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Abstract: We compare a relativistic and a nonrelativistic version of Ostrogradsky’s method for

higher-time derivative theories extended to scalar field theories and consider as an alternative a

multi-field variant. We apply the schemes to space–time rotated modified Korteweg–de Vries systems

and, exploiting their integrability, to Hamiltonian systems built from space–time rotated inverse

Legendre transformed higher-order charges of these systems. We derive the equal-time Poisson

bracket structures of these theories, establish the integrability of the latter theories by means of

the Painlevé test and construct exact analytical period benign solutions in terms of Jacobi elliptic

functions to the classical equations of motion. The classical energies of these partially complex

solutions are real when they respect a certain modified CPT-symmetry and complex when this

symmetry is broken. The higher-order Cauchy and initial-boundary value problem are addressed

analytically and numerically. Finally, we provide the explicit quantization of the simplest mKdV

system, exhibiting the usual conundrum of having the choice between having to deal with either

a theory that includes non-normalizable states or spectra that are unbounded from below. In our

non-Hermitian system, the choice is dictated by the correct sign in the decay width.

Keywords: higher time derivative theories; higher order Cauchy problem

1. Introduction

Standard quantum field theories only contain derivative terms in their kinetic part
up to second order. Ostrogradsky’s fundamental instability [1,2] is the main reason for
this limit, in particular on the higher time derivatives, as their presence will inevitably
lead to linear momentum field terms that cannot be eliminated by partial integration
and subsequent dropping of surface terms. While the presence of these terms is highly
unappealing, since at least classically they lead to instabilities that can be reached in finite
time, higher time-derivative theories (HTDTs) possess also many very attractive features,
such as, for instance, being renormalizable [3–7].

These latter properties have nurtured the hope that one might eventually overcome
the problematic issues and exploit the positive features. Several proposals of dealing with
the deficiencies have been made, such as, for instance, the introduction of constraints [8],
a Dirac–Pauli quantization scheme with an indefinite metric [9], the introduction of
additional degrees of freedom that do not belong to the physical spectrum, so-called
fakeons [10], or the complex extensions of the models to a PT -symmetric non-Hermitian
system [11,12].

A useful insight is gained by separating out theories that are already very problematic
on the classical level and making a distinction between ghost states of malevolent and
benign nature. On the classical level, the malevolent states are identified as solutions that
reach singularities in finite time, whereas benign solutions are oscillatory or might only
diverge in infinite time [13–16].
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Leaving the problematic features largely aside, HTDTs appear in a number of dif-
ferent contexts, such as in attempts to quantise gravity when adding curvature squared
terms to the Einstein–Hilbert action [17] or the resolution of the cosmological singularity
problem [18]. Finite temperature physics may be formulated in terms of HTDTs [19], and
also HTDT black hole solutions have been constructed [20]. Their BRST symmetries have
been identified [21,22] in some quantum field theories, and they were used in a massless
particle descriptions of bosons and fermions [23,24] and used in the description of the
Higgs sector in the standard model, and also some supersymmetric versions have been
investigated [25,26]. Classical and quantum stability properties of HTDTs were investigated
in [27–32].

The theories studied in detail so far are often simply ad hoc examples or tailored for
the specific contexts they are considered in, as mentioned above. A systematic study of
larger classes of HTDTs remains an open issue. Recently, Smilga [14] pointed out that
higher charges of integrable systems naturally involve terms with higher derivatives and,
when interpreted as Hamiltonians, could be suitable candidates to identify classes of
theories with benign sectors in their parameter space. It turns out that even in their original
form these theories have not been studied systematically, but exhibit interesting features,
as seen in higher charge Hamiltonian systems of affine Toda lattice theories type [33] and
scattering theories for multi-particle Calogero and Calogero–Moser systems [34]. HTDTs
can be obtained from higher charges of these theories by interchanging space and time.
Some properties of models obtained in this manner are trivially invariant when x has
been interchanged with t. However, time is being kept as the flow parameter, so that, for
instance, equal-time Poisson bracket change, the Cauchy and the initial-boundary value
problem are altered as they require more independent boundary functions, etc. As a specific
class of integrable systems, we investigate here in more detail space–time rotated modified
Korteweg–de Vries (mKdV) systems as HTDTs.

Our manuscript is organised as follows. In Section 2, a comparison between different
variants of Ostrogradsky’s classical method adapted to scalar field theories is carried out.
We consider an alternative equivalent scheme in form of a multi-field theory in which
all higher time derivatives are hidden, and set up the procedure on how to build HTDT
Hamiltonian systems from higher charges of integrable systems. In Section 3, we apply the
schemes to mKdV systems initially for generic values of n for which we derive the equal-
time Poisson bracket relations. Subsequently, we derive separately for the KdV (n = 3) and
the standard mKdV (n = 4) the higher charge Hamiltonians, convert the entire theory into
a multi-field theory that hides the higher derivatives and establish their integrability by
means of the Painlevé test. In Section 4, we construct exact, partially complex, periodic
solutions of benign nature to the equations of motion in terms of Jacobi elliptic functions.
We calculate their classical energies, which turn out to be real when they are invariant under
certain CPT -symmetries and complex when this symmetry is broken. We demonstrate that
the Cauchy and the initial-value boundary problem are not solved with standard solutions
for the n = 2-theory, and identify some sectors for the n = 3, 4-theories, where this is
possible. In Section 5, we carry out the quantization of the n = 2-theory. Our conclusions
are stated in Section 6.

2. Ostrogradsky’s Method for Scalar Field Theories

In this section, we compare three versions of Ostrogradsky’s method for HTDTs ex-
tended to scalar field theories: a relativistic, a nonrelativistic and a multi-field variant.
In each of them we recall and elaborate on the procedures to derive the Hamiltonian densi-
ties from a given Lagrangian density involving higher derivative terms in the time variable
t by employing Ostrogradsky’s classical scheme [1,2] adapted to scalar field theories.

2.1. Lorentz Invariant Formulation

We start with a Lorentz invariant formulation, as outlined in [35–37], for relativistic
field theories that generalise Ostrogradsky’s method further from quantum mechanics to
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field theories. We consider a generic Lagrangian density depending on a scalar field, ϕ,
and its higher derivatives with respect to space and time

L(ϕ, ϕµ, . . . , ϕµ1,...,µm), µi = x, t (1)

with m denoting the highest order of the derivatives. Our metric is taken to be flat. The gen-
eralised momenta derived from L fall into two different types as

πµ1 ...µm :=
∂L

∂ϕµ1 ...µm

, πµ1 ...µi :=
∂L

∂ϕµ1 ...µi

− ∂µi+1
πµ1 ...µiµi+1 , i = 1, . . . , m − 1. (2)

The Legendre transformation in terms of the canonical momenta then defines the
Hamiltonian density as

H = πµ ϕµ + · · ·+ πµ1 ...µm−1 ϕµ1 ...µm−1
+ πµ1 ...µm ϕ̂µ1 ...µm −L(ϕ, ϕµ, . . . , ϕ̂µ1,...,µm), (3)

where ϕ̂µ1,...,µm is to be understood as replacing

ϕµ1,...,µm → ϕ̂µ1,...,µm(ϕ, ϕµ, . . . , ϕµ1,...,µm−1
; πµ1,...,µm), (4)

by solving (2). The Lorentz invariant Hamilton field equations then result to

∂µ ϕ =
∂H
∂πµ , ∂µ ϕν =

∂H
∂πµν , . . . ∂ν ϕµ1 ...µm−1

=
∂H

∂πνµ1 ...µm−1
, (5)

∂µπµ = −∂H
∂ϕ

, ∂νπµν = − ∂H
∂ϕµ

, . . . ∂νπµ1 ...µm−1ν = − ∂H
∂ϕµ1 ...µm−1

. (6)

The generalisation of the above to relativistic scalar field theories involving multiple
fields is straightforward. For our purposes, here we reduce the dependence on the x-
derivatives, thus ending up with nonrelativistic scalar field theory.

2.2. Nonrelativistic Formulation

For a nonrelativistic theory, we reduce the set of values µi can take and consider
Lagrangian densities that only involve a first order derivative in x and time derivatives up
to order m

L(ϕ, ϕx, ϕt . . . , ϕmt). (7)

In the defining relations of the momenta, we take µi = t for i = 1, . . . , m and do not
associate any canonical momenta to derivatives with respect to x. Thus (2) becomes

πmt :=
∂L

∂ϕmt
, πnt :=

∂L
∂ϕnt

− ∂tπ
(n+1)t, n = 1, . . . , m − 1. (8)

Replacing iteratively the generalized momenta, π(n+1)t, in the second relation in (8),
we obtain

πℓ := πℓt =
m

∑
k=ℓ

(−1)k−ℓ∂k−ℓ
t

(

∂L
∂ϕkt

)

, ℓ = 1, . . . , m, (9)

which corresponds to a formula that may be found in [38] after (2.11) in there. The equal-
time canonical Poisson bracket relations between the canonical momentum fields, πi, and
the canonical coordinate fields, Φi, are

{

Φi(x), πj(x′)
}

= δijδ(x − x′), with Φi := ϕ(i−1)t, i, j = 1, . . . , m. (10)
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The Legendre transformation leading to the Hamiltonian density is then entirely
expressed in terms of these fields

H =
m−1

∑
k=1

πkΦk+1 + πm ϕ̂mt −L(Φ1, . . . , Φm, ϕ̂mt), (11)

where ϕ̂mt means that we replace

ϕmt → ϕ̂mt(Φ1, . . . , Φm; πm); (12)

by solving (8). Since ϕmt is not a canonical coordinate field, one has achieved in this way
that H only depends on canonical coordinate and momentum fields. The time evolution of
the canonical fields is then given by

(Φi)t =
δH
δπi

=
∞

∑
n=0

(−1)n ∂H
∂[(πi)nx]

, (πi)t = − δH
δΦi

=
∞

∑
n=0

(−1)n ∂H
∂[(Φi)nx]

. (13)

Notice that H in (11) is not obtained as a direct special case from (3), as a term of the
form πx ϕx is not included, since we have not identified πx as a canonical momentum.

