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ABSTRACT

In photonic flat-band (FB) systems, which are characterized by a halting of light transmission, perturbations can play a major role in deter-
mining the transport properties of the system. In this work, this is exploited by purposefully including impurities in a photonic diamond chain
with a constant synthetic flux per plaquette so that an effective system of choice can be tailored from the FB. By tuning both the separation
between impurities and the flux value, any coupling distribution can be engineered. The effective system can also exhibit a nontrivial topology
as we demonstrate by imprinting a Su-Schrieffer-Heeger model on the diamond chain, which is further shown to have enhanced robustness
to disorder due to the extension of the impurity modes. Furthermore, effective non-Hermitian systems can also be realized by employing
complex-valued impurities. We propose an implementation of the system in a lattice of optical waveguides carrying orbital angular momen-
tum modes, where a phase in the coupling can be included and controlled geometrically. There, variations of the refractive index of chosen
waveguides generate detunings that act as impurities, which couple together to form the effective system. This work opens the way for the

design of topologically nontrivial models in other FB systems, or in other physical platforms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0232163

I. INTRODUCTION

Photonic flat-band (FB) systems"’ have garnered consider-
able attention in recent years as platforms to study and visual-
ize fundamental light transport and localization properties, whose
counterparts in condensed-matter analogs are considerably more
challenging to observe.” Photonic FBs also have the potential for
applications in varied topics such as dispersionless imaging,"’
slow light,”® and enhancement of nonlinear processes.” Systems
of coupled optical waveguides,”'" photonic crystals,'”"” exciton-
polaritons'* and optically induced lattices in photorefractives, '
among other diverse physical platforms,’” *' have all been proven
to be promising for the implementation of FB systems. FBs are, in
general, characterized by an absence of transport, by virtue of them
being completely dispersionless, and can arise due to the protection
provided by a particular symmetry of the system or the fine-tuning of
the parameters of the considered lattice.”” The study of light localiza-
tion in FBs is usually tied to the existence of compact localized states
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(CLS),* which are eigenmodes of the lattice with strictly zero field
amplitudes beyond a finite number of unit cells. This localization
occurs due to destructive interference over different coupling paths.
Since FBs lack any transport of their own, a perturbation affect-
ing them can have strong effects on the transport properties of the
lattice.”

Our aim is to use this high sensitivity to perturbations to our
advantage, with the final objective of imprinting a desired effec-
tive system by tailoring the FB. This is achieved by purposefully
including impurities in the system: by adequately engineering the
distribution of impurities, the properties of the effective system can
be tuned, allowing to build a wide range of different models. Of
particular interest is the ability to bestow these effective systems with
a nontrivial topology, thus gaining access to topologically protected
modes. In this work, we consider a photonic diamond chain lattice
with a finite flux per plaquette, which possesses a gapped FB in
the spectrum of propagation constants whose modes can be writ-
ten as CLSs. By introducing diagonal impurities in a plaquette of the
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chain, we perturb the CLSs with finite amplitude at that position.
For nonzero flux, adjacent CLSs become coupled and generate a set
of exponentially decaying impurity modes whose localization length
depends on the flux.”* Further decorating the lattice with additional
impurities enables couplings between the corresponding impurity
modes, whose strength can be controlled by the value of the flux
and the distance between impurities. To showcase the method, we
imprint a Su-Schrieffer-Heeger (SSH) model”® by staggering the
distances between impurities. We first briefly describe the theoret-
ical method behind the formation of the effective system, which
was introduced in Ref. 24 for a single impurity. Here, we instead
focus on the generation of an effective system that is formed through
the coupling of separate impurity modes. We place the spotlight
on the appearance of the edge mode of the SSH model, which is
localized around the end of the chain of impurities. We study its
robustness against different types of disorder and show how it dis-
plays enhanced protection even against disorder that breaks its chiral
symmetry due to the extension of the impurity modes.

Finally, we provide a possible route to implement the described
system. We require a way to imprint a finite flux per plaquette
onto a diamond chain, as well as a way to decorate this chain with
controlled onsite impurities at certain sites. In photonics alone, sev-
eral platforms have been shown to provide a controllable way to
introduce these fluxes, such as ring resonators with different opti-
cal paths,” " twisted or modulated lattices,”” "’ fiber loops,”’ "’
and optical waveguides with multipolar components™’* or guiding
orbital angular momentum (OAM) modes,""” among others. We
focus on the latter, which additionally allows for a simple method to
add the impurities experimentally by slightly modifying parameters
such as the writing speed in laser-writing setups*” or the waveguide
width in beam lithography setups.”’ The coupling between OAM
modes carries a phase that can be used to imprint an artificial gauge
field on the system.*® To build the diamond, we propose to couple
modes with different OAM order [ in a zig-zag pattern. In particular,
modes with [ = 0 will correspond to the spinal nodes, while modes
with I = +1 will be split in a synthetic dimension and play the role
of top and bottom nodes.” In this setup, the relative angle between
waveguide pairs will determine the value of the flux, which can be
tuned to any desired value.

