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Abstract

This thesis serves as a self-contained review of some recent advances in the study of

three-dimensional N = 4 quiver gauge theories and their Coulomb branch moduli

spaces in particular. Our investigation leverages and develops the Hilbert series and

abelianisation approaches and finds them mutually complementary. Their synthe-

sis provides an explicit construction of the Coulomb branch with several desirable

properties: for example, the global symmetry is made explicit and any complex mass

deformation is easily derived. Moreover, it naturally handles two generalisations of

quiver gauge theories: non-simply laced quivers and previously unknown wreathed

quivers. Many concrete examples are provided to illustrate the concepts.
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Chapter 1

Introduction

Quantum field theory is one of the greatest success stories of theoretical physics.

Gravity notwithstanding, a field theory called the Standard Model can seemingly

account for almost every experimental datum collected by particle experimentalists.

At the same time, the theory is famously difficult and even the simplest models

quickly give rise to complicated phenomena commonly known as quantum corrections

for which one can account by mastery of Feynman diagrams, renormalisation theory,

lattice simulations or other sophisticated techniques. Such things make the life of

a theorist difficult. Fortunately there are upsides to being unbound by experiment.

A model, though not a reflection of reality, can still be useful if it is tractable. This

simple idea accounts for much of the interest in the study of supersymmetry and

this thesis is no exception.

Supersymmetry allows us to say a fair amount about the possibility space of

vacua, ie. field configurations devoid of perturbations colloquially known as parti-

cles. The more supersymmetry we add, the tighter it holds our hand. “Two doses”

of supersymmetry, or N = 2 in a familiar four-dimensional setting, are equivalent to

four doses, or N = 4, in three dimensions, which will be the primary arena consid-

ered in this work. Points in the space of vacua, also known as the moduli space, can

be distinguished by different outcomes of thought experiments or, more technically,

vacuum expectation values of operators. A particularly well-behaved class of such

operators form the so-called chiral ring, which itself admits a rich structure. Morally

(and imprecisely) speaking, it splits into two parts: the Higgs and Coulomb branch

chiral rings. In the spirit of specialisation exhibited so far, we will be focussing

almost solely on the Coulomb branch chiral ring.

Most of the Coulomb branch is inaccessible from the classical limit of a quantum

field theory. New operators arise in the quantum regime and the chiral ring is

endowed with the structure of an algebra. The full space of vacua parametrised by

the Coulomb branch chiral ring – known as the Coulomb branch – typically carries

a symmetry group. While it has been studied for some time, the evidence has been
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either somewhat indirect or demonstrated only on very simple examples. In other

words, Coulomb branches were rarely constructed as algebraic varieties on which

one could demonstrate the alleged symmetry. The work presented in this thesis is

one small step towards plugging this explanatory hole.

Due to a large amount of supersymmetry the Coulomb branches which arise in

this way possess a particular property of being hyper-Kähler. Roughly speaking,

they are to quaternions what Kähler spaces are to complex numbers. Every hyper-

Kähler space is also symplectic, and, since such spaces are typically not smooth

everywhere, we will sometimes call them symplectic singularities. The simplest

families of examples can be constructed from minimal building blocks called nilpotent

orbits and S lodowy slices and we will find that many Coulomb branches considered

in this thesis can be so decomposed. And in fact, this relation can be reversed:

Coulomb branches are increasingly being recognised as a potent way to generate

and classify symplectic singularities.

In Chapter 2 we introduce the essential background: Lie algebras and their

canonical matrix realisations, quiver gauge theories and their Coulomb branches,

the monopole formula and abelianisation. In Chapter 3 we combine the knowl-

edge gained by application of the monopole formula with concreteness inherent in

abelianisation to explicitly describe Coulomb branches of basic simply laced quiv-

ers as algebraic varieties. Chapter 4 explains how to generalise these methods to

non-simply laced and novel wreathed quivers which are two related but inequivalent

quiver analogues of non-simply laced Dynkin diagrams.

10



Chapter 2

Essential background

2.1 Lie algebras

One question recurs throughout this work: what is the symmetry of this space?

The natural tools for answering it come from the theory of Lie groups and Lie

algebras, which are fortunately widely known among theoretical physicists. The

algebra describes the symmetry while its representations are objects which are acted

upon by it. We will see physical observables characterising the Coulomb branch

assemble into representations of a particular symmetry, by which we mean that they

form one or more tensors of the symmetry algebra and that all operator relations

also form tensors of the very same algebra. Once the Coulomb branch is described

as a space parametrised by values of particular tensors subject to tensorial relations,

the action of the symmetry group becomes manifest and the recurring question is

answered; that is the overarching strategy explored in this thesis.

Following a flash review of the basics, we develop a concrete matrix realisation

of type AD algebras and define a folding operation which automatically generates

analogous constructions for types BCG. This review is by no means exhaustive

or even particularly self-contained as this material is already well covered by many

excellent sources, for example the excellent [3].

2.1.1 Lie groups and Lie algebras

We define a group G as a set with an associative and invertible operation � and a

special element e ∈ G such that for all g ∈ G, e � g = g � e = g. Invertibility means

that for every g there exists a g−1 ∈ G such that g � g−1 = g−1 � g = e.

A group G which is furthermore a manifold is called a Lie group. For example,

translations and rotations form Lie groups. Synergy between differentiability and

group axioms leads to a very fortunate property. The tangent bundle of a Lie group

is trivial and the tangent space at the identity element e can be pushed anywhere

11



using invertible actions of the group called the left translations Lg. In this way a

vector at the tangent space TeG defines a left-invariant vector field. The set of such

fields, along with the standard Lie derivative, forms a Lie algebra g which contains

almost all information about the group apart from the set of connected components

π0(G) and the fundamental group π1(G). In particular the groups O(n) and SO(n)

of orthogonal matrices in n dimensions with determinant ±1, resp 1, share the

same Lie algebra, even though O(n) is strictly larger than SO(n). Thanks to the

correspondence between left-invariant vector fields and vectors in TeG we may think

of the Lie algebra g as a description of the group “around the identity”; these would

correspond e.g. to small translations or rotations.

Formally a Lie algebra g is a vector space with an additional bilinear and anti-

symmetric operation called the Lie bracket :

[·, ·] : g× g→ g (2.1)

with the Jacobi identity for all X, Y, Z ∈ g:

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0. (2.2)

If g is a vector space of matrices, or some subset thereof, the matrix commutator

acts as a Lie bracket.

Given the fact that our need to study Lie algebras came from wanting to under-

stand Lie groups, which are real manifolds, we might expect g to be a vector space

over the field of real numbers. It turns out that extending the defining field to the

complex numbers, or complexifying the Lie algebra, greatly simplifies matters, as is

so often the case; a single complexified Lie algebra can have several real forms, i.e.

Lie algebras over real numbers which complexify to it.

We will assume that g, viewed as a vector space, has a finite dimension. Let {Xi}
form a basis of g. Then g is fully specified by this data along with the structure

constants ckij defined by

[Xi, Xj] =
∑

k

ckijXk. (2.3)

We will call the Xi generators of g.

2.1.2 Simple Lie algebras

The algebra g may contain abelian elements X which commute with everything in

the algebra, i.e. [X, g] = 0. The algebra then splits as

g = gabel ⊕ gss (2.4)

12



where gabel are the abelian elements and gss is the remainder which we call a semisim-

ple Lie algebra.

If there exists a basis of gss such that the generators split as {Xi} = {Yi} ∪ {Y ′i }
with [Yi, Y

′
j ] = 0 then we say gss is decomposable and we can split the algebra into

parts generated by Yi, resp. Y ′i ; each is potentially decomposable in turn. This

process terminates and we get the following decomposition:

g = gabel ⊕
⊕

i

gi (2.5)

with gi non-decomposable factors called simple Lie algebras. From now on, unless

stated otherwise, assume Lie algebras are simple by default.

2.1.3 Chevalley-Serre basis and Dynkin diagrams

Let h ⊂ g be the maximal commutative Lie subalgebra of a simple Lie algebra g

and call it the Cartan subalgebra. Its dimension is uniquely given and referred to as

the rank of g, denoted below as rank(g) or n.

Consider a set of linear operators [H, ·] defined for all H ∈ h under which all

H ′ ∈ h have zero eigenvalues:

[H,H ′] = 0. (2.6)

The complement of h in g is spanned by vectors {Eα; α ∈ Φ} which are also

eigenvectors under the aforementioned operators, but this time with non-vanishing

eigenvalues:

[H,Eα] = α(H)Eα. (2.7)

α is called a root of g and Eα is the associated root vector, while Φ is the root space.

(Note that while α ∈ Φ generate h∗, Φ is a discrete space embedded in h.) The root

space Φ is non-degenerate, meaning that if α, β ∈ Φ then ∀H ∈ h : α(H) = β(H)

implies Eα ∝ Eβ. Consequently there is a one-to-one correspondence between roots

α and one-dimensional vector spaces spanned by Eα.

Given that h is a vector space, we can see that roots α are themselves vectors in

the dual vector space h∗ of the Cartan subalgebra. Endowing h with a basis {Hi}
then also defines a basis for the roots:

[Hi, Eα] = α(Hi)Eα = αiEα (2.8)

With everything in place, a Lie algebra can now be decomposed into a Cartan-

Weyl basis as

g = h + {Eα; α ∈ Φ}. (2.9)

13



Finite-dimensional simple Lie algebras admit a classification. The first step is

to express them in a canonical Chevalley-Serre basis (which is a more specialised

Cartan-Weyl basis) defined by the (integer-valued) Cartan matrix κij with 1 ≤
i, j ≤ rank g. The Chevalley-Serre basis is generated (as a Lie algebra) by rank g

positive simple root vectors E+i, rank g negative simple root vectors E−i and rank g

generators Hi of the commutative Cartan subalgebra h together with a Lie bracket

[·, ·] subject to relations

[Hi, Hj] = 0 (2.10)

[Hi, E±j] = ±κjiE±j (2.11)

[E+i, E−j] = Hiδij (2.12)

[E±i, ·]1−κijE±j = 0. (2.13)

The final relation is called the Serre relation. Note that while roots α are generally

associated with one-dimensional vector spaces spanC(Eα), (2.12) partly fixes the

simple root vector representatives, up to E±i → c±1
i E±i.

The remaining elements of the Lie algebra g are generated by repeated action of

[E±i, ·]. Note that this prescription only specifies a Lie algebra up to isomorphism.

The Cartan matrix κij obeys several constraints following from Lie theory:

• κii = 2

• κij = 0 =⇒ κji = 0

• κij ∈ Z≤0 for i 6= j

• detκ > 0

• The rows and columns of κij cannot be rearranged to make the matrix block-

diagonal.

This leaves only a small number of matrices which turn out to be in one-to-

one correspondence with Dynkin diagrams, collected in Figure 2.1, at least up to

isomorphism. Conversely, given a Dynkin diagram one can reconstruct a Lie algebra

isomorphism class.

The correspondence between simple Lie algebras and Dynkin diagrams works in

the following (invertible) way:

• The subscript n on the algebra denotes both the number of nodes in the

diagram and the number of positive simple roots in the algebra.

• The Cartan matrix κij is then an n× n matrix such that:

14



Algebra Dynkin diagram

An ' sl(n+ 1,C)
1 2 n− 1 n

Bn ' so(2n+ 1,C)
1 2 n− 1 n

Cn ' usp(2n,C)
1 2 n− 1 n

Dn ' so(2n,C)
1 2

n− 2

n− 1

n

E6

1 2 3 4 5

6

E7

1 2 3 4 5 6

7

E8

1 2 3 4 5 6 7

8

F4
1 2 3 4

G2
1 2

Figure 2.1: Simple Lie algebras and their corresponding Dynkin diagrams with
labelled nodes
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– κii = 2

– κij is related to the number of directed edges from node i to node j. If

the nodes are connected by a single edge then κij = κji = −1. In the

case of multiple edges, depicted by m links with an arrow pointing from

node i to node j, the relevant entries read κij = −m and κji = −1.

The set of positive root vectors is the set of root vectors which can be generated

by (finitely many) Lie brackets of positive simple root vectors; its elements are

labelled E+α. The set of negative root vectors is its analogue, but generated by

negative simple root vectors, with elements E−α. We can also omit the sign and

denote the generic root vector as Eα.

Recall from (2.8) that a root vector α is labelled by its eigenvalues αi under the

action of [Hi, ·]. The eigenvalues of simple roots αj can be represented by Cartan

matrix row vectors as (αj)±i = ±(κi)j = ±κij. The basis in which the integers (αj)±i

are evaluated is called the basis of fundamental weights1. Although important in the

theory of Lie algebras and their representations, it is less suitable for our purposes

than the simple root basis which expands a root (or equivalently a root vector’s

eigenvalues) in terms of simple roots (or eigenvalues of positive simple root vectors):

±α =
n∑

i=1

ci±ααi = 〈c1
±α, . . . , c

n
±α〉, (2.14)

where the final expression should be understood as shorthand notation for the im-

mediately preceding expansion in the simple root basis.

The Jacobi identity implies that

[Hi, [E±α, E±β]] = (±α± β)i[E±α, E±β] (2.15)

It follows that, since the Lie algebra is generated by brackets of simple root

vectors, all ci±α are integers.

Moreover, since any positive (negative) root vector Eα is constructed by finitely

many bracket operations between positive (negative) simple root vectors, all its ciα

are positive (negative).

One can easily convert the components (α)i of α from the basis of fundamental

weights to the simple root basis by multiplying with κ−1 from the right:

[(α)1, . . . , (α)n](κ−1) = 〈c1
α, . . . , c

n
α〉 (2.16)

1Weights are a generalisation of roots for other representations of the Lie algebra.
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For a concrete example, consider the roots of A3:

ΦA3 = {[1, 0, 1], [−1, 1, 1], [1, 1,−1], [−1, 2,−1], [2,−1, 0], [0,−1, 2],

[0, 1,−2], [−2, 1, 0], [1,−2, 1], [−1,−1, 1], [1,−1,−1], [−1, 0,−1]}
(2.17)

The numbers in square brackets state components of the roots in the basis of

fundamental weights. Multiplying on the right by the inverse of the Cartan matrix

κ−1 amounts to expressing a root in terms of the simple root basis (for which we

use angled brackets). For example,

[1, 0, 1](κ−1) = 〈1, 1, 1〉
[1, 1,−1](κ−1) = 〈1, 1, 0〉
[2,−1, 0](κ−1) = 〈1, 0, 0〉
[0,−1, 2](κ−1) = 〈0, 0, 1〉

[−1,−1, 1](κ−1) = 〈−1,−1, 0〉

All roots of An are given by unbroken strings of 1 or −1. We will see later

that possible entries exactly correspond to a set of particularly interesting physical

operators, the monopole generators of type A quivers. For now notice how the Lie

bracket acts:

[
E〈1,0,0〉, E〈0,1,0〉

]
∝ E〈1,1,0〉 (2.18)

[
E〈1,1,0〉, E〈0,0,1〉

]
∝ E〈1,1,1〉 (2.19)

The precise coefficients, i.e. structure constants, are in this case ±1. While many

relations between structure constants can be found, the constants are not necessarily

uniquely fixed. Every choice produces a different (but isomorphic) algebra, so it

makes more sense to speak of Chevalley-Serre bases, each of which satisfies relations

(2.10)–(2.13). We will select one which leaves monopole operators in their simplest

form.

Chevalley-Serre basis: Matrix realisation I

This thesis describes a method of assembling generators of the Coulomb branch

chiral ring into irreducible representations of the Coulomb branch symmetry. There

will always be a set of generators transforming in the coadjoint representation of

the symmetry and the remainder of this section will build towards constructing it,

as a set of matrices, for the classical algebras ABCD and the exceptional G2. In

order to derive the matrix realisation of the coadjoint representation we will first

look for its dual, the corresponding adjoint representation, which is equivalent to
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finding a matrix realisation of one particularly nice basis of the Lie algebra itself:

the aforementioned Chevalley-Serre basis.

An alternative matrix realisation of Chevalley Serre bases (but given for all

simple Lie algebras) can be found in [4].

Type A

We start with the simplest example: the algebras An ' sl(n + 1,C) specified by a

linear Dynkin diagram. To facilitate the construction of the Chevalley-Serre basis in

the form of concrete matrices (with the Lie bracket implemented through commuta-

tors), we introduce one final basis for roots: the orthonormal basis given by ei − ej
where ei are the orthonormal basis vectors of Cn+1. Simple roots are represented as

α±i = ±ei ∓ ei+1 (2.20)

and brackets act by adding the orthonormal representatives up to an overall factor,

e.g.

[E+1, E+2] = [Ee1−e2 , Ee2−e3 ] ∝ Ee1−e3 (2.21)

which is really a restatement of [Eα, Eβ] ∝ Eα+β, but with one notational advantage.

Since any root can be expressed in the simple root basis as an unbroken string of

±1, the ei − ej cover and exhaust all roots. Each root is therefore labelled by

two numbers, i and j, with i < j for positive roots and j < i for negative roots.

The orthonormal representation then provides a more compact labelling scheme for

simple root vectors:

E+(i:j) ↔ ei − ej (i < j) (2.22)

E−(i:j) ↔ ei − ej (i > j) (2.23)

so in particular E+i = E+(i:i+1). In words E±(i:j) is the root whose weight vector

(in the simple root basis) consists of a string of ±1 starting at i and terminating at

j − 1.

It is now easy to guess that the matrix representative of E±(i:j) is precisely the

zero matrix with the i, j or j, i component changed to ±1. We choose the convention

in which the single non-zero component of any simple root E±(i:i+1) is +1 and fix

the remaining signs by demanding [E±(i:j), E±(j,k)] = −E±(i,k). (This choice allows

a neat correspondence between monopoles and roots in Sections 3.1.3 and 3.1.4.)

Representatives of the Cartan subalgebra can be found by applying (2.12). The

resulting Chevalley-Serre basis is

(Ei,j)ab = δiaδjb (2.24)
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E+(i:j) = (−1)i−j+1Ei,j+1 (2.25)

E−(i:j) = (−1)i−j+1Ej+1,i (2.26)

Hi = Ei,i − Ei+1,i+1 (2.27)

Remember from the discussion under 2.13 that there is some freedom in specifying

the correspondence between a simple root and its root vector, namely a C∗ factor

shared between a pair of positive and negative simple roots. Here we make an

ultimately arbitrary choice: we could have, for example, omitted the signs in (2.25)

and (2.26). But this way we get that [E+(1:2), E+(2:3)] = −[E+(1:3)] (for n in An at

least 2), which will mimic an exactly parallel structure studied in Section 2.4.2 and

onwards: the Poisson bracket between monopole operators. It will hopefully become

apparent that this similarity is worth it, and at any rate we needed to choose some

convention, and this one works at least as well as any other.

The resulting structure of alternating signs can already be seen in the following

example of sl(4,C) = A3, where the coefficients c range over C:

ad(sl(4,C)) =





∑

〈i,j,k〉∈Φ

c〈i,j,k〉E〈i,j,k〉 +
3∑

i=1

ciHi





=








c1 c〈1,0,0〉 −c〈1,1,0〉 c〈1,1,1〉

c〈−1,0,0〉 −c1 + c2 c〈0,1,0〉 −c〈0,1,1〉
−c〈−1,−1,0〉 c〈0,−1,0〉 −c2 + c3 c〈0,0,1〉

c〈−1,−1,−1〉 −c〈0,−1,−1〉 c〈0,0,−1〉 −c3








=





∑

1≤i<j≤n
s∈{+,−}

cs(i:j)Es(i:j) +
3∑

i=1

ciHi





=








c1 c+
1:2 −c+

1:3 c+
1:4

c−1:2 −c1 + c2 c+
2:3 −c+

2:4

−c−1:3 c−2:3 −c2 + c3 c+
3:4

c−1:4 −c−2:4 c−3:4 −c3








(2.28)

The final step is to identify the corresponding coadjoint basis which is dual to

the adjoint basis with respect to the scalar product

〈X, Y 〉 = tr(XY ). (2.29)

Labelling elements of the Chevalley-Serre basis Xm with the index m ranging

from 1 to dim g, we compute the matrix C

Cmn = tr(XmXn). (2.30)
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Up to an overall multiplicative constant (the second order Dynkin index [3]), Cmn

is precisely the Killing form K(Xm, Xn). It is well known that the Killing form is

non-degenerate and so C can be inverted. We use it to define matrices

X∗m =
∑

p

(C−1)mpXp (2.31)

satisfying the property

〈X∗m, Xn〉 = tr(X∗mXn) =
∑

p

(C−1)mptr(XpXn) = (C−1C)mn = δmn. (2.32)

X∗m constitute the desired basis for the coadjoint representation of g and dualisation

∗ : g→ g∗ can be defined through linear extension of (2.31).

For the Chevalley-Serre basis of type A one gets E∗±(i:j) = E∓(i:j). On the other

hand the Cartan subalgebra mixes in a non-trivial way and while the dual H∗i is

still in the Cartan subalgebra, it is a linear combination of Hi. K(H,Eα) = 0 for

any H ∈ h and α ∈ Φ. As a result the matrix C becomes block-diagonal in the

Chevalley-Serre basis with C|h, the restriction of this linear transformation to the

Cartan subalgebra, one of the blocks. Since C is non-degenerate its block C|h must

also be invertible and (2.31) specialises to

H∗a =
∑

j

(C|h)−1
ij Hj. (2.33)

Type D

The orthonormal basis for Dn is exhausted by roots of the form ±ei∓ ej or ±ei± ej
(1 ≤ i, j ≤ n) and the simple roots are in particular given by

α±i ↔ ±ei ∓ ei+1, 1 ≤ i ≤ n− 1

α±n ↔ ±en−1 ± en.
(2.34)

The remaining root vectors (and hence their corresponding roots) are obtained

through bracket products of simple root vectors. For example (using angled brackets

to signify expansion in the simple root basis),

[E〈1,1,0,0〉, E〈0,0,1,0〉] ∝ E〈1,1,1,0〉 (2.35)

[E〈1,1,1,1〉, E〈0,1,0,0〉] ∝ E〈1,2,1,1〉. (2.36)
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0 1 1

1

0

(a)

0 1 1

1

1

(b)

1 2 2

1

1

(c)

Figure 2.2: Numbers represent root components (in the simple root basis) at each
node.

This corresponds to addition in the orthonormal basis:

〈1, 1, 1, 0〉 = e1 − e4 = (e1 − e2) + (e2 − e3) + (e3 − e4) (2.37)

〈1, 2, 1, 1〉 = e1 + e2 = (e1 − e2) + 2(e2 − e3) + (e3 − e4) + (e3 + e4). (2.38)

Whereas positive (negative) roots of An corresponded to strings of 1 (−1) in the

simple root basis, the situation is marginally more complicated for Dn. The roots

can be categorised as:

1. Unbroken strings of ±1 anywhere on the Dynkin diagram (e.g. Fig. 2.2a).

They are the ±ei ∓ ej and ±ei ± en in the orthogonal basis.

2. ±1 on both spinor ((n− 1)-th and n-th) nodes and an arbitrarily long string

of ±1 towards the vector (first) node (e.g. Fig. 2.2b). They are the ±ei±en−1

in the orthogonal basis.

3. ±1 on both spinor nodes, a string of ±2 starting at the (n − 2)-th node and

terminating before the first node, continued by a string (of length at least 1)

of ±1 toward the first node (e.g. Fig. 2.2c). They form the rest of the ±ei±ej
in the orthogonal basis.

We can therefore find two integers i, j associated to each root, just as in the case

of A algebras. The complex Lie algebra of Dn, soC(2n), acts linearly on the vector

space C2n and the adjoint representation therefore admits realisation as a 2n × 2n

antisymmetric matrix, which naturally breaks into 2 × 2 blocks indexed precisely

by i, j = 1, . . . , n. Antisymmetry of matrices in soC(2n) also relates the two off-

diagonal 2 × 2 blocks indexed by i, j and j, i (where i 6= j). This is schematically

represented by the following matrix, which has zeroes everywhere apart from two

2× 2 blocks D sitting in the (2i− 1)-th and 2i-th row, (2j− 1)-th and 2j-th column

and vice versa, modified by an overall constant dependent on the position of the D
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block within the larger matrix:

D (ij) =

. . . 2i− 1 & 2i . . . 2j − 1 & 2j . . .

↓ ↓





...

ii−j+1D(ij) ← 2i− 1 & 2i
...

−(ii−j+1)(D(ij))T ← 2j − 1 & 2j
...

(2.39)

Since the same indices i and j also label roots through the orthonormal basis,

we should expect a correspondence between the two and indeed, each pair of off-

diagonal blocks D contains precisely 4 complex degrees of freedom: just enough to

represent all of ei − ej, ei + ej, −ei + ej and −ei − ej for 1 ≤ i < j ≤ n. Each

root is represented by a slightly different D block, which we will denote D+− for

roots of the form ei− ej (i < j), D++ for ei + ej and D−+, D−− for their respective

counterparts among negative roots. They are given by:

D+− =
i

2

(
1 i

−i 1

)

D++ =
i

2

(
1 −i

−i −1

)

D−+ =
i

2

(
1 −i

i 1

)

D−− =
i

2

(
1 i

i −1

)

The full block D is then a linear combination of the four matrices above,

D(ij) = c
(ij)
+−D+− + c

(ij)
++D++ + c

(ij)
−+D−+ + c

(ij)
−−D−−. (2.40)

Therefore the matrix realisation represents roots as

ei − ej ↔ D (ij)|
c
(ij)
+−=1

= E(+i,−j) (2.41)

ei + ej ↔ D (ij)|
c
(ij)
++ =1

= E(+i,+j) (2.42)

−ei + ej ↔ D (ij)|
c
(ij)
−+=1

= E(−i,+j) (2.43)

−ei − ej ↔ D (ij)|
c
(ij)
−−=1

= E(−i,−j) (2.44)
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where 1 ≤ i < j ≤ n and all other coefficients c vanish.

All that remains is to define appropriate generators of the Cartan subalgebra,

but that is easily achieved by invoking (2.12). A Cartan subalgebra generator is

given by

Hi =

. . . 2i− 1 & 2i 2i+ 1 & 2i+ 2 . . .

↓ ↓





0
. . .

...

