J€& Fermilab
"

FERMILAB-Conf-03/116 July 2003

PyORBIT: A Python Shell for ORBIT

J.-F. Ostiguy* Fermi National Accelerator Laboratory, Batavia, IL
J. Holmes, ORNL Oak Ridge, TN 7

Abstract

ORBIT 1is code developed at SNS to simulate beam
dynamics in accumulation rings and synchrotrons. The
code is structured as a collection of external C++ modules
for SuperCode, a high level interpreter shell developed at
LLNL in the early 1990s. SuperCode is no longer actively
supported and there has for some time been interest in re-
placing it by a modern scripting language, while preserving
the feel of the original ORBIT program. In this paper, we
describe a new version of ORBIT where the role of Super-
Code is assumed by Python, a free, well-documented and
widely supported object-oriented scripting language. We
also compare PyORBIT to ORBIT from the standpoint of
features, performance and future expandability.

INTRODUCTION

The philosophy of either embedding or extending a high-
level scripting language has become popular for scientific
applications. Typically, scientific simulation code execu-
tion time is dominated by a few computationally intensive
tasks. On the other hand, bookkeeping operations such as
data analysis and presentation represent a large portion of
the overall development effort. This effort can potentially
be significantly reduced by implementing this functionality
in an interpreted language, without significantly affecting
overall performance. It is in this spirit that ORBIT, a code
to model the dynamics of a synchrotron in the presence
of space charge, was developed at the SNS [1]. ORBIT
is structured as a collection of extension modules for Su-
perCode, an interpreted array-oriented scripting language
with a C++-like syntax originating from the early 1990’s
Fusion research program at LLNL. Unfortunately, Super-
Code is no longer actively developed and supported. In
recent years, a number of free, well-documented and stable
alternative scripting languages have emerged: Perl, Python,
Tcl, Ruby, Guile etc. All these languages have strengths
and weaknesses. Perl has already been used sucessfully
to build a framework integrating existing accelerator codes

[2].

WHY PYTHON ?

Among the many scripting languages, Python has the
distinction of being fundamentally object-oriented. It sup-
ports concepts such as classes, inheritance and operator
overloading. Python scripts are compiled into interpreted
bytecode. Python and C++ syntax and semantics both

* ostiguy @fnal.gov
¥ Work supported by the US Department of Energy under contract
number DE-AC02-76CH03000.

map very well into each other, making Python a particu-
larly good choice as middleware language to integrate func-
tionality implemented in C++. Commonalities between
Python and C++ can be summarized as follows [3]:

e both language use C-family of control structures

e support for object-orientation, functional and generic
programming

comprehensive operator overloading facilities
collections and iterators

support for namespaces (Python modules)

exception handling

Python reference semantics mirrors common C++ id-
ioms (handle/body classes, reference-counted smart
pointers)

MODULE INTERFACE CODE
GENERATION

Although Python and C++ overlap conceptually, from
a low-level implementation standpoint they differ substan-
tially. Python is implemented in C and naturally offers a C-
based API for extension. Compared to C++ and Python,
C has rudimentary abstraction facilities and no support for
exception-handling. Writing interface code for extension
modules using the C-API requires specialized knowledge;
furthermore, the code tends to be complex and hard to
maintain. This has stimulated the development of auto-
mated interface code generation or “wrapping” systems.
The exported ‘module interface is specified in a file pro-
cessed by a specialized program which generates the neces-
sary interface code without further user intervention. There
exist at least five systems to generate python/C++ wrappers
(4,5, 6,7, 8]: SWIG, SIP, CXX, SCXX and Boost.python.
SWIG was one of the first and is probably the most widely
known interface generator. It offers comprehensive sup-
port for most of the popular scripting languages includ-
ing Python. Although support for the Python/C++ com-
bination has been continuously improving, important lim-
itations remain, one of them being the requirement that
all exported templatized functions and classes be explic-
itly instantiated. The inter-language binding code produced
by SWIG is also an unelegant mixture of Python scripts
and C code. SIP is very similar in philosophy to SWIG
— from which it was originally inspired — but is strictly
Python/C++ specific. It was developed as a tool to pro-
duce python wrappers for the Qt library, a popular open
source GUI framework. Although the results are impres-
sive, the SIP interface specification can be-complex and re-
quires the programmer to write some low-level code. CXX
wraps some part of the Python C-API in C++, managing
the complexity using static metaprogramming techniques.

