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Abstract
We explore the possibilities for a next-generation electron-electric-dipole-moment experiment
using ultracold heteronuclear diatomic molecules assembled from a combination of radium and
another laser-coolable atom. In particular, we calculate their ground state structure and their
sensitivity to parity- and time-reversal (P , T ) violating physics arising from flavor-diagonal
charge-parity (CP) violation. Among these species, the largest P , T -violating molecular
interaction constants—associated for example with the electron electric dipole moment—are
obtained for the combination of radium (Ra) and silver (Ag) atoms. A mechanism for explaining
this finding is proposed. We go on to discuss the prospects for an electron EDM search using
ultracold, assembled, optically trapped RaAg molecules, and argue that this system is particularly
promising for rapid future progress in the search for new sources of CP violation.

1. Introduction

The detection of a charge-parity (CP) violating signal of leptonic or semi-leptonic origin would open a
route [1, 2] for explaining so far not understood aspects of the observed matter and energy content of the
Universe, in particular its matter–antimatter dissymmetry [3]. Under the assumption that CPT invariance
(T denoting time reversal) of fundamental physical laws holds [4], the detection of an electric dipole
moment (EDM) along the angular momentum of any system would reveal the influence of CP-violating
interactions. EDMs are very insensitive to the CP-odd phases already incorporated into the standard model
(SM) of elementary particles (via flavor mixing matrices), so EDMs act as very low-background signals for
beyond SM CP-odd interactions [5, 6]. For this reason, atomic and molecular searches for flavor-diagonal
violations of CP symmetry [7] have become a field of intense research at the forefront of new physics
searches [8–10]. In this paper, we focus on P , T -violating effects that explicitly couple to electron spin—in
particular, the electron EDM, nucleon–electron scalar–pseudoscalar (Ne-SPS) coupling, and nuclear
magnetic quadrupole moment (NMQM). The sensitivity of a given atomic or molecular species to these
effects can be parameterized in terms of the associated P , T -violating interaction constants: the effective
internal field acting on the electron EDM, Eeff ; the Ne-SPS interaction constant WS; and the NMQM
interaction constant WM. We refer to the entire set of these interaction constants as ‘the P , T -odd
constants’.

Among various future directions considered to search for P , T -odd effects coupled to the electron spin
with greater sensitivity [11], experiments based on ultracold and optically trapped molecules [12, 13]
appear particularly promising [10, 14, 15]. Here, the structure of polar molecules amplifies the observable
energy shifts due to underlying mechanisms for CP violation [16, 17]. Optical trapping could provide long
spin coherence times [18–20] for large molecular ensembles [21], and hence unprecedented energy
resolution. With plausible projected values of experimental parameters, this could provide ∼3 orders of
magnitude improved statistical sensitivity relative to the current state of the art for the P , T -odd constants
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of interest here [15]. There are significant advantages in using molecules at the lowest possible
temperatures, i.e. near the regime of quantum degeneracy. Here, possible systematic errors due to the
trapping light can be minimized by using weak, low-intensity trapping light [22, 23]. Moreover, the high
and deterministic densities typical of lattice-trapped quantum gases [24] open the potential to employ
spin-squeezing methods to surpass the standard quantum limit of statistical sensitivity [25] (which is
already typically reached in EDM experiments, and assumed in the estimate above). In principle, squeezing
could enable sensitivity improved by up to another ∼1–3 orders of magnitude [25–27].

Implementing this vision requires identifying suitable molecular species—that is, species with large
values of the P , T -odd constants, and which also plausibly can be trapped and cooled to near the regime of
quantum degeneracy. To date, discussion of potential species with these properties has centered on
paramagnetic molecules with structure suitable for direct laser cooling, such as YbF or YbOH or RaF
[14, 15, 28, 29]. However, the coldest and densest molecular gases to date have been produced not by direct
laser cooling, but instead by assembly of diatomic species from pairs of ultracold atoms [21, 30]. An early
investigation of the prospects for EDM experiments with such systems was made by Meyer et al [31]. They
considered the neutral species RbYb and CsYb, which have the unpaired electron needed for high sensitivity
to the electron EDM and which could be assembled from atoms routinely cooled to quantum degeneracy.
However, they found that the values of Eeff in these molecules were much smaller than expected from
simple scaling arguments—in each case, Eeff < 1 GV cm−1. This is roughly two orders of magnitude smaller
than Eeff in ThO, the species used by the ACME experiment to place the best current limit on the electron
EDM [32]. To our knowledge, the idea to use ‘assembled’ ultracold molecules for EDM experiments has
since not been discussed further in the literature.

