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Abstract: In this paper, a regression model between neutron star crust–core pressure and the sym-

metry energy characteristics was estimated using the Akaike information criterion and the adjusted

coefficient of determination R2
adj. The most probable value of the transition density, which should

characterize the crust–core environment of the sought physical neutron star model, was determined

based on the obtained regression function. An anti-correlation was found between this transition

density and the main characteristic of the symmetry energy, i.e., its slope L.

Keywords: neutron star; symmetry energy; nuclear matter modeling

1. Introduction

Nuclear symmetry energy is a key factor that defines the problem of the neutron star’s
exact internal structure and, to some extent, determines its solution. How and in what
range symmetry energy controls the emergence of different phases of nuclear matter is
one of the main topics of current theoretical research in nuclear physics and astrophysics.
The uncertainties in the internal structure of a neutron star, which is expected to exhibit
nuclear matter at different physical states, are mainly due to the limited knowledge of the
equation of state (EoS) of such a matter being in extreme physical conditions of density,
temperature, and isospin asymmetry. Without experimental data extracted at such extreme
conditions, it is necessary to use models that meet the results of ground-based experiments
and reproduce nuclear matter’s saturation properties. Such models yield considerable
uncertainty when extrapolated and applied to densities relevant to neutron stars. There are
many dubious points in the modeling of neutron stars. One of the most critical concerns is
the precise description of the crust–core crossing boundary and, thus, the extent of the crust.
The neutron star’s matter EoS allows a neutron star’s hydrostatic model to be obtained, and
its general stratification distinguishes three layers: the outermost is the atmosphere and
then the crust, which splits into the inner and outer parts. The inner crust extends outward
to the well-determined neutron drip density ρdrip = 4 × 1011 g/cm3. The very inner part
of a neutron star is a liquid core comprising interacting neutrons in β-equilibrium with
the admixture of protons and electrons. Theoretical considerations point to the complex
structure of a neutron star’s inner crust. It consists of atomic nuclei with significant neutron
excess immersed in a gas of free neutrons and relativistic degenerate electrons. Depend-
ing on the density, atomic nuclei have different shapes, being spherical in most of the
inner crust. Calculations suggest that non-spherical configurations of nuclei in the crust’s
deepest layers become energetically favorable, forming the pasta phase [1–5]. This com-
plex structure of the inner crust transforms into its equally complicated EoS. The missing
precise physical model that allows for constructing an accurate EoS adequate to describe
the asymmetric nuclear matter in the full range of densities characteristic of a neutron
star and that correctly reproduces its properties forces the use of approximate methods.
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However, these methods allow for only approximately determining a neutron star model
and, among other properties, the crust–core boundary’s location. Often, the physical model
is described with various statistical characteristics. One of the most general is the joint
probability distribution of all variables needed to describe the physical phenomenon under
study. However, finding such a distribution by proposing a theoretical model is generally
impossible. Therefore, the initial stage in constructing a physical model is selecting (a)
regression model(s) between variables suspected of being essential in describing a physical
phenomenon. Finding this regression model(s), in turn, helps capture the correct form
of the physical theoretical model. Searching for different regression functions between
different variables may be the initial stage of its search in the case of ignorance of the
fundamental formulation of the physical model. The obvious help is appropriate statistical
analysis. One of the most elegant statistical methods is the maximum likelihood method
(MLM) [6] and the resulting Akaike information criterion (AIC) [7–10]. In general, the AIC
helps search for the actual statistical model from which the data visible in the observa-
tion are generated. Between the models accepted for analysis, the statistical model (e.g.,
the regression model) closest to the unknown accurate statistical model gives the highest
probability of producing the observed data. Section 4.2 is devoted to the AIC criterion,
which selects a regression model between the crust–core transition pressure Pt and the
characteristics of the system’s energy. The statistics that measure the goodness of fit of the
dependent variable to the data for a specific group of independent variables in a linear
regression model is the coefficient of determination R2. In this paper, the adjusted R2, R2

adj,

is also used [10]; see Appendix A.1. R2
adj helps to eliminate the overestimation of the model

obtained by applying R2; i.e., R2
adj may have a maximum. It may decline as the number of

regression model’s effects increases. The maximum of R2
adj indicates where the expansion

of the regression model should be stopped so as not to overfit the model in the sample
when compared to the unknown model in the population (theoretical model). This paper
considers the R2

adj to be an auxiliary criterion in searching for the optimal regression model.

Another method used in this paper for selecting the appropriate regression model is the
backward elimination method [10] (Appendix A.2), which allows for choosing a regression
model with factors that have a significant statistical impact on the goodness of fit of the
dependent variable to the data. It is good if all these methods point to the same group of
factors and produce the same regression model, although there is generally no guarantee
that this will happen. In this paper, the AIC criterion for selecting the regression model is
preferred, as it gives the highest probability of the appearance of the particular data. The
regression model between the transition pressure Pt and the system’s energy characteristics
estimated in this paper using the AIC method is a particular characteristic of the sought
actual physical model expected to describe nuclear and astrophysical observations correctly.
One of the quantities characterizing a physical system is the crust–core transition density nt.
The proposed approach allows for determining the most probable value of the transition
density ñt related to the selected regression model for the analyzed sample of the RMF
models (Sections 5.1 and 5.2).

2. The Inner Edge of a Neutron Star Inner Crust

The location of the crust–core boundary in a neutron star can be specified if accurate
models describing the matter of the crust and core are known. Generally, a hydrostatic
equilibrium equation supplemented with a proper form of the EoS can provide valuable
clues about the neutron star’s internal structure. However, in a neutron star’s inner crust,
one can deal with a form of nuclear matter whose a priori predictions are not obvious.
Model calculations indicate the possibility of a very complex, nonhomogenous phase called
nuclear pasta, which further complicates the form of the equation of state of this matter.
Due to its highly complex structure, determining the EoS of matter in this layer of a neutron
star is problematic and burdened with very high uncertainty. Thus, it has become necessary
to develop alternative methods to estimate the transition density at which homogeneous
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matter becomes unstable against small density fluctuations, indicating the beginning of the
formation of the nucleus clusters. Below, the location of the inner boundary of the neutron
star’s inner crust is determined based on thermodynamic methods [11–14], which require
that the system meets the stability condition given by the pair of inequalities:

−
(

∂P

∂v

)

µ

> 0, −
(

∂µasym

∂qc

)

v

> 0. (1)

Otherwise, it loses stability against small density fluctuations. In the above inequalities,
v and qc are volume and charge per baryon number, P is the system’s total pressure, and
µasym = µn − µp is the difference in neutrons’ and protons’ chemical potentials. The energy
of nuclear matter considered in terms of binding energy (EoS) is given by the relation

E(nb, δ) =
ε(nb, δ)

nb
− M, (2)

where the energy density ε(nb, δ) of the system is a function that depends on baryon density
nb = nn + np and the isospin asymmetry parameter δ; M is the nucleon mass. It is expected
that the function E(nb, δ) can be represented by its Taylor series, which, under expansion
to the fourth order around δ = 0, takes the following form

E(nb, δ) = ∑
∞
n=0 E2n(nb)δ

2n

= E0(nb) + E2(nb)δ
2 + E4(nb)δ

4 + . . . .
(3)

Coefficients of the series (3) are functions of baryon density and denote the binding energy
of the symmetric matter E0(nb), the symmetry energy E2(nb) ≡ Esym,2(nb), and the fourth-
order symmetry energy E4(nb) ≡ Esym,4(nb). The simplest case considers only the second-
order term in (3), and it is known as the parabolic approximation. Using the dependence
δ = 1 − 2Yp, where Yp = np/nb is the relative proton concentration, the following relation
for the isospin-dependent part of the binding energy can be obtained:

EN,asym(nb, Yp) = Esym,2(nb)(1 − 2Yp)
2 + Esym,4(nb)(1 − 2Yp)

4.

