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We have demonstrated that the fermionic part of the so called “New Topologically Massive Supergravity”, 
which is of third order in derivatives, is classically equivalent to self-dual models of lower order in 
derivatives, forming then a sequence of self-dual descriptions S D(i), with i = 1, 2, 3 meaning the order 
in derivatives of each description. We have connected all the models by symmetry arguments through 
a Noether Gauge Embedment approach. This is completely equivalent to what happens in the bosonic 
cases of spins 1, 2 and 3, so some discussion about the similarities is made along the work. An analogue 
version of the Fierz–Pauli theory is suggested. Then through the NGE approach a fourth order model 
is obtained, which in our point of view would be the analogue version of the linearized New Massive 
Gravity theory for spin-3/2 fermionic particles.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The so called self-dual models have equivalent equations of mo-
tion, such equivalence persists even at the quantum level when we 
are able in to construct a master action which interpolate among 
the alternative descriptions. In general they differ each other by an 
order in derivatives and invariance under gauge transformations. 
The simplest example we can give refers to the well known equiva-
lence between the self-dual SD [1] and the Maxwell–Chern–Simons 
models MCS [2]. In this case both of them describe a single mas-
sive spin-1 particle in D = 2 + 1 dimensions. Notice that the MCS 
model is gauge invariant while the self-dual is not, due to the pres-
ence of a Proca mass term.

Once such alternative descriptions also occurs for particles with 
higher spins, in the last years we have generalized the proof of 
equivalence we have observed in the case of spin-1 for spin-2 [3,
4] and spin-3 [5,6] particles in D = 2 + 1. In particular we have 
learned with these bosonic examples that beyond the self-dual 
models which already exists one can find new models by means 
of systematic dualization procedures. Indeed in the case of spin-2 
particles a parallel interest is in game. We have noticed that this 
dualization procedures can take us to the linearized versions of 
gravitational models. As an example the linearized version of the 
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New Massive Gravity NMG model [7] can be obtained by mean of 
a generalized soldering of self-dual models [8,9].

In this work we have used the Noether Gauge Embedment NGE 
approach in order to establish the equivalence among self-dual 
models which describes massive spin-3/2 particles in D = 2 + 1
dimensions. In our initial scenario we have three self-dual descrip-
tions of first S D(1), second S D(2) [10,11] and third order S D(3)

[12] in derivatives. The S D(1) and the S D(2) are already con-
nected via a master action [10]. Here we will show that they can 
be connected by mean of symmetry arguments obtaining the sec-
ond one by gauge embedding the first one. By the same technique 
we show that the S D(3) can also be obtained in a second round 
of NG E connecting it with the previous ones. As in the spin-2 
case we have also a parallel interest. In fact the S D(3) model we 
have reached here consists of the fermionic part of the so called 
“New Topologically Massive Supergravity” NTMS. This may possi-
bly suggest us new ways of understanding the building blocks of 
supergravity theories.

The self-dual models describes only a single propagation of he-
licity +3/2 or −3/2. In the fourth section of this work we have 
suggested a dublet model which describes both helicities ±3/2. 
We study the Fierz–Pauli conditions to this model in order to guar-
antee that it propagates only two degrees of freedom. The model 
we suggest is analogue to the Fierz–Pauli model, so it is non gauge 
invariant due to the presence of a mass term. Applying the NGE 
approach we obtain a fourth order model with same particle con-
tent, which seems to be an analogue version of the NMG theory 
at the linearized level. As well as the spin-2 particles have special 
appeal due to the fact they are closely related with gravitational 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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models, here we think that the supergravity extension can also be 
considered in the future.

We start the next section by verifying the Fierz–Pauli condi-
tions to the vector-spinor, counting then the number of degrees of 
freedom of the first-order self-dual model.