diamond chain with uniform couplings ¢ and a non-zero reduced
magnetic flux across each plaquette, ¢ = 271%, where @ is the mag-
netic flux and @ is the magnetic flux quantum. In this scenario,
there exists a basis of non-orthogonal CLSs in the FB of the sys-
tem, each one spanning two plaquettes [see Fig. 1(a)]. Considering
the A, B, and C sites consecutively at plaquettes j and j+ 1, the
jth normalized CLS has the following form, where “Loc” stands for
“Localized,”

1 it e T
|LOC’]‘>:£(...,O)1)_€ 12’0,612)_1)...) R (1)

and is zero elsewhere. As is obvious from expression (1), this CLS
will only overlap with the ones at plaquettes j+ 1, with strength
Sj.je1 = {Loc, jlLoc, j+ 1| = %cos% = Sjs1,j, and thus, the overlap
matrix of all localized states will be tridiagonal, with main diago-
nal elements Sj; = 1 from normalization. We now add impurities
to the top and bottom sites of a single plaquette at unit cell g + 1,
with g = N/2 and N assumed even, of an open diamond chain with
N + 1 unit cells that contains N CLSs in the FB. The corresponding
impurity operator has the general form

V= &|Bg+1)(Bgr1| + £.]|Cqe1){Cys1l, (2)

where ¢, and ¢, are local impurity potentials, left as free parameters.
From here, one may think of building an effective dimer model out
of the two CLSs directly affected by the impurity potentials, i.e.,
|Loc,g) and |Loc, g + 1). However, the basis of CLSs is not orthog-
onal, and its orthogonalization leads to modes that are localized
but span across several plaquettes. As a consequence, several other
modes will also have nonzero weight on the impurity sites, and
the effective model will not be restricted to two modes. Alterna-
tively, one might work in the dual basis of localized states found via
[Loc,i*) =% Sg}|Loc, j),** where S;; are the elements of the overlap
j

matrix S, with S,_J1 := [S7'];. Projecting the impurity operator onto
this basis leads to

X g+1
V= > |Loc,n™)Vum(Loc,m"|
Il. EFFECTIVE IMPURITY SYSTEMS el
q+1
We briefly summarize the theoretical development outlined in =vy [n W n"|+ [W|q +1°)(q" ] + H.c.], (3)
Ref. 24 and in Fig. 1. In particular, we focus on the case of a photonic n=q
(a) B |L,QC’,q>\,,,‘LOC?,q+ 1) Dual (b) 8_3 Orth. (c)

O O @ O O basis

40 O O O 0 O iy

0 0 @ O O

¢

i
|Loc,¢*) |Loc,q+ 1*) -’."-‘.'"

FIG. 1. Summary of the theoretical description of the effective impurity system. (a) The CLSs of the diamond chain located in the two neighboring plaquettes to the one with
onsite impurities e, and ¢, (yellow and blue shaded regions) have a direct overlap on these sites. However, the CLSs do not constitute an orthogonal basis, so other modes
of the FB besides the two CLSs shown in (a) will also have such an overlap when orthogonalizing. To restrict the effective system to two states only, we switch to a dual basis
(b) where the impurity operator affects only two localized states that can then be orthogonalized independently to all other modes. Finally, diagonalization of the impurity
sub-system leads, when reverted back to the site basis of the chain, to the two exponentially decaying modes in (c), whose amplitude distribution depends on the impurity

values and the flux per plaquette.
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FIG. 2. (a) A diamond chain decorated with a staggered impurity distribution in the top and bottom sites hosts two effective SSH sub-systems. (b) Spectrum of propagation
constants for a photonic diamond chain of N = 101 unit cells and 13 impurities &g = ¢ = & = 0.1t, with ¢ = /2 and relative distances di = 8 and d, = 6 that yield a
coupling ratio of t;” /t;” = 0.17. From the FB, two effective SSH systems centered around different propagation constants (orange and green dots) emerge as a consequence
of the coupling of impurity modes. (c) Spectrum of the SSH system with lower propagation constants (orange dots) highlighted in (b). The mode marked with a red circle is
its topological edge mode. We show in (d) the absolute value of its amplitudes on each site for a segment of the chain.

where V= (Loc,n|V|L0c,m), and we skip the “Loc” indica-
tor in the second line for brevity. In the dual basis, v = %

behaves as a local potential on the dual CLSs at q and g + 1, and
w= (eBe_i% + sCe’%) /4 is a coupling term that acts exclusively
between them [see F'ig. 1(b)]. Therefore, one can now independently
orthogonalize the two relevant CLSs and work on a reduced sub-
space of impurity modes. Following Ref. 24, one can show that for
equal impurities e = ¢ = ¢, the effective impurity matrix in the new
orthogonal basis reads

Vi = 5 (00 + o), “@

where o0y is the identity and o, is the x Pauli matrix and where
6 =cosh™ (sec %) contains the flux dependence. Diagonalization of
this system leads to the two eigenvectors depicted in Fig. 1(c), with

eigenvalues
(i
Bs = 5 (1 +e ) (5)

As illustrated in the right panel of Fig. 1, these are exponentially
decaying modes that are pulled from the FB and that will behave as
the main sites of an effective system when decorating the lattice with
more impurities. The two modes have different propagation con-
stants within the gap between the FB and the top band, implying that
two decoupled copies of the effective system are, in fact, generated,
as sketched in Fig. 2(a).