H 0 ← 2i− 1 & 2i

0 −H ← 2i+ 1 & 2i+ 2
. . .

...

0

(2.45)

for a = 1, . . . , n− 1, where

H =

(
0 i

−i 0

)
(2.46)

and the remaining entries of Hi are zero. The final Cartan generator differs only

very slightly from Hn−1, as one might expect:

Hn =

. . . 2n− 3 & 2n− 2 2n− 1 & 2n

↓ ↓






0
. . .

...

H 0 ← 2n− 1 & 2n

0 H ← 2n+ 1 & 2n+ 2

. (2.47)

The full adjoint representation is then realised as

adj(so(2n,C)) =





∑

1≤i<j≤n
r,s ∈{+,−}

c(ij)
rs E(ri,sj) +

∑

1≤i≤n
ciHi





(2.48)

where coefficients c range over C.

As was the case with type A Chevalley-Serre bases, we finish this section by iden-

tifying the basis of the coadjoint representation. The generalisation is completely

straightforward. We define the dual of a root vector X∗m ≡
∑

n(C−1)mnXn through
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the inverse of the matrix

Cmn = tr(XmXn), (2.49)

which is again proportional to the non-degenerate Killing form. As was the case

with type A, positive root vectors are swapped with their negative counterparts,

although now an overall rescaling factor is involved:

E∗(ri,sj) =
1

2
E(−ri,−sj), r, s ∈ {+,−} (2.50)

There is no additional subtlety in the dualisation of the Cartan subalgebra, which

again mixes non-trivially through the the restriction of the Killing form to h:

H∗i =
∑

j

(C|h)−1
ij Hj. (2.51)

2.1.4 Folding of Lie algebras

Some pairs of simple Lie algebras can be related by an operation called folding

[5], which acts on an algebra’s Dynkin diagram and its internal structure. In a

prototypical example, the D4 algebra folds into B3; in other words, rotations in

eight dimensions are restricted to seven. Moreover, we show folding maps the D4

Chevalley-Serre basis to its B3 counterpart.

Dynkin diagrams can be folded if there is a graph automorphism such that there

is no edge connecting a node to its own image. (A node and its image may be

connected through an intermediary node.) In particular, the diagrams for A2n−1,

Dn or E6 satisfy this constraint as they possess S2 graph automorphisms, while the

special case D4 is invariant under S3. In a unique case, B3 folds to G2 despite lacking

an obvious graph automorphism (see Figure 30.14 in [5]). The associated algebra g

is then folded to g̃ by the following recipe, which simultaneously recovers the folded

Chevalley-Serre basis.

Chevalley-Serre basis: Matrix realisation II

First let us denote the set of automorphisms by Γ, which is in practice either S2 or

S3, and its elements by π ∈ Γ. We write

π(i) = j (2.52)

to express that under the automorphism π the i-th node is mapped to the j-th node.

The fact that π is a Dynkin diagram automorphism translates into the following

invariance of the Cartan matrix under the action of π: κπ(i)π(j) = κij.

The folding function f takes as input nodes of the unfolded Dynkin diagram and
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g g̃
Dynkin diagram of

g
Dynkin diagram of

g̃
projection

A2n−1 Cn

n

n− 1 n+ 1

1

2 2n− 2

2n− 1 1

2

n− 1

n

S2 :





1, 2n− 1 7→ 1
...

n± 1 7→ n− 1

n 7→ n

Dn+1 Bn

1

2

n− 1

n n+ 1

1

2

n− 1

n

S2 :





1 7→ 1
...

n− 1 7→ n− 1

n, n+ 1 7→ n

E6 F4

1

2

3

4

5

6

1

2

3

4

S2 :





1, 5 7→ 1

2, 4 7→ 2

3 7→ 3

6 7→ 4

D4 G2

1

2

3 4

1

2
S3 :

{
1, 3, 4 7→ 1

2 7→ 2

B3 G2

1

2

3 1

2
S2 :

{
1, 3 7→ 1

2 7→ 2

Figure 2.3: Foldable simple Lie algebras. Note that numbers label nodes and do not
indicate gauge groups as these are not quiver theories. The S2 in the last row is a
special case treated in several places in the main text.
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maps them to appropriate nodes in the folded diagram. Consequently, f ◦ π = f .

As an example, take A2n−1 which folds to Cn and think of f as acting on indices i

of the original linear diagram. f acts as f(1) = f(2n−1) = 1, f(2) = f(2n−2) = 2

and so on, but f(n) = n.

The folding procedure is now easily stated:

H̃i =
∑

j:f(j)=i

Hj (2.53)

Ẽ±i =
∑

j:f(j)=i

E±j (2.54)

This defines the Chevalley-Serre basis for the folded algebra g̃. In the case of A2n−1,

the folded algebra is indeed Cn.

Special care must be taken when folding non-simple root vectors. Sometimes a

sign change is required to preserve the algebra homomorphism g→ f(g). Consider

the case of A3 → C2. A3 includes two elements E12 = −[E1, E2] and E23 = −[E2, E3].

According to the definition of folding just given, Ẽ1 = E1 +E3 and Ẽ2 = E2. Then

it follows that

Ẽ12 = −[Ẽ1, Ẽ2] = −[E1 + E3, E2] = − ([E1, E2] + [E3, E2]) = E12 − E23.

In this specific case it is clear that the sign flips because the third node, which comes

after the second, is mapped to the first, which comes before the second. Likewise it

is clear that such a scenario will never occur in the case Dn+1 → Bn and only comes

into play for A2n−1 → Cn, B3 → G2, D4 → G2 and E6 → F4.

The interested reader can easily check (2.10)-(2.12) and (2.13) with a bit more

effort. To illustrate the typical calculation, we will confirm (2.11) for A5 folding to

C3. The Cartan matrix of C3 is

κ =




2 −1 0

−1 2 −1

0 −2 2


 (2.55)

and

[H̃2, Ẽ3] = [H2 +H4, E3] = −E3 − E3 = −2Ẽ3 = κ32Ẽ3 (2.56)

[H̃3, Ẽ2] = [H3, E2 + E4] = −E2 − E4 = −Ẽ2 = κ23Ẽ2 (2.57)

Folded Lie algebras sometimes preserve additional tensors. In the case of Cn
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there exists a tensor J such that for every X in Cn

XTJ + JX = 0. (2.58)

We can also reverse this statement: every X in A2n−1 which satisfies (2.58) is in Cn.

In our convention J assumes the following form:

J =




0 0 0 . . . 0 0 1

0 0 0 . . . 0 −1 0

0 0 0 . . . 1 0 0
...

...
...

...
...

...
...

0 0 −1 . . . 0 0 0

0 1 0 . . . 0 0 0

−1 0 0 . . . 0 0 0




(2.59)

The other case of this type is G2, which is the subalgebra of SO(7) preserving

the following rank 3 antisymmetric tensor φ:

∑

a′

φa′bcXa′a +
∑

b′

φab′cXb′b +
∑

c′

φabc′Xc′c = 0

for all X ∈ G2. Given our choice of Chevalley-Serre basis the tensor can be defined

as

φ127 = −φ136 = −φ145 = φ235 = −φ246 = −φ347 = −φ567 = 1

with the remaining values either fixed by antisymmetry or equal to 0.

The dual Chevalley-Serre basis of linear forms {X∗i } is defined to obey X∗i (Xj) =

δij for allXi in the Chevalley-Serre basis. In practice we realiseX∗i as square matrices

of the same dimension as Xi and represent the evaluation as the linear extension of

X∗i (Xj) = 〈X∗i , Xj〉 = 〈Xj, X
∗
i 〉 = tr (X∗iXj) . (2.60)

The dual Chevalley-Serre bases of “parent” and folded algebras are related:

H̃∗i =
1

#i

∑

j:f(j)=i

H∗j (2.61)

Ẽ∗±i =
1

#i

∑

j:f(j)=i

E∗±j (2.62)

where #i denotes the multiplicity of node i defined as

#i =
∣∣f−1(i)

∣∣ = |{j : f(j) = i}| (2.63)
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For example:

〈H̃i, H̃
∗
j 〉 =

1

#j

∑

k:f(k)=i
l:f(l)=j

〈Hk, H
∗
l 〉 =

1

#j

∑

k:f(k)=i
l:f(l)=j

δkl =
1

#j

#jδij = δij (2.64)

where the second-to-last equality follows from the fact that k = l can only occur if

both fold to the same node, i.e. i = j, and that this can happen for #j joint choices

of (identical) k and l.

We close this section with a brief discussion of the aforementioned case of B3

folding to G2 despite a lack of graph automorphisms. This is easily elucidated with

a quick detour through D4:

H̃B
3 = HD

3 +HD
4 (2.65)

H̃G
2 = HD

1 +HD
3 +HD

4 = H̃B
1 + H̃B

3 (2.66)

where we decorate each Cartan generator with a superscript denoting its algebra.

As illustrated – and the pattern holds up for remaining G2 basis elements – G2 can

be expressed as a folding of B3 in the same way that B3 is a folding of D4.

2.2 Supersymmetric quantum field theories

We assume that the reader is familiar with quantum field theory (QFT) at least

at the level of any number of excellent textbooks [6, 7] and supersymmetry at the

level of [8]. A quantum field theory is, as the name suggests, a theory of fields,

or objects distributed across all of space-time and transforming in a representation

of the global symmetry of the space-time, e.g. the Poincaré group associated to

four-dimensional space-time. Unlike classical fields, quantum fields at rest can only

be perturbed in discrete chunks, and the minimal such chunk is called a particle.

Correspondingly, every fundamental (perturbative) particle arises as a perturbation

of an underlying field. It follows that understanding “quantum fields at rest” is a

crucial prerequisite for studying particle physics.

“Resting” configurations of quantum fields are known as vacua and form the fo-

cus of this thesis. While generic QFTs can have a unique vacuum, theories imbued

with supersymmetry often possess uncountably many – each with its own character-

istic particle content. Our work here is to essentially catalogue (a class of) them.

Since the world around us is – or in any case seems to be – four-dimensional,

QFT is typically introduced to students in the context of four dimensions. However

QFTs can exhibit radically different phenomena in different dimensions. For exam-

ple, some particle-like dynamics can arise not as minimal perturbations of a field
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but as a topological phenomenon analogous to a twist on the Möbius strip: the twist

can travel the length of the strip but such a configuration is not exactly ‘close’ to

an untwisted cylindrical strip. The presence of such features, which are themselves

heavily influenced by dimensionality, ought to have an effect on small perturbations

and by extension particle content, so methods for studying vacua may vary across

different dimensions – as is indeed the case. This thesis is largely concerned with

three-dimensional physics but its applicability is wider: higher-dimensional super-

symmetric theories can often be related to a 3d case, opening the possibility for a

breakthrough with intrinsically three-dimensional techniques; see eg [9–11] for ap-

plications in four dimensions and [12–17] for a recent series of novel results in five-

and six-dimensional physics achieved with 3d methods.

2.2.1 4d N = 1

In keeping with the aforementioned pedagogical bias, we start with a discussion of

supersymmetry in four dimensions, largely following the conventions of [8], particu-

larly where indices and contractions are concerned. A 4d N = 1 theory is defined on

a space-time whose symmetry is described by the four-dimensional Poincaré algebra,

which is in turn extended by two supercharges Qα, Q̄α̇ transforming as spinors of

so(4); this extension is known as the Poincaré superalgebra, with (anti-)commutation

relations

{Qα, Q̄α̇} = 2(σµ)αβ̇Pµ (2.67)

[Qα, P
µ] = [Q̄α̇, P

µ] = 0 (2.68)

[Qα,M
µν ] = (σµν)βαQβ (2.69)

The four-vector σµ is matrix-valued:

σ0 =

(
−1 0

0 −1

)
σ1 =

(
0 1

1 0

)

σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

) (2.70)

and

σ̄µ = (σ0,−σi) (2.71)

σµν =
i

4
(σµσ̄ν − σν σ̄µ) (2.72)

Supercharges generate transformations which turn bosonic fields into fermions

and vice versa and so a non-trivial representation of the superalgebra must involve

29



both bosonic and fermionic components.

It’s tempting to ask: why bother? What does supersymmetry bring us? Adding

symmetry to a problem can drastically reduce its complexity and simplify calcu-

lations. Supersymmetry is valuable because it makes computations tractable, and

the more supersymmetry there is, the easier the math becomes. Some of the truly

exceptional simplifications relevant for our purposes require N = 2 supersymmetry

or more, but since they are special cases of N = 1 (as one can always just “forget”

about some of the symmetry), it makes sense to start with the less supersymmetric

N = 1 theories.

Supersymmetric field theories are theories of fields. By complete analogy with

standard non-supersymmetric theory, fields can have components: for example the

vector field Aµ has four components A0, A1, A2, A3. However, on-shell particle states

of those fields may be constrained by classical equations of motion to fewer compo-

nents, e.g. the photon’s two polarisations. We will now describe a few important

superfields and indicate their particle components, assuming the particles are mass-

less.

A scalar superfield is a function defined on an extension of space-time called

superspace, which adds two grassmannian variables θα, θ̄α̇:

S(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) + (θσµθ̄)Vµ(x)

+(θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθθ̄θ̄)D(x)
(2.73)

S can be decomposed into component fields φ, ψα, χ̄α̇,M,N, Vµ, λ̄α̇, ρα and D which

form irreducible representations of the Lorentz group. φ,M,N and D are scalar

fields, Vµ is a vector field and both ψα, ρα and χ̄α̇, λ̄α̇ are Weyl spinor fields trans-

forming in conjugate spinorial representations.

More careful analysis shows that S is a reducible representation of the Poincaré

superalgebra. Expressing the supercharges in terms of differential operators acting

on fields,

Qα = −i
∂

∂θα
− (σµ)αβ̇ θ̄

β̇ ∂

∂xµ

Q̄α̇ = +i
∂

∂θ̄α̇
+ θβ(σµ)βα̇

∂

∂xµ

(2.74)

we can find two other differential operators which commute with them and therefore

preserve supersymmetry:

Dα =
∂

∂θα
+ i(σµ)αβ̇ θ̄

β̇ ∂

∂xµ

D̄α̇ =
∂

∂θ̄α̇
+ iθβ(σµ)βα̇

∂

∂xµ
.

(2.75)
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Since both DS and D̄S are superfields, we can impose e.g. DS = 0 as a consistent

supersymmetric condition on S to restrict to a smaller representation of the Poincaré

superalgebra.

A chiral superfield Φ satisfies D̄Φ = 0. It can be expanded as

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µφ(x)

− i√
2

(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ(x)
(2.76)

with four bosonic components bundled into two complex scalar fields φ, F and four

fermionic components in ψα. It realises matter fields in supersymmetric theories.

The auxiliary field F can be directly solved for using the equations of motion. The

(on-shell) particle states form a complex scalar field and one Weyl spinor.

The superfield Φ̄ subject to DΦ̄ = 0 is called antichiral, admits an entirely

analogous expansion in component fields and represents matter in the representation

conjugate to that of chiral superfields. Its on-shell states are described by one

complex scalar and a Weyl spinor (of the chirality opposite to that of chiral superfield

Weyl spinors).

The last case of relevance for us is the vector superfield A constrained by A† = A.

It expands into

A(x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ (M(x) + iN(x))− i

2
θ̄θ̄ (M(x)− iN(x))

+θσµθ̄Aµ(x) + iθθθ̄

(
−iλ̄(x) +

i

2
σ̄µ∂µχ(x)

)
− iθ̄θ̄θ

(
λ(x)− i

2
σµ∂µχ̄(x)

)

+
1

2
(θθ)(θ̄θ̄)

(
D(x)− 1

2
∂µ∂

µC(x)

)

(2.77)

with C,M,N,D as real scalar fields and Aµ a vector field for a total of 8 bosonic

degrees of freedom and fermionic fields χ, λ with 4 degrees of freedom each. Unsur-

prisingly it can act as the supersymmetric generalisation of the gauge field. Once

again one of the scalar fields, D, is auxiliary, meaning that writing out the equations

of motion allows one to directly solve for it. The superfield’s on-shell particle states

form a constrained vector field and a spinor called the gaugino.

Now we have enough to define N = 1 supersymmetric electrodynamics (SQED)

by specifying its Lagrangian. To that end we introduce the chiral supersymmetric

abelian field strength

Wα = −1

4
D̄D̄DαA

W̄α̇ = −1

4
DDD̄α̇A

(2.78)
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It can be shown thatWα contains the usual field strength Fµν as a component field.

The superfields transform under the U(1) gauge group in the following way:

Φi → eiqΛΦi (2.79)

Φ†i → Φ†ie
−iqΛ (2.80)

A→ A− i

2
(Λ− Λ†) (2.81)

W → eiqΛWe−iqΛ (2.82)

where Λ is a chiral superfield.

The kinetic term for the gauge field is written as

LA =
1

4g2
(WW

∣∣
θθ

+ W̄W̄
∣∣
θ̄θ̄

). (2.83)

where X
∣∣
f(θ,θ̄)

denotes the component field of X appearing at order f(θ, θ̄).

The vector superfield can also appear in the Lagrangian in another way, as long

as it plays the role of a U(1) gauge field, in the form of a Fayet-Iliopoulos term

LFI = ξAU(1)
∣∣
θθθ̄θ̄

(2.84)

where ξ is a real parameter of the theory. While Fayet-Iliopoulos parameters play

an interesting role in the study of Higgs branches, in what follows we will set them

to 0.

The (anti-)chiral fields Φi (1 ≤ i ≤ n) enter the Lagrangian as

LΦ =
(

Φ†ie
2qAΦi

) ∣∣∣
θθθ̄θ̄

+
(
W (Φi)

∣∣
θθ

+ h.c.
)

(2.85)

with W (Φi) a holomorphic, gauge-invariant combination of fields W (Φi); in the case

of a single Φ we necessarily have W (Φ) = 0.

Putting everything together, the Lagrangian of SQED reads

LSQED = LΦ + LA + LFI. (2.86)

This formalism can be extended to other gauge groups and supersymmetric Yang-

Mills theories in the following way. Let G be a non-abelian gauge group. An asso-

ciated gauge transformation Λ is an element of Lie(G) whose components are chiral

superfields. (E.g. if G = SU(n) then Λ is an n × n traceless matrix with chiral

superfield components.) Its effects on chiral Φ in the fundamental representation,

chiral Φ̃ in the antifundamental representation and (superfield and gauge) vector A
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are:

Φi → eΛΦi (2.87)

Φ̃i → Φ̃ie
−Λ (2.88)

e2A → eΛ†e2Ae−Λ. (2.89)

The non-abelian field strength W must be modified to

Wα = −1

8
D̄D̄

(
e−2ADαe2A

)

transforming as

W → e−ΛWeΛ.

The kinetic term for vector superfields is amended to

LA =
1

2g2
(trWW

∣∣
θθ

+ trW̄W̄
∣∣
θ̄θ̄

) (2.90)

and the (fundamental) chiral field Lagrangian becomes

LΦ =
(

Φ†ie
2AΦi

) ∣∣∣
θθθ̄θ̄

+
(
W (Φi)

∣∣
θθ

+ h.c.
)

(2.91)

with W (Φi) again a holomorphic, gauge-invariant combination of Φi. To gener-

alise to non-fundamental chiral fields, one need only cast A into the appropriate

representation of the gauge algebra.

2.2.2 4d N = 2

Just as the Poincaré algebra was extended by two supercharges Q and Q̄ into the

N = 1 Poincaré superalgebra, so can it in turn be extended by adding another

distinct pair of Q, Q̄ with suitable (anti-)commutative properties:

{QA
α , Q̄

B
β̇
} = 2(σµ)αβ̇Pµδ

AB (2.92)

{QA
α , Q

B
β } = εαβZ

AB (2.93)

where the second equation introduces antisymmetric central charges ZAB. Central

charges necessarily vanish for massless representations and will be set to 0 in the

following discussion.

A theory with two pairs of supercharges is appropriately denoted N = 2. For

some theories swapping the two sets of charges is also a symmetry of the theory and

in some cases they may even be continuously rotated into one another (though see

[18] for a counter-example). All transformations of this kind form the R-symmetry
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of the theory2. In this case the R-symmetry is su(2)R× u(1)r but the latter abelian

factor is unimportant for this discussion.

N = 2 supersymmetric representations are larger than their N = 1 counterparts

and can be decomposed into them. Recall that the action of a single supercharge

turns a bosonic component field into a fermionic compotent field of the same super-

charge (or vice versa). With two supercharges to choose from, bosonic component

fields will form representations of the R-symmetry, as will their fermionic counter-

parts. To simplify matters, the following discussion of N = 2 fields will only concern

particle states and neglect the remaining off-shell components of their respective su-

perfields.

The N = 2 vector supermultiplet V consists of two N = 1 multiplets: the

vector multiplet A and the chiral multiplet Φ, both transforming in some group’s

adjoint representation. In terms of particle states, it contains a vector field Aµ(x)

and a complex scalar field ϕ(x) with two real degrees of freedom each, and two Weyl

spinors ψ(x) and λ(x) for a total of four fermionic degrees of freedom. While the

vector and scalar are singlets under su(2)R, the spinors form a doublet.

The N = 2 version of matter fields comes from hypermultiplets composed of

one N = 1 chiral multiplet Q and one antichiral multiplet Q̃†. The two multiplets

necessarily transform in conjugate representations of the gauge group G, which are

typically specified by reference to the representation of Q, e.g. the fundamental

representation of G. The component supermultiplets are often referred to as the

quark and anti-quark, respectively. The hypermultiplet’s particle states consist of

two complex scalars q(x) and q̃†(x) in an su(2)R doublet and two Weyl spinors and

su(2)R scalars ψ and ψ̃†.

N = 2 invariance seriously constrains the class of admissible Lagrangians. The

vector contribution now takes the form

LN=2
V =

1

4π
Im[τ tr Φ†e2[A,·]Φ

∣∣
θθθ̄θ̄

+
1

2
τ tr WαW

α
∣∣
θθ

] (2.94)

where τ = 4πi
g2 + θ

2π
is the complexified gauge coupling.

Massless hypermultiplets contribute to the Lagrangian as

LN=2
H =

1

4π
Im[τ tr

(
Q†ieAQi + Q̃ie−AQ̃†i

) ∣∣∣
θθθ̄θ̄

+ τW
∣∣
θθ

] (2.95)

where the superpotential takes the form

W =
√

2 tr Q̃ΦQ. (2.96)

2Formally an R-symmetry is a symmetry which does not commute with the supersymmetry
generators.
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This notation is general across choices of gauge group and matter representations.

For example, Nf quarks Q coupled to an SU(Nc) gauge field would be represented

by a Nc×Nf matrix, Q̃ would be an Nf×Nc matrix with Φ an Nc×Nc matrix. The

trace is then understood to be over the fundamental representation, i.e. ranging

over the Nf flavors.

The full Lagrangian is then written as

LN=2 = LN=2
V + LN=2

H . (2.97)

2.2.3 Quiver gauge theories

We have seen that supersymmetry places strict constraints on Lagrangians. As a

pleasant consequence, the full structure of many theories can be succinctly specified

by a quiver diagram, or quiver for short. The main features are already visible in

the quiver depiction of N = 2 SQCD:

N = 1 notation N = 2 notation

Nc

Nf

Φ

Q Q̃

Nc

Nf

On the N = 1 side, we see several features

• Circle node Nc: gauge group U(Nc) with a N = 1 vector multiplet; also

called the gauge node

• Square node Nf : flavor group SU(Nf ); also called the flavor node

• Arrow Q: chiral multiplet transforming in the fundamental representation of

U(Nc) and antifundamental representation of SU(Nf )

• Arrow Q̃†: antichiral multiplet transforming in the antifundamental repre-

sentation of U(Nc) and fundamental representation of SU(Nf )

• Loop Φ: vector multiplet transforming in the adjoint representation of U(Nc)

Note in particular that the loop is consistent with our notation for arrows as the

adjoint representation it denotes carries one each of fundamental and antifunda-

mental indices. (Matter can also appear in more general representations of the
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gauge group, but for the purposes of this thesis we will be content with the options

presented above.)

Restricting to N = 2 allows more condensed quiver notation. In the case of

unitary gauge groups, N = 2 matter always comes packaged in a hypermultiplet.

N = 1 language encodes it as two opposite arrows but since they always come as a

pair, we can represent the N = 2 hypermultiplet as a single unoriented line. And

because N = 2 gauge groups always bring an extra chiral multiplet “loop”, the

N = 2 quiver can simply absorb the loop into the definition of a gauge node.

This recipe for N = 2 quivers can only generate undirected quivers. However,

directed edges have appeared in the literature since their first appearance in [11].

Such quivers are described as non-simply laced on account of their resemblance to

non-simply laced Dynkin diagrams (i.e. of typesBCFG). (We stress that connecting

two nodes with multiple undirected edges does not make a quiver non-simply laced

under to this convention.) They feature prominently in Chapter 4.

Quivers need not have (special) unitary gauge and flavor groups. Families of

orthosymplectic quivers have been studied in [16, 19–23]. Such quivers exhibit an

alternating pattern of (special) orthogonal and symplectic nodes. A link between

an orthogonal and symplectic node represents matter in the half-hypermultiplet rep-

resentation: essentially a hypermultiplet with a reality condition [19]. The quiver

SO(2) USp(2) SO(4)
(2.98)

is one such example. More general examples, mixing unitary nodes alongside or-

thosymplectic ones, have also been studied. In this thesis we restrict to purely

unitary theories.

2.2.4 3d N = 4

Although the formalism described in the previous sections was introduced in the con-

text of four-dimensional theories, it is easily adapted for work in three dimensions,

where most of the discussion presented in this thesis takes place. For example, the

quiver description can be adopted without modification. For an overview of general

3d N = 4 features see [24].

A popular way to reduce the dimension of a theory is to compactify it. In the

simplest case some of the infinite directions of space-time are replaced by circles –

the theory is said to be put on a torus – and their radii are shrunk to zero. For

concreteness, say we take a four-dimensional theory, whose space-time symmetry

(neglecting translations) is the Lorentz group SO(3, 1). It includes SO(2, 1) as

its subgroup and so every SO(3, 1) representation must decompose into irreducible
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representations of SO(2, 1). This type of reduction turns four-dimensional N = 2

theories into their three-dimensionalN = 4 counterparts. The increase inN signifies

that the two independent sets of supercharges in four dimensions decompose further

into 4 independent sets of three-dimensional supercharges. The total number of

supercharge components, however, remains constant. Since there are eight of them,

we say that both 4d N = 2 and 3d N = 4 are theories with eight supercharges3.

