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Abstract: In this paper, a regression model between neutron star crust—core pressure and the sym-
metry energy characteristics was estimated using the Akaike information criterion and the adjusted
coefficient of determination R2, j
characterize the crust-core environment of the sought physical neutron star model, was determined

. The most probable value of the transition density, which should

based on the obtained regression function. An anti-correlation was found between this transition
density and the main characteristic of the symmetry energy, i.e., its slope L.

Keywords: neutron star; symmetry energy; nuclear matter modeling

1. Introduction

Nuclear symmetry energy is a key factor that defines the problem of the neutron star’s
exact internal structure and, to some extent, determines its solution. How and in what
range symmetry energy controls the emergence of different phases of nuclear matter is
one of the main topics of current theoretical research in nuclear physics and astrophysics.
The uncertainties in the internal structure of a neutron star, which is expected to exhibit
nuclear matter at different physical states, are mainly due to the limited knowledge of the
equation of state (EoS) of such a matter being in extreme physical conditions of density,
temperature, and isospin asymmetry. Without experimental data extracted at such extreme
conditions, it is necessary to use models that meet the results of ground-based experiments
and reproduce nuclear matter’s saturation properties. Such models yield considerable
uncertainty when extrapolated and applied to densities relevant to neutron stars. There are
many dubious points in the modeling of neutron stars. One of the most critical concerns is
the precise description of the crust—core crossing boundary and, thus, the extent of the crust.
The neutron star’s matter EoS allows a neutron star’s hydrostatic model to be obtained, and
its general stratification distinguishes three layers: the outermost is the atmosphere and
then the crust, which splits into the inner and outer parts. The inner crust extends outward
to the well-determined neutron drip density pg;, = 4 X 10'! g/cm?®. The very inner part
of a neutron star is a liquid core comprising interacting neutrons in S-equilibrium with
the admixture of protons and electrons. Theoretical considerations point to the complex
structure of a neutron star’s inner crust. It consists of atomic nuclei with significant neutron
excess immersed in a gas of free neutrons and relativistic degenerate electrons. Depend-
ing on the density, atomic nuclei have different shapes, being spherical in most of the
inner crust. Calculations suggest that non-spherical configurations of nuclei in the crust’s
deepest layers become energetically favorable, forming the pasta phase [1-5]. This com-
plex structure of the inner crust transforms into its equally complicated EoS. The missing
precise physical model that allows for constructing an accurate EoS adequate to describe
the asymmetric nuclear matter in the full range of densities characteristic of a neutron
star and that correctly reproduces its properties forces the use of approximate methods.
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However, these methods allow for only approximately determining a neutron star model
and, among other properties, the crust-core boundary’s location. Often, the physical model
is described with various statistical characteristics. One of the most general is the joint
probability distribution of all variables needed to describe the physical phenomenon under
study. However, finding such a distribution by proposing a theoretical model is generally
impossible. Therefore, the initial stage in constructing a physical model is selecting (a)
regression model(s) between variables suspected of being essential in describing a physical
phenomenon. Finding this regression model(s), in turn, helps capture the correct form
of the physical theoretical model. Searching for different regression functions between
different variables may be the initial stage of its search in the case of ignorance of the
fundamental formulation of the physical model. The obvious help is appropriate statistical
analysis. One of the most elegant statistical methods is the maximum likelihood method
(MLM) [6] and the resulting Akaike information criterion (AIC) [7-10]. In general, the AIC
helps search for the actual statistical model from which the data visible in the observa-
tion are generated. Between the models accepted for analysis, the statistical model (e.g.,
the regression model) closest to the unknown accurate statistical model gives the highest
probability of producing the observed data. Section 4.2 is devoted to the AIC criterion,
which selects a regression model between the crust—core transition pressure P; and the
characteristics of the system’s energy. The statistics that measure the goodness of fit of the
dependent variable to the data for a specific group of independent variables in a linear
regression model is the coefficient of determination R2. In this paper, the adjusted R%Z R

2
adj

obtained by applying R%; i.e., R2, ; may have a maximum. It may decline as the number of

2
adj’

is also used [10]; see Appendix A.1. R, helps to eliminate the overestimation of the model

regression model’s effects increases. The maximum of R2, i indicates where the expansion
of the regression model should be stopped so as not to overfit the model in the sample
when compared to the unknown model in the population (theoretical model). This paper
considers the R?; jto be an auxiliary criterion in searching for the optimal regression model.
Another method used in this paper for selecting the appropriate regression model is the
backward elimination method [10] (Appendix A.2), which allows for choosing a regression
model with factors that have a significant statistical impact on the goodness of fit of the
dependent variable to the data. It is good if all these methods point to the same group of
factors and produce the same regression model, although there is generally no guarantee
that this will happen. In this paper, the AIC criterion for selecting the regression model is
preferred, as it gives the highest probability of the appearance of the particular data. The
regression model between the transition pressure P; and the system’s energy characteristics
estimated in this paper using the AIC method is a particular characteristic of the sought
actual physical model expected to describe nuclear and astrophysical observations correctly.
One of the quantities characterizing a physical system is the crust—core transition density n;.
The proposed approach allows for determining the most probable value of the transition
density #i; related to the selected regression model for the analyzed sample of the RMF
models (Sections 5.1 and 5.2).

2. The Inner Edge of a Neutron Star Inner Crust

The location of the crust—core boundary in a neutron star can be specified if accurate
models describing the matter of the crust and core are known. Generally, a hydrostatic
equilibrium equation supplemented with a proper form of the EoS can provide valuable
clues about the neutron star’s internal structure. However, in a neutron star’s inner crust,
one can deal with a form of nuclear matter whose a priori predictions are not obvious.
Model calculations indicate the possibility of a very complex, nonhomogenous phase called
nuclear pasta, which further complicates the form of the equation of state of this matter.
Due to its highly complex structure, determining the EoS of matter in this layer of a neutron
star is problematic and burdened with very high uncertainty. Thus, it has become necessary
to develop alternative methods to estimate the transition density at which homogeneous
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matter becomes unstable against small density fluctuations, indicating the beginning of the
formation of the nucleus clusters. Below, the location of the inner boundary of the neutron
star’s inner crust is determined based on thermodynamic methods [11-14], which require
that the system meets the stability condition given by the pair of inequalities:

oP a,”asym
_(MJF>Q—( aqc>v>0. 1)

Otherwise, it loses stability against small density fluctuations. In the above inequalities,
v and g, are volume and charge per baryon number, P is the system’s total pressure, and
Hasym = Pn — Hp is the difference in neutrons’ and protons’ chemical potentials. The energy
of nuclear matter considered in terms of binding energy (EoS) is given by the relation

Np, 5)

E(ny,6) = & M, )

np
where the energy density (1, §) of the system is a function that depends on baryon density
ny = ny + np and the isospin asymmetry parameter 6; M is the nucleon mass. It is expected
that the function E(n;, 6) can be represented by its Taylor series, which, under expansion
to the fourth order around § = 0, takes the following form

E(”br 5) = 2;1‘0:0 EZVl(nb)ézn (3)
= Eo(np) + Ez(nb)52 + E4(1/lh>(54 +...