Ill. RESULTS
A. Effective SSH impurity chains

We consider a diamond chain of N =101 unit cells with
nearest-neighbor coupling ¢ and nonzero flux per plaquette ¢, deco-
rated with a series of 13 impurity pairs in the top and bottom sites,
following a staggered pattern as sketched in Fig. 2(a). In particular,
we use d; = 8 and d, = 6 plaquettes of separation between impuri-
ties, with d; (d>) at the left (right) end of the chain. The induced

APL Photon. 9, 120801 (2024); doi: 10.1063/5.0232163
© Author(s) 2024

impurity modes couple between themselves forming an effective sys-
tem. As described in Appendix A, the coupling between the impurity
modes depends exponentially on their separation. Therefore, the
effective system displays the staggered coupling distribution that is
characteristic of the SSH model.”> We consider the case where the
impurities take values eg = ec = 0.1t with a flux of ¢ = 7/2. To avoid
cutting the exponentially decaying tails of the edge most impurity
modes, which would perturb the ends of the effective system, 13 pla-
quettes before the first impurity pair are left impurity-free at both
ends of the chain. As we showcase in Fig. 2(b), two SSH-like sub-
spectra emerge above the FB (orange and green dots). Other choices
for the impurity values similarly produce one or two impurity spec-
tra around different propagation constants.”’ In this manuscript, we
focus on the spectrum of lower propagation constants (orange dots)
in Fig. 2(c), which can be readily recognized to belong to an SSH
chain. The highlighted mode in the middle of the gap corresponds to
the edge mode of the effective system, whose amplitudes are shown
in Fig. 2(d). Interestingly, this edge mode is not localized around
the edge of the diamond chain, but rather around the edge of the
impurity sub-system.

The features of the effective systems may be controlled by
tuning the parameter values of the diamond chain. By choosing
an appropriate distribution for the impurities, one may design a
wide range of one-dimensional (1D) models. Nonetheless, the flux
through each plaquette remains a key property as it affects both the
propagation constants and the couplings of the effective system, as
can be seen from (4). In particular, the extension of the impurity
modes grows for weaker flux as does the coupling between modes
localized around adjacent impurity pairs and the gap of the effec-
tive system. This fact is proved in Appendix A, where the coupling
strength is plotted for varying fluxes and different impurity separa-
tions. The changes in the extension of the modes with the flux are
further showcased in Ref. 24.

Most notably, the coupling between impurity modes is not lim-
ited only to real values and can be pushed into the complex plane by
including complex onsite potentials. In particular, one can impose
¢ = |¢]é®, which has two main consequences in the spectrum, as we

9, 120801-3
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showcase in Fig. 3 for p = 7/4. First, all eigenmodes in the conduc-
tive bands with finite weight on the impurity sites pick up a small
imaginary component in their propagation constants. This effect,
however, is nullified when the impurities are balanced, i.e., eg = —¢c.
Second, and more interestingly, the spectra of the effective SSH
systems rotate along the complex plane according to the angle p, as
can be seen in the inset in Fig. 3. By virtue of this rotation, one can
readily observe that the effective Hamiltonian of each SSH becomes
Her = e Her compared to the case of Fig. 2, implying that they are
now non-Hermitian. This effect could open up the possibility of
experimentally exploring non-Hermitian couplings in FB systems
by employing lossy impurities, where the coupling strength is deter-
mined by the flux per plaquette and the angle of rotation p by the
included losses.

50 300

B. Disorder

Due to the dependence of the extension of the impurity modes
on the flux, a disorder on the flux translates into disorder in both
the onsite detunings and the couplings of the effective system and,
thus, breaks the chiral symmetry of the effective SSH model. We
introduce a random flux disorder of strength # in each plaquette,
¢; = ¢ + 1;, sampled from a uniform distribution 1 ; € [-#/2,7/2], as
sketched in Fig. 4(a). We explore the consequences of this disorder
by checking the variation of the edge mode gap A = min(|8 0~ Bt D
for the edge mode g of the SSH system in Fig. 2(c) as the perturba-
tion is increased. We plot in Fig. 4(b) the size of this gap and its
standard deviation for different values of the central flux ¢, averaged
over 1000 random realizations for each 7, in steps of Ay = 0.01 rad.

(b) 1.5 () 1.
¢ =|=n/2 /4 ¢=|—m/2 /4
(a) ol 1 /3 /6 0.8} —7/3 /6
i r -
S 506
o Gy - = g
=05 \ E
< 0.4f —
I —
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
7 (rad) 7 (rad)
(e) 1.5 [
(d) . 0.8
\8 1+t <T 0.6
E 3
590 N 0afl N
0 N
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
T/t 7/t