The R-symmetry of 3d N = 4 theories is expanded to SO(4), which rotates the

four supercharges among each other, and decomposes as su(2)H × su(2)C; this fact

will be relevant when we discuss moduli spaces.

We still refer to 3d N = 4 representations by their 4d N = 2 names, and most of

the internal effects of dimensional reduction are immaterial for our purposes. The

hypermultiplet, for example, still contains two complex scalars.

The vector multiplet, on the other hand, gains a second complex scalar from its

vector component field Aµ: without loss of generality, assume we compactify along

the third dimension so A3 = σ forms the trivial representation under SO(2, 1).

Moreover the remaining vector Ai = (A0, A1, A2) defines a two-form field strength

F = dA which is Hodge-dual to the one-form ?F . A one-form can be (locally)

interpreted as the exterior derivative of a scalar field γ, i.e. ?F = dγ. We call γ

the dual photon. Together with σ and the complex scalar ϕ contained within the

chiral multiplet Φ, it forms one of four real scalar degrees of freedom in 3d N = 4

multiplets. ϕ and A3 together transform as (1,3) under su(2)H × su(2)C, so we can

bundle them together into a new representation φ with three real components. The

dual photon is invariant under both factors. The vector multiplet also includes a

Dirac spinor λ.

Note that both 3d N = 4 hypermultiplets and vector multiplets contain precisely

four real scalar degrees of freedom. This is the first sign of a very special property

of three-dimensional theories with eight supercharges: loosely speaking, one can

exchange gauge and matter fields to get another consistent 3d N = 4 theory with

closely related properties. We call this property three-dimensional mirror symmetry,

as it relates “mirrored” pairs of theories and will briefly return to it in Section 2.3.7.

Three-dimensional N = 4 actions admit a supersymmetric Chern-Simons term

[25]
k

4π

∫
tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A+ iλ̄λ+ 2Dσ

)
(2.99)

but k 6= 0 has the effect of removing massless degrees of freedom in the IR (and

3This is a frustrating convention as “supercharge” typically refers to a spinor representation
formed of supercharge components. However, in this instance, it refers to the components them-
selves. So a more accurate description would be theories with eight supercharge components. In fact,
it’s now clear why 4d N = 2 turns to 3d N = 4 but remains a “theory with eight supercharges”:
the eight components remain but are repackaged into a larger number of smaller spinors.
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furthermore reduces supersymmetry to N = 3). Since our interest in these theories

stems from the complex structure of their IR degrees of freedom, we want to preserve

as many as possible and uniformly set k to 0.

2.3 Moduli space

Among the simplest aspects of a quiver theory one can study is its moduli space, or

the set of all admissible vacua.

Let |Ω〉 be a vacuum state, defined by the property that the energy 〈Ω|H |Ω〉 is

minimised. The vacuum preserves the space-time symmetry of the theory, so two

distinct vacua can only differ in the vacuum expectation values (VEVs) 〈Ω| O |Ω〉
where O is a Lorentz-invariant operator. Each VEV is therefore a (Lorentz) scalar.

The space of all vacua is called the moduli space, and it is parametrised by admis-

sible values of VEVs. Note that this is the site of a crucial conceptual switch: we

transition from talking about theories to talking about geometrical spaces.

Quantum field theories can behave very differently at various energy scales and

some theoretical approaches are only suitable in specific energy regimes. For ex-

ample, quivers are typically specified using UV data. However, vacua, being by

definition a low-energy concept, are naturally studied in IR and renormalisation

can have significant effects on a theory’s moduli space. Neglecting these so-called

quantum corrections for now, one can schematically expand the scalar part of the

Lagrangian in (2.97) as

LN=4
scalar =

1

g2
tr F (γ)2 +

1

g2
tr ∂iφ

j∂iφj + tr ∂iq∂
iq† + tr ∂iq̃∂

iq̃† − V (γ, φ, q, q†, q̃, q̃†).

(2.100)

where we stressed that F is just the repackaged dual photon γ. A choice of

(γ, φ, q, q†, q̃, q̃†) such that V (γ, φ, q, q†, q̃, q̃†) = 0 corresponds to a choice of vac-

uum. While generic non-supersymmetric theories will typically have unique vacua,

or perhaps a discrete set, supersymmetric theories tend to have “flat directions” in

the potential V . In other words the vacua form continuous spaces, which may (and

often do) contain singularities.

The F and D fields in the Lagrangian are non-dynamical and so can be easily

substituted by solutions to their Euler-Lagrange equations. The potential then

simplifies to the schematic form

V (γ, φ, q, q†, q̃, q̃†) =
1

2g2
DADA +

∑

{ϕ}
|Fϕ|2 (2.101)
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where

DA =
∑

{ϕ}
tr ϕ†TAϕ (2.102)

Fϕ =
∂W
∂ϕ

(2.103)

with {ϕ} = {γ, φ, q, q†, q̃, q̃†} the set of scalar fields, A an adjoint index, TA the

generator of the gauge group representation under which ϕ transforms and tr the

corresponding trace. Note that F is here the auxiliary scalar field and that both D

and F appear as squares so must vanish to globally minimise the potential. (Non-

local minima tend to break supersymmetry whereas the global minimum maximally

preserves it.)

There are three classes of vacua for 3d N = 4 theories encoded by the potential

V :

• Higgs branch H: All scalar VEVs in vector multiplets vanish and hyper-

multiplet scalars take values constrained by V (0, 0, q, q†, q̃, q̃†) = 0. The forced

vanishing of F and D terms defines a set of algebraic equations for hyper-

multiplet scalars. Field configurations differing only in the choice of gauge

are identified. H is an affine algebraic variety. Only the su(2)H part of R-

symmetry acts non-trivially on this space.

• (Classical) Coulomb branch Ccl: All scalar VEVs in hypermultiplets vanish

and scalars in vector multiplets take values in the zero locus of V (γ, φ, 0, 0, 0, 0).

The D-terms force a set of commutation relations and Ccl is therefore para-

metrised by scalars in the Cartan subalgebra of the gauge group G. Only the

su(2)C part of R-symmetry acts non-trivially on this space.

• Mixed branchesMi: Some hypermultiplet and some vector multiplet VEVs

are non-zero. This case is usually omitted as it can be treated by tools devel-

oped for Higgs and Coulomb branches. Both factors of the R-symmetry act

non-trivially.

The classical Coulomb branch then undergoes important quantum corrections which

“enhance” it to the full (and strictly larger) Coulomb branch C.
The overall moduli spaceM is the union of the Higgs branch, Coulomb branch,

and typically several mixed branches:

M = H ∪ C ∪
⋃

i

Mi (2.104)

Notably, each branch carries hyper-Kähler structure, implying that its real di-

mension is divisible by 4 and that it carries three complex structures satisfying
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quaternion-like relations. More information on hyper-Kähler spaces is provided in

Section 2.3.2

The various branches of the moduli space intersect at the origin where all scalar

fields vanish. As the title of the thesis suggests, we will focus almost exclusively

on the Coulomb branch, with very infrequent mentions of the Higgs branch and

virtually no appearance of a mixed branch.

We will look at the Higgs and Coulomb branches in more detail but first we need

to introduce a concept central to their study: the chiral ring.

2.3.1 Chiral ring

We restrict our attention to chiral operators which break one half of N = 4 su-

persymmetry, i.e. [Qb,O] 6= 0 for Qb drawn from a two-dimensional subspace of

supercharges4. Operators with this property are also called half BPS.

Let O1 and O2 be two such operators; moreover, since we are interested in moduli

spaces, the operators will be taken as bosonic and Lorentz-invariant. Then, for the

two-dimensional space of preserved supercharges Qp:

[Qp,O1O2] = [Qp,O1]O2 +O1[Qp,O2] = 0 (2.105)

and so O1O2 is also chiral. Since linear combinations of chiral operators are also

(trivially) chiral, we say that such operators form a (generically non-commutative)

chiral ring.

Let us investigate some properties of vacuum expectation values of chiral ring

operators. A fundamental relation between supercharges states that {Qp, Q̃p} ∝ P ,

the momentum operator, which acts by translating operators. So the space-time

variation of O can be quickly computed through the supersymmetric generalisation

of the Jacobi identity:

[P,O] ∝ [{Qp, Q̃p},O] = −{[Q̃p,O], Qp} − {[O, Qp], Q̃p} = {Qp, [Q̃p,O]} (2.106)

However, any VEV of the form 〈{Qp,O′}〉 vanishes and consequently the VEV

〈O(x)〉, which we may a priori expect to vary over space-time, is necessarily con-

stant.

Finally we consider the space-time variation of the product operator O1(x)O2(0).

[P,O1(x)O2(0)] ∝ [{Qp, Q̃p},O1(x)O2(0)] = {Qp, [Q̃p,O1(x)O2(0)]} (2.107)

4Note that this subspace has four supercharge components, since each supercharge is a two-
dimensional spinor.
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following the same manipulations as above. It follows that ∂〈O1(x)O2(0)〉 = 0, i.e.

the product is independent of the operators’ separation. We can therefore move

O1(x) to infinity and use the cluster decomposition principle to separate the VEV:

〈O1(x)O2(0)〉 = lim
x→∞
〈O1(x)O2(0)〉 = lim

x→∞
〈O1(x)〉〈O2(0)〉

=〈O1(0)〉〈O2(0)〉 = 〈O1〉〈O2〉
(2.108)

where we used the fact that 〈Oi(x)〉 are constant and in the last step suppressed

space-time dependence.

To recapitulate, the VEV of a chiral operator is a single complex number, prod-

ucts are also chiral and the VEV of a product is simply the product of the VEVs.

Moreover, sums of operators are chiral and the identity is also a chiral operator. The

set of chiral ring VEVs therefore satisfies the necessary properties of a commutative

ring. It is common (though imprecise) to refer to “the ring of chiral operator VEVs”

as “the chiral ring”, and we will follow this convention throughout the rest of this

work.

Now pick a branch of the moduli space, say the Coulomb branch, and fix a N = 2

subalgebra, which is equivalent to choosing a complex structure. Coulomb branch

operators5 form su(2)C representations, whose action rotates the choice of complex

structure (or N = 2 subalgebra). The operator can be represented by its highest

weight component under su(2)C, which turns out to be chiral for a judicious choice of

supercharges. So elements of a certain chiral ring are in one-to-one correspondence

to su(2)C multiplets of Coulomb branch operators, because they form their highest

weight components. We call this particular ring the Coulomb branch chiral ring and

denote it C[C]6. (Put aside any worries about the fact that C[C] would traditionally

stand for the ring of holomorphic functions on C. We will get to this point very

soon.)

The chiral rings studied in this work can be presented in the following form of a

freely generated ring quotiented by an ideal:

R = C[O1,O2, . . . ]/I (2.109)

We will refer to the Oi – which stand in for VEVs of gauge-invariant chiral operators

– as generators. Elements of I are called relations and we usually find that the ideal

is non-trivial but finitely generated.

5By which we mean their VEVs!
6A detailed recent account of this construction can be found in [26], albeit for the more com-

plicated (but relevant) example of a theory on a sphere.
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2.3.2 Interlude: Hyper-Kähler spaces

The presence of eight supercharges implies that the Higgs and Coulomb branches

each carry three independent complex structures, imbuing them with overall hyper-

Kähler structures, which are roughly the quaternionic equivalent of a complex mani-

fold; as a consequence their real dimension is divisible by four. Hyper-Kähler spaces

were first named in [27] and appeared in the physical literature in [28], describing

a Higgs branch. Other than the three complex structures, such spaces also carry a

triplet of (real) symplectic two-forms ω. We arbitrarily select one complex structure;

an SU(2) symmetry rotates between the possible choices. Given a fixed complex

structure, we can also combine two of the real symplectic two-forms into a complex

symplectic two-form; from here on out, when we mention the symplectic form, we

will be referring to this complex two-form.

The SU(2) symmetry also acts on holomorphic and anti-holomorphic coordinates

of the hyper-Kähler space. For example, the space H = C2 carries two holomorphic

coordinates z1, z2 and two anti-holomorphic coordinates z̄1, z̄2 [29]. They form SU(2)

doublets γ1 = (z1, z̄2) and γ2 = (z2, z̄1) and z1, resp. z2, are their highest weight

representatives. Indeed any monomial in z1 and z2, i.e. a homogeneous holomorphic

function, is the highest weight of a suitable SU(2) representation. Similarities to

the discussion of chiral rings just a few paragraphs above are not accidental; in fact

they are the central prerequisite for the line of inquiry advocated in this thesis.

It is generally believed that, at least for three-dimensional N = 4 Higgs and

Coulomb branches, Higgs (Coulomb) branch chiral rings are isomorphic to the ring

of holomorphic functions on the Higgs (Coulomb) branch moduli space.

This statement ties together supersymmetric gauge theory and algebraic geom-

etry through the medium of Hilbert’s Nullstellensatz. Let J be an ideal of a ring

R, V (R) the set of points in the ambient space on which it vanishes, I(X) the ideal

of polynomials vanishing on a set of points X and
√
J the radical of J . Then the

Nullstellensatz states that

I(V (J)) =
√
J. (2.110)

So finding the set of vanishing polynomials on V (J) is almost a left inverse of V ,

and an honest left inverse if J is a radical ideal (i.e. equal to its own radical). It is

worth flagging here that switching between geometry and algebra carries with it a

risk and sometimes our tools may only find the radical
√
J rather than J (the true

ring of chiral ring VEVs). See [30] for a striking example in 5d Higgs branches at

infinite coupling: the chiral rings in question include nilpotent elements which are

absent from a reconstruction using three-dimensional Coulomb branches, since this

technique is only sensitive to the radical of ring relations I in (2.109).

However, there are no nilpotent elements in 3d N = 4 Coulomb branches and
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we can safely study it (as a geometric space) by analysing the ring of (physical)

chiral operators. If we find the chiral ring is isomorphic to the coordinate ring of a

particular geometric space, we have good grounds to claim that the Coulomb branch

is isomorphic to that very space. That is the general motivation of this thesis.

Let G be a Lie group with an action on a hyper-Kähler space M, i.e. G is a

continuous symmetry7. Then there exists a moment map µ : M→ Lie(G)∗ which

encodes flows along the manifold. In particular, if ξX is the vector field preserving

the symplectic (and complex) structure generated from X ∈ Lie(G), we have that

d (µ (X)) (ξY ) = ω
(
ξX , ξY

)
= ξ[X,Y ] (2.111)

for any X, Y ∈ Lie(G).

The symplectic form also implies the existence of a Poisson bracket between

holomorphic functions on M satisfying the following property:

{µ(X), µ(Y )} = µ ([X, Y ]) . (2.112)

Finally we point out that µ is a function from the space M to the dual of the

symmetry’s Lie algebra – in other words it is a coadjoint-valued function. At the

same time µ is holomorphic thanks to the hyper-Kähler structure. Taken together,

the dim G components of µ must correspond to (some) chiral ring elements. Con-

sequently, the chiral ring includes at least enough independent operators to fill out

a coadjoint representation of the global symmetry of a given branch of the mod-

uli space. Much of this thesis is concerned with constructing the Coulomb branch

moment map for various families of theories.

2.3.3 Higgs branch

We provide a very terse description of the Higgs branch. The interested reader is

advised to look at any one of several historical or contemporary treatments [20, 23,

29, 31–34] for more details and concrete examples.

The Higgs branch is the space of vacua in which all scalar VEVs associated to

vector multiplets vanish and only VEVs associated to gauge-invariant combinations

of scalars in the theory’s hypermultiplets are allowed to take non-zero values. If we

think of {V = 0}H as the set of Higgs branch constraints, i.e. the set of equations

coming from D and F terms after vector multiplet scalars are set to zero, we can

write

H = (C2×num. of hypermultiplets/{V = 0}H)/G (2.113)

7Note that G is the theory’s gauge symmetry and G is the symmetry of its space of vacua. The
two are not independent but their relation is complex and involves the matter representation R.
The curious reader should keep reading on: this connection lies at the core of this thesis.
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where we also indicated that field configurations related by the action of the gauge

group G are to be identified.

Standard non-renormalisation arguments [35] show that Higgs branches do not

receive quantum corrections, so classical analysis is entirely sufficient. Moreover,

they are largely robust under dimensional reduction, although a few quantum-

mechanical effects appear in other dimensions. As studied in [36–43] and more

recently in [14, 17], Higgs branches of supersymmetric theories in five and six di-

mensions (and eight supercharges) “enhance” in the UV as gauge coupling becomes

infinite and instanton operators, resp. tensionless strings, turn massless. Four di-

mensional physics offers an analogue in Argyres-Douglas points [10, 44, 45]. In the

present setting of three dimensions such matters need not concern us and we shall

be satisfied with classical computations of the type described above.

As an example take U(2) SQCD with 4 flavors and let qap be a scalar field with

gauge index a and flavor index p and q̃pa the conjugate field. The F terms in (2.103)

imply

qap q̃
q
a = 0 (2.114)

q†pa q
b
p − q̃†ap q̃pb = 0 (2.115)

Define the “meson matrix” of gauge-invariant operators

M q
p = qap q̃

q
a (2.116)

and notice that

M q
pM

r
q = qap q̃

q
aq
b
q q̃
r
b = 0 (2.117)

The flavor group SU(4) also comes with εpqrs and εpqrs tensors which allow us to

check the rank of M :

εpqrsεp′q′r′s′M
p′

p M
q′

q M
r′

r = (εpqrsqapq
b
qq
c
r)(εp′q′r′s′ q̃

p′

a q̃
q′

b q̃
r′

c ) = 0 (2.118)

since for every term at least two of a, b, c must be the same and (wlog assuming

a = b) qapq
b
q is symmetric in p ↔ q but contracted to a tensor antisymmetric in the

same indices. Therefore the rank of M is at most 2.

The attentive reader might notice we never made use of the D-term and indeed

they are secretly made redundant by the imposition of gauge invariance, or rather

invariance under the complexified gauge group; for details see [46].

The Higgs branch described above is our first example of a nilpotent orbit closure,

a space parametrised by a single (co)adjoint matrix with a nilpotency condition

(here M2 = 0) and potentially other relations (here rank M ≤ 2). In fact, M is
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secretly the Higgs branch moment map. This particular space is the next-to-minimal

nilpotent orbit closure of su(4), also known as Ō(22) [20, 47, 48], and consists of

traceless matrices conjugate to

X(22) =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



. (2.119)

2.3.4 Interlude: Nilpotent orbits

Nilpotent orbits [49] form an important class of hyper-Kähler spaces, largely due

to their simplicity: while any hyper-Kähler space must have at least one coadjoint

representation’s worth of operators to form the moment map, the coordinate ring of

a nilpotent orbit of an algebra g is generated by a single generator in the coadjoint

representation of g [50]. The moment map is then precisely the set of the coordinate

ring’s generators. Relations between ring elements can be read off from constraints

on the moment map. As a result, identifying the space as a nilpotent orbit greatly

simplifies matters, as we no longer have to talk about dim M operators subject to

a (usually fairly large) number of relations. Instead, we have one moment map µ

with only a handful of constraints specified by its contractions with other copies of

itself or available invariant tensors.

Nilpotent orbits of g are defined as coadjoint8 orbits of nilpotent matrices in g.

To illustrate the concept we provide a full characterisation of nilpotent orbits of

sl(n,C). Precise definitions for the remaining classical groups can be found e.g. in

[49].

The first step is to take a nilpotent element X ∈ sl(n,C), i.e. Xk = 0 for some

k. It can be transformed to its Jordan-normal form

X(λ1,...,λN ) =




Jλ1

Jλ2

. . .

JλN




(2.120)

8Nilpotent orbits can also be defined as adjoint orbits of nilpotent matrices, but as long as g
is semisimple there is a one-to-one correspondence between coadjoint and adjoint nilpotent orbits.
Since our moment maps are coadjoint, we stick with the appropriate, coadjoint definition.
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where Jλi is the λi × λi block matrix

Jλi =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




(2.121)

and λi appear in descending order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λN . Note that
∑N

i=1 λi = n,

so the set of Jordan-normal matrices of the form (2.120) is in one-to-one correspon-

dence to partitions of λ. We denote a particular partition ~λ = (λ1, . . . , λN) and use

it to label nilpotent orbits. Other classical groups have a similar correspondence

between nilpotent orbits and a precisely defined subset of partitions, see [49].

The nilpotent orbit O~λ is itself defined as

O~λ = {A−1X~λA | A ∈ SL(n,C)}. (2.122)

Note that every X ∈ O~λ shares the nilpotency condition Xk = 0 with the “proto-

type” element X~λ.

Let us consider nilpotent orbits of sl(2,C) for the sake of concreteness. There

are two partitions ~λ of n = 2: (1, 1) = (12) or (2). The first partition corresponds

to the Jordan-normal matrix

X(12)

(
0 0

0 0

)
(2.123)

whose orbit is a single point:

O(12) =

{(
0 0

0 0

)}
. (2.124)

The case of ~λ = (2) is more interesting:

X(2)

(
0 1

0 0

)
(2.125)

and the orbit is now larger:

O(2) =

{
A−1

(
0 1

0 0

)
A | A ∈ SL(n,C)

}
(2.126)
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where

A =

(
a b

c d

)
, ad− bc = 1. (2.127)

The elements of O(2) therefore have the form

X =

(
cd d2

−c2 −cd

)
(2.128)

Note that although X /∈ O(12), there is a sequence Xi ∈ O(2) which can get

arbitrarily close to O(12), i.e. O(12) is included in the closure Ō(2) of O(2). In fact,

the closure is just the union of the two orbits:

Ō(2) = O(2) ∪ O(12). (2.129)

Closures of nilpotent orbits are of particular importance to the study of super-

symmetric vacua. Many of the theories we investigate will have Coulomb or Higgs

branches of precisely this type. Luckily closures are as easily categorised as nilpo-

tent orbits. Take any two partitions ~λ and ~λ′ of λ. The set of partitions is partially

ordered by the domination relation

~λ ≥ ~λ′ ⇐⇒ ∀j :

j∑

i=1

λi ≥
j∑

i=1

λ′i. (2.130)

The closure of O~λ is then defined as the union of all nilpotent orbits O~λ′ such that
~λ ≥ ~λ′. Note that this immediately implies the inclusion relation Ō~λ ⊃ Ō~λ′ .

This structure can be represented with a Hasse diagram, which is best introduced

on an example. Let g = sl(6,C). The partitions of 6, and therefore the nilpotent

orbits of sl(6,C), are exhausted by

{(6), (5, 1), (4, 2), (4, 12), (32), (3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)} (2.131)
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The Hasse diagram reads [29, 49]

O(6)

O(5,1)

O(4,2)

O(4,12) O(32)

O(3,2,1)

O(3,13) O(23)

O(22,12)

O(2,14)

O(16)

A5

A3

a1 A1

A2 A2

a2 a2

a1 A1

a3

a5

(2.132)

The diagram contains a wealth of information about nilpotent orbits of sl(6,C).

First we need to understand the notation. Each node is a nilpotent orbit labelled

by the corresponding partition of 6. A link connecting a higher-placed orbit to a

lower-placed one implies that the higher partition dominates the lower and hence

the closure of the higher orbit includes the closure of the lower orbit. In fact one

can think of the closure of an orbit as “its node and everything connected to it from

below”.

Finally, each link is labelled by a geometric transverse slice between two adjacent

orbits. As we have seen, a nilpotent orbit corresponds not only to a partition, but

also to a nilpotent element X ∈ g. The Jacobson-Morozov theorem allows one to

complete this element to a standard sl(2,C) triple {X, Y,H} and define the affine

space [21, 51]

SX = X + ker([Y, ·]) (2.133)

which we can call the transverse (or S lodowy) slice in g. Of particular interest is the

intersection of this slice with another nilpotent orbit. Let us consider two nilpotent

orbits O1,2 such that Ō1 ⊃ O2. Select any X ∈ O2 and define SO1,X = SX ∩ O1.

Then Ō1 and SO1,X × O2 are isomorphic in a neighbourhood of X. And this is

precisely what the links’ labels imply in the Hasse diagram: the transverse slice

of a smaller orbit inside the closure of the larger orbit is (isomorphic to) a known

geometric space, and the closure of the larger orbit is locally isomorphic to a product

of the smaller orbit and the labelled space: for example O(6) is locally isomorphic to

O(5,1) × A5. The Ai denote Kleinian singularities C2/Zi+1 while the ai are minimal
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nilpotent orbits of the corresponding Ai algebra (ie of sl(i + 1,C))9. The minimal

nilpotent orbit is the smallest non-trivial orbit, here O(2,14); it is always unique. The

maximal orbit, here O(6), and the subregular (next-to-maximal), here O(5,1), are also

always uniquely specified.

Closures of nilpotent orbits are generally not manifolds. Instead they form a

rich family of symplectic singularities, i.e. singular spaces with symplectic structure

(plus a few extra conditions). For example, O(5,1) is a singular subspace of Ō(6),

by which we mean the symplectic structure partially degenerates on it. The Hasse

diagram clearly shows that Ō(5,1) is itself singular in turn. We say that the subspace

with the same “degree of singularity” (same degeneration of the symplectic form)

is a symplectic leaf of the larger space, e.g. O(5,1) is a symplectic leaf of Ō(6), but

Ō(5,1) is not on account of including even more singular subspaces (eg O(4,2)). A

symplectic singularity necessarily has a unique top symplectic leaf, although this

need not be true of an arbitrary symplectic space.

We will often specify closures of nilpotent orbits in terms of the degree of nilpo-

tency as well as information about the rank or trace of (possibly powers of) each

element. But (2.122) makes it clear that it is sufficient to enforce rank or trace

constraints on the “prototype” X~λ (or powers thereof) to enforce constraints on

every X ∈ O~λ. Notably, the same constraints also hold for every nilpotent orbit

O~λ contained in the closure Ō~λ. In fact, the full set of rank and trace conditions

forms algebraic relations for the closure Ō~λ. Since our study of moduli spaces yields

this type of relations, the results must be closures of nilpotent orbits rather than

nilpotent orbits simpliciter.