Coefficients of the series (3) are functions of baryon density and denote the binding energy
of the symmetric matter Eo(#;,), the symmetry energy Ea(ny) = Esym,2(11p), and the fourth-
order symmetry energy E4(ny,) = Esyp4(np). The simplest case considers only the second-
order term in (3), and it is known as the parabolic approximation. Using the dependence
0 =1—2Y),, where Y}, = n,/ny, is the relative proton concentration, the following relation
for the isospin-dependent part of the binding energy can be obtained:

EN,asym(nb/ Yp) = Esym,2(”b) (1 - 2YP>2 + Esym,4(nb) (1 - 2YP>4'

The energy per baryon of relativistic electrons has the form
3
Ec(np) = th(3n2nb)1/3Yel/3.

The charge-neutrality condition demands that Y, = Y. Thus, the total energy per baryon
of the matter in the core is given by

Eor = EO(nb) + EN,asym (le, YP) + EE(nbr YP)'
The minimization of E, (1, Y),) with respect to Y}, gives the B equilibrium condition
_ aETot (nb/YP)

pe =t —pp = =gy, =41 = 20p)Eqyma(mp)+ @
+8(1 — ZYp)3Esym,4(nb)‘

For the chemical potential of relativistic electrons y, = hic(372ny)!/ 3Y}/3, the condi-
tion given above allows one to determine the equilibrium proton fraction Y;q

he(3mny)/3Y, ()13 = 4(1—2Y, (1)) Esym,2 (1)

+8(1 —2Yy(1p))?Esyma(np). ©
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The condition — (a%";ym ) > 01is usually satisfied, whereas the inequality — (3—5) >0
c v I/l

can be expressed by requiring the expression Vj,, to be positive

AE(ny, Y PE(ny, Y PE(ny,Y,)\~ 92E(ny, Y
Viner = 211y (e p)+n§ (anb p)—< il p)> / (ny, y)

anb n% BnbaYp BY% ! (6)

where E(n;,Y)) is the binding energy of nuclear matter. Solving Equations (5) and (6)
allows for determining the value of the transition density n; and the corresponding proton
concentration value Y;q(nt) = Y;. Using the thermodynamic relation

ZBE(nb, Yp)

P =nj (7)

ai’lb
to calculate the pressure of the n-p-e system of particles results in a total pressure that
is the sum of contributions from nucleons (Py) and electrons (P,), Py, = Py + P.. The
calculations made for the transition density n; and the corresponding Y; value can lead to
the equation for the pressure at the crust—core boundary.

dEg,m dEgym
+nf(1-2Y;)? < )| 4 (1-2v;)2 4%;(%)
ng nt

+1¢Y; (1 = 2Yy) (Esym2 (1) + 2Esyma(ne) (1 — 2Y1)?).

J*(&

In general, it is expected that higher-order terms in the expansion (3) have to be included to
obtain a more accurate description of the binding energy of systems with a significant value
of the isospin asymmetry. In this case, an improvement in the accuracy of the obtained
solution is expected. In further analysis, each function Eo(#y), Esym,2 (1), and Esym,4(nb) is
represented by a Taylor series expansion around ng. This procedure can be presented in
the general form as

00 i (1 —mo i

Em) =Y. ¢ ("5 ©

i=0 0
The index j distinguishes between symmetric § = 0 and asymmetric § # 0 nuclear matter.
The case of symmetric nuclear matter is denoted by j = 0, and Ey(n;,) means the binding
energy of symmetric nuclear matter. The case j = 2 corresponds to the second-order
symmetry energy Esym2(1p) and j = 4 the fourth-order symmetry energy Egy, 4(11). The
expansion coefficients
i 1d'Ej(ny)

v

(10)

1o

represent the following characteristics of nuclear matter: CJ = Eo(ny) is the binding energy
per nucleon of symmetric nuclear matter at a saturation density ng, the nuclear matter
incompressibility C3 = Ko, C3 = Egym2(n9) is the symmetry energy at the saturation
density, C? = Lsym,2> is the second-order symmetry energy slope, C3 = Ksym,2 is the
curvature of the second-order symmetry energy, C{ = Lsym,a is the fourth-order symmetry
energy slope, and C; = Ksym,a is the curvature of the fourth-order symmetry energy. By
applying the Taylor series expansions of the functions Eo (1), Esym,2(1p), and Egyp 4 (1), it
is possible to obtain the approximate value of the pressure at the crust—core boundary

201, —
Pﬂpp(nt) ~ M (KO + Ksym,25t2 + Ksym,45?) +

9n?

1y (ng—ng)Yp(nt)d n?6?
Lz ("

‘H’ltYp(nt)fSt (Esym,z + 2Esym,45t2) +

2nt(mfn0)Yp(nt)5t3 n%o"?
+Lsym,4 ( 3ng + 3ng :

(11)
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In the case when the density dependence of the symmetry energy is given by the parabolic
approximation, Equation (11) reduces to the following form

200,
Pupp(nt) ~ M(KO + Ksym,2§t2)+

9n%
— Y, P 252
Ly (M0 WY Y (14) 6By

(12)
Another approximate form of the expression defining the pressure can be obtained, as-
suming that J equals 1, which leads to Y, = 0 and corresponds to the case of pure
neutron matter

2
Papp(”t) ~ (311750) (”t - 7’10) (KO + Ksym,Z + Ksym,4)+ (13)
=+ ;Tto”lt (Lsym,z + Lsym,4) .

The above equation reduces to a very simple form for the parabolic approximation of the
symmetry energy:

ng

2
ng
3”0) (nt - 71()) (KO + Ksym,Z) + Tnonthym,Z- (14)

P app (7’1,} ) ~ <
Only when the transition density reaches values equal to the saturation density ny does the
dependence of pressure P; on parameters characterizing the incompressibility of nuclear
matter disappear, and a straightforward relation Papp & 1/31ngLsy,2 is obtained.

3. Determination of the EoS

The determination of the EoS is based on the Lagrangian density function that is the
sum of free baryon and meson fields part £y and the part £;,;; describing the interaction.
The individual parts are given in the following forms:

Lo (iv"9y — M)y + (900, 0 — m202) — LFMVE,,

; (15)
iwywy — %B‘uvByv + %m% ﬁy : ﬁyl

+5m

P
1
2
where ¢, wy,, and g, represent the scalar-isoscalar ¢, vector-isoscalar w, and vector-isovector
p meson fields, respectively ,and ¥ is the isodoublet nucleon field, F,, and By, are field
tensors defined as F,y = d,wy — dywy, and Byy = 9,0, — dypy,

Ling = 1/_1(80‘7 — (§wwy + %8{)? : ﬁu)’Y”)lP - %(73 - %04 + %(gg} W;twy)z
+808% 0 (wpw) (a1 + 301800) + 8083 (Fup ") (a2 + 305800)+ (16)
"’%“é(gwgp)z(wywy)(ﬁu o).