FIG. 4. Effects of disorder on the spectrum of the effective system of Fig. 2(a). (a) Sketch of flux disorder, where each plaquette is threaded by a random flux centered
around ¢. (b) Average gap size A of the edge mode of the effective SSH model (solid lines) and standard deviation (shaded region) for increasing flux disorder strengths
and different values of ¢. (c) Disordered gap size A relative to the clean system’s gap A for different values of ¢. (d) Sketch of uncorrelated coupling disorder, where each
link displays a random coupling sampled uniformly around t. (e) Average gap size (solid lines) and standard deviation (shaded regions) for uncorrelated coupling disorder
for the same central flux values ¢ as in (b). (f) Gap size relative to the clean system’s gap for uncorrelated coupling disorder.
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We see that disorder distorts the effective system, reducing the gap,
on average, for increasing flux disorder. In general, however, for a
weak ¢, the system displays a larger gap that is also more resilient
to disorder compared to fluxes closer to 7. This is made evident in
Fig. 4(c), where the average gap is compared to the one for the pris-
tine system, Ay, for different values of ¢. The plot shows how weaker
fluxes display a slower decay, even for values of disorder of the same
order as ¢ itself. This behavior is closely related to the extension of
the impurity modes. Although flux disorder breaks chiral symmetry,
the impurity modes feel the effects of an averaged disorder over their
whole characteristic length,”' which tends to the effective restoration
of chiral symmetry. This average effect becomes stronger for longer
extensions, implying an overall weaker effect of the disorder, hence
explaining the higher robustness against it as one reduces the flux.”*
The flux-dependent extension of the impurity modes thus becomes
a pivotal property of the system.

On the other hand, when disorder in the couplings on the dia-
mond chain is introduced in a correlated manner, as detailed in
Appendix B, this translates into off-diagonal disorder in the effec-
tive system, against which it is protected. In contrast, completely
uncorrelated coupling disorder, as sketched in Fig. 4(d), affects the
amplitude distribution of the CLSs themselves as well as their over-
lap,”* thus affecting the effective impurity system in a similar manner
to flux disorder. We prove this fact by including a random cou-
pling disorder in each link such that ¢; = ¢ + 7; for 7; € [-7/2,7/2].
In Figs. 4(e) and 4(f), we plot the average gap size and its standard
deviation for different values of ¢ and its comparison with the one
on the pristine system, respectively. Following the trend depicted in
Figs. 4(b) and 4(c) for flux disorder, we observe how uncorrelated
coupling disorder heavily affects the spectrum and the gap of the
effective system but is partially resisted, on average, for low fluxes
even for disorder strengths up to 50% of the value of t. In contrast
and as we showcase in Appendix B, the effective system is protected

against correlated disorder due to its chiral symmetry. Results for
the other non-highlighted sub-system are similar to those depicted
here. Nonetheless, when comparing the two systems, the one with
lower propagation constants displays higher robustness to disor-
der owing to the higher extension of its modes that enhances the
disorder averaging effect.”*

IV. IMPLEMENTATION

We consider a zig-zag chain of optical waveguides with a rela-
tive distance of d and a staggered relative angle of 6, as depicted in
Fig. 5(a). These will guide orbital angular momentum (OAM) modes
of the form

\I,:tl(r) 9, Z) _ wil(r)e;til(@—q)o)e—iﬁ,z) (6)

where [ is the OAM charge, (7, ¢, z) are the cylindrical coordinates
centered at each waveguide, y*(r) is the radial mode profile, ?,
is an arbitrary phase origin, and ; is the propagation constant of
the mode. According to the modes that are guided in each case, we
will consider two types of waveguides. The first set [lower row in
Fig. 5(a)] will guide only the fundamental I = 0 mode, while the sec-
ond set [upper row in Fig. 5(a)] will also guide the I = £1 modes.
By tuning the refractive index contrast of both sets, one can achieve
phase matching between the aforementioned / = 0 and = +1 modes.
In such a scenario, this subset of modes forms an effective diamond
chain model by considering the mode circulations as a synthetic
dimension. The I = 0 modes become the central sites and the [ = +1
modes become the top and bottom sites of the diamond, respec-
tively, as shown in the right-hand side of Fig. 5(a). Furthermore, it
is known that the coupling between OAM modes picks up a phase
according to their momentum charge and their circulation, as well

(a) Yo =1
@O\ © © ©
® ® ® ® ® =
=0
(b) 3.55 X100
330277 <10
3.5
3450
3.4 | 330200 -
e O
3.35 330202 %10
3.3
e o
3.25
3.30277
3.2
0 120 240 360

Mode number

FIG. 5. Implementation of the effective SSH model in a lattice of waveguides hosting OAM modes. (a) Coupled optical waveguides forming a zig-zag chain with alternating
I'=0and /= +1 OAM charges and a staggered relative angle 6 with respect to the reference axis ¢, which behaves as diamond chain lattice with a flux per plaquette
of 20. The | = +1 modes can be split in a synthetic dimension that forms the top and bottom sites of the diamond. (b) Spectrum of effective mode indices with respect to
the cladding index, i = ng — no, for a waveguide lattice of N = 59 unit cells, a relative angle of 6 = /4 (¢ = m/2), and 13 impurity pairs in a staggered pattern ds = 8
and d, = 6. The insets highlight the lower SSH sub-system (orange dots). Since each waveguide can host two orthogonal mode polarizations, the eigensolver picks up two
orthogonal spectra for each SSH system and the spectrum appears doubled. (c) Electric field norms on each waveguide for the edge mode circled in red in (b).
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as the coupling angle 6 with respect to an arbitrary direction ¢,
[see Fig. 5(a)], i.e., t;,, = tei(h=h)0 22751 Considering our geometry
and that we are coupling /; = =1 and L, = 0 modes, this implies a
flux per plaquette of twice the geometric angle 26 throughout the
diamond chain. Therefore, any arbitrary value for the flux can be
generated by tuning this angle. The implementation of the system
in Fig. 2(a) is completed by perturbing the refractive index of the
I = +1 waveguides. Since the two OAM components that form the
top and bottom sites in the diamond come from the same physi-
cal waveguide, we are limited to a symmetric impurity eg = ec = ¢
distribution in the effective system.

