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The perturbation of off-energy functions in the arcs affects the SLC perfor-
mance in two ways. First of all, it indroduces additional emittance blow-up in
the arcs through synchrotron radiation loss. Secondly, if the perturbation is too
large, the chromatic correction in the final focus cannot completely suppress the
eta at IP resulting in a larger beam size. Both effects reduce the luminosity. In
this report an analysis is made of the disturbances to the horizontal eta-function

generated by imperfections in the arcs and their effects are estimated.

1. THE DISTURBED OFF-ENERGY FUNCTION.

The real arcs will have an off-energy function n(s) which is different from
the ideal 7,(s) calculated for the design arcs. We make here some estimates
of the disturbances to the horizontal n(s) that will arise from various kinds of

imperfections in the arcs. A similar analysis of the vertical eta function will be

reported in a later report. The main assumption we make is that the arcs are
sensibly linear so that the effect of any one imperfection is independent of the

others, and that the various effects can be added linearly.

Quite generally, n(s) satisfied the differential equation(!)
n" + K(s)n = G(s) (1)

where G(s) is the curvature function (= 1/p) and K(s) is the focussing func-

tion (=B'/Bp)- both taken along the actual, on-energy trajectory. The design
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function 7,(s) is the solution of Eq.(1) for which G and K have their nominal

values G,(s) and K,(s), and which is also a periodic function in the achromats.

Clearly, 7, satisfies

’7:;, + K, n, =G, (2)

Consider now the on-energy trajectory for the imperfect machine. Along this

disturbed trajectory the G and K will differ from G, and K,. We write
G=G,+6G; K=K,+6K (3)

The bar above 6G and 6K is to emphasize that they are to be taken along the

disturbed orbit - - and, thereby, to include the effects of orbit displacements as

well as possible ‘intrinsic’ errors in G and K along the design path.

Now, let’s take 7 for the perturbation to 7,, namely,
n=1+7 (4)
Using Eqgs. (1) and (2), we get the differential equation for 7
7'+ K(s)7 = f(s) = 6G — n,6K (5)

The perturbation 7 executes a betatron oscillation with a driving term f(s).
Notice that K(s) in Eq. (5) is the disturbed K; so that a free oscillation of 7
in the disturbed machine is just like a free transverse oscillation. Eq. (5) was

obtained without any assumption about the size of the distrubances.

The perturbation # is driven both by field ‘errors’ 6G and by gradient ‘er-
rors’ 6K, and the latter is proportional to the value of the unperturbed 7, at
the disturbance. The perturbation 7 is not yet completely defined; we must still
specify some ‘initial’ conditions. For this study, we assume the off-energy func-

tions are matched at the entrance of the arc. In other words, we consider those



solutions which satisfy #%(0) = /(0) = 0 at the beginning of the arc. The differ-
ent possible solutions are, however, closely connected; they will differ only by a

solution of the homogeneous part of Eq.(5) - - namely, by some free oscillation.

We now look at the % that may result from various imperfections in the arcs.
We consider in this report only the perturbations to the horizontal eta function

- - so 7 should be read everywhere as 7.

2. INTRINSIC GRADIENT ERRORS

The arc AG magnets are designed to give the required field distribution,

1
By(z,y) = B, + gz + 5.5'(:1:2 — y2) (6)

B(z,y) = gy + Szy (7)

Where z and y are the horizontal and vertical displacement from the field center

line, and
dB, g — d’By

g:~—-——-—— —_

dz’ dz? (8)

are the quadrupole and sextupole components. At the design energy of 50 GeV,
the field values are B, = 5.9TKG,g = £7.02KG/cm and S = 1.63K G [cm? for

focus and —2.70KG/cm? for defocus magnets.

We define the axis of a magnet to be the place where the field strength B is
the design value. Then there are no ‘intrinsic’ errors of G. The term ‘intrinsic’
is used to denote field errors not related to orbital and energy errors. At this
magnetic axis, the field gradient K may have an intrinsic error 6 K(= K — K,);

and these errors can produce a perturbation 7.

If we imagine a magnet of length AS which is ideal except for a gradient

error § K, it will induce a perturbation to 7, which, from Eq. (5), will be given



a ‘kick’ A%’ at the magnet (assumed to be short) of the magnitude
A7 = —n, 6KAS (9)

thereafter, 77 executes a free betatron oscillation whose amplitude A A4; is given
by

AAy = |A7 \/ B1B2 sing1z

= V8182 10 KotNS (00 )sings (10)

[
where 1 denotes the source point and 2 the end of arc which is in the middle of

a focus magnet, and ¢;, is the phase advance between points 1 and 2.