2.3. Higher Time-Derivative Theories in Disguise as Multi-Field Theories

It is well known, see, e.g., [39], that the canonical Hamiltonian for the standard KdV
equation can be derived from a Legendre-transformed Lagrangian involving two scalar
fields, instead of one, upon the implementation of Dirac constraints. For the space–time
rotated version, this implies that the higher time derivatives are hidden in some extra fields,
so that one can simply use the standard variational scheme with no need to invoke the
conceptually more involved Ostrogradsky method at the cost of more algebraic complexity.
In this section, we show in more generality how to systematically reformulate HTDTs
as multi-field theories. Our starting point is a higher time-derivative Lagrangian of the
form (7), and the aim is to construct a transformation Γ that converts it into a multi-field
Lagrangian L′ involving, at most, first order derivatives in time

L(ϕ, ϕx, ϕt . . . , ϕmt)
Γ−→ L′(φ1, (φ1)x, (φ1)t, φ2, (φ2)t, . . . , φm′ , (φm′)t), (14)

where m′ := [m/2 + 1], with [x] being the greatest integer function returning the greatest
integer less than or equal to x. We demand that L ≡ L′ up to surface terms in the time
integrations so that the resulting Euler–Lagrange equations from both are identical. For L′,
they are simply computed in the conventional manner as

m′

∑
n=0

{

∂L′

∂φn
− ∂t

[

∂L′

∂(φn)t

]}

= ∂x

[

∂L′

∂(φn)x

]

. (15)

The conversion, Γ, is achieved by relating the canonical momenta, πℓ, obtained from
L by means of (9) to π′

ℓ
, computed from L′ as

πℓ = (−1)ℓ
∂ℓ−1π′

ℓ

∂tℓ−1
, with π′

ℓ
=

∂L′

∂φ2ℓ−1
, ℓ = 1, . . . , m′. (16)

Having computed all canonical momenta, πℓ, we solve these constraints by integrating
out these equations to determine L′

L′ =
∫

[

(−1)ℓ
∫

πℓdtℓ−1

]

dϕ(2ℓ−1)t + fℓ
(

ϕ, ϕx, ϕt . . . ϕ̌(2ℓ−1)t . . . , ϕ(m+1)t

)

, ℓ = 1, . . . , m′, (17)

where ϕ̌(2ℓ−1)t indicates that the dependence on this field is missing in fℓ, as they result
in integration functions from the integrations with respect to this field. Subsequently, the
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unknown functions, fℓ, can be determined by comparing the m′ equations. As we will see
below, the time integrations over the canonical momenta, πℓ, are often trivially performed.

2.4. Higher Time-Derivative Hamiltonians from Space–Time Rotated Higher Charges

Our intention is to apply the above schemes not only to the standard space–time
rotated Hamiltonians, but also to rotated versions of higher charges, Qn, interpreted as
Hamiltonians. Here, we briefly summarise how we construct our models. We start with a
Hamiltonian density, H, associated to an integrable system so that we can construct higher
charge densities, Qn. Subsequently, we interpret these charge densities as Hamiltonian
densities, and use an inverse Legendre transform to construct their associated Lagrangian
densities, Ln. We then exchange space and time, leading to a “rotated” Lagrangian, Lr

n,
which, given the nature of the models we started with, will inevitably involve higher-order
derivatives in time. Finally, we employ Ostrogradsky’s generalised scheme to derive the
corresponding Hamiltonian densities, Hr

n. Our construction scheme is summarised as

H integrability−−−−−−→ Qn
inverse Legendre transform−−−−−−−−−−−−−−−→ Ln

x↔t−−→ Lr
n

Ostrogradsky scheme−−−−−−−−−−−−→ Hr
n (18)

The conserved charges Qn =
∫

Qndx involving the densities Qn obey conservation
laws of the form

(Qn)t = (χn)x, ⇒ dQn

dt
=

∫

(Qn)tdx =
∫

(χn)xdx = 0, (19)

where we assume that the flux, χn, vanishes or exactly cancels at the boundaries. Note
that, while the Euler–Lagrange equations maintain their form under an exchange of x and
t, that is not the case for Hamilton’s field equations. The equations resulting from Hr

n are
therefore different from those obtained from simply rotating Qn and will lead to a new set
of equations of motion.

Next, we apply the schemes from above to various integrable field theoretical systems.

3. Canonical Higher Time-Derivative Hamiltonians

In this section, we derive canonical Hamiltonians, their canonical variables including
their mutual Poisson brackets for a family of HTDTs corresponding to rotated versions of
general mKdV Hamiltonians with a space–time exchange and those resulting from higher
charges, as outlined in Section 2.4. We compare the different schemes from Sections 2.1–2.3,
one presenting a Lorentz-invariant version leading to Hamiltonians that are in general not
preserved over time, one leading to a nonrelativistic version with conserved Hamiltonians
and an equivalent version in terms of multiple fields with time derivatives at most of
order one.

3.1. Standard Hamiltonian for Modified KdV Systems, Generic n

In order to provide a point of reference, we start with the standard Lagrangian for
the particle representation of the KdV system [40] in a slightly generalised form that
includes modified KdV systems. It is well known [39] that the canonical Hamiltonian
for the standard KdV equation can be obtained through a Legendre transformation of a
Lagrangian involving two scalar fields, φ and ψ, along with their first order derivatives,
after the implementation of Dirac constraints. The Lagrangian for the mKdV system reads

L =
1

2
φtφx + φxψx + φn

x +
1

2
ψ2, n ∈ N, (20)

where n = 3 and n = 4 are special, as they correspond to the integrable standard KdV
system and standard modified KdV system, respectively. For simplicity, we refer here by
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modified KdV systems to all cases with integer values n ̸= 3. The systems for n > 4 are not
integrable, see, e.g., [41]. The Euler–Lagrange equations derived from L become

∂L
∂φ

− ∂µ

(

∂L
∂µφ

)

= 0, ⇒ φxt + n(n − 1)φn−2
x φxx + ψxx = 0, (21)

∂L
∂ψ

− ∂µ

(

∂L
∂µψ

)

= 0, ⇒ ψ = φxx. (22)

Thus, one sees that the field ψ was just concealing the higher x-derivatives in the
φ-field. When introducing the field u := φx, Equation (21) acquire the form of the modified
KdV equations

ut + n(n − 1)un−2ux + uxxx = 0. (23)

As was pointed out in [39], the Lagrangian L is degenerate, since the equations for
the momentum fields, πψ = ∂L/∂ψt = 0 and πφ = ∂L/∂φt = φx/2, cannot be solved
for the velocity fields, and therefore one cannot convert from velocity phase space to the
momentum phase space in a straightforward manner. However, by properly including
Dirac constraints, the canonical Hamiltonian with the correct Poisson bracket structure can
be constructed, see [39]. The unconstrained part of this Hamiltonian density is obtained
from a Legendre transform and reads

H0 = πφψt + πφφt −L = −φ3
x − φxψx −

1

2
ψ2. (24)

In the Hamiltonian, we convert terms by integration by parts and a subsequent drop-
ping of surface terms in the usual way by assuming that all fields and their x-derivatives
vanish at the boundaries. In terms of the KdV-fields, we then obtain

H0 =
∫

H0dx =
∫

(

1

2
u2

x − un
)

dx. (25)

Here, we are mainly interested in the energies of particular solutions, and since the
additional term H1, required to derive the correct Poisson bracket structure, does not con-
tribute to them we will not report it here, but simply refer to [39] for its explicit expression.

3.2. Rotated Standard Hamiltonian for Modified KdV Systems, Generic n

A space–time rotated, one scalar field, partially integrated surface term adjusted
version of the Lagrangian (20) is

Lr =
1

2
ϕt ϕx + ϕn

t −
1

2
ϕ2

tt, n ∈ N. (26)

At first, we derive the Lorentz invariant version of Hamilton’s equations by the scheme
as outlined in Section 2.1. Using the defining relations for the generalised momenta (2)
with m = 2, we compute them to

πx =
1

2
ϕt, πt =

1

2
ϕx + ϕttt + nϕn−1

t , πtt = −ϕtt, πxx = πxt = πtx = 0. (27)

The Hamiltonian density according to (3) then results to

Hr = πx ϕx + πt ϕt + πtt ϕ̂tt −Lr(ϕ, ϕt, ϕx, ϕ̂tt) (28)

= πx ϕx + πt ϕt −
1

2

(

πtt)2 − 1

2
ϕt ϕx − ϕ3

t , (29)

where we identified ϕ̂tt = −πtt. Hamilton’s field equations are then consistently computed
according to (5) and (6)
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∂µ ϕ =
Hr

∂πµ ⇔ ϕt = ϕt, ϕx = ϕx, (30)

∂µ ϕν =
Hr

∂πµν ⇔ ϕtt = −πtt, (31)

∂µπµ = −Hr

∂ϕ
⇔ ∂tπ

t + ∂xπx = 0, ⇔ n(n − 1)ϕn−2
t ϕtt +

1

2
ϕxt + ϕtttt +

1

2
ϕxt = 0, (32)

∂νπµν = − Hr

∂ϕµ
⇔ ∂tπ

tt = − Hr

∂ϕt
⇔ −ϕttt = −πt +

1

2
ϕx + nϕn−1

t . (33)

While the Hamiltonian density, Hr, yields a consistent set of Hamilton’s equations in
the relativistic framework, its corresponding Hamiltonian, Hr =

∫

Hrdx, is in general not
a conserved quantity

dHr

dt
=

∫ dHr

dt
dx =

∫ d(πx ϕx)

dt
dx +

∫ dH′r

dt
dx =

∫ d(πx ϕx)

dt
dx ̸= 0. (34)

We will present the precise form of the conserved Hamiltonian, H′r, below, which is
in fact the nonrelativistic version of Hr, which we should be using, as the modified KdV
systems are not Lorentz invariant.