A suitable molecular species to be assembled and used to measure the electron EDM must satisfy several
criteria. Naturally, both constituent atoms must be amenable to laser cooling and trapping. For large values
of the P , T -odd constants of interest here, the molecule must have an unpaired electron spin in its absolute
ground state. These two criteria together suggest using molecules where one atom has alkali-like structure
(single unpaired electron), and the other has alkaline earth-like structure (closed electron shell). Because
the values of the P , T -odd constants scale roughly as Z3 (where Z is the atomic number) [33–35], at least
one of the atoms should be very heavy to maximize their values. Though less critical, it is experimentally
convenient to use species that can be strongly polarized in small electric fields; this can be enabled by a large
molecular dipole moment and/or small molecular rotational splitting [36].

In 2018, the present authors presented the RaAg molecule [37] as a very promising ultracold molecular
system for electron EDM searches. Use of the alkaline earth atom radium (Ra) as the required heavy nucleus
for such a future experiment is strongly suggested, since Ra (Z = 88) is the heaviest atom where laser
cooling and trapping has been demonstrated [38]. The choice of the silver (Ag) atom rather than a true
alkali atom as the bonding partner for Ra is less obvious. However, the coinage metals (Cu, Ag, Au) have a
nominally alkali-like structure, with one valence s electron above closed shells, so they are in principle
amenable to laser cooling. Indeed, laser cooling and trapping of Ag atoms was demonstrated already over 20
years ago [39]. In addition, the coinage metals (CMs) have much larger electron affinities (EA) [40, 41] than
the alkalis. Hence, we anticipated that they might form a strong polar bond with the highly polarizable Ra
atom [42, 43]. This type of bond is generically correlated both with a large effective electric field on the
electron EDM [35, 44], and with a large molecular dipole moment. Large molecular dipole moments in
Ra-CM molecules, discussed here, have also been found in references [36, 45]. Sunaga et al [36] discussed
properties of radium-A molecules—where A is a halogen or a coinage-metal atom—relevant to molecular
electron EDM searches. A more encompassing view on the possibilities of using ultracold diatomic
molecules assembled from laser-coolable atoms, however, was not discussed in that paper. Here, we present
a comparative study of the effective electric field Eeff acting on the electron EDM in radium-X molecules,
where X is a (potentially) laser-coolable alkali or CM atom.

The following section summarizes the theory underlying the presented results on molecular structure.
Section 3 contains a comparative study of a systematic series of Ra-alkali and Ra-coinage-metal diatomics
with an emphasis on P , T -odd and spectroscopic properties. In the final section we conclude, mention
ongoing work [46], and lay out some prospects for the very near future.
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2. Theory

2.1. General definitions and wavefunctions
The electronic many-body states of all of the present molecules are denoted as |Ω〉 with Ω = |MJ|. These
states are represented by relativistic configuration interaction wavefunctions

|Ω〉 ≡
dim F t (M,n)∑

I=1

c(Ω),I(ST̄ )I | 〉, (1)

where F t(M, n) is the symmetry-restricted sector of Fock space with n electrons in M four-spinors,
S = a†i a†j a†k . . . is a string of spinor creation operators, T = a†

l
a†ma†n . . . is a string of creation operators of

time-reversal transformed spinors. The determinant expansion coefficients c(Ω),I are generally obtained as
described in references [47, 48] by diagonalizing the Dirac–Coulomb Hamiltonian, in a.u.