From now on, in the interest of brevity, when we identify a moduli space as a

nilpotent orbit, we will implicitly understand it as “the closure of this nilpotent or-

bit”. Almost all Coulomb and Higgs branches analysed in this thesis will be closures

of nilpotent orbits although a handful will have a more complicated structure. They

will, in any case, be examples of symplectic singularities with an associated Hasse

diagram.

Many theories whose Higgs or Coulomb branches are nilpotent orbits or other

hyper-Kähler varieties were tabulated in [20, 22, 32, 52]. Hasse diagrams were used

to study the geometry of nilpotent orbits in [53, 54] and served as a valuable tool in

the study of moduli spaces of quiver gauge theoris in [15, 16, 23, 29, 52, 55, 56].

2.3.5 Classical Coulomb branch

The following discussion follows [57, 58].

9Ai and ai do not exhaust the possibilities of transverse slices. There are also the other Kleinian
singularities, Di and Ei, and nilpotent orbits bi, ci, di, ei, f4, g2, and other much less frequently
encountered spaces.
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The Coulomb branch is characterised by vanishing hypermultiplet VEVs. The

D-term (2.102) reduces to

[φA, φB] = 0 (2.134)

for A,B ranging over adjoint indices. This implies that the adjoint-valued φA lie in

a maximal commuting subalgebra of Lie(G), which is also known as its Cartan subal-

gebra. A generic choice of φA breaks G to U(1)rank G. Each φA contributes three real

scalar degrees of freedom while each U(1) factor brings one extra massless photon.

Assuming no Fayet-Iliopoulos or Chern-Simons terms, all 4(rank G) scalars remain

massless in quantum theory, i.e. no mass terms are generated by renormalisation.

Since the φA commute, they can be simultaneously diagonalised (at least for the

gauge groups we consider, i.e. unitary, symplectic or orthogonal). For example, for

SU(2), the solitary non-vanishing VEV can be gauge-transformed to a canonical

form

φ =

(
s 0

0 −s

)
(2.135)

which is unique up to s → −s, the Weyl group of SU(2). The fourth scalar, the

dual photon transforms as γ → −γ under it (as the Weyl transformation acts by

charge conjugation). The classical Coulomb branch is then ((R3 −∆12)× S1)/S2.

In general, the classical Coulomb branch takes roughly10 the form

Ccl = (R3 × S1)rank G/WG (2.136)

where WG is the Weyl group of the overall gauge group. Note that the Weyl group

of U(1) is the trivial group.

2.3.6 Quantum Coulomb branch

The Coulomb branch is greatly influenced by quantum effects. The quiver specifies

the theory in the UV but the moduli space must be analysed in the IR. Historically

the Coulomb branch was first understood for theories with the gauge group G = U(1)

[57, 59]. As described above, the photon could be dualised into a scalar and massive

hypermultiplets and W -bosons could be explicitly integrated out. The theory’s

low energy description is perturbatively renormalised, but the process mercifully

terminates after one-loop corrections to provide a renormalised Lagrangian encoding

the hyper-Kähler metric on the Coulomb branch. There are several issues with this

approach which necessitate an overall change of strategy. The first is that dualisation

of non-abelian vector multiplets remains an open problem. One can try to sidestep

10Here we gloss over issues arising from possibly enhanced gauge symmetry, see [58]; the classical
Coulomb branch is strictly speaking smaller than what we indicate here.
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this issue by considering a theory whose gauge group G is broken to the maximal

torus (Cartan subgroup) U(1)rankG by the choice of vacuum, but such an approach

is not reliable everywhere on the Coulomb branch. In particular, some choices of

VEVs leave certain W -bosons massless. But even abelian theories with G = U(1)n

are problematic as the complexity of calculations quickly pulls results out of reach.

A more fruitful approach11 considers the emergence of a certain type of local

disorder operator, the ’t Hooft monopole operator [62] in the IR. It has a straight-

forward UV description, which is then allowed to flow into the infrared. We first

take the vector of real scalars ~φi, 1 ≤ i ≤ rankG along with the dual photon γi

(normalised to periodicity 2π) and define

eχi = e
2π
g2
φ3
i+iγi (2.137)

ϕi = φ1
i + iφ2

i . (2.138)

Crucially, both types of operators are chiral and their VEVs can therefore parametrise

supersymmetric vacua. (2.137) is the classical expression for the monopole while

(2.138) is a complex scalar operator which we sideline for now. For now it is impor-

tant that the monopole “eats up” two scalar degrees of freedom.

Roughly speaking, a monopole operator’s semi-classical contribution to the (Eu-

clidean) path integral is e−S = e−χ·βi , with βi belonging to a set of simple roots of

the GNO-dual algebra, selected so that Re(χ) · βi = φ3 · βi ≥ 0 [24, 63, 64]. As

long as φ3 is sufficiently large, the classical expression (2.137) describes the mag-

netic monopole well. But it is clearly not suitable at small φ3 and since g → ∞
as we flow to the IR in three dimensions the domain of validity becomes ever more

restrictive. We must therefore look for an alternative description and indeed find

one in an explicit SCFT construction [65, 66] of the monopole as a singularity in

the fundamental gauge and scalar fields in the Euclidean path integral.

Let us start with the U(1) case. A bare monopole operator Vm(x), labelled by m

(to which we return shortly) inserts a Dirac monopole singularity at x and modifies

the gauge field around the insertion point. In standard spherical coordinates (r, θ, ϕ)

centred around x:12

A± '
m

2
(±1− cos θ)dϕ (2.141)

11We follow the discussions of [26, 48, 60, 61]
12Monopoles should still preserve the Coulomb branch N = 2 subalgebra, which translates to

the BPS condition
(d− iA)φ3 = − ? F (2.139)

where F is the usual field strength associated to A. To satisfy the equation, an analogous singularity
must be inserted in the φ3(x) field near x:

φ3 ' m

2r
. (2.140)
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The gauge connections A± are specified in two patches, which can be thought of as

the northern and southern hemispheres of an S2 surrounding x. The two fields must

be related by a gauge transformation, constraining m by the Dirac quantisation

condition:

exp(2πim) = 1. (2.142)

Abelian monopoles are therefore labelled by integers called magnetic charges – and

that’s almost everything we need to know. This thesis is not at all concerned with,

say, profiles of gauge fields. We are interested in vacuum expectation values of

operators and how they vary across the moduli space. For now, knowing how to

label and relate monopoles in abelian theories is all that matters since they provide

the VEVs.

The non-abelian case is significantly more involved but crucial to our work. A

Dirac monopole is an abelian singularity, so the set of (bare) non-abelian monopoles

should correspond to all the ways of inserting U(1) into the gauge group G up

to choice of gauge; let us label such operators vm. But two insertions related by

choice of gauge should be identified. The honest, gauge-invariant, physical monopole

operator must then be defined as the sum over vm insertions where m are related

by a gauge transformation; we denote this gauge-invariant insertion Vm. We see

then that the gauge-invariant expressions are labelled by m ∈ Hom(U(1),G)/G '
Hom(U(1),T)/WG, the set of cocharacters of G. Another way to see this is to write

down the generalised Dirac quantisation condition [67]

exp(2πim) = 1G. (2.143)

There is an isomorphism between cocharacters and Weyl orbits in the coweight

lattice Λ∨w, or equivalently the weight lattice of the GNO (i.e. Langlands) dual group
LG [68]. Each Weyl orbit comes with one dominant weight lying in the principal

Weyl chamber. Let mD be such a dominant weight. We now have

mD ∈ ΓLG/WLG. (2.144)

As long as our gauge group is fully unitary, i.e. G =
∏

i U(ri), then, since LU(r) =

U(r), we have

mD ∈
∏

i

Zri/Sri . (2.145)

where the quotient by Sri ' WU(ri) can be taken to enforce the order mD
i,1 ≥ mD

i,2 ≥
· · · ≥ mD

i,ri
. So we can now label our monopole operators VmD without fear of leaving

any of them out.
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Now let us range over m ∈ WGmD, the Weyl orbit of mD. We have

VmD =
∑

m∈WGmD
vm. (2.146)

To give a pair of concrete examples, let G = U(2) (for both cases). Then mD =

(mD
1 ,m

D
2 ) where mD

1 ≥ mD
2 and we can insert the gauge invariant monopoles

V(1,0) = v(1,0) + v(0,1), (2.147)

V(1,1) = v(1,1). (2.148)

Yet again the structure of labels is of singular and overwhelming importance –

at least so far. We will refine this point of view shortly. But for now we have learnt

enough about bare monopole operators.

Note that the discussion above becomes considerably more involved for quivers

with gauge factors other than U(r) such as SU(n), SO(n) or USp(n): in such theo-

ries a gauge-invariant monopole insertion may involve sums over abelian monopole

insertions labelled by m /∈ WGmD. This phenomenon, called monopole bubbling [69],

has been studied in [70–75] and also recently in [60, 76] (with a secret appearance

in (2.3) of [77]) using methods closely related to abelianisation (see Section 2.4.2).

Not all monopole operators are bare, however. Monopoles can also be dressed by

complex scalars (2.138) in vector multiplets. Let us start by dressing the “empty”

monopole: the unit operator.

The Harish-Chandra isomorphism states that elements of the centre of the uni-

versal enveloping algebra of G – i.e. gauge-invariant operators – are in one-to-one

correspondence to polynomials in ϕi, 1 ≤ i ≤ rankG, invariant under the Weyl

group WG of G. If G = U(n) then the space of such operators is generated by

tr(ϕk) =
∑n

i=1 ϕ
k
i , the Casimir operators of U(n).

Now pick a monopole VmD . The choice of magnetic charge mD typically breaks

the gauge group to a subgroup. For example, if G = U(3), we can have mD =

(1, 1, 0), breaking the gauge group into G(mD) = U(2) × U(1), or the subgroup

which leaves mD invariant. Its Weyl group is reduced to a S2 subgroup. Now

express the monopole as a sum over abelian insertions

V(1,1,0) =
∑

m∈WG(1,1,0)

vm = v(1,1,0) + · · · (2.149)

We dress a polynomial by multiplying the dominant contribution with a suitable

polynomial P (~ϕ) = P (ϕ1, ϕ2, ϕ3) and the sub-dominant contributions vw·mD by
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P (w · ~ϕ) = P (w(ϕ1), w(ϕ2), w(ϕ3)), which can be denoted

[
P (~ϕ)V(1,1,0)

]
=

∑

m∈WG(1,1,0)

P (w · ~ϕ)vm = P (ϕ1, ϕ2, ϕ3)v(1,1,0) + · · · (2.150)

To ensure that the newly defined operator is still gauge-invariant, it must be in-

variant under the action of the Weyl group. Since a subgroup S2 ⊂ S3 is unbroken

by the bare monopole’s magnetic charge, the sum over w ∈ WG does not permute

the first two indices. Consequently dressing the monopole in a polynomial which is

not invariant under the same S2 would spoil its Weyl- and hence gauge-invariance.

So the rule is that the dressing polynomial’s contribution to the dominant insertion

must be invariant under the gauge subgroup which leaves the dominant magnetic

charge invariant.

Note that the trivial insertion m = (0, . . . , 0) can still be dressed by polyno-

mials which are symmetric under the full Weyl group of the theory. We will call

these scalar gauge invariants the Casimir operators, on account of their one-to-one

correspondence with the gauge group’s Casimir invariants.

This will suffice as an intro to the zoo of Coulomb branch chiral ring elements.

However, just specifying – really barely listing – them is not enough. For example,

a product of two operators may be equal to a third one; this would constitute a

ring relation. And to understand a chiral ring as the coordinate ring of a moduli

space, we need to catalogue these relations as well as list elements which they relate.

Fortunately several recent works have developed tools addressing precisely these

concerns. We turn to them in the section on Coulomb branch methods.

More precise descriptions of monopole operators as operators in the SQFT can

be found across several modern treatments [26, 60, 78, 79] from which we draw

inspiration for methods described in some of the following sections. Another recent

approach models monopole operators using brane insertions in string backgrounds

[61, 80]. A mathematical treatment of Coulomb branches and their coordinate rings

was provided in [81–83] and recently expanded in [84] for the case of non-simply laced

quivers. [85] proved using the mathematical description that Coulomb branches of

simply laced quiver gauge theories without loops are symplectic singularities.

Finally, before moving on, we make the first inroad into understanding a principal

feature of the Coulomb branch: its symmetry. Take a unitary quiver, i.e. one whose

gauge nodes are unitary groups U(ri). Each such node includes a U(1) factor. The

Hodge dual of its field strength J = ?FU(1) is a conserved current on account of the

Bianchi identity dFU(1)=0 and independently of equations of motion:

?d ? J = − ? dFU(1) = 0. (2.151)
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The conserved current J is called topological due to its relation to twists of the

gauge group’s principal bundle. Any conserved current indicates the presence of a

continuous symmetry by Noether’s theorem.

Monopoles can be charged under this symmetry. Their topological charge is

given by:

qi(m
D) =

ri∑

a=1

mD
i,a ∈ Z. (2.152)

Note that qi is invariant under the action of the Weyl group. Each monopole operator

can have any combination of integral topological charges (even 0 at every node) while

scalar operators are always topologically uncharged.

Assuming that the quiver is good13 and its gauge group is G =
∏n

i=1 U(ri),

we expect the Coulomb branch to carry a U(1)n symmetry, or equivalently admit

a faithful U(1)n action. The true symmetry of the space might be much larger

however, and it generally is in the cases we cover in this thesis.

2.3.7 Mirror symmetry

It was noticed in [59] that 3d N = 4 theories come in pairs such that the Higgs

branch of one is the Coulomb branch of the other and vice versa. This mysterious

property, known as 3d mirror symmetry, was given a string-theoretic explanation

in [86]. Many 3d N = 4 theories can be constructed as effective theories for fields

living on branes in Type IIB string theory; see e.g. [19, 80] for later refinements.

The Type IIB S-duality acts e.g. by exchanging D5 and NS5 or D1 and F1 branes.

Higgs and Coulomb branches can be read off brane theories, provided one rearranges

the branes in a suitable way and keeps track of so-called Hanany-Witten transitions.

It can be shown that the effect of S-duality on the low-energy brane theory is to

swap its Higgs and Coulomb branches. Since S-duality maps one brane system to

another, the low energy theory of the first system is mirror-dual to the that of the

second. For example,

H/C




1 1 1

1 1



= C/H




1

4



(2.153)

In the years preceding developments covered in the following section, techniques

for computing Higgs branches were much more advanced than for Coulomb branches.

One would therefore often learn about a theory’s Coulomb branch by taking its

mirror dual and analysing the mirror’s Higgs branch. We will at times use this trick

13Which quivers are good is explained under (2.171).
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for an independent check of results achieved by standalone methods.

Mirror symmetry continues to attract active interest among researchers. [87]

investigated its effect on two-dimensional supersymmetric boundary conditions. [88]

recently studied more general classes of 3d N = 4 operators which included Higgs

and Coulomb branch chiral rings while [89] studied two classes of twist-translated

operators in non-abelian theories which are related to, but more refined than the

Higgs and Coulomb branch chiral rings, effectively tying together the work in [26, 33,

34, 60, 90]. A recent series of papers [77, 80, 91] revisited the string-theoretic setting

of mirror symmetry. A large number of mirror pairs can be found in [20, 32, 52].

2.4 Coulomb branch methods

With essential background out of the way, we can focus on computational methods

used to study Coulomb branches. A variety of approaches is available, some of which

have already been mentioned. Early attempts focused on computing its metric [59],

but such calculations soon became intractable. Later works [65, 66] explicitly con-

structed monopole operators in the QFT, but this too quickly becomes prohibitive

as theories increase in complexity beyond SU(2) SQCD with Nf flavors. [19] (cor-

rectly) conjectured an extension of these results and computed quantum numbers

of monopole operators for a large class of theories, stating several strong results

about Coulomb branches. The conjecture was later verified in [92, 93]. A major

breakthrough was reported in [11, 48] where the quantum numbers were combined

with the plethystic programme of [94, 95] to create the monopole formula which

could calculate the Hilbert series of the Coulomb branch chiral ring. In [78, 79] the

authors succeed at expressing monopole generators using a novel approach called

abelianisation, which was further developed by [26, 60, 61, 77, 80, 96, 97].

This thesis documents a novel method synthesising the monopole formula and

abelianisation approaches. Some familiarity with these techniques is therefore a

prerequisite. The next two sections should provide a relatively self-contained account

to bring the reader up to speed.

It is helpful to keep in focus why we care about the chiral ring in the first place: it

corresponds to the coordinate ring of an algebraic variety, and the variety is exactly

the moduli space. But this correspondence is a ring isomorphism and it is not always

straightforward to look at two rings and judge whether or not they are isomorphic.

You can either express both in some kind of canonical basis, or try to bypass the

need for a common basis altogether. Operator counting takes the latter route while

the central method of this thesis, developed over subsequent chapters, takes a stab

at the former.
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Gauge and matter representations

It will prove useful to adopt a particular convention for weights of matter and gauge

field representations under the gauge group. As is often the case with conventions,

this one was selected for its compatibility with pre-existing tools: the monopole

formula (see Sec. 2.4.1) and techniques developed in [60]. There is no particular

physical insight in this choice and we include it merely to improve reproducibility

of our calculations.

The matter fields transform in a (usually reducible) representationR while gauge

vectors transform under the representation V .

Recall that (in unitary theories) the matter representation consists of two hy-

permultiplets in mutually conjugate representations. Consider the unitary quiver

below, along with its full matter and gauge representations:

1 2 3 (2.154)

R = {(±1;∓1, 0; 0, 0, 0), (±1; 0,∓1; 0, 0, 0), (0;±1, 0;∓1, 0, 0), (0;±1, 0; 0,∓1, 0),

(0;±1, 0; 0, 0,∓1), (0; 0,±1;∓1, 0, 0), (0; 0,±1; 0,∓1, 0), (0; 0,±1; 0, 0,∓1)}
(2.155)

V = {(0; 0, 0; 0, 0, 0), (0;±1,∓1; 0, 0, 0), (0; 0, 0; 0, 0, 0), (0; 0, 0; 0, 0, 0)} (2.156)

Each vector contains charges under U(1), U(2) and SU(3), in this order. Entries

of R clearly describe bifundamental fields charged under adjacent nodes. Gauge

representation weights do not “cross” nodes and, in the case of unitary quivers, either

carry no charge (and belong to the U(1) factor or Cartan subalgebra of SU(n)) or

carry one unit each of charge 1 and −1 in two components of the same gauge node;

there is one weight for each choice of components. In this particular case, the first

vector corresponds to the U(1) photon and the remaining terms are the U(2) gauge

bosons.

Both methods driving this thesis, the monopole formula and abelianisation, re-

quire that we only use half the weights in R for the formulas and disregard the

rest or, equivalently, that we iterate over pairs of weights related by a sign flip (i.e.

charge conjugation). The choice of representative will never affect the monopole

formula, but may result in an overall sign flip in abelianised calculations. However,

the sign can always be reabsorbed into the definition of an abelianised variable.
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We have found the following convention clean and useful as it produces uniform

signs. First, let us label weight components using two indices i and a, where i ranges

over gauge nodes and a over the dimensions of its Cartan torus. Then split R into

two disjoint and equally large sets:

R = R+
i,a tR−i,a, ∀w ∈ R : (wi,a > 0⇒ w ∈ R+

i,a) ∧ (w ∈ R+
i,a ⇔ −w ∈ R−i,a).

(2.157)

The convention is agnostic about whether a weight with wi,a = 0 belongs to R+
i,a or

R−i,a, but no calculation hinges on that fact, so it may be left indeterminate. The

monopole formula is even less picky about signs and we define R = R+ tR− to be

any partition such that w ∈ R+ ⇔ −w ∈ R−.

2.4.1 Operator counting

The operator counting, or Hilbert series approach to Coulomb branch chiral rings

was pioneered in [11]. The two main insights behind this method are that we can

often easily identify a set of “basic” symmetries of the Coulomb branch and that

we in principle know exactly how many operators carry any particular combination

of charges under them. This information is preserved by ring isomorphisms, so it

has to be the same for any description of the physical chiral ring (which we can

specify) and the coordinate ring of a putative geometric description of the Coulomb

branch (which we would like to find) and constitutes a highly non-trivial test which is

sometimes sufficient to fully specify the chiral ring presentation in (2.109). Operator

counting is a state-of-the-art method for analysing Coulomb branches. It has given

rise to vast swathes of novel results, helped identify novel mirror pairs and previously

unknown relations between theories [11, 14–16, 20, 22, 32, 52, 98–105] and served as

the inspiration behind mathematical work which finally gave the Coulomb branch a

rigorous definition [81–83]. See [106] for a longer review of this approach.

To help formalise the following discussion, let us first discuss the concept of a

graded ring and its Hilbert series. Consider a ring R which can be decomposed into

a (potentially infinite) direct sum of vector spaces Rs for non-negative s

R =
⊕

s∈Z≥0

Rs (2.158)

such that the grading plays well with multiplication:

x ∈ Rr ∧ y ∈ Rs ⇒ xy ∈ Rr+s. (2.159)

We say that R is a graded ring. If R is a polynomial ring then the elements of Rs

are called homogeneous polynomials.
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Its Hilbert series is defined as

HSR(t) =
∑

s∈Z≥0

(dimRs)t
s (2.160)

where the dummy variable t is called the fugacity. The series can often be explicitly

summed up into a rational function.

As an example consider the coordinate ring R = C[x, y]/〈x2 − y〉 of a parabola.

If we assign grade 1 to x and grade 2 to y, we can list all independent monomials

forming bases of vector subspaces Ri:

R0 : 1

R1 : x

R2 : x2 = y

R3 : x3 = xy

R4 : x4 = x2y = y2

...
...

(2.161)

and so on; it is clear that each Rs is one-dimensional. The Hilbert series is therefore

HSR(t) = 1 + t+ t2 + t3 + t4 + · · · = 1

1− t . (2.162)

One can also consider multigraded rings which split into vector spaces labelled

by Z≥0 × Zn:

R =
⊕

(s,i1,...,in)∈Z≥0×Zn
R(s,i1,...,in) (2.163)

such that

x ∈ R(r,i1,...,in) ∧ y ∈ R(s,j1,...,jn) ⇒ xy ∈ R(r+s,i1+j1,...,in+jn). (2.164)

The Hilbert series can now be refined by introducing fugacities for each component

of the grading:

HSR(t) =
∑

(s,i1,...,in)∈Z≥0×Zn
(dimR(s,i1,...,in))t

s

n∏

k=1

zik . (2.165)

For a more sophisticated example than above, and one which uses multigrading,

consider the affine variety in C3 defined by xy = z2. Its coordinate ring is R =
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C[x, y, z]/〈xy − w2〉 with grading

x : (2, 1)

y : (2,−1)

w : (2, 0)

Note that the relation xy − w2 is homogeneous in both components of the grading.

We can once again provide a partial list of independent monomials:

R0 : 1

R2 : x, y, w

R4 : x2, y2, xy = w2

R6 : x3, x2y = xw2, xy2 = yw2, y3, w3

...
...

(2.166)

with trivial Rk for k odd. The associated Hilbert series calculation is slightly trickier,

but also more insightful. We know that the final result looks like the Hilbert series

of the freely generated ring Rfree = C[x, y, w], except we should not double count

the ideals 〈xy〉 and 〈w2〉, i.e. we should subtract the contribution from the ideal

(w2)R:

HSR(t, z) = HSRfree
(t, z)− t4HSRfree

(t, z) =
1− t4

(1− t2z)(1− t2z−1)(1− t2)
. (2.167)

This is, in fact, the Hilbert series of one of the simplest hyper-Kähler varieties,

C2/Z2, which happens to be isomorphic to the affine variety defined by xy = w2. It

expands as

HSR(t, z) = 1 + (z + 1 + z−1)t2 + (z2 + z + 1 + z−1 + z−2)t4 + · · · =

=
∞∑

s=0

(
s∑

j=−s
zj

)
t2s =

∞∑

s=0

χ[2s](z)t2s
(2.168)

where χ[2s](z) =
∑s

j=−s z
j is the character of the sl(2,C) irreducible representation

(irrep) [2s]. That might not be immediately obvious since the weight content of

an irrep is often stated in the basis of fundamental weights, e.g. [2] is the sl(2,C)

adjoint irrep. But the exponents of z in χ[2s] correspond to components of weights

in the simple root basis. This is an unfortunate but necessary awkwardness: highest

weights of irreps are most naturally expressed in the fundamental weight basis14

while unitary quivers provide us with grading in the simple root basis, and we will

14All components of the highest weight, expressed in the basis of fundamental weights, must be
non-negative integers, and conversely any vector of this form is a valid highest weight uniquely
specifying an irrep.
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use this convention throughout the thesis.

Coming back to the actual content of the series, we see that the coordinate

ring breaks into representations of sl(2,C); this is a strong indicator of the space’s

symmetry under the action of this algebra (and the corresponding Lie group). And

indeed we can make it explicit by arranging the three generators into an sl(2,C)

adjoint matrix:

M =

(
iw x

y −iw

)
. (2.169)

We have that tr(M) = 0 and det(M) = w2 − xy = 0. There is a natural action

A ∈ SU(2) : M → AMA−1 mapping M to another adjoint (traceless) matrix while

leaving the determinant relation invariant, i.e. det(AMA−1) = det(M) = 0. So we

can think of the variety as the set of sl(2,C) matrices with vanishing determinant,

which also happens to be the (closure of the) minimal nilpotent orbit of sl(2,C).

And although we just explicitly demonstrated that the space is symmetric under

SU(2), resp. sl(2,C), we could have guessed that it might be – based only on the

decomposition of the Hilbert series into sl(2,C) characters.

The example demonstrates a very important point. Assuming we can endow our

chiral ring with a grading and compute its Hilbert series, we have gained a powerful

tool, as the Hilbert series is invariant under ring isomorphisms, at least if they play

well with the grading – but hold that thought for now. Assuming we chose our

grading well, and we found the chiral ring’s Hilbert series, we need only take the

result and compare it against a catalogue of Hilbert series of hyper-Kähler spaces

to find candidates for the moduli space. But while two isomorphic hyper-Kähler

spaces certainly share the exact same Hilbert series – again modulo worries about

the grading – two different hyper-Kähler spaces can share a Hilbert series.

