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1 Introduction

Entropy inequalities constrain quantum states non-trivially. The first such inequality discov-
ered was subadditivity, which constrains the entropies of the quantum states of a bipartite
system and its components [1],

S(A) + S(B) > S(AB)  (Subadditivity). (1.1)

In addition to subadditivity, there are other inequalities that are obeyed by all quantum
states. We list some of them below [1-4],

S(A)+ S(AB) > S(B) (Araki-Lieb), (1.2)
S(AB) + S(BC) > S(B) + S(ABC) (Strong subadditivity), (1.3)
S(AB) + S(BC) > S(A) 4+ S(C) (Weak monotonicity). (1.4)

Notably, the above inequalities are the only unconditional linear inequalities known to be
obeyed by all quantum states. They enjoy extended permutation symmetries S,+1. In partic-
ular, subadditivity (1.1) and Araki-Lieb inequality (1.2) are related by Ss transformations



together with symmetry by a purification, e.g., Spo = S4. Similarly, weak monotonicity (1.4)
can be obtained from strong subadditivity (1.3) by Sj.

A holographic entropy inequality(HEI) is a non-trivial constraint on entanglement entropies
of holographic states, a proper subset of all quantum states, at leading order. Holographic
states are those quantum states in conformal field theory that are consistent with the existence
of a semi-classical gravity dual, via the AdS/CFT correspondence [5]. More precisely, the
Ryu-Takayanagi [6] formula, a formula that relates the entanglement entropy of a boundary
subregion A to a bulk geometric quantity, namely, the minimal surface v4 in the bulk
homologous to A, i.e.,
areay4

(1.5)

applies for such states at leading order.
The simplest holographic entropy inequality that is not obeyed by all quantum states is
the monogamy of mutual information(MMI) [7] involving three parties, given by

S(AB) + S(AC) + S(BC) > S(A) + S(B) + S(C) + S(ABC),  (MMI).  (1.6)

MMI (1.6) taken together with subadditivity (1.1) inequalities between subsystem pairs
AB, AC and BC form the holographic entropy cone(HEC) [8] for three regions Cs. The work
of [8] formalised the concept of the HEC and characterized it as a rational polyhedral cone,
whose facets are identified as the minimal set of tight! inequalities for a given number of
parties. In the same work, five new inequalities were discovered that describe the facets of
the HEC for five regions Cs. It was verified in [9] that these five inequalities (upto symmetry)
taken together with the lower-party inequalities completely characterize C5. We give two
examples of five-party inequalities below,

S(ABC) + S(ABD) + S(ACE) + S(BCD) + S(BCE) >

S(A) + S(BC) + S(BD) + S(CE) + S(ABCD) + S(ABCE), (.7

S(AD)+ S(BC) + S(ABE) + S(ACE) + S(ADFE) + S(BDE) + S(CDE) >
S(A)+ S(B) +5(C)+ S(D) + S(AE) + S(DE) + S(BCE) + S(ABDE) + S(ACDE).
(1.8)

Over the past few years, several interesting directions emerged in the quest for discovering
higher party HEISs to characterize C,(n > 6). The work of [10] discovered 1877 novel six-party
inequalities, where the search is motivated by the observation that all known tight HEIs
(except subadditivity?) are superbalanced [11] and can be written as a sum of tripartite and
conditional tripartite information, conveniently expressible in the I-basis [12]. A parallel
development was the construction of the holographic cone of average entropies(HCAE) [13]
which motivated the discovery of two additional families of HEIs® exploiting entanglement

LA HEI is a facet of the HEC iff there exists a codimension-1 set of linearly independent holographic
entropy vectors for which the HEI saturates. We will use the terms facet HEI and tight HEI interchangeably.

2The subadditivity inequality is only balanced; it is neither superbalanced, nor expressible as a sum over
(conditional) tripartite information.

3The first family of cyclic inequalities was discovered in [8] valid for any odd number of parties p. For
example, inequality (1.7) is the p = 5 case.



wedge nesting relations [14, 15]. Such geometrization of HEIs provided excellent opportunities
to study various qualitative features of (a family of) HEIs. Another method for studying
HEIs involved the use of bit-threads [16-18]. Several other works appeared in the recent
years to study various aspects of the HEC [19-22] and beyond the HEC, such as using
hypergraphs [23, 24], topological link models [25] and cycle flows [26], studying gapped phases
of matter [27, 28], to name a few.*

Despite these developments, the task of fully characterizing all possible HEIs has proven
elusive. Two key challenges stand in the way of this task. First, there is a combinatorial
explosion associated with generating candidate inequalities. Second, one must develop
methods, also often with similar combinatorial challenges, in order to prove a given conjectured
inequality. One method of proving a HEI is to find a corresponding contraction map (which
we define in subsection 2.2). Until recently, the computational complexity of finding such
maps was doubly exponential in the number of terms on the left hand side (1.h.s.) using greedy
approaches. The work of [33]° reduced this complexity significantly to a single exponential
and demonstrated empirical evidence in favor of the completeness of the contraction map
proof method.

In this paper, we take a step towards a completeS classification of HEIs. However, we
step aside from the conventional classification of HEIs into classes of HEC C,, of a fixed party
number n. Instead, we classify HEIs into the classes H,; identified by the number of l.h.s.
terms (with unit coefficient) M. For example, the five party inequalities (1.7) and (1.8) both
belong to Cs but they have different numbers of Lh.s. terms. In our classification, they will
correspond to two different classes, Hs and H7 respectively.

The organization of this paper is as follows. We outline the problem statement motivated
by the holographic entropy cone program in 2.1. In section 2.2, we define the ‘proof by
graph contraction’ method after reviewing the ‘proof by contraction’ method and introducing
several key concepts, such as partial cubes and graph contraction maps, from graph theory.
In section 2.3, we rephrase the problem statement in binary expressions and graph theory.
Moreover, we prove the equivalence of the problem statements by showing that the existence
of a contraction map is a necessary and sufficient condition for that of a graph contraction
map. In section 2.4, we give a basic framework of the algorithm as a solution to the problem
statement in graph theory and argue their completeness. More specifically, we show that all
relevant graphs can be constructed from graph contraction of a hypercube graph. In section 3,
we give an algorithm to read off HEIs from a given contraction map (derived from a graph).
Lastly, we discuss our results, their implications, and the future directions in section 4.

2 The problem statement: find all holographic entropy inequalities

In general, a n-party holographic entropy inequality (HEI) involving n disjoint regions
[n] == {A1,---,An} (and a purifier O), can be written in a basis of subregion entropies,

4In all of these works, the entanglement entropy considered are bipartite entanglement measures between
a sub-region X and its complement X calculated for various multipartite arrangements of subregion X.
Some other works concerning multipartite entropies calculated using multipartite entanglement measures
include [29-32].