ĤDirac–Coulomb =

n∑
j

[
c αj · pj + βjc

2 − Z

rj
𝟙4

]
+

n∑
j,k>j

1

rjk
𝟙4 (2)

in the basis of the states (ST )I | 〉, where the indices j, k run over electrons, Z is the proton number, and
α,β are standard Dirac matrices. The specific models used in the present work will be discussed in
subsection 3.1.2. The calculation of properties using the resulting CI eigenvectors is technically carried out
as documented in references [49, 50]. Atoms and linear molecules are treated in a finite sub-double group
of D∗

∞h (atoms) or C∗
∞v (heteronuclear diatomic molecules) which gives rise to a real-valued formalism in

either case [51]. Definitions of the various property operators used in the present work will be given in the
following sections.

2.2. P , T -odd properties
The electron EDM interaction constant is evaluated as proposed in stratagem II of Lindroth et al [52] as an
effective one-electron operator via the squared electronic momentum operator. In the present work
P , T -violating properties are only calculated in molecules so with zeroth-order states denoted as |Ω〉

Eeff =
2ıc

e�
〈Ω|

n∑
j=1

γ0
j γ

5
j p 2

j |Ω〉 (3)

with n the number of electrons and j an electron index. The implementation in the many-body framework
is described in greater detail in reference [53]. The EDM effective electric field is related to the electron
EDM interaction constant Wd = − 1

ΩEeff.
A measurement on open-shell molecules also tests CS, the fundamental Ne-SPS coupling constant for a

neutral weak current between electrons and nucleons [54]. In the framework of an effective field theory the
Ne-SPS interaction energy [35] can be written as

εNe−SPS = WS CS, (4)

where

WS :=
ı

Ω

GF√
2

A 〈Ω|
n∑

j=1

γ0
j γ

5
j ρ(rj) |Ω〉 (5)

is the Ne-SPS interaction constant for the nucleus with A nucleons, GF is the Fermi constant, γ is an
electronic Dirac matrix, and ρ(r) is the nuclear density at position r. The implementation in the molecular
framework is documented in reference [55].

The nuclear magnetic quadrupole moment interaction constant has been implemented in reference [56]
and can be written as

WM =
3

2Ω
〈Ω| − 1

3

n∑
j=1

{[
α1(j)

∂

∂r2(j)
− α2(j)

∂

∂r1(j)

]
r3(j)

r3(j)

}
|Ω〉 . (6)

In this case, rk(j) denotes the kth Cartesian component of vector r for particle j (idem for the Dirac
matrices α).
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Figure 1. Wavefunction definitions for alkali-radium diatomic molecules. Up to two holes are allowed in the sub-valence spinors
which accounts for correlation effects among the sub-valence electrons and with the valence electrons. The model space is
restricted to the valence spinors where all occupations are allowed. The cutoff for the virtual space is set to 10 [a.u.].

2.3. Other properties

The rotational constant is defined for a classical rigid rotor as B = �
2

2I with I = μR the moment of inertia in
terms of the reduced mass μ and the internuclear distance R. Thus, in units of inverse length,

Be =
B

hc
=

�

4πcμR2
e

. (7)

Re is in the present obtained from quantum-mechanical calculations.

3. Results

3.1. Computational details
3.1.1. Basis sets and molecular spinors
Uncontracted Gaussian atomic basis sets have been used for all considered systems: for Ra Dyall’s triple-ζ
set [57, 59] including outer-core correlating functions, amounting to {33s, 29p, 18d, 12f , 3g, 1h}; for Li and
Na the EMSL aug-cc-pVTZ sets [60]; for K, Rb, Cs and Fr Dyall’s TZ bases including
(n − 1)s, (n − 1)p, ns-correlating functions (also (n − 2)d-correlating for Cs and Fr) [57].

Molecular spinors are obtained from Dirac–Coulomb Hartree–Fock (DCHF) calculations using the
DIRAC program package [51] in a locally modified version. Since the present systems have an odd total
number of electrons fractional occupation is used for defining the Fock operator: f = 0.5 per spinor for one
Kramers pair and the open-shell spinor pair is a molecular superposition of radium-alkali (RaA) atomic
contributions. For Ra-coinage-metal (RaC) molecules the fractional occupation is f = 0.75 per spinor for
the two Kramers pairs denoted σ and σ∗ in figure 2.