We will demonstrate this scheme for the equivalent Lagrangian, L′r, obtained from Lr

by initially hiding the higher derivative fields, as explained in general terms in Section 2.3.
With the canonical momenta computed as in (27), the integrated constraints (16) yield
with (17)

L′r =
∫

πtdϕt =
1

2
ϕx ϕt + ϕn

t + ϕt ϕttt + f1(ϕ, ϕtt, ϕttt), (35)

L′r = −
∫

[

∫

πttdt
]

dϕttt = ϕtt ϕttt + f2(ϕ, ϕt ϕtt). (36)

The comparison of (35) and (36) then gives

L′r =
1

2
ϕx ϕt + ϕn

t + ϕt ϕttt + g(ϕ, ϕtt), (37)

where g(ϕ, ϕtt) is the last unknown function. Equating Lr and L′r, we identify at first
g(ϕ, ϕtt) = −ϕt ϕttt − 1/2ϕ2

tt, but since g does not depend on ϕttt we must convert the
first term with an integration by parts, so that g(ϕ, ϕtt) = 1/2ϕ2

tt when surface terms are
dropped. Finally, we obtain

L′r =
1

2
ϕx ϕt + ϕn

t + ϕt ϕttt +
1

2
ϕ2

tt, (38)

which differs from Lr just by surface terms as anticipated. Introducing now the new fields
φ := ϕ and ψ := ϕtt, the Lagrangian L′r acquires the form

L′r =
1

2
φtφx + φtψt + φn

t +
1

2
ψ2, n ∈ N, (39)

so that indeed all higher-order time derivatives have been hidden. When rotating back by
swapping x and t, we recover the version (20).

The Euler–Lagrange equations are now obtained from L′r by using (15) to

φxt + n(n − 1)φn−2
t φtt + ψtt = 0, and ψ = φtt. (40)

With u := φt, the first equations convert into the rotated mKdV equations

ux + n(n − 1)un−2ut + uttt = 0. (41)
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Unlike the original unrotated Lagrangian, the rotated Lagrangians Lr and L′r are not
degenerate. The canonical momenta for L′r are computed directly to

πψ =
∂L′r

∂ψt
= φt, πφ =

∂L′r

∂φt
=

1

2
φx + nφn−1

t + ψt, (42)

which can be inverted for the velocity fields

φt = πψ, ψt = πφ − 1

2
φx − nπn−1

ψ . (43)

The Legendre-transformed Lagrangian, L′r, then yields the Hamiltonian density

H′r = πψψt + πφφt −L′r = πφπψ − 1

2
πψφx − πn

ψ − 1

2
ψ2. (44)

This is indeed the canonical Hamiltonian with the correct underlying canonical Poisson
bracket structure. As a crucial difference compared with the nonrotated version we did
not require any Dirac constraints in its derivation. We assume the standard equal-time
canonical Poisson bracket relations for the canonical fields

{

ψ(x), πψ(x′)
}

= δ
(

x − x′
)

,
{

φ(x), πφ(x′)
}

= δ
(

x − x′
)

, (45)

with all other combinations of ψ, φ, πψ and πφ vanishing. When translating the vanishing
relations to the φ-fields and their time derivatives, we obtain

{

φtt(x), φttt(x′)
}

= −n(n − 1)φn−2
t ∂xδ

(

x − x′
)

,
{

φttt(x), φttt(x′)
}

= −∂xδ
(

x − x′
)

, (46)

and

{

φ(x), φ(x′)
}

=
{

φ(x), φt(x′)
}

=
{

φ(x), φtt(x′)
}

=
{

φt(x), φt(x′)
}

=
{

φt(x), φttt(x′)
}

= 0. (47)

With the help of these relations, we compute Hamilton’s equations of motion

φt =
∂H′r

∂πφ
=

{

φ, H′r} = πψ, (48)

ψt =
∂H′r

∂πψ
=

{

ψ, H′r} = πφ − 1

2
φx − nπn−1

ψ , (49)

(

πψ

)

t = −∂H′r

∂ψ
=

{

πψ, H′r} = ψ = φtt, (50)

(

πφ

)

t = −∂H′r

∂φ
=

{

πφ, H′r} = −1

2

(

πψ

)

x, (51)

where (51) is the first equation of (40). We can express the Hamiltonian density in terms of
the KdV-field u(x, t) as

H′r = (n − 1)un + uutt −
1

2
u2

t , (52)

which is a conserved quantity, as is easily verified when using the equation of motion (41)

dH′r

dt
=

∫ dH′r

dt
dx =

∫

u
[

uttt + n(n − 1)u(n−2)ut

]

dx = −1

2

∫

(u2)xdx = 0, (53)

and when dropping surface terms. The non-vanishing equal-time Poisson brackets for the
KdV fields are obtained by direct conversion of the above
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{

u(x), ut(x′)
}

= −δ
(

x − x′
)

, (54)
{

utt(x), utt(x′)
}

= −∂xδ
(

x − x′
)

, (55)
{

ut(x), utt(x′)
}

= −n(n − 1)un−2∂xδ
(

x − x′
)

, (56)

such that
ut =

{

u, H′r}. (57)

Thus, H′
r is a conserved quantity interpreted in the usual fashion as energy and also as

a Hamiltonian since it generates the evolution in time. Notice that Hr does not admit such
an interpretation.

Solutions u4 and u3 to the equation of motion (41) for n = 4 and n = 3, respectively,
are related by means of the rotated Miura transformation

u3 = 2u2
4 + i

√
2(u4)t, (58)

offering the possibility to construct a complex solution, u3, from a real solution, u4, or
possibly a real solution, u3, from a complex solution, u4.

3.3. xt-Rotated First Higher Charge Hamiltonians for the KdV System, n = 3

Next, we discuss a HTDT obtained from a rotated higher charge following the scheme
outlined in (18). Starting with the KdV system, the next highest charge density satisfying
(19) beyond the Hamiltonian reads

Q3 =
5

3
uu2

x −
5

6
u4 − 1

6
u2

xx, (59)

with corresponding flux

χ3 =
1

6

[

24u5 − u2
xxx + 10

(

2u3 + u2
x

)

uxx − 90u2u2
x + 2u4xuxx − 20uuxuxxx + 16uu2

xx

]

. (60)

Identifying u := ϕx, we obtain the associated Lagrangian by an inverse Legendre
transform as

L3 =
1

2
ϕt ϕx −

5

3
ϕx ϕ2

xx +
5

6
ϕ4

x +
ϕ2

xxx

6
, (61)

Following the scheme in (18), the rotated version

Lr
3 =

1

2
ϕt ϕx −

5

3
ϕt ϕ2

tt +
5

6
ϕ4

t +
ϕ2

ttt
6

, (62)

is used next as the starting point of the Ostrogradsky procedure. The generalised momen-
tum and coordinate fields are computed from (8) and (10) to

π1 =
10

3

(

ϕt ϕttt + ϕ3
t

)

+
5ϕ2

tt
3

+
ϕ5t

3
+

ϕx

2
, π2 = −10

3
ϕt ϕtt −

ϕ4t

3
, π3 =

ϕttt

3
, (63)

Φ1 = ϕ, Φ2 = ϕt, Φ3 = ϕtt. (64)

Also, this system is not degenerate so that the Hamiltonian density is obtained directly
from (11)

H′r
3 = π1Φ2 + π2Φ3 +

3

2
π2

3 −
1

2
Φ2(Φ3)

2 +
5

3
Φ2Φ2

3 −
5

6
Φ4

2, (65)

= −ututtt

3
+

1

3
uu4t +

10u2utt

3
+

u2
tt

6
+

5u4

2
, (66)

with u := ϕt.
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Hamilton’s equation of motion leads again to many trivially satisfied identities, with
the equation of motion resulting to

(π1)t = −H′r
3

∂ϕ
⇔ ϕxt + 10ϕ2

t ϕtt +
10

3
ϕt ϕ4t +

1

3
ϕ6t +

20

3
ϕtt ϕttt, (67)

⇔ ux + 10u2ut +
10

3
uuttt +

1

3
u5t +

20

3
ututt, (68)

We observe that H′r
3 is a conserved quantity

dH′r
3

dt
=

∫ dH′r
3

dt
dx =

∫

u
[

10u2ut +
10

3
uuttt +

1

3
u5t +

20

3
ututt

]

dx (69)

= −1

2

∫

(u2)xdx = 0, (70)

up to the validity of the equation of motion (68) and the vanishing of surface terms.

3.3.1. Multi-Field Theory

Next, we demonstrate that one may also re-express the higher charge Lagrangian, L′r
3 ,

and Hamiltonian, H′r
3 , densities in terms of new fields that hide the higher time derivatives.