5 Another complementary approach to speed-up the contraction map method can be found in [34, 35].

SWe would like to think that the completeness argument is true, but a careful reader, should take our
results to be valid for all HEIs having corresponding contraction maps.



constructed by their proper power set P({A1,---, A,})\0 containing 2" — 1 possible elements.
For example, in the case of the three regions {A, B, C'}, the entropy basis is lexicographically
written as

{Sa,SB,Sc,Sap, Sac,Spc, Sapc} (2.1)

An inequality Q can be expressed as
2n

1
Q=Y a;S%, >0, (2.2)
i=1

where q; is an integer coefficient associated with an entropy term S;Q corresponding to
subregion X;. Here, a; = 0 implies that the corresponding subregion entropy S %, 1s absent
from the inequality, whereas a positive (negative) a; implies that S %, 1s present in the Lh.s.
(r.h.s.). We can rearrange (2.2) to include only non-zero coefficients, to get an inequality
of the form

l r
> aSx, = diSy;, (2.3)
i=1 Jj=1

where ¢; and d; are positive integers. The number of non-zero coefficients on the 1.h.s. and
r.h.s. are [ and r, respectively. We would like to expand each coefficient, and re-write the
inequality with repeating subregion entropies Sx, and Sy, with unit coeflicient, giving us

M N
> SL. > Sg,, (2.4)
u=1 v=1

where L,, R, € P({A1, -, A,})\D for Yu,v. The number of terms (after expanding the
coefficients) are M and N respectively, i.e.,

l T

Zci =M and Z dj = N. (2.5)
i=1 j=1

2.1 Problem statement in physics

The thematic problem statement of our work is to find all holographic entropy inequalities.

Find all holographic entropy inequalities that have corresponding contraction maps.

We begin by fixing the number of Lh.s. terms of our inequality (not the terms), i.e, we
are fixing M. Since M is arbitrary, finding all possible HEIs for a given M allows us to find
all possible HEIs. Now we are ready to define our main problem statement.

Main Problem 1 (Physics statement). Consider a set of subregions. Given a convex
composition of entropies with positive integer coefficients ¢; > 0 forVi=1,---,1,

015)(1 —‘y----—i-ClSXl. (2.6)



Find all the possible convex combinations of entropies with positive integer coefficients” d; >0
fOTVj = 1a T
di1Sy, + -+ d.Sy,, (2.7)

such that
c1Sx, +- -+ aSx, = diSy, + -+ drSy, (2.8)

is a valid HEL

We can simplify this problem a little bit to fit our methods by expanding the coefficients of
the [ terms on the L.h.s., such that there are M entropy terms on the lL.h.s. with unit coefficient
(see equation (2.5)).® We have repeating terms in this case, however, it suffices to stick to
unit coefficients with non-repeating l.h.s. terms by introducing more parties.? From now on,
all the Lh.s. we will refer to have unit coefficients. We thus reformulate our main problem 1
in the box 2. Note that this reformulation of the problem is equivalent to the original one.

Main Problem 2 (Physics statement: Unimodular). Given M [.h.s. terms with unit
coefficients,

Sp,+ -+ 5L, (2.9)

Find all possible r.h.s. terms, such that the following inequality holds
Spy+ o+ Sy > Spy + -+ Sky, (2.10)
for some N with unit coefficients.

We will give an algorithmic recipe to answer this problem in the language of graph theory.
The Lh.s. comprising M terms (2.9) can be mapped to a hypercube graph Hjs of 2™ binary
bitstrings. One then performs graph contractions [36] on this hypercube graph Hjs, resulting
in a contracted graph G. Since the number of possible graph contractions is finite (albeit,
large), the number of contracted graphs is also finite. Isometric hypercube embeddability
of this resultant graph G into a hypercube Hp, should it exist, would define a contraction
map from {0, 1} to {0,1}". Given a contraction map, one can find the HEIs corresponding
to the contraction map by assigning boundary conditions. Thus, the problem of finding all
such HEIs can be framed as a problem of finding all contraction maps. We show the problem
of finding all contraction maps is equivalent to determining which subset of graphs G are
partial cubes, where the graphs GG are obtained by graph contractions starting from Hy;.

In the rest of this paper, we will prove that this method is sufficient to generate all
possible HEIs corresponding to contraction maps. We will give a more formal mathematical
presentation of the problem statements below after introducing relevant definitions. We
summarize our algorithmic method in algorithm 1 in subsection 2.4.

Tt suffices to consider integer coefficients because the HEC is a rational polyhedral cone [8].

8Note that when the coefficients ¢; > 1, there are repetition of terms after expanding.

9All such Lh.s. with ¢; > 1 can be uplifted from an n-party expression to a (n -+ k)-party expression, having
non-repeating terms with unit coefficients. One can always do the reduction by trivializing those k parties,
and go back to the n-party expression.



2.2 Contraction maps and graph contraction maps

The ‘proof by contraction’ method was proposed in [8] to prove the validity of a candidate
HEI (2.3). This method relies on the equivalence between holographic geometries and graphs,
labelled by bitstrings. In principle, this method is based on the inclusion/exclusion of bulk
regions and extracts the information of contributions of the RT surfaces to the convex
compositions of the RT entropies and encodes them into bitstrings.

A particularly relevant set of bitstrings are those labeling regions adjacent to boundary
subsystems; for each i € [n + 1],

1, if A; €Ly

Y = (2.11)
’ {0, otherwise,

where the (n + 1)-th bitstring is all zeroes and is associated with the purifier O. These
bitstrings are the boundary conditions (also known as occurrence bitstrings) and can be
analogously defined for r.h.s. subsystems using bitstrings y € {0, 1}".

A contraction map is a map between bitstrings from {0,1}™ to {0,1}" such that the
Hamming distance between every pair of bitstrings in {0,1}* is greater than or equal to
the Hamming distance between their images in {0,1}". A contraction map learns about
a particular inequality through the boundary conditions. We will now define these ideas
more formally below.

Definition 2.1 (Hamming distance). The Hamming distance between two bitstrings of length
L is defined as the number of positions where the bitstrings differ, i.e.,

L
dp(z,z') = Z |z — 2, (2.12)
u=1

where ' is the u-th bit.

Theorem 2.1 (‘Proof by contraction’). /8] Let f : {0,1}M — {0,1}" be a contraction
map, i.e.,
dy(z, ') > dy(f(x), f(2), Yo, 2' € {0,1}M. (2.13)

If f(xa,) =ya, forVie{1,--- ,n+ 1}, then (2.4) is a valid n-party HEL

We can rephrase the language of bitstrings into its natural habitat in graph theory by
reinterpreting the bitstrings {0, 1}M to be a M-dimensional hypercube, which is mapped
to a subset of {0,1}" satisfying the contraction condition (2.13) to be a subgraph of N-
dimensional hypercube.