2. The first order self-dual model

The first order self-dual model introduced in [10] is given by:

S S D(1) =
∫

d3x
(−εμναψ̄μ∂νψα + mεμναψ̄μγνψα

)
, (1)

where the fields ψμ and ψ̄μ are Majorana two component vector-
spinors. The Greek indices corresponds to the space–time compo-
nents, while the spinorial indices has been suppressed. Then, it 
can be concluded that each vector-spinor field has six independent 
components in three space–time dimensions. The gamma matri-
ces are indeed the Pauli matrices in agreement with [2], satisfying {
γμ,γν

} = 2ημν and γμγν = ημν + εμναγ α . Our metric is mostly 
plus (−, +, +), and additional properties will be given along the 
work. About the model, we notice that it is quite similar to the 
bosonic cases of spins 1 [1], 2 [13] and 3 [14]. As in those models, 
the Chern–Simons like term is invariant under the gauge sym-
metries δψμ = ∂μ
 and δψ̄μ = ∂μ
̄ where the 
′s are arbitrary 
spinor fields. The same symmetries are broken by the mass term, 
and this suggest us to implement the NGE approach. However, first 
we would like to check that the model (1) satisfy all the Fierz–
Pauli conditions i.e., from the equations of motion the field must 
be gamma-traceless γμψμ = 0 transverse ∂μψμ = 0 and we have 
to be able to obtain a Klein–Gordon equation. All we have for the 
field ψμ one can demonstrate to the self-adjoint field, then let us 
consider the equations of motion with respect to the self-adjoint 
field:

εμνα∂νψα − mεμναγνψα = 0. (2)

One can notice that once the gamma matrices are constants, by 
applying ∂μ on (2) we have εμναγν∂μψα = 0. With this result in 
hand one can verify two Fierz–Pauli conditions. First notice that 
after applying γμ on (2) and using some gamma properties we 
can have γμψμ = 0. Then by rewriting εμναγν and using the fact 
that the field is now gamma-traceless we can demonstrate that it 
is also transverse ∂μψμ = 0.

By multiplying the equation (2) by εμλσ we have obtained:

−∂λψσ + ∂σ ψλ + mγλψσ − mγσ ψλ = 0. (3)

From here, we take ∂λ on (3), which leaves us with �ψσ −
mγλ∂

λψσ = 0. On the other hand by applying γ λ on (3) one obtain 
the Majorana equation:

(γλ∂
λ − m)ψσ = 0. (4)

With all together we have obtained the Klein–Gordon equation:

(� − m2)ψσ = 0, (5)

which finally completes the Fierz–Pauli conditions. This set of 
“constraints” are telling us that from the six independent compo-
nents we left with only two of them. In order to have only one 
degree of freedom, we need one more constraint which indeed ex-
ists and tell us about the spin. This is the Pauli–Lubanski condition 
and we have to be able in deriving it from the equations of mo-
tion. To construct the Pauli–Lubanski operator we have to find out 
a spin-generator for spin-3/2 particles, which for example can be 
adapted from the reference [15], where the authors have provided 
an expression to the spin-generator in D = 3 +1 dimensions which 
is an antisymmetric tensor Sμν . We can now adapt that result by 
noticing that in D = 2 + 1 dimensions any antisymmetric tensor 
can be rewritten as Sμν = εμνα Sα , where Sα is precisely the ob-
ject we are looking for. In this case we have:

(Sα)μν = iεμαν + i
γ α

2
ημν. (6)

Where we have verified that the spin generator for the spin-3/2
particle is in fact the sum of the spin-1 generator with the 
spin-1/2 generator, both given by [16]. Once we know that Pμ =
i∂μ , it is possible to show that with the help of the Majorana equa-
tion (4), the equation of motion (2) can be rewritten as:

[(P .S)μν + smημν ]ψ̃ν = 0, (7)

where s is precisely 3/2. Notice that we have used a tilde variable, 
which means that this equation is valid only for the transverse and 
gamma-traceless field. Besides, it is straightforward to demonstrate 
that Sμ satisfy a Lee algebra since it is the sum of the spin-1 and 
1/2 parts.

In the next section, we give symmetry arguments to find out a 
second-order self-dual model from the first order one, and then a 
third order-self-dual model from the second one.

