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Abstract

This work is focused on the determination of the gravitational-waves signal emitted by binary
neutron stars when they finally merge to form either a Black Hole or a remnant neutron star that
will, likely, eventually also collapse to Black Hole. This research is based on the use of general
relativistic numerical simulations that are the only tool available to study the evolution of a binary
neutron star system through its coalescent, merger and post-merger phase.

In particular, the gravitational signal emitted by different initial binary neutron star configura-
tions has been analysed, evaluating the effects on the signal due to the total mass, the mass ratio, the
equation of state and the initial stellar separation. The research focused on the post-merger phase,
were analytical descriptions of the GW signal are still absent, both in the case when a (hyper)massive
neutron star or a black hole surrounded by an accretion disk is formed. The gravitational waves
phase evolution, the radiated energy and angular momentum and the post-merger gravitational
waves spectrum have been determined. In particular, in the case of the post-merger gravitational
signal, various possible interpretation of its spectral features have been analysed performing a close
comparison with the recent literature.

Emphasis has been given to analysing some sources of systematic errors, such as the initial data,
the orbital eccentricity, the finite-resolution errors in the time evolution determined by the choice
of different numerical methods, and the gravitational waves extraction methodology. For the latter,
several data analysis techniques were developed, applied and extensively tested on the simulation
data.

The main interest for this research topic comes from the fact that binary neutron star mergers
are the main target for Earth-based gravitational waves interferometric detectors, after the recent
first detection of a gravitational signal from binary black hole mergers. They are characterized
by a rich phenomenology, which includes microphysical effects and electromagnetic emissions. In
particular, the most interesting challenge is to constraint the equation of state of the nuclear matter
inside the neutron star core, which is still unknown from a theoretical point of view. In order to
recognize a GW signal inside the detectors noise and perform source parameters estimation from
it, the comparison with theoretical models coming from numerical simulations is a necessary and
essential tool.

This work has a central point on the study of binary neutron star simulations with public codes,
in particular the The Einstein Toolkit and the LORENE library. All the code enhancements for
the binary initial data and evolution, the parameter files, and the post-processing scripts developed
for this work have been made publicly available, making all the results presented here reproducible,
following the simple instructions described in the appendix.
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Chapter 1

Introduction

After the recent first direct detections of gravitational waves (GW) from binary black-hole mergers
by the Advanced LIGO interferometers [1, 2], the era of gravitational wave astronomy has begun.
Now we have a new channel to look (or, with a better analogy, to listen) to the sky, studying high
energy astrophysics and testing gravity in the strong field regime.

Besides binary black holes (BBH), the next target for direct GW detection are binary neutron
star (BNS) mergers. When all three LIGO/Virgo interferometers will be active at design sensitivity,
a range of 0.2-200 BNS mergers detections per year is predicted [3]. At least ten binary neutron
star systems have been already detected in our galaxy, with observations of pulsars orbiting in
a binary system with a companion in the mass range for being a neutron star (see sec. 2.1.2 for
details) [1, 5]. Among them, the Hulse-Taylor pulsar (B1916+13) gave the first indirect proof of
gravitational waves existence, for which the 1993 Nobel prize was awarded [6-3].

Binary neutron star mergers have a particularly rich and interesting phenomenology, compared
with BBH, for the presence of matter and, hence, the possibility of electromagnetic and microphys-
ical effects. The (still unknown) equation of state for the matter inside the neutron star core, at
densities higher than the nucear equilibrium one, will leave imprints on the BNS system evolution
and on its emitted gravitational wave signal [0—14]. Therefore, BNS mergers can be used as an
astrophysical laboratory to investigate the properties of nuclear matter in extreme conditions. Sev-
eral electromagnetic counterparts can also be present in a BNS merger, since most neutron stars
have a strong magnetic field (see sec. 2.3). BNS mergers are believed to be the central engines for
short gamma ray bursts [15—18], even if the exact mechanism for their emission is still investigated
with astrophysical modelling and numerical simulations [19-28]. Other EM emissions, both in the
coalescent phase (before the merger, from the interaction of the stars magnetosphere [29, 30]),
and in the post-merger phase (such as fast radio bursts [31, 32], or dipolar spin-down emissions
[33, 34]) have also been predicted. Another peculiar signal expected from BNS mergers is the so
called macronova (sometimes called kilonova), an EM emission coming from the radioactive decay
of elements produced via nuclear r-process in the matter ejected during and after the merger [35-37].
All these EM counterparts could be used to complement information from GW detections, trying
to recover the source parameters.

In order to detect a GW signal from a BNS merger inside the detector noise, and to perform
parameter estimation from it, a bank of templates of the predicted GW signal from merging neutron
stars with different, plausible, characteristics (total mass, EOS, mass ratio, spin, eccentricity) is
needed [35]. For the pre-merger coalescent phase, analytical techniques to compute the GW signal,
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8 CHAPTER 1. INTRODUCTION

based on post-newtonian approximations, have been developed, and, recently, they also included tidal
effects, which distinguish the BNS to the BBH coalescence and contain an imprint from the neutron
star EOS. Among them, the Effective One Body model [39—42] has been particularly successful. Three
different research groups developed so far EOB codes which includes also tidal effects contributions
[11, 43-47]. In particular, lately, also dynamical tidal effects were considered, coming from the
interaction between the tidal field and the stars quasi-normal modes of oscillation [17, 48]. To study
the merger and post-merger phases, instead, full three dimensional general relativistic numerical
simulations are the only available tool. Numerical relativity is still also important for the study of
the coalescent phase, since the EOB models must be calibrated to numerical relativity simulations,
in order to account for the unknown post-Newtonian coefficients.

Numerical simulations involving the solution of Einstein’s equations became viable after the
crucial breakthroughs of 2005 [19-51]. Nowadays, simulations of BNS mergers are performed by
different groups in the world. The advancements in this field of research have highly benefited
from the realization of public numerical relativity codes, such as the LORENE library [52, 53], The
Einstein Toolkit [54], and LIGO’s LAL library, which were used in this thesis, respectively, for
generating the initial data, evolving the BNS systems in time, and part of the data analysis in post-
processing. Public, open source, scientific codes are a key to scientific progress, since they guarantee
the reproducibility of simulation results, and they reduce efforts replications in different research
groups. For these reasons, all my thesis work is based uniquely on adopting already existing public
community codes, to which I contributed with small enhancements where needed for my project,
or writing new data analysis codes which were made publicly available by the Parma University
Gravity research group (see appendix C).

Current active research topics in numerical BNS simulations include the computation and
evolution of a richer variety of initial configurations, like spinning stars [55—58], eccentric binaries
[58, 59], parabolic encounters and dynamical captures [56, 60, (1] and unequal mass systems [62-65].
The latter are particularly interesting, since we know for sure that unequal mass systems exist in
nature, having recently detected one with a large mass asymmetry in our galaxy [4], while highly
spinning neutron stars in binaries or eccentric orbits are not expected in most cases, when the
stars will be close enough to enter in the Earth GW detectors frequency band, except rarer or more
difficult to detect events, like the merger of BNS systems in globular clusters, which could have
eccentric orbits due to the interaction with the dense surroundings, or stars with a low rotational
period and a week magnetic spin-down, which will leave a dynamically relevant spin even close to
the merger.

Another very active direction, which will not be explored in this work, is to include in the
simulations a progressively richer microphysical phenomenology, with finite-temperature tabulated
nuclear equations of state and neutrino emission and absorption [57, 69-73], which can change some
of the properties of the evolution of the post-merger remnant, either a (hyper)massive neutron star
[74], or a black hole surrounded by an accretion disk. Finally, another very important characteristic
to model is the stars magnetic field evolution. Different numerical techniques have been developed to
ensure the conservation of the magnetic field zero divergence constraint, both in ideal [71, 75-85] and
resistive MHD [29, 86-88]. However, magnetized BNS mergers simulations are still in their infancy,
since there are difficulties in interpreting their results, in particular due to magnetic instabilities
which cannot be fully resolved with the currently available codes and computational resources (see
ref. [20, 89] and sec. 2.3.1). For this reason, as a preliminary stage in my research program, in this
thesis I focused only on non-magnetized BNS mergers.



Despite all that progress, there are still some uncertainties in BNS simulations results. An
accurate evaluation of all the possible systematic error sources, and the development of new numerical
and data analysis techniques to reduce those errors is fundamental, in order to be able to compare
simulation results with GW observation, or with analytical models, retaining the ability to distinguish
the gravitational signal from different sources, for example, to be able to measure EOS-related effects,
like tidal deformations in the final part of the pre-merger phase [90, 91].

The initial configurations (computed assuming some approximations about symmetries and the
gravitational potential, see sec. 3.3) are one possible source of error, which, however, has started
to be investigated as such only very recently, looking at the validity of some approximations [92],
comparing simulations with initial data computed by different codes [93], or comparing simulations
of the same model with different initial separation between the stars (see sec. 4.1.2 and ref. [94]).
In particular, one important error for which is responsible the initial data computation procedure,
is the presence of a small but not negligible eccentricity in the evolved orbits (see sec. 4.1.1). This
effect is one of the most important problems to overcome in order to get accurate waveforms for
numerical simulations. Some solutions to obtain low eccentricity initial data have been implemented
recently [58, 95], but they are not yet publicly available.

Another important possible source of error is the technique used to extract gravitational waves
from the numerical simulation data. In general, in BNS simulations, GW extraction errors are much
lower than the evolution code finite-resolution errors (see sec. 3.4 and ref. [94]), but only if some
care is taken in the extraction algorithms.

Finally, the errors linked to the finite grid resolution of the evolution code need of course to be
measured and kept under control. However, there is not yet a consensus in the literature about which
is the best way to measure the code convergence properties, or to extrapolate, from simulations at
different resolutions, results in the infinite resolution limit [96-98] (see appendix A.l for details).
Nevertheless, it is important to test the code convergence and to identify the convergence properties
of different numerical methods, in order to be able to choose which are the most appropriate ones,
in the different resolution ranges. The convergence analysis should be done looking at different
observables, in order to select the best resolution for performing simulations targeted at studying
different effects. More details on this point can be found in appendix A.1.

This thesis has the following organization: the first chapter is an introduction to the neutron
stars physics and the astrophysical knowledge we have about binary neutron stars systems. The
second chapter is a review of state-of-the-art numerical methods for solving Einstein’s equations
coupled with general relativistic hydrodynamics, as implemented in The Einstein Toolkit. The
chapter is closed by a discussion on gravitational wave extraction techniques and the improvement I
have tested in that area, for the most part already presented in ref. [94]. The third chapter contains
an analysis of the results one can obtain from BNS simulations, with examples taken from the Parma
Gravity group simulations, presented in ref. [08, 94, 99]. The pre-merger stage is investigated looking,
in particular, at some error sources present in numerical simulations, like the orbital eccentricity
(sec. 4.1.1) and the effect of the initial stars separation (sec. 4.1.2). A closer attention is devoted to
the post-merger phase, where numerical relativity is the only available investigation tool. For the
models which form an hyper-massive neutron star after the merger, the impact of different source
parameters on the post-merger spectrum and radiated energy is analysed (sec. 4.2.1), including the
role of the EOS, which one hopes to be able to constraint by looking at the post-merger spectrum
of future detected signals from BNS mergers. Extensive comparisons with the existing literature are
made, using different data analysis techniques, such as Fourier spectrograms and Prony’s method.
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Finally, models collapsing to black hole during the simulation time are also investigated (sec. 4.2.4).
This work is completed by three appendices, about code convergence, the initial parameters of the
presented simulations, and a short guide on how to perform numerical simulations of BNS mergers
with public codes.

All computations have been done in geometrical units (hereafter denoted as CU) in which
¢ =G = Mg = 1. Results are reported in cgs units, except where explicitly otherwise stated. CU
are also used to denote resolutions, e.g., dr = 0.25 CU, and there they mean the resolution on the
finest grid at initial time (which for most cases is the same for the entire evolution). Masses are
reported in terms of the solar mass M. Finally, one should note that, as is usual in most of the
work on this subject, matter is described using the variable p (baryon mass density), € (specific
internal energy) and p, instead of, as usually used in Astrophysics, p (energy density), m (baryon
number density) and p. Their relation is the following: p = e = p(1 +¢€) and 7 = p/mp (mp is
the baryon mass). In all the mathematical expressions in the remaining of this manuscript Greek
indexes are used for specetime variables, and run from 0 to 3, and Latin indexes are used, instead,
for space only variables, and run from 1 to 3.



Chapter 2

Physical background: neutron stars
and gravitational waves

2.1 Neutron stars

With the term “Neutron star” (NS) we intend nowadays a compact star with a mass approximately
between 1 and 3M, a radius in the range 9 — 15 km and a central density which is 3 to 10 times
the nuclear equilibrium density ng = 0.16 fm =3 [100], in which the gravitational pressure cannot be
compensated by the electrons fermi gas pressure, like in a white dwarf, but is, instead, equilibrated
by the strong nuclear interactions. A neutron star interior is neutron-rich, although, despite the
name, a fraction of protons is still present (and a corresponding fraction of electrons and/or muons
to neutralize the matter), and more complex nuclei can be found in the external layer, called “crust”,
as well other states like mesons, hyperons [101], and even deconfined quarks [102] could appear in
the inner core, at densities above ng (see next subsection for more details).

Neutron stars are among the most dense objects in the universe. The matter is held together by a
strong gravitational field, for witch a correct treatment of general relativistic effects is important:
for a typical neutron star with mass 1.4 Mg and radius 10km, the radius is only 2.4 times the
Schwarzschild radius of a non-rotating black hole with the same mass. This gravitational field
cannot be compensated only by the Fermi pressure of a free Neutron gas, as already demonstrated
by Oppenheimer and Volkov and independently by Tolman in 1939 [103, ], because it will lead
to a neutron star maximum mass of 0.7 Mg. The pressure to sustain the star against gravitational
collapse is given, instead, by repulsive nuclear forces [105].

Neutron stars are born from the collapse of massive stars at the end of their life cycle, when the
gravitational force cannot be sustained anymore by the internal pressure due to the thermonuclear
reactions fuelling the star [106]. When the inner density of the star reaches the nuclear equilibrium
density ng, the stellar matter bounces back, producing a shock wave generated at the outer layer
of the inner stellar core. The inner core, in this first phase, is hot, optically thick for neutrinos and
lepton-rich. It is still not clear which is the mechanism responsible for the reviving of the shock
front, which first halts at around 100 — 200km from the star center, in order to have a successful
supernova explosion. The main candidates are neutrinos emitted in the core and then reabsorbed
in the stellar medium [107-109] or magnetic instabilities redistributing angular momentum and
developing turbulence [110, ]. If the shock front gets revived, the stellar envelop is stripped
from its center, leaving behind a proto-neutron star. In the first ~ 10 ms it undergoes a highly

11



12 CHAPTER 2. PHYSICAL BACKGROUND

dynamical phase dominated by turbulence and hydrodynamical instabilities, during which energy
and angular momentum are emitted, mainly by neutrino radiation. During this first phase, stellar
oscillation modes can be excited, and they will be responsible for the emission of gravitational waves
[112-115]. The neutrino emission is linked with electron captures, which deleptonize the star, leaving
it neutron-rich. In the following phase, called the “Kelvin-Helmholtz” phase, the proto neutron
star evolves in a quasi-stationary manner, cooling down, shrinking, slowing down its rotation rate,
and becoming transparent to neutrinos [116, |. During the collapse, the magnetic field of the
progenitor star increases by several orders of magnitude, mainly due to flux conservation, but also
due to the winding linked with the star differential rotation. In regular neutron stars the magnetic
filed reaches values around 10® — 10'? Gauss. A special class of neutron stars, called “magnetars”,
have magnetic fields up to 10! Gauss. The magnetar formation process is still unknown, but is
believed to be linked with magnetic instabilities which develop in the protoneutron star after the
stellar bounce [111].

Due to their external dipolar magnetic field, which could be misaligned with the rotation axis,
several neutron stars can be observed as pulsars, emitting regular, pulsated electromagnetic signals
in the radio band [118, 119] (but, in some cases, also in X-rays and even gamma-rays [120, 121]).
This pulses are due to the electromagnetic radiation emitted by charged particles accelerated along
magnetic field lines. Each pulse is visible when the star magnetic axis (and then its radiation beam)
crosses the observer’s line of sight, therefore the pulsation period is equal to the neutron star rotation
period. The first experimental discovery of a neutron star happened in 1968 in the Mullard Radio
Astronomy Observatory [122].

In order to compute the equilibrium configuration for a non-rotating neutron star, one has to
solve the Tolman-Oppenheimer-Volkov (TOV) equations, which, in the simplified modelling of the
star as a barotropic fluid (valid for a cold neutron star, which has already cooled down after the
progenitor collapse), are:

m 7T7'3
=) T (2.1)
dn;ﬁr) = 4mp (14 €)1 (2.2)

Where all variables are functions of the single independent variable r (because of spherical symmetry).
This system must be closed by a prescription for the (barotropic) equation of state of the matter,
in the form P = P(p).

An important information which can be gathered from solving the TOV equation is the mass-
radius relationship for a cold neutron star given a particular EOS model. This can help confronting
different proposals for the neutron star EOS with experimental data. In order to do so, it is important
to be able to measure the masses and the radii of observed neutron stars [5]. The masses can be
measured from pulsars in binary systems, for which the orbital parameters are determined by pulsar
timing and accounting for the Doppler effect [123]. From those Keplerian parameters, it is possible
to construct a mass function:

M,sini)? 21\ 2
f = (CJWSI;M) = (P:) (asini)?®, (2.3)
where Mp = M,+ M, is the total mass of the system, M), is the pulsar mass and M, is the companion

mass, P, is the orbital period, a is the semimajor axis and ¢ is the inclination angle between the
orbital angular momentum of the system and the line of sight.
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The mass function has 3 unknowns (the two star masses and the angle 7), therefore two more
equations are needed for deriving the mass values. These come from the so called “post-Keplerian’
(PK) parameters, which measure relativistic corrections to the Keplerian orbit of the binary. The
five PK parameter used in practice are:

Y

1. The periastron rate of advance w, analogous to the perihelion advance of Mercury’s orbit, it
can be measured precisely in highly eccentric systems after a long observation period. From
its measurement the total mass of the system can be constrained:

~5/3 )
O = 3 (;‘;) M (1—e?)7 (2.4)

2. The Einstein delay -y, due to the gravitational redshift and the time dilation effect present in
eccentric orbits. It also requires high eccentricities and long time observations for a precise
measurement.

p\"? —4/3

3. The orbital period derivative Py, which is negative due to the energy and angular momentum
emission in gravitational waves. It is measurable in double neutron star systems only, after
years of observations.

4. The range r and the shape s of Shapiro delay [124], which is the delay of the pulsar signal due
to its passage into the spacetime curved by the gravitational field of the companion star. The
Shapiro delay measures of NS masses are the most accurate one to date, including for example
PSR J1614—2230 [125], which was the first observed neutron star with a mass close to 2Mg.
The Shapiro delay parameters are easier to measure for systems with a massive companion
and with a high inclination angle.

P\ 23 )
r= M, s = asini (2”> MM (2.6)

s

I want to remark that the relationship between the star masses and post-Keplerian parameters is
dependent upon the choice of an underlying theory of gravity (which, in the case of the formulas
written before, is General Relativity). This means that those mass measurements cannot be used
as a test of GR, but instead assume its validity, even in the strong-filed regime of the neutron stars
interior.

The neutron star radii, instead, are more difficult to measure directly. The current most common
technique is based on spectroscopic measurements of the neutron stars angular size, based on
their flux of surface thermal emission [, ) |. These observations are complicated by the
need for a general relativistic treatment (neutrons stars lense their own surface emission [128]),
the presence of non-thermal magnetosphere emissions, which are very difficult to model, and the
difficulty to measure the NS distance. A preferred laboratory for radius measurements are quiescent
low-mass X-ray binaries (QLMXRB), in which, during the quiescent phase, the mass accretion
from the companion to the pulsar ceases, reducing the non-thermal emission background [129].
Another interesting technique is to measure photospheric radius expansion events due to X-ray
thermonuclear bursts [130]. A third, frequently used, analysis to infer the NS radius is to model
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the periodic oscillations in the pulse profile originated by temperature anisotropies on the surface
of rotating neutron stars [131, ]. These oscillations depend of the characteristics of the NS
spacetime, hence on its mass and radius, which can be determined, given a theoretical model for
the temperature profile on the stellar surface and the radiation beaming.

Different radial measurements have been obtained with these techniques, constraining the NS
equation of state in different subregions of the M-R diagram (for example, radial measures from
qLMXRB point to the presence of very compact stars with a radius around 9.5 km for a standard
mass of 1.4 Mg [133, |, while other analysis from pulse X-ray spectroscopy point to stars with
larger radii, 14 km for stars with a mass around 1.5—1.8 M¢)). The problem is that all those techniques
are highly depending on the surface emission and NS atmosphere modeling, which is still an active
field of research. Forthcoming results in X-ray spectroscopy from missions like Athena [135], NICER
[136] and LOFT [137] should increase the precision in radius direct measurements.

Indirect measure of the NS radii can be obtained analysing the gravitational wave emission from
binary neutron star coalescence, merger, and their post merger remnant (if there is not a prompt
collapse to black hole). Most of this Ph.D. thesis is devoted to prepare the needed gravitational
signal theoretical modelling for succeeding in that task. See sections 4.1 and 4.2.1 for more details.

2.1.1 The neutron stars equation of state

The equation of state of the nuclear matter inside neutron stars cores is still largely unknown. The
extreme conditions present there (in terms of density, pressure, gravitational potential) can not
be reproduced in experiments on Earth, and it is not possible to perform theoretical finite-density
QCD calculations in that parameter region just from first principles [138, ].

As a first approximation, we are interested in the equation of state of cold nuclear matter in
beta equilibrium, which is suitable to represent neutron stars when they have cooled down from
the protoneutron star phase (this is also the physical condition of neutron stars at the beginning of
merger simulations, and during all the coalescent phase). Different techniques have been developed
to compute EOS models. I will briefly illustrate, as an example, the ones used to develop the four
EOSs that were employed in the simulations whose results will be analysed in chapter 4.

The equation of state model should be able to describe the nuclear matter in a large density
region, from the neutron star crust, where p < pg (with pg the nuclear equilibrium density) and
the matter is composed only by the ordinary constituents, namely neutrons, protons, electrons,
and simple atomic nuclei, up to the highest densities in the liquid inner core, where, for p > 4po,
neutrons overlap and new non-nucleonic degrees of freedom can be present, such as hyperons, mesons
condensates or deconfined quarks. Unfortunately, even for the crust case, calculation of an exact
EOS staring from the bare two and three nucleon interactions experimentally measured in vacuum
are not feasible, due to the complexity of the many-body problem concerning heavy nuclei immersed
in a neutron gas, as happens in the NS crust. For this reason, one common technique is to use an
effective nuclear hamiltonian in a mean-field scheme, containing effective two and three nucleon
interactions. These effective nuclear interactions usually have a large number of free parameters,
fixed by fitting atomic nuclei properties measurements and the results of nucleon-nucleon scattering
experiments, and then extrapolated to higher densities and nuclear matter asymmetries. In order
to avoid problems linked with those extrapolations, the first EOS models we used, the SLy EOS
[140, ], based on the Skyrme-Lyon nucleon-nucleon effective interaction, modifies the nuclear
forces to take into account also the results of microscopic calculations for pure neutron matter, and
also more recent experimental results on neutron-rich nuclei. In particular, it requires the consistency
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with the UV144-VII EOS of neutron matter in the range ng < n < 1.5 fm™3 and uses a general
procedure for fitting the properties of doubly magic nuclei. The SLy EOS is widely accepted as the
right modelling for the NS crust, which is described using the Compressible Liquid Drop Model, and
for this reason all of our stellar models use the same parametrized version of SLy for describing the
low density matter, but the matching point between the SLy crust and the core EOS changes for
every high density EOS model. One big advantage of using the SLy EOS also for the high density
matter is that it allows to be consistent employing the same effective nuclear interaction at all
regimes, instead of having different approximated approaches in different regions of the star.

A similar EOS is the APR4 model [112], also based on an effective Hamiltonian approach,
expanding it in one, two, three, ..., many body contributions, using a variational chain summation
method. The nucleon-nucleon interaction is based on the Argonne vig potential, but relativistic
boost corrections and three nuclear interactions are also included in the computed Hamiltonian.

A different approach, instead, is followed by the other two EOS models that were used in the
simulations of [941, 99], the H4 EOS [101] and the MS1 EOS [143]. They are based on a relativistic
mean field framework, in which the strong nuclear interactions are modelled as a meson exchange
(scalar o, vector w and isovector p) between nucleons. The starting point is the construction of an
effective lagrangian containing free-particle terms for each particle considered (nucleons, electrons,
mesons), plus meson-baryon interaction terms and pertubative meson self-interactions. In this
approach, too, free interaction parameters are fixed in order to reproduce the results of low-energy
terrestrial experiments. However, some parameters remain unsufficently constrained, but can be
further selected confronting the resulting neutron star models with observations, such as the neutron
star maximum mass lower limit.

The H4 EOS [101] includes also hyperons, which in that model start to be produced at densities
higher than 2pg. The most relevant hyperons are A and > _, because they have the lowest masses and
so are more easily produced. In this model new parameters are present, such as the ones controlling
the meson-hyperon interactions. Some of them are fixed from the properties of lambda hypernuclei,
while others, in particular the coupling constant between o mesons and hyperons, remain free to
construct different EOSs models. In the H4 EOS these parameters are fixed in order to have the
stiffest possible EOS sill consistent with the maximum neutron star mass and observed gravitational
redshift of photons leaving a NS surface.

It is common, in binary neutron star merger simulations, to parametrize the EOS as a piecewise
polytrope, following the work of [144]. This was also done in the Parma gravity group simulations,
analysed in chapter 4 and ref. [08, 94, 99]. We used seven polytropic pieces, each corresponding to
a different density interval. The four lower density pieces are the same for each EOS and come from
the fitting of the crust and low density matter modelled with the SLy EOS [110]. They represent,
in increasing density order, a non-relativistic electron gas, a relativistic electron gas, the neutron
drip regime, and the NS inner crust in the density interval between neutron drip and the nuclear
saturation density. The three high density pieces, instead, are different for each NS core EOS model.
In each density interval [p;, pi+1], the pressure P and specific energy density € of a cold neutron star
in beta equilibrium are given by:

Peog = Kz’pri (27)

K; _
€cold = € + T, _Z 1pF1 ! (28)

The coeflicients K; and I'; and the separation densities p; are reported in table 2.1 for the four low
density pieces and in table 2.2 for the three high density pieces. The coefficients K; can be fixed
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pilg/cm’] Ki L

- 6.801 x 10711 | 1.584
2.440 x 107 | 1.062 x 1076 | 1.287
3.784 x 101 | 5.327 x 10! | 0.622
2.628 x 102 | 3.999 x 10~® | 1.357

W N = O

Table 2.1: Parameters of the low density piecewise polytropic EOS. p; and K; are expressed in cgs
units. Note that the units of K; depend on the corresponding values of I';, so they are not directly
comparable in magnitude.

EOS Ty T5 T palg/em?]

APR4 | 2.830 | 3.445 | 3.348 | 1.512 x 10!*
SLy | 3.005 | 2.988 | 2.851 | 1.462 x 10'4
H4 | 2.909 | 2.246 | 2.144 | 0.888 x 10'*
MS1 | 3.224 | 3.033 | 1.325 | 0.942 x 104

Table 2.2: Parameters of the high density EOS, parametrized as picewise polytrope, for the four
different models analysed in this thesis, in increasing order of stiffness. I'y and K4 are the coeflicients
for the polytropic piece between the reported p4 and ps = 10'*7g/em3. I's and Kj are, instead, the
coefficients of the polytrope valid between ps and pg = 10'°g/cm?.

given only Ky and imposing the continuity of the pressure. Similarly, the coefficients ¢; are fixed
to impose the continuity of the specific energy density, with €9 = 0. The density threshold between
the crust EOS and the inner core EOS (p4) is different for each EOS model, and is selected, again,
to impose continuity between the common low density EOS and the specific high density one. Its
values are reported in table 2.2 too.

In fig. 2.1a are displayed the mass-radius relationships for a non-rotating neutron star with the
four EOS mentioned before. It can be seen that all four EOS are consistent with the maximum
mass limit of 2.01 Mg imposed by the observation of PSR J0348+0432 [125]. The relativistic mean
field EOSs are stiffer and lead to larger NS radii respect to the effective n-body nuclear interaction
methods. Those four chosen EOSs cover all the range of most plausible NS radii, given the few
observations available. In fig. 2.2 are shown the density profiles of a 1.4 M neutron star in a binary
system with a distance of 60 km from the companion neutron star, taken from the initial data of
the simulations presented in [94].

In figure 2.1b, instead, is reported the pressure for each EOS, respect to the mass density of a
star region. The relativistic mean field theory EOS (H4 and MS1) are joint at a lower density to
the crust EOS (see also the values of p4 in table 2.2) and are stiffer (with a higher pressure support)
in the interval between the nuclear density and pg = 10'°g/ecm?3. This allows them to support stars
with larger radii. The other two EOSs (APR4 and SLy), instead, are very similar (leading also to
similar curves in the M(R) plot fig. 2.1a). They are softer in the 10'* — 10%g/em3 density range,
but have, instead, a larger pressure support at the highest densities. These density values beyond
10'5g/em3, however, are not present in ordinary cold, irrotational, neutron stars in binary systems,
which are used as initial data in the simulation analysed in this work. They could be reached,
however, in the post-merger phase, if there is not a prompt collapse to black hole, especially in high
total mass and equal mass models (see sec. 4.2 and, in particular, figure 4.14).
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Figure 2.1: Left figure: mass over radius relationships for a cold non-rotating neutron star with the
four EOS models analysed in this thesis. The grey horizontal line represents the maximum mass
limit of the observed pulsar PSR J0348+0432 [125].

Right figure: the top panel shows the pressure versus mass density curves for the same four EOSs.
The bottom panel shows, instead, the adiabatic indexes I' for the piecewise polytropic representations
of those EOSs.
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Figure 2.2: Density profiles for a cold neutron star in a binary system with a baryonic mass of 1.4 Mg,
and a distance from the companion of 60 km. They are taken from the initial data of simulations
presented in [94], using the APR4, SLy, H4 and MS1 EOSs. See also appendix B for more details
on these and others simulated models initial configuration details.
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2.1.2 Double neutron stars systems

Up to now, eleven double neutron star systems have been detected in our galaxy, through pulsar
timing (the nature of the pulsar companion of one of those systems, PSR J1906+0746 as being
a neutron star is still debated). Among those systems, only six have precise measurements of the
masses of both stars, while for four others we have only an estimate for the total mass of the system.
Two additional double neutron star systems have been detected in globular clusters, but the nature
of the pulsar companion in one of them is not certain.