The Lagrangian density function £;,; contains the Yukawa couplings between the nucleons
and the meson and collects various nonlinear meson interaction terms. The individual
coupling constants determine the strength of the meson interactions. The equations of
motion derived based on the above Lagrangian density function £ = £y + L;,; were
solved in the mean-field approximation. This approach separates meson fields into classical
components and quantum fluctuations; the quantum fluctuation terms vanish, and only
classical parts remain. The mean field limit, in the case of a static and a spherically
symmetric system, leads to the following relations:

oc— (o) =s
wht = (W) = {wy) 0 = wy (17)
p = (p3) = (po3) 0" = ro3.
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The mesons are coupled to the nucleon sources, which are also replaced by their expectation
values in the mean-field ground state. The solution to the equations of motion allows one
to calculate the energy density of the system

e = gms? + 455 + st — Jmwf — (Lwh)? + gwwony — mirg s + eroanan
—805(8wwo)? g’xl + %"‘/1305) — 805(8p70,3)? ("‘2 + %"‘/2805) — 305(8ww0)*(8p70,3) (18)

8 Fj 1.2 2
+ Ty 5 Jo K2\ + M d,

where Mg = M — g,s denotes the effective nucleon mass and n3, = (7' 13¢) = ny — Ny,
and g represents the number of degrees of freedom. The nonlinear meson interaction
terms necessary for constructing a correct nuclear matter EoS alter both the isoscalar
and isovector sectors [15,16]. The calculations were carried out in the framework of
relativistic mean field (RMF) theory. This approach considers the nuclear many-body
problem a relativistic system of baryons and mesons. In the original Walecka model,
only scalar-isoscalar ¢ (attractive) and vector-isoscalar w (repulsive) mesons [17,18] were
involved in accounting for the saturation properties of symmetric nuclear matter. This
model was then extended with the vector-isovector meson p and subjected to further
modifications, leading to more sophisticated models containing various nonlinear self
and mixed meson interaction terms [19]. Specifying this model in such an extended form
allows one to successfully reproduce some ground-state properties of finite nuclei and
nuclear matter. The implemented modifications increase the usefulness of the models
in satisfactory descriptions of the properties of asymmetric nuclear matter [20,21]. The
properties of nuclear matter determined based on RMF models rely on selected groups
of parameters that are the research subject presented in papers [21,22]. The acceptance of
a given parameterization depends on the degree of compliance of the determined prop-
erties of symmetric and asymmetric nuclear matter with the constraints resulting from
the analysis of experimental data. The choice of experimental constraints in the case of
symmetrical matter (6 = 0) considers the nuclear matter’s incompressibility at saturation
density Ky in the range of 190270 MeV [23-25], the skewness coefficient is Q in the range
200-1200 MeV [26], and the pressure P(n;,) is in density ranges of (2ng,5ny) and
(1.5n9,2.5n0) [27,28]. Considering the asymmetric nuclear matter [29], experimental con-
straints apply to the coefficients characterizing the density dependence of the symmetry
energy. One can specify the following limitation ranges: symmetry energy coefficient
Esym(np) —(25-35 MeV) and (30-35 MeV) [30], symmetry energy slope Lo calculated at
ny —(25-115 MeV) [31,32], volume part of isospin incompressibility K%v at ng —(—700—
—400 MeV) [21,33,34], and the ratio of the symmetry energy in ng/2 to its value in
ng —(0.57-0.86) [35].

The RMF models applied in the analysis performed in this paper can be characterized
and distinguished by different types of nonlinear couplings between mesons. It becomes
possible to divide all models into three groups. Group I includes the BSR [36] and FSUGZ03,
FSUGZ06 [37] models with the following types of mixed meson couplings: & — w?, 0> — w?,
o— pz, 0% — pz, w? — p2. Group II of the BKA [38], G2 [39] and G2* [40] models includes
the ¢ — w?, 0 — w?, ¢ — p? non-linear terms. Group III FSUGold [16], FSUGold4 [41],
IU FSU, XS [42] and TM1 [43] is characterized by w? — p2. The values of parameters for
individual models and saturation properties of symmetric and asymmetric nuclear matter
are collected in the papers [44,45]. The energy density of the system given by Equation (18)
encodes the correct form of the symmetry energy.

4. Regression Analysis

Various concepts that belong to the category of measuring the goodness of fit of the
quality of statistical modeling have been developed, including R?, adjusted R?, which
represents some attempt to adjust for the number of parameters in the model, AIC, and
statistical backward elimination. The necessary information on the AIC method used in the
paper to select the regression model is presented below. The basic information on other
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methods is given in the Appendix A. The approaches are not always equivalent, and using
different methods allows for a better understanding of which factors in the regression
models are the most important.

4.1. The Consistency Assumption for Considered Models

This paper assumes that every theoretical point in the sample of N = 23 models is
estimated consistently, that is, without any bias, at least asymptotically. Therefore, every
theoretical point on the scatter diagram coincides with the estimate obtained for n of
hypothetical experiments testing this model. It follows that in the limits # — oo and for all
the population of models, the finite sample error E tends to E. Therefore, the requirement to
use the method is the assumption that it is possible to determine the values of the estimators’
model parameters from the experiment. Each model introduced into the analysis satisfies
as many experimental constraints as possible. This group is an optimal sample of models
in this paper.

4.2. The Akaike Information Criterion Analysis

The Akaike information criterion (AIC) [9] is very useful in mining the most probable
appearance of the observed sample with the simultaneous limiting model extensions. Let
the data y = (1,2, ..., yN) be generated by the true but unknown regression model g for
the random variable Y (to simplify the notation, only the values y; of the response variable
Y are written). Consider a regression model f = f(Y, A;) with a vector parameter A
as a candidate for describing the investigated interdependence between the dependent
variable Y and the group of factors. Ay is a free parameter of the regression model f as all
its components a1, &, ..., &, can be made zero in the null hypothesis (A3) (Appendix A).
To select a better regression model f for the response variable Y and explanatory variables
X1, X2, ..., X with a parameter Ay, the following form of AIC is used

AIC(f, Ax) = —2InL(Ay) +2 (k+1) . (19)

Here, L(Ax) = L(y|Ax) denotes the likelihood function corresponding to the model f
for a N-dimensional sample, Ak is a maximum likelihood method (MLM) estimator of
the parameter Ay, and k + 1 is the number of the estimated structural parameters in the
regression model, i.e., the vector of slope coefficients Ay = (a1, ap, ..., ax) plus the intercept
®g. The mean of the maximization of the log-likelihood function InL(y|Ay) is equivalent
to maximizing the expectation value E¢[Inf (Y, Ay)] calculated for the true model g [9].