The energy per baryon of relativistic electrons has the form

Ee(nb) =
3

4
h̄c(3π2nb)

1/3Y1/3
e .

The charge-neutrality condition demands that Ye = Yp. Thus, the total energy per baryon
of the matter in the core is given by

ETot = E0(nb) + EN,asym(nb, Yp) + Ee(nb, Yp).

The minimization of ETot(nb, Yp) with respect to Yp gives the β equilibrium condition

µe = µn − µp = − ∂ETot(nb ,Yp)
∂Yp

= 4(1 − 2Yp)Esym,2(nb)+

+8(1 − 2Yp)3Esym,4(nb).
(4)

For the chemical potential of relativistic electrons µe = h̄c(3π2nb)
1/3Y1/3

e , the condi-
tion given above allows one to determine the equilibrium proton fraction Y

eq
p

h̄c(3π2nb)
1/3Yp(nb)

1/3 = 4(1 − 2Yp(nb))Esym,2(nb)
+8(1 − 2Yp(np))3Esym,4(nb).

(5)
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The condition −
(

∂µasym

∂qc

)
v
> 0 is usually satisfied, whereas the inequality −

(
∂P
∂v

)
µ
> 0

can be expressed by requiring the expression Vther to be positive

Vther = 2nb

∂E(nb, Yp)

∂nb
+ n2

b

∂2E(nb, Yp)

∂n2
b

−
(

∂2E(nb, Yp)

∂nb∂Yp

)2

/
∂2E(nb, Yp)

∂Y2
p

, (6)

where E(nb, Yp) is the binding energy of nuclear matter. Solving Equations (5) and (6)
allows for determining the value of the transition density nt and the corresponding proton
concentration value Y

eq
p (nt) = Yt. Using the thermodynamic relation

P = n2
b

∂E(nb, Yp)

∂nb
(7)

to calculate the pressure of the n-p-e system of particles results in a total pressure that
is the sum of contributions from nucleons (PN) and electrons (Pe), PTot = PN + Pe. The
calculations made for the transition density nt and the corresponding Yt value can lead to
the equation for the pressure at the crust–core boundary.

Pt(nt) = n2
t

dE0(nb)
dnb

∣∣∣
nt

+ n2
t (1 − 2Yt)2

(
dEsym,2(nb)

dnb

∣∣∣
nt

+ (1 − 2Yt)2 dEsym,4(nb)

dnb

∣∣∣
nt

)
+

+ntYt(1 − 2Yt)
(
Esym,2(nt) + 2Esym,4(nt)(1 − 2Yt)2

)
.

(8)

In general, it is expected that higher-order terms in the expansion (3) have to be included to
obtain a more accurate description of the binding energy of systems with a significant value
of the isospin asymmetry. In this case, an improvement in the accuracy of the obtained
solution is expected. In further analysis, each function E0(nb), Esym,2(nb), and Esym,4(nb) is
represented by a Taylor series expansion around n0. This procedure can be presented in
the general form as

Ej(nb) =
∞

∑
i=0

C
j
i

(
nb − n0

3n0

)i

. (9)

The index j distinguishes between symmetric δ = 0 and asymmetric δ 6= 0 nuclear matter.
The case of symmetric nuclear matter is denoted by j = 0, and E0(nb) means the binding
energy of symmetric nuclear matter. The case j = 2 corresponds to the second-order
symmetry energy Esym,2(nb) and j = 4 the fourth-order symmetry energy Esym,4(nb). The
expansion coefficients

C
j
i = (3n0)

i 1

i!

diEj(nb)

dni
b

∣∣∣
n0

(10)

represent the following characteristics of nuclear matter: C0
0 ≡ E0(n0) is the binding energy

per nucleon of symmetric nuclear matter at a saturation density n0, the nuclear matter
incompressibility C0

2 ≡ K0, C2
0 ≡ Esym,2(n0) is the symmetry energy at the saturation

density, C2
1 ≡ Lsym,2 is the second-order symmetry energy slope, C2

2 ≡ Ksym,2 is the

curvature of the second-order symmetry energy, C4
1 ≡ Lsym,4 is the fourth-order symmetry

energy slope, and C4
2 ≡ Ksym,4 is the curvature of the fourth-order symmetry energy. By

applying the Taylor series expansions of the functions E0(nb), Esym,2(nb), and Esym,4(nb), it
is possible to obtain the approximate value of the pressure at the crust–core boundary

Papp(nt) ≈ n2
t (nt−n0)

9n2
0

(
K0 + Ksym,2δ2

t + Ksym,4δ4
t

)
+

+Lsym,2

(
nt(nt−n0)Yp(nt)δt

3n0
+

n2
t δ2

t
3n0

)

+ntYp(nt)δt

(
Esym,2 + 2Esym,4δ2

t

)
+

+Lsym,4

(
2nt(nt−n0)Yp(nt)δ

3
t

3n0
+

n2
t δ4

t
3n0

)
.

(11)
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In the case when the density dependence of the symmetry energy is given by the parabolic
approximation, Equation (11) reduces to the following form

Papp(nt) ≈ n2
t (nt−n0)

9n2
0

(
K0 + Ksym,2δ2

t

)
+

+Lsym,2

(
nt(nt−n0)Yp(nt)δt

3n0
+

n2
t δ2

t
3n0

)
+ ntYp(nt)δtEsym,2.

(12)

Another approximate form of the expression defining the pressure can be obtained, as-
suming that δ equals 1, which leads to Yp = 0 and corresponds to the case of pure
neutron matter

Papp(nt) ≈
(

nt
3n0

)2
(nt − n0)

(
K0 + Ksym,2 + Ksym,4

)
+

+ nt
3n0

nt

(
Lsym,2 + Lsym,4

)
.

(13)

The above equation reduces to a very simple form for the parabolic approximation of the
symmetry energy:

Papp(nt) ≈
(

nt

3n0

)2

(nt − n0)
(
K0 + Ksym,2

)
+

nt

3n0
ntLsym,2. (14)

Only when the transition density reaches values equal to the saturation density n0 does the
dependence of pressure Pt on parameters characterizing the incompressibility of nuclear
matter disappear, and a straightforward relation Papp ≈ 1/3n0Lsym,2 is obtained.

3. Determination of the EoS

The determination of the EoS is based on the Lagrangian density function that is the
sum of free baryon and meson fields part L0 and the part Lint describing the interaction.
The individual parts are given in the following forms:

L0 = ψ̄(iγµ∂µ − M)ψ + 1
2 (∂

µσ∂µσ − m2
σσ2)− 1

4 FµνFµν

+ 1
2 m2

ωωµωµ − 1
4 BµνBµν +

1
2 m2

ρ~ρµ ·~ρ µ,
(15)

where σ, ωµ, and~ρµ represent the scalar-isoscalar σ, vector-isoscalar ω, and vector-isovector
ρ meson fields, respectively ,and ψ is the isodoublet nucleon field, Fµν and Bµν are field
tensors defined as Fµν = ∂µων − ∂νωµ, and Bµν = ∂µ~ρν − ∂ν~ρµ,

Lint = ψ̄
(

gσσ − (gωωµ + 1
2 gρ~τ ·~ρµ)γµ

)
ψ − A

3 σ3 − B
4 σ4 + C

4 (g2
ω ωµωµ)2

+gσg2
ω σ(ωµωµ)(α1 +

1
2 α′1gσσ) + gσσg2

ρ(~ρµ~ρ
µ)(α2 +

1
2 α′2gσσ)+

+ 1
2 α′3(gωgρ)2(ωµωµ)(~ρµ~ρ

µ).

