D) is negligible. 1In this energy scale 10 corresponds

to 100 m_.
p

The pressure/lO8 as function of T/Ty. The various curves
denote:

A: asymptotic formula [multiply_Eq. (19) by TO/VOJ;
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B: exact total pressure (hadrons + Yy, Vv, e, U);

C: partial pressure of vy, v, e, U;

D: partial pressure of hadronms.

Above T/To = 0.95 the asymptotic formula becomes good,
below T/Ty = 0.5 the hadron contribution may be neglected.

Pressure/10% as function of energy density/loe. The curves
denote:

A: asymptotic formula (25);

B: total pressure;

C: partial pressure of vy, v, e, Uj;

mp/V0 lies near to 5 in this scale for the energy density.

Pressure/10% as function of energy density/10°. The curves
denote:

A: asymptotic formula (25);

B: total pressure;

C: partial pressure of vy, v, e, U.

In this scale of energy density 10 corresponds to about 20
times mP/VO.

Pressure/10% as function of energy density/10'°. The curves
denote: - ‘

A?Y B total pressure [asymptotic formula (25) valid];

C: partial pressure of Yy, v, e, U.

In this scale of energy density 10 corresponds to about 200
times mp/VO.

Relative energy fluctuations in Vo as function of T/T,.

The curves dénote:

A: total AE/E;

B: AEy,v,e,u/E;

C: AEhadron/E V
Curves A and C tend to 03’2 for T > Ty, (dotted line C).

Relative energy fluctuations in Vo as function of energy/lO3
in Vy. The curves denote:

A: total AE/E; .
B: asymptotic value ap 2}
c: AEhadron/E;

D: AE /E
YsVse,u .
In this energy scale mp lies near to 1.
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a=263%10* [MeV¥2)
mMp=500 [MeV]
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