As the unknown parameter Ay is replaced by its MLM estimator Ay, thus, instead of
E¢[Inf (Y, Ay)], the expectation value Q = Eg j, Ay [ln f(Y, gk)} is maximized, where 14, is

the distribution h 4, (A\k) of the estimator Ek. The maximization of Qy is equivalent to the
minimization of —2NQy, where N is the dimension of the sample. Because AIC(f, Ay) is
approximately an unbiased estimator of —2NQy [9], the model that minimizes AIC(f, Ax)
is the candidate for the searched model. This can be confirmed by considering the Kullback-
Leibler (K-L) distance between the models f and g [9]:

D(g, f) = Eg[lng(Y)] —Eg[Inf(Y, Ay)]. (20)

As E¢[Ing(Y)] is constant, the minimization of AIC(f, Ay) implies the selection of the
model that minimizes the K-L distance chosen for the statistical analysis is model f from
the unknown true model g. Details concerning the AIC model-selection procedure can be
found in [9].
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5. Discussion
5.1. The Results of the Selection of the Regression Models

The analysis performed in this paper uses a sample of the most reliable RMF models
that describe nuclear matter whose high credibility follows from the fact that they meet
the largest number of experimental constraints. Based on these models, nuclear matter
EoSs given in terms of binding energy E(n;,d) (2) were constructed. In the first step of
the analysis, the function E(n,, d) is approximated by its Taylor series expansion around
4 = 0. This leads to the separation of the symmetric Ey(11,,0) = Ep(n,) and asymmetric
Easym (11p,8) = Esym(np) 8% + Esyml4(nb)(54 + ... parts of the EoS and allows one to consider
the asymmetric part of the EoS at different levels of approximation. The coefficients of
the expansion depend on baryon density. The analysis was carried out for the symmetry
energy given by the parabolic approximation and for the case when the description of
asymmetric matter additionally considers the fourth-order symmetry energy term. The
transition pressure at the neutron star crust—core boundary following (8) decisively depends
on the functions Eo(1y), Esym,2(1p), and Esym4(np). The approximate expression for the
transition pressure given in terms of the defined expansion coefficients has the form given
by Equation (11). All variables that enter this formula form the set of explanatory variables.
In the parabolic approximation, it contains the following terms:

(KO/ Ep, Y5, = Esym,Z (nO) Y1260, LZ,(S% = Lsym,Z 5,32,2/

(21)
Ly, vs, = Lsym2 Y2012, Ky 52 = Ksym,2 5 2)
and in the fourth-order approximation:
<KO/ E3, Y55, = Esym2(10) Y124 024, L2,5%4 = Lsym,2 (5%24,
L = Loym2 Y124 0124 Ky 52 = Koy 67
2,Y b4 sym,2 11,24 0t,24, Do ()%4 sym,2 O 24s (22)

_ 3 — 2
E4, Yépy = Esym,4 (nO) Yt,24 5t,24r L4, (54214 = Lsym,z 5t,24/

— 3 — 4
L4, Yéoy = Lsym,4 Yt,24 51»/24/ Kz/ 5%4 = Ksym,4 5@24) .

These variables serve as input parameters in the regression analysis. The nuclear matter
at the crust—core transition boundary is highly isospin-asymmetric. Thus, an additional
approximation consisting of taking J; = 1, which corresponds to pure neutron matter,
was also adopted. The description of nuclear matter was based on a selected group of
RMF models. Although this is an optimal sample of models that meets many experimental
constraints, none is the final true physical model, i.e., one with all the necessary components
in the correct form. Since the true physical model is unknown, the search for it can start at a
selected basic stage. This means providing statistical evidence for this physical model based
on a regression analysis, which will reproduce the given sample of RMF models with the
highest probability. The procedure of evaluating regression models, called model selection,
has been applied. The selected model should be the one that provides an adequate represen-
tation of the data. However, it must be emphasized that it is not desirable that the selected
model is represented by the maximal number of explanatory variables. The selection
analysis identifies the explanatory variables for the selected regression model. Different
selection procedures, such as the AIC method and the Rg ;; and the backward elimination
method, yielded the chosen regression model (Section 4.2 andAppendices A.1 and A.2).
The analysis covers several cases. The first concerns approximations used to describe
the symmetry energy, namely the parabolic approximation E;2(1;) (Table 1) and the
one that also considers the contribution from the fourth-order term Egyy,2(115) + Esym,a(1p)
(Table 2). In each table, the collected results of regression models for a different number
of explanatory variables are given. The results for the pure neutron matter (the isospin
asymmetry 6 = 1) obtained for the parabolic approximation are given in Table 3. In Table 4,
the results for the fourth-order case are gathered.
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Table 1. Some characteristics of the regression models in the parabolic approximation case with &,.
R? is the coefficient of determination, Rﬁ 4j is the adjusted coefficient of determination (Appendix A.1),
AIC is the Akaike information criterion given in Equation (19), and the 7i; values in the table are the
means of the most probable density values assuming Equation (27). The most likely value is for the
model with a globally minimal AIC given in boldface characters.

Variables R? R?

24 AIC iir
Ly s, 0.7629 0.7516 —40.4399
Ly s 0.6544 0.6380 —31.7806 0.06131 + 0.00427
K> 3 0.1782 0.1391 —11.8554
Ey vs, 0.0197 —0.0270 —7.7978
Ko 0.0001 —0.0475 —7.3445
(Lo, ys, Ko g2) 0.8224 0.8046 —44.9683
(Eays, Los2) 0.7920 0.7712 —41.3372 0.05772 + 0.00596
(Eaxvs, Log Ko g2) 0.8763 0.8567 —51.1033 0.05527 + 0.00688
(Loys, Log Ko g) 0.8624 0.8407 —48.6563
(Ko Ea,ve, Ly Ko ) 0.8982 0.8756 —53.3467 0.08487 + 0.00628
(Eays, Love, Lyg Ko g) 0.8932 0.8694 —52.2390
(Ko Eays, Loys Log Kpg) 09173 0.8930 —55.8201 0.08593 + 0.00663

Table 2. Some characteristics of the regression models when the fourth-order contribution is included
with dy4. R2 is the coefficient of determination, R% 4j is the adjusted coefficient of determination
(Appendix A.1), AIC is the Akaike information criterion given in Equation (19), and i; values in the
table are the means of the most probable density values assuming Equation (27). The most likely
value is for the model with a globally minimal AIC given in boldface characters.

Variables R? R?

2 4 AIC it
Ly, vs, 0.6637 0.6477 —40.6499
Ly s, 05177 0.4947 —32.3577 0.06131 + 0.00146
K, 3, 0.2235 0.1865 —21.4046
Eyvs, 0.0848 0.0413 —17.6258
Lys, 0.0129 —0.0341 —15.8845
Ko 0.0090 —0.0382 —15.7954
Ky 5, 0.0025 —0.0450 —15.6451
Lyvs, 0.0015 —0.0460 —15.6214
E2 vs, 0.0014 —0.0461 —15.6199
(L g2, Ky 1) 0.8282 0.8110 —53.9753 0.06125 + 0.0063
(L2, von Ko 2,) 0.7554 0.7310 —45.8542
(Ly g2, Ko, 2, Ka g1,) 0.8707 0.8503 —58.3342 0.05882 + 0.0055
(B2, Yo L, ver, Ky 1) 0.8636 0.8421 —57.1077
(B, von Lo, 2, Ko 2, Ky 1) 0.8918 0.8678 —60.1982 0.05503 + 0.00573
(Lo g2, Lo von Ko 2, Ky g1) 0.8906 0.8663 —59.9435
(Ea,vo Los2, Lo, vow Ko i3, Eavsg,) 09150 0.8901 —63.4363 0.05623 + 0.00614

(Lo, Yo Ko g2, Ly gs, Ly vsg, Kugs) 09087 0.8819 —61.7911
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Table 2. Cont.