Table 2.3 list all those detected DNS systems with their relevant parameters. In particular, for
each double nutron star system, it was computed the eccentricity that the system will have when it
will enter in the Advanced LIGO/Virgo band (whith a emitted GW frequency of 10Hz) with the
following expression (approximated at the Newtonian level), from ref. [1415]:

10Hz _ (ewon- 18/19 % 3/2 304+121e? 1305/2299 09
fi B €; 1— 612 304 + 1216%0HZ ) .

where f; is the frequency of the gravitational waves emitted by the binary in its current state,
computed as twice the orbital frequency, e; is the current eccentricity of the orbit and e1gg, is the
desired eccentricity at a GW frequency of 10H z. It was also computed the time 7, needed for each
binary to merge, only for systems for which the individual masses of each star are known, with the
following approximate formula from ref. [118]:

P (my+ma\ 2w\ 7/2
~9.83 x 10%yr ( =2 —_ L 1—é? 2.10
y w () (M L) - (210)
where P, is the binary rotation period, m; and mo are the masses of the two stars and y = nﬁf;%

is the reduced mass.

From table 2.3 it can be noted that the mass of neutron stars in double neutron star systems are
constrained in a small range around 1.35 Mg, and the mass ratios are close to one. This is different
from the general distribution of neutron star masses,measured in binaries with regular stars or
white dwarves, which is much broader and peaked at slightly higher masses [5, ]. An exception
to this trend, however, is the most recently observed BNS system with the pulsar J043+1559 [1],
which has a high total mass and a large mass asymmetry (with a mass ratio of 0.75, never observed
before). The pulsar in that system has by far the highest mass measured for a neutron star in a BNS
system (1.559 M), while its companion has the lowest one (1.174 M)). The discovery of this system
has been very important, because it testifies the need for studying with numerical simulations also
binaries with large mass asymmetry (which have been neglected in the literature before 2015, with
few exceptions [62—(4]) and lower (or higher) masses than what are usually considered (see for
example ref. [68, (9] for a first step in these directions).

Double neutron star system are formed form regular star binary systems. The first star collapses,
creating a neutron star. This first neutron star accretes from the companion, spinning up becoming
recycled. When the companion grows to become a red giant, a common envelope will engulf the
neutron star. This will cause it to spiral-in, creating a tightly close binary. The energy released by
accretion and friction in this process will lead the hydrogen envelope to be expelled, leaving a close
binary formed by a neutron star and an helium star [157, ]. Due to large tidal effects this system
has a perfectly circular orbit. When the second star will undergo a supernova explosion, creating
a second neutron star, a relevant fraction of its mass will be ejected. This would cause the binary
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Pulsar Mr mp mgo q P, e €10H » Tq Ref.
[(Mo] [Mo] [Me)] [days] [Gyr]
J1765-2240 13.638 0.303 | 2.574 x 1078

J1756-2251 2570 1.342 1.231 0.92 | 0.320 0.181 | 7.207 x 10~7  1.67
J1811-1736 2.57 - - - 18.779 0.828 | 3.044 x 1077 -
J1807-2500B*g | 2.572 1.366 1.206 0.88 | 9.957 0.747 | 3.053 x 107 1032
JO737-3039 2,587 1.338 1.249 0.93 | 0.102 0.088 | 1.118 x 10~¢ 0.086
J1829-2456 2.59 - - - 1.760  0.139 | 8.927 x 1078 -
J1930-1852 2.59 - - - 45.060 0.399 | 1.101 x 1078 -
J19064-0746* | 2.613 1.291 1.322 0.98 | 0.166 0.085 | 6.454 x 10~7  0.31
B1534+-12 2.678 1.333 1.345 0.99 | 0.421 0.274 | 8.853 x 1077  2.76
B2127+11Cg | 2.713 1.358 1.354 1.00 | 0.335 0.681 | 7.220 x 1075  0.22

J15184-4904 2.718 - - - 8.634 0.249 | 3.234 x 1078 -
J043+1559 2.734 1.559 1.174 0.75 | 4.072 0.112 | 2.93 x 10~% 1456 []
B1913+16 2.828 1.440 1.389 0.96 | 0.323 0.617 | 532 x107%  99.6 [0]

Table 2.3: List of all detected binary neutron star systems, in increasing order of total mass. For
entries marked with * the neutron star nature of the pulsar companion is still debated. Entries
marked with g have been observed in globular clusters. For each system we list the pulsar name, the
total adm mass M, the gravitational mass of the pulsar mp and its companion m¢, the mass ratio
q (by convention always less than 1), the binary orbital period P, (from which the gravitational
wave frequency can be computed as P%)), the system eccentricity in its current state e; and when the
GW frequency will reach 10Hz (e10n2), the approximated merger time 7, and the original article
reference for the system discovery.

— e e e e e —— —— —
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to become unbound, unless the explosion impressed also a kick velocity to the newly born second
neutron star. Studying the distribution of plausible kick velocities and mass ejecta for all the 13
BNS systems detected and reported in table 2.3, in ref. [159] was shown that there is evidence for
two different formation channels for BNS systems: a mechanism with high kicks and ejected mass,
coming from a regular supernova, which produced the systems with high pulsar spin periods and
high orbital eccentricity (like the Hulse-Taylor BNS B1913+416), and a different mechanism with
low kicks and ejecta, coming from an electron-capture supernova, which produced the systems with
faster rotating pulsars and lower eccentricities.

2.2 Gravitational waves

Gravitational waves (GW) are one of the key prediction of Einstein’s General Relativity (GR),
already formulated in 1916, a few months after the first publication of GR field equations [160].
Gravitational waves are perturbations of spacetime, and a mandatory consequence of imposing
a relativistic nature for gravitational interactions. Gravitational waves are generated by the bulk
motion of massive sources, if they have a quadrupolar (or higher multipolar) component, and they
propagate at the speed of light, with their amplitude decaying like the inverse of the distance
from the source. The more commonly familiar electromagnetic waves, instead, are generated by the
incoherent superposition of the motions of microscopic charges, and have a dipolar nature.

The quest to directly detect gravitational waves begun in the late 60s with the pioneering work
of Joseph Weber with bar detectors. This incredible scientific endeavour finally gave its results the
14th of September, 2015, with the first direct detection of GWs from a binary black hole merger
by the interpherometers of Advanced LIGO [1]. Indirect proof of the existence of GWs in nature,
however, was already available, thanks to neutron stars! The 1974 discovery of the pulsar B1913+16
in a BNS system by Hulse and Taylor [(] allowed to make precise timing measurements in the
following 15 years, showing a remarkable agreement between the orbital shrinking observed and the
prediction from General Relativity due to the quadrupolar emission of gravitational waves [7]. This
results lead to the 1993 Nobel Prize for Hulse and Taylor. It has been updated with more recent
data [161], which are reported in fig. 2.3.

2.2.1 Gravitational waves in linearised gravity

The presence of gravitational radiation can be computed easily from the GR field equations in the
linearised approach. Far from compact sources such as black holes or neutron stars, we can consider
the spacetime metric g,, as given by the Minkowski special relativistic metric 7, plus a small
perturbation hy,,, with |h,,| < 1.

Y = N + hyw (2.11)

From this metric one can construct the Einstein tensor G, = R, + % guv R and write Einstein’s
equations

Gy = 87T, (2.12)

in the linearised gravity approximation:

Ohy — 20,0°hyy, + w007 hye = —167T),, (2.13)
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Figure 2.3: Cummulative shift of periastron time due to orbital shrinking in the Hulse-Taylor binary
system in 30 years of observation. The solid line shows the general relativity prediction and is not
a fit of the data points. Figure from ref. [3].

where it was practical to introduce the trace-reversed metric perturbation

1
h,uu = h;w - ihnw/, (2'14)

where h = n*”h,,, is the trace of the perturbation.

The metric imposed by eq. (2.11) is not unique, because there is the freedom of performing
an infinitesimal coordinate transformation 2% — z® — £* which leaves eq. (2.11) untouched. This
means that the linearised theory is invariant under the gauge transformation

h,uu — huy + 28(#§y)7 (215)

in the sense that this transformation will not change the field equations 2.13. To simplify the
problem, one can make the choice of the Lorenz gauge:

OFhyy,, = 0. (2.16)

This is similar to what is usually done in electromagnetism, where the Faraday tensor F},,, is invariant
under the gauge transformation of the quadri-vector potential A, — A, + 0, B, allowing for the
imposition of the Lorenz gauge 0* A, = 0, which simplifies Maxwell’s equations. Equation (2.16)
will lead to the following field equations:

Ohy = —167T,, (2.17)
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which have the form of a wave equation for the quantity BW, which propagates with the speed of
light.

Considering the propagation of gravitational waves in vacuum, governed by the equation DEW =
0, it can be easily shown the presence of two distinct polarization of the gravitational radiation.
The metric perturbation can be decomposed with a Fourier transform:

P = / Ay (k)ee™ dik, (2.18)

The Lorenz gauge condition of eq. 2.16 does not fix uniquely the metric perturbations, but leaves
room for another gauge transformation, because any generator &* which satisfies LI€# = 0 will
preserve eq. (2.16). This gives the ability to fix the so called “Transverse Traceless” (TT) gauge,
after having selected an observer with four-velocity u#, imposing the following conditions to the
perturbation amplitude:

uAu, =0 (2.19)
" A, = 0. (2.20)
The traceless condition implies h = 0 and so hy, = BW. In the TT gauge, in the rest frame of the

observer u*, for a gravitational wave which propagates in the z direction, the metric perturbation
can be written as:

00 0 0
0 hy hx 0

Tr __ + X

= o “hy 0 (2.21)
00 0 0

where hy and hy are the only two indipendent polarization of gravitational wave. Their names
come from the effect that they make when they interact with matter: the plus polarization deforms
a circle of particles with its center at the center of a Cartesian coordinate system by elongating it
alternatively along the x and y axis, while the cross polarization deforms the particle circle along
the two axis bisectors.

Considering, instead, the generation of gravitational waves by some matter sources, one can try
to derive the generated metric perturbation, again, in the linearised gravity approximation. Starting
from eq. (2.17), for each component hy, (¢, ¥) the linear wave equation can be solved with standard

techniques, using the retarded time variable ¢’ :=t — ‘f —

_ T (¥, 2
Py (1, 7) = 4 / ‘“(f)d?’x’. (2.22)

7 —a

This expression can be simplified under the assumption that we are interested in the emitted
gravitational waves far from the source, which means that r = |Z| > Rsource, allowing to substitute

in the denominator

Z—a ‘ ~ r. Another possible simplification comes from the so called “slow

source” approximation, considering that the wavelength A linked with the characteristic source
variation is much bigger than the source size: A > Rgsource- This allows to approximate also the
numerator, obtaining finally for the approximated eq. (2.22):

_ 4 .
by, = /tuy(t—r,x’)dgx’. (2.23)

r
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Another constraint is imposed by the conservation of the energy-momentum tensor, which, in the
linearised gravity, is simply 0,T"" = 0, without the covariant derivative of the full non-linear theory.
Considering a volume containing the source but with its boundary outside it, one can write, for the
time component of the T*” conservation,

T = —o,T. (2.24)
Differentiating both sides respect to time and using the symmetry of T* one can obtain:
RTY = —000,T" = 0,0,T" (2.25)

using again the energy-momentum conservation in the last step. Multiplying both sides for z'z7
and integrating over the considered volume, one can integrate by parts the last term, because the
source term will vanish due to the fact that the boundary of the considered volume is outside the
source. Finally, one obtains:

g 1 o
/T” (z)d3z = 503 / ' TOd3 . (2.26)
Applying this to eq. (2.23) one finally obtains:
_ . 2.
hij(t, %) = —Li(t =), (2.27)
where I;; is the second mass moment:

Ii;(t) = /p(t,f)xixjd?’x. (2.28)

Finally, one can obtain the famous quadrupole emission formula, projecting eq. (2.27) in the TT
gauge:
. 2 N
hZ;T(t, .1‘) = ;Aijkl(n)Qij (t — 7“), (2.29)
where Ajj = PiPj — %Piijl depends upon the projection operator P;; = 6;; — nynj, whith
n = Z/r, and Q;;, the mass quadrupole moment, is the traceless part of eq. (2.28):

Qu(t) = / ot ) <xixj—;\f|25ij> (2.30)

2.2.2 Beyond linearised gravity: the post-Newtonian expansion

Gravitational wave emission from real astrophysical sources which we can hope to directly reveal with
Earth based (like LIGO, Virgo, Geo, Kagra and in the future the Einstein Telescope) or space based
(like eLisa) detectors cannot be described in the linearised gravity approximation, because sources
like compact objects (neutron stars and black holes) generate a strong gravitational field, and their
dynamical evolution is influenced by the backreaction of their emitted gravitational waves, which
is not considered in the linearised theory. The way to go beyond is the so called “post-Newtonian”
expansion.

For a self-gravitating system the strength of the gravitational field is linked with the velocity of
motion by the Virial theorem:

v b (2.31)
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where d is the typical size of the source and R; is the Schwarzschild radius Rs; = 2?{”, indicating

also ¢ and G for clarity. This means that an expansion in the parameter € = ¢ is both an expansion
for slowly moving sources and for weekly self-gravitating ones. At the lowest post-Newtonian orders
(usually indicated as half the maximum exponent of € in the expansion) there is no effect of the
radiation reaction on the source, so the problem can be considered symmetric under time-reversal.
Since under time reversal the metric components ggo and g;; are even and go; are instead odd, this
forces the presence of only even(odd) powers of € in their PN expansion, respectively. On the other
hand, Einstein’s equations impose to work at order €” in ggo and at the same time at order €”~! in
goi and €"~2 in g;; (to be consistent with the expansion order in all terms). Therefore, the low-order
expansion terms of the metric components are:

900 = —1 4+ @ gog+@gop + - - - (2.32)
901 =D goi + - - - (2.33)
gij = i+ D gy + - (2.34)

At the same time, the energy-momentum tensor is expanded in powers of €. This simple expansion
is correct until the 2.5PN order, when GW radiation reaction enters for the first time into play. This
destroys the time reversal symmetry, because of the boundary condition of no incoming radiation
at the beginning of the considered time interval. This complicates the mathematical formulation at
higher PN orders. For more information, one can look at ref. [162—164].

The post-Newtonian expansion is not convergent in the latest stages of a compact binary merger,
since velocities gets high (a fraction of the speed of light, for example the black hole speed at merger
was 0.5¢ for the system that generated the first detected gravitational wave signal GW150914).
For this reason, series resummation techniques have been explored recently, with great success. In
particular, the Effective One Body (EOB) model for the inspiral of binary black holes [39-11, 165]
have been successful in producing templates for non-rotating and spinning black holes mergers,
which are currently adopted in GW detector data analysis. Various formulations of the EOB model
have been calibrated to numerical relativity simulations, in particular to fix unknown high-order PN
coeflicients. This is one reason for which numerical relativity simulations of compact binary mergers
are still very important, even if not directly adopted in experimental GW searches data analysis,
substituted by the much faster semi-analytical techniques. The EOB model has been extended
recently also to the study of binary neutron star (and black hole - neutron star) mergers, with the
inclusion of a description for tidal effects [13, 45, 47, ].

2.2.3 Gravitational waves astrophysical sources

The primary target for current and near-future gravitational wave detectors is the merger of compact
binaries. Two binary black hole mergers have been already detected [I, ], and more will come
in the future, once the sensitivity of interferometers like Advanced LIGO/Virgo will increase. The
second most promising source are binary neutron stars and neutron star - black hole mergers. While
several BNS systems have been observed already in our galaxy through pulsar timing (see sec. 2.1.2),
no NS-BH system has been yet detected, making the computations of their merger and detection
rate unreliable.

Besides compact binaries, also different systems can produce a varying quadrupole moment
able to emit sufficient power of gravitational radiation to be detected on Earth. One example are
isolated neutron stars, which can emit GW if there is any “mountain”, or imperfection, on their
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surface, making them non perfectly symmetric, while rotating fast. Another mechanism through

which isolated neutron stars can emit gravitational waves are secular [168-170] and dynamical
[171-174] instabilities, which can be triggered in differentially rotating neutron stars, like the ones
newly born after a supernova core collapse, with a wide range of their EOS [175]. The detection

of gravitational waves by neutron stars instabilities or oscillation modes will open the field of
gravitational wave asterosysmology, which means studying the internal structure of neutron stars
thanks to the GW coming from thier oscillation, like the internal structure of Earth can be studied
looking at earthquakes.

Another widely studied source are core collapse supernovae [112, , |. Several different
mechanism can excite the emission of gravitational waves during a supernova collapse. The fist and
most studied one is rotation collapse and bounce, when, for conserving the angular momentum,
the star reaches a considerable asphericity during collapse, which added to fast rotation provides
a time-varying quadrupole moment which generates gravitational waves. Another more recently
studied mechanism, thanks to the development of three dimensional simulations [109, , ], is
the post-bounce GW emission due to convection and convective instabilities. A third mechanism
is the gravitational radiation due to asymmetric neutrino emission during the shock-revival phase.
This mechanism, however, generates GWs with frequencies too low to be detected by current Earth-
based gravitational wave detectors. A final emission source are the pulsations of the hot, newly born
proto-neutron star [117].

2.3 Multimessenger astronomy with binary neutron stars

Besides emitting gravitational waves, binary neutron stars can emit also a wide range of electro-
magnetic signals and even neutrino signals. This allows to open the new field of multimessenger
astrophysics. Different signals can be used to extract different and complementary information, to
help reconstructing a picture of the source physics, for example to distinguish between different
neutron star EOS models. Simple examples are EM-followup searches of a GW detection trigger:
immediately after the detection of a plausible GW signal, telescopes in different frequency bands
will receive from LIGO/Virgo the information about the source location (with currently is weekly
constrained to hundreds or even thousands of square degrees because only two detectors are active
[2]). EM instruments will point towards the GW source, looking for a signal decaying in time after
the GW detection. This can help identifying the source of some known EM signals, like short gamma
ray bursts (SGRB), by looking at the GW signal it emits, but can also help discriminating between
possible candidate sources for the GW signal. Some examples of similar analysis, from the first
two direct detections of gravitational waves, have been presented in ref. [I130-183]. An opposite
application of multimessenger astrophysics is the GW-followup search triggered by electromagnetic
detections. Informations about the source location and energetics drawn by the electromagnetic
emissions can help GW data analysis searches inside the detectors noise, requiring a smaller signal
to noise ratio to have a GW detection.

Focusing on BNS mergers, the most promising GW source associated with known mechanism
of EM emission, the two most interesting processes to study with multimessenger techniques are
the identification of the central engine of SGRB, which have been linked with BNS (or NS-BH)
mergers, but whose production mechanism is not yet clear, and the production of heavy elements
in the matter ejected from the BNS merger remnant, with the so called “rapid neutron capture” or
“r-process”.
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2.3.1 The link between binary neutron star mergers and short gamma ray
bursts

Gamma ray bursts (GRBs) are intense flashes of soft gamma rays detected from Earth. Two
different families of GRBs have been distinguished: short (with a duration of less than 2s and a
harder spectrum) and long (with a longer duration and a softer spectrum). Long gamma ray bursts
are believed to be produced in core collapse supernovae, see for example [111]. SGRB, instead,
are emitted after the merger of BNS or NS-BH systems. A first evidence for this comes from the
different source locations of short and long gamma ray bursts. The latter come from active star
formation regions, while the former from early, but more often from late type galaxies. This points
to an older stellar population in the source zones and a great spread in the source ages [16-19].
Another clue which points towards the link between SGRB and BNS mergers is the high energy
released in SGRBs, in the order of 10%® — 1052 erg, which is available during BNS mergers, in the
form of gravitational binding energy of the merger remnant, which can be several time 10°® erg
[184]. A third clear link are the time-scales involved in the BNS merger dynamical evolution: the
typical time scale of the properly defined merger phase and of the merger remnant evolution (for
example, of its rotation, if it is a neutron star or a spinning black hole surrounded by an accretion
disk) is some ms, correspondent to the time scale of variation of the SGRBs energy output, which
is small to be reproduced with different hypothetical sources. At the same time, the total duration
of a SGRB prompt emission is much longer, typically around 7sgrp =~ 0.3 s. This time scale is also
linked with BNS merger remnants, in particular to the viscous time scale of the thick accretion
disk formed in high total mass BNS mergers after a black-hole collapse. The study of disks mass,
accretion rates and dynamical evolution is one of the most interesting motivations for performing
numerical relativity simulations of BNS mergers, in order to give reliable data for building of SGRB
emission models.

The remaining open question about SGRB is the precise nature and mechanism of their central
engine. There have been several different proposals to explain the prompt emission of an ultra-
relativistic outflow. The three most common ones are the magnetar model, the standard picture of
a jet launched by strong magnetic fields in a black hole - torus system and the more recent time
reversal scenario. A fourth model which was commonly discussed in the literature, the relativistic
outflow emission due to neutrino-antineutrino pair annihilation, was refuted recently by ref. [185],
where it was shown that baryon pollution in the central engine atmosphere due to BNS merger
ejecta will preclude the jet launch.

In the magnetar model [20, 23, ] SGRBs are launched by a newly formed magnetar, after
a BNS merger or a white dwarf accretion-induced collapse. A similar model can be used also to
explain long gamma ray bursts, whose central engine would be a magnetar formed by a core collapse
supernova. The SGRB prompt emission, in this model, is powered by accretion onto the rapidly
rotating protomagnetar from a disc formed during the BNS merger or WD collapse. This model
is also able to explain the extended emission (on a time scale of 10-100 s) seen in some SGRBs,
and in particular internal plateaus in the SGRB light curves with a rapid decay after the plateaus
end. In the magnetar model these extended emissions are produced by the matter accelerated by
the star fast rotation and ejected by the magnetic field via magnetic propelling [23]. The X-rays
plateau is modelled as magnetic dipole spin-down emission, while its sudden decay is explained by
the collapse of the supra-massive magnetar to balck hole, when, after its spin-down, rotation is not
able to sustain it any more.

The standard black hole - torus model, which has been the dominant one until the discovery of
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extended emissions, is based on the collapse of the BNS merger remnant in few ms after the merger,
with the formation of a thick, magnetized, accretion disk around a Kerr black hole. Energy can be
extracted from the system, to power a relativistic outflow, via the Blandford-Znajek (BZ) mechanism
[187]. This requires, however, the presence of a strong magnetic field, close to equipartition, in
the black hole egosphere. Several numerical simulations of magnetized BNS mergers have been
performed in the last years (mainly in the ideal MHD approximation), in order to study the
magnetic field amplification mechanism, its geometrical structure after the collapse to black hole
(an ordered, poloidal magnetic field oriented along the BH spin axis is needed to power the jet) and
if a relativistic outflow can be reproduced. The first simulation to show the formation of an ordered
poloidal magnetic field structure was reported in ref. [21], starting from a realistic magnetic field
structure inside two 1.5 M neutron stars (with a maximum strength of 1012 Gauss) and using an
approximated ideal fluid EOS. They did not see, however, the formation of a relativistic outflow.
The same result was also confirmed in [37], performing resistive GRMHD simulations of a similar
BNS system. The subsequent work of ref. [33], starting with a higher 10'* Gauss magnetic field,
using a piecewise politropic approximation of the H4 EQOS, similar to the one described in sections
2.1.1, and adopting a much higher resolution, found instead no organized magnetic field structure in
the BH-torus system. This difference has been attributed to a different method for reconstructing

magnetic field lines [26], or to the higher ejected matter (due to a different EOS) whose infalling
pressure must be overcome by the magnetic pressure to launch a jet [27]. The only simulations in
which a mildly relativistic outflow has been seen are the one of ref. [27], with a really high initial

magnetic field of 105 Gauss (justified to reproduce the magnetic amplification due to instabilities
unresolved in the numerical evolution), both inside the star or as an external dipolar field. The
most recent simulations of ref. [20] found the formation of an organized magnetic field structure,
independent of the NS EOS, the initial magnetic field orientation and the stars mass ratio. They
were not able to show a jet, however, because of the use of realistic initial magnetic field values
(1012 Gauss).

Magnetic field amplification in BNS mergers happens mainly due to the Kelvin-Helmotz (KH)
instability during the merger phase [39], the magneto-rotational instability (MRI) in the massive
neutron star or the accretion disc formed after the merger and the magnetic field winding due to the
differential rotation of the merger remnant. The KH instability creates vortices in the shear layer
after the two neutron stars come into contact, that amplify the magnetic field, converting kinetic
energy into turbulent energy and stretching the magnetic filed lines, producing a magnetic field
exponential growth [89]. The MRI [188] is a local shear instability which amplifies exponentially
the magnetic field strength in the presence of a negative radial gradient of angular velocity, as
happens in the massive neutron stars formed after the merger. MRI effects are difficult to resolve in
grid-based BNS simulations, because they require a spatial resolution about 10 times smaller than
the MRI wavelength. Ref. [24, 83, | are the first to have reported the development of MRI in
hyper massive neutron stars formed after a BNS merger, adopting resolutions under 100 m, which
are not currently feasible for performing many simulations in a large parameter study. Realistic
simulations of magnetized BNS merger are still difficult because of the resolution requirements to
fully resolve all magnetic instabilities, starting from a plausible magnetic field value. A possible
future direction is the development of subgrid models able to reproduce the energy extracted from
lengthscales smaller than the simulation resolution [71, ].

The third and most recent model of SGRB emission, developed to reconcile the BH-torus
model, which has had partial confirmation of its ability to power relativistic jets from numerical
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simulation, with the X-rays plateaus in the extended emissions, is the so called “time reversal scenario”
[22, 25, 33, 34]. In this model, after a BNS merger a supra-massive NS is formed, which collapses
in a much longer time-scale than the one we can study with numerical simulations, from seconds to
hundreds of seconds. After merger, the supra-massive NS generates an optically thick atmosphere
consisting of a photon-pair nebula and baryon-loaded ejecta. Spindown radiation emitted by the
rotating magnetized NS is diffused in such atmosphere in a long timescale, up to 10%,10° s. After
the collapse to BH, a relativistic jet is launched, producing the SGRB prompt emission. The jet
easily travels past the atmosphere, becoming detectable before at least some part of the spindown
emission, even if it was produced after it. This mechanism provides the “time reversal” necessary
to explain why the extended emission are seen long after the prompt gamma ray emission.

Although in this work there are no simulations considering also the effect of magnetic fields,
the study of the effects of the NS EOS, the mass ratio, the initial data and the adopted numerical
methods on the properties of the merger remnant (its collapse time, the mass of the produced
accretion disc, the rotational profile of the remnant neutron star, the ejecta mass and composition)
are key to calibrate and constrain the different SGRB central engine models.

2.3.2 Merger remnants as r-process sites and related macronova signals

Heavy elements beyond Fe are produced by neutron capture. After a supernova explosion, there is a
balance between neutron capture and [ decays. The difference between their time scales gives two
different processes: the slow (s-process) and the rapid (r-process) neutron capture. Supernovae have
been considered the site of r-process nucleosynthesis for many years, until more recent simulations
have shown that neutrino-driven winds do not have the right physical conditions to explain all
the heavy elements galactic abundance patterns, in particular around the third r-process peak (at
A ~195) [191]. Therefore a new paradigm gained consensus, hypothesizing BNS merger remnant
as the principal sites for r-process. Matter ejected in BNS mergers has the right neutron abundance
and velocity profile to start the needed nuclear reactions [192]. Moreover, it was shown that BNS
merger ejecta nucleosynthesis is able to reproduce the solar system heavy elements abundance
independently of the astrophysical characteristics of the BNS system, such as the two star masses,
mass ratio, EOS [193]. This is linked with the ejecta being extremely neutron-rich. On the other
hand, the nucleosynthesis is much more sensitive to the nuclear physics parameters.

It is therefore very important to accurately study the mass ejection mechanism in a BNS merger
remnant. Dynamical mass ejection (through hydrodynamical processes or gravitational torques) has
been accurately studied recently in numerical relativity simulations [14, 61, 66, 70]. Their results
point towards a maximum ejecta of ~ 0.01 My with velocites around 0.1 — 0.2¢. In particular,
two different processes have been found to be responsible for mass ejection: tidal interactions and
shock heating. Shock heated matter is ejected in a quasi-spherical manner. The general-relativistic
treatment of gravity is essential to reconstruct the correct shock-heated ejecta, because they are
largely underestimated in Newtonian gravity. The shock-heated ejecta plays a stronger role for softer
EOS (smaller neutron star radii). They are also less neutron-rich respect to tidal interactions ejecta,
because their high temperature (above 1 MeV) allows electron-positron pairs production, which
get captured by protons and neutrons respectively, emitting electronic neutrinos and antineutrinos.
Given the much larger abundance of neutrons respect to protons, there are many more positron
captures, leaving the matter with a higher electron fraction Y,. Tidal-driven ejecta are, instead,
emitted mostly in the orbital plane, and are very neutron-rich. Tidal ejecta are dominant in BNS
mergers with high mass asymmetries. In that case, the merger is less violent, because the low mass



2.3. MULTIMESSENGER ASTRONOMY WITH BINARY NEUTRON STARS 29

star gets tidally deformed already in the early merger phase (see chapter 4, and, in particular, figure
4.2 for more details), so the shock heating is less strong. This leads also to globally more neutron-rich
ejecta. The effect of the mass ratio has been found to be more important in the stiff EOS models
(with larger radii)[65, 66]. Another two less investigated but potentially important mass ejection
channels are the neutrino-driven winds and the magnetic-driven winds [35, .

r-process nucleosynthesis in BNS merger ejecta is very important for multimessenger astrophysics
because it can lead to a clearly identifiable electromagnetic signal, the so called “macronova” or
“kilonova”. It consists in an optical or near-infrared emission powered by radioactive decays of r-
process nuclei [184, , |. At the beginning this radiation is trapped inside the matter, which is
optically thick and expanding thanks to radioactive heating. The macronova radiation will be seen
only when the EM diffusion time-scale will become similar to the matter expansion time-scale. This
happens in a time frame of the order of 1 week after the BNS merger. Two candidate macronova
signals have been observed so far [35, 30, ] looking at the afterglows of short gamma ray bursts. In
particular, the first candidate linked with GRB130603B has been identified thanks to the observation
of a near-infrared source present in the Hubble Space Telescope data after 9 days from the GRB
prompt emission, but not present either in the observation after 30 days and in the Earth-telescopes
observations in the first two days after the GRB. Macronovae observations are a compelling proof
for the link between SGRBs and BNS mergers, and can be used, by inferring the mass, velocities
and neutron richness of the ejecta needed for generating such radioactive decay signal, to constrain
the source parameters, in particular the most relevant for mass ejection, such as the NS EOS and
the mass ratio. This will be complementary to the information gathered by a possible coincident
GW detection.