(16)

The Lagrangian density function Lint contains the Yukawa couplings between the nucleons
and the meson and collects various nonlinear meson interaction terms. The individual
coupling constants determine the strength of the meson interactions. The equations of
motion derived based on the above Lagrangian density function L = L0 + Lint were
solved in the mean-field approximation. This approach separates meson fields into classical
components and quantum fluctuations; the quantum fluctuation terms vanish, and only
classical parts remain. The mean field limit, in the case of a static and a spherically
symmetric system, leads to the following relations:

σ → 〈σ〉 ≡ s
ωµ → 〈ω〉 ≡ 〈ω0〉 δµ0 ≡ ω0

~ρ µ → 〈ρ3〉 ≡ 〈ρ0,3〉 δµ0 ≡ r0,3.
(17)
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The mesons are coupled to the nucleon sources, which are also replaced by their expectation
values in the mean-field ground state. The solution to the equations of motion allows one
to calculate the energy density of the system

ε = 1
2 m2

σs2 + A
3 s3 + B

4 s4 − 1
2 m2

ωω2
0 − C

4 (g2
ωω2

0)
2 + gωω0nb − 1

2 m2
ρr2

0,3 + gρr0,3n3b

−gσs(gωω0)
2
(

α1 +
1
2 α′1gσs

)
− gσs(gρr0,3)

2
(

α2 +
1
2 α′2gσs

)
− 1

2 α′3(gωω0)
2(gρr0,3)

2

+∑j=n,p
g

2π2

∫ kFj

0 k2
√

k2 + M2
eff,jdk,

(18)

where Meff = M − gσs denotes the effective nucleon mass and n3b = 〈ψ̄γ0τ3ψ〉 = np − nn,
and g represents the number of degrees of freedom. The nonlinear meson interaction
terms necessary for constructing a correct nuclear matter EoS alter both the isoscalar
and isovector sectors [15,16]. The calculations were carried out in the framework of
relativistic mean field (RMF) theory. This approach considers the nuclear many-body
problem a relativistic system of baryons and mesons. In the original Walecka model,
only scalar-isoscalar σ (attractive) and vector-isoscalar ω (repulsive) mesons [17,18] were
involved in accounting for the saturation properties of symmetric nuclear matter. This
model was then extended with the vector-isovector meson ρ and subjected to further
modifications, leading to more sophisticated models containing various nonlinear self
and mixed meson interaction terms [19]. Specifying this model in such an extended form
allows one to successfully reproduce some ground-state properties of finite nuclei and
nuclear matter. The implemented modifications increase the usefulness of the models
in satisfactory descriptions of the properties of asymmetric nuclear matter [20,21]. The
properties of nuclear matter determined based on RMF models rely on selected groups
of parameters that are the research subject presented in papers [21,22]. The acceptance of
a given parameterization depends on the degree of compliance of the determined prop-
erties of symmetric and asymmetric nuclear matter with the constraints resulting from
the analysis of experimental data. The choice of experimental constraints in the case of
symmetrical matter (δ = 0) considers the nuclear matter’s incompressibility at saturation
density K0 in the range of 190–270 MeV [23–25], the skewness coefficient is Q in the range
200–1200 MeV [26], and the pressure P(nb) is in density ranges of (2n0, 5n0) and
(1.5n0, 2.5n0) [27,28]. Considering the asymmetric nuclear matter [29], experimental con-
straints apply to the coefficients characterizing the density dependence of the symmetry
energy. One can specify the following limitation ranges: symmetry energy coefficient
Esym(n0) −(25–35 MeV) and (30–35 MeV) [30], symmetry energy slope L0 calculated at
n0 −(25–115 MeV) [31,32], volume part of isospin incompressibility K0

τ,v at n0 −(−700–
−400 MeV) [21,33,34], and the ratio of the symmetry energy in n0/2 to its value in
n0 −(0.57–0.86) [35].

The RMF models applied in the analysis performed in this paper can be characterized
and distinguished by different types of nonlinear couplings between mesons. It becomes
possible to divide all models into three groups. Group I includes the BSR [36] and FSUGZ03,
FSUGZ06 [37] models with the following types of mixed meson couplings: σ − ω2, σ2 − ω2,
σ − ρ2, σ2 − ρ2, ω2 − ρ2. Group II of the BKA [38], G2 [39] and G2⋆ [40] models includes
the σ − ω2, σ2 − ω2, σ − ρ2 non-linear terms. Group III FSUGold [16], FSUGold4 [41],
IU FSU, XS [42] and TM1 [43] is characterized by ω2 − ρ2. The values of parameters for
individual models and saturation properties of symmetric and asymmetric nuclear matter
are collected in the papers [44,45]. The energy density of the system given by Equation (18)
encodes the correct form of the symmetry energy.

4. Regression Analysis

Various concepts that belong to the category of measuring the goodness of fit of the
quality of statistical modeling have been developed, including R2, adjusted R2, which
represents some attempt to adjust for the number of parameters in the model, AIC, and
statistical backward elimination. The necessary information on the AIC method used in the
paper to select the regression model is presented below. The basic information on other
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methods is given in the Appendix A. The approaches are not always equivalent, and using
different methods allows for a better understanding of which factors in the regression
models are the most important.

4.1. The Consistency Assumption for Considered Models

This paper assumes that every theoretical point in the sample of N = 23 models is
estimated consistently, that is, without any bias, at least asymptotically. Therefore, every
theoretical point on the scatter diagram coincides with the estimate obtained for n of
hypothetical experiments testing this model. It follows that in the limits n → ∞ and for all
the population of models, the finite sample error Ê tends to E. Therefore, the requirement to
use the method is the assumption that it is possible to determine the values of the estimators’
model parameters from the experiment. Each model introduced into the analysis satisfies
as many experimental constraints as possible. This group is an optimal sample of models
in this paper.

4.2. The Akaike Information Criterion Analysis

The Akaike information criterion (AIC) [9] is very useful in mining the most probable
appearance of the observed sample with the simultaneous limiting model extensions. Let
the data y = (y1, y2, . . . , yN) be generated by the true but unknown regression model g for
the random variable Y (to simplify the notation, only the values yi of the response variable
Y are written). Consider a regression model f ≡ f (Y, Ak) with a vector parameter Ak

as a candidate for describing the investigated interdependence between the dependent
variable Y and the group of factors. Ak is a free parameter of the regression model f as all
its components α1, α2, . . . , αk can be made zero in the null hypothesis (A3) (Appendix A).
To select a better regression model f for the response variable Y and explanatory variables
X1, X2, . . . , Xk with a parameter Ak, the following form of AIC is used

AIC( f , Ak) = −2 lnL(Âk) + 2 (k + 1) . (19)

Here, L(Ak) ≡ L(y|Ak) denotes the likelihood function corresponding to the model f
for a N-dimensional sample, Âk is a maximum likelihood method (MLM) estimator of
the parameter Ak, and k + 1 is the number of the estimated structural parameters in the
regression model, i.e., the vector of slope coefficients Ak = (α1, α2, . . . , αk) plus the intercept
α0. The mean of the maximization of the log-likelihood function lnL(y|Ak) is equivalent
to maximizing the expectation value Eg[ln f (Y, Ak)] calculated for the true model g [9].