#include <boost/python.h>

class_<Particles>("Particles")
.def ("addMacroHerd",
&Particles: :addMacroHerd,
"Make a main herd of macro particles")
.staticmethod("addMacroHerd")

.def_readwrite("nHerds", &Particles::nHerds)

Figure 2: Exporting the interface of an ORBIT module us-
ing boost.python

Python, making its classes and methods available to the in-
terpreter.

Strings

SuperCode defines its own private string class. While
semantics of this class are close to that of std: : string,
they are not identical. By default, Boost.python provides
automatic conversion between Python str type and C++
std: :string. However, it is also possible to define and
register other type conversions. This approach is used in
PyORBIT to avoid modifying the substantial amount of
code that refers to the private string class.

Function Pointers

Some ORBIT functions expect a function as an argu-
ment. Typical examples are functions used to generate ini-
tial macroparticles phase space distributions or functions
used to define an RF cavity voltage program. Using the
latter as an example, it is convenient to define a voltage
program at the interpreter level since this is a function
which is typically called once per turn. In SuperCode,
function pointers are basically C-style void (*) (). In
Python, all variables and functions are references to dy-
namically allocated objects. When a call to an OR-
BIT function such as AddRampedRFCavity is executed
from Python, the arguments are effectively a list of Py-
Object*. Boost.python introspection allows basic data
types to be converted before the C++ version of Ad-
dRampedRFCavity gets called. However, references to
functions cannot be converted i.e. there is no unambigu-
ous way to go from a PyObject*toavoid (*) (). To
emulate SuperCode syntax and behavior, it is necessary to
introduce an additional C++ wrapper function. How this is
done is illustrated in Fig. 3 where for clarity, function argu-
ments that are not relevant have been omitted. Python calls
addRampedRFCavity with a PyObject* argument.
This argument is passed through a private static variable
to a private function which in turn uses the boost.python
facility call<> to interpret the python function. Finally,
the private function is passed as regular C-style function
pointer to the original version of addRampedRFCavity.

vold addRampedRFCavity((void(*} ()) sub);
using boost::python:call;
static PyObject* RampedRFVolt_pyobiptr = 0;

static void private_RampedRFVolt ()

{
call<void> (RampedRFVolt_pyobiptr);
return;

}

void addRampedRFCavity (PyObject* po)
{
RampedRFVolt_pyobjiptr = po;
addRampedRFCavity (&private_addRampedBAccel) ;
}

Figure 3: Passing a reference to a function defined in
Python to a C++ extension module.

OUTLOOK AND CONCLUSION

Using Boost.python we have sucessfully transformed
ORBIT into a collection of Python modules. This has been
accomplished with minimal modifications to the original
code. PyORBIT performance is basically the same as that
of the original ORBIT since the computationally intensive
work is performed by virtually identical C++ code. A vast
amount of high quality third party libraries and modules
developed for Python have now become available to OR-
BIT users. In principle, this should allow accelerated de-
velopment of new data analysis and display facilities. Fi-
nally, through boost.python, adding new C++ modules is a
well-defined, well-documented and straightforward matter
that does not require specialized programming knowledge.
At the time of this writing, PyORBIT remains a work in
progress. While it is certainly usable as it stands, some
work remains to be done before it can be considered a pro-
duction tool, mostly in connection with exception handling
and error recovery.

REFERENCES

[1] J. Galambos et al., “ORBIT - A Ring Injection Code with
Space Charge”, Proceedings of the 1999 PAC Conference,
pp. 3143-3145

[2] N. Malitsky and R. Talman, AIP 391, 1996

[3] D. Abrahams and R.W. Grosse-Kunstleve, “Building Hybrid
Systems with Boost.Python”, PyCON 2003, Washington DC,
March 2003

[4] http://www.swig.org

[5] http://www.riverbankcomputing.co.uk/sip
[6] http://sourceforge.net/projects/cxx