3. The Noether Gauge Embedment – singlets

3.1. From S D(1) to S D(2)

Since the first order self-dual model is non gauge invariant un-
der δψμ = ∂μ
 and δψ̄μ = ∂μ
̄, we may use the NGE approach to 
turn it gauge invariant. In consequence, by making that, the gauge 
invariant model becomes second-order in derivative. At the end 
of this section we would like to be able to establish the classi-
cal equivalence between the first and the second order self-dual 
models. In order to observe such equivalence, we are going to add 
source terms jμ and j̄μ that will give us a dual map between the 
models. Then we start by rewritten (1) as:

S S D(1) =
∫

d3x
(−εμναψ̄μ∂νψα + mεμναψ̄μγνψα + ψ̄μ jμ

+ j̄μψμ

)
. (8)

From (8) we obtain the Euler vector-spinors:

K μ = −εμνα∂νψα + mεμναγνψα + jμ (9)

K̄ μ = −εμνα∂νψ̄α + mεμναψ̄νγα + j̄μ, (10)

and introduce a first-iterated action given by:

S1 = S S D(1) +
∫

d3x
(
āμK μ + K̄ μaμ

)
, (11)

where āμ and aμ are auxiliary fields. By taking the gauge variation 
of (11) and choosing properly δaμ = −∂μ
 and δāμ = −∂μ
̄ it is 
straightforward to demonstrate that we can have:

δ
,
̄ S1 =
∫

d3x δ
(−mεμναāμγνaα

)
. (12)

Automatically from (12) we have a gauge invariant model given 
by:

S2 = S S D(1) +
∫

d3x
(
āμK μ + K̄ μaμ + mεμναāμγνaα

)
. (13)

Then by eliminating the auxiliary fields with the help of their 
equations of motion we have after some manipulation:

aμ = −γνγ
μK ν

; āμ = − K̄ νγ μγν
, (14)
2m 2m
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which can be substituted back in (13) giving us:

S2 = S S D(1) −
∫

d3x

(
K̄ μγνγμK ν

2m

)
. (15)

In order to have the second order model we need to substitute 
the Euler vector-spinors given by (9) and (10) in (15). Then we 
have:

S S D(2) =
∫

d3x

[
εμναψ̄μ∂νψα − 1

2m
f̄ μ(ψ)γνγμ f ν(ψ)

+ F̄μ jμ + j̄μFμ + O( j2)

]
, (16)

where in agreement with [10] we have used the transverse object 
f μ(ψ) ≡ εμαβ∂αψβ which is the Rarita–Schwinger field strength. 
It is straightforward to check that from the equations of motion 
(2) with the help of the dual map ψμ → Fμ = γνγμ f ν/2m one 
can obtain exactly the equations of motion which comes from the 
second order self-dual model. Here Fμ is the dual field which is 
gauge invariant. Similarly, the same happens for the self-adjoint 
field. Besides, the second order model we have obtained here is 
precisely the same the author has been introduced in [11], which 
is the fermionic part of the so called Topologically Massive Super-
gravity TMS. After all, we have noticed that there are quadratic 
terms in the source represented by O( j2). From now on they will 
be completely neglected along the work.1

We have learned with the bosonic cases of spins 1 and 2 that 
the number of self-dual models we have, seems to be dependent 
of the spin s we are describing. Notice that for spin-1 we have 
two self-dual models. For spin-2 we have four self-dual models [3]. 
A rule for the number of self-dual models of the type 2s seems to 
be present. Apparently this kind of rule is broken for the spin-3 
case [5], where we have found just four self-dual models so far. 
Sounds like an interesting question if it would be possible to ob-
tain a third order self-dual model from the second order model we 
just obtained here. In the next section we investigate what gauge 
symmetry could be implemented in a second round of NGE ap-
proach.