It is easy to come up with an almost trivial example. Take the C2/Z2 variety

we just saw but slightly modify the defining relation to xy = w(w+ c), where c is a

dimensionful parameter (and not a new ring element). Whereas the original space

has a singularity at the origin (where the Z2 action degenerates), this deformed space

removes it. However, it is easy to see that the deformation makes no difference to

the Hilbert series.

This case provides us with a very important lesson: Hilbert series do not uniquely

identify spaces. But they certainly rule some out. And if we can remove dimensionful

parameters from the chiral ring description, we can rule out yet more.

There is only one candidate for a dimensionful parameter in a 3d N = 4 theory15:

the hypermultiplet masses. Hypermultiplets transforming under the fundamental

representation of a gauge group factor (rather than a bifundamental representa-

15Recall that we explicitly turned off all Chern-Simons and Fayet-Iloupoulos terms and the gauge
coupling is infinite in the IR.
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tion under two gauge factors) also carry a flavor symmetry, which shows up as a

square node in the theory’s quiver. Just as circular nodes imply the presence of

associated vector multiplets, the square node encodes background vector multiplets,

whose scalar VEVs are the background magnetic flux and complex mass of a hy-

permultiplet. We will put background fluxes to the side; see [98] for a practical

use of fluxes in Coulomb branch computations and [103] for an investigation of this

parameter’s effects on the moduli space. The complex mass, on the other hand, will

play a role, and at times be explicitly set to 0 but otherwise left arbitrary. Methods

which rely solely on operator counting typically turn complex masses off; it is one

of the main advantages of the method presented in this thesis that it can handle

non-zero masses.

With all this preamble out of the way, we will now proceed to enumerate linearly

independent operators in the Coulomb branch chiral ring and reparametrise the

Coulomb branch Hilbert series using physical charges.

Recall from Section 2.3.6 that monopole operators can come in bare or dressed

forms, where the latter is obtained by multiplying the dominant monopole insertion

(i.e. the one associated to the dominant weight of the cocharacter labelling the bare

monopole) with a polynomial and Weyl-symmetrising the resulting gauge-dependent

operator. This dressing polynomial must in turn be invariant under whichever part

of the gauge group remains unbroken by the monopole. We will count operators by

considering all operators with the same monopole charge together, with a unique

bare monopole and a tower of polynomially dressed descendants.

Enumerating bare monopoles is easy and we already did the bulk of the work in

Section 2.3.6. They are labelled by cocharacters of the gauge group G, or equivalently

by elements from the lattice ΓLG/WLG. We have mentioned that U(r) gauge factors

come with a U(1) topological symmetry of the Coulomb branch. The charge under

this (diagonal) U(1) is the sum of magnetic weights qi =
∑r

i=1m
D
i ∈ Z. If G =∏n

i=1 U(ri), we can assign n integers to a given monopole, corresponding to charges

under the n distinct topological U(1) symmetries.

There is one final charge to consider. Recall that the R-symmetry of 3d N = 4

theories is SO(4) ' SU(2)C × SU(2)H. The factor SU(2)C acts on Coulomb branch

operators while SU(2)H acts on operators in the Higgs branch. SU(2)C rotates the

three Coulomb branch complex structures and corresponding N = 2 subalgebras.

Chiral operators are highest weight elements of SU(2)C representations.

Irreducible representations of SU(2) are characterised by a single weight or, in

physics parlance, spin; we normalise this quantity so that the lowest non-trivial

spin is 1/2, as is common in physics literature. A tensor product of two SU(2)
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representations decomposes into irreps as

[n]⊗ [m] = [n+m]⊕ · · · (2.170)

where the omitted irreps have strictly lower spin. It follows that the product of

highest weight elements of two SU(2) irreps is again the highest weight element

for an SU(2) irrep – and its spin obeys the pattern of (2.159). Moreover SU(2)

irreps are labelled by non-negative half-integers, so (after rescaling by a factor of

2) we see that spin under SU(2)C could provide the (first component of a multi-)

grading for the Coulomb branch chiral ring, which must be a non-negative integer.

Understanding spin under SU(2)C is now top priority.

(As a remark, since all Coulomb branch operators transform trivially under the

Higgs half of the overall R-symmetry, there will be no risk of confusion in referring

to SU(2)C and R-symmetry interchangeably in the sequel.)

We now define an important property of unitary 3d N = 4 quiver theories with

profound influence on the Coulomb branch. First, let ∆ denote the IR R-symmetry

spin of a Coulomb branch operator. We follow [19] and call a theory good if ∆ > 1
2

for all such operators, ugly if ∆ ≥ 1
2

and some operators saturate the unitarity bound

∆ = 1
2

or bad if the Coulomb branch includes operators with ∆ < 1
2
.

[19] provide a formula for the spin of monopole operators by relating it to their

conformal dimension in the free UV theory. The bad news is that the correspondence

is generically only guaranteed to work in the UV: whereas the conformal dimension

in the UV SCFT is necessarily equal to the R-symmetry spin in the same UV theory,

the UV and IR R-symmetries need not be the same. However, there is also good

news: they show that in the particular case of good and ugly theories, the two

R-symmetries are identified, R-symmetry spin becomes a protected quantity under

the RG flow and the conformal dimension is preserved as well. And since we only

concern ourselves with good theories, we are good to go. We will also henceforth

refer to R-symmetry spin and conformal dimension interchangeably.

But how can we tell if a theory is good, bad or ugly? This question is readily

answered in the special case of unitary quiver theories. Define the excess ei of a

node U(ri) as [19]

ei = # flavorsi − 2ri, (2.171)

where the first term effectively sums the ranks of nodes attached to U(ri). If a

node has zero excess, we say that it is balanced. A unitary quiver theory is good

if ei ≥ 0 for all nodes indexed by i. A unitary quiver with ei ≥ −1 for all i (and

the inequality saturated by at least one node) may be ugly or bad, but it is always

ugly if the inequality is only saturated by a single node. An ugly theory’s chiral ring

will include an even number of operators of spin 1/2, say 2n of them; the Coulomb
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branch will then factorise as C = Cred×Hn. Unitary quivers with ei < −1 are always

bad and their RG flows are less well behaved. In particular operator counting, as

presently understood, fails miserably. We focus exclusively on good quivers; bad

theories have been studied in e.g. [96, 107, 108].

We will temporarily adopt a more flexible indexing and allow the result to take

a more general form. Instead of assigning an integer to gauge groups, we will label

them by the vertex to which they correspond. The notation will later revert to

the practice of labelling gauge factors by integers, typically the usual labels for

corresponding Dynkin diagrams.

Consider first a unitary simply laced quiver. The underlying graph is formed

by a set of vertices V and a set of (unoriented) edges E ⊂ S2(V ). To each vertex

v ∈ V is associated a gauge group U(rv), and to each edge e ∈ E is associated

a hypermultiplet in the bifundamental representation of U(rv) × U(rv′) where e =

(v, v′). Finally, we have a set of flavor vertices F 6= ∅ with global symmetries

SU(nf ) for f ∈ F , and a set of edges E ′ ⊂ V × F . An edge e′ = (v, f) encodes nf

hypermultiplets in the fundamental representation of U(rv). The total gauge group

is

G =
∏

v∈V
U(rv) (2.172)

and it has rank

r =
∑

v∈V
rv . (2.173)

The Weyl group is

W =
∏

v∈V
Srv . (2.174)

A magnetic charge is an element m ∈ Zr. The conformal dimension ∆(m) of a

bare monopole (with magnetic charge m) is defined by

2∆(m) =
∑

(v,v′)∈E

rv∑

i=1

rv′∑

i′=1

|mv,i−mv′,i′ |+
∑

(v,f)∈E′

rv∑

i=1

nf |mv,i|−
∑

v∈V

rv∑

i=1

rv∑

j=1

|mv,i−mv,j| .

(2.175)

Incidentally, the above equation can be significantly streamlined and generalised to

non-unitary simply laced quivers as

2∆(m) =
∑

w∈R+

|w ·m| −
∑

α∈V
|α ·m|. (2.176)

where we follow the conventions set out in Sec. 2.4. However, the form in (2.175) is

more practical for calculations in this thesis.

We can now assemble the Hilbert series counting all gauge-invariant (and lin-
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early independent) Coulomb branch chiral ring elements. The conformal dimension

formula implies that, for every (linearly independent) bare monopole insertion of

charge m, the Hilbert series will contain a contribution of t2∆(m). Note that the

coefficient of t counts double the spin, which is always necessarily integral – and,

for good and ugly theories, necessarily non-negative, with identity as the unique t0

operator.

A bare monopole can be dressed by scalar operators as in (2.150). Each elemen-

tary operator ϕ has conformal dimension (and hence spin) 1. We need to count how

many there are for each choice of m. Fortunately this translates to a straightfor-

ward combinatoric question. Take a single gauge factor U(rv) for now. m contains a

component, or possibly a number of components, corresponding to magnetic charge

under this factor – call it mv. Then U(rv) is broken by mv into a subgroup
∏

i U(rv,i),∑
i rv,i = rv, with the Weyl group

∏
i Srv,i . The admissible polynomial dressings are

all the polynomials which are symmetric under this product Weyl group. If we can

get a generating function for them of the form gm,v,i(t) = 1 +a
(1)
m,v,it

2 +a
(2)
m,v,it

4 + · · · ,
then we can assemble a Hilbert series contribution

t2∆(m)
∏

i

gm,v,i(t) (2.177)

counting every monopole insertion of charge m, bare or not. Note that the term for

the trivial insertion, m = (0, . . . , 0), would count all gauge-invariant polynomials in

ϕ, i.e. the Casimir operators.

The solution is well known, but before we state it, let us put this discussion in

more formal terms, which will incidentally become quite useful as we later discuss

wreathed quivers. For Γ a subgroup of Sr and m a magnetic charge, define the

stabiliser as

Γ(m) = {g ∈ Γ|g ·m = m} . (2.178)

We certainly have that W ⊂ Sr. In the previous paragraph’s notation, W(m) =∏
v,i Srv,i .

The generating function is then given by the Molien series [109]:

1

|W|
∑

γ∈W(m)

1

det (1− t2γ)
. (2.179)

where γ can be represented e.g. as a permutation matrix acting on Rr. In the case

of W(m) =
∏

v,i Srv,i we get

1

|W|
∑

γ∈W(m)

1

det (1− t2γ)
=
∏

v,i

rv,i∏

d=1

1

(1− t2d) . (2.180)
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Finally the (unrefined) Hilbert series for the Coulomb branch of the quiver is

given by the monopole formula [11], which can be written as

HS(t) = HSW(t) =
1

|W|
∑

m∈Zr

∑

γ∈W(m)

t2∆(m)

det (1− t2γ)
. (2.181)

This formula can be further refined by labelling each monopole insertion with

its charge under the topological symmetry qv as defined in (2.152). We only need

introduce |V | extra fugacities zv:

HSref(t, zv) = HSref,W(t, zv) =
1

|W|
∑

m∈Zr

∑

γ∈W(m)

(∏
v z

qv(m)
v

)
t2∆(m)

det (1− t2γ)
. (2.182)

Defining the formula is only half the battle: it must be also be computable in

reasonable time to be of much use. We refer to [110] for an interesting algebraic

look at the difficulties surrounding computations of the monopole formula; here we

merely gloss over them.

Assume that we have the form (2.182) expanded as an infinite series:

HSref(t, zv) =
∞∑

s=0

ps(zv)t
s (2.183)

Now comes the crucial part: the polynomial ps(zv) multiplying ts is – trivially –

a character of the topological symmetry
∏

i U(1). But it may also be a character

for a larger group. One might think that could happen by chance for a particular

order in t, but it would be much less likely that all coefficients of ts, for all s, are

characters of the same larger group – and there are general results constraining the

coefficients even further.

If there is in fact a larger symmetry group acting on the Coulomb branch (in

which case we’d say that its symmetry is enhanced), then there would have to exist

an associated set of conserved currents. And if these currents could be shown to

leave a trace in the chiral ring, the Hilbert series might store a strong hint about

the symmetry.

As shown in [111], a unitary 3d SCFT’s conserved primary currents exhibit R-

symmetry spin 1. [24] places conserved currents inside N = 2 linear multiplets.

(Note that the dual photon is the lowest component of a linear multiplet and that

linear multiplets can be dualised to chiral multiplets.) Weaving the two together,

[19] note that in 3d N = 4 SCFTs conserved currents appear in multiplets whose

lowest component is a scalar in a N = 2 chiral superfield with R-symmetry spin

1. Note that this is fully consistent with the idea that the topological symmetry
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(with its conserved current ?F ) is a direct result of the existence of U(1) superfields

which contain complex scalars of R-symmetry spin 1. Consequently the order t2

contribution to the Hilbert series is counting at least the generators of the global

symmetry.

Finally, currents associated to a global symmetry form its adjoint representation.

Absent more information or physical arguments the Hilbert series is only counting

the dimension of the algebra, which is of course not enough to determine its struc-

ture constants, but the presence of a term readily interpreted as an adjoint irrep’s

character is a strong hint that the global symmetry of the Coulomb branch is larger

than U(1)
∑
v rv16.

For example the Coulomb branch of the quiver

1 2 (2.184)

has topological symmetry U(1) coming from its single gauge node, but the coefficient

of t at every order in its Hilbert series

HS(t, z) =
∞∑

s=0

χ
sl(2,C)
[2s] (z)t2s (2.185)

is an sl(2,C) character, including the adjoint representation χ
sl(2,C)
[2] at order t2. The

Coulomb branch symmetry algebra is then likely enhanced to overall sl(2,C). New

directions on the Coulomb branch correspond to VEVs of monopole operators; we

will shortly see this example worked out in explicit detail.

Note that the Hilbert series is preserved under complex mass deformation. If we

read off the isometry of the SCFT Coulomb branch from the Hilbert series, and the

series remains untouched upon turning on complex mass parameters, it is natural

to conjecture that the isometry will also remain intact. We will be able to confirm

it for worked examples.

So Hilbert series suggests the isometry; it also gives us quite a bit more than

that. The coefficient at the lowest non-trivial order in t2 must correspond to (at least

some of) the generators. The Casimir operators must be linear if they are present

at that order at all and the monopole operators must be bare. In fact most of the

rather special quivers in this thesis have Coulomb branch chiral rings generated by

operators at order t2, i.e. by linear Casimirs and (specific) bare monopole operators.

16That said, it is relatively straightforward to find physical arguments which do bridge the divide
and associate exponents of zv with structure constants, at least in the case of unitary quivers [19]
– it gets more complicated when the rank of the UV topological symmetry is less than the rank of
the enhanced symmetry.
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They assemble into the coadjoint representation17 of the isometry – and the isome-

try is precisely the simple Lie algebra represented by the quiver reinterpreted as a

Dynkin diagram. Note that generic good quivers may have chiral rings generated

by operators beyond lowest order in t.

We should mention an important subtlety regarding the monopole formula’s

implicit grading, which we alluded to earlier. Recall that we are interested in finding

an isomorphism between the Coulomb branch and a hyper-Kähler algebraic variety,

and that it induces an isomorphism between the chiral ring and the coordinate ring.

It should in particular map the R-symmetry (on the chiral ring side) to the SU(2)

which rotates the three complex structures (on the hyper-Kähler space). This is

always assured: since SU(2) has rank 1, the map is unique (i.e. without mixing),

possibly up to a trivial scalar factor. But we would like the isomorphism to also

reveal the Coulomb branch symmetry by mapping it to the symmetry on the variety,

in a way that makes the symmetry obvious. This part is trickier. As we saw in the

example earlier in this section, we can guess that a space is symmetric under g

if its Hilbert series decomposes as
∑

s χ
g(zv)t

s into a sum over characters of (not

necessarily irreducible) representations of g, further multiplied by ts. But it is not

always straightforward to identify a polynomial as a character. It would be easy if the

character were put into a canonical form – perhaps the exponents of zv correspond

to components of g weights in the simple root basis. The cases in this thesis happen

to have this extremely useful property, and specifically for the simple root basis, but

it is not guaranteed in the general case.

Operator counting can do one more thing for us: it can pin down the relations

between generators. This is largely thanks to its sensitivity to the symmetry: if

generators form tensors of the symmetry group then so must relations, since other-

wise they would break the symmetry. Close analysis of a Hilbert series expansion

will typically reveal that there are fewer operators at higher orders in t than would

be expected from free (symmetric) products of generating tensors; they must be

“removed” by a set of relations which transform in irreducible representations of the

symmetry18. To be clear, this type of analysis can only ever say “representation R

17The Hilbert series does not distinguish between adjoint and coadjoint representations. Earlier
works, which relied heavily on the monopole formula, often claimed that the order t2 operators
form an adjoint representation. We will see on many concrete examples that the natural object
that comes out, the moment map, is in the coadjoint representation.

To see why, take for granted that most of the Coulomb branches studied herein are (closures of)
nilpotent orbits, ie. orbits of a nilpotent element under the action of the adjoint representation,
and let p ∈ C be a point on the Coulomb branch. Then the previous sentence merely says that
there is an adjoint action Ad on p. Now let x(·) : C → C be an element of the coordinate ring
C[C]. The expression x(p) should be invariant under the action of the symmetry group, as we
simultaneously shift the point p and the coordinate function x(·). But that is just to say that,
if p → Adgp, x transforms under the correct representation R as x(·) → Rgx(·) = x(Adg−1 ·):
precisely the defining equation of the coadjoint representation Ad∗.

18This claim can be recast in more technical terms of plethystic logarithms and syzygies [94, 95].
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is missing at order ts” – but if there is only one candidate tensor transforming in

R, we know it to be our relation. Assume we found the recurring example (2.168)

by computing the monopole formula of a quiver. We could tell that the Coulomb

branch is generated by one adjoint matrix at order t2. Then, because the second

symmetric product of the adjoint representation contains the trivial representation,

which is not represented at order t4 of the Hilbert series, we see there must be a

relation transforming in that same (i.e. trivial) representation. Assuming all com-

plex mass parameters are set to 0, this relation must be tr(M2) = 0 or, equivalently,

det(M) = 0. If mass parameters Mi are allowed, the relation can be modified to

tr(M2) = q(Mi), where q is a quadratic polynomial (since masses always have confor-

mal dimension 1 and hence count at order t2). Still, this is a win: operator counting

reduces the complexity of the original task to finding coefficients of q, which can be

attempted by another method.

The monopole formula has seen some improvements over the years. [11] mod-

ified it with the addition of non-simply laced quivers to the world of quiver gauge

theories. While they were not explicitly constructed (say, as Lagrangian theories), it

was relatively straightforward to modify the monopole formula such that, when com-

puted for non-simply laced quivers, the results made sense and followed the pattern

of their simply-laced cousins. In particular, it is well known that balanced quiv-

ers’ Coulomb branch symmetry enhances according to the Dynkin diagram which

the quiver resembles. For example, balanced linear quivers exhibit An symmetry.

Non-simply laced balanced quivers were found to have Bn, Cn, F4 or G2 symmetry.

The only difference introduced by non-simply laced quivers to the monopole

formula is a modification of (2.175) to

2∆(m) =
∑

(v,v′)∈E

nv∑

i=1

nv′∑

i′=1

|κv,v′mv,i − κv′,vmv′,i′ |+
∑

(v,f)∈E′

nv∑

i=1

nf |mv,i|

−
∑

v∈V

nv∑

i=1

nv∑

j=1

|mv,i −mv,j|
(2.186)

where κ is defined as follows:

• κvv = 2

• κvv′ = κv′v = −n if v and v′ are connected by n undirected edges

• κvv′ = −n, κv′v = −1 if v and v′ are connected by an n-valent directed edge

from v to v′

The similarity to Cartan matrices is, of course, not coincidental and reappears in

the abelianised formalism.

We also touch upon it towards the end of this section.
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Figure 2.4: Examples of balanced quivers of type A, B, C, resp. D

Note on Coulomb branch symmetries

It was already apparent in [59] that Coulomb branches exhibit interesting patterns

of symmetry enhancement. This insight was sharpened in [19] who noticed that

enhancement comes from balanced nodes, i.e. those with zero excess (2.171). The

extent of visible enhancement can be summarised by the following statement:

Let Q be a quiver with Qb and Qu the subquivers consisting of balanced,

resp. unbalanced gauge nodes and assume that Q has at least one flavor

node. To read off the Coulomb branch symmetry of Q, reinterpret the shape

of Qb as a set of Dynkin diagrams; their corresponding simple algebras give

the non-abelian part of the symmetry. The abelian part is U(1)|Qu|.

All quivers considered in this thesis are fully balanced like those in Fig. 2.4,

although our methods should generalise well to more generic cases. Since fully

balanced quivers necessarily have the same shape as a Dynkin diagram of some

simple algebra g, we say that the quiver is of type g, eg type An. We can also choose

to omit the index and talk about quivers of type B, for example, if the claims made

apply to the whole family of type Bn quivers.

Highest weight generating functions

As noted above, Hilbert series expand into the form (2.183), in which the ts are mul-

tiplied by a character of the Coulomb branch symmetry algebra g. A character can

be a very large polynomial, numbering as many monomial terms as the dimension

of its associated representation. But it carries no more information than the highest

weights of its components’ irreducible representations.

For example, take the variety C2/Z2 and its Hilbert series (2.168)

HS(t, z) =
∞∑

s=0

χ[2s](z)t2s = 1 + χ[2]t
2 + χ[4]t

4 + · · · (2.187)

The highest weight generating function [112] expresses just as much information
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(assuming an implicit choice of algebra g):

HWG(t, µ) =
∞∑

s=0

µ2st2s = 1 + µ2t2 + µ4t4 + · · · (2.188)

A HWG is a generating function for the highest weights of irreducible representations

at a particular order counted by t. In the above example, µ2t2 tells us that there are

operators at order t2 and that they assemble into the irrep labelled by the exponent

of the fugacity µ, i.e. [2]. For rank g > 1 we introduce rank g fugacities µi whose

individual exponents correspond to the i-th component of the highest weight, e.g.

µ1µ3 denotes the adjoint irrep [101] of sl(4,C).

HWGs are not just a tidy way of expressing characters. For example, χ[2] ·χ[2] =

χ[4]+χ[0] but µ2 ·µ2 = µ4, so the algebra of characters and fugacities is a bit different.

This can lead to neater expressions. For example, the HWG of C2/Z2 is just

HWG(t, µ) =
∞∑

s=0

µ2st2s =
1

1− µ2t2
, (2.189)

a simpler expression than (2.168). The relative reduction in complexity between

Hilbert series and HWGs is a generic feature for nilpotent orbits, whose structure

is heavily geometrically and algebraically constrained. We will use both types of

generating functions throughout this thesis.

Ungauging of U(1)

The equation (2.175) is invariant under a simultaneous shift of all magnetic charges

by the same integer, i.e. m → m + c for some fixed c, assuming the quiver is

free of flavor nodes. In such theories any non-trivial monopole generates an infinite

family of c-shifted monopoles with the same conformal dimension and the Hilbert

series is undefined. Fortunately, we can select a particular (but arbitrary) magnetic

charge mI and use the shift by c to set this charge to 0, reflecting the fact that an

overall U(1) decouples from the rest of the theory. The Hilbert series of the resulting

Coulomb branch C(mI = 0) may be well-defined. The operation corresponds to the

factorisation

C = C(mI = 0)× (R3 × S1) (2.190)

Where the latter factor is the Coulomb branch of a free U(1) theory. In string-

theoretic descriptions the operation typically removes the degree of freedom corre-

sponding to the branes’ “centre of mass”.

If mI is the sole magnetic charge of a U(1) node then the node is effectively

converted to a flavor node. This action is often called ”ungauging the U(1)” in the
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literature. If the quiver is simply laced then all possible choices lead to equivalent

Coulomb branches. If no U(1) node is present then one of the other magnetic charges

must be set to 0; this case is much less studied and we will not make any general

claims.

Note that the situation is much more complicated in the case of non-simply laced

quivers, see [105], where one choice of ungauged U(1) node produces a cover, resp.

orbifold of the Coulomb branch associated to a different choice.

Reading relations off the Hilbert series

We briefly describe the method by which we extract chiral ring relations from the

Coulomb branch Hilbert series. Assume that the Hilbert series is refined with fugac-

ities zi counting charge under a Cartan subalgebra of the Coulomb branch symmetry

algebra g. The Hilbert series expands as

HS(t, zi) =
∑

s∈Z≥0

ps(zi)t
s (2.191)

where ps(zi) are characters of g.

We first state the general strategy for a nilpotent orbit, whose coordinate ring

is generated by a single (co)adjoint representation with spin 1. The quaternionic

dimension of each Coulomb branch is easily calculated by summing up gauge ranks,

which is unaffected by discrete gauging. Knowing the dimension and global symme-

try, we can look up the space in [32]19.

We could then expand the highest weight generating function, comparing (poly-

nomial) coefficients of t2n to the character representation of the n-th symmetric

product Symnadj(g) and find missing representations suggesting the existence of re-

lations. Or we can perform the same computation in a more elegant fashion using

the plethystic logarithm:

PL(HS(t, zi)) =
∞∑

k=1

µ(k)

k
log
(
HS
(
tk, zki

))
=
∞∑

s=1

gs(zi)t
s −

∞∑

s=1

rs(zi)t
s (2.192)

where µ(k) is the Möbius function and the polynomials gs(zi) and rs(zi) are charac-

ters of g corresponding respectively to the generators and relations of the Coulomb

branch. If the space is a complete intersection, the list of gs and rs is finite. The

minimal set of relations is typically present in the first few orders of t. For ex-

ample, the (closure of the) minimal nilpotent orbit of any simple algebra g (whose

coordinate ring is generated by one coadjoint generator [50]) is described by a set

19The paper differs from this thesis in the simple root convention for G2: for this thesis the
(co)adjoint representation goes by [01] whereas in [32] the two labels are swapped.
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of Joseph relations [113, 114] of its coordinate ring. They are always necessarily

quadratic in the coadjoint generator and remove every tensor in Sym2(adj g) other

than the highest weight component20. In more general cases we go to slightly higher

order, t6 or t8. Then, where feasible, one can verify that that the full set of rela-

tions are identified: it suffices to calculate the Hilbert series of a ring defined by

dim g generators subject to the relations in question and compare it to tabulated

expressions.