Consider two unit-weighted and undirected graphs, G; = (V1, E1) and G = (Va, Es). In
general, the graph map ® := (¢V, ¢”) from G; to G5 consists of a map ¢" : V; — V5 and
¢F 1 By — F5. A weak graph homomorphism & is a graph map that either preserves the
adjacency (¢V (v), 9" (v')) € Eq or contracts the vertices ¢" (v) = ¢V (¢/) for v,v' € V; and
(v,v") € Eq [37]. Hence, it does not increase the graph distance. A graph distance d(v,v’) is the
shortest path or the minimum number of edges connecting between the vertices v, v’ € V' [38].

We define a graph contraction map to be a weak graph homomorphism to construct two
alternative formulations below. Going forward, we will only use the term graph contraction
map for clarity.



Definition 2.2 (A graph contraction map/weak graph homomorphism).
For a graph G = (V, E), a graph map ® : G — ®(G) is a graph contraction map if

d(v,v") > d(¢¥ (v), " (), Vv, € V. (2.14)

From theorem 2.1, the domain of graph contraction maps is always an M-dimensional
hypercube Hj;. Moreover, by virtue of the bitstrings picture, the images ®(Hps) of the
graph contraction maps ® are subgraphs of the N-dimensional hypercube Hy. In fact, the
subgraphs ®(Hy;) should be isometrically embeddable in Hy.' Such graphs are called

partial cubes. We define a partial cube and its isometric dimension below.

Definition 2.3 (Partial cube [39, 40]). A graph G is a partial cube if G is isometrically
embeddable to a D-dimensional hypercube graph Hp.

Definition 2.4 (Isometric dimension [39]). The isometric dimension idim(G) of a partial
cube G is the minimum dimension of a cube in which G is isometrically embeddable.

A M-dimensional hypercube graph is the trivial partial cube of isometric dimension
idim(Hpy) = M. We denote ® : Hyy — Hy if a graph map is from a M-dimensional
hypercube H); to a partial cube with idim(®(Hys)) = N.

Correspondingly to the occurrence bitstrings (2.11), we define occurence vertices or
boundary wvertices as

tv(va,; = 2.15
(ta1(v,)) 0, otherwise, ( )

where 17 : Var — {0,1}M is an isometry,!! i.e.,
d(v,v") = dg(ear(v), tar(v")) (2.16)

for v,v" € Viy.
Now, we are ready to formulate the ‘proof by graph contraction’, as follows.

Theorem 2.2 (‘Proof by graph contraction’). [8] Let ® : Hyr = (Var, Ev) = Hy = (Vn, EN)
be a graph contraction map, i.e.,

d(v,v") > d(¢" (v), ¢V (v")), Yu,v" € Vay. (2.17)
If ¢V (va,) = vﬁl for¥i € {1,--- ,n+ 1} where va, € Vi and vi\(i € Vi, then (2.3) is a
valid HEL
2.3 Problem statements in mathematics: bitstrings and graph theory

In this subsection, we define and discuss two alternative formulations of the main problem 2
as problems 3 and 4 and prove their equivalence. In the language of bitstrings, the main
problem 2 is rephrased as follows.

10A graph G is isometrically embeddable to another graph G if the adjacency and the graph distance of all
pairs of vertices of G are preserved.

Al the isometries in this paper are path isometries, which are distance-preserving maps between metric
spaces. In particular, they map between a metric space of bitstrings {0, 1}M N equipped with a Hamming
distance dg and a metric space of vertices Vi, nv equipped with a graph distance d.



Main Problem 3 (Mathematical statement: Bitstrings). Given a complete set of bitstrings'>
{0,13M for a fized M € 7., find the set of all the possible contraction maps F = {f|f :
{0, 13M — {0,1}V} for some N € Z, where f maps the complete set of bitstrings in {0, 1}
to a subset of bitstrings in {0,1}V.

The equivalence between the problem 2 and the problem 3 can be conjectured by
theorem 2.1 and the completeness of ‘proof by contraction’[33] which argues that there exists

at least one contraction map for every valid HEIL.
In the graph-theoretic reformulation, we have the following problem statement.

Main Problem 4 (Mathematical statement: Graph theory). Given a M -dimensional
hypercube Hyy for a fivred M € Z, find the set of all the possible graph contraction maps
Fo = {®|® : Hy — Hn} such that the images ImFg = {P(Hp)} are partial cubes of
idim(®(Hpr)) = N for some N € 7.

We prove that problem 3 is equivalent to the problem 4 by the following proposition.

Proposition 2.1 (Equivalence between contraction maps and graph contraction maps).
Given M € 7., there exists a contraction map f : {0, 1} — {0,1}" for some N € Z, if
and only if there exists a graph contraction map ® : Hyy — Hy.

Proof. (f — ®) We first show that if f : {0,1}¥ — {0,1}" is a contraction map given M
for some N, there exists a graph contraction map ® : Hyy = (Vay, Eyf) — Hy = (Vn, EN).
Let us define a path isometry 7 : {0,1}/ — V; for J € Z, such that

dy(z,2') = d(iy(x),is(z")), Vo, 2’ € {0,1}7. (2.18)

Then, we construct a graph map @y := (qﬁ}/, d)? ) from a contraction map f using the isometries
iy {0,13M — Vi and iy : {0,1}Y — V. That is, we define gi)}/ and QSJfE such that, for
r € {0, 1} and f(z) € {0,1}¥,

° ¢}/ (e} ZM(.Q?) = ZN e} f(:B)

o ¢F(u(x),in(2") = (in o f(x),in o f(a')) if

however ¢E(E)/¢§ZJ(ZM(m),ZM(:U’)),13 if
i (f(2), £ () = 0. (2.20)

By construction, (;5}/ olp(z) € Viy and gf)}E(ZM(az),ZM(ﬂs’)) € Ey. Thus, ®f is a graph
map from Hys to Hy. In other words, the image ®¢(Hys) is always a partial cube of
idim(®(Hpr)) = N. @y is a graph contraction map because, for all x, 2’ € {0, 1}M,
d(in (), iy (2')) = dp (2, 27)
> dy(f(x), f(2)) (2.21)
= d(¢} o in(x), d¥ oin(a')).

2A complete set of bitstrings is the set of all possible 2 binary bitstrings of length M.
13We denote G'/e as deleting an edge e from a graph G. We have this condition to remove self-loops from
the image graph ®(Hy).
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Figure 1. The diagram of the maps in the proof of proposition 2.1. The isometries ¢ps v and Tps N
map between bitstrings {0, 1}*+" and the set of vertices Vs n of hypercubes Hys n. f is a contraction
map. ¢V is a vertex map from Hy, to Hy.

We applied the definition of isometry 73 for the first equality. The second inequality is due
to the contraction property of f. The isometry 7y and the definition of (b}/ implies the last
equality. Therefore, ®; : Hy; — Hy is a graph contraction from Hjys to Hy.