As remarked before, ejecta characteristics can be predicted only by fully general relativistic
numerical simulations. Therefore, enquiring a large spectrum of the possible parameter space for
BNS systems is an important scientific endeavour to be able to correctly interpret future EM and
GW signals from BNS mergers.
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Chapter 3

Numerical background: how to solve
Einstein’s and hydrodynamics
equations on a computer

The numerical solution of hyperbolic PDEs (like Einstein’s equations and the general relativistic
hydrodynamics (GRHD) equations) requires dedicated algorithms which have been developed in
the last thirty years. The starting principle is representing continuous functions of space and time
at several discrete time steps, and, at each time step, in a discrete spatial grid, with a finite number
of points, in order to be able to apply to the spacetime fields discrete operations which a computer
is able to perform. The spatial grid (in our case, a three dimensional Cartesian grid) represents a
finite region in space which we are interested to evolve in time. In the case of BNS simulations,
the grid is much bigger than the initial distance between the two stars, because there is the need
to extract gravitational waves far from the source (see section 3.4) and to avoid (or at least delay)
the interaction between the physical evolved fields and spurious matter and radiation infalling or
bouncing back at the grid external boundaries.

In order to be evolved in time, equations must be written as a system of first order in time
PDEs, in the form:

OUi(t, %) = RHS (Ui(t, %), 0:U;(t, &), 02U;(t, ©), 1, %) , (3.1)

where Uj; is a vector of our evolved variables. We start setting up initial data for each variable in
each grid point. The grid points (in each refinement grid, see later) are distanced one another by
the uniform spatial resolution Axz. Then initial data are evolved from the initial time ¢, to the
subsequent time t,4+1 = t,, + At, using the so called “method of lines”, handled by the MoL Cactus
thorn. MoL consists in computing the right hand side of a PDE like eq. 3.1 approximating the
spatial derivatives with appropriate methods (which are discussed in the following sections). In
this way, for each grid point, the fields U; depend only on the time variable ¢, leaving a system
of ordinary differential equations. They can then be solved with standard numerical techniques,
for example the fourth-order Runge-Kutta method [193, |, which can be used in The Einstein
Toolkit to evolve the solution at time t", denoted with U, to time t"*t1, computing U[‘H in four
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different steps:

u© — yn (3.2)
Ui(1) _ Ui(o) n %At RHS(Ui(O)) (3.3)
U,-(g) _ Ui(O) n %At RHS(UZ.(”) (3.4)
U¢(3) _ UZ.(O) LA RHS(Ui(Q)) (3.5)
v _ é (_QUi(o> + 20 44U 42U 4 At RHS(Ui(g))> (3.6)
Ut = Ui(4) (3.7)

The spatial resolution and the temporal resolution are not independent, but are linked by the so

called Courant factor
At

"= Ar
This is both needed for compatibility with special relativity and for archiving stability in the adopted

numerical methods. In all simulations analysed in the next chapter a Courant factor of 0.25 has
been chosen.

(3.8)

One problem of solving GRHD equations is the need of both a very large grid (in the simulations
of chapter 4 it is a cube with an half-edge of approximatively 1063 km (720 Mg, in geometric units))
and at the same time achieving a very high spatial resolution (low Ax) near the evolved stars, to
be able to resolve all hydrodynamical features and to have low numerical dissipation. This problem
was solved by Berger-Oliger Adaptive Mesh Refinement (AMR) [200], which in the Einstein Toolkit
is implemented by the thorn Carpet. In particular, a simpler, common choice, in BNS merger
simulations, is to use only Fixed mesh refinement (FMR). This consists in having multiple nested
grids, one inside the other, each (smaller) grid with a resolution double respect to the parent level
(meaning two times the density of points, hence half the points distance Az). As an example, the
grid structure used in the simulations performed by the Parma group can be found in table A.2.
The code FMR handles the time evolution via subcycling. An example of this algorithm, for just
two refinement levels, with spatial resolutions Az and 2Az, is:

1. The coarse level, (which has also a larger temporal resolution) evolves one step in time, from
ttot+ 2At =t 4 2nAx;

2. At the fine level boundary, the coarse level points are interpolated in space (with fifth order
polynomial interpolation) and time (with second order polynomial interpolation), to be used
as boundary conditions for the fine level evolution (this step is called prolongation);

3. The fine level evolves two steps in time (from ¢ to ¢ + At and, after, from ¢ + At to t + 2At),
to be aligned with the coarse one;

4. The fields values in coarse level points whose position in space coincides also with a fine level
point are copied from the field values in the latter (this step is called restriction). Is possible
to do just a simple copy, without interpolation, because Carpet uses a vertex centred grid,
which means that where a finer grid points exists, there is also a corresponding point with
the same Cartesian coordinates in each coarser grid.
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This FMR scheme, coupled with a multi-step time evolution like RK4, brings problems at
refinement boundaries: the fine grid evolution will need also boundary conditions, provided by
prolongation, at each intermediate time step in the RK4 algorithm. This will, however, reduce
convergence to first order at refinement boundaries [201]. In practice, BNS simulations without any
additional technique to solve this problem showed a great loss of accuracy globally in preliminary
tests which were performed. The solution adopted in Carpet is to use buffer zones at refinement
boundaries, which means evolving 12 grid points more for each edge of any finer refinement level (3
ghost points for each of the four RK4 substeps). At each RK4 step, a set of three points becomes
invalid, and is not used any more. These points, although evolved regularly like any other one
(instead of filling their values with prolongation), are used only as boundary for the evolution of the
regular (inner) points in the finer level. This of course leads to higher computational and memory
costs, and in particular worsen the code scaling ability when thousands of computing cores are used.
A promising alternative solution, which requires a modification of the Runge-Kutta algorithm, but
avoids the use of buffer zones, have been proposed in ref. [202], and will be tested and implemented
in Carpet in the near future.

3.1 Curvature evolution

The numerical solution of Einstein’s equations, allowing in particular long-term black hole dynamical
simulations, has been a challenge for many years, until the success of the first many-orbits BBH
mergers simulations of 2005 [19-51].

In order to simulate the time evolution of a system regulated by Einstein’s equations, one must
first re-write them in a so called 3+1 formulation, separating a time coordinate, along which the
system is evolved, from the spatial coordinates which label the spatial grid at each time step. The
3+1 formalism was originally indtroduced by Darmois (1927), Lichnerowitz (1944) and Choquet-
Bruhat (1952). It was then used by Arnowitt, Deser and Misner for developping an Hamiltonian
formulation of general relativity, known as the ADM formulation [203].

The first step is to foliate the spacetime in spacelike hypersurfaces ¥;, which are level functions
of a scalar field ¢ (the time coordinate). The timelike, future-directed unit normal to each surface n
is linked with the gradient of ¢ by the relation

nt = —aVHt. (3.9)
This equation is the definition of the lapse function «, which is given by o = —,/V#tV ,t, to ensure
that the vector n# has norm n#n, = —1. In the previous expressions the spacetime metric g, is

implicitly used to lower the vector indexes, and to define the operator
Vi = guV". (3.10)

It is possible to select a privileged observer , denominated the Eulerian observer, which is the one
with four-velocity n*. This means its evolution is normal to ¥, which, therefore, can be viewed as
the set of events which are simultaneous for the Eulerian observer. From «, one can also define the
normal evolution vector m* := an*. It is characterized by:

Vit = mHV,,t = 1. (3.11)
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This means that the vector m#*dt carries the hypersurface 3, into ;s Finally, one can define a
spatial metric on each hypersurface

Yuv = Guv T NpNy. (312)

The next step is to decompose Einstein’s equations into a spatial part (on each hypersurface)
and a component orthogonal to the foliation. This is done with the projection operators:

v =68 + nfn, (3.13)

ol = —nt'n,, (3.14)

where 0, is the Euclidean metric.
After some computations, it can be shown that the spatial projection of the four dimensional
Ricci tensor is:

1 1
ViR, = ——LmKap — —DaDpo + Rap + KKap — 2Kau K, (3.15)

where R,g is the spatial Ricci tensor on ¥4, D), is the spatial covariant derivative, computed with
the metric 7,,, and K is the trace of the extrinsic curvature K, , which is defined by:

1
K = =575V () = — 5w, (3.16)
where the round brackets indicate a symmetrization respect to the indexes they contain. It can be
either seen as the projection on ; of the gradient of its unit normal, or the rate of change of the
spatial metric. The projections of the energy-momentum tensor, instead, are:

Suv =0 Top (3.17)
e =ntn"T,, (3.18)
Ju = —7en  Tag, (3.19)

where e can be interpreted as the energy density and j, as the the momentum density measured
by the Eulerian observer.

The final step to write the full set of ADM equations is to introduce a coordinate system, adapted
to the foliation, in order to write the previous tensorial expressions as a system of PDEs. One first
introduces coordinates %, i € [1, 3] on each hypersurface ¥;. Then, a coordinate ¢ is defined, such
as the vector 0, is tangent to the lines of constant spatial coordinates. This defined vector 9, is dual
to the 1-form dt, just like the normal evolution vector m, defined before in eq. (3.11), so like m
drags the hypersurfaces ;. But m* and 9, in general differ, and their difference is defined as the
shift vector 3:

B =0 — m*. (3.20)

From this definition of 5 and the definition of m of eq. (3.11), one can derive
o' = —ant + BH, (3.21)

and, for the Lie derivatives,
Ly =Ly, — Lg. (3.22)
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One can also express the components of the normal unit vector n# and its dual one-form n, in

terms of the lapse and the shift:
1 %
nt = <,—B> (3.23)

N, = (—a,ﬁ) . (3.24)

This allows to decompose the four-dimensional metric g,,, and write it respect to the just defined
coordinate system:

ds® = gudxtdx” = — (a2 — Biﬁi) dt® + 2B;da’dt + ’yijd:nida:j. (3.25)

The physical interpretation of the lapse function and the shift vector is the following: the
lapse represents a measure of the proper time (for an Eulerian observer) between two adjacent
hypersurfaces:

dr? = —a?(t, z%)dt?; (3.26)

while the shift vector represents the relationship between spatial coordinates of two adjacent hyper-
surfaces:
T) 5 = at — Bi(t,2")dt. (3.27)

They characterize the choice of the coordinate system for the time evolution, and as such, in
general relativity they are gauge variables whose evolution can be freely chosen. This choice is very
important, as it is discussed in the next subsection, to guarantee numerical stability, in particular
for simulations involving black holes.

Now it is finally possible to derive the full set of ADM equations, projecting the Einstein’s
equations and writing them in the chosen coordinate system. Projecting them twice in the direction
normal to ¥; one obtains, after some algebric manipulation:

R+ K% - K;;KV — 16me = 0, (3.28)

where R = g, R* is the curvature scalar. Equation 3.28 is the so called Hamiltonian constraint.
Similarly, making a mixed space-time projection, one obtains:

D;K! — DK — 87j; = 0, (3.29)

which are the Momentum constraints. These four constraints are elliptic equations, valid in each
hypersurface 3;. In the numerical scheme implemented in The Einstein Toolkit, they are not
solved during the numerical evolution, but, instead, one should carefully monitor the constraints
violations at each time step due to numerical errors. A high constraint violation means that the
physical state of the system computed by the numerical code is not a solution of Einstein’s equation,
therefore it’s not a physical state.

Projecting the Einstein’s equations two times on the hypersurface ¥, instead, one obtains,
starting from the expression of eq. (3.15) for the projected Ricci tensor and writing the equations
as Ry, = 8w (Tuv — %gWT), where T' is the trace of the energy-momentum tensor, an evolution
equation for the extrinsic curvature:

8K = —D;D;a+a (R,-j oK KM 4 KKU) v (3.30)

1
— 81y (RZ’]’ — 57@']’ (S — 6)) + »CﬂKij7
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which describes how the spacetime geometry changes going from one hypersurface to the future
adjacent one. These three equations (six evolution equations for the extrinsic curvature and 4
constraint equations) should be supplemented by the relationship between the spatial metric and
the extrinsic curvature, which, using eq. (3.22) and eq. (3.16), can be written as:

8,57,-]- = —201Kij + Lﬂ’yij. (331)

3.1.1 The BSSN formulation

Unfortunately ADM equations (eq. 3.30 and 3.31, with the constraints 3.28 and 3.29) can not be
used in practice for GR numerical simulations, since they are only weekly hyperbolic, and would
quickly lead to numerical instabilities causing our codes to crash. In the late 1990s and first 2000s a
new formulation of the Einstein’s equations was developed by several groups, called today the BSSN-

OK formulation, from the initials of its main developers (Baumgarte, Shapiro, Shibata, Nakamura,
Oohara and Kojima) [204-206] 1.

Instead of evolving the spatial metric v;; and the extrinsic curvature K;;, new variables can be
introduced and evolved separately. First, a conformal spatial metric is constructed:

Fig 1= e P, (3.32)
with the conformal factor

6 = log <112det (%j)> (3.33)

promoted to evolved variable. Then the conformal, trace-free extrinsic curvature is defined (and
evolved):

~ 1
Aij = e AT <KZ] — 39in) , (334)

with K = g% K;;. The indexes of flij are raised or lowered with the conformal metric 7;;. Finally,
the conformal connection functions are introduced:

I =3 = 9; — 4, (3.35)

where f’;k are the Christoffel symbols of 4;; and the last equation comes from the fact that the
conformal metric has determinant equal to one. Separating the trace part and the trace-free part

!The contribution of the last two authors (Oohara and Kojima) is often forgotten, and the formalism is usually
simply referred at as BSSN in numerical relativity publications.
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of the ADM evolution equations 3.30 and 3.31, one finally obtains the full BSSN system:

. e o 1 .
(8 — 9;) K = -7 DiDja + a <A”Aij + 3K2> + 4w (e + 77 ) (3.36)
, 1
(0= B9) ¢ = — (oK — 05" (3.37)
. . o . o 2
(0 — p10;) T" = =249 + 2cx [r;dAk’ + 64904 — gfwajK] (3.38)
Sio iy 2Rin ai o Lk J o ~jk i ik ;
-I ajﬁ + gF @ﬂ + g"}/ 8j6kﬁ + 7y 6j8k6 — 16may™ ji
. _ - _ 2 5
(615 — ﬁjaj) Yij = —QOcAij + 27k(i8j)6k — g’yijakﬁk (3.39)
. ~ ~ -~ TF
(0 — p0;) Aij = e [aRf’j - Diija} + (3.40)

+ OzKAij — 20414]“‘/1? + QAk(Zaj)ﬁk — gfluékﬂk — 87rae_47r5’;§F,
where TF stands for “trace-free”, D; is the covariant derivative associated with the conformal spatial
metric and the Ricci tensor has been divided in two components, one containing the terms with
derivatives of the conformal metric and its Christoffel symbols (Rij), and the other containing only
the terms with covariant derivatives of the conformal factor (RZ) In deriving these equations, the
Hamiltonian and momentum constraint relationships have been used. In particular, it is key to
use the momentum constraint to eliminate the divergence of flij from the evolution equations for
the conformal connection I'?, to ensure numerical stability. This system of 17 PDEs was rigorously
proven to be strongly hyperbolic in ref. [207, |, even if it is not easy to see it at glance. It has
introduced, however, five additional constraints which should be verified at each evolution step:

det ('?zg) =1 (3.41)
Tr (/L-j) =0 (3.42)
IV = 9T, (3.43)

The first two constraints are actively enforced by the code at each time step. The third one, instead,
is not enforced (like the Hamiltonian and momentum constraints of eq. 3.28 and 3.29). However, to
help keeping its violation low, the evolved I are used only where their derivatives are needed, but
where they are needed without any derivative, 37 kfék is used, instead.

This evolution system must be supplemented with a choice for the gauge variables a(t,z*) and
B7(t, x%). A simplistic choice, like the geodesic slicing (o = 1 and 3% = 0) does not work, and leads
to code crashes when evolving spacetimes containing black holes. This happens because it is not
singularity avoiding, therefore, starting a simulation from BH initial data with a future singularity,
that singularity is reached quickly in the numerical evolution. There is, therefore, a need for a
singularity-avoiding slice condition on «. The lapse can not be constant everywhere, but should
approach the Minkowski value of 1 in the asymptotic flat region near the grid outer boundaries and
should become close to zero in the vicinity of a black hole, to avoid reaching the singularity. This
causes the additional problem that, because time advances “faster” in the far region and is almost
frozen near the BH, the grid (or, more precisely, each hypersurface ;) gets strongly distorted (this
phenomenon is known as grid stretching), with grid points falling inside the black hole horizon,
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even if points inside it are excised from the numerical evolution. This causes the code to crash, due
to the large gradients in the metric functions. To fix this problem, one needs to set also a spatial
gauge condition for the shift vector 3%, which should also change in space and time.

One common solution for the lapse is the mazimal slicing condition K = 0, or the related K-
freezing condition 0K = 0 (equivalent in the case of K = 0 set in the initial data). The K-freezing
condition, however, leads to the need of solving an elliptic equation for the lapse at each time step,
which is computationally expensive:

Aa = 0K + aK;; KY. (3.44)

An efficient alternative solution, is to contruct an hyperbolic slicing condition, called the K-driver
condition, making 92« proportional to 9; K [209, |:

dha — B9;a = —2aK. (3.45)

With this particular choice of parameters, this condition takes the name of “l1+log” slicing.

As spatial gauge condition, to avoid grid stretching one can, in the same way, impose the Gamma-
freezing condition &,I'" = 0, which implies solving elliptic equations for 8%, or impose it dynamically
with the hyperbolic Gamma-driver condition, as implemented in the Einstein Toolkit:

08— 55 = 2B (3.46)
OB’ — ;078" = oT; — nB', (3.47)

where the additional evolved variable B has been introduced. The “Beta driver” 7 is a parameter
which acts as a damping factor, driving B? (and then 9;3¢) to zero, so the shift vector will tend to
a constant in a stationary spacetime (in other words, this is a symmetry-seeking gauge condition).
Being a damping factor with dimensions [1/T7], it sets, depending on the numerical integration
method, a Courant-like limitation for the time step size, but independent from the spatial resolution.
Since in FMR simulations with subcycling in time At is much larger near the grid boundaries than
in the interior, a constant choice for the 1 parameter can lead to numerical instabilities in the coarser

grid [211]. For this reason, a simple space-varying prescription for 7 is implemented in the Einstein
Toolkit:
2 1 for r <R (near the origin)
= _— _ 4
n(r) Mror { % for r> R (far away) ’ (3.48)

where r is the distance from the coordinates origin and Mror is the total gravitational mass of the
simulated system.

These BSSN-OK equations are implemented in the Einstein Toolkit in the McLachlan thorn
[54, |, auto-generated as highly efficient vectorized code from a Mathematica script written
in tensorial notation with Kranc [213]. The spatial partial derivatives in the right hand sides of
equations are computed with a fourth order finite differencing representation: given f,, the value of
a function f in the n-th grid point in the x-direction, for example, its derivative is expressed as:

1 2 2 1
= —fo—2— =fa1+ = fot1 — == fnto. A
a;rf 12fn 2 3fn 1+ 3fn+1 12fn+2 (3 9)

The advection terms 3'0;, instead, are computed using a fourth order upwind scheme, instead of a
centred differences, to have a better numerical stability. Finally, Kreiss-Oliger fifth-order dissipation
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[2141] is applied to the evolved curvature variables, with a strength of €455 = 0.01, in order to damp
high-frequency oscillations.

The BSSN-OK system of evolution equations must be supplemented by suitable boundary con-
ditions at the external edges of the computational grid. This is a non-trivial problem in numerical
relativity, because one wants to obtain a stable evolution at the boundary, with constraints preser-
vation, and more importantly, one wants that gravitational waves will propagate out of the grit
and will not be reflected back inside. Or, stated differently, one wants to impose a no-incoming-
radiation boundary condition. In the Einstein Toolkit this is done in an approximated way adopting
Sommerfeld-type radiative boundary conditions [215]: for each evolved variable tensor component
X, the main part of the boundary condition looks like

X = x4 M= vot), (3.50)
T

behaving like an outgoing radial wave with speed vg. Here u is a spherically symmetric perturbation
and Xy the component value at spatial infinity. This assumes that the waves at the boundary have
a spherical wavefront, which is true if the boundary is far enough from the source. In practice, this
condition is implemented deriving it in time and obtaining the following differential equation, which
is easier to impose in a finite-difference code:

i X -X
DT 9 X — w20,
r r

o0X =— (3.51)
The spatial derivatives are computed with second order central finite differencing when possible,
and with one-sided finite differencing otherwise. To account also for those parts in the solution
which does not behave like a pure outgoing wave, the time derivative term 9, X is modified with:

L, X)) =0,X _
(0:X) O +<r—n"8ir

>p n'0; (0:X), (3.52)

where n’ is the unit normal vector of the considered boundary face, and this correction decays with
a power p = 2 of the radius in our simulations. These conditions are implemented in The Einstein
Toolkit by the thorn newrad.

3.1.2 Z4 family formulations

An always-present concern during GR numerical simulations with BSSN-OK are the constraint
violations either present in the initial data or developed during the numerical evolution. To alleviate
this problem, a new formulation of the Einstein equations, the Z4 formulation, started being adapted
for numerical relativity by different groups [216-220]. The Z4 formulation can be derived from the
following Lagrangian, with a Palatini-type variational principle [221]

L=g" (R +2V,2,). (3.53)

It possesses an extra vector term Z, in addition to the standard Hilbert action. This vector measures
the distance of a solution from the Einstein equations, and the algebraic constraint Z,, = 0 takes the
place of Hamiltonian (3.28) and momentum (3.29) constraints of the ADM formulation. In order to
damp the constraints violation, extra terms can be introduced, to make Einstein’s equation solutions
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an attractor for the full Z4 system solutions. In covariant form, the Z4 system with constraint
damping is:

Ry + YV uZy + Vo Zy+ k1 [0, 2y + 12y — (1+ k2)gum,2°) = (3.54)

1
= 87 (Tuv — 2gij) .

The coefficients k; are linked to the characteristic times of the constraint violation decay. This
system, as the original Einstein’s equations, can be written in 3+1 form, and, then, it is possible
to develop a conformal decomposition, similar to the one of BSSN-OK. Two different conformal Z4
formulations have been studied: the CCZ4 formulation [220, |, which retains the full equations
and in this way is a covariant formulation, at the price of greater differences respect to BSSN-OK
and the need to introduce an additional parameter k3 to be able to evolve also spacetimes containing
black holes and the Z4c [218, , | formulation, which retains only the principal part of the
equations, in order to be as close as possible to BSSN-OK, but is not fully covariant and needs
the introduction of ad-hoc constraint preserving boundary conditions in order to avoid constraint
violations being reflected back inside the grid at the outer boundaries [224]. Since in McLachlan
only the CCZ4 formulation is implemented, I will describe that in the following paragraphs.

After the standard BSSN-OK conformal decomposition, and the separation of traceless and trace
parts, the CCZ4 systems is the following, where I have marked in red the terms added respect to
standard BSSN-OK (3.41), and in blue the ones added for constraints violation damping:

(0, — p70;) K = —7"D;iDjo+ o (R+ K* + 2D, 7' — 20K) + (3.55)
— 3ak1(1 + kg)@ + 47 (6 + "yijSZ‘j)
: 1
(00— B0;) 6= —¢ (aK - 8kﬁk) (3.56)
) N . - - . 2
(8 — B10,) T = 24990 + 20 [ AR 1 6A10,p — 3@@@-1{] + (3.57)

; 2 2 .. ) )
+ 27 (mk(—) — O — 3<szk> + 2ks (3wzjakﬁk — aﬂ’“@@ﬂ) +
Sio iy 2Tin i Lxik i~k i ik ;
-T (9j,3 + gl“ 8]-6 + g’)’ 8jak6 + 7y 8j8k6 — 16may™ ji
o N ) 2
(00 — B70;) %y = —20 Ay + 293,05 8" — g%’jakﬁk (3.58)

(8t _ ,Bjaj) Aij — 4T [aéz - f)ﬂja + DiZj + Dij, + (359)

]TF
N I . 2 ot
+adij (K —20) — 2041, AY + 24,0, 8" — gAl-jakﬁk — 8rae T SLF
, 1 9 ,,
(815 — 37(%) (‘) = 5()( (R + 2D7jZL — AUAL] -+ §K2 — 2(‘)K> — Z‘&;oz—i— (360)
— ak1(2 + k2)© — 8rae.

The four-vector Z# have been separated in Z; and © = Zj. The conformal connections has been
substituted by =T+ 279 Z;. In this particular implementation, in the equation for the trace of
the extrinsic curvature K the Ricci scalar is not substituted using the Hamiltonian constraint. This
is done, instead, in the Z4c formulation. The 14+log and Gamma-freezing gauge conditions must
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also be slightly modified, to account for the new variables:

O — ;P a = —2a (K — 20) (3.61)
, 3.
Q! — 5,07 = B (3.62)
OB’ — ;0 B! = 9;T; — BT — nB’ (3.63)
The term with k3 has been added in [220] to alleviate numerical instabilities in evolving black holes:

a value k3 = 1 is used to keep full covariance, while a value k3 = % makes the black hole evolution
possible. This is not necessary, instead, in the Z4c formulation.

The Z4 family formulations bring two main advantages over BSSN-OK: first, it is possible to
define a natural constraint-damping scheme for every constraint, which is not the case for BSSN.
This is useful, for example, when evolving constraint-violating initial data, as done for example in
[57] for evolving spinning binary neutron stars. The constraint violations get dumped quickly by
at least a couple of orders of magnitude respect to BSSN-OK. Second, the constraint subsystem
in BSSN-OK has a characteristic with speed 0. This means that constraint violations remain on
the numerical grid where they are generated by numerical errors, and do not propagate. This is a
problem when evolving a physical system for which the interesting parts are always at the same
grid locations, like a single star or black hole, for example after the merger of a BNS system. In the
74 formulation, instead, all the constraint characteristics have a speed of £1. This means that the
generated constraint violations propagate out of the numerical grid with the speed of light.

One disadvantage of the CCZ4 formulation, already discussed in [220], and confirmed by our
simulations (see ref. [68] and appendix A.1) is that a higher resolution is needed to enter in the
convergent regime, respect to BSSN-OK, because the Hamiltonian constraint, even if damped, enters
directly in the evolution equations, while is assumed to be fully satisfied and as such put to zero in
the BSSN-OK equations. Another possible problem of all Z4-family formulations is the choice of a
correct value for the damping parameters. In our simulations, following [222], we used k; = 0.05,
k‘ganndk:g:l.

3.2 DMatter evolution

For simulating neutron stars, the spacetime evolution described in the previous section must be
coupled with the hydrodynamical evolution for the matter. Working always in a 3+1 decomposition
framework, with a spacetime metric given by eq. (3.25), an additional important variable to consider
is the fluid four-velocity w* (which, from a different point of view, is the velocity of an observer
comoving with the fluid), which, like the Eulerian observer velocity n*, has module u#u, = —1 and
is timelike. The GRHD equations will be written in the Eulerian observer reference frame, so it is
also important to consider the spatial projection v* on each hypersurface 3; of the fluid four-velocity
measured by the Eulerian observer. This is given by

. R 1 i .
vi= 2 (u + ﬁ’) . (3.64)

_ 0
u“nu a \u

It is interesting to note that in the case o = 1 and B = 0 one recovers the special relativistic

expression v = dd—’ii = Z—S, with u* = ‘é—f. With simple algebra, using the unitary of the u* module,
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it is easy to show that
1
o’ = —— =W, (3.65)
v 1—uvvt
where we have defined W as the Lorenz factor of the fluid.
The next step is to consider the ideal-fluid energy momentum tensor:

T = phu'u” + pg"”, (3.66)

where p is the mass density (contrary to the notation often used in the astrophysics literature, where
the letter p indicates the energy density), h = 1 + € + £ is the relativistic specific enthalpy, € is the
specific energy density and p is the pressure. The equations to solve for evolving the hydrodynamical
variables are:

v, T =0 (3.67)
Vu(put) = 0, (3.68)

where (3.67) is the energy-momentum conservation and (3.68) is the baryon number conservation.
This system of equations should be closed with a choice for the matter EOS (see sec. 2.1.1 for a
discussion about the neutron star EOS and its piecewise polytropic approximation often used in
numerical relativity), in the form p = p(p, e, ...).