As the unknown parameter Ak is replaced by its MLM estimator Âk, thus, instead of

Eg[ln f (Y, Ak)], the expectation value Qk ≡ Eg, hAk

[
ln f (Y, Âk)

]
is maximized, where hAk

is

the distribution hAk
(Âk) of the estimator Âk. The maximization of Qk is equivalent to the

minimization of −2NQk, where N is the dimension of the sample. Because AIC( f , Ak) is
approximately an unbiased estimator of −2NQk [9], the model that minimizes AIC( f , Ak)
is the candidate for the searched model. This can be confirmed by considering the Kullback–
Leibler (K-L) distance between the models f and g [9]:

D(g, f ) = Eg[ln g(Y)]− Eg[ln f (Y, Ak)] . (20)

As Eg[ln g(Y)] is constant, the minimization of AIC( f , Ak) implies the selection of the
model that minimizes the K-L distance chosen for the statistical analysis is model f from
the unknown true model g. Details concerning the AIC model-selection procedure can be
found in [9].
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5. Discussion

5.1. The Results of the Selection of the Regression Models

The analysis performed in this paper uses a sample of the most reliable RMF models
that describe nuclear matter whose high credibility follows from the fact that they meet
the largest number of experimental constraints. Based on these models, nuclear matter
EoSs given in terms of binding energy E(nb, δ) (2) were constructed. In the first step of
the analysis, the function E(nb, δ) is approximated by its Taylor series expansion around
δ = 0. This leads to the separation of the symmetric E0(nb, 0) ≡ E0(nb) and asymmetric
Easym(nb, δ) = Esym,2(nb)δ

2 + Esym,4(nb)δ
4 + . . . parts of the EoS and allows one to consider

the asymmetric part of the EoS at different levels of approximation. The coefficients of
the expansion depend on baryon density. The analysis was carried out for the symmetry
energy given by the parabolic approximation and for the case when the description of
asymmetric matter additionally considers the fourth-order symmetry energy term. The
transition pressure at the neutron star crust–core boundary following (8) decisively depends
on the functions E0(nb), Esym,2(nb), and Esym,4(nb). The approximate expression for the
transition pressure given in terms of the defined expansion coefficients has the form given
by Equation (11). All variables that enter this formula form the set of explanatory variables.
In the parabolic approximation, it contains the following terms:

(
K0, E2, Yδ2

≡ Esym,2(n0)Yt,2 δt,2, L2, δ2
2
≡ Lsym,2 δ2

t,2,

L2, Yδ2
≡ Lsym,2 Yt,2 δt,2, K2, δ2

2
≡ Ksym,2 δ2

t,2

) (21)

and in the fourth-order approximation:

(
K0, E2, Yδ24

≡ Esym,2(n0)Yt,24 δt,24, L2, δ2
24
≡ Lsym,2 δ2

t,24,

L2, Yδ24
≡ Lsym,2 Yt,24 δt,24, K2, δ2

24
≡ Ksym,2 δ2

t,24,

E4, Yδ24
≡ Esym,4(n0)Yt,24 δ3

t,24, L4, δ4
24
≡ Lsym,2 δ2

t,24,

L4, Yδ24
≡ Lsym,4 Yt,24 δ3

t,24, K2, δ2
24
≡ Ksym,4 δ4

t,24

)
.

(22)

These variables serve as input parameters in the regression analysis. The nuclear matter
at the crust–core transition boundary is highly isospin-asymmetric. Thus, an additional
approximation consisting of taking δt = 1, which corresponds to pure neutron matter,
was also adopted. The description of nuclear matter was based on a selected group of
RMF models. Although this is an optimal sample of models that meets many experimental
constraints, none is the final true physical model, i.e., one with all the necessary components
in the correct form. Since the true physical model is unknown, the search for it can start at a
selected basic stage. This means providing statistical evidence for this physical model based
on a regression analysis, which will reproduce the given sample of RMF models with the
highest probability. The procedure of evaluating regression models, called model selection,
has been applied. The selected model should be the one that provides an adequate represen-
tation of the data. However, it must be emphasized that it is not desirable that the selected
model is represented by the maximal number of explanatory variables. The selection
analysis identifies the explanatory variables for the selected regression model. Different
selection procedures, such as the AIC method and the R2

adj and the backward elimination

method, yielded the chosen regression model (Section 4.2 andAppendices A.1 and A.2).
The analysis covers several cases. The first concerns approximations used to describe
the symmetry energy, namely the parabolic approximation Esym,2(nb) (Table 1) and the
one that also considers the contribution from the fourth-order term Esym,2(nb) + Esym,4(nb)
(Table 2). In each table, the collected results of regression models for a different number
of explanatory variables are given. The results for the pure neutron matter (the isospin
asymmetry δ = 1) obtained for the parabolic approximation are given in Table 3. In Table 4,
the results for the fourth-order case are gathered.
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Table 1. Some characteristics of the regression models in the parabolic approximation case with δ2.

R2 is the coefficient of determination, R2
adj is the adjusted coefficient of determination (Appendix A.1),

AIC is the Akaike information criterion given in Equation (19), and the ñt values in the table are the

means of the most probable density values assuming Equation (27). The most likely value is for the

model with a globally minimal AIC given in boldface characters.

Variables R2 R2
adj AIC ñt

L2, Yδ2
0.7629 0.7516 −40.4399

L2, δ2
2

0.6544 0.6380 −31.7806 0.06131 ± 0.00427

K2, δ2
2

0.1782 0.1391 −11.8554

E2, Yδ2
0.0197 −0.0270 −7.7978

K0 0.0001 −0.0475 −7.3445

(L2, Yδ2
K2, δ2

2
) 0.8224 0.8046 −44.9683

(E2, Yδ2
L2, δ2

2
) 0.7920 0.7712 −41.3372 0.05772 ± 0.00596

(E2, Yδ2
L2, δ2

2
K2, δ2

2
) 0.8763 0.8567 −51.1033 0.05527 ± 0.00688

(L2, Yδ2
L2, δ2

2
K2, δ2

2
) 0.8624 0.8407 −48.6563

(K0 E2, Yδ2
L2, δ2

2
K2, δ2

2
) 0.8982 0.8756 −53.3467 0.08487 ± 0.00628

(E2, Yδ2
L2, Yδ2

L2, δ2
2

K2, δ2
2
) 0.8932 0.8694 −52.2390

( K0 E2, Yδ2
L2, Yδ2

L2, δ2
2

K2, δ2
2
) 0.9173 0.8930 −55.8201 0.08593 ± 0.00663

Table 2. Some characteristics of the regression models when the fourth-order contribution is included

with δ24. R2 is the coefficient of determination, R2
adj is the adjusted coefficient of determination

(Appendix A.1), AIC is the Akaike information criterion given in Equation (19), and ñt values in the

table are the means of the most probable density values assuming Equation (27). The most likely

value is for the model with a globally minimal AIC given in boldface characters.