(f < ®) We next show that if a graph map ® is a graph contraction map ® : Hyy =
(Var, Exr) — Hy = (0Y (Var), ¢ (Epr)) given M for some N, there exists a contraction map
{0, 13M — {0, 1}V,

Similarly, we define a path isometry ¢; : V; — {0, 1}‘] for J € Z such that

dH(LJ(U)a LJ(U/)) = d(”? U,)a Vo, v e Vy (222)
For vpr : Var — {0,1} and tx : Vv — {0,1}¥, a contraction map fg is constructed such that
fooup(v) =iy oV (v). (2.23)

Then, we see that fp:{0,1}* —{0,1}"V simply because ¢3;(v)€{0,1}™ and 1y0¢" (v)€{0,1} V.
For all v,v" € Vyy,

dp (ar(v), e (V)

d(v,v")
d( ( ) (U’)) (2.24)
=dy(fo ot (v), fo o tar(v)).

Therefore, fg : {0,1}™ — {0,1}" is a contraction map.

2.4 An algorithmic solution to the main problems

In this subsection, we provide an algorithmic solution to the main problem 4. The key
ingredients of our solution are i) graph contraction maps and ii) partial cubes or isometric
hypercube embeddability. We use the following three algorithms to realize a graph contraction
map from a M-dimensional hypercube graph Hy; = (Vis, Ej) to a partial cube G of
idim(G) = N, as follows: 1. partition generator [41], 2. graph contraction [36], and 3. partial
cube identifier [42], see algorithm 1 and figure 2.

The Partition generator algorithm in [41] recursively generates all partitions of a
given set, a set Vi of vertices of hypercube graph Hj; in our case.!* The number of partitions

14Note that taking all partitions of vertices can reproduce all graph contractions. However, there is a scope
of algorithmic improvement at this step that considers the relevant and non-redundant partitions only.



is given by Bell number B, of a set of cardinality «, i.e.,
B.=Y Plo,f) (2:25)

where P(a, ) is the Stirling number of the second kind computing the number of partitions
of the set of cardinality « into § non-empty subsets.

The Graph contraction algorithm [36] has been studied to provide parallel algorithms
to solve graph-associated problems, for instance, [36, 43, 44]. We apply the algorithm to a
hypercube graph Hj; to generate contracted graphs based on the partitions generated above.

However, it turns out that the output graphs generated by the Graph contraction
algorithm are not necessarily isometrically hypercube embeddable or partial cubes. So, we
apply a polynomial time algorithm [42] to check whether the graph is a partial cube. We
call this algorithm Partial cube identifier.

We now describe algorithm 1 in detail. For a hypercube graph Hys = (Viy, Epr) with a
path isometry ¢ : Var — {0, 1}, let us call (Hys,tar) as an initial graph data.

1. Partition generator[41]: Given an initial graph data (Hps,tar), generate Bom_

partitions, pJ for o =1,---, Bom_q, of Vyy, ice.,
Bo
U Vig =V (2.26)
w=0

where Vo are disjoint subsets of vertices for the o-th partition pg,, and w =0,--- , 3,

labels the 8, non-empty subsets in the o-th partition. We fix V,z = {0y ={0---0}
as a single element subset!?:.16

Example: given Hyr—3 = (Vas—s, Enr—3) and tp—3 : Var — {0, 1} such that

LM('I}o) = 000, LM(’Ul) = 001, LM(UQ) = 010, LM(Ug) = 100,

2.27
tar(va) = 011, epr(vs) = 101, epr(ve) = 110, epr(vy) = 111. (2.27)
Then, we have a list of partitions, some of which are shown below,
o=1:V ={vo}, Vi ={v1,02,v3,04, 05,06, 07}
o =2:Vyp =A{v}, Vjz = {v1,v2,03,04,05, 06}, V2 = {vr}
(2.28)

o-th Ve = {wo}, Vg = {v1,v2,v3,v7}, Vig = {va}, Vg = {vs}, Vog = {ve}

2. Graph contraction [36]: construct a graph G, = (V,, E,) of, for instance, the o-th
partition following the three steps below.

i) Choose a partition of V), e.g., the o-th partition, or UZU:O Vpe = V.

5Tn our gauge choice, we choose {0}*. One can choose, for instance, {1}* instead.
6For clarification of notation, {0}* is the binary bitstring of length M of all 0s. E.g., {0} := {000}.
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ii) Identify all the vertices in the subset Vpe as a vertex labeled with e for w =
1,---,05s, ie., for every w=1,---, B,

(Var\Vpg, ) U {xpg } and En\Epg, (2.29)
where Eje = {(v,v") € Eplv,v" € Vo 3.
Thus,
Vo = {og | (Var\Vpg ) U {xpg Y = 1, -+, B5 } (2.30)
Eo ={ (xpg xp2,) Xz, Xpo, € Vo 5.t
(v,0") € Ear,v € Vpg v € Voe 5 (2.31)
Vw=1,---,06s}.

(2.31) is a set of edges connecting the vertices xpo,Xpe, € Vo if the vertices
v € Ve and v' € Vo were adjacent to each other in HM,wi.e., (v,v") € Epy. The
double parentheses,wsuch as (xpz, Xp7,)), denote that there could be more than a
single edge connecting the vertices ng and xpe, as opposed to a single parenthesis,
for instance, (Xpg , szl), representing a singlewedge between the vertices.

iii) If there are more than a single edge ((Xpg, Xp-,)) between the vertices in V5, remove
the extra edges so that there is only a single edge (xps, Xy, ), i-e.,

Eo = Eo ={ (Xpg,, Xp,) [Xpg, Xpo, € Vo, Vw =1,--+, 5} (2.32)
3. Partial cube identifier[42]: check if G, is a partial cube.

o If so, the algorithm determines the isometric dimension idim(G,) = N for some
N € Z, and an isometry ¢y : V, — {0,1}"V. Thus, we obtain a final graph data
(G4, tn) depending on a choice of partition o.

e Otherwise, discard the non-partial cubes G,.

17

Once we generate all partial cubes with all possible isometries,”” we can read off a

contraction map from the initial graph data (Hay, tpr) and the final graph data (G5, tn). That
is, for a choice of partition, a contraction map f(,,) : {0, 1M — {0,1}V is determined'®
such that, for Vv € Vpe and Vw = 1,---,3,,
foun) © tm(v) = tn(Xpg,) (2.33)
where xpo € V.
Recall the example we discussed in eq. (2.27) (and in figure 2). We have,
fioun) @ tnr(vo) = tn(xpg) = 0000, fig.x) 0 tar(va) = en(xpg) = 0011
floun) © tm(v5) = tn(Xpg) = 1001, fis, 0y © tar(ve) = tn(Xpg) = 0101

foun) © tm (V1) = fioun) © tar(v2) = f(oun) © tar(V3) = fion) © tar(v7) = tn(Xpg) = 0001.
(2.34)

See table 1 for the corresponding contraction map.