For our numerical simulations, we consider cylindrical wave-
guides of radius R=12 pym separated by a relative distance
d = 55 ym and with a cladding refractive index of n = 1.48. The I = 0
waveguides display a contrast of Ang = 107*, and the matching con-
trast for [ = +1 waveguides is computed to be An; = 2.579 x 10~
for a wavelength of A = 730 nm. We impose small impurities on
top of some [ = +1 waveguides by adding an additional contrast of
Atimp = 6 1077 at alternating distances of 8 and 6 unit cells to
achieve the staggering and choose a relative angle of 6 = 77/4 equiv-
alent to a flux value of ¢ = 71/2. Using these parameter values, we
simulate a chain of N =59 unit cells using the commercial finite-
element solver COMSOL Multiphysics. We consider fewer unit cells
compared with the results in Sec. IIT due to the limitation of com-
putational memory allocation, but this does not affect the generality
of the results. As depicted in Fig. 5(b), we obtain the eigenmodes of
the structure, closely matching those obtained in the tight-binding
model. The insets of the figure show that we obtain a doubled spec-
trum, which is due to the orthogonal mode polarizations that can
be guided by the waveguide structure. These have similar mode
profiles but different projections (Ey, E,, E.) and are both picked up
by the eigensolver. We showcase in Fig. 5(c) the amplitudes |E| in the
waveguide system of the highlighted edge mode in the bottom right
inset of Fig. 5(b).

The simulations display a very good agreement with the theo-
retical results. However, there exist two possible sources of discrep-
ancy with the original model in the form of additional couplings.
For the limiting case of 6 = 77/2 and thus a flux of 7, the next-nearest
neighbor (NNN) distance between waveguides becomes as short as
v/2d. Even then, considering their exponentially decaying nature,
the NNN couplings are usually neglected.** We show in Appendix C
that they are an order of magnitude lower than the main coupling
t, but nonetheless they perturb the bands of the system and cause
some modes of the flat band to tilt to lower propagation constants.
Since our method relies on pulling CLSs from this flat band, we limit
ourselves to angles smaller than 7/4 (and thus fluxes smaller than
7/2) where these couplings are already two orders of magnitude
lower than t and therefore can be safely ignored. Another effect
of interest is the appearance of self-couplings within the [ = +1
waveguides due to the breaking of the cylindrical symmetry by the
presence of other nearby waveguides.”” In Appendix C, we prove
how these self-couplings are around two orders of magnitude lower
than t for our parameter values, so they also have a negligible effect
on our system.

Finally, we consider the stability of the method to imperfec-
tions in the waveguides that deviate from a perfect cylindrical shape.
Previous experimental studies’® have shown that even when devi-
ating from perfect cylindrical waveguides, OAM couplings can still
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generate an artificial gauge field as observed through the
Aharonov-Bohm caging effect. Of course, the shape of the vor-
tices deteriorates due to the ellipticity as the propagation distance
increases. As shown in Ref. 47, for elliptical waveguides, I = +1
modes are no longer exact eigenmodes of the system and a coupling
that we denote as 7, appears between them due to the breaking of
the cylindrical symmetry in the waveguide. In Appendix D, we detail
the finite-element simulations performed for a slight ellipticity in
two scenarios: with the major semiaxis aligned (a) with the global
x-axis and (b) with the coupling line [see Figs. 12(a) and 12(b)]. As
shown in Appendix D, in case (a), 71 has a phase, which perturbs
the flux through each plaquette and heavily distorts the bands of the
system. Conversely, in (b), 7; is real, and the system can withstand
ellipticities that are an order of magnitude larger without major band
deformation. A clear conclusion can be extracted from these results:
even if the OAM coupling scheme is sensitive to the cylindrical sym-
metry of the waveguides, if the ellipticity that is produced during
fabrication is known, one can reduce its effects on the effective sys-
tem by aligning the major axis to the coupling line. Experimentally,
the challenge of obtaining perfectly cylindrical waveguides is thus
substituted by a problem of waveguide alignment.