Solving the constraints (16) using the canonical momenta (63), we obtain the equivalent
multi-field Lagrangian

L′r =
5

6
ϕ4

t +
5

3
ϕ2

2t ϕt +
1

2
ϕx ϕt +

5

3
ϕ2

t ϕ3t +
1

3
ϕ5t ϕt +

1

6
ϕ2

3t +
1

3
ϕ2t ϕ4t, (71)

=
5

6
(φ1)

4
t +

5

3
φ2

2(φ1)t +
1

2
(φ1)x(φ1)t +

5

3
(φ1)

2
t (φ2)t +

1

3
(φ3)t(φ1)t +

1

6
(φ1)

2
t +

1

3
φ1φ2.

where φ1 := ϕ, φ2 := ϕ2t and φ3 := ϕ4t. Computing the corresponding canonical mo-
menta gives

π′
1 =

∂L′r

∂(φ1)t
=

10

3
(φ1)

3
t +

5

3
φ2

2 +
1

2
(φ1)x +

10

3
(φ1)t(φ2)t +

1

3
(φ3)t, (72)

π′
2 =

∂L′r

∂(φ2)t
=

5

3
(φ1)

2
t +

1

3
(φ2)t, (73)

π′
3 =

∂L′r

∂(φ3)t
=

1

3
(φ1)t, (74)

so that the Legendre-transformed L′r yields the Hamiltonian

H′r = 3π′
3π′

1 + 270π′4
3 − 5(φ2)

2π′
3 −

3

2
π′

3(φ1)x − 45π′2
3 π′

2 +
3

2
π′2

2 − 1

3
φ2φ3, (75)

=
5

2
(φ1)

4
t +

10

3
(φ1)

2
t (φ2)t +

1

6
(φ2)

2
t +

1

3
(φ1)t(φ3)t −

1

3
φ2φ3. (76)

With the identification ϕt = u, the expression (76) is identical to (66) previously
derived. The version (75) is tailored to generate the equations of motion. We find



Universe 2024, 10, 198 11 of 28

(φ1)t =
∫

{φ(x),H(y)}dy = 3π′
3 (77)

(φ2)t =
∫

{ψ(x),H(y)}dy = −45π′2
1 + 3π′

2 (78)

(φ3)t =
∫

{θ(x),H(y)}dy = 3π′
1 + 1080π′3

3 − 5φ2
1 −

3

2
(φ0)x − 90π′

2π′
3 (79)

(

π′
1

)

t =
∫

{πφ(x),H(y)}dy = −3

2
(π′

3)x (80)

(

π′
2

)

t =
∫

{π1(x),H(y)}dy = 10φ1π′
3 +

1

3
φ2 (81)

(

π′
3

)

t =
1

3
φ1 (82)

Using the explicit expression for the canonical momenta (72)–(74), we see that all
equations are trivially satisfied, except (80), which corresponds to the equation of motion.
Thus, one can eliminate all time derivatives beyond order one by introducing new fields in
the described manner and simply use the standard variational principle, avoiding the use
of Ostrogradsky’s method altogether. However, the conversion (17) becomes increasingly
complicated, as we have checked for the next highest charge not reported here.

3.3.2. Integrability from Painlevé Test

Having obtained a new version of a conserved Hamiltonian, it is unclear whether
the system is integrable or not. In order to settle this question, we carry out a Painlevé
test [42–47] for the equation of motion in the form (68). Our starting point is a Painlevé
expansion of the form

u(x, t) =
∞

∑
k=0

λk(x, t)w(x, t)k+α, (83)

where the functions λk(x, t) are analytic and −α ∈ N characterises the leading order
singularity when w(x, t) → 0. Substituting the expansion into the PDE under investigation,
the function λk(x, t) may in principle be computed recursively. The Painlevé test consists
of determining how many free parametric functions, λk(x, t), referred to as resonances,
occur in this recursive process or whether the procedure would impose constraints on the
functions w(x, t). In case the number of resonances is greater or equal to the order of the
differential equation, the system is said to have passed the Painlevé test and is considered
to be integrable. In reverse, if that is not the case, the test has failed and one can deduce
that the system is not integrable. We will not establish here the stronger Painlevé property,
which consists of proving in addition that the series (83) is convergent.

For our system, we need to establish at first the order of the leading singularity.
Substituting the first term from the expansion (83) into (68), we can identify the leading
order contributions from each of the terms ux ∼ wα−1, u2ut ∼ w3α−1, uuttt ∼ wα−3,
u5t ∼ wα−5 and ututt ∼ wα−2. Matching the powers of the second and fourth term,
3α − 1 = α − 5, we find that α = −2. Using this value in the expansion (83), we read off the
coefficients in the powers of w and set them to zero

w−7 : λ0wt

(

λ0 + 2w2
t

)(

λ0 + 6w2
t

)

= 0. (84)

For the solution λ0 = −2w2
t to (84), we find at the next orders
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w−6 : w5
t (λ1 − 2wtt) = 0 ⇒ λ1 = 2wtt, (85)

w−5 : w3
t (λ1 − 6wtt)(1 − 2wt∂t)(λ1 − 2wtt) = 0, ⇒ λ2 arbitrary,

w−4 : λ3 =
wt[wt(2wttwttt − 2wt(λ2)t + w4t)]− w3

tt

2w4
t

,

w−3 : λ4 =
40wtw2

ttwttt + 10w4
t (λ2)tt − 25w4tw2

t wtt − 20w4
tt + 30λ2

2w4
t

20w6
t

+
10λ2w2

t
(

4wtwttt − 3w2
tt
)

+ w3
t (6w5t + 3wx − 10(λ2)twtt)

20w6
t

,

w−2 : λ5 arbitrary,

w−1 : λ6 arbitrary,

w0 : λ7 =
1

80w5
t

{

180λ4wttwttt − 40λ2
3wtwtt − 30λ5wtw2

tt − 80λ3λ4w3
t − 10λ4w4twt

+21λ3w5t + 30λ2
2[(λ2)t + λ3wt] + 45w4t(λ3)t − 160λ6w3

t wtt − 80λ5w2
t wttt + 3λ3wx

+150w2
tt(λ4)t − 120w2

t wtt(λ5)t + 40wtwttt(λ4)t − 80λ3w2
t (λ3)t − 80w4

t (λ6)t

+20(λ2)t[2wt((λ3)t − 2λ4wt) + (λ2)tt + 7λ3wtt] + 20λ3wt(λ2)tt − 40w3
t (λ5)tt

+10λ2[3wt[(λ3)tt − 2λ4wtt − 2wt((λ4)t + λ5wt)] + 15wtt(λ3)t + (λ2)ttt + 13λ3wttt]

+30wtt(λ3)ttt + 60wtwtt(λ4)tt + 50wttt(λ3)tt + 5wt(λ3)4t + (λ2)5t + 3(λ2)t},

w1 : λ8 arbitrary.

Thus, besides the fundamental singularity at λ−1, we found the four additional free
parameters λ2, λ5, λ6 and λ8. Thus, with five free parameters, we match the order of the
differential equation and conclude that the system is integrable.

We compare this result of our explicit construction with the necessary condition that
arises when we assume the λr for some as yet unknown r to be constant. We set them to
some constant coefficient, θ. For the unknown power, r, the constant, θ, of the term wr+α

becomes undetermined when this term cancels the leading order, wα. Hence, substituting
for this

ũ(x, t) = λ0(x, t)w(x, t)α + θw(x, t)r+α (86)

with λ0 = −2w2
t into (68), we obtain

1

3
θ(r − 8)(r − 6)(r − 5)(r − 2)(r + 1)w5

t = 0, (87)

which reproduces exactly the powers r = 2, 5, 6, 8 found in the explicit construction above.
For the other two choices for λ0 = 0 and λ0 = −6w2

t , we find

1

3
θ(r − 6)(r − 5)(r − 4)(r − 3)(r − 2)w5

t = 0, (88)

1

3
θ(r − 10)(r − 8)(r − 6)(r + 1)(r + 3)w5

t = 0, (89)

respectively. Once again we find five free parameters. We verified these values also in an
explicit construction that we do not report here.

3.4. xt-Rotated First Higher Charge Hamiltonians for the KdV System, n = 4

For the modified KdV system, the next highest charge density satisfying (19) beyond
the Hamiltonian reads

Q3 =
10

3
u2u2

x −
4u6

3
− u2

xx

6
, (90)

with corresponding flux
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χ3 = 12u8 + 8u5uxx − 60u4u2
x −

20

3
u2uxuxxx +

16

3
u2u2

xx +
20

3
uu2

xuxx +
1

3
u4xuxx +

u4
x

3
− u2

xxx

6
. (91)

Identifying again u := ϕx, we obtain the associated Lagrangian by an inverse Legendre
transform as

L3 =
1

2
ϕt ϕx −

10

3
ϕ2

x ϕ2
xx +

4

3
ϕ6

x +
ϕ2

xxx

6
. (92)

Following the scheme in (18), the rotated version

Lr
3 =

1

2
ϕx ϕt −

10

3
ϕ2

t ϕ2
tt +

4

3
ϕ6

t +
ϕ2

ttt
6

, (93)

is used next as the starting point of the Ostrogradsky procedure. The generalised momen-
tum and coordinate fields are computed from (8) and (10) to

π1 =
20

3

(

ϕt ϕ2
tt + ϕ2

t ϕttt

)

+ 8ϕ5
t +

ϕ5t

3
+

ϕx

2
, π2 = −20

3
ϕ2

t ϕtt −
ϕ4t

3
, π3 =

ϕttt

3
, (94)

Φ1 = ϕ, Φ2 = ϕt, Φ3 = ϕtt. (95)

Once again, the system is not degenerate so that the Hamiltonian density is obtained
directly from (11)

H′r
3 = π1Φ2 + π2Φ3 +

3

2
π2

3 +
10

3
ϕ2

t ϕ2
tt −

1

2
ϕt ϕx −

4

3
ϕ6

t , (96)

= −ututtt

3
+

10

3
u2u2

t +
1

3
uu4t +

20u3utt

3
+

u2
tt

6
+

20u6

3
, (97)

with u := ϕt. Hamilton’s equations of motion lead once more to many trivially satisfied
identities, which we do not report, with the equation of motion resulting as

(π1)t = −Hr
3

∂ϕ
⇔ ϕxt +

80

3
ϕt ϕtt ϕttt + 40ϕ4

t ϕtt +
20

3
ϕ4t ϕ2

t +
ϕ6t

3
+

20

3
ϕ3

tt = 0, (98)

⇔ ux +
80

3
uututt + 40u4ut +

20

3
u2u3t +

u5t

3
+

20

3
u3

t = 0, (99)

We easily establish that H′r
3 is a conserved quantity

dH′r
3

dt
=

∫ dH′r
3

dt
dx =

∫

u
[

80

3
uututt + 40u4ut +

20

3
u2u3t +

u5t

3
+

20

3
u3

t

]

dx (100)

= −1

2

∫

(u2)xdx = 0, (101)

up to the validity of the equation of motion (99) and the vanishing of surface terms.