Variables R? R, AIC it
Ko E vs. Lo 22 Lo vs. K
(Ko B2 vor Ly, 3, Lo, veu Ko, 3, 0.9375 0.9141 —68.1043 0.08543 + 0.00776
Eyvs,)
(Favo Lo,gg, Lovon Koy Favag, g 9967 0.8992 —64.4407
Ly s,
Ko E Lo L K
(Ko B2 vey, Lo, g3, Lo, vow Ko i3, 0.9384 0.9097 —65.9606 0.05718 4 0.0073
Ey v, Ly st)
4 24 7924
Ko Fovo Lo Lavou Koy 9377 0.9086 —65.6782
Eyvs, Lave,)
Ko E Lo 2 Lyys. K
(Ko Ea var Ly, 3, L2, vou Ko, 3, 0.9418 0.9086 —64.6885 0.05723 + 0.00742
Ey v, Laos, Laves,)
(Ko B2 vor Lo, 3, L2, vou Ko 3, 0.9384 0.9033 —63.3813
Ey v, Laos, Ky 53)
Ko E Lo L K
(Ko B2 ves, Lo, g3, L2, von Ko i3, 0.9442 0.9056 —62.9401 0.05723 & 0.00723

Ey v, Lass, La,vey, Ka 1)

Table 3. The case when the parabolic approximation gives the symmetry energy. The regression
models are determined for d, = 1. i; in the table are the means of the most probable density values
assuming Equation (27). The most likely value of 7i; is the one obtained for the model with a globally
minimal AIC value. The variables in this table are from set (21) in the case of d, = 1. The most likely
value is for the model with a globally minimal AIC given in boldface characters.

Variables R? R?, i AIC it

Lsym,Z 0.6206 0.6026 —25.3983 0.06154 4+ 0.00377
Koy 0.2024 0.1644 —83058
Ky 0.0018 —0.0457 —3.1471

(Ko Lsym,z) 0.7709 0.7480 —34.8749 0.08857 4 0.00559
(Leyma Ksym2) 0.7558 0.7314 —33.4109
(Ko Ksym2) 0.2186 0.1405 —6.6566

(Ko Lsym,Z Ksym,Z) 0.8190 0.7904 —38.1132 0.08596 + 0.00503

Selection analysis indicates that when the parabolic approximation describes the sym-
metry energy for both considered values of the § parameter, the minimum AIC value
applies to the maximal model, meaning that the selected regression model covers the entire
set of explanatory variables (21) (Tables 1 and 3). In the case that 6 # 1, a global AIC
minimum appears (Table 1) for five explanatory variables denoted by char = chary =
(Ko, E2, v, L, 52 Ly, vs, Ky, 5%). For pure neutron matter (6 = 1), there are three explana-
tory variables char = chary;—1 = (Ko, Lsymrz,Ksym,z) (Table 3). This situation changes
when the symmetry energy function is the sum of Egyp2(n) and Egypa(np). In this
case, for 0 # 1, a global AIC minimum appears (Table 2) for a model with six explana-
tory variables char = charyy = (Ko, Ep, vs,,, L, 2, Lo, ve,, Ky, 2, Eyy 534) selected from the
set (22). For pure neutron matter (6 = 1), there are three AIC selected explanatory variables
char = charyy,s—1 = (Lsym,2, Ksym,2, Ksym,4) (Table 4). The results obtained using the AIC
method coincide with the results for Rg 4j in three out of four cases, and the selected model
is characterized by the maximal value of Rﬁ dj (see Tables 1-3). An exception is for dyg = 1
(Table 4), for which there is a minor compatibility violation in the third significant figure.

However, for the AIC selected model, there still is a local maximum of Rg i
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Table 4. The case when the symmetry energy is represented by the functions Esyy2(11,) + Esym,a (1)
and for dy4 = 1. 7i; denotes the means of the most probable density values assuming Equation (27).
The most likely value is for the model with a globally minimal AIC value. The variables in this table
are the ones from set (22) in the case of Jp4 = 1. The most likely value is for the model with a globally
minimal AIC given in boldface characters.

R2

R2

Variables adj AIC iy
Lsym,z 0.4163 0.3885 —24.8389 0.06129 4 0.00081
Keymo 0.2614 0.2262 ~19.4268
Ky 0.0406 —0.0051 —13.411
Keyma 0.0080 ~0.0393 12,6422
Leyma 0.0040 —0.0434 125512
(Loyma Ksyna) 0.8122 0.7934 —48.8023 0.06115 + 0.00668
(Ko Loym2) 0.6648 0.6313 —35.4791
(Loym2 Ksym Ksyma) 0.8638 0.8423 —54.004 0.05876 + 0.00572
(Ko Lsym,z Ksym,4) 0.8320 0.8055 —49.1883
(Ko Loy Koyma Ksyma) 0.8699 0.8410 52,8228 0.08547 -+ 0.00793
(Lsym2 Ksym2 Lsyma Koyma) 0.8657 0.8359 52,0968
(Ko Lsym,z Ksym,z Lsym,4 Ksym,4) 0.8818 0.8470 —52.7082 0.05447 4+ 0.00657

When multiplied by the Y; factor, the roles of explanatory variables from sets (21)
and (22) are practically negligible due to the small Y; value. Therefore, the explanatory
variable multiplied by Y; is not considered for the regression analysis with only one factor.
Otherwise, an artificial effect of a statistical nature may occur, suggesting a good fit to the
data for a model with an insignificant variable.

Results of the employed AIC and Rﬁ 4j model-selection techniques are presented in
Figures 1 and 2. Both figures depict values of AIC and R2, ; against the number n of
explanatory variables.

-20 I
30k G—© Parabolic with §, |
Q 31 Parabolic with §,=1
L 2nd plus 4th order with §,, e
A—A 2nd plus 4th order with §,,=1
40— _
o | 1
<
50 _
60 _
\ \ \ \ \ ! \ \ \
-70
1 2 3 4 5 6 7 8 9

n variables

Figure 1. The minimal values of the AIC for a given number of explanatory variables in the regression
model. The regression model with a globally minimal AIC gives the highest probability of the
appearance of the sample of RMF points. The lines connecting the symbols are a guide for the
eyes only.
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Figure 2. The adjusted coefficient of determination R2, j Vs the numbers n of the explanatory variables
used in a given regression model. The lines connecting the symbols are a guide for the eyes only.
5.2. The Most Probable Value of the Transition Density

The exact numerical values of the transition pressure P(n;) are calculated according
to Equation (8) (see Table 5) and Pypp (1) is its approximated form given in Equation (11).
The following equality is as follows:

Py(nt) = Papp(nt) + R, (23)

where R is the remainder of the Taylor series expansion. This equation is valid for every
RMF model from the considered sample. Treating the regression model as an alternative
way to represent the data makes it possible to approximate the transition pressure in the
sample with the sum of the function Py;; plus the error (residual) term E (see Equation (A2)):

Pi(n¢) = Pyiy(char; &[f_o) + E, (24)

where Pfit(char;u?ju?:o) is the regression function with a general form P;(char,®;) =
&0 + f(char; &j| ;‘:1), &y denotes the intercept term. The estimate of the variance of E is MSE,

which is the variance of E, and v/ MSE is its standard deviation (see Appendix A.1) . The
regression function in the parabolic case has the form (see (21))

Prip = o +@1 Ko+ By, ys, + @3 Ly 2 + 04 Loy, + 05Ky 2 (25)

and when the fourth-order term is included in the description of the symmetry energy, Ps;;
is given by (see (22))

Pfit = fx\o + &1 KO + aZ EZ, Yop4 + ZX\3 L2, 5%4 + ZX\4 LZ' Yoy + &5 Kzf 5%4

—~ ~ P ~ (26)
+ae E4,Y5§4 + wy L4,5;14 + ag L4,Y(5§4 + &g K4,5§4 .

