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Abstract
We investigate Bose–Einstein condensation of a noninteracting gas of Bose 
particles moving in the background of a periodic lattice of delta functions. In 
the one-dimensional case, where one has no condensation in the free case, this 
property persists also in the presence of the lattice for all examples which are 
considered in the present paper and we could only formulate some conditions 
which are necessary for condensation. We also considered the three-
dimensional case and showed that the lattice does not destroy condensation. 
We calculated, for small coupling, the change in the critical temperature, 
which is lowered by the lattice. Finally, we took another, more general view 
on the problem using heat kernel expansion, and discuss BEC for Casimir 
effect related configurations.

Keywords: quantum vacuum, Casimir effect (theory), periodic potential, 
Bose–Einstein condensation

(Some figures may appear in colour only in the online journal)

1.  Introduction

The investigation of Bose–Einstein condensation (BEC) in one-dimensional configurations 
has a long history. In [1] it was shown that long-range order in homogeneous Bose and Fermi 
systems in one and two dimensions is not possible. A different picture appears in confined 
one-dimensional systems, with confining potential of finite volume [2], or with interacting 
bosons (see the more recent [3] and references therein).
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In the present paper, we investigate the question in which way a periodic background influ-
ences BEC in an otherwise homogeneous background. Such systems are assumed to have 
an infinite spatial extension such that no boundary effects occur and no confining potential. 
As background, we take primarily lattices of delta functions, which in one dimension repre-
sents the well known Kronig–Penney model. Delta function potentials have the advantage that 
much more explicit results are possible. As known, in more than one dimension these must be 
handled with care which was considered in detail, for example, in [4].

Similar systems were recently investigated in connection with the Casimir effect in [5], 
where the interaction of such lattices in one and two dimensions was calculated, including 
several limiting cases, for dense or dilute lattices. The methods used that paper will be helpful 
below.

As for the Casimir effect and entropy, there is a yet not completely settled problem with 
negative entropy. It consists in the observation that entropy, calculated as negative derivative 
of the free energy of the electromagnetic field in the presence of polarizable bodies takes nega-
tive values. This effect was first observed in the interaction of two dispersive slabs [6], later 
also in less trivial geometries like a ball in front of a plane (see, for example, table 1 in [7]). In 
these examples, it was the interaction part of the free energy in the presence of the considered 
bodies, which was of interest for the Casimir effect at finite temperature. At once the related 
entropy was calculated and negative values were encountered. However, it was recognized 
that this way one has only the interaction part and not the whole entropy which still could well 
be positive.

To clarify this question, past years the free energy and the entropy of single, free-standing 
objects was calculated, first for a plane carrying a delta function potential [8], later for a simi-
lar sphere [9]. Since that work was plagued by some divergences, in [10] for a sphere and in 
[11] for a plane it was recognized that in the temperature-dependent part of the free energy 
and in the entropy there are in fact no divergencies and all calculations can be carried out 
straightforwardly. This way, in the mentioned examples the occurrence of negative entropy 
was confirmed. It must be mentioned that with these calculations there is still an opened con-
troversy spelled out in [12]. This controversy can be reduced to the question whether the heat 
kernel coefficient a 1

2
 is zero or not (this coefficient does in the considered examples not depend 

on the background potential). Meanwhile more examples were calculated, a number of one-
dimensional configurations with background potential, non-periodic in [13] and periodic in 
[14]; again showing different signs of entropy.

The above-mentioned work served as another motivation to consider different thermody-
namics properties of the mentioned systems, namely BEC, having in mind a possible correla-
tion. For that we consider periodic lattices of delta function potentials in both one and three 
dimensions. The questions to answer are whether in one dimension BEC may appear and how 
BEC will be modified in three dimensions.

In the present paper, in the next section, we display the basic thermodynamic formulas 
required to formulate a criterion for the occurrence of BEC. In the third section, we introduce 
some one-dimensional lattices consisting of delta function, generalized delta functions with-
out and with additional potentials. In section 4 we formulate general conditions the spectral 
functions must obey for BEC and we investigate whether the considered examples allow for 
BEC. In section 5 we consider a three-dimensional lattice of delta function and show that 
such background does not destroy BEC. As example, we calculate the correction to the criti-
cal temperature. In section 6 we consider a different approach to BEC using the heat kernel 
expansion. It was successfully applied to BEC with confining potential, see [15]. We apply it 
to the above mentioned single, free-standing objects and come to the conclusion that BEC is 
not relevant in that context in the thermodynamic limit.
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Throughout the paper we use units with kB = � = c = 1.

2.  Free particles and BEC

In this section, we collect basic thermodynamic formulas for free Bose particles in a homo-
geneous background. This is a topic represented in many textbooks and we restrict ourselves 
to the simplest criterion for BEC (and follow the book [16], section 12.5). We focus on the 
particle number and leave out the discussion of long-range order.

Starting point is the grand canonical ensemble of free Bose particles with its partition func-
tion (with β = 1/T )

ZG =
∑
{ni}

e−β
∑

i(εi−µ)ni

� (1)

(in notations of [16] we have q = ln ZG, D = ZG). For instance, the number of particles is

N =
∑

i

1
z−1e−βεi − 1� (2)

with the fugacity z = eβµ, the chemical potential µ and the one particle energies εi.
In order to investigate BEC, one way is to separate the lowest state (ground state) having 

ε0 = 0 (possibly, after a redefinition of the chemical potential). In the remaining sum, one 
increases the number of particles such that the sum can be substituted by an integral,

N =
z

1 − z
+ V

∫
ddk
(2π)d

1
z−1eβε(k) − 1

.� (3)

Here, d is the dimension and ε(k) is the one-particle energy; now a function of the momentum 
k = |�k|. The integral in (3) represents the sum over all states. There is no double-counting of 
the ground state since it is a zero measure set in the integral.