Variables R2 R2
adj AIC ñt

L2, Yδ24
0.6637 0.6477 −40.6499

L2, δ2
24

0.5177 0.4947 −32.3577 0.06131 ± 0.00146

K2, δ2
24

0.2235 0.1865 −21.4046

E4, Yδ3
24

0.0848 0.0413 −17.6258

L4, δ4
24

0.0129 −0.0341 −15.8845

K0 0.0090 −0.0382 −15.7954
K4, δ4

24
0.0025 −0.0450 −15.6451

L4, Yδ3
24

0.0015 −0.0460 −15.6214

E2, Yδ24
0.0014 −0.0461 −15.6199

(L2, δ2
24

K4, δ4
24

) 0.8282 0.8110 −53.9753 0.06125 ± 0.0063

(L2, Yδ24
K2, δ2

24
) 0.7554 0.7310 −45.8542

(L2, δ2
24

K2, δ2
24

K4, δ4
24

) 0.8707 0.8503 −58.3342 0.05882 ± 0.0055

(E2, Yδ24
L2, Yδ24

K4, δ4
24

) 0.8636 0.8421 −57.1077

(E2, Yδ24
L2, δ2

24
K2, δ2

24
K4, δ4

24
) 0.8918 0.8678 −60.1982 0.05503 ± 0.00573

(L2, δ2
24

L2, Yδ24
K2, δ2

24
K4, δ4

24
) 0.8906 0.8663 −59.9435

(E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

) 0.9150 0.8901 −63.4363 0.05623 ± 0.00614

(L2, Yδ24
K2, δ2

24
L4, δ4

24
L4, Yδ3

24
K4, δ4

24
) 0.9087 0.8819 −61.7911
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Table 2. Cont.

Variables R2 R2
adj AIC ñt

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

)
0.9375 0.9141 −68.1043 0.08543 ± 0.00776

(E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, δ4
24

)
0.9267 0.8992 −64.4407

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, δ4
24

)
0.9384 0.9097 −65.9606 0.05718 ± 0.0073

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, Yδ3
24

)
0.9377 0.9086 −65.6782

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, δ4
24

L4, Yδ3
24

)
0.9418 0.9086 −64.6885 0.05723 ± 0.00742

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, δ4
24

K4, δ4
24

)
0.9384 0.9033 −63.3813

(K0 E2, Yδ24
L2, δ2

24
L2, Yδ24

K2, δ2
24

E4, Yδ3
24

L4, δ4
24

L4, Yδ3
24

K4, δ4
24

)
0.9442 0.9056 −62.9401 0.05723 ± 0.00723

Table 3. The case when the parabolic approximation gives the symmetry energy. The regression

models are determined for δ2 = 1. ñt in the table are the means of the most probable density values

assuming Equation (27). The most likely value of ñt is the one obtained for the model with a globally

minimal AIC value. The variables in this table are from set (21) in the case of δ2 = 1. The most likely

value is for the model with a globally minimal AIC given in boldface characters.

Variables R2 R2
adj AIC ñt

Lsym,2 0.6206 0.6026 −25.3983 0.06154 ± 0.00377
Ksym,2 0.2024 0.1644 −8.3058

K0 0.0018 −0.0457 −3.1471

(K0 Lsym,2) 0.7709 0.7480 −34.8749 0.08857 ± 0.00559
(Lsym,2 Ksym,2) 0.7558 0.7314 −33.4109

(K0 Ksym,2) 0.2186 0.1405 −6.6566

(K0 Lsym,2 Ksym,2) 0.8190 0.7904 −38.1132 0.08596 ± 0.00503

Selection analysis indicates that when the parabolic approximation describes the sym-
metry energy for both considered values of the δ parameter, the minimum AIC value
applies to the maximal model, meaning that the selected regression model covers the entire
set of explanatory variables (21) (Tables 1 and 3). In the case that δ 6= 1, a global AIC
minimum appears (Table 1) for five explanatory variables denoted by char = char2 ≡
(K0, E2, Yδ2

, L2, δ2
2
, L2, Yδ2

, K2, δ2
2
). For pure neutron matter (δ = 1), there are three explana-

tory variables char = char2;δ=1 ≡ (K0, Lsym,2, Ksym,2) (Table 3). This situation changes
when the symmetry energy function is the sum of Esym,2(nb) and Esym,4(nb). In this
case, for δ 6= 1, a global AIC minimum appears (Table 2) for a model with six explana-
tory variables char = char24 ≡ (K0, E2, Yδ24

, L2, δ2
24

, L2, Yδ24
, K2, δ2

24
, E4, Yδ3

24
) selected from the

set (22). For pure neutron matter (δ = 1), there are three AIC selected explanatory variables
char = char24;δ=1 ≡ (Lsym,2, Ksym,2, Ksym,4) (Table 4). The results obtained using the AIC

method coincide with the results for R2
adj in three out of four cases, and the selected model

is characterized by the maximal value of R2
adj (see Tables 1–3). An exception is for δ24 = 1

(Table 4), for which there is a minor compatibility violation in the third significant figure.
However, for the AIC selected model, there still is a local maximum of R2

adj.
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Table 4. The case when the symmetry energy is represented by the functions Esym,2(nb) + Esym,4(nb)

and for δ24 = 1. ñt denotes the means of the most probable density values assuming Equation (27).

The most likely value is for the model with a globally minimal AIC value. The variables in this table

are the ones from set (22) in the case of δ24 = 1. The most likely value is for the model with a globally

minimal AIC given in boldface characters.

Variables R2 R2
adj AIC ñt

Lsym,2 0.4163 0.3885 −24.8389 0.06129 ± 0.00081
Ksym,2 0.2614 0.2262 −19.4268

K0 0.0406 −0.0051 −13.411
Ksym,4 0.0080 −0.0393 −12.6422

Lsym,4 0.0040 −0.0434 −12.5512

(Lsym,2 Ksym,4) 0.8122 0.7934 −48.8023 0.06115 ± 0.00668

(K0 Lsym,2) 0.6648 0.6313 −35.4791

(Lsym,2 Ksym,2 Ksym,4) 0.8638 0.8423 −54.004 0.05876 ± 0.00572

(K0 Lsym,2 Ksym,4) 0.8320 0.8055 −49.1883

(K0 Lsym,2 Ksym,2 Ksym,4) 0.8699 0.8410 −52.8228 0.08547 ± 0.00793

(Lsym,2 Ksym,2 Lsym,4 Ksym,4) 0.8657 0.8359 −52.0968

(K0 Lsym,2 Ksym,2 Lsym,4 Ksym,4) 0.8818 0.8470 −52.7082 0.05447 ± 0.00657

When multiplied by the Yt factor, the roles of explanatory variables from sets (21)
and (22) are practically negligible due to the small Yt value. Therefore, the explanatory
variable multiplied by Yt is not considered for the regression analysis with only one factor.
Otherwise, an artificial effect of a statistical nature may occur, suggesting a good fit to the
data for a model with an insignificant variable.

Results of the employed AIC and R2
adj model-selection techniques are presented in

Figures 1 and 2. Both figures depict values of AIC and R2
adj against the number n of

explanatory variables.

1 2 3 4 5 6 7 8 9

n variables

-70

-60

-50

-40

-30

-20

A
IC

Parabolic with δ
2

Parabolic with δ
2
=1

2nd plus 4th order with δ
24

2nd plus 4th order with δ
24

=1

Figure 1. The minimal values of the AIC for a given number of explanatory variables in the regression

model. The regression model with a globally minimal AIC gives the highest probability of the

appearance of the sample of RMF points. The lines connecting the symbols are a guide for the

eyes only.
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Figure 2. The adjusted coefficient of determination R2
adj vs the numbers n of the explanatory variables

used in a given regression model. The lines connecting the symbols are a guide for the eyes only.