The code GRHydro [225], which is the official, open source, GRHD module in The Einstein
Toolkit, uses the so called Valencia formulation of the GRHD equations [77, 79, —229]. It is a
conservative formulation, in which instead of the “natural” five primitive variables (p, €, vi) a set
of derived conserved variables is evolved, in order to be able to write the hydrodynamics equation
in the conservative form

U = o;F9(U) + S(U), (3.69)

where U is the state vector containing the five conserved variables, F? are the flux vectors, one
for each direction, and S is the source vector, which does not contain derivatives of the state
vector variables. A conservative (and strongly hyperbolic) formulation for the evolution equations
helps with their numerical implementation, since any finite differences algorithm will automatically
conserve the conserved variables in the theory and, moreover, thanks to Lax-Wendroff 1960 theorem,
the numerical solution, if the code is in a convergent regime, will converge to a weak solution of
the system (a solution to its integral representation). The conservative formulation is an essential
hypothesis for this theorem [230]. The Valentia formulation conserved variables are:

D= /AWp
S; = AphW?v; (3.70)
= \ﬁ(phWQ —p)—D.
The corresponding fluxes are: ‘ '
' D(av' — (")
F' = Sj(av' = B') + pd; (3.71)
T(av' — %) + pv*
And, finally, their source terms:

0
S = TH (Ougvs +T9,955) ) (3.72)
o (T“OGH log o — TWF;%)
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Besides obtaining convergence to the right physical solution and conservation in the numerical
evolution of the physically conserved variables, another requisite for an evolution scheme for hydro-
dynamics is the ability to treat consistently also solutions with shocks. Any non-linear, hyperbolic,
PDE can develop shocks even starting from smooth initial data. Therefore we need a numerical
algorithm able to capture efficiently those shocks, without crashing the computer code or loosing
accuracy. The starting point is a finite-volume scheme, which helps both highlighting the conserva-
tion properties of the system and dealing with discontinuous solutions. Its main point is evolving,
instead of the point-valued conserved variables U, their volume average in a numerical cell

3 1 1+ Azt 2+ Az?  pxd+AzS
U= AV /1 /2 /3 Udz'dz?da®. (3.73)

Integrating equation (3.69) in a spatial numerical cell, and using Gauss divergence theorem, one
gets:

OU(T,1) = — - (Fas(a! + Ax) — Fos(a)

Apl F13(1'2 + A$2) — F13(ZIJ2)) + (374)

1
B Ax2 (
1 n R o/ =
AL (Flg(xg + Aarg) - F12(1‘3)) + S(&,¢t),

where Fij is the surface average of the flux F' on the 7, j boundary face of the numerical cell volume:
- o+ Azt pri4+Axd o S
Fyj(2®) = / / F(&, 37, 2% dz'dil. (3.75)
zt zJ

In order to show, in a simplified way, the key idea of the shock-capturing algorithm adopted in
GRHydro (the so called “Godunov method”, developed by Godunov in an appendix of his Ph.D.

thesis [231]), it is useful to integrate eq. 3.74 also in time, in the arbitrary interval [t,, ¢, + 1]:
_ _ At /- ~ At [~ ~
Ui (t"11) = Uy (t™) + N (Fi+1/2jk; - Fijk) t A (Fij+1/2k: - Fijk) + (3.76)

At /- .
+A7:L‘k (Fijk+1/2 — Fijk) +/Sd3;pd7f,

where Fjj, is the numerical flux function:

Fijp = — / Fyjpdt. (3.77)

Equation 3.76 is a recipe to evolve forward in time the hydrodynamical conserved variables from
the time-level t" to the time-level "1, but it is not (yet) a numerical scheme, it’s an analytical
expression obtained without any approximation. In order to compute the evolved variables at t"*!,
however, one needs to know the time-averaged flux F on each surface of the considered numerical
cell boundary, which depends on the solution for conserved variables at times t > t". In order to
construct an appropriate numerical evolution scheme, one needs an approximation for F, which
is robust to the presence of shocks in the solution. Godunov’s idea was to compute F using the
solution of a one dimensional Riemann problem at each boundary in each Cartesian direction. The
Riemann problem is given by a one dimensional conservation-form hyperbolic PDE (like 3.69, but
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without any source term), with the following discontinuous initial conditions (around the separation
face x = x0):

U (x,to = 0) = { ZIL% z; ' ii } (3.78)

The Riemann problem is invariant under similarity transformations:

(x,t) = (ax,at) ,a > 0, (3.79)
and, therefore, its solution is self-similar and depends on the variable ﬁ:foo . The solution of a Riemann
problem for the hydrodynamics equations consists of constant states separated by rarefaction waves
(continuous self-similar solutions of the PDE), shock waves (where all hydrodynamical primitive
variables are discontinuous) and contact discontinuities (where only the density is discontinuous and
all other variables are continuous, like the neutron stars surface). This solution strategy imposes a
Courant factor (see sec. 3), because the time step should be sufficiently small not to allow waves
from neighbouring cells interfaces to interact:

At < BT (3.80)

)
’Umaac ‘

where vp,q, is the maximum wave speed in any point of the grid at a given time step.

The original first-order Godunov’s scheme used eq. 3.76 for the time evolution, computing the
numerical fluxes solving Riemann problems at cells faces with initial conditions given by a piecewise
constant reconstruction: each conserved variable, inside each cell (and therefore also at the cell
boundary, from the appropriate side) takes a constant value equal to its cell volume average.

To go beyond first-order convergence, one has to adopt a High Resolution Shock Capturing scheme
(HRSC). First of all, in our finite-volume approach, one can approximate cell volume averages U
and face surface averages F' with their point-values at the numerical grid cell and face centres (Uijk
and Fjj, respectively). This is exact up to second order in space (in the sense that the error made
with this approximation is proportional to (Ax)Z). This is the approach adopted in GRHydro, and in
all current finite-volume GRHD codes. To go beyond second order convergence, one has to include
additional (complicated) steps to compute from the evolved volume-averaged conserved variables
their values at each grid point at the desired approximation order (because they are used in the
energy-momentum tensor for the finite-difference curvature evolution, see sec. 3), and also compute,
from the point-valued fluxes given by the Riemann problem solution, the face-averaged numerical
fluxes to be used in eq. 3.76 [232]. For this reason, the only GRHD codes formally able to go
beyond second order convergence adopt a different finite differences Flux-Vector Splitting approach
[96, 98, 233].

To increase the temporal resolution, in HRSC methods one adopts the Method of Lines (see
sec. 3) starting from eq. 3.74. The numerical flux terms F are computed as solutions of a Riemann
problem also in this case, because, thanks to their self-similarity property, they are guaranteed to be
constant in time at the cell interface x = xg. In the most recent numerical relativity works a fourth
order RK method is often chosen also for the hydrodynamical variables. Even if second and third
order RK methods adapted to keep the equation conservation properties exist, following most of
the recent literature we found global lower errors adopting the same (and the highest-order possible,
given the highest spatial finite difference order adopted) RK method for both the spacetime and
the matter evolution (see [34, 179]).
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To increase the spatial resolution beyond first order, instead, different reconstruction methods
have been developed, in order to compute the initial values Uy, and Ug for the Riemann problem, at
the left and right interface of each cell boundary, from the cells volume averages. The common struc-
ture of these methods is the reconstruction of the internal profile of primitive variables inside each
numerical cell with a polynomial interpolation. From these profiles, the limits at the cell boundaries
Pr, and Pg are computed, and from them the corresponding conserved variables. The polynomial
reconstructions are supplemented with some kind of limiter, which limits the reconstruction profile
slope, reducing the method to first order convergence near shocks. These limiters allows to over-
come the limitations of Godunov’s theorem, which states that any linear, higher than first order,
reconstruction method may induce spurious oscillations near shocks.

In particular for this thesis were tested the Piecewise Parabolic method (PPM) [234], which
is third order convergent in smooth flows, the Monotonicity Preserving method (MP5) [235], fifth
order, and the Weighted Essentially Not Oscillatory method (WENO) [236, ], also fifth order
convergent. The latter was proven to be the best for archiving global second order convergence even
at very poor resolutions in [68] (see appendix A.1, but also refs.[1 1, 98, 238] for similar findings about
the WENO method). As explained in [225, 239], the use of a at least N*" order convergent ODE
solver for the time evolution and an at least N** order space discretization algorithm guarantees a
global N** order convergence (both are prerequisites, since the time and space discretization steps
are linked by the Courant condition 3.8) in a MoL framework, if the right hand side in eq. 3.69 is
first order convergent in time. The use of a Riemann problem solution to evaluate the fluxes at cell
boundaries allows this final condition to hold.

To summarize the last section, the evolution of the GRHD equations in The Einstein Toolkit
procedes as follows:

1. The source terms are computed from the primitive variables at cells centres;
2. The primitive variables are reconstructed to the left and right states near the cell faces;

3. The conserved variables are computed from the reconstructed primitives with simple algebraic
expressions;

4. A Riemann solver algorithm finds an approximate solution to the Riemann problem at each
interface, using the conserved variables right and left reconstructed states as initial conditions.
The Riemann problem is solved independently along each spatial directions, finding all the
flux components F* of eq. 3.74;

5. The source and flux terms are summed up to build the right hand sides for the MoL time
evolution;

6. At the same time, the primitive variables values at cell centres are used to construct the
energy-momentum tensor, with which the right hand sides of BSSN-OK evolution equations
are computed;

7. Both hydrodynamical conserved variables and curvature variables are evolved in time with a
forth-order Runge-Kutta method;

8. From the cells centres values of the conserved variables in the new time-step the new primitive
variables are computed, with a root-finding procedure, which checks also if they lie in a
physically acceptable range.
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3.2.1 Reconstruction methods

PPM

The first reconstruction method that was tried, is the widely adopted PPM, which is still the most
common choice for numerical relativity codes (as, for example, [239, 240]), and which was already
used by the Parma gravitational physics group in single-star simulations [173, |. The original

PPM algorithm is slightly modified in GRHydro, adopting a formulation specialised to evenly-spaced
grids, using the simplest dissipation algorithm and an approximated flattening algorithm which
needs only three stencil points instead of the four of the original procedure.

The core of the PPM reconstruction is the interpolation of the reconstructed primitive variable
a with a quadratic polynomial:

1 1
(Ii+1/2 = §(Gi+1 + ai) + 6(5(% — (5044.1), (381)
where da; is given by the approximation:
1 .
da; = mm(§ lait1 —ai—1|,2]air1 — ail ,2|a; — ai—1]) - sign(ait1 — ai—1) (3.82)

when
(ai+1 —ai)(a; —ai—1) >0

and is zero otherwise.

After this first step, the right and left states are equal azR = aiLJrl = aj11/2, and the solution
will be third order convergent in space for smooth flows. This, however in not strictly monotonicity
preserving (it could create new extrema in the reconstructed profile, which were not extrema of the
original variable profile). In particular, it can happen that the interpolated a; is not between aZL
and aZR. Such problem arises when a; is a local maximum or minimum, or when it is close to one
of the reconstructed face averages, and then the interpolating parabola “overshoots”. In such cases
the reconstructed variables are modified:

1 1

af = 3a; — 2af* if (aff — a}) ( — 5"+ af)) > (alt —al)’ (3.84)
1 1

aft = 3a; — 2a] if (a' — af) (ai - 5(%3 + af)) <-% (aff —al)”. (3.85)

Before the monotonicity preserving procedure, another two steps may be applied: first, contact
discontinuities could be steepened, to ensure sharp solution profiles. Next, a flattening procedure
near shocks is applied, in order to reduce the convergence in that case towards first order (locally),
and avoid oscillations in the solution. The reconstructed variables are modified as follows:

LR _
=

a ViaiL’R + (v)ay, (3.86)

where v; is an additional advection velocity, which produces the extra dissipation needed for avoiding
oscillations near shocks:

Vi = max <0, 1 — max (O,wg (le—le — w1>)> , (3.87)
Pit2 — Pi—2
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and, instead, v; = 1 in smooth flows. The criteria for detecting a shock in this case are:
wo mMin(pi—1,pi+1) < |pi+1 —pi — 1| and v | — v > 0. (3.88)

This procedure is different from the original one of [234], but requires only thee points stencils,
instead of four points ones, which would increase considerably the computational cost, especially
when using mesh refinement.

MP5

Another reconstruction method which recently received some attention is the MP5 method [235].
It was adopted in the first higher-than-second order GRHD code [96, | and was found to be the
most accurate in a simple single TOV star test in the GRHydro presentation paper [225]. MP5 is
based on a fifth-order polynomial interpolation, followed by a limiter designed to keep high order
convergence also near solution extrema, distinguishing them from shocks, which is not possible to
do in third-order methods like PPM, and to preserve monotonicity when adopting a Runge-Kutta
scheme for the time evolution. The core interpolation is given by:

1
afyy )y = 5o (2ai-2 = 13a;1 + 47a; + 27041 — 3ai +2). (3.89)

The condition regulating if a limiter is applied is:

aMP .= a; + minmod (ajy1 — ai,aa; — ai—1), (3.91)

where a = 4 is used. The minmod limiter function is given by:

minmod(z,y) = %(szgn(:n) + sign(y))min(|x|, |y|) (3.92)

minmod(w, x,y, z) = é(sign(w) + sign(x)) |(sign(w) + sign(y))(sign(w) + sign(z))| x
xman(|w|, |z[ [yl |2]). (3.93)

If eq. 3.90 is satisfied, a limiter is applied. To set it, four combinations of the interpolated variable
are built:

1
CLAV = §(CL1 + ai+1) (394)
"t = a; + ala; — aipq) (3.95)
1
A
GMD — AV _ iDgﬁ/Q (3.96)
1 4
alC = q; + glai —ai—1)+ ng\fAl‘/Q. (3.97)

a?V stands for AVerage, aV for Upper Limit, a™P for MeDian and ¢ for Large Curvature.

Df\ﬁ /o Are built, instead, starting from finite-difference expressions for the second derivatives of the
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reconstructed field:

D; =aj—2—2a;,-1 +q; (3.98)
DY =a; 1 —2a; 4 a1 (3.99)
Df = a; — 2a;11 + ait2 (3.100)
D}{ 5 = minmod (4D} — d ,4D;" — D}, D}, D}") (3.101)
DMy = minmod (4D} — d; ,4D; — D}, D}, D;) . (3.102)

From those field combinations one can write the limited reconstructed variable:

az'L+1/2 = az'L+1/2 + minmod (amm - a,L-L+1/2, Amaz — az-LH/Q) , (3.103)

where
Upin = maz(min(a;, a1, a™P), min(a;, aVL, o)) (3.104)
Upaz = min(maz(a;, aiy1,a™P), mazx(a;, a"", a*0)). (3.105)

To obtain the reconstructed variables at the right interface, instead, it is sufficient to use the same
algorithm, substituting {ai_g, ai—1,0ai, Ai+1, ai+2} with {a;+2, @it1,a;, a1, ai_g}.

WENO

The WENO reconstruction is an improvement on the Essentially Non Oscillatory (ENO) method
[241]. In the original ENO method, two interpolation polynomials, with different stencils, are used.
Then, based on the field smoothness, one of the two is selected, in order to avoid the one containing
the discontinuous solution near shocks. This idea allows to keep high order convergence even
near shocks and local extrema, which is not possible with single stencil methods with limiters like
PPM and MP5. However, selecting just one of the stencils, the ENO method does not archive the
maximum convergence order for the number of stencil points used, and is computationally intensive,
requiring a lot of logical operations. The idea behind the WENO method (first developed in [230]
and improved to reach fifth order convergence in [237]) is to use a combination of all the possible
ENO reconstruction stencils, each weighed accordingly, with weight that tend to zero in the case of
a discontinuity present in the corresponding stencil.

L1 3 5 15

ai+1/2 = gaifZ - Zaifl + gai (3106)
Lo 1 3 3

Tif1/2 = ~gli-1 + 7%~ gt (3.107)
L3 3 3 1

Ait1/2 = gai + Vi §Gi+2- (3.108)

Each of these approximations is third-order convergent, but an appropriate combination, spanning
all the 5 points stencil from a;_o to a;yo, is fifth order convergent, when the weights w' are all
different from zero:

L _ 1 L1 2 L2 3,L:3
Uiy = W A g T W AT o W . (3.109)
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WENO weights have sum one Zwi = 1 and are chosen starting from the so called smoothness

K3
indicators B

1
Bl = 3 (4af_ — 19a;_0a;—1 + 25a7_; + 11a;—sa; — 3la;—1a; + 10a7) (3.110)
1
B2 = g (4&22_2 —13a;_1a; + 136LZ2 + ba;—1a;+1 — 13a;a;41 + 4@124_1) (3111)
3 _ } 2 . 2 . o . ) 2
B = 3 (10a; — 3lasai1 + 25a7, | + 1la;a;re — 19a; 110542 + 4a7,,) - (3.112)

From the smoothness indicators, the weights are obtained as follows:

,LD’L

w' = S (3.113)
i v
. (155

The problem with this weights is that € is scale-dependent, and therefore setting a fixed value for
it could lead to problems in simulating physical systems with a large variation in relevant scales
(such as problems where turbulence or hydrodynamical instabilities are present). A solution to this
was found in [212], and is adopted also in GRHydro: modified smoothness indicators are used, which
depend on the scale of the reconstructed field, measured by its L? norm in the considered stencil
Ha2| ‘ The new smoothness indicators are:

Bi =B +e(||a?]] +1). (3.116)

In GRHydro a default value of € = 1 x 10726 is used. As mentioned before, a stencil weights will go
to zero (and, therefore, the corresponding stencil smoothness indicator will tend to infinity) when a
discontinuity in the reconstructed field is present in its points, adaptively reducing the convergence
order when needed, but keeping at least third order convergence near shocks.

3.2.2 The Riemann solver

In the Parma relativity group simulations (analysed in chapter 4), the approximate Riemann solver

from Harten, Lax, van Leer and Einfeld (HLLE) [243, | was used (following what is done in
most GRHD codes), because it is not computationally expensive, it is robust (see for example a
comparison with the more accurate Marquina solver in [215], where the robustness of HLLE was

found to be important for avoiding constraint violations at the boundary of the EOS politropic pieces
(see sec. 2.1.1)), and because it is the only Riemann solver in GRHydro already extended for GRMHD
evolutions, making it easier to develop a follow-up project including also magnetic fields. Differently
for other common Riemann solvers (like the Roe and Marquina solvers), which use the so called
local characteristics approach [77, , ], based on the Jacobian matrices spectral decomposition
of a linearisation of the GRHD equations (considering all five characteristics of GRHD), HLLE uses
a two wave approximations, considering only the maximum and minimum wave speeds V, and V_
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at both sides of an interface, which generate a single state between them. The Riemann problem
x_xinterface)

solution for a conserved variable U, in a point labelled by the variable £ = ( " is then:
Ur, if E< Vo
U= UHHE 4f V. <<V, (3.117)
Ugr if &> v

The intermediate state UZLLE can be computed starting from a one-dimensional form of eq. 3.76

in a control volume around the considered cell interface:

TR TR t+At t+At
/ Uz, t + At)dz — / Uz, t)dz + / F(U (w1, ¥)dt — / P(U(zp,t)dt.  (3.118)
x t t

L L

The right hand side can be directly evaluated using the reconstructed variables Uy, and Ug and the
corresponding fluxes F, = F(Ur) and Fr = F(Ug):

TR
/ U(x,t—i—At)dw:xRUR—xLUL—i-At(FL—FR). (3.119)

TL

The left hand side, instead, can be divided into three parts, one at the left of the fastest left-going
wave, one between the two waves, and one at the right of the fastest right-going wave:

TR AtV AtV
/ Uz, t + At)dz = / Uz, t + At)dz + / Uz, t + At)do+ (3.120)
xr, xr, AtV —

TR
+/ U(z,t+ At)dx =
AtV+

AtV
= / U(z,t+ At)dr + (AtV ™ —x)UL + (zg — AtV T)U.
AtV -

Inserting this result into eq. 3.119 and dividing both terms by At(V* — V™) one gets, finally, an
expression for the average exact Riemann problem solution between the slowest and the fastest
wave at time t + At, which is used as definition for the HLLE intermediate state:

1 AtV + N Vo Fr — F
UHLLE _ / VIUp -V UL+ Fr — Fr (3.121)

_— t+ At)dr =
ATV [y, Ut ADd VoV

To get from those solution states the corresponding numerical fluxes, one needs to invoke the
Rankine-Hugoniot condition: given a shock propagating along s(¢) with speed V = dfi(tt), its flux

functions are related with its states by

F(U(sL,t)) — F(U(sg,t)) =V (U(sL,t) — U(sr,1)). (3.122)

It is straight-forward to derive eq. 3.122, starting from a one-dimensional representation of eq. 3.74
between x;, and xg, splitting the left hand side in two parts, one on the left of the discontinuity
s(t) and the other on its right:

d s(t)

d [on
) RCOTR / Ve = U2, 0) = P, ). (3.123)
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Using the formula for moving a time derivative inside an integral, one gets:

FU(zp,t)—F(U(zp,t) =V (U(s,t) — U(sp, t)+ " OU (,t)da+ / (}; OU (z, t)dx. (3.124)

TL

Taking the limits zg — s(t) and x;, — s(t), one recovers the Rankine-Hugoniot condition (3.122).
Applying it to eq. 3.117, between the left and the intermediate state, or between the intermediate
and the right state, one obtains to equivalent expressions for the HLLE numerical flux function:

FHELE — pp 4 v (UPEEE — 1) (3.125)
FHELE — pp 4+ v (Ug — UTELE) (3.126)
Substituting the expression found for UFLLE in eq. 3.119, one finally finds:

FHLLE o V+FL - V_FR + V+V_(UR - UL)
B VvVt —-V- )

(3.127)

Of course, to get a numerical flux, one needs also to come up with a way for computing the minimum
and maximum wave speeds. In GRHydro this is done computing the maximum and the minimum
between all the analytically-computed eigenvalues of the GRHD system of equations using the left
and right reconstructed states. Those eigenvalues, along the i-th direction, are [227]:

Ao = av’ — B'(triple) (3.128)
Ay = ﬁ [vi(l — Cg) + Cs\/(l —02)(yi(1 — v2c2) — vivi(l — c2))| — 5@'7 (3.129)
S
where cg = g—z is the sound speed, computed from the equation of state. An important difference

between these GR eigenvalues and the Euler’s equations Newtonian ones is that in Ay (which in
the Newtonian case are simply AY¢"! = o' & ¢,) there are also coupling with velocities in the other
directions, through v?.

3.2.3 Conservative to primitive conversion

The recovery of primitive variables from the evolved conservative ones, to be able to start the next
time-evolution step, constructing the energy-momentum tensor and reconstructing hydrodynamical
variables at cell interfaces, can not be done analytically, like the conversion from primitives to
conservatives, but in pure hydrodynamics (without magnetic fields, or radiation) it is relatively
straight-forward, requiring only a one-dimensional Newton-Raphson procedure to recover the un-
known pressure.

First, the undensitised conserved variables are computed:

. D
D="2 =)W (3.130)

23

Sy ==L = phWy; (3.131)

= phW? — P - D. (3.132)

7=

SIS
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Next, two additional auxiliary variables are defined:
Q:=phW?=72+D+P (3.133)
5% = 7;;S'S = (phW)* (W?) — 1, (3.134)

where S$? is known from the evolved variables, and () depends only on the unknown pressure P.
Given the relation between ) and S, one can construct expressions for the primitive variables p

and e which also depend only on P:
Dy/Q2? — §2
p= —q (3.135)

\/Q2—S2—PW —D
€= . , (3.136)

D

where the Lorentz factor W can be expressed by:

\ /Q2 — §2

Given an initial guess for the new pressure, one can compute the new density and specific energy
density. Given those, a pressure value P(p,€) can be computed using the EOS. With an iterative
procedure such as the Newton-Raphson method, one will try to minimize the residual between
the pressure value used to compute p and e and the one obtained with the subsequent EOS call.
This method, in particular, requires to know the pressure derivatives %—1; and %—f, which are given,
again, by the equation of state. The con2prim routines are also responsible to check if the resulting
primitive values are physical, for example if the pressure and the densities are positive, and if the

velocities are less than one.

W = (3.137)

3.3 Initial data computation

Generating accurate initial data for binary neutron stars in quasi-circular orbits is a non-trivial
first step, necessary for the fully dynamical evolution. In fact, the results of this work point to the
presence of multiple errors in simulation results linked with the initial data computation technique
(see sec. 4.1.1 and 4.1.2). For this thesis was used the only public code for BNS initial data, the
LORENE library [53, 240].

BNS prior to the merger phase are believed to be in circular orbits, thanks to the circularization
properties of the emitted gravitational radiation (see the predicted eccentricity values at 10H z for
the observed BNS binaries in table 2.3). Additionally, they will most likely be in an irrotational state,
because the viscous forces are too weak and act on a time-scale too long respect to the gravitational
radiation one in order to be able to successfully synchronize the stars spins with the orbital rotation.
Initial data computation starts, therefore, assuming the existence of an helicoidal Killing vector,
which, for an asymptotic inertial observer at rest respect to the binary, takes the form

=209, (3.138)
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This assumption has important consequences, for example it implies ignoring the outgoing gravita-
tional radiation, and its backreaction on the binary dynamics (since this radiation-reaction will enter
in the post-Newtonian expansion at the 2.5PN order, this helicoidal symmetry can be exact up to
2PN). This is responsible for the lack of a radial component of the star velocity (which comes from
radiation reaction in the real system) and consequently for the small orbital eccentricity once these
initial data are evolved (see sec. 4.1.1). Another consequence of the helicoidal symmetry is that it
leads to a non-asymptotically flat spacetime. Appropriate approximations should therefore be done
in the curvature evolution to avoid diverging metric coefficients at infinity. In the LORENE code (and
in most of the private code developed by different groups in the last years, for example [55, )
the so called Conformal Thin Sandwich approach is used, based on the Wilson and Mattews scheme
[248]. In a 3+1 splitting like presented in sec. 3.1, the spatial metric is approximated as conformally
flat:

Yij = A1 (3.139)

This approximation is justified because it would be exact for spherically-symmetric spacetimes, it
is a very good and commonly used approximation for constructing axisymmetric isolated neutron
stars initial data, and it’s a good description of the BNS spacetime when the stars are far apart. To
further simplify the computations, one can build a coordinate frame compatible with the helicoidal

symmetry, where I = % Defining the corotating shift
w' = B+ 0l (3.140)
0¢’ '
and using the Killing equation
VI, +Vvi, =0 (3.141)
one can construct a relation for the extrinsic curvature K%:
g 1 o o
K9 — —o (Vg7 +Vigh) = (3.142)
1 oo 2 .
= —5ata (8%}7 + 0w’ — gn”(‘)kw > .

This relationship, thanks to the helicoidal symmetry, fixes all spatial components of the extrinsic
curvature, given the corotating shift. This means fixing eq. 3.30 of the ADM formulation, leaving
a free choice only for its trace K, which is fixed imposing a maximal slicing gauge condition
(K = 0;K =0, see also sec. 3.1.1). Taking into account the Hamiltonian and momentum constraints
and the trace of the Einstein equations, one gets five elliptic equations to be solved for the variables
w', A, and «. In the LORENE code, the following alternative variables are defined:

v:=lIn(«) (3.143)
B = In(aA), (3.144)
to get, finally, the following equations:
Vv =41 A%(e + S) + A’ KV K;; — 0,008 (3.145)
V23 = 47 A%S + ZAZKinij - % (0v0'v + 9;80'B) (3.146)
V2w + %aiajwﬂ‘ = —16maA?j' + 204 K79, (38 — 4v),

(3.147)
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where all Laplacians are computed respect to the flat spatial metric. The remaining five Einstein’s
equations are not considered in this scheme, and are probably violated, reflecting the fact that this
is only an approximation of the true BNS spacetime.

For describing the initial hydrodynamics variables profiles, instead, it is easier to trade the
energy-momentum tensor and baryon number conservation with the following uniformy canonical
equations of motion, if a recipe exists to obtain all thermodynamical variables from the specific
enthalpy:

W (V % W), =0 (3.148)
VH# (puy) =0, (3.149)

where w,, = hu,, is the comomentum 1-form, and its exterior derivative

(Vxw),, =V,uw, —V,w, (3.150)

%%

is the vorticity two-form. It is evident that a potential flow
Wy = V1, (3.151)

for which (V x w),, = 0, is a solution to eq. 3.148. This is the GR generalization of a Newtonian
irrotational flow. From the helicoidal symmetry definition, one has L;w = 0. Using Cartan’s identity,
this becomes:
I"(V x W)W + V# (I"w,) =0, (3.152)
which implies that
I"w, = const. (3.153)

is a constant of motion. Using this first integral, the fluid motion is completely determined by the
potential 1, which must still satisfy eq. 3.149:

[ ppo (P —
A wy(h) 0. (3.154)

In the 3+1 approach, this equation becomes, on every hypersurface ¥, the following elliptic Poisson-
like equation:

%ai (hWW)| + K phW.

(3.155)
To conclude, BNS initial data are computed solving equations 3.145, 3.146, 3.147, 3.155, with
appropriate asimptotic flatness boundary conditions at large radii:

A 4 hW . ’ MW ;
p0;0"p + 0" pOit) = _7/8181'0 +p Ka% + aﬁ’) diln(h) — 9"Pdia —

a—1 (3.156)
Y —1 (3.157)
wh—w X T (3.158)

In LORENE this is done with an iterative procedure, using a multidomain spectral method. In
this method, different numerical grids are built around each star center, defined as the point with
maximum specific hentalpy, which could not coincide with the Newtonian center of mass of the
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star. In Cartesian coordinates, each star is located on the x axis, and they are equidistant from
the coordinates center, with a distance between the stars centres d fixed before the initial data
computation (a comprehensive study of this initial distance impact on the simulation results can be
found in [94] and in sec. 4.1.2 of this thesis). During each iteration, the stars do not move respect
to the grid center, even if they have a different mass. The rotation axis position is, instead, changed
at every step. Generating our initial data, we used four coordinates domains for each star: the inner
domain covers the star interior, it has a ball topology, its inner boundary coincides with the star
center and its outer boundary with the star surface. Two domains, then, cover the exterior of each
star, starting from its surface and reaching a finite radius, with a spherical shell topology. The last
domain, instead, reaches the spatial infinity, to be able to set the right asymtotical flatness boundary
conditions, and it has a compactified coordinate representation. The equations to be solved are
discretized with a collocation spectral method, meaning that the fields are expanded on a series of
basis functions, and, in each domain, each field can be represented either by its spectral expansion
coefficients or its values at particular grid points. In LORENE Chebyshev polynomials are used as
basis in the radial coordinate, trigonometrical polynomials or associated Legendre functions in # and
a Fourier series in ¢. In each domain, we decomposed a field with 33 points (or spectral coefficients)
in the radial direction, 21 points in # and 20 in ¢, following the suggestion of [53].

For finding the equation solutions, the metric potential are split in the so called autopotentials,
which are the potentials in a star domains generated by the same star gravitational field, and the
comp-potentials, which are the potentials in a star domains generated by the companion field. In
a typical code run, given as initial parameters the baryon mass of the two stars, their interbinary
distance and their EOS, the first step (executed once) is to create two non-rotating equilibrium
spherical neutron star configurations at the initial positions. Their orbital angular velocity is set
according to a second-order post-Newtonian expression. Next, the iterative procedure starts. At every
iteration, first, the orbital angular velocity and the position of the rotation axis x. are computed,
taking the gradient along the x direction of the first integral of motion 3.153. Imposing that the
hentalpy is, by definition, maximal at star centres, one obtains two equations:

0 0
p In (WO)](‘,B(M),O’O) =5 (v+in (Wu))‘(x(l,g),o,o) , (3.159)

where Wo = —n''v,,, Wi, = —ut'vpmy and (1 ) are the positions of the two stellar centres. All the
variables in these equations can be expressed as function of €2 and x., and they can be solved
using a simple zero-finding secant method. Some care must be taken when highly unequal mass
configurations are considered. In this simple approach, which we used, it is important to properly set
the initial interval for the zero-finding procedure: big enough such that it contains the true z. and
2, but small enough to ensure that the numerical procedure can converge to the right solution. We
slightly modified the LORENE code in order to more easily set and change those parameters. This was
proven to be key in constructing initial data for unequal mass BNS, up to mass ratio values which
have rarely been simulated in the past, also because of the difficulty in generating appropriate initial
data for them. A different approach for solving the same problem is presented in ref. [219], where z.
is set in order to drive to zero the total linear momentum of the system, similarly of what is done
for building BH-NS binaries initial data. After this first step, the hydrodynamics equation 3.155 is
solved, using the specific hentalpy as variable. From h, new values of the thermodynamical quantities
p, €, p, are computed using the EOS, and are used to build the energy-momentum tensor for solving
the Einstein equations 3.146, 3.147 and 3.145. Before the beginning of a new iteration step, some
relaxation is applied to the fields, to help insuring convergence. Moreover, the comp-potentials are
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not updated every code step, but every 8 steps. After the first 20 iteration, the code is also forced
to converge to the right baryon mass for each star, multiplying the central specific entalpy of each

star by a factor
24+ ¢\
3.160

<2 + 25) ’ ( )
where £ is the difference between the baryon mass value for the star in question at the present code

iteration and its requested baryon mass at the end of the computation. The code iterations end
when the relative difference in the central specific hentalpy between two steps is less than 1 x 1078,

3.4 Graviational-wave signal extraction from simulations

The physical setting in a BNS simulation is different from the one in the simple linearised gravity
case described in sec. 2.2.1. The central source is made of compact objects which generate a strong
gravitational field and which needs the solution of full non-linear Einstein’s equations to be able
to predict its evolution. Therefore, the simple quadrupole formula (2.29), although used in some
works, with appropriate modifications, is not the best tool to compute the gravitational wave strain
emitted by the simulated system (the quadrupole formula is able to reconstruct quite accurately
the frequency evolution of the signal, but has a big uncertainty in the waves amplitude [250, ).
The two most common techniques for extracting the gravitational radiation signal from numerical
simulations are the use of the Newmann-Penrose scalar Wy, or the use of the Regge-Wheeler-Zerilli
theory of metric perturbations of the Schwarzschild spacetime.