Y"For a partial cube G = (V, E) of isometric dimension idim(G) = N generated by algorithm 1, there are at
most |V| x N! distinct isometries ¢y .
18See, for example, figure 2.
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111 101 -
{0%1} {101} (011) 0011 {101} — 1001

{001,010,100,111} {110} — 0101
: {001,010,100,111} {110}
010 J: {110} — 0001

{000} = 0000

{000}
(a) (b) (©

Figure 2. Reading off a contraction map from the graph contraction mapping from Hp;—3 to Hy—4.
The blue dots are vertices. The black lines are the edges connecting the vertices. (a) Each vertex
is labeled with {0,1}?. The o-th partition, for example, tar(Vpe) = {ear(vo) = 000}, ear(Vpe) =
{LM(Ul) = 001,L1\/[(’l)2) = 010, L]w(vg) = 1007LM(’U7) = 111},L1\4(V},g) = {L]w(’l)4) = 011}7LM(V;)§) =
{tar(vs) = 101}, 1ar(Vpe ) = {ear(ve) = 110} is chosen. The vertices labeled with the bitstrings in
{001,010, 100, 111} are enclosed by a rounded square. (b) After identifying the vertices based on the
choice of the partition, there are three edges between every pair of the adjacent vertices x,s € V, in
the new graph (V,,E,). We obtain the graph G, = (V,, E,) in (c) by removing two edges between
every pair of the adjacent vertices. (c¢) The graph contraction with the choice of partition generates a

star graph, a partial cube of isometric dimension N = 4. Every vertex x,s € V. gets labeled with a
bitstring in a subset of {0,1}*, e.g., {LN:4(ng) = 0000, t4(Xpz) = 0001, t4(xpg) = 0011, 14(xpg) =
1001, 14(xps) = 0101}.

1 procedure: All HEIs for fixed M

2 Construct an initial graph data (Hpy, tar);

3 Generate all partitions {o} of hypercube vertices using Partition generator;
4 | foroe{o}do

5 Find the contracted graph G, = (V,, E,) using Graph contraction;

6 Check whether G, is a partial cube using Partial cube identifier;

7 if G, is a partial cube then

8 Obtain a final graph data (Gg, tN);

9 Generate HEIs from (G4, tn) using Contraction Map to Inequalities;
10 end

11 end

12 end

Algorithm 1. A road map to generate all HEIs for a fixed number of 1.h.s. terms.

The procedure generates all possible contraction maps because, first, it generates all
possible partial cubes from Hj;. Moreover, the contraction maps depend on both a choice
of partition and isometry. The graph data (G,,itn) and (Go, ) that differ only by the
isometries ¢y # ¢y can generate possibly two distinct contraction maps. In addition, even if
two partial cubes G, and G, of the graph data (Gy,tn) and (Gy,ty) for o # ¢’ are graph
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isomorphic and the isometries ¢ are identical, they could also construct different contraction
maps. Hence, the algorithm considers all possibilities of contraction maps.

However, the algorithmic solution above is overcomplete because it could generate
identical contraction maps. We discuss the complexity of the algorithm in section 4.

3 Holographic entropy inequalities from contraction maps

3.1 A greedy algorithm to generate HEIs from a contraction map

In this section, we describe how to construct HEIs from a given contraction map. A
contraction map is a map between Hjy; and Hpy, and a priori, such a map doesn’t know
about the inequality. As mentioned earlier, the knowledge of the inequality is imparted to
the contraction map by virtue of the boundary conditions (2.11), where one assigns (n + 1)
bitstrings to n monochromatic regions (and the all {0} bitstring is assigned to the purifier O).

In principle, for an inequality involving n-parties (and a purifier) with M terms on
the Lh.s., the number of combinations in which one can assign the boundary conditions is
C(2M —1,n),' where C(a,b) denotes the binomial coefficient. Each such choice gives us a
HEI (not necessarily unique). We are interested in balanced?® inequalities that have M(N)
non-trivial columns on the Lh.s. (r.h.s.). So we add the criterion that after the assignment of
occurrence bitstrings, all columns must correspond to some non-trivial subregion entropy.
We can then store all the unique HEI candidates.?! They are all valid HEIs by the existence
of contraction maps. One may further check using known extreme rays if these HEIs are
potentially facets of the HEC. However, in our present work, we are not interested in that
step. We summarize our algorithm to read off HEIs from the contraction map below in
algorithm 2 and give an example of this exercise in 3.2. The computational complexity of
this procedure goes as O ((M + N) (2M>n) when n < 2M.

3.1.1 Revisiting Main Problem 1

Now we are in a position provide an answer to the main problem 1 described earlier. We
choose the appropriate hypercube H)j; corresponding to the l.h.s. and generate all possible

contraction maps F = { f(o,uv)}- For each contraction map f( we assign the same

OUN)?
boundary conditions for occurrence vectors, faithfully representing the Lh.s. (2.6), then each
J(oun) 8lves a valid inequality Q?g in) of the form (2.8), where the fixed superscript-0 refers

to the fixed boundary conditions.

3.1.2 A brief discourse on boundary conditions

We have discussed how to read off inequalities by choosing the number of parties n and
the boundary conditions for a fixed number of terms on the l.h.s. and r.h.s. of inequalities,

19We do not get any new HEI by permutations, only the labels of regions are exchanged.

290One may also impose the condition of superbalance to narrow down the search for facet inequalities. If we
are interested only in true but not necessarily facet inequalities, superbalance is not required.

210ne may also be inclined to assign only those bitstrings as single-character boundary subregions whose
r.h.s. images have unique l.h.s. pre-images. This further constrains the search space. For example, this
condition, taken together with superbalance, uniquely (upto permutation of labels) determines the cyclic
inequalities from their graphs.
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1 Procedure: Contraction Map to Inequalities

2 Read the contraction map f(s,,\): Hyu — HN;

3 Assign the {0} bitstring to O;

4 For n-parties, generate num = C'(2 — 1, n) combinations of boundary conditions;
5 for : = 0; 7 < num; i + + do

6 Use boundary conditions to generate HEI Q’('g’ in)

7 if Q%U’ on) ?s balanced and all columns of Qéa, Ln) 0Te non-trivial then

8 t Save on'sz);

0 | Keep only unique {Qéo,w)};

Algorithm 2. A greedy algorithm to generate HEIs from a contraction map.

given a contraction map f. This allows us to generate valid n-party HEIs. Similarly, for
the contraction map f, we can choose other sets of boundary conditions for n’ > n and
obtain n/-party HEIs. This suggests that we can get a n-party HEI, possibly with non-unit
coefficients, by removing n’ — n boundary conditions from a n’-party inequality.