Let’s define ¢ such that

AA, = §'6K—K sin¢12 (11)

0o

To see the effects of gradient error on the n-function, we summarize the design

values of relevant parameters for the arc magnets at 50 GeV in Table I (2),

TABLE 1

Focus | Defocus
B,(KG) | 5.97 5.97
G = (m~1) [0.00358 | 0.00358
K,(m™%) | 0.421 | -0.421

a(m™1) 23.2 38.48
No,ave (M) | 0.043 | 0.026
Bave (m) | 7.08 1.96

For easy reference, the beta-function and eta-function in one cell of the arc

lattice are shown in Fig. 1 and Fig. 2 respectively.



For the two kinds of magnets we get (approximately) that
Focus : ¢ = 0.32m
Defocus : ¢; = 0.10m

Clearly, gradient errors in the focussing magnets are more important. A gra-
dient error (6 K/K,) of, say, 2 x 1073 in one focussing magnet gives an oscillating

7 with an amp?tude AAy ~ 0.64mm.

If there is a systematic gradient error of the same size in all focussing mag-
nets, the induced % is of the same general size, A A f- Because of the destructive
interference that occurs across an achromat, to be explained in Sect.4, the effect

can be expected to be small.

If there are random gradient errors, then there can be a growth of 7 through
the arcs. We can estimate the r.m.s. expected value of % at the end of the arc

as

(Mrms = \/%(AA} + AA3) (12)

where N = 230 is the number of each type of magnet in one arc. Random
errors of § K/ K, are expected to be about 2 x 1073 (Ref. 3). Such a value gives

(M)rms = 7.2mm, a perturbation of about 17% of the maximum value of 7,.

Note that this eta error depends only on the intrinsic gradient errors and is

independent of the scale of the magnet survey errors.

3. GEOMETRIC DISTURBANCES.

Suppose that the beam has the ‘right’ energy, and that the magnets have
the ‘right’ fields, but that the beam trajectory has disturbances due to magnet
placement errors. In any given piece of magnet the beam will pass at some

horizontal displacement 6, from the ideal axis of the magnet, we have for that



path segment

6G =K, 6, + E;—psag, 6K = a K, 6, (13)
where
g
K,= = 14
and
1dK, S
Sk 4K, 8> o= = (15)

which represents the strength of the sextupole component with respect to the

gradient in the magnet. The driving term f(s) in Eq.(5) then becomes

: 11
) 11
= B—xp(g - ﬂoS) + 5 EP—S 63 (16)

To obtain an appreciation of the order of magnitude of geometric perturbations,
we calculate the AA; and A4 amplitudes caused by each term in the driving

force f(s) shown in Eq. (16), assuming they are active and independent of each

other. The results are summarized in Table 2.

TABLE 2
f(s) AAj (mm) | AAg (mm)
K,bzx 1.12 -1.12
—Konoadzx -1.12 1.12
35;5 6z | 0.0020 -0.0065

In the estimate, an rms orbital error 6z = 150 microns is assumed.




From Table 2, two conclusions are obvious. First, the contributions from the
first two terms cancel each other. Secondly, the 62-dependent field error is much
smaller than that introduced through 6;-dependent term. If we use a criterion
that the contribution to # at the end of the arc should not be larger than that
from the intrinsic gradient error, then the limit on &, is 10 times larger than 150

microns. That means the 62 term is not important until 6z approaches 1.5 mm.

We have shown that the average of the factor (1—7, @) over a magnet is very
close to zero. It is, essentially, a necessary design condition of the achromat,
because the strength of sextupole component is chosen to cancel the gradient at

off-momentum orbit. That means that so long as a magnet-is somewhat shorter

than B, the displacement of the orbit with respect to the magnet axis will not
generate a significant n disturbance. (Because of the symmetry of 1, about a
magnet center, this conclusion is true even when there is an angle between the
orbit and magnet axis.) This effect was discovered when the moving magnet

scheme was proposed(?) for orbital correction. N
AR )’\4
g

Besides the large dlsplacement error mentloned above, there are two poss1—
ble sources of incomplete cancellation of (9 —1oS). The first is the fact that
we neglect the contribution from 76K in Eq. (5). At the location where the !
7( perturbation % becomes large, the driving term f (s) given by Eq. (16) should {

read, v A ’
Wi g 4 MYJ
. 3 (0
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which will become important when #/n is approaching 10-20%. The second
source of incomplete cancellation is due to the deviation of S from design value
at higher excitation, but which is only important when SLC is run at an energy

higher than 60 GeV.

4. ENERGY OFF-SETS
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Consider two cases: (a) off-set of the centered beam energy without re-
steering and (b) an energy off-set with re-steering. Case (a) just tells us about

the non-linear dependence of 5, on energy. Case (b) refers to arc operation with

a mis-match to the Linac energy.