The first technique is based on the Newmann-Penrose (or Weyl) scalars, which can be defined
starting from the Weyl tensor [252]

1
Ca,B,ul/ = Raﬁ,ul/ - ga[uRy]ﬁ + gﬁ[uRu]a + gga[pgu},@R (3161)

and contracting it appropriately with an orthonormal null tetrad [*, n*, m*, m*, where m* is the
complex conjugate of m* and the following orthonormality relations apply:

#l, =ntn, =mhm, =0 (3.162)
mM iy = mtl, =0 (3.163)
Py = —1. (3.164)

This null tetrad is constructed starting from a orthonormal regular tetrad on each hypersurface
¢, based on spherical coordinates, (egr)’, (eg), (e)’. Some care must be taken in interpreting the
radial coordinate meaning. The propagation direction of outgoing gravitational waves is along the
surface radial coordinate 7, for which the 2-surfaces r = ¢t = const. have area 4mwr2. This is the radial
Schwarzschild coordinate in a non-spinning background. On the other hand, the radial coordinate R
of the coordinate system most often used in numerical relativity (selected with the gauge conditions
(3.45) and (3.46)) is not a surface radial coordinate, and asymptotically is close to the isotropic
radial coordinate, linked with 7, by:

1+(M+a)1+ (M —a)
2R 2R

where a is the Kerr parameter a = J/M (which is equal to zero in the non-rotating limit, giving

r=R (3.165)

the relation r = R (%)2, used in the following analysis and in ref. [68, 94, 99]). Here M is the
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total ADM mass of the system and J is the total ADM angular momentum. Instead of using eq.
3.165, it is also possible to compute, during the simulation run, the areal radius

(3.166)

where A(R) is the surface area of the proper sphere chosen for the gravitational wave extraction.
We checked that, in our simulations, those two methods give the same results with a very good
approximation.

The null tetrad more frequently used in numerical relativity, and implemented also in the thorn
WeylScalar4 of the Einstein Toolkit, is a modified version of the psikadelia tetrad [253, 254]:

1:= \;5 (et —epR) (3.167)
1

n:= 7 (et +er) (3.168)

m := \2 (eg —iey). (3.169)

Having defined a null tetrad, the associated Newmann-Penrose scalars are:

Py = — 0{gw,namﬂn“m” (3.170)
Uy = —Copun®lPnhl” (3.171)
Wy = —Copun®mPintl” (3.172)
U3 = —Copun®1Pmh1” (3.173)
Uy = —CopulmP I m”. (3.174)

The most important in this context is Wy, because its asymptotic limit (for » — co) describes the
gravitational radiation:

Wy = hy —ihy :=h, (3.175)
where from now on h is the complex gravitational wave strain A = hy +ihx. In numerical simulations

U, is computed in a spherical surface far from the sources using eq. 3.174, and then is expanded in
spin-weighted spherical harmonics of weight -2:

l'maa:

it R0,¢) = Z WU (t, R)_oY™(0, $). (3.176)

=2 m=—1

This is done in the Einstein Toolkit by the thorn Multipole. Thanks to the peeling theorem, the
Newmann-Penrose scalars have an important property: in asymptotically flat spacetimes, W,, falls
off for r — 0o as ™. For this reason, since ¥, falls off as o L often results for ¥, (and, equivalently,
for the strain rh) are reported and analysed. This is needed for example, when one wants to compare
waveforms extracted at spheres with different radii. Another necessary step for that purpose is to
express the GW signals as functions of their retarded time (the time respect to the one in which
the signal reaches the “detector” sphere). To evaluate the retarded time, we make the assumption



o8 CHAPTER 3. NUMERICAL BACKGROUND

that the metric far from the sources is approximatively the Schwarzschild one, to get:
tret =t — R” (3.177)

N R
R* = R+ 2Mlog (2]\4 - 1> , (3.178)
where M is the system ADM mass and R* is known as the tortoise coordinate. Further improvements
in the retarded time determination, relaxing the Schwarzschild spacetime hypothesis, have been
presented in [255]. All the GW results, unless otherwise specified, are presented from now on respect
to the retarded time ¢,;.

U, is a gauge-invariant quantity, tensorially is a scalar quantity, but it’s dependent upon the
tetrad choice. However, if the tetrad is a small perturbation about the Kinnersley tetrad (which is the
natural choice for a Kerr spacetime, for which all Weyl scalars but ¥y vanish), ¥, is tetrad-invariant
at first order [252].

The two main difficulties in using W4-based GW extraction from a numerical simulation are the
necessity of extrapolating the result to spatial infinity, for the relationship 3.175 to be valid, and
performing the double time integration to get the gravitational wave strain (which is the final goal if
one wants to compare the simulation results with future GW direct experimental detections). Some
of my work for this thesis focused on solving these issues with simple, yet accurate, procedures,
comparing their results with what is more commonly adopted in the literature (see next subsections
for details).

Another technique for GW extraction which was tested in my work is the Regge-Weeler-Zerilli
theory of metric perturbations of the Schwarzschildspacetime, in the gauge-invariant formulation of
Moncrief [256, 257]. The extraction is based on the Regge-Weeler functions (for the odd perturbations,
U?), and the Zerilli ones (for the even perturbations ¥¢) computed by the code WaveExtract and
related to the GW strain components by:

him = —— (U5, + W9 ). (3.179)

1
/2
Even if RWZ extraction has the advantage of not requiring any integration to obtain the GW
strain, in practice we found it less accurate than the now more or less standard ¥, extraction, both
in the waveform convergence with the extraction sphere radius and in the presence of unphysical
oscillations in the final part of the signal.

3.4.1 Integration of ¥, signal

The natural procedure to integrate the W, signal to get the GW strain is to numerically compute the
double time integration, for example with a simple trapezoidal rule, and then set the two unknown
integration constants fitting the resulting strain with a first order polynomial and subtracting it to
the strain itself:

t t’
ROt r) = /O dt /D dwm () (3.180)

hum(t,7) = hiy) — Q1t — Qu, (3.181)
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where the fitted parameters have the natural interpretation

Oh
Q1= 5, (3.182)
Qo = h(t =0). (3.183)

It’s important to underline that the integration in eq. 3.180 starts from the coordinate time
t = 0 and not from retarded time ¢,¢; = 0. In accordance with Appendix A of [10], we found out
that the “more natural” use of the retarded time leads to oscillations in the first few milliseconds
of the strain signal (even when using the more advanced integration techniques presented later in
this section). This could be due to the lower values for the integration constants Qp and (7 when
starting from ¢ = 0, which lead to lower values in the fit errors.

The simple integration procedure (3.180), however, leads to the presence of unphysical oscillations
and non-linear drifts in the resulting strain amplitude (even an order of magnitude relatively higher,
as can be seen in fig 3.2). This phenomenon has been accurately documented and explained in [258],
where it was attributed to the presence of high-frequency noise aliased in the low-frequency Wy
signal (our typical run Nyquist frequency is about 50khz) and amplified in the double integration
process. The first solution we adopted in [68], but which was already proposed in [251], is to fit the
integrated signal with higher-order polynomials, in particular with a second order one:

him (t,7) = ﬁl(gﬁ — Qat” — Q1t — Q. (3.184)

Although the additional constant ()2 has no immediate physical interpretation, it gets lower as the
extraction radius increases, therefore it can be partially interpreted as a correction of finite-radius
extraction errors. This procedure, however, is satisfying only for the dominant strain component
ha,2, while it is insufficient to cure the unphysical behaviours in the subdominant modes (see figure
3.1). For them, even higher-order (beyond the second one) polynomials would be needed, as noticed
also in [259]. This procedure would not be fully justified from the mathematical point of view.

The most commonly used alternative in numerical relativity is the Fized Frequency Integra-
tion (FFI) proposed in [258]: the signal is integrated in the frequency domain, with the following
prescription, to avoid the spectral leakage phenomenon:

() if f mfo

lm — -
Wim(f) = o T < (3.185)
Simopy vin(s) m fo
(f) = @rfo)? itf == (3.186)

where ~ stands for the Fourier transform of its argument and fy have to be chosen on a case-by-case
basis as the lowest frequency of the physically relevant radiated signal. This procedure is effectively
equivalent to apply a high-pass filter in the frequency domain to the \I/im signal, damping the part

of the signal spectrum below the frequency mTfo multiplying it with a second-order transfer function

2
Heri(h) =4z irp < ™ (3.187)
0
mfo

Hppi(f) =1 if f > (3.188)
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Figure 3.1: Real part of the gravitational-waves strain (corresponding to the GW polarization h.)
for different spherical harmonics components. The strains are computed from real simulations data
of an equal mass BNS model with the SLy EOS, M = 1.4 M, for each star and a starting interbinary
distance of 60 km (see appendix B for details), setting only the physical integration constants (blue
line), subtracting a second order (green line) or fifth order (red line) polynomial fit or using our
filtering procedure (black line). High order polynomial fitting can cure the unphysical drifts in the
dominant (2,2) mode but does not work for the subdominant modes.
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The FFI integration has been successfully applied to compute the GW strain from many different
GR simulations (such as BNS, NS-BH, supernovae, etc.), and is able to handle quite well also the
subdominant modes, thanks to the factor m in the cutting frequency computation, which comes
from the spherical harmonics structure, but we found it has a couple of shortcomings:

e First, and most importantly, FFI integration has a filtering order which is too low to eliminate
all unphysical drifts and GW amplitude oscillations in some cases. For example, this happens
after the application of formula 3.197 (discussed in the next subsection) for extrapolating the
W, signal extracted at finite radii to spatial infinity. The integral terms in eq. 3.197 amplify
the low frequency noise in ¥4, which get subsequently amplified again by the double time
integration to get h. A possible solution to this problem would be to increase the filter order,

4
multiplying for example the signal at frequency f lower than mTfO by (%) . As I will show

later, a smarter procedure is to filter the integral terms (both the ones in eq. 3.197 and the final
strain h) after and not before the integration, to avoid an amplification of the low-frequency
noise remaining after FFI filtering;

e Secondly, the FFI procedure requires a frequency-domain integration, which needs the applica-
tion of a suitable window function to the original signal, in order to avoid Gibbs phenomenon
related problems at the signal beginning and end. This leads to having to discard a relevant
portion of the simulated signal, wasting part of the computational resources required by the
simulation run (more data on computational requirements can be found in section A.2). On
the other hand, a standard Butterworth digital filter application, like the one proposed here,
leads only to small glitches in the last part of the signal, forcing to discard only a minimal
fraction of it, way less than the one damped by most common window functions.

The new, simple, procedure we developed was to apply a simple digital Butterworth high-pass filter
to the already-integrated W, signal. We apply an Infinite Impulse Response (IIR) filter using the
signal module of the scipy Python library. We require that the signal is cut at most by 0.01 dB
at the lowest physically relevant frequency fp (computed as two times the initial orbital frequency
of the binary) and an attenuation of —80dB at {—8. The filter is applied as a forward-backward filter
in order to avoid changes to the signal phase. A constant padding of the original unfiltered signal
was found to be important to limit the Gibbs phenomenon and have a better result also near the
signal end.
We compared the transfer function H(f) for each integration procedure, defined as

hi(f) = H(f)ho(f), (3.189)

where h;(f) is the Fourier transform of the GW strain computed with the i-th procedure (either
2nd or 5th order polynomial fitting, FFI, or our filter), and ho is the Fourier transform of the strain
computed using only eq. 3.180 and first-order polynomial fitting to set the two mathematically-
motivated integration constants. For simplicity we did the comparison on the dominant [ = m = 2
mode only. All the strains are computed starting from the Wy signal extracted in a real BNS
simulation, extrapolated to infinity with eq. 3.197. The results of this comparison are represented
in figure 3.3. It is clear that the second order fitting is no longer sufficient to reduce low frequency
noise after the infinite radius extrapolation, and a higher order polynomial would be needed. It is
also visible that FFI has a worse performance than our high-pass filter at the lowest frequencies,
because its filtering order is too low.
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Figure 3.2: amplitude of the I=m=2 GW strain component, obtained with different integration
techniques, starting from W, extrapolated to infinity with eq. 3.197. The blue line represents the
signal extrapolated fixing just the two needed integration constants. The green and red lines, the
signal to which a higher-order polynomial fit is subtracted. The yellow line is the strain computed
with FFI integration and, finally, the black line is obtained after the application of the digital filter
developed in my work.



3.4. GRAVIATIONAL-WAVE SIGNAL EXTRACTION FROM SIMULATIONS

63

™ T ™ 1 T
|
(S 0
> S
(@) | (&)
= =
) | ©
—20} = -20 =
a g a g
= = = 12
< O 2 G
2 @ g % W
a = 2 =
= =
g = g 1
< <
—60} - —60 : .
— 2nd order poly fit
— 5th order poly fit
-80 - -80 — FFlintegration H
—— our filter
el ol gl P —a gl
10! 102 10° 10! 10° 103
freq. (Hz) freq (Hz)

Figure 3.3: Left figure: theoretical transfer function for the high-pass Butterworth filter we applied.
Right figure: effective transfer function of different integration procedures, computed with eq. 3.189
form real simulation data of an equal mass BNS model with the SLy EOS and M = 1.4 Mg, for
each star, starting from d = 60 km.
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3.4.2 Extrapolation of the extracted signal to infinity

As underlined before, equations 3.175 and 3.179 are valid only at large radii » — co. Since the ¥y
or U¢/° components are, instead, computed on an extraction sphere with finite coordinate radius R
during numerical simulations, one needs a technique to extrapolate those variables to spatial infinity
in post-processing. In the numerical relativity literature three procedures have been developed for
this task:

e Extracting the gravitational-waves signal at different radii and extrapolating it at infinite radius
fitting the different signals with a polynomial in % (see, for example, ref. [90, ) ) D;

e Extrapolating the signal extracted at finite radius using an analytic formula based on pertur-
bation theory of the Schwarzschild or Kerr metric [261, I;

e Performing a characteristic evolution of the metric, using as inner boundary conditions the met-
ric and its derivatives on a timelike worldtube, extracted from the numerical simulation. This
approach is commonly called Cauchy-Characteristics Extraction (CCE), and it’s implemented
in the Einstein Toolkit by the PittNullCode thorn [263, 2641].

In this work and in ref. [91] we tested the first two approaches, comparing their results and their
practicality. In particular, we tested for the first time in a BNS simulation the second order per-
turbative correction of [262], confronting it with the first order one, developed in ref. [261] and
tested, for example, in [67, 97, ]. Furthermore, in this thesis will be tested for the first time
the corrections due to the real background spacetime being rotating (Kerr-like) and not stationary
(Schwarzschild-like), which in [262] was computed but reported to be negligible, without presenting
any test result.
For the polynomial extrapolation, following [255], the Uy components are divided in their am-
plitude and phase parts:
Wy = AL (1, 1)), (3.190)

Where r is the radius of the extraction sphere. Then, the variables rA(r,t) and ®(r,t) are fitted
independently:

rA=ag+ 24+ 2 (3.191)
r T
by b

B=by+ 242 (3.192)
T T

The extrapolation for r — oo are, respectively, the fit parameters ag and bg. The fitting polynomial
was limited to second order because we used too few extraction radii to have a good result (avoiding
overfitting) with a higher-order polynomial. This makes also more appropriate the comparison with

the analytical second order correction of [262]. We extracted the gravitational wave signal at 7
different radii for each simulation, from R = 400 Mg (approximatively 591km) to R = 700 Mg
(1034 km).

The perturbative extrapolation approach is based on the asymptotic behaviour of the relevant
wave-like function for each extrapolated variable. For example, at first order, in the case of the RWZ
functions, one has:

Wyl t) = B (t) + W+ / helo

bm r—00 2r Lm

(t)dt + O(1/r%), (3.193)

7—00
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where hle/nz (t) is the gravitational wave strain observed at infinity, and ¢ is always the retarded

time 3.178. Inverting this relationship, one obtains a formula for extrapolating the RWZ functions
to infinite radius at first order:

({r+1

vl = w ) - (; ) / w0t ). (3.194)
T—00 T

The same logic can be followed for the Newmann-Penrose scalar W4, which in the Schwarzschild-

background satisfies the Teukolsky equation [266], which, choosing the standard Boyer-Lindquist

coordinates for the Kerr spacetime and the Kinnersley tetrad, is:

(r? + a?)? 2 .9 0? Mar 0? a? 1 02
(r*+a%)” ) /| L s ey e A
[ . a%sin?(6) 20 + A T anz@oe | T

o2~ A 0tdg 2
o (10 1 0 0 M(r? — a?) , 0
J— 27 [ — — —_— e p— —
A B (ABT_TII) 5in(0) 90 (sm(&)ae_glll> +4 { A r zacos(ﬁ)] 8t_2\11+

D )] 2

oW + (4cotg®(0) + 2) 20 =0,
(3.195)

¢

where a is the Kerr parameter a = ﬁ, where J is the total angular momentum and M the total
mass of the system; A = r2 — 2M7r + a?, and the Teukolsky’s wave function _,¥ is given by:

_oU = (r —iacos(0))* Uy, (3.196)

Using only the non-rotating (Schwarzschild) part of eq. 3.195 and taking its asymptotic limit, one
can obtain the first and second order “Mass” perturbative corrections for the W, extrapolation, as
computed in detail in ref. [262]:

FYP () oo = <1—2M> (r¢4 (tre ) (3.197)

(l_l)M/dt Py (tret, 7)
+(l—1)(l+2 )12 +1—4) /dt /dtrw4 Lret, T ))

8r2

Where, in particular, the factor (1 — %) comes from the difference between the Kinnersley tetrad
used in the Teukolsky’s formalism and the tetrad 3.167, used in our simulation code. As a step
forward, also the second order in % spin correction can be computed and applied. First, one has to
keep in mind that, in the Teukolsky’s formalism, the wave function is decomposed in spin-weighted
spheroidal and not spherical harmonics, because they are the solution of the angular Teukolsky
equation. In the frequency domain, the wavefunction is decomposed in:

lmax

-2V = /Z Z oW (r) 28y (0, ¢)e ™ Pduw. (3.198)

=0 m=—1
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The spheroidal harmonics 95}, are linked with the spherical harmonics by:

_oS[ = oY + aw[ 7 \/(l + U=+ m) =m) oY it (3.199)

(20 —-1)(20+1)

N 2 (+3)(-1){l+m—-1)(I—-m+1)
(1+1)2 (20 +1)(21 + 3)

_QYHLm] + O((aw)?).

The Fourier and spheroidal harmonics components of the wave function _oWy,,,, can be found using an
asymptotic solution of the radial Teukolsky equation, ignoring terms of order O(1/(wr)?). Inserting
their expression and the spheroidal harmonics expression 3.199 in the wavefunction definition 3.198,
one obtains the spherical harmonics expansion, in terms of the asymptotic strain h:

13_2\I,me:/[<1+<_4l(z’ma +Z_(l—1)(l+2)>1_1l(l—1)(l+2)(l+ 1)1 >hzmw+

I+1) 2w r 8 w?
1+2)(—2)(1 +m)(l—m)
* “”( z2\/ Q= n@i+1) | imet

_l’_

hlﬂmﬂ el 1 Of(aw)?, 1/(rw))?)
(3.200)

2 (+3)l-D(l+m—-1)(1—-—m+1)
(+1)2 20+ 1)(20 + 3)

The relationship between W4 computed in the Kinnersley and in the numerical relativity tetrad
gives a contribution in the time domain relationship between the W4 signal extracted from numerical
simulations and the Teukolsky wave function(3.196) (see [262, 267] and also [254, 268] for details
about the computation):

o, 1 M
i (2 _ r) NR ZC R (3.201)

where

Cl/ m/ /_QYZ:;LCOS@_QY/m/dQ, (3.202)

which have non-zero values only for m’ = m and I’ = [ or I’ = [ & 1. Putting everything together,
one finally arrives at the second order in 1/r perturbative extrapolation of Wy, which has also a
background spin correction, first order accurate in aw:

= <1 - 21”) (r\hlm(t o G 1)7{ 2 / g (£,7)dt+ (3.203)
n (I—1)(1+2)(2+1—4) /dt/dtr‘ll4lm ) >

8r2
2ia (+3) -1l +m+1)(l-m+1)
(1+1)2 (20 +1)(21 + 3)

2ta [(I+2){—=2)I+m)(Il—m [—2)(l+1
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Figure 3.4: Left panel: amplitude of the [ = m = 2 compontent of the Wy signal (blue line) and
its first order (green line) and second order (red line) perturbative 1/r corrections. Right panel:
amplitude of the [ = 3,m = 2 component of Wy, and its perturbative 1/r corrections, including the
spin correction (cyan), which in the left panel would be several orders of magnitude smaller, around
machine precision.

Computing the integral terms in eq. 3.197 or 3.203, the same amplitude oscillations problems
described in section 3.4.1 arise. To solve them, filtering after integration is, again, required and
the best solution. In order to be consistent with the filtering and the integration constants used in
computing each term, we first computed the gravitational wave strain h from ¥, extracted at finite
radius (with the filtering procedure of the previous section), then we obtained from it the infinite
radius extrapolation for W4, with the following modified version of eq. 3.203:

= <1 - 21”) <rhlm(t r) — (Z_I;Mrﬁlm(t,r)Jr (3.204)

Im
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N (1 —1)(1 +8222)(12 +1—4) (- t)> N

2i a (+3)(-1)({l+m+1)(l-m+1)
(1+1)2 (20 +1)(21 + 3)

2ia [(1+2)(1=2)(+m)(I—m) [ = (I1=2)(1+1) =
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AU 3)T%Ll+1m(tar)> +

(raniin -

To test the perturbative and polynomial fitting extraction methods, in [94] a comparison between
the gravitational-wave signals extrapolated to infinite radius from an actual simulation was done.
Here I extend the same comparison to other observables, including also the spin correction effect.
First, it is useful to compare the different perturbative corrections (first and second order “mass”
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corrections and the “spin correction”) of a single W, component, extracted at finite radius (in this
example, our simulations outermost extraction radius R = 700 My). In the left panel of figure 3.4,
the amplitude of the [ = m = 2 ¥, component (multiplied with ) is shown (blue curve), together
with the amplitude of the first order correction (green curve) and the second order one (red curve).
The amplitude of the spin correction (cyan curve) is not visible, even in a logarithmic scale, because
it is around machine precision. Therefore, the spin correction (which, in the case of the (2,2) mode,
has only the h;y1,, term and not the h;_1,, term) is irrelevant when analysing the dominant GW
component. On the other hand, the mass corrections are more important at the beginning of the
simulations, and become progressively less relevant, compared with the original \11?1’2: when the GW
signal reaches the extraction sphere, the first order correction amplitude is about 2/5(40%) of the
extracted signal, while the second order one is around 6%. After the merger, however, the first order
correction amplitude has gone down to only 5.5% of the extracted signal, and the second order one is
relatively diminished by an order of magnitude, to 0.6%. The spin correction could become relevant,
as suggested in ref. [267], in subdominant modes. For example, in the left panel of figure 3.4 are
shown the amplitude of the perturbative corrections to the | = 3,m = 2 component of ¥,. Here, the
spin correction has an amplitude comparable to the mass second order correction, at the beginning
and at the end of the signal. This is due to the fact that it depends directly from the dominant
hi—1m = hg2 mode. In this particular equal mass simulation example, the (3,2) mode has a much
lower amplitude than the (2,2) mode, about 1%, so the spin correction is not really relevant to the
total GW signal (in the case of binary optimal orientation, with the rotation axis aligned with the
observational axis), even if the perturbative corrections are relatively more important for the (3,2)
mode than for the (2,2) one, by almost an order of magnitude. The spin correction could turn out to
be important in the case of binaries not optimally oriented and for which the subdominant modes
are important due to some asymmetries in the initial configurations (eccentricity, spinning neutron
stars, unequal mass systems) or the development of hydrodynamical instabilities (in particular, in
the post-merger HMNS phase). To analyse the effect of the extrapolation techniques, and to estimate
the remaining GW extraction error, it is best to look separately at the GW phase and amplitude.
The strain phase accuracy in the inspiral is very important, since it can be used, comparing the
simulated signal with a detected one, to estimate tidal effects and from them to constraint or
pinpoint the neutron star EOS. For understanding if EOS informations can be extracted form tidal
effects in the detected signals, a precise assessment of numerical simulations error budget is very
important [90, 91, ], including the extraction procedure, which, in ref. [269], was found to be the
dominant source of error at the beginning of the signal in BBH simulations. Figure 3.5 shows the
difference in accumulated phase between the signal extracted at the largest radius (R = 700 Mg)
and three other inner radii (R = 600, 500,400Mg ), without any radius extrapolation (left panel),
applying the first order perturbative correction to W4 (centre panel) or applying also the second
order correction (right panel). The first order correction reduced the extraction error in phase by
an order of magnitude, while the second order correction allows to gain another factor two. The
resulting phase error, which is less than 0.01rad before merger, is much lower than the expected
finite-resolution numerical error of the evolution code, which is more than an order of magnitude
greater, even when adopting higher order numerical methods [67, 96, 97]. It is also much lower
than the evolution code error lower bound, for the same model, estimated in section 4.1.2 from the
difference between simulations with different initial interbinary distance (0.4rad for the particular
model in this example, see table 4.3).

In figure 3.6, instead, is reported a comparison, at the fixed extraction radius R = 700 Mg,
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Figure 3.5: Difference in the accumulated phase between the (2,2) component of the GW strain
computed extracting W4 at the outermost radius (R = 700 Mg )and other three inner radii (R =
400, 500, 600M)). The left panel shows the extracted signals without any extrapolation, the middle
panel the signals to which is applied the first order perturbative correction, and the right panel the
application of also the second order correction.
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Figure 3.6: Difference in the accumulated phase between the GW strain extrapolated with the
polynomial fit and the non-extrapolated one or the ones extrapolated with the perturbative formula
3.197 at the various orders.

Extrap. method Er=400—ERr=700 | JR=400—JR=700

: Er=700 JRr=700
No extrap. 0.81% -0.87%

I order extrap. 1.24% 1.58%

IT order extrap. 0.50% -0.14%

Table 3.1: Percentage difference between the radiated energy and angular momentum computed from
the gravitational-wave signal extracted at the innermost (R = 400 M) and outermost(R = 700 Mg)
radius, with and without the application of the perturbative extrapolation formula 3.197

between the different perturbative extraction methods and the polynomial fitting method, plotting
their accumulated phase difference. It is clearly visible that the polynomial fitting extraction gives
a result very close in phase to both the first and second order extrapolation, with a difference of the
order of 1 x 1072 rad for all the inspiral part of the GW signal, and a higher difference, oscillating
around 0.08rad, in the post-merger. On the other hand, as expected, the not extrapolated signal
accumulates a phase error which, at merger, is 0.2rad, and in the post-merger phase is oscillating
around 0.26rad. These errors could be comparable with the evolution numerical errors of high-
resolution simulations. From this plot it is possible to conclude that some kind of extrapolation to
infinite radius is needed for reducing the GW extraction error, but the difference between all the
tested methods is really small, compared with other dominant error sources.

A different picture is theoretically expected for the amplitude corrections since, as explicitly
showed in [267], it begins at the second order in 1/r and, therefore, the first order perturbative
correction should not help reducing the amplitude extraction errors. I have evaluated this by looking
at the energy and angular momentum radiated in gravitational waves, computed with equations
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Figure 3.7: Left panel: total energy radiated in gravitational waves from the beginning of the simu-
lation (of model SLy14vs14d60r25) to 5ms after the merger. The circles and triangles represents
the GW signals extracted at different radii without any extrapolation (blue), with the first order
perturbative extrapolation (green), and with the second order one (red). The black horizontal line
represents the polynomial fit extrapolated signal.

Right panel: total radiated angular momentum in the z direction, from the beginning of the simula-
tion to Hms after the merger.

Extrap. method Eginzet:?pw J ;ir;iiii;ap

I order extrap. -0.60% 0.42%

IT order extrap. -1.84% -0.95%
Polynomial fit extrap. -1.00% -0.49%

Table 3.2: Percentage difference between the radiated energy and angular momentum computed
from the gravitational-wave signal extracted at the outermost(R = 700 M) radius, using different
extrapolation methods, respect to the ones computed from the not-extrapolated GW signal.
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3.205, 3.206, because in ref. [262] was shown that the second order perturbative correction was
essential for those radiated quantities to have the right convergence respect to the grid resolution.
In figure 3.7 are shown the total energy (left panel) and angular momentum in the z direction
(right panel) emitted from the beginning of the simulation to 5ms after the merger, respect to the
extraction radius for the GW signal. Their fluxes are computed with the following expressions, from
the gravitational wave strain:

dES  R? : 2
=1 [ aeit.0,0) (3.205)
dJ  R? .
= —WRe[/dQ <a¢ h(t,9,¢)) h(t,é?,(b)}, (3.206)

then, the total radiated energy and angular momentum up to a point in time are simply computed
integrating the above expressions.