The basis for determining the most probable value of the transition density fi; is the
assumption of the validity of the relation, which is the consequence of the two possible
representations of the transition pressure P;(1;), given by Equations (23) and (24),

Papp(nt) = Pyif(char; &; |;-<:0) , (27)

where the function on the RHS is given in relation (25) in the parabolic approximation
or (26) in the fourth-order case. This requires the appearance of the constant &y, which
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results from a different form of the coefficients in Papp (ny) and the constant coefficients &;,
i=1,2,...,kin Pyt (char; u?]| ;‘(:0)‘ In addition, the residual standard deviation v/ MSE is a
mean estimate of the remainder R in the range of the considered transition density 7n;. The
parameters of the regression model, including &, depend only implicitly on the transition
density n¢ and in the limit ny — 0, &g — 0.

The regression function for the AIC and R2 dj selected regression model in the fourth-
order approximation has the form

Pfit =0+ a1 Kp + a» EQ, Yoy, + o3 LZ, 32, + 0y LZ, Yo,y + s Kz, 53, + E4, A
= —4.9549 + 0.002479 Ko + 8.009438 E», v5,, + 0.08421 LZ, 2, (28)
—3.4876 Ly, vs,, — 0.004782 KZ, 2, 49 .4 E4’ Y3,

The above regression model is also confirmed by the backward analysis procedure applied
to the set of factors (22) as all values of the estimators of the structural parameters «;,
j=0,1,2,...,k = 6 of the regression model are statistically significant at the level « = 0.05.
It is assumed that the significance levels of introducing a variable into the model and
keeping it in the model are the same. The other characteristics of the selected regression
model with the regression function given in Equation (28) are given in Table 6. The most
probable transition density n; = 7i; was determined by solving Equation (27). The RHS
of this equation is the appropriate regression model with a specific number of factors. At
the same time, the LHS in the case when the fourth-order contribution to the symmetry
energy is included, following Equation (11), is expressed by elements characterizing the
dependence of nuclear matter on density. Since the coefficients of the factors describing
nuclear matter depend on the transition density, solving equation Equation(27) makes
determining the transition density value possible. For example, the form of Equation (27)
for the AIC-selected regression model is presented as

2(pp—
M0 (K + Koy 2607) +

9n%
—n)Y, ) 252
+Lsym,2 (%W ;/:l’)tn(j )
+11Yp (1)t (Esym,2 + 2Esym 407) + @)

= 0o+ a1 Ko +a2 Ep, v5,, + 03 Ly, 52 iy Lo yay, + 5 K, 3y +ag Ey Y5,
= —4.9549 +0.002479 Ko + 8.009438 E5, v, + 0.08421 L, 52
~3.4876 Ly, vs,, — 0.004782K, 52 —49.4E, y53 .

Solving the above equation for n; allows one to calculate its value for the selected
regression model. This procedure was carried out for each of the 23 RMF models, and then
the average value 7i; was calculated from the obtained 23 7i; values. Similar calculations
were performed for the parabolic approximation of the symmetry energy Ey,2(115) and
the case of 6 = 1. The regression model selected by the AIC gives the most probable
appearance of the sample [9]. Equation (27) is a relationship imposed on the model specified
by the AIC that guaranteed that the observed sample appeared with maximum probability
for a fixed number of factors. Thus, the value of n; = #i; determined from Equation (27) is
the most probable value for the determined number of factors selected by the AIC regression
model. Because the AIC’s globally selected regression model is the best estimate of the
true regression model, the transition density 7; resulting from the performed regression
analysis is considered the best approximation of the transition density implied by the true
regression model. As a consequence, 7i; should characterize the true physical model.
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In the parabolic case, the regression model selected via the AIC and Rgdj has the
following regression function:

Pfit =0y + a1 Ky +ap Ep vs, + 3 LZ, 3 + 0y Ly vs, + Qs KZ, 32
= —2.9636 + 0.002974 Ko + 2.4789 E;, v5, + 0.04254 L2/ P (30)
—1.1365 Ly, v, — 0.003259 Kz, 2 -

This regression model is confirmed through the backward analysis procedure applied to
the set of factors (21) at the significance level @ = 0.065. The values of the estimators of the
structural parameters other than «; for the factor Ky and a4 for the factor L, y;,, remain
in the model at a significance level lower than & = 0.05. The other characteristics of the
selected regression model with the regression function given in Equation (30) are given in
Table 6.

To calculate the uncertainty of the estimation of a particular value of i, two components,
namely the error of the estimation of the conditional expectation value Py (char; zx]'|;.‘:0)

(which appeared to be decisive) and the error propagation from Py (char; §j|;‘:0) to i,
were calculated. The obtained uncertainty of the estimation of a particular 7i; coming from
these two sources is, on average, approximately £0.024 when the fourth-order symmetry
energy term is included in the analysis (k = 6) and £0.03 for the parabolic case (k = 5).

Table 5. The characteristics of the regression models selected by the AIC and Rg dj with the regression
functions (30) in the parabolic case and (28) in the fourth-order case. SSR, SSE, and SSY are the sum
of squares due to regression, the error sum of squares, and the total sum of squares of the response
Y = P, respectively, and SSY = SSR + SSE. MSE (which is the variance of the error term E)is
the mean squared error (Appendix A.1), [10]. 63, to 03, are the standard errors of &g to &5 in the
parabolic approximation case, and &, to 03, are the standard errors of & to &4 in the fourth-order
approximation case.

Order 5’&0 5’&2 5’&3 5’&4 6’&5 5’&6 SSE SSR MSE
2-nd 0.7276 0.001335 0.9738 0.01369 0.573 0.0009326 0.06771 0.7514 0.003983
2-nd +

4-th 0.8433 0.001034 1.9201 0.01683 0.8438 0.000839 15.7805 0.03577 0.5369 0.002236

Figure 3 shows the values of the means 7i; of the most probable density values 7i; (see
Tables 1-4), obtained for § = é; and J = 1 for the two considered cases of symmetry energy
approximations as a function of the number of explanatory variables n that characterize a
given regression model selected using the AIC and R?, i methods.