Integrability from Painlevé Test

Next, we carry out a Painlevé test for the PDE (99). The leading order contributions
from each of the terms are in this case ux ∼ wα−1, uututt ∼ w2α−1, u4ut ∼ w5α−1, u2uttt ∼
wα−3, u5t ∼ wα−5 and u3

t ∼ w3α−3. Matching the powers of the third and fifth or sixth term,
5α − 1 = α − 5, we find that α = −1. Using this value in the expansion (83), we read off the
coefficients in the powers of w and set them to zero

w−6 : −20λ0wt

(

λ2
0 + 2w2

t

)(

2λ2
0 + w2

t

)

= 0. (102)
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For the solution λ0 = iwt/
√

2 to (102), we find at the next orders

w−5 :
20

3
w4

t

(

4λ1wt + i
√

2wtt

)

= 0 ⇒ λ1 = − iwtt

2
√

2wt
, (103)

w−4 :
20iw2

t
3

[

4i(4wtt + wt∂t)

(

λ1 +
iwtt

2
√

2wt

)

+ 6
√

2w2
t

(

λ2
1 +

w2
tt

8w2
t

)]

⇒ λ2 arbitrary,

w−3 : ⇒ λ3 arbitrary,

w−2 : λ4 =
1

320w7
t

{

80w3
t

[

−2wt(wtt(λ2)t + 2λ2wttt)− 2w2
t ((λ2)tt + 2λ3wtt) ,

−4w3
t (λ3)t + 5λ2w2

tt

]}

− i
√

2
{

4wt

[

wt

(

10w4twtt + 200λ2
2w4

t − 2wt(w5t + 3wx)

+5w2
ttt

)

− 25w2
ttwttt

]

+ 45w4
tt

}

,

w−1 : λ5 arbitrary,

w0 : λ6 arbitrary.

In this case, we found the four free parameters λ2, λ3, λ5 and λ6, so that, together
with the fundamental singularity at λ−1, we match the order of the differential equation
and deduce that the system is integrable. Once again, we can compare with the necessary
condition. The Ansatz (86) with solution λ0 = ±iwt/

√
2 to the first constraint yields

1

3
θ(r − 6)(r − 5)(r − 3)(r − 2)(r + 1)w5

t = 0, (104)

which identifies the same powers r = 2, 3, 5, 6 that we found in our explicit construction.
For the other two solutions, λ0 = 0 and λ0 = ±i

√
2wt, we find

1

3
θ(r − 5)(r − 4)(r − 3)(r − 2)(r − 1)w5

t = 0, (105)

1

3
θ(r − 8)(r − 6)(r − 5)(r + 1)(r + 3)w5

t = 0, (106)

respectively. In all cases, we find five free parameters that may be verified by an
explicit construction.

4. Exact Benign and Malevolent Solutions and Their Classical Energies

Next, we construct solutions for the modified rotated KdV Equation (41) and those
resulting from interpreting the higher charges of the rotated system as Hamiltonians (68)
and (99). With regard to the question of whether the characteristic features of HTDTs
show up at the classical level, we are especially interested in periodic benign solutions
in time with sufficiently many free parameters to satisfy the initial conditions of the
rotated Cauchy problem. For some examples, we will also constrain the real x-axis and
thus include boundaries, so that the Cauchy problem is extended to an initial-boundary
value problem. Assuming travelling wave solutions, these equations may be integrated
out and with appropriate assumptions periodic solutions can be obtained. Here, we
use instead, except for the linear (n = 2)-case, the extended Jacobian elliptic function
expansion method [48] that yields exact periodic solutions in a straightforward manner.
Important for our purposes here is that this approach also exhibits the different types of
dispersion relations.

4.1. Exact Solutions for the Rotated n = 2-mKdV Equations of Motion

In constructing solutions to the equations of motion (41), we start with the (n = 2)-case,
which is straightforward to solve as it is linear and can be solved explicitly by elemen-
tary methods, but is still instructive in exhibiting some key characteristics. Factorising
u(x, t) = f (x)g(t), Equation (41) is converted into the two equations



Universe 2024, 10, 198 15 of 28

fx

f
= −λ,

2gt

g
+

gttt

g
= −λ, (107)

with λ ∈ C being a constant. Solving both equations, the general solution then simply
becomes

u2(x, t) =
(

c1e−m1t + c2e−m2t + c3e−m3t)c4e−λx, (108)

with mi denoting the three roots of t3 + 2t + λ = 0 and ci the required integration constants.
A similar solution is obtained when assuming a travelling wave solution of the form
u(x, t) = u(ζ) where ζ := x − ct. We can then integrate out the equation directly and
subsequently once more when multiplied by uζ , obtaining

du
dζ

=

√

2

c3

[(

1

2
− c

)

u2 − c1u − c2

]

, (109)

with integration constants c1, c2. Equation (109) is easily integrated out, producing a similar
solution as reported in (108).

Depending on the values of λ, we encounter malevolent exponentially and oscillatory
divergent solutions, as well as benign complex solutions that stay finite when time evolves,
see Figure 1. Dissipative solutions of similar type were previously found for extended
versions of the Pais–Uhlenbeck oscillators on the classical and quantum level [49–51].
In Section 5, we will comment on the field theoretical version.

2 4 6 8 10 12 14
t

20

40

60

80

100
u(x,t)

(a)

2 4 6 8 10 12 14
t

-4000

-2000

2000

4000

u(x,t)

(b)

2 4 6 8 10 12 14
t
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-5

5

10
u(x,t)
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x=0.0

x=0.5

x=1.5

x=2.0

x=3.0

x=4.0

Figure 1. Classical solutions for the n = 2 rotated modified KdV equation at different locations, x, as

functions of time, t, with c1 = 3, c2 = c3 = 2, c4 = 1, m1 ∈ R, m2 = m∗
3 ∈ C for λ = 1, λ = −1, λ = i

in panels (a), (b) and (c), respectively. In panel (c), real parts are depicted as solid lines and imaginary

parts as dotted lines.

Notice that, even having a benign solution and despite having as many constants
in the solution (108) as the order of the differential equation in t, we cannot construct
from them an exact solution to the rotated Cauchy problem, as the initial profile functions
u2(x, 0), (u2)t(x, 0) and (u2)tt(x, 0) cannot be chosen arbitrarily, but are linearly dependent
of the form ∼ e−λx.

The energies of the solutions are computed from the densities in (52). For real values
of λ, the energies become infinite when integrating over the entire real axis, and when

λ ∈ iR we obtain vanishing energies on finite intervals E =
∫ π/2
−π/2 H′r(u2)dx = 0.

4.2. Exact Solutions for the Rotated n = 3-mKdV Equations of Motion

Next, we consider the standard KdV Equation (23) with n = 3 in order to exhibit the
key differences between the original and the rotated version. Making an Ansatz for the
solution of the original version in (23) in terms of the Jacobi elliptic function sn(z|m) with
parameter m ∈ [0, 1], and at this point unknown constants α, k and ω,

u3(x, t) = α sn2(kx + tω|m), (110)
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we obtain, upon substitution into original KdV Equation (23), the constraining equation

2αcn(kx + tω|m)dn(kx + tω|m)sn(kx + tω|m) (111)

×
[

ω − 4k3(1 + m) + 6k
(

α + 2k2m
)

sn2(kx + tω|m)
]

= 0.

The last factor vanishes when we set α = −2mk2 and the dispersion relation to
ω(k) = 4k3(1 + m). We will make use of the real and complex periodicities

u3(x, t) = u3

(

x +
2

k
K, t

)

= u3

(

x +
2

k
iK′, t

)

= u3

(

x, t +
2

ω
K
)

= u3

(

x, t +
2

ω
iK′

)

, (112)

with K := K(m), K′ := K(1 − m) denoting the complete elliptic integrals of the first
kind. In the limit m → 1, this solution reduces to the well-known solution u3(x, t) =
−2k2tanh2(8k3t + kx

)

. Similar solutions may be obtained from different starting points
akin to (110) involving other Jacobi elliptic functions.

For the rotated KdV equation, the Ansatz (110), when substituted into (41), yields
the constraint

2αcn(kx + tω|m)dn(kx + tω|m)sn(kx + tω|m) (113)

×
[

k − 4(1 + m)ω3 + 6ω
(

α + 2mω2
)

sn2(kx + tω|m)
]

,

so that, when solving the dispersion relation for ω, we obtain three distinct solutions

u(n)
3r (x, t) = α(n) sn2

[

kx + tω(n)|m
]

, α(n) := −2m
[

ω(n)
]2

, ω(n) :=

[

k
4 + 4m

]1/3

τn (114)

for n = 1, 2, 3 with τ := e2πi/3 denoting the third primitive root of unity.

The complex solutions u(1)
3r (k > 0) = u(2)

3r (k < 0) = [u(2)
3r (k > 0)]∗ = [u(3)

3r (k < 0)]∗

are malevolent as they have singularities at (kx + tω(1,2)) = ℓiK′ for ℓ ∈ Z, i.e., at the points

x̂(n)
ℓ,µ = − ℓ

k
cot

(

2πn
3

)

K′ +
2µK

k
, n = 1, 2 µ, ν ∈ Z, (115)

t̂(n)
ℓ,ν =

22/3

k1/3
(m + 1)1/3K csc

(

2πn
3

)[

ℓK′ + 2ν tan

(

2πn
3

)

K
]

, (116)

that are reached in finite time, t. Figure 2 shows how a typical malevolent solution runs
into a singularity as time evolves.
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Figure 2. Real, panel (a), and imaginary parts, panel (b), of the classical malevolent solutions

u(1)
3r (x, t) at different times for the n = 3 rotated modified KdV equation with k = 1.2, m = 0.25 and

singularities at the points (x̂(1)−1,0, t(1)−1,0) = (1.0376, 4.0070), (x̂(1)−1,−1, t(1)−1,0) = (−1.7720, 4.0070).

In contrast, the real solutions u(3)
3r (k > 0) = u(1)

3r (k < 0) are oscillatory and of a benign
nature. However, this does of course not yet mean that we can solve the rotated Cauchy
problem, as for this we need to accommodate three arbitrary independent functions, u, ut
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and utt, as initial profiles at t = 0. In order to obtain the right amount of free functions, we
have to combine three of the solutions. As our equation is nonlinear, we can of course not
simply add them, but need to do this by means of a generalised superposition, as obtained
from a Bäcklund transformation. In Appendix A, we explain how to achieve that.