If one takes relativistic dynamics, the one particle energy will be

ε(k) = k,� (4)

and in case of nonrelativistic dynamics one has

ε(k) =
k2

2m
.� (5)

Doing the angular integrations, the integral in (3) can be reduced to

N =
z

1 − z
+

VΩd

(2π)d

∫ ∞

0
dk

kd−1

z−1eβε(k) − 1
,� (6)

where Ωd = 2πd/2/Γ(d/2) is the volume of the unit sphere and Γ denotes Euler’s gamma 
function. With the dynamics (4), the temperature dependence can be scaled out,

N =
z

1 − z
+

VΩdΓ(d)
λd gd(z)� (7)

with the frequently used notation

gd(z) =
1

Γ(d)

∫ ∞

0
dk

kd−1

z−1ek − 1
� (8)
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and the thermal wavelength

λ =
hc
T

.� (9)

Similar formulas appear for the dynamics (5).
The first term in (7) is the occupation of the ground state. We divide by the volume,

N
V

≡ n =
1
V

z
1 − z

+
ΩdΓ(d)

λd gd(z),� (10)

n in the left side being the number of particles per volume, and we can perform the thermody-
namic limit, V → ∞, keeping n. In general, there is a solution of equation (10) for any temper
ature in the range 0 < z � 1 and the two terms give the number of particles in the ground state 
and in the excited states, correspondingly. Condensation takes place if the first term grows 
with N. This is possible if in the solution z → 1. Accordingly, the contribution from the second 
terms must be limited. This is the case if its contribution at z  =  1 is finite. As a consequence, 
condensation sets in when any increase in density goes into the first term, i.e. starting from

n =
ΩdΓ(d)
(λc)d gd(1).� (11)

This gives

λc =

(
ΩdΓ(d)

n
gd(1)

)1/d

, or Tc =

(
n

ΩdΓ(d)gd(1)

)1/d

,� (12)

and the critical temperature is Tc = 1/λc.
This way, the criterion for the possibility to have BEC is whether the function gd(z) is finite 

at z → 1. The source of singularity is the zero in the denominator in the integrand in (8) for 
ε(k) = 0 at k → 0. With the relativistic dynamics (4), obviously one needs d � 1 such that the 
factor kd−1 from the initially d-dimensional integration measure may compensate the zero in 
the denominator. In that case, from (8) we note

gd(1) =
1

Γ(d)

∫ ∞

0
dk

kd−1

ek − 1
= ζ(d)� (13)

with the Riemann zeta function ζ(d), which has a pole for d  =  1, and gd(1) is finite for d  >  1.
In case of nonrelativistic dynamics, (5), in place of (6) we have

N =
z

1 − z
+

VΩd

(2π)d

∫ ∞

0
dk

kd−1

z−1eβk2/(2m) − 1
� (14)

and rescaling k →
√

T/2m results in

N =
z

1 − z
+

VΩdΓ(d/2)
2

(
2m
T

)d/2

gd/2(z).� (15)

The remaining discussion is identical to the case of relativistic dynamics and we come to the 
criterion gd/2(1) must be finite for BEC. With (13) this is the case for d  >  2 and the critical 
temperature Tnr

c  is

Tnr
c = 2m

(
Γ(d/2)

2n
gd/2(1)

)2/d

.� (16)

In the next two section we will use the above formulas in specific systems.
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3.  One-dimensional chain of delta functions and some generalizations

In this section we derive the basic formulas for a periodic background composed of delta 
functions as well as some simple generalizations. We consider massless phonons. Their wave 
function φ(t, x) obeys, in general, the equation

(
∂2

∂t2 −∆+ V(x)
)
φ(t, x) = 0.� (17)

In the case of one spatial dimension, after Fourier transform in time, and with the potential for 
the periodic background inserted, the corresponding equation reads

(
−ω2 − ∂2

∂x2 + α
∑

n

δ(x − an)

)
φ(x) = 0,� (18)

where φ(x) is the transformed field and we dropped the argument ω . In (18), α is the coupling, 
a is the spacing of the lattice and the sum goes over all integers. This is a modification of the 
well known Kronig–Penney [17] model with Dirac delta functions as potentials (Dirac comb). 
Details and extensions were discussed recently in [18], where also the relevant literature [19], 
for instance, is cited. We mention that these extensions cover all self adjoint extensions of the 
wave operator for a potential with point support. Also, there is a close relation to tight binding 
models in solid state theory.

Having in mind the generalizations to higher dimensions we provide here a short deriva-
tion in terms and notation of our earlier paper [4]. A solution of (18) can be searched for in 
the form

φ(x) = eiωx −
∑
n,n′

G(0)
ω (x − an)Φ−1

n−n′e
iωan′ ,� (19)

where

G(0)
ω (x) =

i
2ω

eiω|x|� (20)

is the free Green’s function obeying 
(
−ω2 − ∂2

∂x2

)
G(0)

ω (x) = δ(x). In (19), the first term is a 

plane wave solution of the free wave equation and the sum represents the waves scattered from 
all the delta functions. The coefficients Φ−1

n−n′, which form an infinite dimensional matrix, can 
be found from inserting the ansatz (19) into the equation (18),

Φn−n′ =
1
α
δn,n′ + G(0)

ω (a(n − n′)).� (21)

Because of the translational invariance in equation  (18), it is possible to invert the matrix 
Φn−n′ by Fourier transform. Defining

Φ̃(ω, k) =
∑

n

Φneikan
� (22)

we find

Φ−1
n = a

∫ 2π

0

dk
2π

1
Φ̃(ω, k)

e−ikan� (23)
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which may be inserted into the ansatz (21).
Now, the eigenfrequencies ω(k) of the field φ(x) follow from the condition

Φ̃(ω, k) = 0� (24)

(this is equivalent to vanishing determinant of the above mentioned matrix). Inserting (21) into 
(22) and accounting for (20) we get the representation

Φ̃(ω, k) =
1
α
+
∑

n

i
2aω

eiωa|n|+ikan.� (25)