V. CONCLUSIONS

We have demonstrated a method to engineer a system with
a fine-tuned coupling distribution from the CLSs of a FB lattice,
whose parameters are controlled via the flux that threads the pla-
quettes of the original system. By decorating the FB lattice with
onsite impurities, CLSs can be made to couple, giving rise to an
effective system in the subspace of exponentially decaying impu-
rity modes. An appropriate choice for the impurity positions leads
to a manifestation of non-trivial topology and the appearance of
edge modes. To exemplify the method, we imprint an SSH model
on top of a diamond chain lattice with nonzero flux per plaquette.
By alternating the relative distance between impurities, the charac-
teristic staggered coupling distribution of the SSH model, with its
chiral nature, is achieved. We then study the behavior of the effec-
tive system when disorder of two kinds is introduced in the system.
When correlated coupling disorder is applied and, thus, chiral sym-
metry is preserved, the effective system is immune to it. On the
other hand, when flux disorder or uncorrelated coupling disorder
is introduced, chiral symmetry is no longer satisfied. Nonetheless,
owing to the large spatial extension of the impurity modes, the dis-
order is averaged out over their characteristic lengths, which, in turn,
implies a lower distortion of the spectrum of the effective system.’’
This effect of enhanced robustness to chiral-breaking disorder is
also amplified at lower fluxes, where the extension of the modes
is larger.”

Additionally, we provide a route for an experimental imple-
mentation of the proposed system using optical waveguides guiding
light with OAM. The coupling of different OAM modes introduces
a phase component in the couplings by controlling the geometric
angle between waveguides. This phase serves as an artificial gauge
field that provides the necessary flux to the system. Moreover, the
different circulations of / = +1 OAM modes are used as a synthetic
dimension and translated as the top and bottom sites of the diamond
chain, while / = 0 modes form the central sites. The onsite impurities
can be included by manipulating the propagation constant of the
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corresponding waveguides. We note that a proposal for implement-
ing the diamond chain was also independently put forward in Ref.
55, but the role or the implementation of impurities that allows us
to engineer the effective systems was not considered there. The pro-
posed platform gives complete freedom over the choice of the flux
per plaquette, closely replicating the diamond chain for fluxes lower
than 7/2 and with minor band distortions for fluxes nearing 7. We
also perform an analysis of how the effects that deviations from ellip-
ticity in the waveguides have on the spectrum of the system can be
reduced, if the ellipticity is known, by aligning the elongation to the
coupling line between waveguides.

The method for generating effective models by impurity deco-
rating flat band systems with non-orthogonal bases can be readily
generalized to higher-dimensional systems. Furthermore, and as
exemplified here, effective non-Hermitian couplings are also eas-
ily achievable by including onsite gains and losses at the impurity
sites of the underlying lattice, opening a promising FB-based venue
for the study of non-Hermitian physics. This adds an alternative
to other existing proposals to induce non-Hermitian couplings,”® **
such as through adiabatic elimination of auxiliary modes with com-
plex refractive indices”*’ or by introducing gain and loss gradients
in two-dimensional (2D) cavities.®’ Aside from optical waveguides,
other platforms capable of controlling the phase of the couplings,
such as ring resonators, could be well suited for an alternative
experimental implementation.
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APPENDIX A: COUPLING BETWEEN IMPURITY MODES

To check the exact dependence of the coupling between dif-
ferent impurity modes, we place two sets of equal impurities on
different plaquettes in the diamond chain. To extract the coupling,
we check the gap between the two induced impurity modes with
lower propagation constants as we change the relative distance and
define the coupling as

=2 (B -Bo), (A1)

with 8, (_) being the propagation constant of the higher (lower)
mode. We plot the obtained coupling dependence with the distance
between impurities in Fig. 6(a), where we observe that it displays
an exponential dependence on their separation, confirmed also by
the inset. We also see that the decaying of the curves is slower for
smaller fluxes, in agreement with the larger extension that the impu-
rity modes present.”* This is further proved in Fig. 6(b), where we
now plot the coupling with respect to the flux for different sepa-
rations. Since the coupling is larger for lower fluxes, the extension

(8) 0.01 —
—e— ¢=7/2 —e— ¢p=m7/4 O:W/G‘
\ 10!
So005F | e L
10
2 4 6 8 10 12 14 16 18 20
d
0
2 4 6 8 10 12 14 16 18 20
d
3
(b) 25210 : : :
[e—d=6 —od=8 d=10|
2+ 107!
- 1.5 T
=
1 10-1
7/5  2n/5 nj5  Anjs 7
0.5 ¢
0 Bam S S — —0—0—0—0—0—
/5 27 /5 3n/5 4 /5 71'

4

FIG. 6. (a) Coupling strength between two sets of impurities with eg = e¢ = 0.1¢
with respect to the number of plaquettes separating them for different flux values.
The inset shows the same curves in a logarithmic scale. The coupling values cho-
sen for Fig. 2(b) in the main text, namely, those for d4 = 6 and d, = 8 for ¢ = ’5’
are highlighted with blue circles. (b) Coupling strength for the same impurity val-
ues, this time for varying fluxes and fixed impurity distances. The higher extension
of the modes for lower fluxes is reflected by the increased coupling strengths.
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FIG. 7. Effects of correlated coupling disorder on the spectrum of the effective
system. (a) Sketch of the considered disorder, introduced in quartets as indicated
by the different link colors. (b) Average gap size A of the edge mode of the effective
SSH model (solid lines) and standard deviation (shaded region) for different flux
values. In this scale, the shaded region is too thin to be observed.

of the modes is necessarily larger as well. The curves in Fig. 6
allow us to build a map between couplings and distances, which
can also be tuned by controlling the flux on the lattice. Based on
it, any coupling distribution can be engineered. The plot for the
set of impurity modes with higher propagation constants presents
very similar results as those depicted in Fig. 6. This may seem
counter-intuitive, considering the fact that the lower modes possess
a comparatively larger extension. The amplitudes of the impurity
modes of higher and lower propagation constants for different fluxes
can be found in Ref. 24. When numerically computing the coupling,
the different behavior of the central peak at the plaquette hosting the
impurities as well as the exponential amplitude tails in both cases
seems to lead to approximately equal results.