[7] http://www.macmillan-in.com/scxx.html

[8] http://www.boost.org/scxx.html

SCXX started as a lightweight version of CXX. It does not
use templates and as such cannot hide as many details of
the low-level Python C-API. On the other hand, it auto-
mates tedious error-prone tasks such as reference counting.
Boost.python has features and goals that are similar to all
the other systems. However, remarkably, it does not intro-
duce a separate wrapping language and interface code gen-
erator. Rather, it makes use of C++ compile-time intro-
spection capabilities and advanced metatemplate program-
ming techniques to allow interface specification to be done
in pure C++-. Boost.python also goes beyond the scope of
other systems by providing the following features:

o support for C+- virtual functions that can be overrid-
den in python

e lifetime management facilities for low-level C++
pointers and references

e a safe and convenient mechanism for tying into
Python’s powerful serialization engine

o support for organizing extensions as Python packages
with a central registry for inter-language type conver-
sions

e automatic coherent handling of C++- Ivalues and rval-
ues

Because of its comprehensiveness and elegance,
Boost.python was selected to implement PyORBIT.

PYORBIT IMPLEMENTATION

To facilitate the transition for users already familiar with
ORBIT, an important objective was to make the feel of the
new PyORBIT as close as possible to the existing one. This
is mostly the case, but some important differences remain.
While SuperCode is strongly typed, Python is a dynami-
cally typed language. Variables are not declared; assigning
an object to a variable creates it. All Python variables are
references to PyObjects. The practical consequence is that
an assignment statement such as a = b does not result in
a holding a copy of b but rather in both a and b refering
to the same object on the heap. References are counted and
objects are marked for automatic deletion when no variable
refers to them (automatic garbage collection). Another sig-
nificant difference between Python and SuperCode is the
fact that in Python numbers and strings are immutable ob-
jects. If a function has arguments whose types are im-
mutable, the values of these arguments cannot be changed
by the function. Immutability of basic data types is not as
restrictive as it might seem since Python also provides a
mutable container type (1ist). While the container itself
cannot be modified, the elements it contains can be.

Array Types

SuperCode defines the built-in array types Vector, Ma-
trix, and Array3D (separately for integers, double and
complex) patterned after Fortran arrays (stored in column-
major order and 1-based). These types are extensively

used in the ORBIT code and therefore have been emu-
lated. In PyORBIT, the SuperCode implementation of the
build-in array types is replaced by a new simplified tem-
platized version. Fig. 1 provides an example of how the
ComplexMatrix type interface is exported to Python us-
ing boost.python. At first glance; this may not seem like

#include <boost/python.h>

using namespace boost::python;

typedef Matrix<complex<double>
ComplexMatrix;

class_<ComplexMatrix > >
("ComplexMatrix", init<int,int>()})
.def (init<const ComplexMatrix > >())

.def("get", &ComplexMatrix >::get)
.def ("set", &ComplexMatrix >::set)
def ("__repr ",&ComplexMatrix >::print)
.def("clear", &ComplexMatrix >::clear)
.def ("resize", &ComplexMatrix >::resize)

.def({self + self)
.def (self - self)
.def (self * self)
.def (self "~ self)

i

Figure 1: Exporting the interface of an array datatype using
boost.python

C++ and a few explanations are in order. The construct
class_<type> (name) is simply an anonymous instan-
tiation of a templatized class named class_. This instan-
tiation calls the class_ constructor and passes the C++
type to it. A new python class type is created and asso-
ciated with name in the Python registry. The syntax . def
simply denotes a call to a member function named def.
Because object.def () returns a reference to object,
multiple calls can be chained. The resulting expression is
made more readable by taking advantage of the fact that
the compiler ignores whitespace. Note the last four . def
statements which define operator overloads.

ORBIT Modiules

Exporting existing ORBIT modules to Python with
boost.python is a relatively mechanical task. The (simpli-
fied) code in Fig. 2 provides an example. The class Par-
ticles is exported to Python and exposes its method ad -
dMacroHerd and its data nHerds. Note that the variable
nHerds is mirrored in Python by a special boost.python
object wich does not have the type int. The expression
Particles.nHerds = 1 in Python does not result in
the creation of an immutable int object. Rather, for ob-
jects of type Particles, assigning a value to the attribute
nHerd calls a method that sets the C++ variable Parti-
cle: :NHerds. All this mechanics is completely trans-
parent to the progammer and generated by the boost.python
libary.Compiling the code in Fig. 2 ultimately produces a
shared object module that can be dynamically imported by