In this expression, the sum is convergent with �ω > 0.
Starting from here, we put the lattice spacing a  =  1. The dependence on a can be restored 

by substitutions ω → aω, k → ak , α → α/a and Φ̃ → Φ̃/a. With these, we rewrite the sum 
in the form

Φ̃(k) =
1
α
+
∑

n

∫ ∞

0

dt
(4πt)1/2 exp

(
−t(−ω2)− n2

4t
+ ikn

)
.� (26)

We apply the Poisson resummation formula to this expression,

Φ̃(k) =
1
α
+
∑

N

∫ ∞

0
dt exp

(
−t

(
(−ω2) + (k + 2πN)2)) ,

=
1
α
+
∑

N

1
−ω2 + (k + 2πN)2 ,

� (27)

where we denoted the new summation index by N. It runs also over all integers. In the last 
line we carried out the integration over t. The sum in the last line converges. The contributions 
from n  =  0 and N  =  0 do not pose any problems in accordance with the circumstance that the 
one-dimensional delta function in a wave equation like (18) is well defined. This representa-
tion can be easily generalized to higher dimension as we will show below.

The sum in equation (27) can be carried out resulting in

Φ̃(ω, k) =
1
α
+

1
2ω

sin(ω)

cos(ω)− cos(k)
.� (28)

Now, from this representation, the condition Φ̃(ω, k) = 0 can be rewritten in the form

cos(k) = cos(ω) +
α

2ω
sin(ω),� (29)

which is the well known frequency condition of the Dirac comb.
It is known (see, for example [18]) that this frequency condition can be generalized to any 

potential with support within one lattice cell. Let t(ω) denote the transmission coefficient of 
the corresponding scattering problem and δ(ω) = 1

2i ln(t(ω)/t∗(ω)) the scattering phase shift. 
Then this generalization reads (equation (34) in [20])

cos(k) =
cos(ω + δ(ω))

|t(ω)|
.� (30)

Below we will consider some specific examples and generalizations.
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3.1. The generalized comb

In this model the potential in the wave equation has in addition a delta’-contribution,

V(x) = αδ(x) + 2βδ′(x)� (31)

(this β is not the inverse temperature). The matching conditions are [21]

φ(+0) =
1 + β

1 − β
φ(−0), φ′(+0) =

1 − β

1 + β
φ′(−0) +

α

1 − β2 φ(−0)� (32)

and the transmission coefficient is

t(ω) =
2ω(1 − β2)

2ω(1 + β2) + iα
.� (33)

The transmission coefficient for a simple delta potential appears with β = 0.

3.2.  Double delta function

In this model there are two delta functions in each cell, representing for example two species 
of scattering centers, with

V(x) = α1δ(x) + α2δ(x − L)� (34)

with 0  <  L  <  1. The transmission coefficient is

t(ω) =
((

1 − α1

iω

)(
1 − α2

iω

)
+

α1α2

ω2 e2iωL
)−1

.� (35)

The case of a single delta function can be obtained from here by L  =  0 and α1 = α2 = α/2.

3.3.  Sturm–Liouville problem framed by generalized delta functions

Consider a potential V(x) with support x ∈ [− L
2 , L

2 ] with L  <  1 and the related Sturm–Liouville 
equation,

(
− ∂

∂x2 + V(x)
)

u(x) = ω2u(x).� (36)

Besides u(x), this equation  has a second independent solution, v(x), with non-vanishing 
Wronskian w = uv′ − u′v. The scattering setup with two generalized delta potentials at the 
edges of the interval takes the form,

Φ(x) =
(
eiωx + re−iωx)Θ

(a
2
− x

)
+ (µ u(x) + ν v(x))Θ

((a
2

)2
− x2

)
+ teiωxΘ

(
x − a

2

)
.

� (37)

We shifted the periodic lattice to the interval x ∈
[
− L

2 , L
2

]
, for convenience. Imposing at 

x = ± L
2 the boundary conditions corresponding to the generalized delta function, equa-

tion (32). After some calculations we come to the transmission coefficient

t(ω) =
2iωw
∆

e−2iωa� (38)
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with

∆ =

[
1 + β′

1 − β′ v′
+ +

(
−iω

1 − β′

1 + β′ +
α′

1 − β′2

)
v+

] [
1 − β

1 + β
u′
− +

(
iω

1 + β

1 − β
− α

1 − β2

)
u−

]

+

[
−1 + β′

1 − β′ u′+ +

(
iω

1 − β′

1 + β′ −
α′

1 − β′2

)
u+

] [
1 − β

1 + β
v′− +

(
iω

1 + β

1 − β
− α

1 − β2

)
v−

]
.

� (39)

Here we used the notations u± ≡ u
(
± L

2

)
, v± ≡ v

(
± L

2

)
 and similar for the derivatives. The 

primed parameters belong to the delta function in x  =  −L/2.
With a Pöschl–Teller potential

V(x) =
−2

cosh2(x)
� (40)

in equation  (36) and functions u(x) = (−iω + arctan(x))eiωx , v(x) = u(x)∗, w =  
−2iω(1 + ω2), such transmission coefficient, which follows from inserting these solutions 
into (39), was derived in context of the vacuum energy in [22] (formula without number on p 
2234).

It is also easy to take a step potential V(x) = V0Θ
(( a

2

)
2 − x2

)
. The solutions are u(x) = eiqx, 

v(x) = u(x)∗, with q =
√

ω2 − V0 . The transmission coefficient (38) simplifies a bit,

t(ω) =
4ωq
∆

e−iωL� (41)

with

∆ = −
[

i
1 − β′

1 + β′ q + i
1 + β′

1 − β′ω − α′

1 − β′2

] [
i
1 + β

1 − β
q + i

1 − β

1 + β
ω − α

1 − β2

]
e−iqL

+

[
−i

1 − β′

1 + β′ q + i
1 + β′

1 − β′ω − α′

1 − β′2

] [
−i

1 + β

1 − β
q + i

1 − β

1 + β
ω − α

1 − β2

]
eiqL.