The blue circles in figure 3.7 represent the not-extrapolated signal, the green triangles the one to
which is applied the first-order perturbative correction only, and the red triangles the second-order
extrapolated signals. Finally, the black horizontal lines are the results coming from the polynomial
fit extrapolation. It is clearly visible than the difference in both the radiated energy and angular
momentum computed extracting GWs at the outermost (R = 700) or innermost (R = 400) radius
(which is proportional to the extraction error) is reduced by the second order perturbative correction,
but it is actually increased by the first order one. Those differences, with their relative importance,
are listed in table 3.1 and 3.2. In particular, the second order perturbative correction reduces the
difference in the emitted energy by approximatively 40%, and in the angular momentum by a more
relevant 85%. Even if these are small errors in absolute terms, on average around 1% of the radiated
quantities, the fact that the first order correction actually increases them, while the second order
one reduces them considerably, allows to conclude that it is important to use the second order
perturbative extrapolation of ref. [262], even when it does not bring relevant advantages in reducing
the phase extraction error. The energy coming from the polynomial fit extrapolation does not agree
well with the energy coming from the second order perturbative extrapolation, in the sense that it
cannot be the limit for infinite radius of the second order corrected radiated energy, but it is still
closer to it than to the not-extrapolated signal.



Chapter 4

What can we learn from numerical
simulations of binary neutron star
mergers”?

After the long introduction, it is time to look at which insights on the merger of binary neutron stars
systems can be gathered from numerical relativity simulations. All the following analysis presented
in this chapter are based on numerical simulations performed by the Parma numerical relativity
group and presented in ref. [68, 94, 99]. Detailed information about the simulated models can be
found in appendix B.

A typical evolution can be divided in three (or four) phases:

1. The inspiral phase, in which the two stars rotate rapidly one around the other, and their
distance shrinks due to the energy and angular momentum radiated away by gravitational
waves. In the last few milliseconds before merger, the tidal deformation of each star due
to the gravitational field of the companion become important, speeding up the GW phase
evolution. Tidal effects make the GW signal from coalescing binary neutron stars different
from the binary black holes one, which can be predicted very accurately with semi-analytical
techniques, based on the post-Newtonian expansion, such as the EOB model [39, 41], which,
in its most recent implementations, is calibrated with numerical relativity simulations in
order to estimate unknown high-order post-Newtonian coefficients. Recent development in
analytical treatment of BNS coalescence has shown progress also in modelling tidal effects,
either adiabatic [13, 15] or dynamically developed, by the interaction with the stars oscillation
modes [17, ]. The analysis of tidal effects in the late inspiral of BNS systems is very
important, because it brings a signature of the neutron stars EOS, which influences the stars
tidal deformability [11, 91, 97, ].

2. The merger phase, in which the two stars come finally into contact, compressing their matter
and giving rise to a complex hydrodynamical phenomenology, with instabilities and turbulence
active inside the merger remnant, like the Kelvin-Helmotz instability, which can strongly
amplify the stars magnetic fields, even if the maximum amplification has not been resolved yet
in numerical simulations, due to the need for unfeasible resolutions to properly characterize
the energy cascade from the smallest scales [39];
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3. The post-merger phase, in which the neutron star formed during the merger evolves, with a
different phenomenology depending on its mass, EOS, and angular momentum distribution.
The remnant star is bar-deformed, rotates differentially, and emits gravitational waves with high
luminosity. The GW emission slowly drives the evolution towards an equilibrium configuration,
with uniform rotation, which, then, cools and spins down in a much longer timescale due to
the effect of magnetic fields and neutrino emission;

4. The collapse phase, in which, if the merger remnant has a mass greater than the limit for a
non-rotating neutron star imposed by its EOS, the neutron star collapses to a black hole, when
its rotation has slowed down enough. This phase, depending on the initial stars parameters,
could not happen at all, or could happen at different times from the merger, from a fraction
of millisecond to hundreds of seconds or even more. The numerical simulations are currently
able to track only a few milliseconds (up to 100 ms). After the collapse, an accretion disk
is formed around the black hole, from the matter which is not immediately captured. The
mass ratio between BH and disk strongly depends on the matter distribution and its angular
momentum at the moment of collapse, which, in turn, depends on the collapse time and the
physical evolution up to that point, conditioned by the star EOS, the initial stars mass ratio,
the possible development of (magneto)hydrodynamical instabilities, the presence (and the
correct modelling) of neutrino emission and magnetic fields, etc. The disk is then accreated
on the black hole, but has in itself an interesting phenomenology, thanks to its oscillations
(emitting gravitational waves, see [250, 271, 272]), possible instabilities (see ref [273-270]) and
electromagnetic emissions (see also sec. 2.3).

All this phases can be distinguished very well in the evolution of two neutron stars with a
baryonic mass of 1.5 M and the SLy EOS, summarized in figure 4.1 with equatorial and meridional
sections showing the evolution of the matter density p. The first panel shows the initial conditions,
with the two stars centres separated by 40km. The stars begin to rotate one around the other
(second and third panel), shrinking their separation emitting gravitational waves. As can be seen
in the third panel, low density matter from the two stars already comes into contact after a few
milliseconds of evolution, way before the actual merger. The stars merge after 7.7 ms, resulting in a
bar-deformed hyper-massive neutron star, which rotates differentially (fourth panel). Right after the
merger, its remnant has still two high density cores (with p > 1 x 10!% gcm ™3, see panel 5), rotating
around each other and oscillating radially. In less than a couple of milliseconds, the two cores also
merge, as can be seen in the sixth panel. From that panel is also evident that the outer spiral arms
structure rotates with a different group speed than the inner high-density structure. This has been
liked with some features of the post merger spectrum (see ref. [277] and the extensive discussion
in section 4.2.1). In the seventh panel, the star has become already more spherically symmetric
(leading to a lower gravitational waves flux emission), and a large amount of low-density matter
has been expelled far from the HMNS core. Finally, the eighth panel shows the star profile just
before collapse, with a large, spherical, high density core, and the last panel shows the accretion
disk low-density matter (with a density which quickly falls below the neutron-drip level, see section
4.2.4 for more details about collapsing models).

A different phenomenology is seen, instead, in unequal mass BNS systems, like the one depicted in
figure 4.2, corresponding to the observed system PSRJ037+1559 (see table 2.3), modelled, again,
with the SLy EOS. Initially the two stars start from a distance of 44km (first panel). They start
orbiting each-other, but after a few milliseconds, well before the merger, an evident mass transfer
from the lower mass to the higher mass star is visible (third panel), even if, at the beginning,
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Figure 4.1: Dynamics of the evolution of an equal mass BNS model with M = 1.5 Mg, for each star,
an initial distance between the star centres of 40 km, and using the SLy EOS for describing the
nuclear matter. The simulation was performed with a grid resolution in the finer level dz = 0.25 M.
It shows a relatively short inspiral phase (less than 8 ms), followed by an hyper-massive neutrons
star phase and the collapse to black hole, surrounded by an accretion disk.
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Figure 4.2: Dynamics of the evolution of an unequal mass BNS model with baryonic masses M; =
1.27TMg and My = 1.73 Mg, corresponding to the parameters of the recently discovered pulsar
PSRJ04341559 system, the most asymmetric observed so far. The initial distance between the star
centres is 44 km, and the SLy EOS was used for describing the nuclear matter. The simulation was
performed with a grid resolution in the finer level dz = 0.25 M.
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it concerns only low density matter, therefore does not effect the energy balance and the overall
dynamical evolution. In the fourth panel, after 8.5 ms from the simulation start, the outer crusts
come into contact, way before the actual merger (which happens, according to the most widely
accepted definition, at 11.8 ms). In the fifth panel also the inner crust has merged, while the lower
mass star is highly deformed by the tidal field of the companion. The low density matter ejected
and left behind by the lower mass star starts to form a single spiral arm, often called a “tidal tail”.
The merger itself is visible in the sixth panel, where the lower mass star seems to be captured by
the higher mass one. A high density region (p > 1 x 10'® gecm™3) is formed at the centre of the
higher mass star, but not in the lower mass one. The seventh panel shows the early post-merger
phase, which looks very different from the equal mass case. Instead of a bar-deformed star, with
a central double core structure, here we have a single spiral arm, with a single central high mass
core, coming from the higher mass star, rotating around the center of symmetry. The outer core is
still highly deformed by the tidal effects in play during the merger. In the following evolution (last
two panels), much more matter gets ejected far from the central compact object than in the equal
mass case, and a visible non-axysymmetric density perturbation is present even when the remnant
moves towards an equilibrium configuration. It is interesting to note that, although this model has
an higher initial ADM mass than the equal mass one presented before (Mapys = 2.708 M, for the
PSRJ0453+1559 and Mapas = 2.697 Mg for the 1.5-1.5 equal mass BNS), and the same EOS, this
model does not collapse to black hole during the timescale of the simulation, because of the higher
mass ejected far from the nucleus, the higher angular momentum transported towards the outer
parts of the star, and the lower central density increase and central density oscillations amplitude
(see figure 4.14).

Another general picture overview can be collected looking at the gravitational wave signals
extracted from simulations of different BNS models. In figure 4.3 is reported the plus polarization
of the dominant (2,2) mode of the gravitational wave strain (extracted applying the second order
extrapolation formula 3.197 and integrated with our filtering procedure, see sec. 3.4) of different BNS
models, together with its envelope constructed plotting 4|hoa(t)|. The signals show some common
features to all simulations: in the first phase (the so called inspiral phase) the gravitational waves
progressively increase both their frequency and amplitude, generating a signal known as “chirp”.
The point of maximum amplitude is conventionally defined as the merger of the two stars. After the
merger, the signal amplitude drops, during the turbulent rearranging phase, and then its amplitude
raises again, at a higher frequency, which strongly depends on the EOS, for the GW emission due to
the rotation of the bar-deformed neutron star remnant. The post merger GW emission amplitude
decreases exponentially, due to the redistribution of angular momentum and the star approaching a
more axisymmetric state, but it shows in some models interesting features, which will be analysed
later (see sec. 4.2). The models collapsing to black hole are clearly recognizable, because after
collapse the GW amplitude drops immediately to negligible values.

In the top-left panel, are shown five equal mass models with the same initial distance between the
stars (40 km) and the same EOS (SLy), but different mass for each star (1.2,1.3,1.4,1.5 and 1.6M).
During the inspiral phase, the models with higher total mass emit gravitational waves with higher
amplitude. They also have a shorter merger time (because they emit energy and angular momentum
at a higher rate). After the merger, the model with 1.6 M stars collapses immediately, without
any post-merger HMNS phase, and its GW signal, consequently, becomes flat, very close to zero
amplitude. The model with 1.5 My stars, instead, as seen already in figure 4.1, collapses 7.7 ms
after the merger. Its post-merger GW signal has a higher amplitude than the lower mass models,
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Figure 4.3: Plus polarization of the gravitational wave strain for different BNS simulated systems.
In the top-left panel are represented five simulations of equal mass systems, with a baryonic mass of
1.2,1.3,1.4,1.5,1.6 Mg for each star, an initial distance of 40km and the SLy EOS. In the top-right
panel, instead, are represented unequal mass models with the same total baryonic mass of 2.8 Mg,
with mass ratios ¢ = 1,0.94,0.88,0.83,0.77, with the same initial distance and EOS as before.
The bottom panels contain, instead, a comparison of models with different EOS: the observed
PSRJ0543+1559 system (left) and equal mass systems with total baryonic mass of 2.8 M, (right),
starting from a distance of 60 km apart. The employed EOSs are the one described in section 2.1.1.
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but lasts only for the first phase, which, as described in depth in section 4.2, is characterized by
several competing spectral components and emission modes growing and rapidly getting damped.
In the non collapsing models, after a few milliseconds from the merger, the GW signal is, instead,
characterised by a single oscillation mode, with exponentially decreasing amplitude.

In the top-right panel, instead, is reported the GW signal from five unequal-mass models, with
a total baryon mass of 2.8 Mg, again with the SLy EOS, and mass ratios ¢ = 1,0.94,0.88,0.83,0.77.
The stars with the largest mass asymmetry merge slightly earlier than the more close to equal mass
ones, because of the higher tidal deformation of the lower mass star. After the merger, decreasing
the mass ratio, the damping time of the GW emission seems to decrease, even if some models
(¢ = 0.88,q = 0.77) show evidence of the growth of different spectral modes after a sufficient decay
of the principal emission mode.

This peculiar finding is confirmed by the system PSRJ0453+1559 (lower-left panel), simulated
with different EOSs (described in sec. 2.1.1). All models, except the most compact stars with the
APR4 EOS, show a secondary growth of the GW amplitude 10 — 15ms after the merger. This
changes in the oscillations frequency and damping times and the rise of different oscillation modes
can happen multiple times, as hinted by the simulation with the stiffest EOS (MS1). The different
EOSs lead also to great differences in the merger times and in the GW phase evolution during
the inspiral. The merger times are not perfectly ordered by EOS stiffness, because they are highly
sensitive to the grid resolution (see appendix A.1), and the code convergence order can be different
for the different EOSs, as reported, for example, in ref. [97].

The bottom-right panel, finally, shows more clearly the difference in the inspiral evolution due
to the matter EOS and the consequent different tidal deformability of the stars. Here are reported
results from simulations starting from a interbinary distance of 60 km. In the first couple of orbits
(each orbit corresponds to two GW cycles), all the models have the same GW emission. This is
because, at that distance, tidal effects are not yet relevant for their dynamics, and the GW emission
is well approximated by a point-particles modelling (see sec. 4.1.2 for a comparison with post-
Newtonian point-particle approximants). After that, the GW signals starts to diverge, because the
less compact stars have, generally, a quicker phase evolution. In the specific case, the MS1 models
merge way earlier than the other three models.

4.1 Inspiral gravitational waveform

Figure 4.3 already showed some of the main characteristics of the GW emission in the coalescent
phase, before merger, and their dependence on different parameters, such as the stars mass, mass
ratio and EOS. In order to quantitatively evaluate those differences, and, in particular, the one due
to the EOS, about which we are interesting to gather information from GW detections data, all the
error sources for the simulated signal should be under control [90, 91]. The problem of the GW signal
extraction from simulations was already addressed in section 3.4, while the evolution code error and
its convergence properties will be discussed extensively in appendix A.1. In this section, instead, I will
analyse two other often ignored sources of errors, which, nevertheless, could be dominant and hide
the true signal features due to tidal effects. The first error source is the eccentricity of the evolved
orbits. As reported in table 2.3, all the observed BNS systems are believed to have a negligible
eccentricity when they will enter in the LIGO/Virgo sensitivity band, due to the circularizing effect
of GW emission. On the other hand, from the signals in figure 4.3, and in particular the longer ones
in the bottom-right panel, one can clearly see by eye the presence of amplitude oscillations with
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a fixed frequency. In the next subsection I will prove that they are not caused by GW extraction
errors, but they are the imprint of a physical process, the eccentricity of the stars orbits. Another
potentially important error source is linked with initial data, which are produced taking some
approximations, like conformal flatness (see sec. 3.3). These possible errors could be evaluated by
comparing simulation of the same model with initial data generated by different codes, as done in
ref. [93]. Unfortunately, only one BNS initial data code is publicly available (the LORENE library),
and so such comparison is difficult to reproduce. Instead, a different, interesting technique is to
compare the results of simulations starting with a different initial interbinary distance (which means,
a different initial orbital and GW frequency). This allows, also, to study which initial distance is the
best for performing numerical BNS simulations, depending on which phase of the binary evolution
one is most interested in studying.

4.1.1 Residual eccentricity

The presence of a residual orbital eccentricity in BNS numerical evolution is inevitable, if one
imposes an Helical Killing vector in the initial data generation. It is a consequence of the resulting
binary configuration having no radial velocity component, which in reality would be present due
to the GW radiation reaction. The eccentricity can be measured from the stars orbits, and then
the GW signals coming from the simulations can be compared with the ones predicted by post-
Newtonian approximations of eccentric binaries. If they match, then we can confirm that the
amplitude oscillations are indeed due to the eccentricity, and quantify how much they influence the
accuracy of the simulated GW signals. The simplest way to compute the trajectory of a binary is
to follow the stars centres, which can be defined as the points with maximum density (or minimum
lapse «, given our singularity-avoiding gauge choice). A possible improvement on this technique,
suggested also in ref. [95], is to compute the stars centres with a volume average, similar to a
Newtonian center of mass computation:

i 13
gi = dstar PT LT (4.1)

fsmr pd3IL‘

To estimate the orbital eccentricity, a common procedure (see, for example, ref. [58, 95]) is to rely
on the following Newtonian parametrization for the time derivative of the distance between the
stars centres:

D(t) = Ao+ Ayt — eDowesin (wet + ¢e) (4.2)

where e is the eccentricity, Dy = d is the initial distance and w, is the angular frequency of the
eccentricity oscillations. If one computes the distance between the star centres from the simulation
3d output, it is possible to use eq. 4.2 to obtain the eccentricity value with a non-linear fit. The
simplest, although incorrect, way of computing the distance is simply to take the coordinate distance
between the centres. A better way would be to take, instead, the proper distance along a straight
line between them. Finally, the correct procedure would be to compute the geodesic which passes
through the two stars centres, and compute the proper distance along it. This will be, however,
computationally expensive, because it should be repeated for every time-step for which one has
3d outputs. Therefore, in the following analysis, I adopted the simplest procedure, and verified
afterwards its adequacy confronting the obtained eccentricity value with the one coming from the
GW signal amplitude oscillations. It was chosen to fit the derivative of D and not D itself, because
having one less free parameter brings an advantage greater than the error made by the numerical
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Figure 4.4: Evolution of the distance between the star centres, for equal mass BNS models with
different EOS and initial separation. The oscillations in the distance are due to the residual orbital
eccentricity, and are larger in the softer models.

derivative (which is performed using a fourth-order finite differencing operator). It was also tried
to fit the evolution of the GW frequency, but the result was found to be much more noisy. The fit
is performed starting from t,.; = 3ms (to avoid the spurious radiation emitted at the simulation
beginning, see next paragraph) and t,.; = %tmerger (to avoid the plunge phase, in which the stars
come into contact and merge, and eq. 4.2 is no more a good representation for the distance derivative
evolution).

The resulting evolution of the stars separation, for models with different EOS and initial distance,
is shown in figure 4.4. In all the simulations is visible an initial sudden drop in the distance. This is
due to an initial burst of unphysical spurious gravitational radiation (visible also from the signals
in figure 4.3), which is due to a gauge readjustment because the initial spacetime did not have the
right radiation content, which physically it should have due to the GW emitted by the binary up to
that point of stars separation. This is a consequence of the conformal flatness approximation made
in the initial data computation.

The subsequent evolution is again similar in all models, with the distance more rapidly decreasing
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Figure 4.5: Evolution of the time derivative of the distance between the star centres, for equal mass
BNS models with different EOS and initial separation. The oscillations in the distance derivative are
due to the residual orbital eccentricity, and are larger in the softer models. The blue line represents
actual data taken from the simulation output, while the red line is the result of the fit with eq. 4.2.
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e e e lhra — heral| R [Mpc]
EOS | d=60km d=50km d=44.3km || R = 100Mpc | |[hga — hera|| = 1
APRA4 0.028 0.020 0.020 0.67 67
SLy 0.025 0.019 0.020 0.58 58
H4 0.012 0.012 0.014 0.33 33
MS1 0.014 0.014 0.007 0.35 35

Table 4.1: Results of the orbital eccentricity analysis. The first three columns show the eccentricity
parameters obtained fitting equation 4.2. The fourth column shows the detectability of the eccen-
tricity in a TaylorT4 approximate waveform with the same initial parameters of the model with the
corresponding KOS and d = 60 km, for an optimally aligned binary at 100 Mpc. The fifth column
shows the maximum optimally aligned binary distance for the eccentricity effect to be marginally
detectable, calculated as ||h74 — herall100ape X 100 Mpe.

towards the merger (when the GW emission has a higher frequency and amplitude), and showing
characteristic oscillations, typical of eccentric orbits. It is interesting to note that the evolution of
models starting from a smaller initial separation is slightly different than the models starting from
d = 60km, with a faster orbital shrinking, in particular for the more compact stars (with APR4
and SLy EOSs). More on this phenomenon can be found in the next subsection.

The fitting curves are represented in red in figure 4.5, where the blue curves are the original
distance data, instead. It is clear that at least one eccentricity cycle, before the plunge phase, when
the parametrization of eq. 4.2 is probably not a good approximation anymore, is necessary for
correctly estimating the orbital eccentricity. Therefore, the d = 40 km simulations will be excluded
from the following analysis, and the results for the d = 44km simulations with the stiffer EOS
should be taken with care.

The resulting eccentricity values are reported in table 4.1. They are higher for the more compact
stars, of about a factor 2.

To assess the correctness of the eccentricity computation procedure, and to evaluate if the GW
amplitude oscillations are really an imprint of the orbital eccentricity, it is possible to compare the
GW signal extracted from numerical simulations with one generated with post-Newtonian techniques
for eccentric binaries. Recently, different groups have proposed techniques to generate analytical
approximations of the inspiral waveforms for point particles in eccentric orbits [115, , ]. These
should be close to the BNS GW signal from numerical simulations, far from the merger phase, when
tidal effects are not important. For this reason, many orbits simulations, with a large initial separation
between the stars, are necessary to carry on this analysis. Figure 4.6 shows the GW amplitude for
the BNS models of fig. 4.4 (black lines) and corresponding PN waveforms, generated following ref.
[278] (accurate up to 2PN order in phase and Newtonian order in amplitude), and using the public
LIGO Algorithm Library (LAL), with the same initial gravitational mass, eccentricity and frequency
of the simulated model. At the beginning of the simulations, especially for the stiffer models, the
PN approximant perfectly reproduces the simulated GW strain amplitude, including its oscillations.
After a while, the simulated signal departs from the analytical one, because tidal effects and missing
high-order post-Newtonian terms start to be important, but it keeps the same oscillations structure,
until the final plunge phase. The difference between GWs from BNS simulations and point-particle
PN approximations becomes farther from the merger in the most compact stars, in particular the
ones with the APR4 EOS. This perfect match is less recognizable in the d = 44 km models, which
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Figure 4.6: Gravitational wave strain amplitude for the same models of fig. 4.5. The black line
represents the numerical simulation data, while the red line is a approximated post-Newtonian
waveform for point-particles in an eccentric orbits (see ref. |
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Figure 4.7: Difference in phase between a circular-orbits TaylorT4 approximant and a eccentric
orbit post-Newtonian waveform, at the same PN order, starting from the same gravitational mass,
frequency and eccentricity.

are close to the plunge phase already at the beginning of the simulations, and which have only a few
eccentricity cycles (one for the H4 and MS1 models) before the merger. These results confirm that
GW amplitude oscillations, remaining after our careful extraction procedure, are entirely due to
the orbital eccentricity. I want to stress here, looking again at figure 3.2, that the use of the digital
filtering after W, integration is necessary for this comparison with the eccentric PN waveforms.
With all the other strain amplitudes in fig. 3.2 computed with different integration methods, it
would have been impossible to draw any conclusion from an analysis like the one in figure 4.6,
due to the presence of a complex amplitude oscillations structure (given by noise and numerical
integration errors), among which one cannot distinguish the physical oscillations caused by the
orbital eccentricity.

It is interesting to assess which would be the impact of the orbital eccentricity introduced by
quasi-circular initial data on GW detection and the following source parameters estimation. A
possible first step in that direction is looking at the difference in phase between an eccentric post-
Newtonian approximant, with the same gravitational mass and eccentricity of each of the simulated
models in figure 4.4 with d = 60 km, and a standard TaylorT4 analytical waveform for point-particles
coalescing in circular orbits, with the same masses. The result can be seen in figure 4.7. For the less
compact models (with H4 and MS1 EOS, and an eccentricity around 0.01), the phase difference
between the eccentric and the circular waveform oscillates around zero, with a maximum amplitude
of about 0.1rad, which is most probably lower than the numerical errors of the evolution code (a
lower bound of which is estimated in the next section). In the plunge phase, this difference raises
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up to 0.4rad. For the more compact models (with the APR4 and SLy EOSs, and an eccentricity
between 0.02 and 0.03), instead, the phase difference oscillates around zero with an amplitude of
0.2rad for most of the inspiral, and can reach values close to a radiant at merger. This means that,
while probably negligible in the less compact models, initial data eccentricity is a major source
of error in numerical simulations of binary neutron stars inspiral for stars with a soft EOS. From
figure 4.6, we already noted that eccentricity oscillations are the dominant factor in the difference
between gravitational waveforms from many orbits BNS simulations (black lines) and point-particle
post-Newtonian approximations (green lines), until the plunge phase, , even at low post-Newtonian
order. This can make the assessment of tidal effects (and then EOS) impact on the gravitational
signal more difficult, and hence can harm the efforts to pinpoint the neutron stars EOS from GW
detections.

Another interesting evaluation is to measure the detectability, in the Advanced LIGO/Virgo
interferometers, of the difference between eccentric and circular orbits waveforms. In particular,
performing this computation starting from the initial frequency of the d = 60km simulations
presented before, which are among the longest (in the inspiral phase) BNS simulations performed
so far, allows to understand the importance of initial data eccentricity error in currently feasible
BNS simulations, even if a detectability comparison should, in theory, be computed using a signal
covering all the detectors frequency band. To do so, one can compute the distinguishability of two
waveforms hy and hg, using the following expression [13, 91, ]:

hi 1 (f) = by o (f)elCGrrata0) :
Sn(f) ’

(4.3)

fi
71 = hol| = minasas 4/
fo

where iurz( f) are the Fourier transform of the plus polarization of the two compared strains,
fo=9hz and f; = 7000 hz are, approximatively, the limits of the Advanced LIGO frequency band,
and Sy, (f) is the one sided noise power spectral density for Advanced LIGO, in the zero detuning,
high power configuration, which will be the best for detecting binary neutron stars mergers. Using
this norm, it was shown in [280] that two detected gravitational waveforms will be distinguishable
if [|h1 — he|| > 1. In particular, in the limit ||h; — hg|| = 1, the marginally distinguishable case, the
two waveforms can be distinguished with a 1o statistical significance.

In table 4.1 is reported the distinguishability between circular and eccentric orbits waveforms,
computed for optimally aligned binaries at a distance of R = 100Mpc, and the corresponding
minimum distance to have marginal distinguishability. The detectability of eccentricity effects at
100 Mpc is small, mainly because of the shortness of current numerical waveforms respect to the
whole LIGO frequency band. When longer simulations will be available, especially to build hybrid
analytical-numerical waveforms, able to cover the whole detectors band, this eccentricity effect will
become more important.

Given these results, it is clear the importance of getting rid of the initial eccentricity of BNS
orbits, in order to evaluate the difference between different EOSs and to model accurately tidal effects
and other possible effects like stellar oscillations present in the inspiral phase. Work in this direction,
mimicking what is already standard for binary black holes simulations, has been done by some
groups [58, 95]. In particular, they use an iterative procedure, first evolving eccentric initial data,
like LORENE’s ones, and computing the eccentricity with eq. 4.2. Then, they correct accordingly
the initial data, adding a radial velocity component, and start again the simulation. This process
is repeated (usually three times), until a target value for the eccentricity is reached. For example,
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for BBH simulations, the NRAR (Numerical Relativity and Analytical Relativity) collaborations
prescribed e < 2 x 1073, which is an order of magnitude lower than the one of LORENE’s models.
However, there is not yet a publicly available tool to generate low-eccentricity BNS initial data,
which can be checked and evolved by anyone in the scientific community. I plan to dedicate some
of my future work, immediately after this thesis, to create such tool.

4.1.2 Effect of the initial interbinary distance

Binary neutron star merger simulations presented in the literature start from a variety of initial
values for the stars centres separation. As seen at the beginning of this section, long, many orbits,
BNS simulations are necessary to perform comparisons with post-Newtonian approximations (either
to construct longer hybrid analytical-numerical waveforms, to cover all the current GW detectors
frequency band, or to evaluate the accuracy of different PN formulations and calibrate their free
parameters), and to study tidal (and, more in general, EOS) effects on the inspiral waveform. On
the other hand, when focusing on the post-merger signal, which is the primary target for three
dimensional numerical investigations, for the lack of any analytical treatment so far, one wants
to simulate the shortest possible inspiral, not to waste too many computational resources on that
phase. From these necessities, several questions arise, such as:

1. How the numerical errors accumulate during many orbits evolutions? Which is the maximum
number of orbits one can simulate with current numerical codes in order to keep a target
accuracy?

2. How close to the merger a simulation can start, without propagating errors which can influence
the post-merger results?

3. How accurate are the conformal thin sandwich initial data, depending on the stellar separation?

4. What is the difference between tidal deformations and stellar mode excitations developed
during a numerical evolution starting from an initial large interbinary distance, or included
in close-binaries initial data?

In order to answer all those questions, a first step is to compare simulations of the same model
(in the case presented here, an equal mass model with a baryonic mass of 1.4 Mg for each star,
and the four EOSs presented in sec. 2.1.1) starting from initial data with a different interbinary
distance (which is equivalent to say that they have a different initial orbital frequency). The initial
separations considered here are 60, 50, 44.3 and 40 km. I can anticipate here that to give a complete
answer to the previous questions, this work is not sufficient, and further explorations, using different
numerical methods, and techniques to try to disentangle those errors sources, which are difficult to
distinguish, are needed. This comparison can also be seen as using the full numerical 3D simulations
to fill the gaps between several quasi-equilibrium configurations through which the binary must
pass, evaluating with which accuracy are current numerical algorithms able to do so. Figure 4.8
gives a first overview of the difference between simulations with different initial stars separation.
At the beginning of the shorter simulations, after the first “junk radiation” emission (explained in
sec. 4.1.1), the signals of models with the same EOS agree very well, confirming that the dynamical
evolution is able to connect LORENE’s generated quasi-equilibrium configurations. However, in the
last part of the coalescent phase, after the start of the d = 40 km simulations, the signals start to
diverge, with simulations starting from a closer interbinary distance having a faster phase evolution
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Figure 4.8: Gravitational wave strain plus polarization from simulations of an equal mass binary
with M = 1.4M, for each star, with different EOS and initial interbinary distance.
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(see small boxes in figure 4.8). It is also interesting to note, contrary to what can be expected a priori,
that the initial interbinary distance has also an impact on the GW amplitude in the post-merger
phase. This could be potentially very important for numerical studies of the post-merger energy
balance. A more quantitative analysis of these discrepancies can be found in section 4.2.3.