3.2. From S D(2) to S D(3)

As also observed in [10] the second order term in (16) is in-
variant under the gauge symmetries δψμ = γμξ and δψ̄μ = γμξ̄ . 
But the same symmetries are broken by the first order term. As we 
have done before we can systematically impose the gauge symme-
try to the model, and in order to do this we derive the following 
Euler vector-spinors from (16) given by:

K μ = εμαβ∂αψβ − 1

2m
εμαβενλσ γνγβ∂α∂λψσ

+ 1

2m
εμαβγνγβ∂α jν (17)

K̄ μ = εμαβ∂αψ̄β − 1

2m
εμαβενλσ ∂α∂λψ̄σ γβγν

+ 1

2m
εμαβ∂α j̄νγβγν. (18)

Then, with the help of auxiliary fields we propose the first iter-
ated action given by:

1 Such terms give rise to contact terms when, through a master action, we com-
pare correlation functions between the fields and their duals. The contact terms are 
proportional to ∼ δμνδ(x − y), then for the purposes of this work they are not im-
portant at all, see [4] for example.
S(1) = S S D(2) +
∫

d3x
(
āμK μ + K̄ μaμ

)
. (19)

By choosing properly the gauge symmetries for the auxiliary fields 
satisfying δξψμ = −δξ aμ and δξ̄ ψ̄μ = −δξ̄ āμ we end up with the 
second iterated gauge invariant action:

S(2) = S(1) +
∫

d3xεμαβ āμ∂αaβ . (20)

Although the equations of motion for aμ and āμ are not algebraic 
as in the last case, they can still be eliminated by noticing that 
K μ = εμαβ∂α�β and K̄ μ = εμαβ∂α�̄β with �β and �̄β given by:

�β = ψβ − 1

2m
ενλσ γνγβ∂λψσ (21)

�̄β = ψ̄β − 1

2m
ενλσ ∂λψ̄σ γβγν. (22)

Then, the expression (20) can be put in the following way:

S(2) = S S D(2) +
∫

d3x
[
εμαβ(āμ + �̄μ)∂α(aβ + �β)

− εμαβ�̄μ∂α�β

]
. (23)

After the shifts āμ → āμ − �̄μ and aμ → aμ −�μ we end up with 
a completely decoupled term in the auxiliary fields which can be 
dropped out. The final result after substituting back the definitions 
(21) and (22) is automatically gauge invariant and is third order in 
derivatives. After some manipulations we have:

S S D(3) =
∫

d3x

[
1

2m
f̄ (ψ)μγνγμ f ν(ψ)

− 1

4m2
εαλβ f̄ μ(ψ)γαγμγνγβ∂λ f ν(ψ) + Ḡμ jμ + j̄μGμ

]
(24)

The third order self-dual model we found here is invariant un-
der a larger set of gauge transformations, i.e. δψ̄μ = ∂μ
̄ + γμξ̄

and δψμ = ∂μ
 + γμξ . This is precisely the fermionic part of 
the quadratic approximation of the “New Topologically Massive 
Supergravity” NTMS introduced in [12]. In order to compare the 
notation we have used here to the one the authors have used 
in that work, one can first verify that the Rarita–Schwinger field 
strength is written as f μ(ψ) = R

μ
(lin)

. It is straightforward to 
check that the second order term in (24) is given by ψ̄μC

μ
(lin)

, 
where the authors have defined a second order “Cottino tensor” 
C

μ
(lin)

= γ ν∂νR
μ
(lin)

+εμνα∂νRα(lin) . Using these definitions it is not 
difficult to show that the third order term of (24) corresponds to 
ψ̄μ(γ ν∂ν)C

μ
(lin)

.
The classical equivalence between the first and the third order 

self-dual models can be checked with the help of the gauge invari-
ant dual fields Gμ and Ḡμ given by:

Gμ(ψ) = 1

4m2
εναβγνγμγσ γβ∂α f σ (ψ)

Ḡμ(ψ̄) = 1

4m2
εναβ∂α f̄ σ (ψ)γβγσ γμγν (25)

in other words by substituting ψμ → Gμ(ψ) in (2) we have exactly 
the equations of motion of the third order self-dual model with re-
spect to ψ̄μ . With this result we have showed that the third order 
self-dual model of [12] is in fact part of a natural sequence of self-
dual models in a way quite similar to the bosonic cases of spins 1, 
2 and 3.