As seen in Figure 3, when taking ω = ω(3), the solutions are benign. Using the three
parameters λ, α1 and α2, we can adjust these solutions to generate many initial value
profiles for the rotated Cauchy problem, thus creating a subset in the functional parameter
space with exact solutions of a benign nature. In [15], it was argued that for the KdV-
system some of the exact solutions would blow up, as they evolve in time and doubt was
raised about the existence of benign solutions. Here, we have explicitly shown that benign
solutions can easily be constructed and combined in such a way that the Cauchy problem
is solved for some specific initial profile functions. It remains unclear whether the Cauchy
problem can be solved in complete generality.
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Figure 3. Classical superimposed solutions (A9) for the n = 3 rotated modified KdV equa-

tion with ω = ω(3), α1 = 1/2, α2 = 3/2, m = 0.3, λ = 0 for k = 1/2 and k = 3/2 in

panels (a) and (b), respectively.

Next, we compute the energies of these solutions in one period, x ∈ [a−K/k, a+K/k],
for arbitrary a associated to the Hamiltonians H0 and H′r. Setting a = 0, we find real
energies for the solution, u3, of the original KdV equation

E3(k, m) =
∫ K/k

−K/k
H0(u3)dx, (117)

=
16

5
k5
[(

m2 + 2m + 2
)

K −
(

2m2 + 3m + 2
)

K′′
]

,

with K′′ = E(m) denoting the complete elliptic integrals of the second kind. As ex-
pected, since H0 is conserved in time, the energies for particular solutions are indeed time-
independent.

For the solutions, u(n)
3r , of the rotated KdV solution, we obtain

E(n)
3r (k, m) =

∫ K/k

−K/k
H′r

[

u(n)
3r

]

dx =
1

3
k
[

2K′′ − 2 + m
1 + m

K
]

. (118)

Notice that the energies are identical, real for all values of n and finite, except in the
limit m → 1, for which we have

lim
m→1

E3(k > 0, m),−E3(k < 0, m),−E(n)
3r (k > 0, m), E(n)

3r (k < 0, m) → ∞. (119)

The reality of the energy is easily understood by noting that H′r
[

u(n)
3r (x, t = 0)

]

∈ R

and the fact that the energy is a conserved quantity in time. Alternatively, by noting that
for two different solutions, u1 and u2, the modified CPT -symmetry, u1(x, t) → u∗

2(−x,−t),

H′r(u1) = [H′r(u2)]
∗, is realised pairwise for u(n)

3r for the same energy solutions, we can
utilise the arguments from [52] to ensure the reality of the energy.
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We finish this section with a discussion of the stability of these exact benign solu-
tions. In principle, a rigorous analytical analysis up to the standard of the unrotated
Cauchy problem would be highly desirable, but a good insight can already be obtained
from a linearisation [15] and a numerical analysis, as was argued in [53]. Since in any
numerical analysis one encounters inaccuracies, simply due to the limited precision of any
numerical method, one may compare the exact solution with its numerical solution and
interpret the latter as a perturbed version of the former. In Figure 4 panel (a), we plot

the real exact solution, u(3)
3r , versus the numerical solution of the rotated Cauchy problem

obtained by using as the initial profile functions the exact solutions, i.e., u(x, 0) = u(3)
3r (x, 0),

ut(x, 0) =
[

u(3)
3r (x, 0)

]

t
and utt(x, 0) =

[

u(3)
3r (x, 0)

]

tt
(Strictly speaking we are solving an

initial-boundary value problem as technically we do not cover the entire real axis). We
observe that already before even one period in time is finished the numerical solution
deviates drastically from the exact solution and rapidly develops a singularity. Thus, the
exact benign solution is malevolently unstable according to the above characterisation.
In contrast, comparing the exact solution, u3(x, t) = −2k2msn

[

4(m + 1)k3t + xk
∣

∣m
]

, of the
original unrotated equation with the numerical solution computed with only one initial
value function, u(x, 0) = u3(x, 0), we observe that the numerical solution follows precisely
the exact solution, as seen in panel (b) of the same figure. The agreement holds essentially
for an arbitrary large time, so that the solution of the original Cauchy problem is stable and
remains benign.

1 2 3 4 5 6
t

-1.2

-1.0

-0.8

-0.6
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-0.8
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(b)

Figure 4. Exact (solid lines) versus numerical solution (dotted lines) of the rotated and unrotated

KdV Cauchy problem in panels (a) and (b), respectively. In panel (a), u, ut and utt are depicted in

red, black and blue, respectively. In panel (b), the exact solution is depicted in red and the numerical

solution in black. The sample values are k = 1, m = 0.45 and x = 3 in both panels.

4.3. Exact Solutions for the Rotated n = 4-mKdV Equations of Motion

In order to solve the rotated modified KdV Equation (41) with n = 4, we have to
slightly alter the Ansatz (110) and reduce the order of the Jacobi elliptic function. Proceeding
in the same manner, substituting

u4r(x, t) = α cn(kx + tω|m), (120)

into (41) yields the constraint

αdn(kx + tω|m)sn(kx + tω|m)
[

6ω
(

mω2 − 2α2
)

cn(kx + tω|m)2 − k + (1 − 2m)ω3
]

, (121)

leading to the solutions

u(n)
4r (x, t) = α(n) cn

(

kx + tω(n)|m
)

, α(n) :=

√
mω(n)
√

2
, ω(n) :=

(

k
1 − 2m

)1/3

τn. (122)
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The complex solutions are once again of a malevolent nature, whereas the real solu-

tions, u(1)
4r for m > 1/2 and u(3)

4r for m < 1/2, are benign. Combining the solutions, u4r,
according to the Miura transformation (58) produces indeed a new solution to the rotated
n = 3-mKdV equation.

For the standard solution, u4, of the original modified KdV equation we compute

E4(k, m) =
∫ K/k

−K/k
H0(u4)dx = −1

6
k3
{

[m(3m − 4) + 1]K + (2m − 1)K′′}, (123)

which for the sech-solution becomes limm→1 E4(k, m) = −1/6k3. In turn, for the solutions,

u(n)
4r , of the rotated mKdV equation, we obtain

E(n)
4r (k, m) =

∫ K/k

−K/k
H′r

[

u(n)
4r

]

dx =
ω(n)

4m − 2

{

[(4 − 3m)m − 1]K + (1 − 2m)K′′}, (124)

which are never real for all n. We have either E(3)
4r ∈ R and E(1)

4r = [E(2)
4r ]∗ /∈ R when

k > 0, m < 1/2; k < 0, m > 1/2 or E(1)
4r ∈ R and E(2)

4r = [E(3)
4r ]∗ /∈ R when k > 0, m > 1/2;

k < 0, m < 1/2. In the trigonometric limit, we obtain limm→1 E(n)
4r (k, m) = −τn(−k)1/3.

In this case, the CPT -symmetry is broken for the complex solutions, u(n)
4r , and leads to

complex conjugate energy solutions.
To address the rotated Cauchy problem and find more possibilities for initial profile

functions, we could in principle carry out a similar analysis, as in the previous subsection,
by constructing exact nonlinearly superpositioned solutions involving several parameters
from a rotated mKdV Bäcklund transformation following [54]. However, in that case, the
analogue equations to (A4) and (A5) cannot be solved analytically when the seed solution
is taken to be a Jacobi elliptic function. A similar problem occurs when trying to build
such a solution from an alternative version of the mKdV Bäcklund transformation when
following [55]. Alternatively, one could combine several solutions using Darboux–Crum
transformations [56], but instead we will consider here a numerical study of the corre-
sponding initial-boundary value problem. Thus, we consider (41) on the domain t ∈ [0, ∞),
x ∈ [−X, X] with

u(x, 0) = f1(x), ut(x, 0) = f2(x), utt(x, 0) = f3(x), u(±X, t) = a±(t), (125)

where the functions fi(x) are arbitrary. Consistency of the constraints requires that a±(0) =
f1(±X), (a±)t(0) = f2(±X) and (a±)tt(0) = f3(±X). As a compatible set of solutions for
the initial-boundary value functions, we take here for instance

f1(x) = sin(x), f2(x) = cos(2πx/X), f3(x) = 0, a±(t) = sin(t)± sin(X). (126)

In Figure 5, we depict the numerical solutions for u(x, t) for a particular interval,
together with some typical timelines.

We observe that solutions appear to remain benign and do not develop any singu-
larities as time evolves. This confirms the findings in [15] for a different set of boundary
value functions.

The stability of these solutions is examined closer in the same way as in the previous
subsection, see Figure 6. In this case, we may directly compare with a similar calculation
carried out in [53]. First of all, we notice that the “high frequency noise” observed in
Figures 4 and 5 in there is absent in our calculation, even for the higher derivatives. This
is simply due to a different numerical method used (Here we used a higher-order Runge
Kutta method). In panel (a), we observe that also in this case the solution of the rotated
Cauchy problem is unstable, as the numerical solution deviates from the exact solution
after about two and a half periods, depending on the values chosen. However, unlike as
in the case of the KdV equation, we observe here that the solution does not diverge and
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stays finite, even for large times, as seen in panel (b). Thus, this solution is unstably benign,
which confirms the findings made in [53], see Figure 6 therein. Once again, we find that the
numerical solution for the unrotated case follows closely the exact solution, similarly as
found for the KdV equation depicted in panel (b) of Figure 4.
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Figure 5. Classical solutions to the initial-boundary value problem for the n = 4 rotated modified

KdV equation with boundary value functions (126) in panel (a) and selected timelines for fixed

values of x in panels (b,c).
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Figure 6. Exact (solid lines) versus numerical solution (dotted lines) of the rotated mKdV Cauchy

problem for small times in panel (a). Numerical solution of the rotated mKdV Cauchy problem for

large times in panel (b). The functions u, ut and utt are depicted in red, black and blue, respectively.

The sample values are k = 1, m = 0.45 and x = 3 in both panels.