In order to investigate the differences in the phase evolution of simulations starting from different
separations, during the inspiral, it is useful to align the simulations (with the same EOS) starting
from d = 50,44.3,40 km with the longer ones, starting from 60km. At first, the waveform are
aligned at the time of the merger, considering them respect to the new time variable

t= tret — tme'rger (d), (44)

as they have already been shown in figure 4.8. Then, following a standard procedure, often used to
compare waveforms of the same model generated with different techniques (see, for example, ref.
[9, 11, ]), the signals are aligned finding the time shift At and the phase shift A®, after defining
the aligned GW phase

Doy () = Dg(t — At) + AD — Dy_gy(t), (4.5)

and then minimizing the following integral:

I(At,AD) = /t2 |®01 (8)|d, (4.6)

t1

where the GW phase of the simulation starting from an initial interbinary separation d is defined
from the gravitational wave strain h:

® = arctan <hx> . (4.7)
hy

The integration limits are t; = 3ms and to = min(20 ms, tmerger — 2 ms), in order to avoid, as usual,
the initial spurious radiation and the plunge phase.

In figure 4.9 are reported the differences between the aligned waves phase and the phase of the
d = 60km simulations waveforms. Outside the alignment interval, the phase evolutions between
simulations starting from a different orbital frequency diverge quite significantly. This is more
pronounced in the more compact stars, with the SLy and APR4 EOSs, showing a phase difference
at merger of about 4 radiant. The stars with the H4 EOS have an intermediate behaviour, while
the stars with the MS1 EOS show a much lower deviation, with a maximum phase difference at
merger of 1 rad.

These results are not really satisfactory, showing a huge difference caused by the initial data
separation, which can be mitigated by the alignement procedure in the alignement interval only.
This last consideration leads to believe that eq. 4.5 is not the best for the signals scrutinized
here. A different procedure to test, which can also help identifying the source of such huge phase
discrepancies, is allowing for a dilatation of the time variable, as done in ref. [12, 97] to align
waveforms of simulations with different resolutions, in order to compare them compensating for
their different merger times. For each simulation with d < 60 km, one has to find the parameters n
and A®, which, after defining

Dyp(t) = Pa(n-t) + APy — ®y_go(2) (4.8)
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Figure 4.9: Difference in the accumulated phase between simulations starting from d = 60km
separation and simulations starting from closer configurations, with the same EOS and star masses,
aligned with eq. 4.5, allowing for a phase and time shift.
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Model Shift alignment (Eq. 4.5) Dilatation alignment (Eq. 4.8)
At (ms) A¢ (rad) n Agg (rad) Atmerger (mS)

APR4(d=40 km) 1.40 6.26 1.112 -3.40 1.14
APR4(d=44.3 km) 1.71 6.07 1.096 -4.81 1.59
APR4(d=50 km) 1.82 5.76 1.047 -3.54 1.31
SLy(d=40 km) 1.53 6.83 1.140 -3.80 1.33
SLy(d=44.3 km) 2.02 7.46 1.111 -5.06 1.74
SLy(d=50 km) 2.34 7.51 1.056 -4.16 1.55
H4(d=40 km) 2.34 7.51 1.063 -1.26 0.43
H4(d=44.3 km) 1.56 5.82 1.075 -2.67 0.93
H4(d=50 km) 2.49 7.85 1.061 -3.92 1.52
MS1(d=40 km) 0.27 1.40 1.038 -0.30 0.17
MS1(d=44.3 km) 0.24 0.85 1.017 -0.51 0.17
MS1(d=50 km) 0.55 1.64 1.021 -1.16 0.42

Table 4.2: The first two columns represent the parameters At and A¢ which minimizes Eq. 4.6 for
each model with d < 60 km. The next two columns show the parameters n and A¢s which minimize
Eq. 4.9. The last column shows the effective merger time difference between the time-dilation aligned
waveform and the original one Aty erger = tmerger( — 1)

minimize the following integral:

I(n,A®) = /t N | so (). (4.9)

The result are presented in figure 4.10, again taking the phase differences between the aligned
waveforms and the d = 60 km ones. With this different alignment, the phase differences are much
smaller than before, and, more importantly, do not increase only outside the alignment interval. All
the obtained values for the time dilation factor ) are greater than one. This can be interpreted as
the simulations starting from a closer initial binary configuration carry out more orbits compared
with the ones starting from further apart, when comparing them over the same distance before
merger. While this is always true comparing the simulations starting from d = 60 km with the ones
starting closer, the effective merger times of simulations starting from 50, 44.3 and 40 km, instead,
do not follow always the same trend, suggesting the presence of other sources of error, especially
for the smallest initial distances.

The minimizing parameters for both alignment procedures, with the corresponding effective
merger time difference, are reported in table 4.2. In table 4.3, instead, are reported the maximum
phase differences, during the whole inspiral, between the aligned signals and the d = 60 km ones. In
particular, the residual phase errors after the time dilation alignment (which corrects the effective
merger time error) can be seen as lower bounds for the accumulated numerical errors by the evolution
code, due to the finite grid resolution. As anticipated in sec. 3.4, these are much higher than the
errors coming from the waveform extraction procedure, after the application of the second order
perturbative extrapolation formula 3.197, even in the first part of the signal, contrary with what
was found in [269] for binary black holes simulations.

This picture, coming from the GW phase differences, is consistent with the one given by the
radiated energy and angular momentum. A common technique is to analyse the gauge-invariant
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Shift alignment (Eq. 4.5) Dilatation alignment (Eq. 4.8)
EOS
g¢all <rad) gd)alz (rad)

d=50km 443km 40km | d=50km 44.3km 40 km
APR4 4.12 2.79 2.40 0.98 0.09 0.49
SLy 5.01 2.79 1.77 0.40 0.25 0.37
H4 3.41 2.06 1.85 0.33 0.35 0.20
MS1 0.91 0.19 0.41 0.09 0.23 0.10

Table 4.3: Maximum phase difference in the inspiral phase between waveforms from simulations
starting from d < 60 km and simulations with d = 60 km, aligned according to Eq. 4.5 (first three
columns) or Eq. 4.8 (second three columns).
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relation between the reduced radiated energy

E
= —1
E, = Gr-1 (4.10)
and the reduced radiated angular momentum along the z axis:

J-
Jr:

where F = My p — Egw and J, = Japy — Jgw, with Eg, and Jg,, computed from the gravitational
wave strain using eq. 3.205 and 3.206. The initial ADM mass and angular momentum are taken
from the output of the LORENE code, when importing initial data in the evolution code numerical
grid. Finally, M = M; + Ms is the sum of the two stars gravitational masses and v = Mj‘l/[];b is
the reduced mass divided by M. The E,(J,) curves are shown in figure 4.11, for each EOS and
initial separation. They agree, in simulations with the same EOS, very well, until the start of the
d = 40 km simulations. After that point the simulations with d = 60 km start to diverge, resulting
in a merger (marked with the filled circles in figure 4.11) at a higher energy and angular momentum.
The other three simulations, instead, agree much better until the merger, and their merger energies
and angular momenta are also close to each other. This has the natural interpretation that the
simulations with a shorter effective merger time emit more energy and angular momentum during
their faster approach to the merger, in which they carry out more orbits. In all the simulations
starting from d < 60 km we observe a good agreement of the initial energy and angular momentum,
after the short relaxation period, with the simulations starting from a larger interbinary distance,
with a maximum difference of a few tenths of percent. This confirms again that, at least in the
inspiral phase, our numerical evolutions, even at this resolution, are able to join the sequence of
quasi-equilibrium states generated by the LORENE library. However, in the late inspiral and plunge
phase, when the tidal effects start to be relevant, there are important differences.

This common picture can be naively interpreted considering that higher finite-resolutions errors
accumulate during the longer simulations. In particular, this would explain why the d = 60 km simu-
lations are different from the other three, which are more similar, and why the phase differences are
lower for the less compact stars (which have also a lower merger time). However, other explanations
are possible.

A contribution to the difference between simulations starting from different separations can
come from tidal effects, which are already important at the start of the d = 40 km simulations, when
the differences starts to show up in the E,.(J,) curves. As shown before, there are higher deviations
in the d = 60km simulations with respect to the ones starting from further inward in the more
compact stars. Tidal deformations developed in the dynamical evolution of models starting from
a lower frequency could be different from the ones present in close binaries initial data, which are
computed, with an approximate gravitational potential, by a spectral code and then interpolated in
our cartesian grid. On the other hand, small tidal deformations could be present also in the d = 60
km initial configurations, but they could be under-resolved when we interpolate those initial data
in our evolution code grid at our resolution. In ref. [93] has been shown that even small differences
in initial data could be amplified during the evolution of the highly non-linear equations needed
to describe BNS mergers in full general relativity, and this is particularly important for the the
evolution of initial models with the higher merger times, which show the larger deviations between
different initial separations.
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The role of dynamical tidal effects was also recently underlined in ref. [17, 18]. These effects
develop from the interaction of the tidal field with the stars quasi-normal modes of oscillation.
These dynamic tides could be developed during a many orbits evolution, but are not considered in
the calculation of the initial data used here. However, they should be more important for the less
compact stars.

Another possible source of error is linked with the close binary initial configuration. In ref.
[282] it is shown that initial BNS data computed in the conformal flatness approximation for the
gravitational potential need to be evolved for more than 3 orbits to reach a true, stable, quasi-
equilibrium configuration. This condition is not (or is barely) satisfied for the d = 40 km simulations
(see table B.3).

From the available data it is impossible to disentangle all these error sources, evaluate their
relative contributions, and fully answer to the questions posed at the beginning of this section.
However, showing that there could be problems (or hidden physical effects) in many orbits BNS
simulations, that their predicted inspiral GW signals do not match with the ones from shorter
simulations, that these differences are EOS-dependent (they look higher in the more compact stars),
and that they manifest themselves as a shorter effective merger time in the simulations starting
from closer binaries configurations, are important and interesting first results, which can stimulate
further enquiries about these subjects. In particular, new sequences of simulations of the same
model starting from different separations, with better spatial resolution, are needed. More accurate
numerical methods could also be employed, in particular Z4-family formulations of the Einstein
equations (see sections 3.1.2), for their constraints damping property, and higher than second order
methods for the hydrodynamics, as used for example in [93, 96, 98]. These more advanced numerical
techniques, reducing the dynamical evolution errors, should reduce also the differences between the
simulations with different initial interbinary distance, if that turns out to be their the dominant
source. Another interesting direction would be to repeat this kind of simulations with a larger EOS
sample, to better check the results dependency on the stars deformability, and, with that, on tidal
effects. Also important is to perform a convergence study, to check if the differences reduces increasing
the resolution. All these possible future studies, however, are very computationally expensive.

Finally, one last interesting direction is to compare different techniques for producing initial data,
as already done in ref. [93]. This is made somewhat difficult by the fact that the LORENE code is
the only BNS initial data code publicly available. However, being an object-oriented code, it is easy
to add to it new algorithms for initial data generations, such as the use of the extended conformal
thin sandwich formulation [283, 284], which tries to overcome the conformal flatness limitation.

In section 4.2.3 I will discuss more results coming from this comparison, about the impact of
the initial interbinary distance on the post-merger GW signal.

4.2 Merger and post-merger dynamics

The merger and post-merger phases of binary neutron star systems evolution are the main target
for numerical relativity, because, as already mentioned several times, they cannot be explored with
analytical techniques.

The merger phase, difficult to properly define, is still largely unexplored, due to the turbulent
nature of the (magneto)hydrodynamical processes happening when the two stars come into contact.
For example, in ref. [89] was shown that, with current numerical relativity codes and using the
highest currently feasible grid resolution, we are still not able to fully resolve the Kelvin-Helmotz
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instability. This instability creates vortices in the shearing layer, by which, considering the star
having infinite conductivity, the magnetic field is highly amplified, because the magnetic field lines
are frozen with the fluid, and consequently are stretched in the small-scale vortices.

The post-merger phase, instead, is easier to study, because the remnant star evolves towards an
equilibrium configuration (or collapses to a black hole). Its gravitational wave emission is dominated
by a single mode (which, however, does not have constant frequency, but it varies slowly in time,
as discussed more in detail in the next sections), due to the rotation of the bar-deformed neutron
star. The dynamics of bar-deformed NSs and their development due to dynamical instabilities has
been studied extensively in the past (see, for example, ref. [173, 175]). In BNS mergers, instead, the
deformation is seeded by the tidal forces and the collision during the merger. In the subsequent
evolution, while angular momentum is radiated in gravitational waves and redistributed in the
remnant star, the degree of differential rotation decreases, and the star moves towards a more
axisymmetric configuration, with a consequent diminishing of the emitted GW amplitude.

In the following section I will bring on the comparison between the models already presented in
figure 4.3: five equal mass models with different total mass (and the same SLy EOS), five unequal
mass models with different mass ratio (and the same total mass), four models of the observed PSR
J0453+1559 system, with different EOSs, and four long (d = 60km) simulations, with the same
total baryonic mass and different EOS (and, consequently, a slightly different initial ADM mass
t00). In particular, I will compare the gravitational waves post-merger spectrum, and the energy
radiated during the post-merger phase. This is useful to understand the role played by each of the
main source parameters one hopes to be able to reconstruct from real GW signals observed in GW
detectors.

4.2.1 The post-merger spectrum and its link with the neutron stars EOS

The most interesting aspect of the post-merger remnant evolution is the frequency spectrum of the
emitted gravitational signal. In particular, the goal is to be able to connect its main features with
some parameters directly linked with the neutron stars EOS.

Figure 4.12 shows the amplitude spectral density of the GW strain \iL| f1/2, where

5 72 no2
iy = e (4.12)

The spectrum is computed, unless otherwise stated, from 8 ms before the merger to 15 ms after
it. For the standard grid setup and finest resolution dz = 0.25 Mg used in those simulations (see
table A.2), this leads to a Nyquist frequency of 50.75kHz and a spectrum frequency resolution of
43.48 Hz.

In all the different BNS models presented in figure 4.12, the spectrum shows an initial growth
(given by the inspiral GW emission, whose spectrum is truncated at the lower end due to the limited
number of simulated orbits), until a local maximum is reached (close to the merger instantaneous
frequency, reported in tables 4.5, 4.6, 4.8 and 4.10). The GW emission at higher frequencies, instead,
comes from the post-merger signal. In almost every model, a dominant peak is recognizable in the
post-merger spectrum. This peak corresponds to the frequency fo (also called fp, or fpeqr in the
literature) of the fundamental quadrupolar m = 2 oscillation mode of the bar-deformed neutron star
[10]. This peak is not present only in models collapsing to a black hole right after the merger, like
the equal mass one with M = 1.6 M, for each star and the SLy EOS (magenta line in the top-left
panel of figure 4.12).
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Figure 4.12: Amplitude spectral density for the (2,2) component of the GW strain, computed in an
interval between 8 ms before the merger and 15 ms after it, except for models with a shorter inspiral
phase (SLyl1.5vsl.5, SLyl.6vsl.6) or a shorter simulated post-merger (SLyd60, H4d60, MS1d60).
The spectral density values correspond to optimally oriented binaries at 100 Mpc from the detector.
Here are highlighted the effect of total binary mass (top-left panel), mass ratio (top-right), and EOS
in unequal (bottom-left) or equal (bottom-right) mass models. The black dashed line represents
the sensitivity curve for Advanced LIGO detectors in the zero detuning - high power configuration,
which will be the optimal one for detecting gravitational waves from BNS mergers.

Equal mass models with the SLy EOS and different total baryonic mass

Mr fi fi from [285] fopirar from [230] | fo fo from [250]  fo from [66] | fs
[Mo)] [kHz| [kHz] [kHz| [kHz] [kHz| [kHz] [kHz|
2.4 2.04 1.64 2.04 2.85 2.78 2.83 -
2.6 1.89 - 2.20 1.80 2.18 2.96 3.01 3.03 4.19
2.8 2.15 1.97 2.33 3.14 3.21 3.20 4.31
3.0 2.60 2.21 2.52 3.51 3.41 3.38 4.30

Table 4.4: Frequencies of the main spectral peaks for equal-mass models with the SLy EOS (top-
left panel in figure 4.12). The frequencies f1, fo and f3 are computed from the simulation data
interpolating the spectrum with a cubic spline (with resolution 1Hz) and taking the frequencies
of its local maxima. Predicted peak frequency values, according to empirical relations form ref.
| are also reported for comparison.

[

9
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Equal mass, SLy EOS
My Jo 70 fmerger
0] || K [ms] | [k
2.4 1.31 4.92 1.72
2.6 1.32  3.19 1.81
2.8 1.18 2.26 1.91
3.0 1.01  4.35 1.98

Table 4.5: Frequency and damping times for the m = 0 oscillation mode, obtained fitting the
maximum density evolution after the merger, for equal mass models with the SLy EOS. The
instantaneous frequency at merger is also reported.

Unqual mass models with M7 = 2.8 M and the SLy EOS
q 1 ) I3 Jo 70 fmerger
[kHz| | [kHz] | [kHz] | [kHz] [ms] [kHz|
1 2.15 | 3.14 | 4.31 1.18 2.26 1.91
0.94 || 2.10 | 3.13 | 4.27 1.18 1.88 1.90
0.88 1.98 | 3.05 | 4.17 1.23 1.44 1.81
0.83 1.83 | 298 | 4.11 1.26 1.54 1.73
0.77 - 3.00 - 1.28 1.96 1.63

Table 4.6: Frequencies of the main spectral peaks for unequal-mass models with the SLy EOS and
total baryonic mass of 2.8 My (top-right panel in figure 4.12). The frequencies f1, fo and f3 are
computed from the simulation data interpolating the spectrum with a cubic spline (with resolution
1Hz) and taking the frequencies of its local maxima. fy and 7y are computed fitting the post-merger
maximum density oscillations. fy,erger is the instantaneous frequency at the merger time.

Reproduction of the observed unequal-mass system PSRJ0453+1559 with different EOSs
EOS fi  fifrom [285]  fepirq from [286] | fo  fo from [286]  fo from [66] | f3
[kHz| [kHz| [kHz| [kHz| [kHz| [kHz| [kHz|
APR4 || 2.39 2.45 2.76 3.32 3.57 3.67 4.63
SLy 2.26 2.26 2.56 3.27 3.43 3.41 4.24
H4 - 1.73 1.76 2.38 2.50 2.25 -
MS1 - 1.59 1.54 1.90 2.18 1.88 -

Table 4.7: Frequencies of the main spectral peaks for unequal-mass models based on the observed
PSR J045341559 system, with different EOSs (bottom-left panel in figure 4.12). The columns
correspond to the ones in table 4.4.
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PSR J0453+1559
EOS f[) 70 fmerge?“
[kHz] [ms] | [kHz]
APRA4 1.10 1.47 1.87
SLy 099 1.51 1.67
H4 1.01  2.22 1.27
MS1 0.80 3.24 1.18

Table 4.8: Frequency and damping times for the m = 0 oscillation mode, obtained fitting the
maximum density evolution after the merger, for unequal mass models reproducing the observed
binary system PSRJ0453+1559, with different EOSs. The instantaneous frequency at merger is also
reported.

Equal mass models with M7 = 2.8 M and initial d = 60 km, with different EOSs
EOS fi fifrom [285]  fepira from [286] | fo  fo from [2806]  fo from [66] | f3
[kHz] [kHz] [kHz] [kHz] [kHz] [kHz] [kHz]
APR4 || 2.03 2.08 2.51 3.10 3.34 3.47 4.41
SLy 1.91 1.97 2.33 3.07 3.21 3.20 4.12
H4 1.55 1.62 1.67 2.21 2.38 2.12 -
MS1 1.40 1.49 1.51 1.92 2.08 1.80 -

Table 4.9: Frequencies of the main spectral peaks for equal-mass models with total baryonic mass of
2.8 Mg and different EOSs, starting from d = 60 km (bottom-left panel in figure 4.12). The columns
correspond to the ones in table 4.4.

My = 2.8 Mg, and d = 60 km
EOS f[) 70 fmerger
kHz] [ms] | [kHz]
APR4 || 1.30 2.10 1.86
SLy 125 1.82 1.72
H4 1.06  3.03 1.36
MS1 1.06 7.64 1.27

Table 4.10: Frequency and damping times for the m = 0 oscillation mode, obtained fitting the
maximum density evolution after the merger, for equal mass models with total baryonic mass of
2.8 M and different EOSs, starting from d = 60 km. The instantaneous frequency at merger is also

reported.
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In most models, another two subdominant peaks, one at each side of the dominant one, at
frequencies called f; and f3 (or, sometimes, f_ and f) are recognizable. Their physical origin has
been the focus of a recent debate in the literature. They have been first interpreted as nonlinear
combinations of the fundamental m = 2 mode with the quasiradial m = 0 oscillations [10, 1,
which have frequency fo close to % ~ | fa — f1,3]. In more recent works, they have been, instead,
attributed to the modulation of the main m = 2 mode by the nonlinear radial oscillations of the
two rotating stellar cores in the first few milliseconds after the merger [141, 57, ) ]. Finally,
in ref. [277, |, a new mechanism was proposed for explaining the low frequency peak, in the
stars with stiffer EOS: the GW emission at a new frequency f (also called fgpirqr) due to the spiral
arms created by the strong deformations during the merger, which rotate, in an inertial frame, at a

frequency g, slower than the central cores rotation.

It is important to note that, while the dominant post-merger peak is within the Advanced LIGO
sensitivity curve for almost all models (with a reference distance of 100 Mpc and considering optimally
aligned binaries), the subdominant peaks will be very difficult to detect in current interferometric
detectors, and the next generation experiments, like the Einstein Telescope [288, |, will be
necessary for inferring the neutron star EOS properties from them.

In the top-left panel of figure 4.12, are compared the spectra of equal-mass BNS models with
different total mass. The first characteristic one can note is that the post-merger spectrum of 1.6 Mg,
merging stars (magenta line) does not have any high-frequency peak, but, instead, is monotonically
decreasing after the first bump, relative to the inspiral GW emission. This happens because that
model collapses to a black-hole right after the merger, so no (hyper)massive neutron star merger
remnant is present in its evolution. The GW emission after collapse, due to disc oscillations or BH
quasi-normal modes, is much weaker than the inspiral or post-merger NS emission, so it does not
show up in the spectrum on this scale. Collapsing models are investigated more in depth in section
4.2.4. All the other systems show the dominant fo peak, which has a higher frequency and more
power increasing the total mass of the system. An exception to this are the merging stars with
M = 1.5 Mg, which have less power in the fo peak than the 1.4 My stars, because their remnant
also collapses to black-hole before the end of interval in which the spectrum is computed, although
after a short hyper-massive neutron star phase. Subdominant peaks, on each side of fs, also become
more important increasing the total mass. In particular, the f3 peak is not recognizable in the
M = 1.2Mj system, while a low-frequency fi peak is present in the same model. Finally, it is
possible to note that the M = 1.5 Mg system has also an additional peak at a frequency lower than
all the other ones, below 2 kHz, which is not found in any other model.

The top-right panel of the same figure 4.12, instead, shows the effect of mass ratio on the
GW spectrum. The main fs peak moves slightly towards a lower frequency increasing the mass
asymmetry (in accordance with the results of [66, (7]). This effect, although small in the particular
models analysed here, needs to be studied more in depth, with new simulations, adopting a wide
range of total masses and EOSs, because it should be included in empirical relations linking the fo
frequency with some characteristics of the initial stars or of their EOS. Since now, these relations
are developed starting only from equal or close-to-equal mass systems [13, , —287, , ],
with the exception of the simple prescription in ref. [66]. Another effect of the mass ratio is the
progressive disappearance of subdominant peaks, while the mass asymmetry increases. The most
unequal mass system analysed here, with 1.2 — 1.6Mg (¢ = 0.77), shows only one peak (at f2) in
its post-merger spectrum.

The bottom panels, finally, show the comparison of equal (right) and unequal (left) mass models
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with different EOSs. The softer EOSs have the main peak at higher frequencies, with an effect which
is much larger than the one due to the mass ratio. This is why the post-merger spectrum is one of
the best candidate observables to reveal the neutron star EOS from observations of GW emitted by
BNS mergers. In the unequal mass models, corresponding to the physical parameters of the observed
system PSRJ0453+1559 (¢ = 0.75), no important secondary peaks are present, just as the ¢ = 0.77
SLy models discussed above. Very small subdominant peaks are still present with the softer EOSs
(APRA4, and, more significantly, SLy), while they are totally absent with the stiffer EOSs (H4 and
MS1). A very interesting and unique finding of these simulations is the presence of a double main
peak in the model with the APR4 EOS. A change in time of the dominant mode frequency was
already discussed in ref. [07, ], but I am not aware of any other published simulation showing
a split in the main spectral peak. This complicates further the phenomenology of the post-merger
spectrum and its reconstruction with simple empirical prescriptions. This double peak could be
linked with the finite-size of the simulated post-merger signal, and the higher-frequency peak, related
to the fist few milliseconds after the merger (see also the spectrogram in figure 4.17), will have
its weight reduced in a longer signal. However, most of the energy emission in gravitational waves
happens during the simulated time (see section 4.2.2), therefore the damped gravitational waves
emitted after 30 ms from the merger could qualitatively modify only slightly the overall frequency
spectrum. A detailed analysis of this effect would require, first, an accurate study of the damping
time resolution dependence, since the effect of numerical dissipation could be important. Such
investigation is still a work in progress, starting from the data presented in appendix A.1 to study
the convergence properties of the inspiral signal.

As mentioned in the last paragraph, several empirical universal relations have been proposed to
link the frequencies of the main GW spectral peaks to some physical characteristics of the initial
stars, independently of the neutron star EOS. If correct, these could be used to easily extract
the source physical parameters from a GW detection, with a strong enough signal to be able to
recognize also the post-merger (which, having a GW emission at higher frequency, is more difficult
to be detected for current interferometers). These relations, however, are often based on a limited
number of simulations, and, in particular, unequal mass systems are often ignored. As noted before,
the inclusion of unequal mass BNS systems (which we now know that are existing in nature) will
open a new direction in the parameter space and could, therefore, potentially break the empirical
relations developed so far.

In particular, the fundamental quadrupolar oscillation mode, which is responsible for the fo
peak, is known to be tightly correlated, in non-rotating stars, with the combination

M

R3’
This suggests that, if the remnant radius is related with the radius of a fixed mass non-rotating
NS, in a EOS-independent way, there could be a relationship between fs and the NS radius. This
was explored in ref. [280, |, where, for fixed total mass of the (equal mass) BNS system, tight
relationships where found between fs and the radius of a non-rotating neutron star with a mass
higher than the one of the original coalescing stars (for example, the radius of M = 1.6 M NSs for a
system with total gravitational mass 2.7 Mg ), because the merger remnant central density is higher
than the maximum density of the merging NSs. These relationships, however, do not scale so well
when trying to parametrize also the contribution of the total mass of the system. The dependence
of fo with the binary mass, could be itself dependent on the EOS, as shown in ref. [286]. Another
interesting, and simple, way to connect fy with the physical parameters of the merging stars is

(4.13)
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proposed in ref. [66], where it is connected, using a linear regression, and considering an inverse
correlation with the total mass, with the conctact frequency of the merging stars, computed using
an approximation from ref. [292] starting from the initial stars masses and radii. This allows, also, to
take into account unequal mass systems, because they will have a slightly different contact frequency
than the corresponding equal mass one with the same total mass. Comparing the fs predicted from
those relations, and the results of the simulations in figure 4.12, one gets compatible frequency
values, considering our Fourier transform sensitivity (see tables 4.4, 4.6, 4.7, 4.9). However the effect

of mass ratio is underestimated by the relationship of ref. [66] (as is visible also in their figure 4),
and both empirical relationships seem to work better for lower mass systems. Other interesting
empirical relationships have been developed in ref. [215, |, linking fo with the tidal coupling

constant ks. They are particularly interesting, because a single parameter is responsible for the EOS
effect on the GW signal in both the inspiral and the post-merger phase.

The low-frequency subdominant peak has also been a target for universal relations linking it
to the stellar mass and radius. In order to compare the leading physical interpretations for the
subdominant peaks origin against the data discussed here, in figure 4.13 are plotted all the spectra of
fig. 4.12, with vertical lines indicating the results of different prescriptions to forecast the frequencies
f1 and fs, starting from the initial stars parameters. The low frequency green line is computed
from eq. 18 of ref. [285], which comes from a fit of f; data from their simulations (which use
numerical methods and EOSs very similar to the ones described in this thesis) against the initial
stars compactness (or its average, in the case of unequal mass models). The corresponding high
frequency line, approximating f3, is computed simply as f3 = 2fo, — f1, with f; taken from their
empirical relation and fy directly from the simulations results. The cyan line marks the foira
frequency, computed with eq. 26 of ref. [285], which was obtained fitting the data from ref. [287]
with a second order polynomial in the (average) compactness of the merging stars and their total
gravitational mass.

The dashed red lines, instead, mark the frequency resulting from the combination of the m = 2
and m = 0 modes, at a frequency sometimes called foyg. They are simply computed as fo + fo,
with fs taken from the data and fy computed fitting the maximum density oscillations, with the
following test function:

t
p = at + bt* + ce™ sin (27 fot + ¢) . (4.14)

For the same purpose, it is also possible to fit the minimum lapse, instead, as done in ref. [68, |. The
fo values obtained with both methods are compatible. The post-merger evolution of the maximum
density can be seen in figure 4.14. ppq: is growing quadratically, from the merger time, and has
damped oscillations in the first few milliseconds. These oscillations have a similar frequency for
every mass (except for the collapsing model with total mass My = 3 M), mass ratio and EOS, but
very different amplitudes and modulations. Their amplitude increases with the total mass of the
system, as the power in the subdominant modes. This is consistent with the remnant getting closer
to the threshold mass for quasi-radial collapse. The oscillations amplitude, instead, decreases with
the mass asymmetry, while, again, also the power in the subdominant peaks decreases substantially.
Models with a mass ratio far from one have also a limited growth of the average maximum density,
respect to equal mass models. This happens because a larger amount of mass is driven away from
the remnant core, as seen in the last panels of figure 4.2, due to the tidal disruption of the lower
mass star. This difference is potentially very important, because it means that mass ratio can
change significantly the collapse time of BNS merger remnant, influencing both the total energy
emitted in GWs and the timescales for electromagnetic or matter emissions. For example, the PSR
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Figure 4.13: Amplitude spectral density of the GW strain, for the same models of fig. 4.12, for an
optimally-aligned source at 100 Mpc from the detector. The vertical lines mark the subdominant
modes frequencies predicted by empirical relations (green lines for f; and f3 from ref. [14, 285] and
cyan line for fopirq, from the formula of ref. [285], extrapolated with the data of ref. [287]), or by
mode composition (red dashed lines).
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Figure 4.14: Evolution of the maximum density in the models presented in figure 4.13. Fitting its
oscillations it is possible to compute the frequency of the quasi-radial m = 0 mode.
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J04534-1559 model has a higher total mass than the equal mass SLy1.5vs1.5 model, but the former
does not collapse to black hole in the simulation running time (about 30 ms after the merger), while
the latter does collapse in a few milliseconds after the merger. The maximum density reached and
its oscillations amplitude are also heavily influenced by the NS EOS (see bottom panels of figure
4.14, in which, for example, can be seen that the stars with MS1 EOS have way lower amplitude
in their quasi-radial oscillations). In particular, in the stiffer EOSs, some modulations are present
in the density oscillations. These have been found also in ref. [277, |, where they have been
interpreted as due to the slower rotation of the two antipodal bulges (forming the spiral arms of the
bar-deformed remnant), producing a modulation with frequency fo — fopirqi- When the antipodal
bulges and the central double cores are aligned, the compactness (and then, the maximum density)
is lower, and when they are orthogonal the compactness and the maximum density are higher.