3.1.2. Correlated wave functions
The generalized active space technique [61, 62] is ensuingly exploited for efficiently taking into account
leading interelectron correlation effects. The model space generally includes all spinors required to describe
the molecular ground state including leading electron correlation effects.

For the RaA calculations a specific model is adopted that allows for an economic description of the
molecular ground state including electron-correlation effects. Figure 1 shows how the wavefunction is
linearly parameterized for this set of calculations.
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Figure 2. Wavefunction definitions for coinage-metal-radium diatomic molecules. Up to one hole is allowed in the outer-core
spinors which accounts for core-valence correlations between those electrons and the respective valence electrons. In the model
space all occupations within the given constraints are allowed. σ is a molecular spinor pair with predominantly Cu 4s/Ag 5s/Au 6s
and some Ra 7s character. σ∗ is a molecular spinor pair with predominantly Ra 7s and some Cu 4s/Ag 5s/Au 6s character. The
cutoff for the virtual space is set to 5 [a.u.] (CuRa) and 4 [a.u.] (RaAg and RaAu).

For the RaC calculations a different model has been chosen which is shown in figure 2.

3.1.3. Rovibrational properties

Reduced masses are obtained for the most abundant isotopes 7Li, 23Na, 39K, 85Rb, 133Cs, 223Fr, 107Ag, and
226Ra with data taken from reference [63].

3.2. Alkali- and coinage-metal-radium molecules
3.2.1. Trends

The purpose of this section is to show trends for properties of interest among diatomic molecules that are
candidates for measurement of a P , T -odd signal in the lepton sector. The interaction constants for their
main sensitivity in this regard are compared for alkali (A) atoms and coinage-metal (C) atoms bound to
atomic radium, see table 1. Among the A-Ra molecules the trends are consistent for Eeff , WS, and WM where
in all cases the interaction constants increase monotonically with decreasing nuclear charge of A. These
constants have been obtained at equilibrium internuclear separation Re, along with other spectroscopic
properties and the molecule-frame EDM D. It is worth noting that the root mean-square radii for the ns
electron of the atoms A or C, here obtained from atomic quantum-mechanical calculations, are a good
predictor of Re, in the sense that the ratio Re (a.u.)√

〈̂r2〉ns
(a.u.)

is nearly constant across all the considered molecules.

The greatest deviations from the mean value of this ratio amount to around 7% for Na (upper end) and Ag
(lower end).

Since analytical relationships between the matrix elements of P , T -odd interactions exist [64] and these
relationships have also been corroborated in numerical studies of various complex systems [65, 66] the
trends for these interactions are expected to be very similar which is confirmed by the results in table 1. The
principal mechanism explaining this trend becomes obvious when considering the EA of A. A free Ra atom
has no unpaired electrons and a 1S0(7s2) ground state insensitive to the present P , T -odd interactions. In
the molecular environment, however, the partner atom A will draw electron density from Ra leading to
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Table 1. Equilibrium internuclear distances Re, harmonic vibrational frequencies ωe, rotational constants Be, molecule-frame static
EDM D, polarizing external field Epol =

2Be
D , electron EDM effective electric field Eeff , Ne-SPS interaction constants WS, and nuclear

magnetic-quadrupole moment interactions constants WM for the electronic ground states 2Σ1/2 of diatomics RaA and RaC; for RaLi
two sets of results are shown using two different cutoff energies for the virtual spinor set; experimental EA and root mean-square radius
for the valence s electron spinor

√
〈̂r2〉ns in a.u. for alkali and coinage-metal atoms. P , T -odd constants are evaluated at the respective

Re.

Re (a.u.) ωe (cm−1) Be (cm−1) D (Debye)
√

〈̂r2〉ns EA (eV) Eeff (GV cm−1) WS (kHz) WM ( 1033 Hz
e cm2 ) Epol (kV cm−1)