4.4. Exact Solutions for the Rotated Higher Charge n = 3, 4-mKdV Systems

Periodic solutions to the n = 3 equation of motion (68) obtained from the higher
charge Hamiltonian (66) can be obtained in the same way, resulting to

û(n)
3r (x, t) = α(n) cn2

(

kx + tω(n)|m
)

, α(n) := 2mω(n), ω(n) :=

(

3k
8(7m − 7m2 − 2)

)1/5

τ̂n, (127)



Universe 2024, 10, 198 21 of 28

for n = 1, . . . , 5, with τ̂ := e2πi/5 denoting the fifth primitive root of unity. As above,

the complex solutions diverge at finite time, whereas the real solutions û(5)
3r (x, t), k < 0 =

û(2)
3r (x, t), k > 0 are benign.

The energies resulting from the higher charge Hamiltonian (66) for these solutions are
computed to

Ê3r(k, m) =
∫ K/k

−K/k
Hr

3

[

û(n)
3r

]

dx (128)

=
16

[

ω(n)
]8

9k

[

(m − 1)
(

45m3 − 73m2 + 40m − 8
)

K + 4(2m − 1)
(

7m2 − 7m + 2
)

K′′
]

,

which is real only for the real solutions.
Solutions to (99) are obtained in the same way, resulting to

û(n)
4r (x, t) = α(n) cn

(

kx + tω(n)|m
)

, α(n) :=

√

m
2

ω(n), ω(n) :=

(

3k
6m − 6m2 − 1

)1/5

τ̂n, (129)

for n = 1, . . . , 5, with û(5)
4r (x, t), k > 0 = −û(2)

4r (x, t), k < 0 being real benign solutions and
the remaining ones complex divergent in time.

The energies resulting from the higher charge Hamiltonian (97) for these solutions are

Ê3r(k, m) =
∫ K/k

−K/k
Hr

3

[

û(n)
4r

]

dx (130)

=

[

ω(n)
]6

126k

{[

7
(

14m2 − 14m − 1
)

− 4(2m − 1)
(

6m2 − 6m − 19
)[

ω(n)
]2
]

K′′

+(m − 1)

[

7
(

30m2 − 22m − 1
)

+ 2
(

12m2 + 45m − 38
)[

ω(n)
]2
]

K
}

,

which is also real only for the real solutions.
So, in the n = 3-theory, the energies resulting from the Hamiltonians are always real,

even for the complex solutions, but, for the n = 3 higher charges and all charges in the
n = 4-theory, only the real solutions possess real energies.

5. Quantization

We follow here the approach elaborated on in [38] for higher time-derivative gener-
alizations of the Klein–Gordon theory. The initial step of the scheme consists of Fourier
transforming the scalar fields

ϕ(x, t) =
1

2π

∫

dkφ(t, k)eikx, (131)

and subsequently quantizing the theory involving the fields φ(t, k) for fixed wave numbers,
k. For the scheme to be applicable, the resulting k-dependent Lagrangian is required to be
of the general form

Lk =
1

2

N

∑
n=0

Cn(k)
(

dnφ(t, k)
dtn

)2

. (132)

In general, the higher time-derivative Lagrangians considered above contain products
of three or more of the fields and their derivatives, such that they are not of the form (132).
However, the Fourier-transformed Lagrangian of the rotated version (26) for n = 2 reads

Lr
k =

1

2

(

ikφtφ + 2φ2
t − φ2

tt

)

=
1

2

2

∑
i,j=0

C̃ij
diφ

dti
djφ

dtj =
1

2
Φ⊺C̃Φ, (133)
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with

C̃ :=





0 ik
2 0

ik
2 2 0
0 0 −1



, Φ :=





φ
φt
φtt



, (134)

which can be transformed to the variant (132) by means of an orthogonal transformation, S.
The transformed Lagrangian in the fields ψ is derived as

Lr
k =

1

2

{

−ψ2 +

[

1 −
√

1 − k2

4

]

ψ2
t +

[

1 +

√

1 − k2

4

]

ψ2
tt

}

=
2

∑
n=0

Cn

2

(

dnψ

dtn

)2

=
1

2
Ψ⊺CΨ, (135)

with

C := SC̃S⊺, S =















0 0 1
2iC2

k

√

2− 8C2
k2

1
√

2− 8C2
k2

0

2iC1

k

√

2− 8C1
k2

1
√

2− 8C1
k2

0















, Ψ :=





ψ
ψt
ψtt



 = SΦ, (136)

and Cn := Cnn, SS⊺ = 1. The Euler–Lagrange equation resulting from (135) is then

2

∑
n=0

Cn(−1)n d2nψ

dt2n = 0. (137)

Using the mode expansion

ψ =
2

∑
j=1

aje
−iωjt + bje

iωjt, (138)

the equation of motion acquires the form

2

∑
n=0

Cn(ωi)
2n = 0. (139)

The two canonical fields, ψn, and their corresponding canonical momenta, πn, com-
puted from (10) and (9), respectively, satisfying the canonical Poisson bracket relation (10)
are then elevated to obey the quantum commutation relations

[ψn, πm] = iδnm. (140)

As verified in detail by Weldon [38], these relations hold provided the Fock space
generators, ai, bi, commute to the residues, Ri

[

ai, bj
]

= δijRi, with Ri := lim
z→ωi

z − ωi

P(z)
=

1

P′(ωi)
, P(z) :=

2

∑
n=0

Cn(z)2n. (141)

The Hamiltonian, Hr
k, for the fields ψ following from Ostrogradsky’s scheme for scalar

field theories, as laid out in Section 2.2, becomes

Hr
k = −1

2

(

C0ψ2 + C1ψ2
t + 2C2ψtψttt − C2ψ2

tt

)

, (142)

with π1 = C1ψt − C2ψttt, π2 = C1ψtt, Φ1 = ψ and Φ2 = ψt. Using the mode expansion
(138), the Hamiltonian can be cast into the form

Hr
k =

1

2

2

∑
i=1

ωi

Ri
(aibi + biai). (143)
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To illustrate the dilemma of HTDTs, let us first discuss the real scenario for which we
assume that bi = a†

i . Then one may define the vacuum state with energy E0 = (ω1 + ω2)/2
by the relation ai|vac⟩ = 0, following from H|vac⟩ = E0|vac⟩. The norm of the one-particle
state, a†

i |vac⟩
⟨vac|aia

†
i |vac⟩ = Ri, (144)

with energy ωi + E0 can therefore only be positive when the residue, Ri, is positive. The en-
ergy of an n-particle state constructed from Fock states is nωi + E0. Thus, for a theory with
positive norm states and a spectrum that is bounded from below, we require Ri > 0 and
ωi > 0. However, as argued in [38], one may only satisfy here one or the other inequality.

Before discussing Lr
k, we illustrate this feature with a simpler toy model. Considering

for instance a Lagrangian of the form (132)

Lt =
1

2

[

−ψ2 +
(

1 + k2
)

ψ2
t −

1

4

(

1 + k2
)

ψ2
tt

]

, (145)

the corresponding equations of motion (139) have the solutions

ω±
1 = ±

√

2 +
2|k|√
1 + k2

, ω±
2 = ±

√

2 − 2|k|√
1 + k2

, (146)

where ω+
i = −ω−

i > 0. Either two of these solutions may play the role of the ωj in (138).
For the related residues, we find

R±
1 = − 1

2ω±
1

√
k4 + k2

, R±
2 =

1

2ω±
2

√
k4 + k2

, (147)

where R+
1 = −R−

1 < 0 and R+
2 = −R−

2 > 0. Thus, we may either pick two states
with positive definite norm states and positive residues, R−

1 , R+
2 , at the cost of having an

unbounded spectrum from below, since ω−
1 < 0, or we can require boundedness from

below with energy states build from ω+
1 , ω+

2 at the price of having one negative norm state
in the theory.

Returning to the discussion of the spectrum of Hr
k, we find that the corresponding

equations of motion (139) have the solutions

ω±
1 = ±2

√

1

2 −
√

4 − k2 −
√

24 − k2 + 4
√

4 − k2
, (148)

ω±
2 = ±2

√

1

2 −
√

4 − k2 +
√

24 − k2 + 4
√

4 − k2
. (149)

All of these energies are complex, with a non-vanishing complex part throughout the
entire range of k ∈ R. These energies correspond to resonances with energies E = Er − iΓ/2,
where Er ∈ R corresponds to the measurable real part of the energy and Γ ∈ R+ to the
decay width. Thus, we need to identify the ωj in (138) in such a way that the imaginary
parts of the energies are negative for the entire spectrum. The only possible choice that
achieves this is to define En

i := E0 − nωi with E0 := −ω1 − ω2. None of these spectra
is bounded from below, as is also illustrated in Figure 7. Note that any other choice of
the ωi would lead to spectra that do not have a positive decay width, at least in part of
their spectra.



Universe 2024, 10, 198 24 of 28

-10 -5 5 10
k

-40

-30

-20

-10

E
1

n(k)

n=0

n=1

n=2

n=3

n=4

n=5

-10 -5 5 10
k

-30

-25

-20

-15

-10

-5

E2
n(k)

Figure 7. Quantum spectrum of the n = 2 rotated modified KdV equation.

6. Conclusions

The Lorentz invariant formulation of Ostrogradsky’s method generalised to scalar field
theories produced a consistent set of Hamilton’s equations when applied to space–time
rotated mKdV systems, but it failed to yield the correct time evolution or a conserved
Hamiltonian. Instead, employing the nonrelativistic scheme achieved the latter outcomes,
which is expected considering the lack of Lorentz invariance in the mKdV system. We
outlined an alternative general scheme that circumvents Ostrogradsky’s method by con-
cealing time derivatives beyond the first order in newly defined scalar fields. This approach
enables the use of conventional methods to derive canonical variables and associated
Hamiltonians. We have demonstrated that mKdV systems can be formulated equivalently
in this alternative way. However, it remains an open question whether this equivalence can
always be established. The conversion relies on the computation of the first two integrals
in (17), and, in particular when the t-integration cannot be carried out trivially, the proce-
dure becomes technically very difficult and may even become impossible to be carried out.
In our examples, this was the case for the next highest charge, not reported here.