APPENDIX B: CORRELATED COUPLING DISORDER

As described in the main text, coupling disorder only behaves
as chiral for the effective system when introduced in a correlated
manner. As CLSs occupy two plaquettes for fluxes between 0 and
7, any coupling disorder within the span of each CLS will affect their
amplitudes and propagation constants, hence breaking the chiral
symmetry of the effective system. For the disorder to be chiral, it has
to be introduced in hopping quartets,’’ as highlighted in Fig. 7(a),
so that it may affect the coupling between impurity modes without
distorting the CLSs themselves. We plot in Fig. 7(b) the effects of
this disorder on the gap size of the effective system. Comparing with
Fig. 4 in the main text, we observe that the edge mode gap is immune
to correlated disorder even for ¢ = 7/2.

APPENDIX C: COUPLING BETWEEN OAM MODES

As described in Ref. 52, symmetry considerations reduce the
number of independent components in the analysis of the coupling
between OAM modes. In addition to the nearest-neighbor cou-
plings discussed in the main text, one may also consider the effect of
longer-range couplings between the closest waveguides of the same
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l=%x1 [I==1

FIG. 8. Coupling scheme between waveguides with different OAM modal content.
The left-hand side corresponds to the physical waveguides, whereas in the right-
hand side, different OAM circulations are represented separately.

type. Hence, for our purposes, it is enough to consider the follow-
ing three scenarios: (a) =0« 1=0, (b) I=+1 < [==1, and (c)
I=0 <> [ =+1,as sketched in Fig. 8. All cases can be described via at
most three independent couplings: between different OAM compo-
nents in the same waveguide, ¢;, between the same OAM component
in different waveguides, 2, and between different components in dif-
ferent waveguides, ¢3. These depend on the overlap integral between
the relevant modes, and ¢ and t3 are also subject to picking up a
phase depending on their OAM charge and the relative angle with
respect to an arbitrary origin ¢,.”* The first coupling, £, appears due
to the breaking of the cylindrical symmetry of the waveguide mode
due to the presence of the second waveguide. We specify all pos-
sible next-nearest-neighbor (NNN) components that appear in our
system in Fig. 9, with their corresponding phases. Note that the geo-
metrical angle between [ = +1 waveguides is half as large as the one
between/=0and [ = £1.

We now describe how to compute these couplings from the
eigenvalues of the tight-binding model generated by the couplings
in Figs. 8(a)-8(c). For case (a), the Hamiltonian is given by

_(Bo t)
Hl:O = (é /30)) (Cl)

whose eigenvalues are \_ = By — t; and A+ = By + t3, and thus,

;1

tz = E (A+ - A- ) (C2)
The Hamiltonian for case (b) is written as

B H L B
o P13 h

Hl=1 = ~ ~ ~ > (C3)
thh t3 pi 4

t3 th H P
whose eigenvalues are
11:/31+f1—t~2—f3,
ha=pi—-f+bh-1,
As =P - —b+15,

A4Zﬁ1+f1+fz+f3,

(C4)

9, 120801-8

2€:2¥:60 G20z Aenuer 1z


https://pubs.aip.org/aip/app

[ =+1 ¥

B /5/2 ®
l... o

FIG. 9. Full coupling scheme in the effective diamond chain featured in the main text, including the phases induced by the geometrical angle. The NN couplings are also
sketched for clarity. Cross-circulation couplings in the | = +1 waveguides due to the nearest | = +1 waveguides, t;, are much smaller than t; and are thus not included.

and thus, the couplings can be determined as

fi=M-d2—As+As

fz = —/\1 + /\2 - A3 + A4, (CS)
f3= =M1 — A2+ A3 + Aa.
Finally, for case (c), we have
ﬁz t t
Heoy=|t B2 t) (Ce6)
t P
for which the eigenvalues are
M=B—t,
1 [ 2
Ay :ﬁ2+5(t1— 1 + 8t ), (C7)
Az =P+ %(fl +\/ i’% + 8t2),
and the couplings read
1
= 5(72/11 + A +A3),
(C8)

t:\/(/l3—12)2—(—2/\1+/12 +)L3)2/9
3 .

We perform finite-element simulations of the waveguides
described in the main text at different distances and compute the
coupling strengths using expressions (C2), (C5), and (C8), as dis-
played in Fig. 10. Using the computed values, we can estimate the
importance of the additional couplings not taken into account in
the main text and thus the deviation of the implementation from

L=0«——L=0 L=0+——L=1
(a) 10 (b) 9
1 ——t
] 7 —o—1
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= =
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TABLE 1. NNN coupling strength values for different flux values, relative to the value
for the NN coupling at d = 55 um.