�
(42)

For V0 = 0 we get the transmission coefficient for two generalized delta functions which was 
considered earlier, for example in [23] and [24].

4.  On the possibility of BEC in one-dimensional combs

In this section we adopt the thermodynamic formulas, represented in section 2 for a homo-
geneous background, to a periodic background. The general frequency condition is equa-
tion (30). For convenience we introduce a new function,

h(ω) =
cos(ω + δ(ω))

|t(ω)|
,� (43)

for the right side of (30). Now the ‘allowed’ frequencies follow from |h(ω)| � 1 and the spec-
trum has a band structure where k is the quasi momentum. We denote the solutions of equa-
tion  (30) by ωn(k), where n = 1, 2, ... counts the allowed bands. The band boundaries are 
denoted by ω(u)

n  and ω(o)
n  with ω(u)

n � ω � ω
(o)
n . The one particle energies (4) are ε = ωn(k) 

and the expression (6) for the particle number turns into

N =
z

1 − z
+ V

∑
n

∫ π

0
dk

1
z−1eβωn(k) − 1

.� (44)
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Since now the temperature dependence cannot be scaled out such easy as before, we define, 
in analogy with (8), a function

g(z) =
∑

n

∫ π

0
dk

1
z−1eβωn(k) − 1

� (45)
such that equation (44) after division by the volume turns into

n =
1
V

z
1 − z

+ g(z).
� (46)

Further, the discussion about a possible condensation in the thermodynamic limit goes the 
same way as in section 2 and reduces to the question whether g(1) is finite. To answer this 
question we change the integration for ω  and come with the Jacobian

J(ω) =
∂k
∂ω

� (47)

to the representation

g(z) =
∫ ω(o)

n

ω
(u)
n

dω
J(ω)

z−1 exp
(
β(ω − ω

(u)
1 )

)
− 1

,� (48)

where we adjusted the chemical potential such that at the lowest energy we have ω − ω
(u)
1 = 0. 

Now, for z  =  1, we have a simple zero in the denominator and have to look for the behavior of 
the Jacobian at the lowest energy. It should be mentioned that this Jacobian, which is equiva-
lent to the density of states, is the only difference to the case of a free field, mentioned in sec-
tion 2. A further property of J is that it is real for ‘allowed’ frequencies only. As mentioned in 
[14], this property may be used in numerical calculations by first integrating over the whole 
frequency axis and taking the real part afterward.

Now, for investigating g(1), we consider the Jacobian (47) in more detail. Taking the deriv-
ative with respect to ω  of equation (30) we get

J(ω) = − h′(ω)√
1 − h(ω)2

,� (49)

i.e. we could express the Jacobian in terms of the function h(ω). Now we can make an expan-
sion at the beginning of the spectrum (assuming no bound states) and come to

J(ω) =

√
−h′(ω(u)

1 )√
2(ω − ω

(u)
1 )

+ . . . .� (50)

From here we conclude that for BEC in the one-dimensional case to be possible, the func-
tion h(ω), (43), must have vanishing first and also second order (to compensate the zero 

of the denominator in (48) for z  =  1) derivatives in ω = ω
(u)
1  (together with the condition 

h(ω(u)
1 ) = 1). Only in that case the integration may be finite at the lower integration border.

In the following subsections we consider this criterion for the examples mentioned in 
section 3.
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4.1. The simple comb

For a comb of single delta functions, where the function h(ω) is given by the right side of 
(29), we get

J(ω) =

(
1 + α

ω2

)
sin(ω)− α

ω cos(ω)√
1 −

(
cos(ω) + α

ω sin(ω)
)2

.� (51)

We use the direct expansion in powers of ω − ω
(u)
1 ,

J(ω) =
1√

(ω − ω
(u)
1 )

√√√√1
2

(
1 +

α

(ω
(u)
1 )2

)
sin(ω − ω

(u)
1 ) +

α

ω
(u)
1

cos(ω
(u)
1 )

+ O
(
(ω − ω

(u)
1 )0

)
,

�

(52)

which demonstrates that the above derived criterion cannot be satisfied. What is more, this 
Jacobian is singular which makes the condensation even more suppressed as compared to the 
free case.

4.2. Thermodynamic properties of more general combs

In this subsection we consider a more general case of a frequency condition (30). In distinc-
tion from the preceding subsection, we use the function h(ω), (43), for the right side. Using 
equations (49) and (50), as mentioned above, h(ω) must have vanishing first and second order 

derivatives at ω(u)
1 . At the moment we do not know whether such a condition is in conflict 

with all other necessary conditions or not. We restrict ourselves to the consideration of some 
specific examples, mentioned above (which do not fulfill this condition).

First, let us consider the generalized comb, defined in section 2. Inserting the transmission 
coefficient (33) into (30), we get from (43)

h(ω) =
1 + β2

1 − β2 cos(ω) +
α

2ω(1 − β2)
sin(ω).� (53)

In place of investigating this function let us first consider the slightly more general case of

h(ω) = a cos(ω) + b
sin(ω)

ω
,� (54)

where a and b are some constants. We get two conditions,

1 = a cos(ω(u)
1 ) + b

sin(ω
(u)
1 )

ω
(u)
1

,

0 = −a sin(ω(u)
1 ) + b

(
−
sin(ω

(u)
1 )

(ω
(u)
1 )2

+
cos(ω

(u)
1 )

ω
(u)
1

)
.