This procedure is only slightly modified in the few isolated cases in this thesis

where the Coulomb branch is not a nilpotent orbit. The chiral ring is then gener-

ated by more generators, which are in these particular cases also coadjoint. Their

contribution will be visible in the PL.

2.4.2 Abelianisation

There are drawbacks to operator counting. The monopole formula is an inherently

indirect method of understanding what the Coulomb branch chiral ring operators

are. As physicists we like to see things that plug into path integrals or between bras

and kets and study relations between them. Operator counting can only do what it

says on the tin: count those operators and perhaps say a thing or two about charges

under various symmetries. In this section we introduce the fully explicit method of

abelianisation, which acts as a counterbalance of sorts to operator counting.

The procedure was first introduced in [78] and given more conceptual background

in [79]. The monopole operator appears as one endpoint of a vortex worldline, i.e. it

can generate or annihilate a topological vortex. One can then study the physics of

this vortex in the language of one-dimensional quantum mmechanics on its world-

line. In this setting many calculations become much easier and the authors were able

to prove several technical results which are reported below. In [26, 60] a slightly dif-

ferent approach was chosen: the spacetime is now a three-sphere and the worldlines

are great circles. This work was able to fully generalise abelianisation to non-unitary

gauge groups while making more inroads on the related project of quantisation de-

formation21. [80] recast the U(1) results of [78] in the language of brane systems,

finishing the job for non-abelian groups in [61]. [97] used abelianisation to study the

class of star-shaped quivers while [96] confronted the issue of bad theories and [77]

trained their eyes on USp(2N) SQCD.

Chapter 3 contains very explicit and pedagogical examples of abelianised con-

structions and Chapter 4 builds on them by abelianising non-simply laced quivers.

20e.g. the sl(n,C) case is generated by the adjoint representation sl(n,C) = [1, 0, . . . , 0, 1] with
Sym2[1, 0, . . . , 0, 1] = [2, 0, . . . , 0, 2]+[0, 1, 0, . . . , 0, 1, 0]+[0, . . . , 0]. The space has [0, 1, 0, . . . , 0, 1, 0]
and [0, . . . , 0] relations.

21Very briefly: every symplectic manifold admits a natural QM-like non-commutative deforma-
tion. Since Coulomb branches are symplectic, studying their deformations is interesting.
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Accordingly, we intend this section to serve as a reference rather than a gentle intro-

duction to the method. The reader is advised to skim this section on a first reading

and proceed to the next chapter.

As we noted in Section 2.3.6, Coulomb branch operators can be constructed as

gauge-invariant combinations of abelian insertions, where the gauge invariance is

achieved by averaging over the action of the Weyl group. Abelianisation merely

extends this approach.

One first defines the abelianised chiral ring, which is then reduced by the action

of the gauge symmetry’s Weyl group. Let i index the vertices and hence gauge

group factors of a quiver gauge theory. Each gauge node Gi contributes several basic

variables to the ring: u+
i,a, u

−
i,a and ϕi,a, where 1 ≤ a ≤ rank Gi. We will sometimes

blur the distinction between the three types of variables by dropping all identifying

information except for the node and gauge indices, leaving only xi,a. The variables

satisfy abelianised relations

u+
i,au
−
i,a = −

∏
w∈R+

i,a
〈w, ~ϕ〉|wi,a|

∏
α∈V〈α, ~ϕ〉|αi,a|

(2.193)

where ~ϕ =
(
ϕ1,1, . . . , ϕn,rank Gn ,M1,1, . . .Mn,Nn

f

)
, N i

f is the number of fundamental

flavors on the i-th node, and both the roots α and weights w are expressed as weights

in the weight basis of the theory’s gauge group G =
∏n

i=1 Gi, i.e. the one introduced

in Sec 2.4.

For example U(2) with 4 fundamental flavors comes with the following matter

and gauge representations:

R = {(1, 0;−1, 0, 0, 0), . . . (1, 0; 0, 0, 0,−1), (0, 1;−1, 0, 0, 0), . . . (0, 1; 0, 0, 0,−1)}
(2.194)

with the first two charges belonging to U(2) and the last four belonging to SU(4)

and

V = {(1,−1; 0, 0, 0, 0), (−1, 1; 0, 0, 0, 0)} (2.195)

where the vanishing weights associated to the commuting part of U(2) have been

omitted.

The Coulomb branch is a symplectic space so its chiral ring carries a Poisson

bracket, which descends from a bracket defined on the abelianised ring:

{ϕi,a, u±i,a} = ±u±i,a (2.196)

{u+
i,a, u

−
i,a} =

∂

∂ϕi,a

∏
w∈R〈w, ~ϕ〉|wi,a|∏
α∈V〈α, ~ϕ)|αi,a|

(2.197)
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{u±i,a, u±j,b} =




±κij

u±i,au
±
j,b

ϕi,a−ϕj,b if (i, a) 6= (j, b)

0 if (i, a) = (j, b)
(2.198)

where κij is defined as in Section 2.4.1 and the remaining Poisson brackets vanish.

These Poisson brackets, along with the abelianised relations (2.193), generate

every element of the “abelianised” chiral ring C[Cabel]. The true Coulomb branch

chiral ring C[C] is a particular sub-ring of the Weyl-symmetrised ring C[Cabel]
WG .

But which subring? That is one of the central mysteries of each of the following

sections – and many paths may lead to the correct answer. Ours will follow a robust

and well-motivated strategy: we will leverage information from the Hilbert series to

identify the correct subring, picking Weyl-invariant abelianised operators with the

correct representation-theoretic properties as dictated by the physics. Appendix A

offers a comparison with an alternative approach but the reader is advised to read

it only after Chapter 3.
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Chapter 3

Simply laced unitary quivers

We have introduced two approaches to studying the Coulomb branch: operator

counting and abelianisation. Unsurprisingly, each comes with its strengths and

drawbacks. Operator counting is very general, straightforwardly algorithmic and

naturally captures the isometry of the Coulomb branch and representation-theoretic

content of chiral ring relations, reducing the problem of finding the moduli space

to identifying coefficients for finitely many linear combinations of finitely many op-

erators. The representation-theoretic data is also often sufficient to solve this lat-

ter problem. However, turning on complex mass deformations compromises the

computational utility of this method. Operator counting also rarely aids physical

interpretation of particular chiral ring operators. On the other hand the recent

abelianised construction leverages operators’ physical properties, naturally handles

complex mass deformations and in principle fully specifies the moduli space for ar-

bitrary quivers. However, the way in which it is defined does not draw out the

Coulomb branch symmetry, corresponding representation-theoretic data and as a

result physical relations between gauge-invariant chiral operators are difficult to

extract.

This chapter demonstrates that operator counting and abelianisation can be

synthesised into a new approach which combines their strengths, removes many of

their drawbacks and provides a new and powerful way to derive relations between

gauge-invariant operators in 3d N = 4 theories. We refer to it as the synthetic

method. To aid exposition, examples are restricted to very simple quiver theories.

First, a quick definition. Quiver (Panyushev) height [115] leverages the similarity

between Dynkin diagrams of simple Lie algebras and subgraphs of quivers formed

by all gauge nodes and can be calculated by taking the dot product between the

vector of Coxeter labels and the vector of flavor ranks. For example, the family of
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type D quivers

1 2

. . .

2

1

1

1

(3.1)

whose Coxeter labels are (1, 2, . . . , 2, 1, 1), has height

(0, 1, . . . , 0, 0, 0) · (1, 2, . . . , 2, 1, 1) = 2. (3.2)

This chapter’s examples are drawn from families of balanced quiver gauge the-

ories of type A and D (ie. shaped like their namesakes among Dynkin diagrams).

These specific type A quivers feature at least one U(1) gauge node while type D

quivers have Panyushev height 2; these examples have been studied in [20] using

only operator counting. Chapter 4 expands this approach to types B, C and G, also

of height 2. All of these quivers have at least one flavor node.

Although it may seem that we have narrowed the class of quivers almost out

of existence, we have merely restricted to cases covered in [20], whose Coulomb

branches are closures of nilpotent orbits1. They are the simplest exemplars of their

kind and hence a suitable arena for development of a new technique. We expect

that once our method is established for these basic cases most – if not all – of the

imposed restrictions can be lifted and the description will generalise to varieties

beyond nilpotent orbits.

3.1 Type A: generalities

3.1.1 min A1: A simple example

The main results of this chapter are best introduced as generalisations of two con-

crete results, both of which originally appeared in [78] in some form. The simpler

of the two concerns SQED with two electrons:

1 2 (3.3)

We will initially set both electrons’ masses to 0. The Hilbert series of the theory,

calculated using the monopole formula from Section 2.4.1, is

1We will continue to trade accuracy for brevity and refer to closures of nilpotent orbits as,
simply, “nilpotent orbits” in what follows.
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HS(t) = 1 + (z + 1 +
1

z
)t2 + (z2 + z + 1 +

1

z
+

1

z2
)t4 +O(t6)

= 1 + (w2 + 1 + w−2)t2 + (w4 + w2 + 1 + w−2 + w−4)t4 +O(t6)

= 1 + [2]t2 + [4]t4 +O(t6) (3.4)

where z 7→ w2 cast it into a manifest sum of sl(2,C) characters [n] = wn + wn−2 +

· · ·+ 1
wn

.

The series identifies a generator – call it N – transforming in the (co)adjoint

representation [2]. If the ring were freely generated then we would see a singlet

[0] and a tensor transforming in [4] at quadratic order, but the singlet is absent.

Hence there must be a quadratic singlet relation, which can only take the form

A detN +B tr(N2) = 0 for some A,B; a quick calculation shows that every generic

choice of A,B is equivalent2. The relation can also be written as

t4[0] : N2 = 0, (3.5)

which identifies the space of N , ie. the Coulomb branch of this theory, as a nilpotent

orbit of sl(2) ' A1. We have already seen this example several times. For future

reference, note how we choose to report relations: the exponent of t is twice the R-

symmetry spin, followed by the highest weight of the relation and then the explicit

tensorial relation itself.

This is a good result but some information is lost. There are three operators in

N , but what are they physically? How do they assemble into the matrix realisation

of N? How should we physically interpret the relation N2 = 0? If we set electrons’

(complex) masses to M, would the relation change to Tr(N2) = M2? Hilbert series

can help with some of these questions but they are not the most suitable tools.

Let’s explore this problem using the algebraic construction of the chiral ring

pioneered in [78]. This approach has several virtues: it is directly connected to

physics and very cleanly handles complex mass deformations of the theory. However

the Coulomb branch isometry remains hidden.

The ring is generated by two monopole operators u± and one scalar operator ϕ

subject to the relation

u+u− = −(ϕ −M1)(ϕ −M2) (3.6)

where the Mi are complex masses of electrons. It is important to note that this

relation comes “for free” from the definition of the chiral ring provided by [78].

This is a particularly simple example. There are no generators beyond u± and ϕ

and no relations beyond (3.6). In other words, this is our chiral ring, but it is not

2Exceptions such as A = B = 0 would reduce the relation to 0 = 0 and we can disregard them
because the Hilbert series indicates there is a non-trivial scalar relation.
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immediately obvious that it describes (a deformation of) a nilpotent orbit of sl(2,C).

We want to develop a synthetic approach which adapts an important result of

[78]: the Coulomb branch, being hyper-Kähler, has a moment map transforming in

the coadjoint representation of sl(2,C) and specifically given by

µ =

(
ϕ − M1

2
− M2

2
u−

u+ −ϕ + M1

2
+ M2

2

)
(3.7)

Recall that the adjoint and coadjoint representations of sl(2,C) are isomorphic

and the Hilbert series has no way of distinguishing between them, so N may in fact

be a coadjoint generator. We will see that it is most naturally expanded in the

coadjoint representation’s basis as defined in section 2.1.3.

µ also obeys the same relation as N of (3.5):

µ2 =

(
(M1+M2−2ϕ)2

4
+ u+u− 0

0 (M1+M2−2ϕ)2

4
+ u+u−

)
=

(M1 −M2)2

4
12×2 (3.8)

where we used (3.6) to simplify some quadratic expressions. Note that when the

masses are taken to 0 – that is, precisely in the case considered using Hilbert series

– the equation reduces to µ2 = 0.

Several features of this result are noteworthy:

• The matrix µ is traceless and hence belongs to sl(2) (or sl(2)∗) – but is valued

in the chiral ring R rather than C. The operator counting approach implied the

existence of a coadjoint matrix N whose complex coefficients are constrained

by relations. The synthetic approach defines µ as a ring-valued matrix and

matrix relations are reinterpreted as consequences of chiral ring relations which

can be fully specified prior to embedding into a matrix.

• sl(2,C) has a natural (co)adjoint action on µ and components of µ generate

the chiral ring – so µ = N .

• The fact that there are no independent higher-order relations is assured by

Hilbert series.

• However, the Coulomb branch Hilbert series provides no way of fixing the

coefficient on the complex-mass-deformed relation.

All of the above generalises to all examples considered in this section and helps

illustrate some of the utility of our synthetic method.
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3.1.2 max A2: A slightly more complicated example

For the second example we pick the theory

1 2 3 (3.9)

Its gauge group is U(1) × U(2). Both gauge nodes are balanced so its Coulomb

branch has an sl(3,C) ' A2 symmetry. We present its Hilbert series in terms of

topological fugacities z1, z2 and w1, w2 related by

wi =
∏

j

z
κ−1
ij

j (3.10)

where κij is the Cartan matrix

(
2 −1

−1 2

)
(3.11)

and we use the notation [p1,p2] as shorthand for the sl(3,C) character with highest

weight [p1, p2], eg.

[1,1] = w1w2 +
w2

1

w2

+
w2

2

w1

+ 2 +
w1

w2
2

+
w2

w2
1

+
1

w1w2

(3.12)

We call wi, resp. zj fundamental weight, resp. simple root fugacities for reasons

which will shortly become apparent.

This notation significantly simplifies the Hilbert series and manifests its nature

as a class function:

HS(t) = 1 + (z1z2 + z1 + z2 + 2 +
1

z1

+
1

z2

+
1

z1z2

)t2 +O(t4)

= 1 + [1,1]t2 + ([2,2] + [1,1])t4 + ([3,3] + [2,2] + [3,0] + [0,3])t6 +O(t8)

(3.13)

A closer look at the Hilbert series (to all orders) shows that the (massless) chiral

ring is generated by a single sl(3,C) (co)adjoint tensor – whose character appears

in (3.12) – subject to

t4[0, 0] : tr(N2) = 0 (3.14)

t6[0, 0] : tr(N3) = 0 (3.15)

which amounts to setting all eigenvalues to 0 and describes the maximal nilpotent

orbit of sl(3,C).
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The Hilbert series predicts 8 generators in total, two of which are linear Casimirs.

Expressing wp1

1 w
p2

2 = [p1, p2] and zn1
1 zn2

2 = 〈n1, n2〉, we observe the following corre-

spondence to bare monopoles with magnetic charges m = (m1;m2,1,m2,2):

[2,−1]↔〈1, 0〉 ↔ m = (1; 0, 0)

[−1, 2]↔〈0, 1〉 ↔ m = (0; 1, 0)

[1, 1]↔〈1, 1〉 ↔ m = (1; 1, 0)

[−2, 1]↔〈−1, 0〉 ↔ m = (−1; 0, 0)

[−1, 2]↔〈0,−1〉 ↔ m = (0;−1, 0)

[−1,−1]↔〈−1,−1〉 ↔ m = (−1;−1, 0)

It turns out that although the basis of fundamental weights is useful for pinning

down the symmetry and representation content, going back to zi, or the basis of

simple roots, is more physically transparent so we will keep working in that basis.

We can now construct explicit generators and will label them as follows: gener-

ating monopole operators are indexed by corresponding roots, ie V〈n1,n2〉, and linear

Casimirs Φ carry the index of their gauge node, ie. Φi. [78] provides a recipe in

terms of auxiliary gauge-dependent abelianised fields u±1 , ϕ1, u
±
2,1, u

±
2,2, ϕ2,1 and ϕ2,2:

V〈1,0〉 = u+
1

V〈0,1〉 = u+
2,1 + u+

2,2

V〈1,1〉 =
u+

1 u
+
2,1

ϕ1 − ϕ2,1

+
u+

1 u
+
2,2

ϕ1 − ϕ2,2

V〈−1,0〉 = u−1

V〈0,−1〉 = u−2,1 + u−2,2

V〈−1,−1〉 =
u−1 u

−
2,1

ϕ1 − ϕ2,1

+
u−1 u

−
2,2

ϕ1 − ϕ2,2

Φ1 = ϕ1

Φ2 = ϕ2,1 + ϕ2,2

The algebraic construction also posits a set of relations:

u+
1 u
−
1 = −(ϕ1 − ϕ2,1)(ϕ1 − ϕ2,2)

u+
2,1u

−
2,1 = −(ϕ2,1 − ϕ1)(ϕ2,1 −M2,1)(ϕ2,1 −M2,2)(ϕ2,1 −M2,3)

(ϕ2,1 − ϕ2,2)2
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u+
2,2u

−
2,2 = −(ϕ2,2 − ϕ1)(ϕ2,2 −M2,1)(ϕ2,2 −M2,2)(ϕ2,2 −M2,3)

(ϕ2,1 − ϕ2,2)2

There are several structural features to point out. Firstly, operators such as ϕ2,1

and ϕ2,2 are gauge-dependent quantities; in fact, the Weyl group of U(2) transforms

one into the other. Their sum Φ2 = ϕ2,1 + ϕ2,2, however, is gauge-invariant, as

would be eg. ϕ2,1ϕ2,2 (recall the discussion in Section 2.3.6). We will always reserve

ϕ, resp. Φ, for gauge-dependent, resp. gauge-independent manifestations of the

scalar superpartners of gauge bosons and ϕi,a will refer to the a-th gauge-dependent

(abelianised) scalar superpartner of the gauge bosons associated to the i-th node.

Secondly, complex mass parameters Mi,p, again labelled as being the p-th mass

on the i-th node, enter relations in a similar way to complex scalars ϕ. This is

explained by the fact that complex masses can be interpreted as scalar VEVs of

background vector supermultiplets with analogous coupling rules.

Thirdly, monopole operators V〈±1,±1〉 have a curious structure of rational func-

tions (and also the property of gauge-invariance-by-averaging which was just men-

tioned). The nature of such operators is, in our experience, a common source of

confusion. One could think of e.g. u+
1 u

+
2,1/(ϕ1 − ϕ2,1) as a new abstract ring ele-

ment3 along with the relation

u+
1 u

+
2,1

(ϕ1 − ϕ2,1)
(ϕ1 − ϕ2,1) = u+

1 u
+
2,1. (3.16)

The chiral ring is still specifically a ring and division is not in general defined as a

valid operation.

Fourthly, the theory’s chiral ring includes the quadratic Casimir operator ϕ2,1ϕ2,2

– in fact it’s already present in the UV description. It is easy to check that

ϕ2,1ϕ2,2 = −Φ1(Φ1 − Φ2)− V〈1,0〉V〈−1,0〉 (3.17)

Our method does not provide an algorithmic recipe for deriving this relation but its

existence is ensured.

Finally, relations are given in terms of the abelianised and hence gauge-dependent

fields. But the Coulomb branch only has directions corresponding to gauge-indepen-

dent operators. So we would like to find gauge-independent relations to complement

them; indeed, they should be exactly the relations predicted by Hilbert series. Our

synthetic method can determine them.

The prescription for the coadjoint moment map (and the chiral ring generator)

3Some practitioners (e.g. [77, 97]) like to think of it as a separate abelianised variable u+(1;1,0)
with the relation (3.16), but we have found it helpful for computational purposes to reduce these
variables to rational functions of the more basic u±i,a and ϕi,a and our presentation follows that
convention.
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is

N =




Φ1 − M2,1+M2,2+M2,3

3
V〈−1,0〉 −V〈−1,−1〉

V〈1,0〉 −Φ1 + Φ2 − M2,1+M2,2+M2,3

3
V〈0,−1〉

−V〈1,1〉 V〈0,1〉 2M2,1+M2,2+M2,3

3
− Φ2




(3.18)

and indeed, one easily confirms that

t4[0, 0] : tr(N2) =
2

3
(M2

2,1 +M2
2,2 +M2

2,3 −M2,1M2,2 −M2,1M2,3 −M2,2M2,3)

(3.19)

t6[0, 0] : tr(N3) =
1

9
(2M2,1 −M2,2 −M2,3)(2M2,2 −M2,1 −M2,3)

· (2M2,3 −M2,1 −M2,2)
(3.20)

both of which vanish in the massless limit. The last three expressions can be dras-

tically simplified under the simultaneous reparametrisation M2,1 = M − n1,M2,2 =

M + n1 − n2,M2,3 = M + n2 and shift in scalar variables ϕi,a 7→ ϕi,a +M :

N =




Φ1 V〈−1,0〉 −V〈−1,−1〉

V〈1,0〉 −Φ1 + Φ2 V〈0,−1〉

−V〈1,1〉 V〈0,1〉 −Φ2


 (3.21)

t4[0, 0] : tr(N2) = 2(n2
1 + n2

2 − n1n2) (3.22)

t6[0, 0] : tr(N3) = 3n1n2(n2 − n1) (3.23)

We have simultaneously derived gauge-invariant relations in the chiral ring and

generalised them for the case of massive quarks, demonstrating the advantages of

the synthetic method over pure operator counting or algebraic construction.

3.1.3 Construction of generators and gauge-dependent re-

lations

All balanced quivers of type An (of type A with n gauge nodes) and at least one

gauge node of rank 1 share the same pattern of generators [20]. They always have

R-symmetry spin 1 and include n linear Casimirs originating from gauge scalars at

the n gauge nodes. The remaining generators are bare monopole operators labelled

by their topological charges ~q = 〈q1, . . . , qn〉4 uniquely without any degeneracies.

4Topological charge vectors are written with angled brackets in anticipation of a thorough
correspondence between their associated generating monopole operators and roots in the isometry
algebra.
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Every monopole generator exhibits the following pattern of charges:

~q = 〈0, . . . , 0,±1, . . . ,±1, 0, . . . , 0〉, (3.24)

or an uninterrupted string of ±1 padded by zeroes. The string of ones can stretch to

each end so, for example, 〈1, 1, 1〉 is a valid charge vector of a monopole generator in

an A3 quiver. The choice of +1 or −1 must be made consistently in a given charge

vector so no A3 monopole generator carries the charge vector 〈1,−1, 0〉 or other

similarly “mixed” charges. Such monopole operators still exist within the chiral

ring but we do not count them among a canonical set of generators.

Overall we get n2 + n monopole operators and n linear Casimirs which together

generate the chiral ring. [78] provides a general prescription for these generators in

terms of gauge-dependent quantities, or abelianised variables as they are described

in the original paper. The prescription was tested on several linear quivers in the

original paper and succeeded when compared against known results. Principles

behind the proposal have received further support in [79, 80] which exploit quantum

mechanics of vortices and string theory respectively. The chiral ring can be specified

algorithmically:

• Label each gauge node with an index i ∈ {1, . . . , n} starting from the leftmost

node. Let ri be the rank of the unitary group U(ri) at the gauge node i.

• Define the abelianised ring Rabel. We merely adapt the more general procedure

of Section 2.4.2 to linear quivers.

1. Any node with gauge group U(ri) and index i gives rise to 3ri abelianised

variables: u+
i,a, u

−
i,a and ϕi,a, where a runs from 1 to ri. They physically

correspond to directions in the moduli space of the fully broken gauge

group U(1)ri . As an abelian theory it gives rise to ri different monopoles

of charge +1 under the various U(1) factors – those would be the u+
i,a –

their counterparts with charges −1 – the u−i,a – and complex scalars in

the vector supermultiplet – the ϕi,a. They are essentially eigenvalues of

the adjoint-valued scalar superpartner of gauge bosons.

2. We identify all topologically charged generators of the abelianised ring.

Some of these operators carry no topological charge except ±1 at a single

node i; we call such operators minimally charged and they are already

represented by ri operators u±i,a. The remaining monopole generators

are topologically charged under several adjacent nodes and have to be

constructed from the abelianised variables. They can be built in different

(but equivalent) ways.
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– [78] defines the Poisson bracket {·, ·} acting on the abelianised chiral

ring; we reproduce it in (3.38). An abelianised monopole charged

under adjacent nodes i and i+ 1 is given by

{u±i,a, u±i+1,b} ∝
u±i,au

±
i+1,b

ϕi,a − ϕi+1,b

(3.25)

with coefficient±1. This can be extended by the action of an adjacent

node, eg. u±i+2,c:

{
u±i,au

±
i+1,b

ϕi,a − ϕi+1,b

, u±i+2,c} ∝
u±i,au

±
i+1,bu

±
i+2,c

(ϕi,a − ϕi+1,b)(ϕi+1,b − ϕi+2,c)
(3.26)

This operator can again be extended by the action of an adjacent

node; the maximal operator “stretches” between the leftmost and

the rightmost nodes.

– Alternatively one can just give a general prescription for the non-

minimally charged monopole generator. We will adopt this method

and define a monopole charged ±1 under nodes i, i+1, . . . , j−2, j−1

as

u±i:j,(ai,...,aj−1) =
u±i,ai · · ·u±j−1,aj−1

(ϕi,ai − ϕi+1,ai+1
) · · · (ϕj−2,aj−2

− ϕj−1,aj−1
)

(3.27)

In particular, u±i,a = u±i:i+1,(a). Note that we selected the sign to be

positive for all monopoles.

3. A flavor node of rank si connected to the gauge node i contributes com-

plex mass parameters Mi,p, where p runs from 1 to si.

4. Define A(i) as the set of gauge nodes (resp. their indices) adjacent to node

i; for most nodes A(i) = {i−1, i+1} but A(1) = {2} and A(n) = {n−1}.