For case (a), there are two contributions to 6G and §K. One comes from the
energy change 6 F and one from the orbit change 6, due to the energy change.
We already know from Sect. 2 that the orbit change will not generate an 7, so

we look only at the energy part. Then

OF oF
6 = - b = — 0o —
G G, ) 6K K, z (18)
so that
6F
f(8) = (=Go + 10 Ko) (19)

Now let us look at the effect of energy error on the off-energy function
produced by a single magnet. Following Eq. (10), the contribution to the

perturbation of n-function is

6F
DA = (noKo — G) AS+/ 512 5 singig

6E |
= f f smqblg (20)

From Table 1 and Eq. (20) we get for the two kinds of magnets,
Focus : 5 =0.26m
Defocus : £ = —0.14m

For the whole arc, this individual perturbation will not build up because of

the destructive interference from the same type of magnets at different phases.



Since the beam energy error is the same for every magnet, the total contribution

from all the focus magnets at the end of the arc is given by

230
=AAs Y sing; =0 (21)

1=1
It sums up to zero due to the fact that the contribution from each focus magnet

is the same, and the phase sum is zero since the phases are evenly distributed

over many wave lengths. Same cancellation occurs for contributions from defucs

magnets. This points out the fact that a constant energy off-set, as long as
is not rich in first harmonic of betatron frequency, is not as harmful as random
change from magnet to magnet. Because in the latter case the perturbation

tends to build up.

It is interesting here to introduce another way of summing Eq. (19) by
showing that the factor in parentheses is necessarily zero when averaged over
one magnet cell. This fact can be seen as follows. rearrange the defining equation

for n,, Eq. (2), and take the average of both sides to get
(n) = (Go — Ko no) (22)

Now the average of n! over a magnet cell, which is a pair of focusing and
defocusing magnets, is proportional to the integral of n!, which is just the change

in the first derivative An/ across the cell. But the ideal Mo 1s periodic with the

period of a cell, so that An/ is zero. It follows then that the right-hand-side
of Eq. (22) is zero, provided that the average is taken over a whole cell. This
can also be confirmed by putting numerical values from Table 1 into Eq. (22).
Where the F-D pair is not complete, as there are several locations in the arcs,

there are residual 77 contributions at the end of the arc, but they are very small.




There is a small residual high frequency component to 7 which should, how-
ever, be quite small. The driving terms for 7 contributed be each magnet in a
cell are equal and opposite, and the magnets are about 50° apart in betatron
phase, so there is some small residual 77 from one cell. Because the phase shift
is 108° per cell, however, the growth of % within an achromat is small and is
precisely zero for one whole achromat. There is a ‘destructive interference’ of

the individual contribution.

We show that an energy shift by itself - - Case (a) - - does not produce
significant n-disturbance. If we now re-steer the beam - - Case (b) - - there will
still be no generation of any n-disturbance, because we are merely adding on a

geometric disturbance, which were found in Sect. 3 to have no effect.

5. SUMMARY OF HORIZONTAL ETA EFFECTS.

We conclude that the horizontal 7 is quite insensitive to nearly all arc per-
turbations - - geometric errors, energy errors and systematic gradient errors.
The only significant effect we have found is from random gradient errors which
may, we estimate, produce an n-error at the end of the arcs whose r.m.s. value
is about 7.2 mm. One effect we have not included is the perturbation of the
horizontal n due to coupling from vertical dispersion - - a coupling that would
come about from magnet roll. We will consider this effect in another note where

perturbations to vertical n will be treated.

A corollary of our results is that it is almost impossible to correct any -
errors within the arcs themselves. No pattern of magnet motions will help. Some
trim quads would do nicely, but, so far, no plans exist for their implementation.
A proper pattern of back-leg trim coils would help but they also are not in the

present plan.

Fortunately, we do not expect the horizontal n-error to be very large - -

and this even if the geometric errors (survey, BPM, etc.) are larger than ex-
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pected. Unless, of course, the geometric errors become large enough to generate
large second-order effects, or coupling from vertical dispersion turns out to be

important.

We start the analysis assuming that the dispersion function is well-matched
both at the entrance from Linac to Arc and from reverse bend to Arc. If the dis-
persion function is mismatched, it will execute free betatron oscillation through
the Arc. Therefore, any large dispersion error in the early achromats indicates
the mismatch from Linac to Arc or RB to Arc and should be corrected before
proceeding. On the other hand, if a specific # value at the end of the Arc is to
be desired, controlled mismatch of dispersion functions from RB to Arc may be

created to achieve that goal as long as the required mis-match is not excessive.
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Fig.2 Eta-function in one cell of Arc lattice
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