By interpreting the second order term in (24) as a analogue of 
the Maxwell or Einstein–Hilbert terms one could ask what would 
be the analogue version of the Proca or Fierz–Pauli theories for the 
spin-3/2 case. In the next section we investigate this issue closely.
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4. The Noether Gauge Embedment – dublets

The Proca theory in terms of the vector gauge field Aμ , is non 
gauge invariant under δAμ = ∂μ
. This is due to the presence 
of the Proca mass term. However one could ask what would we 
find if we gauge embedding the missing symmetry through the 
NGE approach. The answer is well known, and the gauge invariant 
higher derivative model we obtain is the Podolski theory, which 
have ghosts in its spectrum, see the discussion of the section 2.1 of 
[3]. One might be discouraged in trying the same with the spin-2 
models. The Fierz–Pauli theory is also non gauge invariant un-
der reparametrizations of the type δhμν = ∂μ
ν + ∂ν
μ . However 
when we gauge embedding the missing symmetry we obtain the 
linearized version of the New Massive Gravity model. The explana-
tion on why in the spin-1 case we obtain a model with ghosts and 
in the spin-2 case we obtain a ghost-free model is better under-
stood by means of the master action technique. We have observed 
in [3] that because the Maxwell term is non trivial it may not be 
used as a mixing term in order to construct a master action, this 
kind of thing does not happen with the linearized Einstein–Hilbert 
term which is (in three dimensions) free of particle content.

Here, the second order term like the Einstein–Hilbert term, is 
also free of particle content. This suggest us that we can construct 
an analogue version of the Fierz–Pauli model (non gauge invari-
ant) and then to implement the NGE approach in order to obtain a 
fourth order model, free of ghosts like NMG.

The analogue version of the Fierz–Pauli model for spin-3/2 par-
ticles must describe a dublet of massive spins +3/2 and −3/2. Let 
us suggest the following combination:

S =
∫

d3x

[
−1

4
f̄ μ(ψ)γνγμ f ν(ψ) − m2

2
εμνβψ̄μγνψβ

]
. (26)

In order to verify that this model describes the correct number of 
degrees of freedom, we take the equations of motion with respect 
to ψ̄μ , in order study the Fierz–Pauli conditions:

εμαβενλσ γνγβ∂α∂λψσ − 2m2εμαβγαψβ = 0. (27)

First we notice that by applying ∂μ in (27) we have εαμβγα∂μψβ =
0. On the other hand if we apply γμ in (27) we conclude that the 
field is gamma-traceless γ μψμ = 0, which together with the previ-
ous result give us ∂μψμ = 0. Back in the equations of motion with 
both constraints (gamma-traceless and transversality), after several 
rearrangements using the gamma properties, we may deduce that 
in fact (27) reduces to the Klein–Gordon equation:

(� − m2)ψμ = 0. (28)

Since the equations of motion are second-order in derivatives, by 
this time we do not have a Pauli–Lubanski equation, and we end 
up with two degrees of freedom, corresponding to the positive 
+3/2 and negative −3/2 helicities. Then one may conclude that 
the model describes the correct number of degrees of freedom.

Adding source terms j̄μψμ and ψ̄μ jμ to the action (27), we 
can now rewrite (26) as the Euler vector-spinors:

K β = 1

4
εβμλγνγμ∂λ f ν(ψ) − m2

2
εβμλγμψλ + jβ (29)

K̄ β = −1

4
εβμλ∂μ f̄ ν(ψ)γλγν − m2

2
εβμλψ̄μγλ + j̄β (30)

which can be used in order to construct a first iterated action given 
by:

S(1) = S +
∫

d3x
(

K̄ βaβ + āβ K β
)
. (31)
Making proper choices for the variations of the auxiliary fields 
such that δaμ = −δψμ and δāμ = −δψ̄μ we can demonstrate that 
we have at the end:

δS(1) =
∫

d3x δ

(
m2

2
ελνβ āλγνaβ

)
. (32)

Then we have automatically a gauge invariant action given by:

S(2) = S(1) −
∫

d3x

(
m2

2
ελνβ āλγνδaβ

)
(33)

Solving the equations of motion for the auxiliary fields and 
plugging back the result in (33), we have after some manipula-
tions:

S(2) = S +
∫

d3x
4

m2
K̄ αγσ γα K σ . (34)