We derived the time evolution and have constructed consistent sets of equal-time
commutation relations for the canonical coordinate and momentum fields of the mKdV
systems for generic values of n, which should aid future quantisation procedures of the
theories. For the special cases of n = 3 and n = 4, we also derived the alternative multi-field
version of the theories and the consistent time evolution for the canonical fields of the first
higher charge Hamiltonian. These type of Hamiltonians were constructed from inverse
Legendre-transformed higher charges, which were subsequently space–time rotated before
being converted into Hamiltonians by means of the Ostrogradsky method. By carrying out
a Painlevé test, we established that the systems obtained in this way are integrable.

For the n = 2, 3, 4-theories, we derived several exact real as well as complex benign
and malevolent solutions. The classical energies of these systems were shown to be real
when the solutions respect a generalised CPT -symmetry, and occur in complex conjugate
pairs when that symmetry is broken. By including multi-soliton solutions, we showed that
one may generate a large set of initial value functions for the Cauchy problem and in the
case of n = 4 we also extended our investigations to the initial-boundary value problem,
revealing benign solutions. It remains an open issue whether these type of boundary value
problems can be solved in complete generality for the systems considered. Nonetheless,
we established that in their functional parameter space of initial boundary value functions
they certainly possess islands of benign nature. However, even though the solutions turned
out to be benign, they are unstable, as revealed by comparing the exact with the numerical
solutions. The nature of the instability differs between the n = 3, rotated standard KdV-
equation, and the n = 4-case, rotated standard modified KdV equation. In the former
model, the instability is of a malevolent nature whereas in the latter it is benign, see
Figures 4 and 6. Our findings are in agreement with the observations made in [53].

We have quantised the n = 2-theory, and for a special toy model were led to the usual
dilemma in HTDTs that we have to make a choice between two physically undesirable
features without being able to avoid both at the same time. We have either a theory with
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proper normalisable states of positive norm, at the cost of having a spectrum that is not
bounded from below, or the reverse, where allowing for negative norm states in the system
would lead to a spectrum that is bounded from below. In our n = 2-mKdV theory, the
choice was dictated by selecting the correct sign in the decay width, leading to a theory
that is unbounded from below. We leave the quantisation of the n ̸= 2-theories for future
work, where we also hope to gain new insights into the resolution of the above-mentioned
fundamental issues of HTDTs, possibly along the lines mentioned in [8–12].
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Appendix A. Superposition Principle for the Solutions of the Rotated KdV

In this appendix, we derive a generalised superposition principle for the solutions
of the rotated KdV equation based on Bäcklund transformations and apply it to our
solutions (114). Our starting point consists of two different solutions to the rotated time-
independent Schrödinger equation, with different energies, E1, E2, for the same potential, V0

−(ψ1)tt + V0ψ1 = E1ψ1, −(ψ2)tt + V0ψ2 = E2ψ2. (A1)

It is then easy to see that the two functions ψ̂1 = 1/ψ1 and ψ̂2 = 1/ψ2 satisfy the
space-independent Schrödinger equations

−
(

ψ̂1

)

tt + V̂1ψ̂1 = E1ψ̂1, −
(

ψ̂2

)

tt + V̂2ψ̂2 = E2ψ̂2, (A2)

with potentials
V̂i = V0 − 2(ln ψi)tt, i = 1, 2. (A3)

So far, the above are simply the initial steps of a rotated version of a Darboux trans-
formation, see, e.g., [57]. The connection to the solutions of the KdV equation is made
by recalling that the standard Lax operator for the KdV system, L = −∂2

x − u, can be
interpreted as a Hamilton operator with potential V = −u and u being a solution of the
KdV equation. This is trivially adapted to the current situation with x ↔ t.

Introducing next the quantities u0 = −V0, u1 = −V̂1, u2 = −V̂2 and ui = (wi)t, the
equations above yield

u0 + u1 = −1

2
(w0 − w1)

2 − 2E1, (A4)

u0 + u2 = −1

2
(w0 − w2)

2 − 2E2. (A5)
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In the spirit of Bianchi’s theorem of permutability [58], we can set up a Lamb-
diagram [59] by assuming further that there exists a function u12, with u12 = (w12)t satisfying

u1 + u12 = −1

2
(w1 − w12)

2 − 2E2, (A6)

u2 + u12 = −1

2
(w2 − w12)

2 − 2E1. (A7)

We can then combine these four equations to the nonlinear version of the superposi-
tion principle

w12 = w0 − 4
E1 − E2

w1 − w2
, (A8)

so that

u12 = u0 − 4
(E1 − E2)(u1 − u2)

(w1 − w2)2
. (A9)

Next, we specialise (A8) to our concrete case. We notice that our solutions (114) can
be interpreted as a rotated version of a shifted Lamé potential. Adapting the solutions for
such potentials reported in [60,61], it is convenient to define the functions H, Θ, Y and Z

H(z) := ϑ1(zκ, q), Θ(z) := ϑ4(zκ, q), Y(z) :=
Hz(z)
H(z)

, Z(z) :=
Θz(z)
Θ(z)

, (A10)

defined in terms of Jacobi’s theta functions ϑi(z, q), with i = 1, 2, 3, 4, κ := π/(2K) and
nome q := exp(−πK′/K). Then the combination of the functions

ψα
1 (t) =

H(ωt + p + α)

Θ(ωt + p)
e−(ωt+p)Z(α), and ψα

2 (t) =
Θ(ωt + p + α)

Θ(ωt + p)
e−(ωt+p)Y(α),

(A11)
satisfy the space-independent Schrödinger Equations (A1) for the same potential

V0 = 2mω2sn2(ωt + p|m), (A12)

with different energies

E1 = ω2
[

1 + m − msn2(α|m)
]

, E2 = ω2
[

1 + m − sn−2(α|m)
]

, 3 (A13)

respectively, for ω = ω(n), as specified in (129), and free parameters α, p. We have now
various options to derive two potentials from the functions in (A11), either from ψα

1 (t) and
ψα

2 (t), but as the energies depend on α we may also use ψ
α1
1 (t), ψα2

1 (t) or ψ
α1
2 (t), ψα2

2 (t) with
α1 ̸= α2. Here, we present the second option. Then, specifying p = kx + λ, we obtain
from (A3) the solutions

ui(x, t) := −2mω2sn2(z|m) +

[

H2
zi
(zi)

H2(zi)
− H2zi (zi)

H(zi)
− T2

z (z)
T2(z)

+
T2z(z)
T(z)

]∣

∣

∣

∣

∣z = kx + ωt + λ,
zi = z + αi ,

(A14)

for ω = ω(n). Integrating this over t, we obtain

wi(z) = −2ω

[

z − E(z|m)− Hzi (zi)

H(zi)
+

Tz(z)
T(z)

+ Z(αi)

]∣

∣

∣

∣z = kx + ωt + λ,
zi = z + αi ,

(A15)

where E(z|m) =
∫ z

0 dn2(w|m)dw denotes Jacobi’s epsilon function. Substituting these
expressions into (A9) leads to a superposition with the three free parameters λ, α1 and α2.
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56. Arancibia, A.; Correa, F.; Jakubskỳ, V.; Guilarte, J.M.; Plyushchay, M.S. Soliton defects in one-gap periodic system and exotic

supersymmetry. Phys. Rev. D 2014, 90, 125041. [CrossRef]

57. Matveev, V.B.; Salle, M.A. Darboux Transformation and Solitons; Springer: Berlin, Germany, 1991.

58. Bianchi, L. Vorlesungen über Differentialgeometrie; Teubner: Leipzig, Germany, 1927.

59. Lamb, G.L., Jr. Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 1971,

43, 99–124. [CrossRef]

60. Dunne, G.; Feinberg, J. Self-isospectral periodic potentials and supersymmetric quantum mechanics. Phys. Rev. D 1998, 57, 1271.

[CrossRef]

61. Cen, J.; Correa, F.; Fring, A. Degenerate multi-solitons in the sine-Gordon equation. J. Phys. A Math. Theor. 2017, 50, 435201.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1063/1.524548
http://dx.doi.org/10.1063/1.525721
http://dx.doi.org/10.1063/1.525875
http://dx.doi.org/10.1103/PhysRevD.75.087703
http://dx.doi.org/10.3390/e22090930
http://www.ncbi.nlm.nih.gov/pubmed/33286699
http://dx.doi.org/10.1007/s11071-022-07597-y
http://dx.doi.org/10.1088/1751-8121/abb92a
http://dx.doi.org/10.14311/AP.2022.62.0190
http://dx.doi.org/10.1143/JPSJ.36.1498
http://dx.doi.org/10.1088/0951-7715/7/1/015
http://dx.doi.org/10.1103/PhysRevD.90.125041
http://dx.doi.org/10.1103/RevModPhys.43.99
http://dx.doi.org/10.1103/PhysRevD.57.1271
http://dx.doi.org/10.1088/1751-8121/aa8b7e

	Introduction
	Ostrogradsky's Method for Scalar Field Theories
	Lorentz Invariant Formulation
	Nonrelativistic Formulation
	Higher Time-Derivative Theories in Disguise as Multi-Field Theories
	Higher Time-Derivative Hamiltonians from Space–Time Rotated Higher Charges

	Canonical Higher Time-Derivative Hamiltonians
	Standard Hamiltonian for Modified KdV Systems, Generic n
	Rotated Standard Hamiltonian for Modified KdV Systems, Generic n
	xt-Rotated First Higher Charge Hamiltonians for the KdV System, n=3
	Multi-Field Theory
	Integrability from Painlevé Test 

	xt-Rotated First Higher Charge Hamiltonians for the KdV System, n=4

	Exact Benign and Malevolent Solutions and Their Classical Energies
	Exact Solutions for the Rotated n=2-mKdV Equations of Motion
	Exact Solutions for the Rotated n=3-mKdV Equations of Motion
	Exact Solutions for the Rotated n=4-mKdV Equations of Motion
	Exact Solutions for the Rotated Higher Charge n=3,4-mKdV Systems

	Quantization
	Conclusions
	Appendix A
	References