�

(55)

The first equation is the frequency condition and the second is the vanishing of the first deriva-
tive. The solution of this system is
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a =
cos(ω

(u)
1 )− sin(ω

(u)
1 )

ω
(u)
1

1 − sin(ω
(u)
1 ) cos(ω

(u)
1 )

ω
(u)
1

, b =
ω
(u)
1 sin(ω

(u)
1 )

1 − sin(ω
(u)
1 ) cos(ω

(u)
1 )

ω
(u)
1

.� (56)

Comparing (53) with (54), we express the parameters of the generalized comb in terms of a 

and b, β2 = a−1
a+1, α = 4b

a+1 . However, as can be seen from (56), a  <  1 holds (for all ω(u)
1 ) and 

no real parameter β exists. This way the generalized Dirac comb will not show BEC.
Second, let us consider the double delta function comb as defined in section 2. Here the 

function h(ω), following from inserting (35) into (43), reads

h(ω) =
(

1 − α1α2
1 − cos(2ωL)

ω2

)
cos(ω) +

(
α1 + α2 + α1α2

sin(2ωL)
ω

)
sin(ω)

ω
.� (57)

We consider the condition h(ω) = 1. In this case a solution with ω(u)
1 = 0 exists. It follows 

from the expansion for ω → 0,

h(ω) = 1 + α1 + α2 + 2α1α2L(1 − L) + . . .� (58)

(note, we have put the lattice spacing a  =  1 such that 0  <  L  <  1 must hold). From (58) we can 
have h(0) = 1 if the relation

α1 =
−α2

1 + 2α2L(1 − L)� (59)

between the coupling parameters holds. We mention that this is not the condition for a thresh-
old state. As a result one of the delta functions in each cell of the lattice is attractive. However, 
inspection shows that nevertheless the spectrum starts from ω = 0. Now we consider higher 
terms in the expansion of h(ω). Using (59) and dropping the index on α2 we get

h(ω) = 1 − 3 + 6αL(1 − L) + 4α2L2(1 − L)2

6(1 + 2αL(1 − L))
ω2 + . . . .� (60)

As can be seen, the numerator in front of ω2 has no real zeros for 0  <  L  <  1. This way, the 
Jacobian is not singular in the ground state, but still it does not vanish. This is better than in 
the case with the generalized comb or with the comb with single delta functions, but still not 
sufficient to have BEC.

Third, we consider a Pöschl–Teller potential framed by two generalized delta functions 
as defined in section 3.2. The parameters are α1, β1 for the potential in x  =  −L/2 and α2, β2 
for the potential in x  =  L/2 as well as the width L. We need to check whether the conditions 
h(0) = 1 and h′′(0) = 0 can be fulfilled (in all considered examples we have h′(0) = 0 for 
symmetry reasons). Since the resulting system of equations is too complex for a general treat-
ment, we first resolve the condition h(0) = 0 for α2, which results in quite simple expressions, 
and consider h′′(0) as function of the remaining parameters. In all considered cases we did not 
find h′′(0) = 0. As illustration we present figure 1. In the left panel the spectral function h(ω) 
is shown. For −1 < h(ω) < 1 one has the ‘allowed’ bands. In the given choice of parameters 
no bound states appear. In the right panel the second derivative, h′′(0), is shown as function 
of the width L. It takes only negative values and generalizes the corresponding expression in 
equation (60). Variations of the additional parameters do not improve the situation.

Fourth, and finally, we consider a rectangular potential framed by generalized delta func-
tions as also introduced in section 3.3 with transmission coefficient given by (41) and (42). 
We observe a picture similar to the preceding case. Now we have with the potential’s height 
V0 an additional parameter and we restrict ourselves again to cases with no bound states. As 
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example we show in figure 2 the dependence of h′′(0) on V0. It is seen that an increase of V0 
makes h′′(0) even more negative. In figure 3 we demonstrate the dependence on α1 and see 
that for both signs the situation does not improve.

This way, in all considered examples we did not find that the conditions for BEC were 
satisfied. We did not make a complete screening of all possible choices of the parameters but 
restricted ourselves to a number of examples.

5. Three-dimensional lattice of delta functions

We turn now to the case of a three-dimensional lattice of delta functions and we have, in place 
of (18), the wave equation

(
−ω2 −∆+ α

∑
n∈ 3

δ3(x − an)

)
φ(x) = 0,� (61)

where n is a vector of integers and the delta function is three-dimensional. In this section bold 
letters denote three-dimensional vectors, x ∈ 3, n ∈ 3. As well know, a delta function as 
potential in the wave equation is ill defined in three dimensions. There are several possibilities 
to give them a precise meaning. These possibilities were recently discussed and compared in 
[4]. In general, these are all equivalent. We use in the present paper the regularization method 

Figure 1.  Framed Pöschl–Teller potential; the function h(ω) in the left panel, h′′(0) as 
function of the width L in the right panel. Parameters are α1 = 1 α2 = 4.01 (expressed 
from the condition h(0) = 1), β1 = β2 = 0.3.

Figure 2.  Framed rectangular potential; the function h(ω) in the left panel, h′′(0) as 
function of the height V0 in the right panel. Parameters are α1 = 0.2, α2 = −0.15 
(expressed from the condition h(0) = 1), β1 = 0.2, β2 = −0.9 and L  =  0.2.

M Bordag﻿J. Phys. A: Math. Theor. 53 (2020) 015003



13

described in sections II.D and III in [4]. According to that method one makes the same ansatz 
(19) as in the one-dimensional case, which reads now

φ(x) = eikx −
∑
n,n′

G(ε)
ω (x − an)Φ−1

n−n′eiakn′
,� (62)

where G(ε)
ω (x) is the regularized free Green’s function which for ε = 0 turns into

G(0)
ω (x) =

eiω|x|

4π|x|
, (�ω > 0).� (63)

In (62) we made use of the translational invariance of the lattice which allows the unknown 
coefficients Φ−1

n−n′ to depend on the difference n − n′ only. The Green’s function (63) is sin-
gular at x = 0 in opposite to (20). Because of this one cannot put x = am in (62) in order to 
determine the matrix Φ−1

n−n′. This singularity is a consequence of the ill defined delta function 
in the wave equation (61). The mentioned method assumes the use of a regularized G(ε)

ω (x) in 
place of (63).