The crucial relation for the further construction of a true physical model is 7 ( Lsym,2)-
This relation for the model selected by the AIC and R2, jin the fourth-order approximation
with the regression function (28) is shown in Figure 4. Green squares illustrate the n;
values calculated for individual RMF models. The n; values are shown in Table 7. The AIC
method, searching for phenomena related to the location of the neutron star’s crust-core
transition described by the RMF models shifts the crust—core boundary to higher densities.
In the paper [14], the neutron star’s core—crust transition densities obtained within the
dynamical and thermodynamical methods using the full EoS and its PA with the MDI and
Skyrme interactions have been analyzed. It should be emphasized that the most probable
transition density 7i; values determined in this paper, based on the proposed probabilistic
method for the symmetry energy supplemented by the fourth-order contribution, given as
a function of the symmetry energy slope Ly 2, follow a very similar course as in the case
of models with modified Gogny (MDI) interaction and 51 Skyrme interactions. The results
reported in other papers show that the transition density n; decreases as L increases, as it is
anticorrelated with L. This has been verified with many different models [46-49].
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Figure 3. The most probable transition density 7; vs. the numbers n of the explanatory variables used
in a given regression model selected by AIC. The maximal value of 7i; refers to the global minimal
AIC. The lines connecting the symbols are a guide for the eyes only.

Table 6. Numerical values of the transition pressure P; calculated for individual models for 6 = ¢, i.e.,
for the value resulting from Equations (5) and (6) and for neutron matter (6 = 1). The table contains
pressure values for the parabolic approximation and the case when a fourth-order contribution is
included in the description of the symmetry energy. The subscript 2 refers to the quantities calculated
based on the parabolic approximation, and the subscript 24 indicates the sum of the second- and
fourth-order contributions. The pressure P is given in Mev/ fm3.

Model Py 24 for 6; = 4 Pipg for dpy =1 Py for 6y = 6 Py ford, =1
BSRS8 0.299938 0.343839 0.292153 0.334073
BSR9 0.342497 0.385733 0.339439 0.382146

BSR10 0.428416 0.473291 0.439006 0.487483

BSR11 0.534352 0.583563 0.567858 0.627902

BSR12 0.675834 0.751728 0.721884 0.814746

BSR15 0.278423 0.316262 0.272518 0.308937

BSR16 0.306975 0.348112 0.303324 0.343495

BSR17 0.392911 0.437461 0.401624 0.448741

BSR18 0.510366 0.564637 0.536236 0.5984

BSR19 0.643445 0.708704 0.695239 0.778184

BSR20 0.698844 0.759885 0.777745 0.866059

FSUGoldGZ03 0.345584 0.388768 0.343134 0.385933
FSUGoldGZ06 0.310274 0.351434 0.307171 0.34749

BKA20 0.470379 0.519487 0.494073 0.549805

BKA22 0.468696 0.507039 0.495763 0.542082

BKA24 0.574315 0.617998 0.623478 0.682634

Gy 0.800376 0.851973 0.925128 1.01912

G; 0.438749 0.471592 0.46765 0.507
FSUGold 0.55059 0.654896 0.528628 0.618851
FSUGold4 0.312472 0.391891 0.272145 0.330303
IU FSUGold 0.31685 0.404539 0.257654 0.315325
XS 0.206939 0.262488 0.18285 0.225486

™1 0.674766 0.822694 0.645515 0.772463
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Figure 4. The linear and exponential fits to the sample of (Lsym,2; fir) points for the AIC selected model
for the fourth-order case with the regression function given by Equation (28). The most probable
values of 7i; (black circles) are calculated from Equations (27) and (28) for the values of x = Ly, 2
for the sample of N = 23 RMF models. As for the mean square errors, MSE(exponential) =
2.683 x 107° < MSE(linear) = 4.5767 x 1072 (fm~°); thus, the exponential fit is better [50]. Green
squares illustrate the n; values calculated for individual RMF models.

Table 7. Numerical values of the transition density #; calculated for individual RMF models for
6 = &y, i.e., for the value of J resulting from Equations (5) and (6). The case of pure neutron matter
(6 = 1) is also included. The table contains transition density values for the parabolic approximation
and the case when the fourth-order contribution in the description of the symmetry energy is included.
The subscript 2 refers to the quantities calculated based on the parabolic approximation, and the
subscript 24 indicates the sum of the second- and fourth-order contributions. The transition density
ny is given in fm 3.

Model Nt24 for 51} = 524 Nt24 for 524 =1 Nt for (St = 52 nt2 for 52 =1
BSRS8 0.0767223 0.074953 0.0777133 0.0763169
BSR9 0.0764874 0.0745523 0.0776769 0.0761666
BSR10 0.0760831 0.074032 0.0778071 0.0762911
BSR11 0.0769332 0.0748801 0.0794208 0.0780486
BSR12 0.0820997 0.0802968 0.084933 0.0839669
BSR15 0.0744085 0.0725614 0.0754156 0.0739332
BSR16 0.0750102 0.0731778 0.0761299 0.0746899
BSR17 0.0758628 0.0739998 0.0774964 0.0761244
BSR18 0.077671 0.0758692 0.0799326 0.07876
BSR19 0.0800042 0.078217 0.0830318 0.0820617
BSR20 0.0796037 0.0777179 0.0833096 0.0823611
FSUGoldGZ03 0.0765717 0.0746572 0.0777949 0.0763086
FSUGoldGZ06 0.0751303 0.0733176 0.0762822 0.0748653
BKA20 0.0783231 0.076584 0.0804157 0.0792261
BKA22 0.0752489 0.0731542 0.0775529 0.0760526
BKA24 0.0766072 0.0744403 0.0796047 0.0781916
G2 0.0817356 0.079525 0.0865901 0.085502
G2* 0.0793737 0.0777159 0.0819961 0.0808773
FSUGold 0.0857725 0.0847514 0.0865302 0.0858358
FSUGold4 0.0830284 0.0820658 0.0827046 0.0817757
TU FSUGold 0.0914953 0.0912007 0.0902246 0.0896274
XS 0.0772768 0.0754875 0.0775578 0.0760218
™1 0.0939003 0.09369 0.0946969 0.0947533
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6. Conclusions