In general, consider a mapping (Hpyr,tpr) — (G, ), where Hypr is a hypercube H
canonically labeled by ¢y corresponding to Lh.s. and (G v, tn+) are the graph and labeling
respectively, corresponding to the r.h.s. of a n/-party HEI. Reducing from the n/-party
inequality to a n-party inequality, by eliminating the n’ — n boundary conditions results in
finding another mapping (Haz, tas) — (G, tn) such that Hy € Hyp and Gy € Gnr.2? This
is always possible because the removal of the subset of boundary conditions corresponds to i)
changing the boundary conditions without changing the graph structures, i.e., Hy; = Hpyr,
Gy = Gnr, and 1y = 1y, or ii) changing the boundary conditions with a contraction of
graphs, i.e., Hyy = Hyp and Gy C Gyv, or Hy € Hyp and Gy C G2

In contrast, let us consider the reverse problem. That is, given a mapping (Hays, tpr) —
(Gn,ty) of a n-party HEI, can we always find a mapping (Hpy, tprr) — (G, tnv) such that
Hyr € Hypr and Gy € Gnr? The answer is affirmative simply because there always exists a
hypercube Hj; and a partial cube G+ where Hjy; and G are isometrically embeddable.
We summarize the discussion as corollary below.

Corollary 3.1. All n-party HEIs with generically non-unit coefficients on the l.h.s. having
corresponding contraction maps are generated from n'-party HEIs with unit coefficients and
non-repeating terms on the l.h.s.

footnoteThe 1.h.s., however, is allowed to have repeating terms. for some n' > n.

We will illustrate this with an example. Consider the following five-party (A, B,C, D, E)
facet inequality,
2S(ABC)+S(ABD)+S(ABE)+S(ACD)+S(ADE)+S(BCE)+S(BDE) >
S(AB)+S(AC)+S(AD)+S(BC)+S(BE)+S(DE)+S(ABCD)+S(ABCE)+S(ABDE)
(3.1)

22For graphs G, G’, we denote G C G’ when G is a subgraph of G'.
Z3When the equalities do not hold, it corresponds to the operations where one or more columns of the table,
for instance, see table 1, of bitstrings are removed. Hence, the final graph is also a partial cube.
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S5
s
s
F
&
=

s 0 0 O o o0 o0 o
s2 0 0 1 0 0 0 1
s3 0 1 0 0 0 0 1
sg 0 1 1 0 0 1 1
s5 1 0 0 0 0 0 1
sg 1 0 1 1 0 0 1
sy 1 1 0 0 1 0 1
sg 1 1 1 0 0 0 1

Table 1. A contraction map corresponding the star graph shown in figure 2.

It has a term 2S(ABC), which we split, by introduce two more parties, into
2S(ABC) — S(ABCF) + S(ABCG)
Balancing the inequality on both sides, we can generate the following seven-party inequality,

S(ABCF)+S(ABCG)+S(ABDF)+S(ABEG)+S(ACD)+S(ADE)+S(BCE)+S(BDE) >
S(AB)+S(AC)+S(AD)+S(BC)+S(BE)+S(DE)+S(ABCDF)+S(ABCEG)+S(ABDEFG)
(3.2)

which can be easily proved using [33]. However, this seven-party inequality, need not be a
facet inequality. One can trivialize the parties F, G and get back the inequality (3.1).

3.2 Example: deriving the MMI from the contraction map of a star graph

Consider the star graph shown in figure 2. We can construct this graph starting from a
hypercube Hs and performing the graph contraction with a partition, e.g.,

{000}, {011}, {101}, {110}, {001, 010, 100, 111}. (3.3)

The resultant star graph is isometrically embeddable in a hypercube H4. This embedding
can be encoded in the form of a contraction map from {0,1}3 to {0,1}* by (2.33), given in
table 1. The labels {L,} and {R,} on the contraction map are the Lh.s. and r.h.s. terms
of an inequality respectively, to be determined by assigning boundary conditions in {sg}.
We set our convention to assign s; to be the purifier O.

We are interested in balanced inequalities that do not contain any trivial L, (and/or
R,) and thus assign the boundary conditions accordingly. For the choice of the boundary
condition (s4, s¢, s7) = (4, B,C) and its permutations, we get the MMI inequality (eq. (1.6)),

S(AB) + S(AC) + S(BC) > S(A) + S(B) + 8(C) + S(ABC).

In fact, for this contraction map (table 1), imposing non-triviality of {L,} and {R,} yields
the MMI inequality as the only candidate, as expected from the uniqueness of the MMI
contraction map. We also tabulate some other inequalities derived from the MMI map, with
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| Parties | List of HEIs

I Sep + Scp + Sapc > S+ Sc + Sp + SaBcp,
(A, B,C,D} Spc + Scp + Sapp > S+ Sc + Sp + Sacp,
T Sac + Sap + Seep > Sa+ Sc + Sp + Sapcp-
ne 5 Spe + Sacp + Sece > Sc + Sp + Sg + SaBcpE;
(A, B,C,D, E} Spe + Sasp +Scpe > Sg+ Sp + Se + SascpeE,
T Sep + Sape + Scpe > Sg+ Sp + Se + SapcpE-
n==~6
> .
(A.B,C,D.E, F} Sace + Spcr + Sper > Sc + Sg + Sr + SaBcpEF

Table 2. The holographic inequalities (up to permutations) for n = 4,5,6 with M = 3 and N = 4,
generated from the MMI contraction map (table 1) using algorithm 2.

non-trivial column labels in table 2.24 See appendix A for further discussions on relaxing
the non-triviality of column labels.

4 Discussions

4.1 Complexity

We discuss the complexity involved for generating all possible inequalities starting from
a hypercube Hy;.

o There exists a polynomial algorithm [41] to efficiently generate partitions of a set of

cardinality k with computational complexity O(k'®). Since there are 2M vertices in

Hy;, the computational complexity associated with the step Partition generator
is O(21:6M)

o The number of all possible partitions is upper bounded by the Bell number, By This
count is redundant in the sense, multiple contractions can be geometrically equivalent
up to rotations of the r.h.s. hypercube. So, the computational complexity for the
step Graph contraction is O (QM (BQ]\/I)). The asymptotic approximation for the
logarithm of Bell numbers of order smaller than & is given by [45],

InBp =k(Ink —Inlnk — 1+ o(1)), (4.1)
where In is the natural logarithm.

e The complexity of finding an embedding (if exists) for a contracted graph goes as
O(|V|?) where |V is the number of vertices [42]. Since the number of vertices is upper
bounded by 2M | the step Partial cube identifier has a complexity upper bounded

2
by O ((2M ) ) Since graph contractions always reduce the number of vertices, the

actual run-time is faster in most cases.

24Note that the inequalities in table 2 are not facet inequalities.
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(a) k=3 (b) k=5 (€) k=17

Figure 3. The graphs associated with the first three members of cyclic inequalities.

e As discussed in section 3.1, the computational complexity of generating possible inequal-
ities from a given inequality is upper bounded by O ((M + N) (ZM >n> As proved
in A.1, we have M 4+1 < N < 2M~1_ For facet inequalities, it is an empirical observation
that N < 2M~1, In principle, one may choose the number of parties n as large as up
to 2M~1 but one is usually interested in tight inequalities, which has empirically been
observed to favor small n.