We insert the ansatz (62) into equation (61) and arrive at the equation

Φn−n′ =
δn,n′

α
+ G(ε)

ω (a(n − n′)).� (64)

Defining a Fourier transform by

Φ̃(ω, k) =
∑

n

Φn eiakn
� (65)

we arrive at the expression

Φ̃(ω, k) =
1
α
+ G(ε)

ω (0) +
∑

n

′
G(ε)

ω (an)eaikn,� (66)

where we separated the contribution from n = 0 and the prime on the sum denotes to drop the 
contribution from n = 0. Now the mentioned method implies a renormalization,

1
α
+ G(ε)

ω (0) → 1
αr

+
iω
4π

,� (67)

with the renormalized coupling αr , after which one needs to remove the regularization by 
putting ε = 0, which gives after the renormalization a finite result. It must be mentioned that 

Figure 3.  Framed rectangular potential; the function h(ω) in the left panel, h′′(0) 
as function of the strength al1 in the right panel. Parameters are α2 = 2, α1 = −1.3 
(expressed from the condition h(0) = 1), β1 = 0.7, β2 = −0.3, L  =  0.4.
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the initial coupling α lost its meaning completely and with αr  a new parameter came in (for 
more details see [4]).

We arrive at the representation (this is in fact equation (109) in [4])

Φ̃(ω, k) =
1
α
+

iω
4π

+
J1(ω, k)

4π
,� (68)

with the notation

Js(ω, k) =
∑

n

′ 1
(a|n|)s eiaω|n|+iakn,� (69)

and we dropped the subscript ‘r’ at the coupling. The function Js(ω, k) is a typical lattice sum. 
For ω = k = 0 it is an Epstein Zeta function. In (69), i.e. for s  =  1, the convergence comes 
from �ω > 0.

With equation (68) we return to our task to determine the spectrum. It is given by the solu-
tions of the equation

Φ̃(ω, k) = 0.� (70)

Starting from here we put, again, the lattice spacing a  =  1. The representation of the lattice 
sum given by (69) is not very convenient. We rewrite it the following way. First, we use an 
integral representation for the free Green’s function (63), entering (69) for s  =  1,

J1(ω, k) =
∑

n

′ 1
|n|

eiω|n|+ikn,

= 4π
∫ ∞

0

dt
(4πt)3/2

∑
n

′
exp

(
−t(−ω2)− n2

4t
+ ikn

)
.

�

(71)

We add and subtract the term with n = 0. For that we need to introduce temporarily a factor 
ts with s → 0 in the end and get

J1(ω, k) = 4π lim
s→0

∫ ∞

0

dt ts

(4πt)3/2

[∑
n

exp

(
−t(−ω2)− n2

4t
+ ikn

)
− e−t(−ω2)

]
,

= 4π lim
s→0

[∫ ∞

0

dt ts

(4πt)3/2

∑
n

exp

(
−t(−ω2)− n2

4t
+ ikn

)
−
∫ ∞

0

dt ts

(4πt)3/2 e−t(−ω2)

]
.

� (72)
The second integral in the last line can be done explicitly, in the first we apply the Poisson 
resummation formula,

J1(ω, k) = lim
s→0

[
Γ(s − 1

2 )√
4π

(−ω2)1/2−s + 4π
∑

N

′
∫ ∞

0
dt ts e−t(−ω2+(k+2πN)2)

]
,

= lim
s→0

[
Γ(s − 1

2 )√
4π

(−ω2)1/2−s + 4π
∑

N

′ Γ(s + 1)
(−ω2 + (k + 2πN)2)1+s

]
.

� (73)
The last integral over t could be done explicitly. We denoted the summation index appearing 
from the Poisson resummation formula by N. Now the analytic continuation in s to s  =  0 can 
be done. It delivers no pole (because of odd dimension). The first term is explicit, in the second 
the continuation can be done as follows. First, we separate the contribution from N = 0,
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∑
N

1
(−ω2 + (k + 2πN)2)1+s =

1
−ω2 + k2 +

∑
N

′ 1
(−ω2 + (k + 2πN)2)1+s .

� (74)
Then we rewrite the remaining sum,

∑
N

′ 1
(−ω2 + (k + 2πN)2)1+s

=
∑

N

′ 1
((2πN)2)1+s +

∑
N

′
(

1
(−ω2 + (k + 2πN)2)1+s −

1
((2πN)2)1+s

)
.

� (75)
The first sum is an Epstein zeta function Z(2(1 + s)) (with p   =  3) as defined in equation (1.15) 
in [25]. For s  =  1 it is a number which we denote by zE. The second sum in the right side in 
(75) is convergent for s  =  1 (if accounting also for N → −N). We denote it by S∗(ω, k),

S∗(ω, k) =
∑

N

′
(

1
(−ω2 + (k + 2πN)2)

− 1
((2πN)2)

)
,� (76)

and get from (73),

J1(ω, k) = −iω +
4π

−ω2 + k2 + 4πzE + 4πS∗(ω, k).� (77)

Finally, inserting into (68) we arrive at

Φ̃(ω, k) =
1
α
+

1
ω2 + k2 + 4πzE + 4πS∗(ω, k),� (78)

which is a sufficiently convenient representation for the investigation of the spectrum.
In the equation (70), we have the frequency ω  and the quasi momentum k. The latter has 

components restricted to the interval ki ∈ [0,π] as can be seen from (69). The solutions, ωn(k), 
exhibit a band structure (the bands being numbered by n). However, no explicit formula like 
(29) or (30) in the one-dimensional case, is available here. Moreover, rotational invariance is 
broken by the lattice and in place of representation like (7) we are left with

N =
z

1 − z
+ Vg(z)� (79)

with

g(z) =
∑

n

∫

0�ki<π

d3k
(2π)3

1
z−1eβωn(k) − 1

,� (80)

which is a generalization of (45).
As shown in section 2, to determine the onset of BEC we have to calculate g(1). It is finite 

in three dimensions like in the free case, i.e. without lattice. However, calculation of thermo-
dynamic quantities like the critical temperature Tc must be performed numerically since no 
analytic expressions are available. The only what can be done analytically is a perturbative 
approach for small coupling α, which we will do now.