RaLi(10 a.u.) 7.668 105.4 0.151 1.36 4.21 0.618 [67] 22.2 −59.5 0.652 13.3
RaLi(50 a.u.) 7.689 103.8 0.150 1.34 4.21 0.618 [67] 21.7 −58.3 0.641 13.3
RaNa 8.703 39.3 0.038 0.51 4.54 0.548 [68] 12.0 −32.2 0.368 8.90
RaK 10.37 20.7 0.017 0.39 5.60 0.501 [69] 5.44 −14.6 0.167 5.18
RaRb 10.75 14.5 0.008 0.36 5.93 0.486 [70] 5.01 −13.6 0.152 2.75
RaCs 11.25 12.0 0.006 0.46 6.48 0.472 [71] 4.52 −12.6 0.138 1.48
RaFr 11.26 10.5 0.004 0.24 6.31 0.486 [72] 3.44 −12.4 0.137 2.06
RaCu 6.050 106.7 0.033 4.30 3.54 1.236 [40] 67.0 −180.6 1.771 0.92
RaAg [37] 6.241 90.0 0.021 4.76 3.73 1.304 [40] 63.9 −175.1 1.761 0.53
RaAu 5.836 98.4 0.017 5.71 3.30 2.309 [41] 50.4 −166.4 1.752 0.36

Figure 3. X2Σ1/2 PEC (blue) and Eeff (red curve) against internuclear separation for RaLi.

effective spin density on the latter. This effect is a function of EA(A) and manifests itself in non-zero
P , T -odd interactions.

This mechanism of creating spin density on Ra is qualitatively the same for all Ra-A combinations.
However, there exist pronounced quantitative differences for the different partner atoms A, leading to
sizeable differences in Eeff at the equilibrium internuclear separation of the respective molecule. Figure 3
shows that Eeff goes through a maximum at separations shorter than Re for RaLi and drops off quite sharply
as the molecule is stretched beyond Re. The corresponding situation for RaAg is displayed in figure 4. In
contrast to RaLi the RaAg curve for Eeff hardly drops off from the maximum value as R passes through the
minimum of the potential-energy curve (PEC) but instead displays a shoulder that extends to values
R > Re. Even though Eeff max(RaAg) ≈ 70 GV cm−1 is only about 25% greater than Eeff max(RaLi)
≈ 56 GV cm−1, the shoulder leads to almost a factor of 3 difference between Eeff (RaAg) and Eeff (RaLi) at
the respective values of Re.
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Figure 4. X2Σ1/2 PEC (blue) and Eeff (red curve) against internuclear separation for RaAg.

With the present electronic-structure models we find REeff max
= 5.75 a.u. and Re = 7.69 a.u. for RaLi.

The change of molecule-frame EDM between these two points is ΔD = D(Re) − D(REeff max
) = 0.84 Debye,

and the full dipole-moment curve is shown in figure 5. This is a positive but rather modest value. On the
contrary, for RaAg REeff max

= 3.7 a.u., Re = 6.24 a.u. and ΔD = D(Re) − D(REeff max
) = 1.8 Debye, as shown

in figure 6. In addition to the EDM being much greater at Re in RaAg, it also displays a sharper increase
between the two significant points, indicating that the partial charge remains on the Ag atom even when the
internuclear distance is stretched slightly beyond Re. This leads to a shoulder both for the spin density on
the Ra atom and Eeff in RaAg. The underlying principal explanation is, therefore, strongly suggested to
indeed be the electron affinity of the atom polarizing the heavy target atom (Ra).

A further analysis shows that the partial charge δ−A on the atom A at Re calculated from DCHF valence s
spinors increases (on the absolute) from δ−Fr ≈ −0.03e to δ−Rb ≈ −0.05e to δ−Li ≈ −0.08e and reaches
δ−Ag ≈ −0.24e in RaAg, leading to a significantly greater Eeff in RaAg than in RaLi.

Turning to a comparison of the coinage-metal-Ra molecules it becomes clear that the above analysis in
terms of EA alone is not sufficient for explaining all trends. Au has a much greater EA than Cu or Ag but
still yields a smaller Eeff when bound to Ra. The maximum value for Eeff as a function of R is greatest for
CuRa which also displays the characteristic shoulder as discussed above for the case of RaAg (although it is
less pronounced in RaCu). In the case of RaAu, the shoulder is significantly less pronounced than in RaAg
in addition to the maximum Eeff (R) being smallest among all coinage-metal-Ra molecules. An explanation
for this observation in terms of s–p-mixing matrix elements and relevant spinor energies has been
attempted in reference [36]. We refrain from delving into a deeper analysis of the related trends for Eeff (R)
in coinage-metal-Ra molecules since, as explained below, neither Cu nor Au atoms have significant
advantages, relative to Ag, for use in an ultracold assembled molecule EDM experiment.