Thus, the total computational complexity to generate all possible n-party HEIs starting from
+3
a L.h.s. consisting M number of terms is upper bounded by O (BQM (QM)n (M + N)),

where N is the number of r.h.s. terms for some inequality.

The algorithm constructs all possible contraction maps as discussed in subsection 2.4.
We believe the complexity can be improved with more efficient algorithms, particularly for
identifying geometrically equivalent graph contractions, and further results for bounding n
for tight inequalities. We leave this for future work.

4.2 Classifications of image graphs ®(Hjy)

It is a tantalizing direction to study these image graphs and classify them into families of
HEIs, shedding further light on their qualitative nature. For example, let us look at the
graphs of the contraction maps for the family of cyclic inequalities (see figure 3). All these
graphs have a similarity of symmetric structures, standing on one-leg, due to the fact that
the entanglement entropy of all labeled regions appears on the r.h.s. In the k£ = 3 case, we
have three 1-dimensional edges spreading out, which gets uplifted to five 2-dimensional petals
in k = 5 case, followed by seven 3-dimensional boxes for £ = 7. Predictably, we have a
symmetric arrangement of nine 4-dimensional polytopes standing on one-leg for k = 9. This
strategy appears generalizable; whenever there is a family of image graphs G; that can be
inductively generated and are isometrically hypercube embeddable, it should correspond
to a family of HEIs. We leave this exciting exploration of image graphs and their relation
to families of polytopes for future work.

4.3 Reformulating holographic entropy cones?

The inequalities we generate in this work are more appropriately characterized by the number
of unimodular entropies that appear on their 1.h.ss, rather than their party number. While
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the full HEC based on fixing party is in principle recoverable in this way, it is somewhat
cumbersome to do so. As such, it may be worth reformulating the HEC into one based on
the number of unimodular entropies that appear, as opposed to party number, which this
algorithmic approach more directly generates.

4.4 Quantum entropy inequalities from contraction maps of HEIs

Recall from section 3.1, that we imposed the non-triviality of columns in our algorithm, so
as to avoid running into the ambiguity of interpreting a trivial column. But what happens
when we invert this condition? It leads us to potential candidates for quantum inequalities
that are valid, not just for holographic states, but all quantum states. First, consider the
following proposition about holographic inequalities (see proposition A.1 for proof).

Proposition 4.1 (Lower bound on N). For a facet HEI (except SA) with M terms on the
L.h.s., the number of r.h.s. terms N is bounded below by M +1 < N.

One direct implication is that all such n-party facet inequalities (except SA) are violated
by the (n+1)-party GHZ states (see corollary A.1 for proof). Since, a quantum inequality must
always be satisfied by the GHZ state, these holographic inequalities cannot be valid candidates
for quantum inequalities. Thus, we derive a necessary constraint for quantum inequalities.

Corollary 4.1. For a quantum inequality with M terms on the l.h.s., the number of r.h.s.
terms N is bounded above by M > N.

At the expense of not interpreting the trivial columns, one can impose this new constraint
from corollary 4.1 as a means to generate HEIs with M > N. These HEIs serve as potential
candidates for quantum inequalities. For example, one can recover the subadditivity (1.1),
strong subadditivity (1.3), Araki-Lieb (1.2) and weak monotonicity (1.4) inequalities from
the MMI contraction map, all of which are quantum inequalities. This recovery may be
explained by the fact that the graph corresponding to these inequalities can be obtained
by graph contractions in the MMI graph. We leave a detailed discussion about generating
valid quantum inequalities from contraction maps for future work.

4.5 What could we learn from algorithmic “flatness”?

Consider a set Fyn) = {fIf : {0, 1} — {0,1}"} of contraction maps for fixed M,
generated by our algorithm. Given a set of disjoint boundary subregions [n + 1] including a
purifier O, we can construct a constant time slice of bulk manifold M%C' with at most M
distinct RT surfaces by giving a boundary condition(b.c.) to a contraction map f € Fs, n)-
Note that Mgc' does not depend on the choice of contraction map f € F( n) since Mgc'
corresponds to 2™ bitstrings with a boundary condition.

Let us choose a boundary condition for all contraction maps f € F(y n). This fixes
M. For each contraction map f € F(m,ny> we can find a bulk manifold Ml}jf'( f), with at
most N distinct RT surfaces. Each MY (f) corresponds to a subset of 2V bitstrings with
the boundary condition. Then, the total area of RT surfaces in Ml}f' upper bounds that
of RT surfaces in M%C'( f) for any f € Furny- It thus implies that the number n(Mp,) of
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different ways to deform the RT surfaces in M, into those in Mpg(f) is at most the number
of all the contraction maps, |F(ys n)l-

Consider two bulk manifolds M%“! and MY:¢2 with boundary condition 1(b.c.1) and
boundary condition 2(b.c.2), i.e., they have distinct configurations of RT surfaces. It could
be said that the bulk manifold M4¢1 is more “flat”?® than M4 if there are more ways to
deform the RT surfaces in MY%“! than those in M%¢2, i.e., n(Mbe1) > n(MYe2).

We leave the investigations on what the “flatness” could imply about properties of HEIs
and bulk geometries, or vice versa.

4.6 Further speeding up convex optimization

It has previously been shown in [8] that all HEIs are also obeyed by cut functions of general
graphs. Therefore, the new classes of inequalities we explore in this work will also be respected
by cut functions on graphs. We note that submodular convex optimization is known to be
significantly faster than standard convex optimization methods, via the imposition of only
the SSA inequality. It is worth investigating whether incorporating these more restrictive
inequalities would provide further speed-up to convex optimization approaches to graph
theoretic problems.
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A From HEIs to quantum entropy inequalities

In this section, we will discuss quantum entropy inequalities. First we will prove some of
our claims from the text.

Definition A.1 (Tripartite form [10]). An information quantity Q is said to be in the
tripartite form if it is expressed as

Q:Z—Ig(Xi:Yi L Zi | W) (A.1)

7

where the arguments X;,Y;, Z;, Wi C [N] are disjoint subsystems, the sum runs over any
finite number of terms, and we allow for the conditioning to trivialize, W; = 0, in which case
Is(X; :Y;: Zi|0) = I3(X; : Y; : Z;) and, they are defined to be

25In machine learning, flatness of a loss surface characterizes the change in loss under the perturbations of
parameters [46].
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s2 0 0 1 0 0 0 1
s3 0 1 0 0 0 0 1
sg 0 1 1 0 0 1 1
s5 1 0 0 0 0 0 1
sg 1 0 1 1 0 0 1
sy 1 1 0 0 1 0 1
sg 1 1 1 0 0 0 1

Table 3. A contraction map corresponding the star graph shown in figure 4(a).

and,
(X Y Zy) =X+ Y+ 2 - XY, — XoZ; - YiZy + XY, Z, (A.3)

We denote IPCY for a Q that has p number of —I3(X; : Y; : Z;) and q number of —I3(X; :Y;:
Zi|W;) terms in the sum (A.1).