For the solution of equation (70) we make the ansatz

ωN0(k)
2 = (k2 + 2πN0)

2 + αµ1 + α2µ2 + . . . ,� (81)

where N0 is the number of the considered band. We insert this ansatz into the equation (70) 
and use (78).
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First we consider the case N0 = 0,

0 =
1
α
− 1

αµ1 + α2µ2 + . . .
+ zE + S∗(

√
(k2 + αµ1 + ...)2, k).� (82)

Expanding for small α gives

0 =
1
α
− 1

αµ1
+

µ2

µ2
1
+ · · ·+ zE + S∗(

√
k2, k) + . . . ,� (83)

from which we get

µ1 = 1, µ2 = −zE − S∗(
√

k2, k), ... .� (84)

For N0 �= 0 we need to separate the corresponding contribution in the sum S*, (76),

S∗(ω, k) =
1

−ω2 + (k + 2πN0)2 − 1
(2πN0)2 + S∗∗(ω, k)� (85)

with

S∗∗(ω, k) =
∑

N�=0,N�=N0

(
1

−ω2 + (k + 2πN)2 − 1
(2πN0)2

)
.� (86)

Now, inserting (81) into (70) gives

0 =
1
α
+

1
−(k + 2πN0)2 + αµ1 + ... + k2 + zE +

1
−αµ1 + αµ2 + ...

− 1
(2πN0)2

+ S∗∗(
√
(k + 2πN0)2 + αµ1 + ..., k),

=
1
α
+

1
−(k + 2πN0)2 + k2 + zE − 1

−αµ1
+

µ2

µ2
1
− 1

(2πN0)2 + S∗∗(
√
(k + 2πN0)2, k),

�

(87)

and we identify

µ1 = 1,

µ2 = −zE − 1
−(k + 2πN0)2 + k2 +

1
(2πN0)2 − S∗∗(

√
(k + 2πN0)2, k),

� (88)
which completes the perturbative expansion of the spectrum up to second order.

Inserting the perturbative expansion (81) into the function g(z), (80), we get in leading 
order for the integration/summation measure

∑
n

∫

0�ki<π

d3k
(2π)3 =

∫
3

d3k
(2π)3 ,� (89)

restoring the case of empty space. This gives, up to obvious factors, the function g3(z), (8). In 
the next order we have

ωN0(k) =
√
(k + 2πN0)2 + αµ1 + . . . =

√
(k + 2πN0)2 +

α

2
√
(k + 2πN0)2

+ . . . .� (90)

Since there is no other dependence on k as through (k + 2πN0)
2 in this order, the same argu-

ment as in the leading order and (89) applies. The expansion (90) cannot be inserted directly, 
rather we have to insert this expansion into (80). Thus we have to expand to first order in α
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g(z) =
∫

3

dk
(2π)3

1

z−1 exp(β
√

k2 + αµ1)− 1
.� (91)

This is a technical task which we show in the appendix. According to section 2, equations (11) 
and (79), the critical temperature follows from the equation n = g(1). For small α, g(1), (91), 
has an asymptotic expansion, following from (A.9), which results in

g(1) =
T3

2π2

(
2ζ(3) +

(
1
2
ln

(√
α

T

)
− 1 + 2 ln 2

4

)
α

T2 + . . .

)
.� (92)

Again, the leading order gives the free space result, the first correction is already nonanalytic 
since it has a logarithmic behavior. Now the equation  n = g(1) can be iterated to get the 
expansion

Tc = T(0)
c


1 +

1
4ζ(3)

(
ln

(√
α

T(0)
c

)
− 1 + 2 ln 2

2

)
α(

T(0)
c

)2 + . . .


 ,� (93)

of the critical temperature for small α, where T(0)
c =

(
nπ2

ζ(3)

)
1/3 is the critical temperature in 

the free case.

This is our final result in the three-dimensional case. It is valid if α/(T(0)
c )2 is a small 

parameter, which is equivalent to large density, n � α2/3. The coefficient in front of α is nega-
tive and lowers the critical temperature.

6.  BEC and heat kernel expansion

In this section we investigate the question about BEC from a different point of view. Some 
time ago, in a series of papers starting with [26] (see also chapter 9 in [15]), the heat kernel 
expansion was applied to BEC; in that papers with focus on confining potentials. We apply this 
method to the configurations with single, free standing objects mentioned in the Introduction. 
We start from equation (2) for the particle number. Separating the ground state we get

N =
z

1 − z
+

∑
(n)

′ 1
z−1e−βε(n) − 1

,� (94)

where the prime indicated that the ground state is not included in the sum and (n) numbers the 

states. Now, using a geometric series, 1/(x−1 − 1) =
∑

k�1 x−k , we get

N =
z

1 − z
+

∑
k�1

z−k
∑
(n)

′
e−kβε(n) =

z
1 − z

+
∑
k�1

z−kK(βk)� (95)

and

K(t) =
∑
(n)

e−tε(n)

� (96)

is the heat kernel. Since we are interested in the thermodynamic limit, N → ∞, V → ∞ with 
n = N/V  finite, the omission of the ground state will not influence the results. Now we take 
the heat kernel expansion,
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K(t) =
1

(4πt)d/2

(
a0 + a 1

2

√
t + a1t + . . .

)
,� (97)

with the heat kernel coefficients ak, and insert it into (95). In each term the sum over k can be 
carried out resulting in polylogarithms,

Lis(z) =
∞∑

k=1

zk

ks ,� (98)

and we arrive at

N =
z

1 − z
+ a0

(
T
4π

)d/2

Li d
2
(z)

(
1 +

a 1
2

a0

1√
T

Li d−1
2
(z)

Li d
2
(z)

+ . . .