5.2. The Most Probable Value of the Transition Density

The exact numerical values of the transition pressure Pt(nt) are calculated according
to Equation (8) (see Table 5) and Papp(nt) is its approximated form given in Equation (11).
The following equality is as follows:

Pt(nt) = Papp(nt) + R , (23)

where R is the remainder of the Taylor series expansion. This equation is valid for every
RMF model from the considered sample. Treating the regression model as an alternative
way to represent the data makes it possible to approximate the transition pressure in the
sample with the sum of the function Pf it plus the error (residual) term Ê (see Equation (A2)):

Pt(nt) = Pf it(char; α̂j|kj=0) + Ê , (24)

where Pf it(char; α̂j|kj=0) is the regression function with a general form Pf it(char, α̂i) =

α̂0 + f (char; α̂j|kj=1), α̂0 denotes the intercept term. The estimate of the variance of E is MSE,

which is the variance of Ê, and
√

MSE is its standard deviation (see Appendix A.1) . The
regression function in the parabolic case has the form (see (21))

Pf it = α̂0 + α̂1 K0 + α̂2 E2, Yδ2
+ α̂3 L2, δ2

2
+ α̂4 L2, Yδ2

+ α̂5 K2, δ2
2

(25)

and when the fourth-order term is included in the description of the symmetry energy, Pf it

is given by (see (22))

Pf it = α̂0 + α̂1 K0 + α̂2 E2, Yδ24
+ α̂3 L2, δ2

24
+ α̂4 L2, Yδ24

+ α̂5 K2, δ2
24

+α̂6 E4, Yδ3
24
+ α̂7 L4, δ4

24
+ α̂8 L4, Yδ3

24
+ α̂9 K4, δ4

24
.

(26)

The basis for determining the most probable value of the transition density ñt is the
assumption of the validity of the relation, which is the consequence of the two possible
representations of the transition pressure Pt(nt), given by Equations (23) and (24),

Papp(nt) = Pf it(char; α̂j|kj=0) , (27)

where the function on the RHS is given in relation (25) in the parabolic approximation
or (26) in the fourth-order case. This requires the appearance of the constant α̂0, which
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results from a different form of the coefficients in Papp(nt) and the constant coefficients α̂i,

i = 1, 2, . . . , k, in Pf it(char; α̂j|kj=0). In addition, the residual standard deviation
√

MSE is a

mean estimate of the remainder R in the range of the considered transition density nt. The
parameters of the regression model, including α̂0, depend only implicitly on the transition
density nt and in the limit nt → 0, α̂0 → 0.

The regression function for the AIC and R2
adj selected regression model in the fourth-

order approximation has the form

Pf it = α̂0 + α̂1 K0 + α̂2 E2, Yδ24
+ α̂3 L2, δ2

24
+ α̂4 L2, Yδ24

+ α̂5 K2, δ2
24
+ α̂6 E4, Yδ3

24

= −4.9549 + 0.002479 K0 + 8.009438 E2, Yδ24
+ 0.08421 L2, δ2

24

−3.4876 L2, Yδ24
− 0.004782 K2, δ2

24
− 49.4 E4, Yδ3

24

(28)

The above regression model is also confirmed by the backward analysis procedure applied
to the set of factors (22) as all values of the estimators of the structural parameters αj,
j = 0, 1, 2, . . . , k = 6 of the regression model are statistically significant at the level α = 0.05.
It is assumed that the significance levels of introducing a variable into the model and
keeping it in the model are the same. The other characteristics of the selected regression
model with the regression function given in Equation (28) are given in Table 6. The most
probable transition density nt = ñt was determined by solving Equation (27). The RHS
of this equation is the appropriate regression model with a specific number of factors. At
the same time, the LHS in the case when the fourth-order contribution to the symmetry
energy is included, following Equation (11), is expressed by elements characterizing the
dependence of nuclear matter on density. Since the coefficients of the factors describing
nuclear matter depend on the transition density, solving equation Equation(27) makes
determining the transition density value possible. For example, the form of Equation (27)
for the AIC-selected regression model is presented as

n2
t (nt−n0)

9n2
0

(
K0 + Ksym,2δ2

t

)
+

+Lsym,2

(
nt(nt−n0)Yp(nt)δt

3n0
+

n2
t δ2

t
3n0

)

+ntYp(nt)δt

(
Esym,2 + 2Esym,4δ2

t

)
+

= α̂0 + α̂1 K0 + α̂2 E2, Yδ24
+ α̂3 L2, δ2

24
+ α̂4 L2, Yδ24

+ α̂5 K2, δ2
24
+ α̂6 E4, Yδ3

24

= −4.9549 + 0.002479 K0 + 8.009438 E2, Yδ24
+ 0.08421 L2, δ2

24

−3.4876 L2, Yδ24
− 0.004782 K2, δ2

24
− 49.4 E4, Yδ3

24
.

(29)

Solving the above equation for nt allows one to calculate its value for the selected
regression model. This procedure was carried out for each of the 23 RMF models, and then
the average value ñt was calculated from the obtained 23 ñt values. Similar calculations
were performed for the parabolic approximation of the symmetry energy Esym,2(nb) and
the case of δ = 1. The regression model selected by the AIC gives the most probable
appearance of the sample [9]. Equation (27) is a relationship imposed on the model specified
by the AIC that guaranteed that the observed sample appeared with maximum probability
for a fixed number of factors. Thus, the value of nt = ñt determined from Equation (27) is
the most probable value for the determined number of factors selected by the AIC regression
model. Because the AIC’s globally selected regression model is the best estimate of the
true regression model, the transition density ñt resulting from the performed regression
analysis is considered the best approximation of the transition density implied by the true
regression model. As a consequence, ñt should characterize the true physical model.
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In the parabolic case, the regression model selected via the AIC and R2
adj has the

following regression function:

Pf it = α̂0 + α̂1 K0 + α̂2 E2, Yδ2
+ α̂3 L2, δ2

2
+ α̂4 L2, Yδ2

+ α̂5 K2, δ2
2

= −2.9636 + 0.002974 K0 + 2.4789 E2, Yδ2
+ 0.04254 L2, δ2

2

−1.1365 L2, Yδ2
− 0.003259 K2, δ2

2
.

(30)

This regression model is confirmed through the backward analysis procedure applied to
the set of factors (21) at the significance level α = 0.065. The values of the estimators of the
structural parameters other than α1 for the factor K0 and α4 for the factor L2, Yδ2

, remain
in the model at a significance level lower than α = 0.05. The other characteristics of the
selected regression model with the regression function given in Equation (30) are given in
Table 6.

To calculate the uncertainty of the estimation of a particular value of ñt, two components,
namely the error of the estimation of the conditional expectation value Pf it(char; αj|kj=0)

(which appeared to be decisive) and the error propagation from Pf it(char; α̂j|kj=0) to ñt,

were calculated. The obtained uncertainty of the estimation of a particular ñt coming from
these two sources is, on average, approximately ±0.024 when the fourth-order symmetry
energy term is included in the analysis (k = 6) and ±0.03 for the parabolic case (k = 5).

Table 5. The characteristics of the regression models selected by the AIC and R2
adj with the regression

functions (30) in the parabolic case and (28) in the fourth-order case. SSR, SSE, and SSY are the sum

of squares due to regression, the error sum of squares, and the total sum of squares of the response

Y ≡ Pt, respectively, and SSY = SSR + SSE. MSE (which is the variance of the error term Ê) is

the mean squared error (Appendix A.1), [10]. σ̂α̂0
to σ̂α̂5

are the standard errors of α̂0 to α̂5 in the

parabolic approximation case, and σ̂α̂0
to σ̂α̂6

are the standard errors of α̂0 to α̂6 in the fourth-order

approximation case.

Order σ̂α̂0
σ̂α̂1

σ̂α̂2
σ̂α̂3

σ̂α̂4
σ̂α̂5

σ̂α̂6
SSE SSR MSE

2-nd 0.7276 0.001335 0.9738 0.01369 0.573 0.0009326 0.06771 0.7514 0.003983

2-nd +
4-th

0.8433 0.001034 1.9201 0.01683 0.8438 0.000839 15.7805 0.03577 0.5369 0.002236

Figure 3 shows the values of the means ñt of the most probable density values ñt (see
Tables 1–4), obtained for δ = δt and δ = 1 for the two considered cases of symmetry energy
approximations as a function of the number of explanatory variables n that characterize a
given regression model selected using the AIC and R2

adj methods.