Which can be rewritten in terms of the original fields if we sub-
stitute Kμ and K̄μ from (29) and (30), giving us the fourth order 
model:

S(2) =
∫

d3x

[
− 1

16m2
∂λ f̄ μ(F )ελναγνγμγσ γαγβγρερθσ ∂θ f β(F )

+ 1

4
f̄ μ(F )γνγμ f ν(F ) + 1

2m2
j̄μGμ(ψ) − 1

2m2
Ḡμ(ψ) jμ

]
(35)

The dual equivalence between the fourth order theory and the 
second order one can be established thanks to the dual fields 
Gμ(ψ) and Ḡμ(ψ) which are given by:

ψα → Gα(ψ) = ερθσ γσ γαγβγρ∂θ f β(ψ) (36)

ψ̄α → Ḡα(ψ) = ελνα∂λ f̄ μ(F )γνγμγσ γα (37)

The fourth order theory we have obtained here can be related 
to the second order one through the dual maps ψα → Gα(ψ) and 
ψ̄α → Ḡα(ψ) and the equivalence can be understood at the level 
of the equations of motion. From a certain point of view, once we 
interpret the second order self-dual model as the analogue version 
of spin-3/2 to the Fierz–Pauli theory, the fourth order model we 
have obtained here can be understood as a spin-3/2 version of the 
NMG theory at the linearized level. Once the second order term 
is trivial, i.e. free of particle content, one could also construct a 
master action interpolating between the second and the fourth or-
der model, and it guarantee that the fourth order model is free of 
ghosts.

5. Conclusion

From the statistical point of view we have generalized the NGE 
approach to the case of fermionic fields, in particular we have an-
alyzed the case of massive spin-3/2 particles, which are described 
by a vector-spinor field. We have been counting the number of de-
grees of freedom in the first order self-dual model by studying the 
Fierz–Pauli conditions, showing then from the equations of motion 
one can obtain the gamma traceless and the transversality con-
straints. Besides, we have obtained a Pauli–Lubanski equation and 
a Klein–Gordon equation.

We have demonstrated that the recent third order model pro-
posed by [12] is in fact equivalent at least in the level of the 
equations of motion to the two self-dual models of first and sec-
ond order in derivatives proposed by [10]. Dual maps connecting 
the three self-dual versions are given, and we can transit among 
the equations of motion of the models. It is interesting to notice 
that the third order term suggested in [12] is generated by means 
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of a systematic procedure. A proof of equivalence at the quantum 
level must be verified by comparing the correlation functions de-
rived from a master action, quite similar to what we have done for 
example in [4]. In general we have always observed that once we 
have the classical equivalence verified through the NGE approach, 
one can observe the quantum equivalence through the master ac-
tion technique.

Taking the Fierz–Pauli model as an inspiration, we suggested 
a non gauge invariant second order model which by means of 
the study of the Fierz–Pauli conditions, describe two degrees of 
freedom, corresponding to the pair of helicities ±3/2. By gauge 
embedding this model we have obtained a fourth order model, 
which would be in our point of view the analogue version of the 
linearized New Massive Gravity. We argue that, the fourth order 
model must be ghost free, once the second order term like the 
Einstein–Hilbert term is free of particle content and may be used 
in order to construct a master action interpolating between the 
models.

It would be interesting to connect the three self-dual models 
we have studied here by means of a unique master action. In 
order to construct master actions one need to prove that the mix-
ing terms are free of particle contents. In a work in progress we 
have analyzed the constraints structure of such terms in order to 
prove that they are free of particle content and then to construct a 
unique master action interpolating among the three self-dual mod-
els and also between the dublet models. We have also verified that 
it is possible to obtain the second order dublet model by gen-
eralizing soldering two second order self-dual models. We think 
that the fourth order dublet model consists in fact of the solder-
ing of two third order self-dual models similarly to what happens 
in the spin-2 case. Generalizations to higher rank “spinorial” fields, 
like the self-dual descriptions of spin-5/2, may be also connected 
through the NGE approach. In that case, similar to what happens 
in the spin-3 case, auxiliary fields are needed in order to remove 
spurious degrees of freedom, what brings some difficulties to the 
procedures.
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