We also consider a further important aspect for experimental feasibility: the external electric field
Epol = 2Be/D required for fully polarizing the molecule. The comparison in table 1 demonstrates that RaAg
is among the best of the laser-coolable atom combinations also in this respect (surpassed only by RaAu, by a
factor of only 1.5). The extremely small Epol required for RaAg is due to its much greater molecule-frame
EDM—about an order of magnitude—as compared with heavier alkali-radium molecules. This by far
outweighs the slight disadvantage RaAg has in terms of its rotational constant Be, which is roughly
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Figure 5. X2Σ1/2 PEC (blue) and molecule-frame EDM D (magenta curve) against internuclear separation for RaLi (cutoff
10 a.u.).

a factor of three greater than Be for RaCs, as an example. A similar conclusion was reached in references
[36, 45].

3.2.2. Comparison of models and with the literature
The studies in the previous section have a focus on establishing trends and explaining qualitatively
important features of the candidate set of molecules. For RaAg the corresponding wavefunction model is
defined in figure 2 and we will here call it TZ/MR-CISD. Models of similar quality have been used for the
other molecules in this work for the mentioned purposes.

In the following we compare the TZ/MR-CISD to a more accurate model QZ/MR-CISDT which differs
from the previous one in two ways: QZ/MR-CISDT uses Gaussian basis sets of quadruple-zeta (QZ) quality
[57, 58] for both Ra and Ag atoms. Second, the model space now only consists of the Kramers pairs σ and
σ∗, but in turn the highest particle rank of the virtual spinor space has been increased from 2 to 3. The
model QZ/MR-CISDT is, therefore, significantly more accurate than the model TZ/MR-CISD for a
calculation of the electronic ground state.

Comparative results are shown in table 2. The results for our spectroscopic and P , T -odd constants for
RaAg from the two presented models differ by less than 5%, except for ωe where the difference is around
9%. The results from our more accurate model, QZ/MR-CISDT, differ from those of Śmiałkowski et al by
less than 4%. The results presented in reference [45] have been obtained with large valence atomic basis sets
and a high-quality wavefunction model and are certainly the more reliable values for comparison than those
obtained by Sunaga et al [36] where basis sets of only double-zeta (DZ) quality have been used. However,
Śmiałkowski et al use effective core potentials (ECP) whereas our calculations employ Dirac wavefunctions
for the entire set of atomic shells.

Concerning the difference of Eeff with the result from reference [36] we tested a basis set of DZ quality
[57, 58] and obtain Eeff(R = 6.0 a.u.) ≈ 72 GV cm−1 at an internuclear separation close to Re determined
in the work of Sunaga et al which is very close to the result from reference [36] in table 2. Since the two
employed wavefunction models (MR-CISDT and CCSD) are similar in quality this demonstrates that the
use of too small a basis set will lead to a significant overestimation of Eeff for RaAg. WS in reference [36] is,
therefore, also too large on the absolute. It is clear, however, that reference [36] did not aim at highly
accurate results but rather at determining trends for a set of molecules.

8
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Figure 6. X2Σ1/2 PEC (blue) and molecule-frame EDM D (magenta curve) against internuclear separation for RaAg.

Table 2. Spectroscopic and P , T -odd constants for RaAg.

Source Re (a.u.) ωe (cm−1) Be (cm−1) D (Debye) Eeff (GV cm−1) WS (kHz) WM ( 1033 Hz
e cm2 ) Epol (kV cm−1)

Present 6.241 90.0 0.0213 4.76 63.9 −175.1 1.761 0.53
TZ/MR-CISD [37]
Present 6.128 98.2 0.0221 4.89 66.1 −181.1 1.821 0.54
TZ/MR-CISD [37]
Śmiałkowski et al [45] 5.959 100.6 0.0234 5.08 0.55
CCSD(T)
Sunaga et al [36] 6.10 0.022 5.1 73.7 −201.8 0.52
CCSD

4. Conclusions and outlook

In the present work we have shown that radium-CM molecules have much greater P , T -odd interaction
constants than Ra-alkali molecules, which are the natural species to consider for assembly from ultracold
atoms and high sensitivity to the electron EDM. Moreover, a simple explanation was developed for how
these effects reach near-optimal values in Ra-CM molecules. We also showed that these RaC species have
large intrinsic molecule-frame dipole moments, which make them easily polarized using an external electric
field of very modest strength.