The crucial relation for the further construction of a true physical model is ñt(Lsym,2).

This relation for the model selected by the AIC and R2
adj in the fourth-order approximation

with the regression function (28) is shown in Figure 4. Green squares illustrate the nt

values calculated for individual RMF models. The nt values are shown in Table 7. The AIC
method, searching for phenomena related to the location of the neutron star’s crust–core
transition described by the RMF models shifts the crust–core boundary to higher densities.
In the paper [14], the neutron star’s core–crust transition densities obtained within the
dynamical and thermodynamical methods using the full EoS and its PA with the MDI and
Skyrme interactions have been analyzed. It should be emphasized that the most probable
transition density ñt values determined in this paper, based on the proposed probabilistic
method for the symmetry energy supplemented by the fourth-order contribution, given as
a function of the symmetry energy slope Lsym,2, follow a very similar course as in the case
of models with modified Gogny (MDI) interaction and 51 Skyrme interactions. The results
reported in other papers show that the transition density nt decreases as L increases, as it is
anticorrelated with L. This has been verified with many different models [46–49].
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Figure 3. The most probable transition density ñt vs. the numbers n of the explanatory variables used

in a given regression model selected by AIC. The maximal value of ñt refers to the global minimal

AIC. The lines connecting the symbols are a guide for the eyes only.

Table 6. Numerical values of the transition pressure Pt calculated for individual models for δ = δt, i.e.,

for the value resulting from Equations (5) and (6) and for neutron matter (δ = 1). The table contains

pressure values for the parabolic approximation and the case when a fourth-order contribution is

included in the description of the symmetry energy. The subscript 2 refers to the quantities calculated

based on the parabolic approximation, and the subscript 24 indicates the sum of the second- and

fourth-order contributions. The pressure Pt is given in Mev/fm3.

Model Pt,24 for δt = δ24 Pt,24 for δ24 = 1 Pt,2 for δt = δ2 Pt,2 for δ2 = 1

BSR8 0.299938 0.343839 0.292153 0.334073
BSR9 0.342497 0.385733 0.339439 0.382146

BSR10 0.428416 0.473291 0.439006 0.487483
BSR11 0.534352 0.583563 0.567858 0.627902
BSR12 0.675834 0.751728 0.721884 0.814746
BSR15 0.278423 0.316262 0.272518 0.308937
BSR16 0.306975 0.348112 0.303324 0.343495
BSR17 0.392911 0.437461 0.401624 0.448741
BSR18 0.510366 0.564637 0.536236 0.5984
BSR19 0.643445 0.708704 0.695239 0.778184
BSR20 0.698844 0.759885 0.777745 0.866059

FSUGoldGZ03 0.345584 0.388768 0.343134 0.385933
FSUGoldGZ06 0.310274 0.351434 0.307171 0.34749

BKA20 0.470379 0.519487 0.494073 0.549805
BKA22 0.468696 0.507039 0.495763 0.542082
BKA24 0.574315 0.617998 0.623478 0.682634

G2 0.800376 0.851973 0.925128 1.01912
G∗

2 0.438749 0.471592 0.46765 0.507

FSUGold 0.55059 0.654896 0.528628 0.618851
FSUGold4 0.312472 0.391891 0.272145 0.330303

IU FSUGold 0.31685 0.404539 0.257654 0.315325
XS 0.206939 0.262488 0.18285 0.225486

TM1 0.674766 0.822694 0.645515 0.772463
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Figure 4. The linear and exponential fits to the sample of (Lsym,2; ñt) points for the AIC selected model

for the fourth-order case with the regression function given by Equation (28). The most probable

values of ñt (black circles) are calculated from Equations (27) and (28) for the values of x ≡ Lsym,2

for the sample of N = 23 RMF models. As for the mean square errors, MSE(exponential) =

2.683 × 10−5 < MSE(linear) = 4.5767 × 10−5 ( f m−6); thus, the exponential fit is better [50]. Green

squares illustrate the nt values calculated for individual RMF models.

Table 7. Numerical values of the transition density nt calculated for individual RMF models for

δ = δt, i.e., for the value of δ resulting from Equations (5) and (6). The case of pure neutron matter

(δ = 1) is also included. The table contains transition density values for the parabolic approximation

and the case when the fourth-order contribution in the description of the symmetry energy is included.

The subscript 2 refers to the quantities calculated based on the parabolic approximation, and the

subscript 24 indicates the sum of the second- and fourth-order contributions. The transition density

nt is given in fm−3.

Model nt,24 for δt = δ24 nt,24 for δ24 = 1 nt,2 for δt = δ2 nt,2 for δ2 = 1

BSR8 0.0767223 0.074953 0.0777133 0.0763169
BSR9 0.0764874 0.0745523 0.0776769 0.0761666

BSR10 0.0760831 0.074032 0.0778071 0.0762911
BSR11 0.0769332 0.0748801 0.0794208 0.0780486
BSR12 0.0820997 0.0802968 0.084933 0.0839669
BSR15 0.0744085 0.0725614 0.0754156 0.0739332
BSR16 0.0750102 0.0731778 0.0761299 0.0746899
BSR17 0.0758628 0.0739998 0.0774964 0.0761244
BSR18 0.077671 0.0758692 0.0799326 0.07876
BSR19 0.0800042 0.078217 0.0830318 0.0820617
BSR20 0.0796037 0.0777179 0.0833096 0.0823611

FSUGoldGZ03 0.0765717 0.0746572 0.0777949 0.0763086
FSUGoldGZ06 0.0751303 0.0733176 0.0762822 0.0748653

BKA20 0.0783231 0.076584 0.0804157 0.0792261
BKA22 0.0752489 0.0731542 0.0775529 0.0760526
BKA24 0.0766072 0.0744403 0.0796047 0.0781916

G2 0.0817356 0.079525 0.0865901 0.085502
G2∗ 0.0793737 0.0777159 0.0819961 0.0808773

FSUGold 0.0857725 0.0847514 0.0865302 0.0858358
FSUGold4 0.0830284 0.0820658 0.0827046 0.0817757

IU FSUGold 0.0914953 0.0912007 0.0902246 0.0896274
XS 0.0772768 0.0754875 0.0775578 0.0760218

TM1 0.0939003 0.09369 0.0946969 0.0947533
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6. Conclusions

A regression model selected according to the AIC and R2
adj model-selection procedures

can be used to identify and support a correct model from the physical and experimental
points of view. The results obtained include, among others things, the importance of approx-
imations used to describe the symmetry energy. Suppose the isospin asymmetry parameter
has the value resulting from the adopted model δ = δt. In this case, the selected regression
models corresponding to the extreme values of AIC and R2

adj, both for the parabolic ap-

proximation and considering the fourth-order term, include as explanatory variables K0

and Lsym,2, Ksym,2, and Esym,2 multiplied by functions of δt (see (21) and (22)). The preferred
regression model that incorporates contributions from the fourth-order symmetry energy
term weakly depends on the fourth-order symmetry energy characteristics (depending only
on Esym,4Ytδ