A regression model selected according to the AIC and R2,: model-selection procedures
can be used to identify and support a correct model from the physical and experimental
points of view. The results obtained include, among others things, the importance of approx-
imations used to describe the symmetry energy. Suppose the isospin asymmetry parameter
has the value resulting from the adopted model § = J;. In this case, the selected regression
models corresponding to the extreme values of AIC and R2, i both for the parabolic ap-
proximation and considering the fourth-order term, include as explanatory variables Ky
and Lsym,2, Ksym,2, and Egy, 2 multiplied by functions of J; (see (21) and (22)). The preferred
regression model that incorporates contributions from the fourth-order symmetry energy
term weakly depends on the fourth-order symmetry energy characteristics (depending only
onE sym,4Yt5§, 4+ )- A different result is obtained assuming the regression analysis is performed
for pure neutron matter. Then, in the parabolic approximation, the set of independent
variables is the maximum set and includes the factors K, Ksym,2, and Lsym,. However,
in the case when the symmetry energy is given by the formula Egy2(1p) + Esym,(1p),
the set of explanatory variables does not include the characteristics of symmetric nuclear
matter, namely its incompressibility Ky. In this case, the regression model is described by
the following independent variables: Lsym,2, Lsym,4, Ksym,2, and Ksym,4. Regardless of the
considered values of J, the selected regression models for the parabolic approximation al-
ways contain the maximal set of independent variables. An additional conclusion concerns
the value of the most probable transition density, which for pure neutron matter, when
taking into account the contribution of the fourth-order symmetry energy, is of significantly
lower value 7i; = 0.05876 + 0.00572 fm—3. This means that, in this case, the crust—core
boundary is moved to much lower densities. After obtaining the transition density in the
fourth-order approximation for the model with AIC and R2, i selected (with the regression
function (28)), it is possible to examine the relationship between 7i; and Lsym,2- The obtained
results confirm the existence of anti-correlation between these quantities (see Figure 4).
Moreover, the mean square error MSE for the exponential fit is much lower than in the
linear case. Thus, the exponential fit is better. This could suggest the existence of a valuable
shift of the transition boundary towards densities approaching the saturation density in
the case of nuclear matter models characterized by a low L, 2 value.
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Appendix A. Selection Tools for the Regression Function and Classical Models

Regression analysis is a valuable method for estimating the relationships between a
dependent random variable Y (response) and independent variables X, X5, ... Xj (factors).
Let the regression model have the form

Y =E[Y|X},Xp,..., X +E

Al
:0é0+a1X1+062X2+...+aka+E, ( )

where E denotes the random error, and E[Y|X3, Xp, . .., Xi] is the conditional expectation
valueof Y, and w;, i = 0,1,2,..., k are the structural parameters. The parameter « is called
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the intercept. Considering a sample of N models chosen randomly from a population of
models, the regression model (A1) can be estimated by

Y=8o+a; X1+ Xo+... +& X+ E. (A2)

Here, &g, &1, &, . . ., & are the estimators of the structural parameters wg, a1, a0, ..., 2 of a

particular regression model, and E is the estimator of the error term E in Equation (A1).

The error term E variance is denoted by MSE (mean squared error) throughout this paper.
Given a linear regression model with k factors, the null hypothesis

H():Dq:(xz:...:txkzo, (A3)

is a question about the irrelevance of the correlation between the dependent variable Y and
the group of independent variables X;,i = 1,2, ..., k.

Appendix A.1. The Characteristics of the Regressions: Coefficient of Determination R* and
Adjusted R% ;;

In statistics, the sums of squares, which are used in a regression analysis, measure
the variability in data. They reveal the dispersion of data points concerning the mean and
how much the response variable differs from the predicted values. For a given dependent
variable Y, it is convenient to define the total sum of squares as SSY = YN, (Y; — Y)?, which
is the sum of squares of deviations of the observed Y; from their mean Y. SSY is often
partitioned to the sum of squares due to regression, SSR = YN | (Y; — Y)?, and due to error,
SSE=YN (Y;— Y;)2, where SSE is called the residual (error) sum of squares. This leads to
the ANOVA equation for the linear regression, SSY = SSR + SSE [10]. The characteristics
of the regressions in use are the mean square due to regression MSR = SSR/dfssg, the
mean squared error MSE = SSE/dfssg, and the coefficient of determination:

5> SSR SSE

—SS—Y—l—SS—Y6<O,1>, (A4)
which measures the ratio of the variability of the dependent variable explained by the
regression to the overall variability of this variable. Here, dfssg = kand dfssgp = N —k —1
are the number of degrees of freedom for SSR and SSE, respectively. The descriptive
limits of the correlation strength in this paper are assumed to be 0.1 < R?> < 0.25 for
weak correlation and R? > 0.64 (|R| > 0.8) for strong correlation. In one-dimensional
linear regression Y = a + b X + E, the sign of the Pearson linear correlation coefficient ryx
between Y and X, ref. [10] equals the sign of b, ryx = sgn(b) |R|. An additional statistic
to the coefficient of determination R?, which considers the number of parameters in the
model, is the adjusted coefficient of determination R% djr defined as [51]

N—i N—i
RZi=1- cer MSE=1— —

2
SSY NokU R (A5)

where the mean square error MSE = % and N is the number of observations used to

match the model, K is the number of parameters in the model, including the intercept,
K =k +1, and i equals 1 when the model has an offset (intercept) and 0 otherwise. Rﬁ dj
starts decreasing when the model has too many parameters. The moment in which R2, j

starts to drop is a signal that the model no longer needs to be developed.

Appendix A.2. The Backward Selection Method
Appendix A.2.1. i Statistics

One might be tempted to compare models with different numbers of parameters. To
this aim, a convenient notation is SSE; = SSE(Xy, Xa, ..., Xi). Let the model include k’
factors Xy, X, ..., Xi, Xp, k' = k+ 1. To determine the significance of introducing an addi-
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tional factor X/, the partial F, statistics (p for “partial”) for the models (X1, X5, ..., Xy, Xi')
and (Xj, Xy, ..., X§) can be introduced [10]:

(SSRy — SSRy)/(dfssr,, — dfssr,)
o = MSEy / (A6)

where, according to the introduced notation, MSEy = SSEy /dfssg,,. The statistic K,
is a random variable on the sample space, with the F distribution Fy_ x_p_1 with
k' —k = dfssg, — dfssg, and N — k' —1 = dfssg, . For a particular sample, F, takes
the observed value ngs. In this case, the empirical significance level (the p-value) can
be calculated:

p = Prob(F, > F3) . (A7)

If, in the observed sample, for a chosen significance level &, p > «, then there is no
reason to reject the null hypothesis Hy : ap = 0, which now reads: “the lower model fits
the observed data as well as the higher model,” i.e., the sample gives no incentives to
extend the model. Here, the adjectives “lower” and “higher” reflect the number of factors.
The lower model is rejected if p < a. With the hierarchical development of the regression
model in this paper, the value of the partial statistics F, in the observed sample and the
corresponding p-values, (Equation (A7)) for the factor added last can be determined at all
stages of model construction. It can be shown that the F, test (A6) for the significance of a
one-variable extension of a model with k variables coincides with the Student’s t-test for the
null hypothesis for the structural parameter aj = 0 (the p-values of the tests are the same).

Appendix A.2.2. Backward Elimination Method

The backward elimination regression method is a statistical procedure of the model
selection used to reduce the number of less significant variables [10]. The selection should
start with a possible most complete model and simplify it until it turns out that all the
remaining variables have a substantial impact on the accuracy of fitting the model regres-
sion to empirical data. As a tool, the partial F, value (A6) (or the empirical significance
level, i.e., the p-value (A7)), for each variable in the model is calculated. When comparing
the highest value of the empirical significance level p with the value of the previously
chosen significance level « (for the variable to remain in the model, e.g., « = 0.01,0.05), it is
possible to decide whether to remove or keep the considered variable. This procedure can
be repeated after deciding to neglect a given variable until a model is obtained where all
the values of the estimators of the model’s structural parameters are statistically significant.
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