5. For each gauge node define two auxiliary polynomials:

Pi(z) =
∏

1≤p≤si
(z −Mi,p) (3.28)

Qi(z) =
∏

1≤a≤ri
(z − ϕi,a) (3.29)
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6. Abelianised variables are subject to relations5

u+
i,au
−
i,a = −

Pi(ϕi,a)
∏

j∈A(i) Qj(ϕi,a)∏
b6=a(ϕi,a − ϕi,b)2

(3.30)

which can be repackaged as generators of the ideal

I =

〈
u+
i,au
−
i,a +

Pi(ϕi,a)
∏

j∈A(i) Qj(ϕi,a)∏
b6=a(ϕi,a − ϕi,b)2

〉
(3.31)

7. The abelianised ring Rabel is then a quotient of a polynomial ring freely

generated by scalars and monopole generators:

Rabel = C[u±i:j,(ai,...,aj−1), ϕi,a]/I (3.32)

with 1 ≤ i < j ≤ n+ 1.

• The overall gauge group of the quiver is G =
∏

i U(ri). Its Weyl group is

then W(G) =
∏

i Sri . W(G) has a natural action on the u±i,a and ϕi,a: each

Sri permutes indices a for a fixed i. The true, physical chiral ring R can only

include gauge-invariant operators and so must be a subset of the restriction of

Rabel to W(G)-invariant polynomials:

R ⊂ R
W(G)
abel = C[u±i:j,(ai,...,aj−1), ϕi,a]

W(G)/I (3.33)

where u±i:j,(ai,...,aj−1) are interpreted using (3.27) and indices are implicitly ranged

over.

Several elements of R
W(G)
abel are significant enough to deserve a name:

V ±i:j =
∑

a,...,d

u±i:j,(a,...,d) =
∑

a,...,d

u±i,a · · ·u±j−1,d

(ϕi,a − ϕi+1,b) · · · (ϕj−2,c − ϕj−1,d)
(3.34)

Φi =
∑

a

ϕi,a (3.35)

Hilbert series computations for balanced type A quivers show that such operators

form (at least some of) the generating set for R. It will also be helpful to repackage

mass parameters into symmetric polynomials:

Mi =
s∑

p=1

Mi,p (3.36)

5Note that these relations fix R-symmetry spin of bare abelianised monopoles u±i,a since topo-
logical charge conjugation should commute with R-symmetry and ϕ have spin 1.
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~M = (M1, . . . ,Mn) (3.37)

All that remains is to pin down which WG-invariant subring of Rabel is the

Coulomb branch chiral ring. In this work we advocate explicitly constructing tensors

whose components generate the chiral ring, and for simple enough quivers there is

only one: the moment map.

3.1.4 Moment map

The moment map of a symplectic space is a coadjoint-valued map, so we should be

able to expand it in the basis (2.31). The coefficients will be precisely the VEVs of

Coulomb branch operators of Section 3.1.3; in fact both the monopole generators

and dual root vectors are labelled by unbroken strings of ±1 padded by zeroes and

there are as many linear Casimirs as there are generators of the Cartan subalgebra,

although here the correspondence is marginally more involved.

The symplectic structure of the Coulomb branch gives rise to the Poisson bracket

on operators (3.38), which is closely related to the moment map and described by

its action on the abelianised variables in [78]:

{ϕi,a, u±i,a} = ±u±i,a

{u+
i,a, u

−
i,a} =

∂

∂ϕi,a

[
Pi(ϕi,a)

∏
j∈Ai Qj(ϕi,a)∏

b6=a(ϕi,a − ϕi,b)2

]

{u±i,a, u±j,b} = ±κij
u±i,au

±
j,b

ϕi,a − ϕj,b

(3.38)

The remaining undetermined brackets vanish.

In fact, one can think of the moment map N as a homomorphism from the Lie

algebra of the Coulomb branch symmetry to the Poisson algebra of operators. More

explicitly, for all X, Y ∈ g

tr(N [X, Y ]) = {tr(NX), tr(NY )}. (3.39)

So choosing X, Y = Eα or Hi, we can see that the operators eα = tr(NEα) and

hi = tr(NHi) form the Lie algebra g under the Poisson bracket. We can take this

fact and work backwards: the moment map is assembled as

N =
∑

α∈Φ

eαE
∗
α +

rank g∑

a=1

hiH
∗
i (3.40)

so if we can find operators eα and hi which reproduce the Lie algebra of g, we can

explicitly construct the moment map.
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Identifying eα is easy. Recall from Section 2.1.3 that root vectors can also be

labelled E±(i:j); these are the same labels as we have on V ±i:j , and there is a neat

correspondence:

e±(i:j) = tr(NE±(i:j)) = V ±i:j (3.41)

with

e±i = V ±(i:i+1) =

rankGi∑

a=1

u±i,a (3.42)

the simple root vectors; it is completely determined by the monopole operators’

topological charges [19].

We are still missing the operator analogues of Cartan elements Hi in (2.11), but

only momentarily. One can easily check that

{
∑

k

κikΦk −Mi, e±j} = ±
∑

k

κikδjke±j = ±κije±j (3.43)

and less easily, but straightforwardly on concrete cases, that

{e+i, e−i} =
∑

k

κikΦk −Mi. (3.44)

We can then define hi =
∑

k κikΦk − Mi
6 and construct the coadjoint-valued

moment map:

N( ~M) =
∑

1≤i<j≤n
s∈{+,−}

es(i:j)E
∗
s(i:j) +

n∑

i=1

hiH
∗
i

=




Φ̄1( ~M) V −1:2 −V −1:3 · · · (−1)n+1V −1:n+1

V +
1:2 −Φ̄1( ~M) + Φ̄2( ~M) V −2:3 · · · (−1)nV −2:n+1

−V +
1:3 V +

2:3 −Φ̄2( ~M) + Φ̄3( ~M) · · · (−1)n−1V −3:n+1

. . . . . . . . .
. . .

...

(−1)n+1V +
1:n+1 (−1)nV +

2:n+1 (−1)n−1V +
3:n+1 · · · −Φ̄n( ~M)




(3.45)

where Φ̄i( ~M) = (C−1κΦ)i − (C−1 ~M)i
7. The homomorphism (3.39) follows from the

definition of N and (2.32).

Hilbert series then predict that components of N(~0)8 will generate the Coulomb

6Note that Mi can be viewed as a scalar component of a background vector supermultiplet
associated to the flavor node adjacent to i and that the definition of hi treats it on the same
footing as scalar components of vector supermultiplets of gauge nodes j adjacent to i, for which
κij = −1.

7C−1κ = 1 for type A and 1
21 for type D, respectively, given our choices of bases.

8We treat the complex masses ~M as parameters of the theory rather than new moduli. Then
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branch chiral ring R:

R = C[Nij(~0)]/I (3.46)

where I is the ideal of gauge-dependent relations as defined in (3.31).

This claim is already non-trivial (and was made in [78] for cases of type A). To see

this note that as a gauge-invariant operator, the Casimir invariant
∑

1<a<b<ri
ϕi,aϕi,b

can be found in the chiral ring. It should be possible to express it in terms of ring

generators Nij(~0) but that clearly cannot be done without invoking some relations in

I and we would like a guarantee that those relations are sufficient for this purpose.

However, one should expect such a guarantee on theoretical grounds. On the

one hand, the abelianisation approach manifestly includes all Casimir invariants of

ϕi,a. On the other hand, Casimir invariants of degree d exhibit R-symmetry spin

d and all chiral rings considered in this section are generated by operators of spin

1, as computed using Hilbert series methods. Therefore any Casimir invariants of

degree greater than 1 must be equal to some combination of spin 1 operators.

We are not aware of a generic formula for relations between Casimir invariants

and moment map components but they can always be derived with a sensible ansatz:

just try all linear combinations of generators with vanishing topological charges with

the correct overall R-symmetry spin.

3.2 Type A: further examples

Previous sections identify gauge-invariant generators of the chiral ring and lay the

groundwork for generalisation to more general quivers. The current section con-

cludes our investigation of quivers of type A by expressing (3.46) as a ring quotiented

by an ideal of gauge-invariant relations.

3.2.1 minAn

The Coulomb branch of the quiver

1 1

. . .

1

1 1

(3.47)

C−1 ~M is just a vector of complex numbers and components of N(~0) are straightforwardly generated

as shifts of components of N( ~M) by constant numbers and vice versa, so the two generating sets
are equivalent.
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has the highest weight generating function [20]

HWG(t, µi) =
1

1− µ1µnt2
(3.48)

which identifies a single (co)adjoint generator N subject to several relations trans-

forming in particular representations. We can compare this HWG against known

tables of nilpotent orbits [20]9 and find that it is the minimal nilpotent orbit. This

variety is fully described by a set of quadratic Joseph relations:

t4[0, 1, 0, . . . , 0, 1, 0] : rank N(~0) ≤ 1 (3.49)

t4[0, . . . , 0] : tr(N(~0)2) = 0 (3.50)

One can now construct the chiral ring and the moment map (3.45) to explicitly

check that, in fact,

t4[0, 1, 0, . . . , 0, 1, 0] : (Na
i − δai

M1 −Mn

n+ 1
)(N b

j − δbj
M1 −Mn

n+ 1
)− (a↔ b) = 0 (3.51)

t4[0, . . . , 0] : tr(Nk)− n(M1 −Mn)k + (−n)k(M1 −Mn)k

(n+ 1)k
= 0 (3.52)

where N = N( ~M) and we redefined Mi =: Mi,1 to reduce clutter.

This calculation is particularly tractable owing to the quiver’s abelian gauge

nodes and was partially performed in [78]. Note that when complex mass parameters

are set equal the equations reproduce predictions from Hilbert series. Moreover,

the left hand sides of (3.51) and (3.52) generate an ideal J( ~M) of gauge-invariant

operators. The chiral ring is then given by

R = C[Nij( ~M)]/I( ~M) = C[Nij( ~M)]/J( ~M) (3.53)

Nij and J( ~M) are both specified in terms of gauge-invariant operators, making good

on our promise to define the chiral ring purely in terms of physical moduli.

The space can be identified with T∗Pn which is known to have a single deforma-

tion parameter, here the difference of masses.

9This particular family of spaces had been studied earlier e.g. in [11, 48, 59, 86, 112, 116–120],
appearing for example as the reduced moduli space of one SU(n+ 1) instanton.
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3.2.2 maxAn

Coulomb branches of quivers

1 2

. . .
n

n+1

(3.54)

are isomorphic to maximal nilpotent orbits of sl(n+ 1,C) [20]. Its structure is most

easily seen by calculating the unrefined Hilbert series [20]:

HS(t) =

∏n+1
k=2(1− t2k)

(1− t2)(n+1)2−1
= 1 +

(
(n+ 1)2 − 1

)
t2 + . . . (3.55)

We see that their chiral rings are again generated by the (co)adjoint generator N

defined by (3.45). The (massless) relations can be read off from the Hilbert series’

numerator:

t2k[0, . . . , 0] : tr(N(~0)k) = 0 (3.56)

for 2 ≤ k ≤ n+ 1.

Calculating complex-mass-deformed relations for general n proves much more

challenging than for minimal nilpotent orbits but numerical calculations at low

enough n are viable. It suffices to replace N(~0) 7→ N( ~M) and straightforwardly

evaluate10:

• n = 1:

t4[0] : tr(N( ~M)2) = 2n2
1 (3.57)

• n = 2:

t4[0, 0] : tr(N( ~M)2) =2(n2
1 + n2

2 − n1n2) (3.58)

t6[0, 0] : tr(N( ~M)3) =3n1n2(n2 − n1) (3.59)

• n = 3:

t4[0, 0] : tr(N( ~M)2) = 2(n2
1 + n2

2 + n2
3 − n1n2 − n2n3) (3.60)

t6[0, 0] : tr(N( ~M)3) = 3n2(n3 − n1)(n1 − n2 + n3) (3.61)

10Complex masses were reparametrised Mn,i = M − ni + ni+1 (with nn+1 = 0) for cleaner
presentation; the parameter M automatically drops out.
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t8[0, 0] : tr(N( ~M)4) = 2(
∑

i

n4
i + 3n2

2(n2
1 + n2

3)− 2n2(n3
1 + n1n

2
2 + n2

2n3 + n3
3))

(3.62)

These relations are necessary and sufficient, as can be seen from their theories’

Hilbert series.

3.3 Type D: generalities

3.3.1 so(8,C): An example

The synthetic method extends to balanced quivers of type D and height 2 which we

demonstrate on one of the simplest examples. The quiver

1 2

1

1

1

(3.63)

is shaped as the Dynkin diagram ofD4, suggesting so(8,C) symmetry of the Coulomb

branch. Its HWG shows that the chiral ring is generated by 28 generators assembled

into the (co)adjoint representation N of so(8,C) [20]:

HWG(t) =
1

1− µ2t2
(3.64)

The (massless) relations can also be identified through operator counting or,

since the space is the minimal nilpotent orbit, simply by reading off the quadratic

Joseph relations:

t4([2, 0, 0, 0] + [0, 0, 0, 0]) : N(~0)2 = 0 (3.65)

t4([0, 0, 2, 0] + [0, 0, 0, 2]) : N(~0)[ijN(~0)kl] = 0 (3.66)

The operators in N correspond to 4 generators of the Cartan subalgebra, 12

positive roots and their 12 negative root counterparts. As expressed in the simple

root basis, the positive roots are:

Φ+ = {〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉, 〈1, 1, 0, 0〉, 〈0, 1, 1, 0〉,
〈0, 1, 0, 1〉, 〈1, 1, 1, 0〉, 〈1, 1, 0, 1〉, 〈0, 1, 1, 1〉, 〈1, 1, 1, 1〉, 〈1, 2, 1, 1〉}

(3.67)
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Roots label monopole operators by specifying charges at appropriate nodes: the

first integer gives the topological charge under the leftmost node, followed by topo-

logical charges at the central, top right and finally bottom right node. Each node

also contributes a topologically uncharged linear Casimir corresponding to the gen-

erator of the Cartan subalgebra h ⊂ so(8,C) carrying the same label. The fully

assembled coadjoint generator – again playing the role of the moment map to the

theory’s Coulomb branch – is

N( ~M) =




HΦ̄1 D̄
〈1,0,0,0〉
〈1,2,1,1〉 D̄

〈1,1,0,0〉
〈1,1,1,1〉 D̄

〈1,1,1,0〉
〈1,1,0,1〉

−(D̄
〈1,0,0,0〉
〈1,2,1,1〉)

T H(−Φ̄1 + Φ̄2) D̄
〈0,1,0,0〉
〈0,1,1,1〉 D̄

〈0,1,1,0〉
〈0,1,0,1〉

−(D̄
〈1,1,0,0〉
〈1,1,1,1〉)

T −(D̄
〈0,1,0,0〉
〈0,1,1,1〉)

T H(−Φ̄2 + Φ̄3 + Φ̄4) D̄
〈0,0,1,0〉
〈0,0,0,1〉

−(D̄
〈1,1,1,0〉
〈1,1,0,1〉)

T −(D̄
〈0,1,1,0〉
〈0,1,0,1〉)

T −(D̄
〈0,0,1,0〉
〈0,0,0,1〉)

T H(−Φ̄3 + Φ̄4)




(3.68)

where

Dα
β =

1

4

(
i(Vα + V−α + Vβ + V−β) Vα − V−α − Vβ + V−β

−Vα + V−α − Vβ + V−β i(Vα + V−α − Vβ − V−β)

)
(3.69)

H =

(
0 i

−i 0

)
(3.70)

Φ̄i =
1

2
Φi − (C−1 ~M)i (3.71)

The Vα and Φi are gauge-invariant objects which can be expressed in terms of

gauge-dependent abelianised variables; those are in turn defined just as in Section

3.1.3. The explicit expressions are:

Φ1 = ϕ1 (3.72)

Φ2 = ϕ2,1 + ϕ2,2 (3.73)

Φ3 = ϕ3 (3.74)

Φ4 = ϕ4 (3.75)

V〈±1,0,0,0〉 = u±1 (3.76)

V〈0,±1,0,0〉 = u±2,1 + u±2,2 (3.77)

V〈0,0,±1,0〉 = u±3 (3.78)

V〈0,0,0,±1〉 = u±4 (3.79)

V〈±1,±1,0,0〉 =
u±1 u

±
2,1

ϕ1 − ϕ2,1

+
u±1 u

±
2,2

ϕ1 − ϕ2,2

(3.80)

V〈0,±1,±1,0〉 =
u±2,1u

±
3

ϕ2,1 − ϕ3

+
u±2,2u

±
3

ϕ2,2 − ϕ3

(3.81)
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V〈0,±1,0,±1〉 =
u±2,1u

±
4

ϕ2,1 − ϕ4

+
u±2,2u

±
4

ϕ2,2 − ϕ4

(3.82)

V〈±1,±1,±1,0〉 =
u±1 u

±
2,1u

±
3

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ3)
+

u±1 u
±
2,2u

±
3

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ3)
(3.83)

V〈±1,±1,0,±1〉 =
u±1 u

±
2,1u

±
4

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ4)
+

u±1 u
±
2,2u

±
4

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ4)
(3.84)

V〈0,±1,±1,±1〉 =
u±2,1u

±
3 u
±
4

(ϕ2,1 − ϕ3)(ϕ2,1 − ϕ4)
+

u±2,2u
±
3 u
±
4

(ϕ2,2 − ϕ3)(ϕ2,1 − ϕ4)
(3.85)

V〈±1,±1,±1,±1〉 =
u±1 u

±
2,1u

±
3 u
±
4

(ϕ1 − ϕ2,1)(ϕ2,1 − ϕ3)(ϕ2,1 − ϕ4)

+
u±1 u

±
2,2u

±
3 u
±
4

(ϕ1 − ϕ2,2)(ϕ2,2 − ϕ3)(ϕ2,2 − ϕ4)

(3.86)

V〈±1,±2,±1,±1〉 =
(ϕ2,1 − ϕ2,2)2u±1 u

±
2,1u

±
2,2u

±
3 u
±
4

(ϕ1 − ϕ2,1)(ϕ1 − ϕ2,2)(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)(ϕ2,1 − ϕ4)(ϕ2,2 − ϕ4)

(3.87)

with (3.31) acting on abelianised variables as the ideal of relations. A simple exercise

in computer-assisted algebra is sufficient to check that (3.65) and (3.66) are satisfied

by N(~0) and further that the gauge-invariant Joseph relations still hold without

modification for N( ~M):

t4([2, 0, 0, 0] + [0, 0, 0, 0]) : N( ~M)2 = 0 (3.88)

t4([0, 0, 2, 0] + [0, 0, 0, 2]) : N( ~M)[ijN( ~M)kl] = 0 (3.89)

This is not to say that complex mass parameters have no effect at all on the

Coulomb branch: they modify the generatorN( ~M) itself by shifting scalar operators.

However, this effect can be fully removed by redefining scalar fields with the opposite

shift. The algebraic structure of relations (3.88) and (3.89) is also preserved in this

particular case. Consequently, complex mass physically reparametrises rather than

deforms this Coulomb branch.

Note that for (3.89) this is the only result consistent with preservation of Coulomb

branch symmetry under mass deformation since there are no so(8,C)-invariant ten-

sors which could stand on the right hand side of that particular relation. (3.88)

could have been deformed by ( ~M · ~M)12n, judging solely on representational grounds.

However the mass can be explicitly defined away in the abelianised treatment by

ϕi,a 7→ ϕi,a + M2,1 without affecting the structure of the chiral ring and hence the

relations.
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3.3.2 Charges of chiral ring generators

If the D-type quiver is of height 2 the chiral ring is generated by spin 1 operators

assembled into the adjoint representation of so(2n,C). The generators again split

into linear Casimirs, of which there is one per node, and bare monopole operators

labelled by topological charges. In this section we gather our knowledge about the

latter.

Extensive sets of Hilbert series calculations [20] applied to these theories show

that all monopole operators at R-symmetry spin 1 belong to one of two categories.

The following classification identifies a monopole generator with a labelled quiver

diagram whose flavour nodes and gauge rank information have been removed:

• Unbroken (and linear) strings of either only +1 or only −1 stretching anywhere

across the quiver – see Figure 2.2a for an example stretching all the way to

the spinor node.

• Unbroken strings of ±1 (with uniform choice of sign) with charges ±1 on both

rightmost (spinor) nodes – see Figure 2.2b. If both spinor nodes are turned

on then a string of ±2 (with the same choice of sign as ±1) can be extended

from the trivalent node arbitrarily far to the left, terminating with a string of

±1 which must have length at least 1 – see Figure 2.2c.

It will prove convenient to arrange topological charges into linear vectors and we

pick the usual convention, ie. the first n − 2 entries describe charges on the linear

segment from the first node to the trivalent node and the n−1-th, resp. n-th entries

belong to the top right, resp. top bottom nodes.

3.3.3 Construction of the chiral ring

Construction of the chiral ring is closely analogous to that of Section 3.1.3 with

differences arising only with respect to monopoles whose topological charges stretch

across multiple nodes.

The simplest and cleanest way to identify monopole operators is to utilise the

symplectic structure defined in [78] and captured in the Poisson brackets of operators

(3.38).

Minimally charged (gauge-invariant) monopoles at node i are defined as

U±i =
∑

a

u±i,a (3.90)

and we can use the action they induce along with the Poisson bracket, {U±i , ·}, to

generate the entire set of bare monopole operators. The procedure is inductive on
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the sum of topological charges of a monopole, q =
∑
qi, where we treat positive and

negative monopoles separately:

• Restrict to positively charged monopole operators and take the first non-trivial

case of q = 1. These are the minimally charged monopoles and their descrip-

tion is given above.

• To get the expression for a positive monopole operator V with topological

charges ~q whose sum is
∑

i qi = q = r + 1 one can start by assuming the

inductive hypothesis, that is, expressions are known for all bare monopole op-

erators up to and including overall topological charge r > 1. The classification

of monopoles given in the previous section is enough to establish that there

exists a monopole operator V ′ with topological charges ~r such that
∑

i ri = r

and ~q − ~r is the usual unit vector ~ei. Then the monopole V is obtained as

follows:

V = ±{U+
i , V

′} (3.91)

and the sign is chosen so that, when scalar fields in denominators are ordered

“lowest indices to the left, highest indices to the right” – eg. in combinations

(ϕ1 − ϕ3) but not (ϕ4 − ϕ2) – the expressions are monic. This generates all

positive monopoles.

• To generate negative monopoles merely replace positive abelianised monopole

variables with their negative counterparts: u+
i,a 7→ u−i,a.

In the so(8,C) example the monopole operator with highest overall topological

charge was obtained by

V〈1,2,1,1〉 ∝ {U+
2 , V〈1,1,1,1〉} (3.92)

and it is worth taking a look at the structure of (3.87) to see how this monopole

operator arrives at overall R-symmetry spin 1.

3.3.4 Moment map

All that remains to define the Coulomb branch moment map is to associate gener-

ators of the coadjoint basis with monopole and linear Casimir operators.

• For monopole operators use the correspondence between roots on the one hand

and pairs of integers and signs on the other described in (2.41-2.44) to translate

labels in the simple root basis into the orthonormal basis:

Vα ↔ V (ij)
rs (3.93)
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where r, s ∈ {+,−} and 1 ≤ i < j ≤ n and pair them with the corresponding

dual root vectors:

E∗(ri,sj) ↔ e(ri,sj) = V (ij)
rs (3.94)

• Linear Casimirs need to be suitably combined to reproduce Poisson brackets

analogously to the case of type A; a mass shift is also allowed by the abelianised

Poisson brackets:

H∗i ↔ hi =
∑

j

κijΦj −Mi (3.95)

Putting everything together the moment map comes out as

N =
∑

1≤i<j≤n
r,s ∈{+,−}

e(ri,sj)E
∗
(ri,sj) +

∑

1≤i≤n
hiH

∗
i (3.96)

This prescription tends to lead to matrices which struggle to fit on a page so we

refer to the case of so(8,C) in (3.68) as an exemplar.

The moment map still generates the Lie algebra homomorphism (3.39), albeit

for a Dn algebra.

3.4 Type D: further examples

3.4.1 minDn

The Dn analogue of quivers investigated in Section 3.2.1 is

1 2

. . .

2

1

1

1

(3.97)

Their Coulomb branches are the closures of minimal nilpotent orbits of Dn with

HWG [20]

HWG(t) =
1

1− µ2t2
. (3.98)

The Joseph relations on such an orbit are

t4([2, 0, . . . , 0] + [0, . . . , 0]) : N(~0)2 = 0 (3.99)

t4([0, 0, 0, 1, 0, . . . , 0]) : rank N(~0) ≤ 1 (3.100)
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and have been numerically verified for low values of n. The lack of a complex

mass deformation in the minimal nilpotent orbit of so(8,C) generalises to minimal

nilpotent orbits of so(2n,C) with n > 4.

3.4.2 n.minD4

We provide one final example of Dn nilpotent orbits, the next-to-minimal nilpotent

orbit quivers

2 2

1

1

2

(3.101)

The relations can be deduced from [20]

HWG(t, µi) =
1− µ2

3µ
2
4t

8

(1− µ2t2)(1− µ2
3t

4)(1− µ2
4t

4)
(3.102)

and are given by the tensor relations

t4([0, 0, 0, 0]) : tr(N(~0)2) = 0 (3.103)

t4([0, 0, 2, 0] + [0, 0, 0, 2]) : N(~0)[ijN(~0)kl] = 0 (3.104)

and have been verified by our methods. Turning on masses leads to the related set

of equations

t4([0, 0, 0, 0]) : tr(N( ~M)2) =
1

2
(M1,1 −M1,2)2 (3.105)

t4([0, 0, 2, 0] + [0, 0, 0, 2]) : N( ~M)[ijN( ~M)kl] = 0 (3.106)

The trace equation shows that this Coulomb branch has a complex mass deforma-

tion.

3.5 Synthetic method: a summary

Computations in the previous chapter demonstrated that operator counting and

abelianisation can be fruitfully combined in a new approach which we refer to as

the synthetic method. We chose to adapt the method to the structural peculiarities

of type AD quivers to aid exposition, but here we provide a clean, quiver-agnostic

and general prescription which will serve us well in analysing quivers of BCG type

in the following chapter.
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Abelianised variables ϕi,a have weight 2 (spin 1) under the R-symmetry11, while

the Poisson bracket scales with weight −2. Weights of u±i,a can be read off from

(2.193). The Coulomb branch chiral ring of any good or ugly theory is graded by

R-symmetry weights as C[C] =
∑

i∈Z≥0
C[C]i where C[C]i is the vector space of all

Coulomb branch chiral ring operators with R-symmetry weight i.