3
24 ). A different result is obtained assuming the regression analysis is performed

for pure neutron matter. Then, in the parabolic approximation, the set of independent
variables is the maximum set and includes the factors K0, Ksym,2, and Lsym,2. However,
in the case when the symmetry energy is given by the formula Esym,2(nb) + Esym,4(nb),
the set of explanatory variables does not include the characteristics of symmetric nuclear
matter, namely its incompressibility K0. In this case, the regression model is described by
the following independent variables: Lsym,2, Lsym,4, Ksym,2, and Ksym,4. Regardless of the
considered values of δ, the selected regression models for the parabolic approximation al-
ways contain the maximal set of independent variables. An additional conclusion concerns
the value of the most probable transition density, which for pure neutron matter, when
taking into account the contribution of the fourth-order symmetry energy, is of significantly
lower value ñt = 0.05876 ± 0.00572 fm−3. This means that, in this case, the crust–core
boundary is moved to much lower densities. After obtaining the transition density in the
fourth-order approximation for the model with AIC and R2

adj selected (with the regression

function (28)), it is possible to examine the relationship between ñt and Lsym,2. The obtained
results confirm the existence of anti-correlation between these quantities (see Figure 4).
Moreover, the mean square error MSE for the exponential fit is much lower than in the
linear case. Thus, the exponential fit is better. This could suggest the existence of a valuable
shift of the transition boundary towards densities approaching the saturation density in
the case of nuclear matter models characterized by a low Lsym,2 value.
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Appendix A. Selection Tools for the Regression Function and Classical Models

Regression analysis is a valuable method for estimating the relationships between a
dependent random variable Y (response) and independent variables X1, X2, . . . Xk (factors).
Let the regression model have the form

Y = E[Y|X1, X2, . . . , Xk] + E
= α0 + α1 X1 + α2 X2 + . . . + αk Xk + E ,

(A1)

where E denotes the random error, and E[Y|X1, X2, . . . , Xk] is the conditional expectation
value of Y, and αi, i = 0, 1, 2, . . . , k are the structural parameters. The parameter α0 is called
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the intercept. Considering a sample of N models chosen randomly from a population of
models, the regression model (A1) can be estimated by

Y = α̂0 + α̂1 X1 + α̂2 X2 + . . . + α̂k Xk + Ê . (A2)

Here, α̂0, α̂1, α̂2, . . . , α̂k are the estimators of the structural parameters α0, α1, α2, . . . , αk of a
particular regression model, and Ê is the estimator of the error term E in Equation (A1).
The error term Ê variance is denoted by MSE (mean squared error) throughout this paper.

Given a linear regression model with k factors, the null hypothesis

H0 : α1 = α2 = . . . = αk = 0 , (A3)

is a question about the irrelevance of the correlation between the dependent variable Y and
the group of independent variables Xi, i = 1, 2, . . . , k.

Appendix A.1. The Characteristics of the Regressions: Coefficient of Determination R2 and

Adjusted R2
Adj

In statistics, the sums of squares, which are used in a regression analysis, measure
the variability in data. They reveal the dispersion of data points concerning the mean and
how much the response variable differs from the predicted values. For a given dependent
variable Y, it is convenient to define the total sum of squares as SSY = ∑

N
i=1(Yi −Y)2, which

is the sum of squares of deviations of the observed Yi from their mean Y. SSY is often
partitioned to the sum of squares due to regression, SSR = ∑

N
i=1(Ŷi − Y)2, and due to error,

SSE = ∑
N
i=1(Yi − Ŷi)

2, where SSE is called the residual (error) sum of squares. This leads to
the ANOVA equation for the linear regression, SSY = SSR + SSE [10]. The characteristics
of the regressions in use are the mean square due to regression MSR = SSR/d fSSR, the
mean squared error MSE = SSE/d fSSE, and the coefficient of determination:

R2 =
SSR

SSY
= 1 − SSE

SSY
∈ 〈0, 1〉 , (A4)

which measures the ratio of the variability of the dependent variable explained by the
regression to the overall variability of this variable. Here, d fSSR = k and d fSSE = N − k − 1
are the number of degrees of freedom for SSR and SSE, respectively. The descriptive
limits of the correlation strength in this paper are assumed to be 0.1 < R2 < 0.25 for
weak correlation and R2 ≥ 0.64 (|R| ≥ 0.8) for strong correlation. In one-dimensional
linear regression Y = a + b X + Ê, the sign of the Pearson linear correlation coefficient rYX

between Y and X, ref. [10] equals the sign of b, rYX = sgn(b) |R|. An additional statistic
to the coefficient of determination R2, which considers the number of parameters in the
model, is the adjusted coefficient of determination R2

adj, defined as [51]

R2
adj = 1 − N − i

SSY
MSE = 1 − N − i

N − K
(1 − R2) , (A5)

where the mean square error MSE = SSE
N−K and N is the number of observations used to

match the model, K is the number of parameters in the model, including the intercept,
K = k + 1, and i equals 1 when the model has an offset (intercept) and 0 otherwise. R2

adj

starts decreasing when the model has too many parameters. The moment in which R2
adj

starts to drop is a signal that the model no longer needs to be developed.

Appendix A.2. The Backward Selection Method

Appendix A.2.1. Fpartial Statistics

One might be tempted to compare models with different numbers of parameters. To
this aim, a convenient notation is SSEk ≡ SSE(X1, X2, . . . , Xk). Let the model include k′

factors X1, X2, . . . , Xk, Xk′ , k′ = k + 1. To determine the significance of introducing an addi-
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tional factor Xk′ , the partial Fp statistics (p for “partial”) for the models (X1, X2, . . . , Xk, Xk′ )
and (X1, X2, . . . , Xk) can be introduced [10]:

Fp =
(SSRk′ − SSRk)/(d fSSRk′ − d fSSRk

)

MSEk′
, (A6)

where, according to the introduced notation, MSEk′ = SSEk′/d fSSEk′ . The statistic Fp

is a random variable on the sample space, with the F distribution Fk′−k,N−k′−1 with
k′ − k = d fSSRk′ − d fSSRk

and N − k′ − 1 = d fSSEk′ . For a particular sample, Fp takes

the observed value Fobs
p . In this case, the empirical significance level (the p-value) can

be calculated:

p = Prob(Fp ≥ Fobs
p ) . (A7)

If, in the observed sample, for a chosen significance level α, p > α, then there is no
reason to reject the null hypothesis H0 : αk′ = 0, which now reads: “the lower model fits
the observed data as well as the higher model,” i.e., the sample gives no incentives to
extend the model. Here, the adjectives “lower” and “higher” reflect the number of factors.
The lower model is rejected if p ≤ α. With the hierarchical development of the regression
model in this paper, the value of the partial statistics Fp in the observed sample and the
corresponding p-values, (Equation (A7)) for the factor added last can be determined at all
stages of model construction. It can be shown that the Fp test (A6) for the significance of a
one-variable extension of a model with k variables coincides with the Student’s t-test for the
null hypothesis for the structural parameter αk′ = 0 (the p-values of the tests are the same).

Appendix A.2.2. Backward Elimination Method

The backward elimination regression method is a statistical procedure of the model
selection used to reduce the number of less significant variables [10]. The selection should
start with a possible most complete model and simplify it until it turns out that all the
remaining variables have a substantial impact on the accuracy of fitting the model regres-
sion to empirical data. As a tool, the partial Fp value (A6) (or the empirical significance
level, i.e., the p-value (A7)), for each variable in the model is calculated. When comparing
the highest value of the empirical significance level p with the value of the previously
chosen significance level α (for the variable to remain in the model, e.g., α = 0.01, 0.05), it is
possible to decide whether to remove or keep the considered variable. This procedure can
be repeated after deciding to neglect a given variable until a model is obtained where all
the values of the estimators of the model’s structural parameters are statistically significant.
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