We borrow the following conjecture A.1 from [10].

Conjecture A.1. All facet inequalities (except SA) are expressible in the IPCY form with
p>1andq>0.

Proposition A.1. For facet inequalities (except SA), M +1 < N

Proof. According to conjecture A.1, we can write an inequality Q of the form IPC? as

p q p q
Q= 21—13()(1' 1Y Zi) + Z —Ig(Xi 1Y ZZ‘WZ) = ZI(Z) + ZC(J) >0, (A.4)
= j=1 i=1 j=1

with non-trivial W;. It is simple to show that every C'¥) has an equal number of positive and
negative terms, whereas every 1Y has one more negative term than positive terms, where
i and j simply labels the associated I and C terms respectively. Since, positive (negative)
terms contribute to Lh.s. (r.h.s.) and p > 1, we have M + 1 < N. O

Corollary A.1. All n-party HEIs that are facets of the HEC (except SA) are violated by the
(n+ 1)-party GHZ state.

Proof. For a GHZ state, Sx = S > 0 for all X € P(n)\(. Since, N > M + 1 for all facet
inequalities (except SA), they are trivially violated. O

Recall the contraction map of the MMI inequality (given in table 3 below). In this section,
we use this map as an example and allow the columns to carry trivial labels such that they
satisfy the necessary conditions?® for quantum entropy inequalities, namely, the existence of
a contraction map and constraints on the relative number of terms appearing on two sides,

20We leave the understanding of sufficient conditions for valid quantum entropy inequalities for future work.
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(a) MMI (b) SSA

Figure 4. The star graphs corresponding to MMI (a) and SSA(b) with boundary conditions. One
may start with (a), identify the vertices A <> C and contract the edge with the central vertex of the
star to get (b).

In particular, we will give an example showing how one can arrive at strong subadditivity
starting from the contraction map (table 3) corresponding to the MMI. We begin with the
MMI, where one may have the boundary conditions assigned as (s1, s4, s¢, s7) = (O, A, B,C).
For the SSA, the boundary conditions may be changed to (s1, s4, S6,55) = (0, A, B,C) (see
figure 4 for a graphical interpretation). The resultant inequality is

S(AB) + S(BC) > S(ABC). (A.5)

Similarly, we can also get the subadditivity, weak monotonicity and Araki-Lieb inequalities
with the appropriate assignment of boundary conditions. We will explore this direction for
higher-party contraction maps in a future work.

B A collection of non-facet HEIs from star graphs

In this section, we will report a new collection of non-facet HEIs constructed from star graphs.
We consider the contraction of a hypercube H)j; such that all bitstrings with odd number
of 1s are identified as a single vertex. This gives us a star-graph with a center vertex and
2M=1 edges coming out and joining vertices at unit Hamming distance from the center vertex.
This star graph can be isometrically embedded in a 2 ~!-dimensional hypercube. We will
now describe the construction of the corresponding contraction map. The {0} bitstring
. . . . o(M—1)
in Lh.s. is mapped to the bitstring {0}

the bitstrings with odd number of 1s, those bitstrings can only map to a r.h.s. bitstring

in r.h.s. Since, it is at unit distance from all

having only one 1 and rest 0s. We choose the zeroth?” bit to be 1, i.e., the r.h.s. bitstring
{1,0,---,0}. All Lh.s. bitstrings with even number of 1s are at unit Hamming distance from
the central vertex, and twice the unit Hamming distance from each other. Therefore, the

2]\/1—1

2™We choose the convention where indices run from 0 to ( — 1) from left to right. However, for the

decimal conversion, we adopt the convention of increasing place values from right to left.
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1 procedure: Constructing Star Graphs

2 A hypercube Hj; with vertices labeled by bitstrings {0, 1}

3 Identify all vertices with bitstrings having an odd number of 1s as a single vertex;
4

5

2M—1

The resultant graph is a star graph with edges from the center vertex;

end

procedure: Constructing Contraction Maps

6

7 Initialize the 1.h.s. array to 2™ bitstrings canonically labeled by {0, 1};
8 Initialize the r.h.s. array to 2™ bitstrings all set to Os: {0}2(M_1);

9 fori=1;i<2M;i4++ do

10 Assign the zeroth bit of the i-th r.h.s. bitstring to 1;

11 if i-th 1.h.s. has an even number of 1s then

12 Compute the decimal equivalent of the i-th 1.h.s. bitstring, call it D;
13 Assign the | D/2]-th bit of the i-th r.h.s. bitstring to 1;

14 end if

15 end for

16 end

Algorithm 3. Algorithm to generate the contraction map of star graphs.

corresponding r.h.s. bitstrings could only have at most one more 1 at a different position
from the zeroth bit. We suggest that for a l.h.s. bitstring having a decimal equivalent D, the
[D /2]t bit is assigned 1, where [-] is the integer-function. This gives us a valid contraction
map. We summarize the construction in algorithm 3.

We now can employ algorithm 2 to start generating HEIs for an arbitrary number of
parties n. In this case, however, we will relax the condition of non-triviality of columns and
instead demand that all the configurations of initial conditions are drawn only from the set
of vertices with even number of 1s in the l.h.s. bitstrings. One of the simplest example is
the MMI contraction map (see table 3). By construction, the r.h.s. of the inequality for
n < N parties has the structure,

n
> Sa, + 54,4, (B.1)
i=1
We will now give an example with M = 5 (see figure 5). For example, an inequality for
n = 10 parties (A, B,C,D,E,F,G, H,1I,J), is as follows,?®

Sapc + Sacen + Sperr + Sperg + Scury >

B.2
Sa+Sg+Sc+Sp+Sg+Sp+Sa+ Sg+Sr+ S5+ SapcpeErcHI ( )

Similarly, we can find other star-graph inequalities. In this example, we took the star-
graph as an illustrative case. We will provide a complete demonstration of our framework,
using all possible graphs for a fixed M, in a future work.

28This is the only balanced inequality possible with n = 10 parties. For n > 11, no balanced inequality can
be constructed using this graph. We have imposed a restriction to not choose a boundary subregion from the
center vertex.
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[00000]
[0000000000000000]

[11000]
[1000000000001000]

[01010]
[1000010000000000]

01001]
10001 [
i[lOOOO(gOOlOéOOODO] l[1000100000000000]

[00110]
[(1001000000000000]

[00011]
[110000000000000 0]

[11011] Center
[1000000000000100] [1000000000000000] [10010]
[1000000001000000]

[01100]
[1000001000000000]

[00101] [10111]
[1010000000000000] [1000000000000001]

[11110] l
[10100]
[1000000000000001] l[1000000000100000]

[01111]
[L000000100000000]

[11101]
[1000000000000010]

Figure 5. The star graph constructed from Hy. All bitstrings with odd number of 1s are identified
with the center vertex. The corresponding contraction map is also labeled.
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