From this perspective alone, any of the Ra-CM molecules could be an interesting experimental system
for future EDM experiments. However, let us return to the original goal, which was to find suitable species
that can be assembled from ultracold atoms. Among the CMs, Ag turns out to be uniquely easy to laser cool
and trap. In all the CM atoms, the last filled electron shell contains d orbitals, and the energy to excite one
electron from the closed d-shell to the unfilled s orbital is quite comparable to that needed to excite the
valence electron from its ns state to an np orbital (as desired for laser cooling). In both Cu and Au, the
lowest d-shell excited states lie at least ∼2 eV below the np valence excited state, and the np state decays
with significant branching ratio into these metastable levels [73]. Hence, laser cooling of Cu and Au would
require additional laser(s) to repump the lower states, in addition to the primary laser driving the ns–np
optical cycling transition [74]. This in turn would create a ‘type-II’ level structure, where the unavoidable
presence of dark states significantly reduces the strength of optical forces [75]. By contrast, in the Ag atom
the d-shell excited state is less than 0.025 eV below the p3/2 valence excited state, and the branching ratio for
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decay into the metastable state is effectively negligible [39]. Hence, in Ag a single laser is sufficient to
produce maximal trapping and cooling forces, in complete analogy to standard alkali atoms [39]. For this
reason, within the CM group only Ag has been cooled and trapped, and (to our knowledge) laser cooling of
Au or Cu has not even been attempted. Since the values of the P , T -odd interaction constants are no better
in RaAu or RaCu than in RaAg, and the electric field needed to polarize RaAg is small enough to be
experimentally convenient, we conclude that, among the considered species, RaAg is by far the most
favorable for experiments of the considered type.

This leads to further questions about experimental viability of an electron EDM search using ultracold,
assembled RaAg molecules. To date, no ultracold alkaline earth-alkali metal molecules of any species have
been assembled. However, experimentally plausible pathways for such assembly have been identified for
analogous species such as RbSr [76–78], YbLi [79], and YbCs [80], and considerable experimental progress
has been made with each of these species [81–83]. Moreover, these pathways are based on extensive,
successful experience with assembly of bi-alkali molecules [21]. For this reason, we consider it very plausible
that RaAg molecules can, with sufficient effort, be assembled from ultracold Ra and Ag atoms.

All known and proposed techniques for ultracold molecule assembly rely on a two step, coherent process
[12]. In the first step, atom pairs are transferred to a weakly-bound molecular state using either a Feshbach
resonance [84] or near-threshold photoassociation [85, 86]. The weakly-bound state is then transferred to
the rovibronic ground state, using stimulated Raman adiabatic passage (STIRAP) [87]. The relevant
coupling strengths are determined by transition dipole moments between vibronic states for optical
transitions [21], or by the structure of long-range bound states for Feshbach association [84]. To
understand and reliably calculate all relevant coupling strengths, it is necessary to construct full PECs,
including short-range and long-range internuclear parts, for ground and electronically excited molecular
states. To address this question, we will in forthcoming work present predictions of the relevant features for
RaAg. This will include dispersion coefficients for Ra and Ag atoms so far not established in the literature
and required for the long-range parts of the relevant PECs, as well as calculations of short-range PECs and
analysis of relevant vibronic transition dipole moments.

In summary: we have identified the radium-silver (RaAg) molecule as an exceptionally interesting
system for a next-generation electron electric-dipole-moment experiment using ultracold, trapped
molecules assembled from laser-coolable atoms. Further work is underway to evaluate details of the
molecular structure that will determine the feasibility of Ra + Ag assembly with high efficiency.
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