Looking at figure 4.13, it is still impossible to give a definitive answer for the physical origin
of the subdominant peaks, because the frequency coming from the empirical relationship for fj is
often close to the one for fspirqi (in the less compact models) or for fatg (in the more compact
models), as already noted in ref. [285]. However, some useful information can be gathered, which
are in accordance with previous published works. Looking at the first row, the M = 1.2 M, system
is consistent with the fs,;-q model, because both the predicted fi; and fo_g fall at a frequency for
which there is no peak in the spectrum. Moreover, no high frequency peak f3 is found, which would
be present if the low frequency peak came from an interaction between the m = 2 and m = 0 modes,
but should be absent if only the emission at fg,irq Was dominant, as it seems to be the case here.
Increasing the masses (and, therefore, the compactness) of the merging stars, we find a model with
a possible coexistence of both fi and fspirat (M = 1.3Mg), belonging to the category classified
as “type II” in ref. [286]. The M = 1.4 Mg model, instead, seems to have a low frequency peak in
between the predicted fi (or the close fa_g) and fspirqa. However, this oddness will be clear in the
next paragraph, looking at the spectrogram. Finally, the M = 1.5 M model shows two subdominant
peaks which are closest to fa_o, again in accordance with ref. [277], where is stated that the mode
combination should be the dominant effect in models close to collapse. In the unequal mass PSR
J0453+1559 system (third row of figure 4.13), there is only a recognizable subdominant peak for
the softer EOSs, which is close to the predicted value for f; (and also for fo_g, in the case of SLy),
while the fgpi-q; prediction falls in a region without any spectral feature, consistently with what is
expected for the more compact stars. The absence of subdominant peaks with the stiffer EOSs can
be explained with the low amplitude of the density oscillations and the absence of a two-arms spiral
structure, due to the high mass asymmetry. The last row shows the subdominant peaks being close
to f1 in all models, but also close to fspirq in the least compact ones. In this case, contrary to the
SLy1.2vs1.2 model, the presence of also an f3 peak, close to 2 fo — f1, makes a strong case for at least
a contribution coming from the modulation of the dominant mode by the quasi-radial oscillation of
the double rotating cores. However, the results from the spectrum of d = 60 km simulations must
be taken with care, since they can be biased by the numerical errors accumulated during the long
inspiral numerical evolution, as argued in the following section 4.2.3.

The graviational waves post-merger spectrogram

Some recent works [67, 99, | highlighted the importance of not looking only at the main spectral
features of the post-merger GW emission by computing its Fourier transform in a wide interval, but
studying, instead, also its time evolution. The easiest and standard way of doing this is to build a
Fourier spectrogram, computing signal Fourier transforms in small intervals (in this particular case,
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5ms intervals were used), with an high superposition between them (in this case, of 95%). For every
Fourier transform, the time domain signal is first padded with zeros, to have a better frequency
resolution, with a padding length of two times the original signal. The results are shown in figures
4.15, 4.16, 4.17 and 4.18, in which are also reported, with horizontal lines using the same color code
of fig. 4.13, the estimates for fi, fo+o, fspirar and f3, together with a black line representing the fo
values measured from the full spectrum.

The first interesting feature of the spectrograms, visible in all models, is that the secondary
spectral peaks correspond to GW emissions only at most in the first five milliseconds after the merger.
This is consistent with the time scales for the damping of the quasi-radial oscillations 7y, reported
in tables 4.5, 4.6, 4.8 and 4.10. At the same time, the dominant GW emission mode shows a change
in frequency, right after the damping of the subdominant modes. The f> frequency, measured in
the complete spectrum, corresponds to the frequency of the single exponentially damped remaining
oscillation mode, after the first milliseconds. The main emission frequency in the first part of the
post-merger, called fy; in ref. [285], where this change in frequency was first recognized, can be
computed like fo but from a short spectrum, ending 5 ms after the merger. For this reason, the foig
frequencies should be computed using fo; + fy, because the mode combination could act only in the
first few ms, before the m = 0 oscillation mode damping. This was done to draw the red dashed lines
in figures 4.13 and on the spectrograms. Another interesting feature is that the frequency of the
dominant mode, even after this initial “switch”, is not constant, but increases in time, in particular
in models closer to collapsing. This happens due to the redistribution of angular momentum in
the remnant, which evolves towards a more compact configuration, causing the central double-core
structure to rotate faster, increasing the main emission frequency. This change in the dominant
mode frequency is less pronounced in the unequal mass models (see fig. 4.16 and 4.17), coherently
with the slower increase in their central density, as seen in the top-right panel of figure 4.14.

A case for the usefulness of looking at the full spectrogram is made by the models SLy1.3vs1.3
and SLyl.4vs1.4 (figure 4.15). They show, in the first 2-3 ms, an emission at both the frequency
predicted for fspirq and the one for fi (or fa_o, they appear to be very close for those two models).
For the first model of the two, this is reflected also by the presence of two distinct peaks in the full
spectrum of fig. 4.13. For the second one, instead, the fgpirq; emission have more power but dies
down in just a couple of milliseconds, while the f; (or fo_g) emission lives for more than 5ms, but
has less power. The result, in the full spectrum, is a single peak, with a large width, in between the
two frequencies. The model SLy1.2vs1.2, which in the full spectrum shows only one low-frequency
peak close to fspirqi, in the spectrogram has, instead, also an emission close to fa1o (or fi and f3),
but with a low amplitude and not starting right at the merger, but only after some milliseconds.

In the unequal mass models, which have the same total mass and EOS of SLyl.4vsl1.4 (figure
4.16), the fspirq emission disappears even at moderate mass ratios, because the two spiral arms
structure is replaced by a single spiral arm (coming from the deformation of the less massive star).
The emission due to the interaction between the m = 2 and m = 0 modes, instead, gradually gets
less power and also a shorter damping time, increasing the mass asymmetry, due to the parallel
reduction of the density oscillations amplitude.

The interesting split peak in the post-merger GW spectrum of the PSRJ0453+1559 system with
the APR4 EOS can be explained simply by the difference in the frequency of the main emission
mode between the first 3 ms and the rest of the signal, which is bigger than in most of the other
models, and by the fact that the remaining of the signal quickly loses power and its frequency does
not increase with time. Another interesting feature of this system is a week, low frequency ( 1.7 kHz)
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Figure 4.15: Fourier spectrograms of the post-merger GW signal for the equal mass models present
in the top-left panel of figure 4.13, with the SLy EOS and different total mass. Detail of its compu-
tation can be found in the text. The coloured horizontal lines mark predicted frequencies for the
subdominant peaks, with the same color-code of fig. 4.13. The black horizontal lines mark, instead,
the peak frequency fo measured from the full spectrum.
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Figure 4.16: Fourier spectrograms for the (2,2) mode of the post-merger GW signal for the unequal
mass models present in the top-left panel figure 4.13, with the SLy EOS, a total baryonic mass of
2.8 M and different mass ratio, from ¢ = 1 to ¢ = 0.77. Detail of its computation can be found in
the text. The horizontal lines mark predicted frequencies for the subdominant peaks, with the same
color-code of fig. 4.13. The black horizontal lines mark, instead, the peak frequency fo measured
from the full spectrum.



108 CHAPTER 4. SIMULATION RESULTS

5 0 1 1 1 1 1 1 5 0
45[APRAJE- - {M =1.27-1.75}{ 45
4.0 - 4.0
3.5} i 3.5
T 3.0 1 T30
e
Sosk 4 =25
Gy I S5
2.0 ] 2.0
1.5} - 1.5
1.0 - 1.0
l l l l l l l l
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
t_tmerger [mS] t_tmerger [mS]
50 I I I I I I 5'0 I I I I I I
4.5 (M = 1.25 - 1.71) 1 45[Ms]) (M = 1.25 - 1.7) .
4.0 - 4.0k i
35 lgme -
T 3.0 .
s
G

| | | |
-5 0 5 10 15_20 25 30 -5 0 5 10 15_ 20 25 30
t—t [ms] t—terger [MS]

merger

Figure 4.17: Fourier spectrograms for the (2,2) mode of the post-merger GW signal for the models
present in the bottom-left panel of figure 4.13, based on the observed PSRJ043+1559 system, with
different EOSs. Detail of its computation can be found in the text. The horizontal lines mark
predicted frequencies for the subdominant peaks, with the same color-code of fig. 4.13. The black
horizontal lines mark, instead, the peak frequency fo measured from the full spectrum.
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Figure 4.18: Fourier spectrograms for the (2,2) mode of the post-merger GW signal for the equal
mass models present in the bottom-right panel of figure 4.13, with a total baryonic mass of 2.8 Mg,
and different EOSs . Detail of its computation can be found in the text. The horizontal lines mark
predicted frequencies for the subdominant peaks, with the same color-code of fig. 4.13. The black
horizontal lines mark, instead, the peak frequency fo measured from the full spectrum.
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GW emission mode which develops with the softer EOSs after 15 ms from the merger.

Prony methods for the post-merger spectrum analysis

The use of a Fourier spectrogram has some known drawbacks:

e It considers only the modulus of the gravitational waves strain, and not the full complex
number.

e It does not allow to extract information about the damping times of the different excited
modes, neither to know if they are positive or negative (if the mode is vanishing or growing
in a particular time interval).

e The accuracy in time and in frequency are linked together by an “uncertainty principle” - like
relationship (called the bandwidth theorem in this context, which states that longer intervals
for the Fourier transforms allows for better frequency resolution, but worse time resolution).
Therefore, it is not possible to archive a good accuracy in the emission frequencies in the first
few milliseconds, where the subdominant modes are excited.

In the signal processing literature, an alternative technique to compute spectrograms is known,
which overcomes all these limitations: the Prony method.

The goal of the Prony method is to fit a sum of complex exponentials (which means, of exponen-
tially decaying or growing oscillating signals), sampled with discrete points, which, for each value
of its discrete index n € [0, N — 1], can be represented as:

M M
h[n] = ZAke(akJriwk)nTJrid)k = ch227 (4‘15)
k=1 k=1

where M is the number of signal components, which a priori could be unknown. Fitting such a
signal with standard least-squares methods it is known to be often problematic, when the data
contain also a noise component and the number of exponential M is large, requiring to fit 4M free
parameters [(4, ]. Another problem of using a standard least-square fit is the need of an initial
guess for the parameters values, which is not needed, instead, adopting the Prony method.

The original method, developed by Prony in 1795, required knowing a-priori the value of M,
and having a perfect signal without noise, sampled with 2M points. For n € [0, M — 1], eq. 4.15 can
be written in matrix form, as a Vandermonde linear system:

z(li 2(21) z%[ c1 h[0]

z z Sz Co h|1

' ? M - [ | . (4.16)
P SRR cM hIM — 1]

The goal of the Prony method, is to find, in an independent way, a solution for the complex
exponentials zx, which gives the frequencies and the damping times of the signal components. Once
they are known, one can solve the system 4.16 with standard techniques, to get also the amplitudes
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and the phases, encoded in the coefficients c;. The starting point is to construct an M-grade
polynomial, whose zeros are the first M z:

M M-1
p(z) = H (z — 21) Z a2t + M 2 e, (4.17)
k=1 k=0

where the coefficient ap; has been arbitrarily set to one. Starting from these Prony polynomials, one
can find the following relation, for each m € N*:

M M M
Zakh[k—i-m] = Zak chz;-”m =
k=0 k=0 j=1
M M M
= chzgn (Z akzjk> = chzgnp(zj) = 0. (4.18)
j=1 = j=1

Using the sampled values of the signal hlk], k € [0,2M — 1], this can be translated in a forward
linear prediction system:

M-1
> aghlk+m] = —h[M+m],m e [0,M —1], (4.19)
k=0

which, in matrix form, becomes:

x[0] z[l] - x[M —1] al0] z[M]
Hy(0) = x[l] x[Q] :c[M] a[:l] _ CC[M:—F 1] (420)
oM 1] z(M] - a2M -2 ) \ oM —1] 2[2M — 1]

where Hj/(0) is an invertible square Hankel matrix. The original Prony algorithm, then, consists in
the following steps:

1. Solve the linear system 4.20, to find the Prony polynomial coefficients ag;

2. Compute the zeros of the Prony polynomials 4.17, to find the frequencies wy, = tan™! [Im(zy)/ Re(zx)] /T
and the damping times 7, = T/ log | zx/;

3. Solve the linear Vandermonde system 4.16, to get also the amplitudes Ay = |cx| and the phases
¢ = tan™" [Im(cy)/ Re(cy)]-

Usually, however, one has more data points than 2M, and they contain also a noise contribution.
One simple solution to adapt Prony’s method to the realistic case is to extend eq. 4.20, using a
rectangular [N — M x M] Henkel matrix and solving it in the least-square sense. Unfortunately, this
least-square Prony works only for very high signal to noise ratios. When the noise is a significant
fraction of the sampled data, one has to resort to other formulations. There are a lot of variations
published in the literature, but they all share the common trait of looking for a number of exponential
components L > M, and, among them, find which one are due to the real signal and which one
are due to noise. In the following analysis L = N/3 was used. Some of these techniques allow also
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to estimate the value of M from the data, without needing to know it a priori, like in the original
Prony method. In this work I adopted the ESPRIT technique (Estimation of Signal Parameters
via Rotational Invariance Technique) [293-296]. It is closely related to the Matrix Pencil technique
[297, ], which was found to be the best in ref. [299] for balck holes quasi-normal modes. A
comparison between the two, showing compatible results, was presented in ref. [294].

The starting point is the construction of the rectangular Hankel matrix

h[0] Rl1] - R[L]
B[] B2l e RL4+1]
: : | , (4.21)
WN—L—1 BN—L] - BN-1]

and the closely related matrix Hy_r, 1,(1), which is obtained from Hy_p, 1,(0) removing the first
column and adding a N — L vector of zeros as last column. Following from eq. 4.20, an extended
companion matriz Cr41 can be constructed, which allows to transform Hy_p, 1(0) in Hy_p, 1+1(1):

Hy_1,041(0)Cr41 = Hy_r,1.41(1) (4.22)
Cpiy = < . Cr(a) 0{\//[,L+17M > ’ (4.23)
Lti-MM  Vigi-m

where C'(M) is the companion matrix in the original Prony method:

00 --- 0 —ap
1 0 —aq

Cyfa) = [ O 1 - 0 —a (4.24)
00 --- 1 —apr—1

and the bottom-right block is given by:

Vigi-m = O1.L-n 0 . (4.25)
In—v Op_nma

The companion matrix C(M) has the M z;, j € [1, M] as eigenvalues. Its extended version Cry1,
instead, has the same M eigenvalues, plus L + 1 — M additional eigenvalues which are zero.

The key of the method, like many other Prony-like techniques, is to perform a singular value
decomposition (SVD) of the Hankel matrix and the closely related matrix H(1):

Hy-p1+1 = Un—1.SN— L1 WH, (4.26)

where U and W are unitary matrices and S is a rectangular diagonal matrix, whose nonzero values
0i,1 € [1, L + 1] are called the singular values of the Hankel matrix, arranged in a non-increasing
order. For noiseless data, only M singular values are non-zero. For data with noise, instead, it is
possible to define a threshold €, depending on the desired accuracy (which depends also on the input
data accuracy), to find a posteriori, from the sampled data, the number M of complex exponential
components present in the signal, requiring

— >e (4.27)
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In the present case, I chose € = 1072,

After the o; rearrangement, and finding M, it is possible to remove from S all the L +1 - M
singular values linked with noise, setting them to zero, and building the rectangular diagonal
submatrix Sy_r ar At the same time, one defines accordingly the submatrix Wﬁ L41- From those
submatrices, which take into account only the signal-related singular values, one can reconstruct
again Hy_p, 1+1, and Hy_p, 1+1(1), taking also in this case only the largest M singular values. This
allows to rewrite eq. 4.22 as:

Sn-rmWii 1 Crir = Sv-ruWik 11 (1), (4.28)
Multiplying the conjugate transposed equation with Sﬁ_ LM from the left, and setting
Wwar(s) = Wayrpa(1: M,14+s:L+s),s=0,1, (4.29)
in order to remove the zero columns, one finally gets
CHWir,(0) = War (1) (4.30)

Since C, has rank M, and its eigenvalues are the z; we are looking for, one can find them solving
eq. 4.30 in the least-square sense and computing the eigenvalues of the solution matrix

Far o= W (0)Wars (1), (431)
where WJL 1 is the Moore-Penrose pseudo-inverse

At = AT (4477 (4.32)

Once one obtains the M z;, as eigenvalues of F)y, it is possible to solve the (now overdetermined)
Vandermonde system, again in the least-square sense, to get also the ¢;, from which the modes
amplitudes a phases can be computed.

In order to construct a Prony spectrogram, were computed, for each point in the post-merger
gravitational wave strain, the ¢; and z; applying the ESPRIT Prony algorithm in an interval of
2ms, centred in the given discrete time point. This allows to have at least two GW cycles for all
emission at frequency larger than 1kHz, as happens in every model in the post-merger phase. The
results of these spectrograms are plotted in figure 4.19 (for the frequencies) and fig. 4.20 for the
damping times and for the amplitudes, only for two simulated models: the equal mass one with the
SLy EOS and M = 1.4 M, for each star and the unequal mass one, with the SLy EOS, the same
total baryonic mass, and ¢ = 0.77.

The different colors correspond to the main quadrupolar emission (red lines) and modes with
higher (magenta lines) or lower (blue lines) frequencies. The horizontal lines in the frequency plots
4.19 have the same meaning of the corresponding lines in the Fourier spectrograms in fig. 4.15, 4.16,
4.17, 4.18.

The result of the Prony analysis are qualitatively close to what was found from the Fourier
spectrograms, confirming the presence of different excited oscillation modes, with varying growing/-
damping times. At this stage this can only be a qualitative comparison, since Prony’s spectrograms
are highly dependent on the choice for the length of the intervals in which Prony’s fitting is per-
formed. Further careful studies on the fine-tuning of the method parameters are needed before
being able to draw also accurate quantitative inferences from it. For example, in the equal mass
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Figure 4.19: Frequency of the complex exponential modes fitted with the Prony method from the
gravitational wave strain, for an equal and an unequal mass model with the same total baryonic
mass (2.8 M) and the SLy EOS. The rolling Prony method adopted assigns to every point in the
graph the frequencies computed by an ESPRIT Prony algorithm in the 2ms interval around it.
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Figure 4.20: Damping times (upper panels) and amplitudes (lower panels) of the complex exponential
modes fitted with the Prony method from the gravitational wave strain of the models in fig. 4.19.

model (left panel of figure 4.19), we do not see in the first milliseconds two separate low-frequency
emission modes, like in the Fourier spectrogram, because the emission close to fpirq1 lasts for less
than the fitting interval. The result is a single mode at an intermediate frequency, just like it is
reconstructed in the full 23 ms long spectrum (fig 4.13). Despite this problem with quickly-varying
emission mechanisms, Prony’s methods shows, instead, a better ability to recognize even very week
modes, like the two subdominant modes in the ¢ = 0.77 model, which are not visible either in the
Fourier spectrogram or the full spectrum, but can be seen in the Prony spectrogram, instead, even
if they last only just for the first two milliseconds of the post-merger.

The computed values for the damping times 7 (fig. 4.20, upper panel), are less clear to read. This
happens because a longer time window would be needed to more accurately evaluate the damping
times, but it would prevent the recognition of the subdominant modes, which get damped in just a
few milliseconds. However, still some interesting information can be gathered from fig. 4.20. The
main GW emission mode have a positive 7 (growing mode) in the first couple of milliseconds in the
post-merger, when it gets seeded by the deformation produced in the merger phase. After that, it
keeps a low, negative damping time (it gets quickly damped), until the end of the subdominant mode
emission. After that, when there is also a rapid change of frequency in the dominant mode, as seen in
the Fourier spectrograms, the damping time absolute value becomes much larger, between 20 and 30
ms for the equal mass model. In the unequal mass model, instead, the absolute value of the dominant
emission mode damping time is much lower, always below 10 ms. This information is potentially
very important for post-merger BNS GW detection, because a faster damping of the dominant mode
means a lower integrated signal to noise ratio for the gravitational-waves post-merger signal from
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Figure 4.21: Total energy radiated in gravitational waves up to each point in retarded time.

unequal mass mergers.

The mode amplitude, plotted in figure 4.20 (lower panels), shows that in the first 2ms after
the merger the low-frequency subdominant mode is actually dominant (has more power) than the
m = 2 oscillation mode.

4.2.2 Radiated energy

Another interesting aspect to evaluate from the merger and post-merger GW emission is the radiated
energy. In particular, it is interesting to understand when most of the GW energy gets emitted,
and how the total energy emitted in the different phases of a BNS merger change with the binary
parameters.

Figure 4.21 represents the total energy emitted in gravitational waves up to a retarded time ¢, for
the models analysed in this chapter. Its companion, figure 4.22, instead, depicts the instantaneous
energy flux emitted in each discrete point in time of the binary evolution. From the energy fluxes
(fig. 4.22), it is clear that most of the energy emission, in all models, is concentrated in two small
time intervals: the merger moment, where the energy flux has its maximum peak, and an interval
around 2 — 5ms after the merger. In the previous section, from the Prony analysis it was possible to
notice that the dominant post-merger GW emission mode has an exponentially growing amplitude
in the first 2ms after the merger, after which there is a time interval characterized by a main
emission at frequency fo;, with a small damping time. After about 5ms, when the energy flux
decreases substantially in all models, there is also a drop in the dominant mode amplitude (see
fig. 4.20), which switches to the frequency fo, with now a larger damping time. This is reflected,
again, also in the energy flux, which, after a sudden drop, slowly diminishes, in an almost linear
way for many models (in particular, the equal mass ones with high total mass). The second energy
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Figure 4.22: Energy flux dEd% radiated instantaneously at each point in retarded time.

flux peak, during the post-merger, is higher increasing the total mass (it is almost not present in
the SLy1.2vs1.2 model). Mass ratio does not seem to play a huge role in this early post-merger
energy emission mechanism. There is, instead, an important effect of the EOS, with the softer
models emitting much more energy than the stiffer ones. In the last part of the simulations, where
only a single, slowly decaying mode is excited, total binary mass does not make too much of a
difference, except for models collapsing to black holes, whose GW emission effectively stops, because
BH quasi-normal modes and disc oscillations have a much lower amplitude than the bar-deformed
NS remnant radiation. Mass ratio, instead, has a more important role in this phase; models with
q < 0.9 show a much faster decay in the energy flux, consistent with the lower damping times of
their dominant emission modes, as seen in figure 4.20.

To understand more intuitively the net effect of those differences in the energy fluxes, it is useful
to look just at the total emitted energy (fig. 4.21). The top-left panel shows that the emitted energy,
in both the inspiral and the post-merger phase, increases with the total mass of the system. It is
interesting to note that the total energy emitted by high mass binaries collapsing to BH during the
simulation time is quickly overcome by the not-collapsed models with lower total mass, due to the
high efficiency of the m = 2 fundamental quardupolar mode in neutron stars. The top-right panel
shows that mass ratio has a big effect only in the mid post-merger (about 5 to 15 ms after the
merger), while it is not important for the radiated energy during the inspiral. The EOS (bottom
panels), instead, has a big role in determining the total emitted energy. In particular, it is peculiar
to note that in the unequal mass PSR J0453+1559 model, with some EOS (APR4, MS1) the energy
emission seems to effectively stop after the post-merger peak in the energy flux, while for the other
two EOSs employed (SLy and H4), it goes on, just like the other SLy models plotted in the top row.
This effects points again to the need of performing new simulations and more careful analysis of
the effects of the EOS and mass ration on the post-merger dynamics and GW emission in unequal
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Model Egy [-10ms; -bms] | Egy [-5ms; 0] | Egy [0; 5ms] | Eg, [5ms; 10ms]
SLy1.2vs1.2 0.002 0.006 0.018 0.015
SLy1.3vs1.3 0.002 0.008 0.031 0.015

SLy1.4vsl.4 (d=40) 0.003 0.011 0.039 0.015
SLy1.5vs1.5 0.002 0.013 0.056 0.009
SLy1.6vs1.6 0.002 0.016 0.010 4 x 107"

SLy1.35vs1.55 0.003 0.010 0.037 0.018
SLy1.3vsl.5 0.002 0.010 0.034 0.012
SLy1.25vs1.55 0.002 0.009 0.032 0.013
SLyl.2vsl.6 0.002 0.008 0.029 0.011
PSR J0453+1559 (APRA) 0.003 0.012 0.020 0.011
PSR J0453+1559 (SLy) 0.003 0.010 0.017 0.003
PSR J0453+1559 (H4) 0.002 0.006 0.014 0.006
PSR J0453+1559 (MS1) 0.001 0.005 0.007 0.001
APR4_1.4vs1.4.d60 0.002 0.009 0.037 0.012
SLy_1.4vs1.4.d60 0.002 0.008 0.033 -
H4_1.4vs1.4_d60 0.002 0.005 0.014 -
MS1_1.4vs1.4.d60 0.002 0.005 0.009 0.002

Table 4.11: Energy radiated in gravitational waves by the compared models in different intervals,
respect to the merger time (here t,,¢rger = 0). The missing values in the last column are because
less than 10 ms after the merger were simulated for those models.

mass models, which we now know to exist, even in our galaxy.

In table 4.11 is reported the energy emitted in different time intervals by the different models,
in order to confirm quantitatively what was just explained looking at the plots.

Another interesting observable to look at are the reduced energy vs reduced angular momentum
curves (already introduced in sec. 4.1.1), plotted in figure 4.23, in particular for their gauge-invariance
property, since a lot of other potentially interesting post-merger measurements, like the neutron
star rotation profiles, are heavily influenced by the gauge choice, instead [57].

In this case, it is the total binary mass, and not the EOS, to make the biggest difference. The
E(J) curves, in the inspiral phase, are lower (more emitted energy) decreasing the total mass, except
for the SLy1.2vs1.2 case, which is very different form the other, having instead a much higher total
energy respect to the total angular momentum, mainly due to the difference in the initial data,
starting with a much higher angular momentum than all the other binaries. After the merger, the
E(J) curves are straight lines, with a slope which contributes to invert the effects of the inspiral:
the lower mass models emit energy more slowly in the post-merger, while they radiate angular
momentum. At the end of the simulations, the models with mass 1.5,1.4 and 1.3Mg pass trough
a state with the same energy and angular momentum. Mass ratio (top-left panel) does not have,
instead, a big effect, with most of the difference coming from the initial configuration. The EOS
effect is very small during the inspiral, but the coalescence is longer for models with a softer EOS
(which have a longer merger time). The post-merger E(J) slope is similar between the two soft EOS
(APR4 and SLy) and the two stiff EOS (H4 and MS1). It would be interesting to check simulations
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with a wider set of EOS, in order to understand if there is a smooth transition in the E(J) slope,
and if it can be correlated with some stellar parameter, like the radius of a non-rotating star, or its
tidal deformability.

To end this subsection, it should be stressed that several microphysical ingredients, such as a full
finite-temperature nuclear EOS, neutrino emission and absorption and magnetic fields, are missing
in the simulations presented in this thesis. They could potentially have an important impact, in
particular on the post-merger energy balance.

4.2.3 Effects of the initial interbinary distance on the post-merger evolution

In section 4.1.2, it was analysed in detail the effect of the initial interbinary distance on the inspiral
phase of BNS mergers. Looking at figure 4.8, hinted already at some effects being present in the post-
merger too. This is important, because most BNS merger simulations focusing on the post-merger
phase start from very close configurations, to save computational time. It is therefore useful to
understand which is the lowest possible initial distance which allows to investigate the post-merger
evolution free of systematic numerical errors.

The first important difference can be seen in the emitted energy. Figure 4.24 shows the energy
emitted during the last 5 ms of the inspiral phase and during the first 5 ms of the post-merger phase,
for different EOS and initial separations. It is clear that in the early post-merger, when there is
the second peak in the energy flux, and most of the radiated energy gets emitted, the simulations
starting from d = 60 km consistently show a lower emitted energy, independently on the EOS, while
no clear trend can be extrapolated from the other three initial distances considered. This systematic
error source can potentially affect studies on the post-merger energy balance, like the ones in ref. [].
This difference, as the inspiral ones, can be, again, linked with the higher accumulated numerical
errors during the longer coalescence of d = 60 km models. Only repeating the same simulations
with better resolutions and/or more accurate numerical methods we will be able to have a definitive
answer on the source of this error, and on the lowest and highest initial stellar separation, at a given
grid resolution, which can be used to safely analyse the post-merger dynamics without worrying
about numerical errors coming from the inspiral or the initial data.

A second difference is seen in the post-merger GW spectrum. In figure 4.25 are represented the
GW amplitude spectral densities, computed as in figure 4.12, but in the time window between 8 ms
before and after the merger. Again, in every model, the d = 60 km simulations show a consistent
deviation from the others, having, for every EOS, a lower frequency in the dominant post-merger
peak. This is linked with the fact that they also have a lower value for the instantaneous frequency
at merger, computed taking the derivative of the accumulated GW phase evolution. All the relevant
peak frequencies and the merger frequencies are reported also in table 4.12. The difference in the
merger frequency and in the frequency of the oscillation modes seeded during the merger phase is
expected, because it was already shown in section 4.1.2 that stars at different initial separations
merge, in numerical simulations, in a slightly different physical state, characterized by a difference
in its energy and angular momentum (see figure 4.11). Again, while the change in the main peak
frequency between d = 60 km simulations and the other three is always above the Fourier transform
error, there are no clear differences or trends between the peak frequencies of simulations with
the other three initial interbinary distances. This systematic error, like the one on the radiated
energy, could be important in data analysis, in particular in building empirical relations for the peak
frequencies, as extensively discussed in section 4.2.1. To conclude, it is interesting to remark that
the post-merger peak frequencies results for the d = 44.3 km simulations, are compatible, within
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