¢=m(%) ¢ =m/2 (%)
t5(1=0«1=0) 12.82 2.58
H(1=+1 o 1= «1) 9.04 1.82
f3(1=+1 & 1= 1) 12 2.58

a pure diamond chain. For a relative distance of d =55 ym, the
nearest-neighbor (NN) coupling has a value of ¢ = 5.08 m™" and
the cross-circulation coupling at the same distance is t; = —0.12 m™*
= —0.024t. Depending on the chosen angle 6, the NNN distance
d" will vary. We summarize the NNN couplings for 6= /2
(d'=77.8 ym) and 0 = /4 (d' = 101.64 ym) in Table I. We do not
include the cross-circulation coupling f; as it is at least an order of
magnitude lower than the others at all distances.

With the coupling strengths in Table I, we simulate the tight-
binding model of a diamond chain model with NNN and cross-
circulation couplings (see Fig. 9) and compare the obtained spec-
trum with a system with only NN couplings in Fig. 11. For fluxes
close to 7, where the geometrical angle is large and thus the NNN
distances are relatively small, the deformation of the bands is evi-
dent. In Fig. 11(a), one can observe that the top and bottom bands
are not flat, but rather dispersive, as is a sizable portion of the cen-
tral band. Conversely, for ¢ = 7/2 and lower, the deviations caused
by these couplings become much smaller and increasingly negligi-
ble. Therefore, we limit the study to 0 < 8 < I (corresponding to
0 < ¢ < 7), where only the NN couplings mentioned in the main text
play a significant role.

) 11
’ +t:1
9 . +[~2
—~ e ol FIG. 10. Coupling strengths between
5 7 % waveguides with different OAM modal
= bt content at increasing relative distances
0 5lee )
g % for the waveguide parameter values
% 3 included in the main text. The t1 coupling
&) is at least an order of magnitude lower
1 than the rest at all distances, both in (b)
and (c).
-1
50 70 90 110

Distance (um)
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FIG. 11. Spectrum of propagation constants of the diamond chain for (a) ¢ = 7 (6 = #/2) and (b) ¢ = 7/2 (6 = =/4) using the coupling strengths obtained from the
waveguide simulations in Fig. 10 at d = 55 um and for N = 101 plaquettes. The spectrum in blue corresponds to a system with both a cross-circulation coupling and the NNN
couplings included in Table |, whereas the gray spectrum corresponds to a system with only NN couplings.

APPENDIX D: ELLIPTICAL WAVEGUIDES

We consider the same zig-zag chain of optical waveguides as
in Sec. IV, with each waveguide presenting a slight ellipticity that
breaks the cylindrical symmetry. The waveguides are modeled as
equal ellipses with semiaxes ay and a, = C ayx, where the degree
of ellipticity is introduced through the parameter C, correspond-

ing to an eccentricity of \/1— C*. We then consider two scenarios
for the ellipticity, (a) with a, being aligned either along the global
x-axis or (b) along the waveguide coupling line. These are sketched
in Figs. 12(a) and 12(b), respectively. Both cases yield the coupling
distribution shown in Fig. 12(c), wherein a new coupling 7; among

0 120 240 360
Mode number

I=+1 OAM components in each waveguide appears due to the
ellipticity.*” The main difference lies in the phase of the coupling,
which depends on the angle « between a, and the coupling line, and
is thus equal to 2¢ in (a) and to zero in (b). Note that by increasing
the ellipticity, we are effectively modifying the propagation constants
of I=0 and /= «1 in an unequal way. To avoid including extra
detunings to the analysis, the matching of refractive indices has to
be performed for each considered ellipticity.

We perform finite-element simulations for both cases and a
slight ellipticity of C = 0.998 and show the photonic bands of both
systems in Fig. 12(d), where the gray dots correspond to case (a) and
the blue dots correspond to case (b). From these results, it is clear

3.4+ .
—
3.3+ °
3.25
3.2 /
3.15 . .
0 120 240 360

Mode number

FIG. 12. (a) and (b) Sketch of a zig-zag chain of elliptical waveguides, with the major semiaxis a, aligned with (a) the global x-axis and (b) the coupling line. The considered
ellipticity is exaggerated for visualization purposes. (c) Coupling scheme corresponding to the waveguide chain, where the phase of the vertical coupling 71 depends on
the orientation of the ellipses. (d) and (e) Spectrum of effective mode indices with respect to the cladding index, i = nes — Ny, for a chain of N = 59 unit cells with the same
impurities and parameter values as Fig. 5. The waveguides are now elliptical with a parameter (d) C = 0.998 and (e) C = 0.99. Gray dots correspond to the case in (a), and

blue dots correspond to the case in (b).
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that even low ellipticities can have an effect on the effective system,
with the primary distorting effect being the phase in the 7, coupling.
In case (a), the flat band becomes tilted and merges with the lower
effective system. For case (b), where this phase is not present, little to
no deformation is observed in the bands. If we increase the elliptic-
ity an additional order of magnitude, to C = 0.99, the same tendency
appears. In Fig. 12(e), the gray dots of case (a) present major band
deformations to the point where the effective systems are no longer
recognizable. In remarkable contrast, the blue dots of case (b) show
only minor deformations of the lower effective system. The higher
one, with larger detuning, resists these effects better. In all cases, the
effects of the ellipticity on the effective systems could be reduced by
employing larger impurities.
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