)
.� (99)

We use this representation to determine the critical temperature as before from z  =  1. Using 
Lis(1) = ζ(s), the Riemann zeta function, we see the same criterion as in section 2; the dimen-
sion d must be larger than two (K(t), (96), implies nonrelativistic dynamics) since we other-
wise hit the pole of the zeta function at s  =  1.

Using the heat kernel expansion we get for the critical temperature Tc the equation

n =
N
V

=
a0

V

(
Tc

4π

)d/2

ζ

(
d
2

)(
1 +

a 1
2

a0

1√
Tc

ζ( d−1
2 )

ζ( d
2 )

+ . . .

)
.� (100)

This equation can be solved by iteration, resulting in the expansion

Tc

4π
=

(
V
a0

n
ζ( d

2 )

)2/d

1 − 2

d

a 1
2

a0

ζ( d−1
2 )

ζ( d
2 )

(
a0

V
ζ( d

2 )

n

)1/d

+ . . .


 .� (101)

The leading order gives the known expression since the heat kernel coefficient a0 is propor-
tional to the volume, a0 ∼ V . The next order is determined by the next non-zero coefficient. 
If this is a 1

2
, which is proportional to the surface S, we have a smallness of the next order 

proportional to S/V . If a 1
2
= 0, the correction is even smaller since a1 is proportional to the 

perimeter.
This way, in the thermodynamic limit, the critical temperature is determined by the heat 

kernel coefficient a0, which represents the contribution from empty space. All structures, like 
the mentioned plasma plane or sphere, may give only corrections to the critical temperature. 
As a consequence, there is no way to relate BEC to negative entropy observed in some Casimir 
effect related configurations after throwing away the empty space contribution. However, it is 
possible interesting to mention that the heat kernel coefficient a 1

2
, around which there is the 

controversy mentioned in the Introduction, is important for the first correction to the critical 
temperature.

7.  Conclusions

In the forging sections, we investigated the possibility to have BEC in the background of lat-
tices of delta functions. In the one-dimensional case, where there is no BEC in the free case 
(empty space, without lattice), we found no condensation for the considered examples. These 
were a lattice of ‘simple’ delta functions, a lattice of generalized delta functions (i.e. including 
derivative of delta function) and a lattice with two different delta functions in each primitive 
cell of the lattice and potentials framed by generalized delta functions.
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Also, we formulated a more general condition for BEC in the one-dimensional case in 
terms of a function h(ω), (43), which is defined in terms of the scattering coefficient t(ω) and 
which determines the Jacobian (49), or, equivalently, the density of states. The condition states 
that h(ω) must have vanishing first and second order derivatives at the beginning of the spec-
trum. Whether any such system exists remains an opened question. We found only systems 
with no BEC.

In the three-dimensional case one has BEC in the empty space. We showed that the lattice 
of delta function does not destroy this feature but changes its thermodynamic characteristics. 
As example, we considered the critical temperature. Since no general analytic results are pos-
sible we used a perturbative approach and considered small coupling. We calculated to first 
order in α the correction to the critical temperature Tc, equation (93), which showed a lower-
ing of Tc.

Finally, we considered with the heat kernel expansion a different approach to BEC. We 
showed that for single, free-standing background, the condensation is dominated by the heat 
kernel coefficient a0 which is proportional to the volume and which does not depend on the 
details of the background. These enter at best in the first correction, resulting from a 1

2
, and 

are proportional to the ratio S/V  where S is the surface of the volume V  or, for example, the 
surface of the plasma sphere in [8] and [10]. Taking all considered cases together, we could 
not spot any relation to the negative entropy observed in Casimir effect related configurations.

We conclude with a speculation on BEC in one dimension. As we have seen in Sect. 4, the 
simple comb and the comb with two delta functions in each cell may have different suppres-
sion of the condensation depending on whether the Jacobian is singular at the origin or finite. 
It would be interesting to investigate this suppression in more realistic models for bosons on a 
lattice like extended Hubbard or Bose–Hubbard models [27].

Appendix

In this appendix we calculate the asymptotic expansion for ε → 0 of the integral

I ≡
∫ ∞

0
dk

k2

e
√

k2+ε2 − 1
,� (A.1)

which emerges from (91) after angular integration and substitution k → k/β and with 
ε2 = αµ/β .

We start with the substitution k =
√

y2 − ε2 ,

I =
∫ ∞

ε

dy y

√
y2 − 1

ey − 1
.� (A.2)

We represent this integral as sum of two.

I = P + Q,� (A.3)

where

P =

∫ ∞

ε

dy y

√
y2 − 1 − y
ey − 1

, Q =

∫ ∞

ε

dy y
y

ey − 1
.� (A.4)

The second term we rewrite in the form

Q =

∫ ∞

0
dy y

y
ey − 1

−
∫ ε

0
dy y

y
ey − 1

.� (A.5)
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The first integral is a Riemann zeta function and in the second integral we can directly expand,

Q = 2ζ(3)− 1
2
ε2 + O(ε3).� (A.6)

In the first term, P, we substitute y → εy and integrate by parts,

P = ε2 ln
(
1 − e−ε

)
− ε2

∫ ∞

ε

dt ln
(
1 − e−εy) ∂

∂y
y
(√

y2 − 1 − y
)

.� (A.7)

Here, the first term can be expanded directly. In the second term we can expand in the loga-
rithm under the sign of the integral and arrive at

P =

(
1
2
ln ε+

1
4
− (1 − ln 4)

)
ε2 + O(ε3).� (A.8)

Together with (A.6) we get the expansion

I = 2ζ(3) +
(

1
2
ln ε− 1

4
(1 + 2 ln 2)

)
ε2 + O(ε3)� (A.9)

for the integral (A.1).
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