Any Coulomb branch operator O with well-defined R-symmetry weight j defines

a map {O, ·} : C[C]i → C[C]i+j−2 and therefore operators in C[C]2 form a closed

Poisson algebra. This algebra is precisely the symmetry algebra g of the Coulomb

branch and all operators in C[C]i necessarily assemble into tensors of the C[C]2
algebra g. In this thesis we focus almost exclusively on good (in fact, balanced)

theories whose Coulomb branch chiral rings are generated by operators in C[C]2 and

whose symmetry algebra g is simple. Consequently, C[C]2 operators assemble into a

single (coadjoint) representation of g – the moment map of the symmetry – which

has a matrix realisation for all cases in this work. We may also consider cases whose

ring is generated by C[C]2 operators transforming in the coadjoint representation

along with another set of C[C]4 operators, also in the coadjoint representation, in

which case the following discussion straightforwardly generalises.

The synthetic method itself can be summarised as follows. Let Xk ∈ g form a

basis of g satisfying [Xk, Xl] =
∑

m cklmXm. There is a basis of C[C]2 formed by Ok
such that {Ok,Ol} =

∑
m cklmOm. If X∗k are dual to Xk, ie. 〈X∗k , Xl〉 = δkl, the

moment map N12 is explicitly constructed as

N =
∑

k

OkX∗k . (3.107)

This definition guarantees that 〈N, ·〉 acts as a Lie algebra homomorphism:

{〈N,Xk〉, 〈N,Xl〉} = 〈N, [Xk, Xl]〉 (3.108)

The choice of Ok is heavily constrained – enough, in fact, to allow us to select

an almost unique13 set of operators from C[Cabel]
WG to form components of N . And

since N generates the Coulomb branch chiral ring, we have found a set of generators

for C[C].
The moment map N satisfies certain matrix relations, which can be inferred from

the Hilbert series of the Coulomb branch. Let us denote the ideal they form as IM ,

11The R-symmetry is assumed to be the SU(2) factor acting non-trivially on the Coulomb
branch. An operator’s weight is twice its conformal dimension.

12We reserve the usual symbol for moment maps, µ, for highest weight fugacities.
13It is enough to declare

∑
a u

+
i,a a positive simple root operator to fix the remaining choices, at

least in the quivers we consider.
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and let IA stand for the ideal of abelian relations (2.193). Then we claim that

C[C] = C[N(u±i,a, ϕi,a)]/IA = C[N ]/IM . (3.109)

Note that the third object contains no abelian expressions (and hence no potentially

troubling factors of 1/(ϕi − ϕj)). In this last step abelianised relations and compo-

nents of N , both expressed in terms of abelianised variables u± and ϕ, are replaced

by symbolic components of N (ie. Nij) with matrix relations also expressed in terms

of components of N .

It is in effect a change of variables to a set which is well-defined even on the

non-abelian locus of the moduli space. On the other hand, the less-than-perfect

abelianised representation brings with it a major advantage: it is very explicit and

rigid. We can use it to construct the generator N , independently check its relations

and also calculate exact coefficients in these relations (including dependence on mass

parameters) – something which is forever off-limits to any method relying solely on

Hilbert series, all while keeping representation theory front and centre.
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Chapter 4

Wreathed and non-simply laced

unitary quivers

4.1 Introduction

In this chapter we clarify the relation between several concepts relating to 3d N = 4

Coulomb branches of BCFG type. It has been known since [11] that the Coulomb

branch monopole formula [48] can be extended to quivers in the form of non-simply

laced framed Dynkin diagrams. However, while all the ingredients of a simply laced

Dynkin diagram – gauge and flavor nodes, hypermultiplet links – are readily in-

terpretable, it was unknown at the time what to make of the novel multiple link.

Recently [84] argued that their Coulomb branches result from a discrete folding op-

eration on Coulomb branches of simply laced quivers. We independently derive and

illustrate the same claim through the method of abelianisation [78]. We also de-

velop a second, related but distinct discrete operation which was previously studied

in [100, 101]. Both aspects expand on our previous work in [1].

The main concepts, presented in Fig. 4.1, can be summarised as follows.

Quivers with an automorphism possess a discrete symmetry relating gauge groups.

By analogy with continuous gauge groups, it, or any of its subgroups, can be gauged1,

and we demonstrate that this results in a theory whose Coulomb branch is a discrete

quotient of the original, where the action by which we quotient is directly induced

by the quiver automorphism (or subgroup thereof). This operation, which we call

discrete gauging, produces wreathed quivers. Previous work [100, 101] generated

similar results on the Coulomb branch by replacing n U(1) nodes by a U(n) node

with adjoint matter.

In contrast, quiver folding relates Coulomb branches of pairs of simply laced and

non-simply laced quiver gauge theories. To be clear, we show the action on the

1Discretely gauging string backgrounds is of course an old idea which has generated a lot of
discussion, for example in [121–125], and the findings of this section may be viewed as a new entry.
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Coulomb branch and conjecture that one can view it as one effect of an action on

the theory2. However, we have been unsuccessful in our attempts to write down the

path integral or compute the Higgs branch of folded theories. Coulomb branches of

balanced A2n−1–type quivers, ie. framed linear quivers satisfying the balance con-

dition3 and exhibiting sl(2n,C) symmetry on the Coulomb branch, can be “folded”

into Coulomb branches of balanced Cn–type quivers with usp(2n,C) symmetry. Bal-

anced Dn–type quiver Coulomb branches, ie. Coulomb branches of balanced framed

quivers shaped like Dn Dynkin diagrams, can be “folded” into Coulomb branches

of balanced Bn−1–type quivers. G2–type quiver Coulomb branches can be similarly

obtained from D4–type quivers while F4–type quivers are folded E6–type quivers.

The folded spaces are fixed points under the group action induced by the quiver

automorphism and we show that they are symplectic leaves of spaces obtained by

discretely gauging their respective original Coulomb branches. In some cases dis-

tinct subgroups of the quiver automorphism can give identical sets of fixed points

(eg. S3 and Z3 of the D4 affine quiver) and their folded spaces coincide; as a result,

there are “fewer” folded than wreathed quivers.

Actions of both discrete gauging and folding on the Coulomb branch are readily

interpreted through a geometric lens, see Figure 4.2. We claim that, since discrete

gauging is implemented by restricting the chiral ring to invariants of a symmetry

group action Γ, the resulting space is an orbifold of the initial Coulomb branch

under Γ – and since the Poisson structure respects this group action, the orbifold

inherits a natural symplectic structure. If the original space is a nilpotent orbit of

some algebra then the orbifold is sometimes, but not always, a nilpotent orbit of the

relevant folded algebra, but it is in any case symmetric under the folded algebra’s

action.

Folding, on the other hand, reduces the Coulomb branch to the fixed subspace

under the same group action Γ. We show that it has a Poisson structure and,

since the fixed subspace is (a singular) part of the corresponding orbifold, the Hasse

diagram [17] of the folded space is a subdiagram of the orbifold’s Hasse diagram.

In all known cases a nilpotent orbit folds to another nilpotent orbit (of the folded

algebra). This situation is reminiscent of a general phenomenon identified in [126],

in which orbits in the small affine Grassmannian for an algebraic group G (the

subvariety of the affine Grassmannian corresponding to the so-called small coweights

of G; see [127] for a friendly introduction addressed to physicists) possess a Z2 global

2In the rest of this text we will elide the distinction between folding a quiver theory and folding
its Coulomb branch, but wish to be clear that we present solid evidence only for the latter and at
best circumstantial evidence for the former.

3A node is balanced when the contributions of gauge and matter to the RG flow of the gauge
coupling exactly cancel out assuming the quiver is understood as a 4d theory. Assuming simply
laced unitary quivers without loops, this amounts to the condition that twice the node’s rank
equals the sum of all surrounding (gauge or matter) nodes’ ranks.
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Figure 4.1: (Top left) k generic subquiversQ′1 throughQ′k andm identical subquivers
Q1 through Qm are connected to a common central U(n) node. (Top right) Wreathed
quiver. (Bottom right) Non-simply laced quiver. The multiple link has valence m,
here depicted for m = 2.

involution – here these orbits would be depicted as the left portion of Figure 4.2.

Some of these orbits can be mapped to so-called Reeder pieces which are the union of

two nilpotent orbits of G, one which can be identified with a Z2 quotient of the affine

Grassmannian slice, and the other as the Z2 fixed points – respectively the middle

and right parts of Figure 4.2. Coulomb branches of framed unitary ADE quivers

were identified with slices in the associated affine Grassmannian [83], following the

construction [81, 82], and the Z2 involution of [126] is realized on the quiver as

leg permutations like in Figure 4.1. As a consequence, several of the examples

discussed below follow from the geometric point of view from these previous works;

the present chapter sheds a new light on this topic by providing quivers for each of

the three spaces, and giving formulas to compute the Hilbert series and HWGs of

their closures.

Figure 4.3 features a third discrete action called crossing. Flavorless simply laced

quiver theories possess a certain freedom of reparametrisation: the gauge group G
factorises as G/U(1)×U(1), with the decoupled U(1) factor contributing a (geomet-

rically uninteresting) factor of R3×S1 to the Coulomb branch, which is discarded by

convention. Crucially, while the choice of U(1) is somewhat constrained, the allowed

options are in practice equivalent and one can in particular choose to ungauge any
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Figure 4.2: (left) Initial Coulomb branch with highlighted Z2 symmetry. (middle)
Coulomb branch of the discretely gauged quiver depicted as an orbifold of the original
space. Note that bold edges form a singular subspace under the Z2 symmetry. (right)
Coulomb branch of the folded quiver, the subspace fixed under the Z2 symmetry.

given U(1) node without affecting the Coulomb branch. The situation is modified

for non-simply laced quivers, where ungaugings on opposite sides of the directed

multiple link give rise to pairs of Coulomb branches where one is the discrete quo-

tient of the other. We list this case for the sake of completeness, but do not study

it further in this thesis. The reader could instead consult the recent treatment in

[105].

Kostant-Brylinski reductions

In [128] the authors identified that discrete quotients of certain minimal nilpotent

orbits were equivalent to (generically non-minimal) nilpotent orbits of other algebras;

their results are summarised in Figure 4.44. The same pattern is observed in discrete

gauging and we claim that our construction is a physical realisation of their cases

1,2,3,4 and 9. We empirically confirmed this conjecture using both Hilbert series

and abelianisation methods as in [1] up to low but non-trivial rank. The lines

painted in green (cases 2, 3, 4 and 9) correspond to wreathed simply laced quivers.

Case 1, painted in red, stands apart because of the non-simply laced initial quiver;

although the moduli space can be described algebraically using abelianised variables,

the explicit implementation of the monopole formula for non-simply laced wreathed

quivers is postponed for future investigations.

A recent work [105] showed that cases 5, 6 and 7 (yellow in Figure 4.4) occur

in Coulomb branches of non-simply laced quivers. The Zn quotient corresponds to

gauging a U(1) node on the “long” end of an edge of multiplicity n and ungauging

another U(1) node on the “short” end. The quiver realisations of all eight known

cases are collected in Figure 4.4.

4[129] provide more examples of discrete and non-discrete quotients in nilpotent orbits.
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Figure 4.3: Discrete actions on the quiver

Case number 8 still presents a challenge, and we are not aware of any quiver

realisation of the corresponding Z2
2 quotient. However the HWGs are under control,

and are discussed briefly at the end of Section 4.2.5.
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Figure 4.5: Quivers on the left wreathe into quivers on the right.

4.2 Discrete gauging

Our first example of a discrete quiver operation, discrete gauging, orbifolds the

Coulomb branch by a subgroup of the quiver’s automorphisms. Another operation,

which also acts on the Coulomb branch as an orbifold, was previously studied in

[100, 101]5. Ours differs in several respects: it preserves the dimension of the Higgs

branch as well as the Coulomb branch, allows for consistent and successive discrete

gauging of nodes into “larger” nodes and generalises beyond acting on a collection of

n U(1) nodes (which form a U(n) node with adjoint matter in [100, 101]) to acting

on n copies of arbitrary gauge groups or “legs” of the quiver.

It is possible to discretely gauge any quiver of the type depicted in the top left

corner of Fig. 4.1, ie. one with m identical legs6 Qi (and potentially other legs Q′j)

connected to a single common node which we call the pivot7. One discretely gauges

the m identical legs by extending the overall gauge group with the symmetric group

Sm, or a subgroup thereof, which permutes the gauge factors associated with each

leg. We say that we have gauged the quiver’s automorphism. For example, three

legs composed solely of U(1) nodes will arrange into a U(1) o S3 node, while two

legs with U(2)× U(1) gauge nodes will combine to give (U(2)× U(1)) o S2, with S2

simultaneously exchanging U(2) and U(1) factors.

Our strategy in this section consists of the following steps. We first demonstrate

the existence of a well-defined orbifolding operation on the Coulomb branch, giving

results consistent with existing literature. Then we suggest that the operation acts

on the quiver as a whole in a way that can be deduced from the Coulomb branch

5In contrast to our treatment, these works did not claim to discretely gauge the theory, but
restricted their claims only to effects on the Coulomb branch.

6A leg can have arbitrary shape and in particular need not be linear.
7It may be possible to discretely gauge quivers without a pivot node but we do not have a

successful case to present.
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action and that the results of this operation should be viewed as quivers in their

own right, even if they often cannot be written down using existing notation; we

introduce the concept of wreathed quivers to get over this difficulty; see Figure 4.5 for

two examples. We support this claim by generalising the monopole formula to this

family of quivers and computing an example, as well as calculating a few wreathed

quiver Higgs branches. We also conjecture that a well known Higgs branch operation

is the 3d mirror to this operation on the Coulomb branch.

4.2.1 Wreath product

We pause for a moment to introduce the notion of the wreath product G o Γ of a

group G by a permutation group Γ ⊆ Sn (the integer n is understood in the notation

G o Γ, which we could denote G on Γ if there is a risk of confusion) [130]. As a set,

we define

G on Γ ≡ G o Γ =

(
n∏

i=1

Gi

)
× Γ , (4.1)

where the × denotes the Cartesian product of sets, not the direct product of groups.

There are n copies G1, ..., Gn of the group G. An element of (g, σ) ∈ G o Γ is an

ordered list of n elements gi of G together with a permutation σ ∈ Γ. The group

multiplication law is given, for (g, σ) ∈ G o Γ and (g′, σ′) ∈ G o Γ, by

(g, σ) · (g′, σ′) = (gσ(g′), σσ′) , with (gσ(g′))i = gig
′
σ−1(i) . (4.2)

Intuitively, G o Γ is the direct product of n copies of G, which can in addition be

permuted by Γ.

In this section we consider wreath products where G is a unitary group U(r), or

more generally a direct product of finitely many unitary groups U(r1)×· · ·×U(rk).

In this case, in particular in the quivers, we extend the usual shorthand notation

in which U(r) is replaced by the rank r, and we write r o Γ for U(r) o Γ, and more

generally [r1 · · · rk] o Γ for (U(r1)× · · · × U(rk)) o Γ.

4.2.2 Action on the Coulomb branch

We will first study this procedure through the lens of Coulomb branch abelianisation.

The goal is to show that the Coulomb branch can be reduced to an orbifold by an

automorphism of the quiver.

Since each node contributes several variables to the abelianised chiral ring, there

is an induced Sm action permuting them. For any π ∈ Sm, we have
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π(xi,a) := xπ(i),a (4.3)

Action on more complicated (polynomial or rational) functions of these variables is

defined by action on indices of the full expression. For example

π(u+
i,au

+
j,b) = u+

π(i),au
+
π(j),b. (4.4)

Note that mass parameters should be treated as numbers (parameters) rather than

ring elements (VEVs); therefore π does not act on them, ie.

π(Mi,a) = Mi,a. (4.5)

In fact, this constraint forces

π(Mi,a) = Mi,a = Mπ(i),a. (4.6)

To see this consider the A5 theory which gauges to the bottom right quiver in Fig.

4.5:

π(u+
1 u
−
1 ) = π (−(ϕ1 − ϕ2)(ϕ1 −M1)) = −(ϕ5 − ϕ4)(ϕ5 −M1) (4.7)

u+
5 u
−
5 = −(ϕ5 − ϕ4)(ϕ5 −M5) (4.8)

Since π(u+
1 u
−
1 ) = u+

5 u
−
5 , the two mass parameters must be equal to preserve symme-

try under π. This is a sensible constraint: if M1 6= M5 then the mass deformation

breaks the quiver’s S2 symmetry.

We should check that the form of the Poisson brackets (2.196)-(2.198) is com-

patible with this action in the sense that {π(x), π(y)} = π({x, y}).

{π(ϕi,a), π(u±i,a}) = {ϕπ(i),a, u
±
π(i),a} = ±u±π(i),a = π

(
{ϕi,a, u±i,a}

)
(4.9)

{π(u+
i,a), π(u−i,a)} = {u+

π(i),a, u
−
π(i),a} =

∂

∂ϕπ(i),a

∏
w∈R〈w, π(~ϕ)〉|wi,a|∏
α∈Φ〈α, π(~ϕ)〉2|αi,a| = π

(
{u+

i,a, u
−
i,a}
)

(4.10)

{π(u±i,a), π(u±j,b)} = {u±π(i),a, u
±
π(j),b} = ±κij

u±π(i),au
±
π(j),b

ϕπ(i),a − ϕπ(j),b

= π
(
{u±i,a, u±j,b}

)
(4.11)

The first line is clearly compatible with the action. The second line also succeeds

with a simple relabelling: wπ(i) ↔ wi and απ(i) ↔ αi. The third line is similarly

preserved because κπ(i)π(j) = κij is a consequence of the automorphism. In fact, it

is noteworthy that the third line forces the action of π to preserve connectedness
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while the second line enforces identical gauge and matter content on each leg Qi.

To implement the quotient on the Coulomb branch chiral ring, it is enough to

declare that only Sm–invariant operators are physical. This is easily done through

the use of a projector:

P (·) =
1

m!

∑

π∈Sm
π(·). (4.12)

Every operator of the form P (O) is physical.

The effect on the Coulomb branch is then transparent. If C and C̃ are Coulomb

branches of, respectively, the original quiver and discretely gauged quivers, the two

spaces are related by

C̃ = C/Sm (4.13)

ie. the discretely gauged Coulomb branch is a Sm orbifold of the original space.

This construction leads to new Coulomb branches which were previously unknown,

provided that they are orbifolds of known Coulomb branches.

Note that nothing prevents generalisation from Sm to arbitrary subgroups Γ of

Sm, for instance the alternating group Am or cyclic group Zm. We investigate one

such example in Section 4.4.2.

The projector acts remarkably simply on moment maps of type AD quivers as

studied in [1]. In fact, if NA2n−1 is the moment map for a type A2n−1 quiver then

P (NA2n−1) = NCn (4.14)

is a Cn moment map and P acts component-wise. Similarly,

P (NDn+1) = NBn . (4.15)

To see this action on an example, and to illustrate why its action on moment

maps is so simple, consider the top left quiver in Fig. 4.14. Select the Chevalley-Serre

basis of D4 and its operator counterpart, ie. the basis of operators in C[C]2 which

replicates (2.10)-(2.13) with Poisson brackets. We will denote the algebra elements

and their duals with capital letters, reserving lower case letters for operators with

appropriate commutation relations. In this notation, the moment map is

ND4 =
∑

1≤i≤4

hiH
∗
i +

∑

α∈Φ+

(
eαE

∗
α + e−αE

∗
−α
)
. (4.16)

In the interest of concreteness we perform the projection by P in full detail. Start
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with the moment map of D4:

ND4 =h1H
∗
1 + h2H

∗
2 + h3H

∗
3 + h4H

∗
4

+ e〈±1,0,0,0〉E
∗
〈±1,0,0,0〉 + e〈0,±1,0,0〉E

∗
〈0,±1,0,0〉

+ e〈0,0,±1,0〉E
∗
〈0,0,±1,0〉 + e〈0,0,0,±1〉E

∗
〈0,0,0,±1〉

+ e〈±1,±1,0,0〉E
∗
〈±1,±1,0,0〉 + e〈0,±1,±1,0〉E

∗
〈0,±1,±1,0〉 + e〈0,±1,0,±1〉E

∗
〈0,±1,0,±1〉

+ e〈±1,±1,±1,0〉E
∗
〈±1,±1,±1,0〉 + e〈±1,±1,0,±1〉E

∗
〈±1,±1,0,±1〉 + e〈0,±1,±1,±1〉E

∗
〈0,±1,±1,±1〉

+ e〈±1,±1,±1,±1〉E
∗
〈±1,±1,±1,±1〉 + e〈±1,±2,±1,±1〉E

∗
〈±1,±2,±1,±1〉

(4.17)

The projector acts on operators:

P (ND4) =
∑

1≤i≤4

P (hi)H
∗
i +

∑

α∈Φ+

(
P (eα)E∗α + P (e−α)E∗−α

)

=P (h1)H∗1 + P (h2)H∗2 + P (h3)H∗3 + P (h4)H∗4

+ P (e〈±1,0,0,0〉)E
∗
〈±±1,0,0,0〉 + P (e〈0,±1,0,0〉)E

∗
〈0,±1,0,0〉

+ P (e〈0,0,±1,0〉)E
∗
〈0,0,±1,0〉 + P (e〈0,0,0,±1〉)E

∗
〈0,0,0,±1〉

+ P (e〈±1,±1,0,0〉)E
∗
〈±1,±1,0,0〉 + P (e〈0,±1,±1,0〉)E

∗
〈0,±1,±1,0〉

+ P (e〈0,±1,0,±1〉)E
∗
〈0,±1,0,±1〉 + P (e〈±1,±1,±1,0〉)E

∗
〈±1,±1,±1,0〉

+ P (e〈±1,±1,0,±1〉)E
∗
〈±1,±1,0,±1〉 + P (e〈0,±1,±1,±1〉)E

∗
〈0,±1,±1,±1〉

+ P (e〈±1,±1,±1,±1〉)E
∗
〈±1,±1,±1,±1〉 + P (e〈±1,±2,±1,±1〉)E

∗
〈±1,±2,±1,±1〉

=h1H
∗
1 + h2H

∗
2 +

h3 + h4

2
H∗3 +

(h3 + h4)

2
H∗4

+ e〈±1,0,0,0〉E
∗
〈±1,0,0,0〉 + e〈0,±1,0,0〉E

∗
〈0,±1,0,0〉

+
e〈0,0,±1,0〉 + e〈0,0,0,±1〉

2
E∗〈0,0,±1,0〉 +

e〈0,0,±1,0〉 + e〈0,0,0,±1〉
2

E∗〈0,0,0,±1〉

+ e〈±1,±1,0,0〉E
∗
〈±1,±1,0,0〉 +

e〈0,±1,±1,0〉 + e〈0,±1,0,±1〉
2

E∗〈0,±1,±1,0〉

+
e〈0,±1,±1,0〉 + e〈0,±1,0,±1〉

2
E∗〈0,±1,0,±1〉 +

e〈±1,±1,±1,0〉 + e〈±1,±1,0,±1〉
2

E∗〈±1,±1,±1,0〉

+
e〈±1,±1,±1,0〉 + e〈±1,±1,0,±1〉

2
E∗〈±1,±1,0,±1〉 + e〈0,±1,±1,±1〉E

∗
〈0,±1,±1,±1〉

+ e〈±1,±1,±1,±1〉E
∗
〈±1,±1,±1,±1〉 + e〈±1,±2,±1,±1〉E

∗
〈±1,±2,±1,±1〉

=h±1H
∗
±1 + h2H

∗
2 + (h3 + h4)

H∗3 +H∗4
2

+ e〈±1,0,0,0〉E
∗
〈±1,0,0,0〉 + e〈0,±1,0,0〉E

∗
〈0,±1,0,0〉

+ (e〈0,0,±1,0〉 + e〈0,0,0,±1〉)
E∗〈0,0,±1,0〉 + E∗〈0,0,0,±1〉

2
+ e〈±1,±1,0,0〉E

∗
〈±1,±1,0,0〉

+ (e〈0,±1,±1,0〉 + e〈0,±1,0,±1〉)
E∗〈0,±1,±1,0〉 + E∗〈0,±1,0,±1〉

2
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+ (e〈±1,±1,±1,0〉 + e〈±1,±1,0,±1〉)
E∗〈±1,±1,±1,0〉 + E∗〈±1,±1,0,±1〉

2

+ e〈0,±1,±1,±1〉E
∗
〈0,±1,±1,±1〉

+ e〈±1,±1,±1,±1〉E
∗
〈±1,±1,±1,±1〉 + e〈±1,±2,±1,±1〉E

∗
〈±1,±2,±1,±1〉

=h̃1H̃
∗
1 + h̃2H̃

∗
2 + h̃3H̃

∗
3

+ ẽ〈±1,0,0〉Ẽ
∗
〈±1,0,0〉 + ẽ〈0,±1,0〉Ẽ

∗
〈0,±1,0〉 + ẽ〈0,0,±1〉Ẽ

∗
〈0,0,±1〉

+ ẽ〈±1,±1,0〉Ẽ
∗
〈±1,±1,0〉 + ẽ〈0,±1,±1〉Ẽ

∗
〈0,±1,±1〉

+ ẽ〈±1,±1,±1〉Ẽ
∗
〈±1,±1,±1〉 + ẽ〈0,±1,±2〉Ẽ

∗
〈0,±1,±2〉

+ ẽ〈±1,±1,±2〉Ẽ
∗
〈±1,±1,±2〉 + ẽ〈±1,±2,±2〉Ẽ

∗
〈±1,±2,±2〉

=NB3 (4.18)

where we defined

h̃3 = h3 + h4 = 2(ϕ3 + ϕ4)− 2(ϕ2,1 + ϕ2,2) (4.19)

ẽ〈0,0,1〉 = e〈0,0,1,0〉 + e〈0,0,0,1〉 = u+
3 + u+

4 (4.20)

ẽ〈0,1,2〉 = e〈0,1,1,1〉 =
∑

a=1,2

u+
2,au

+
3 u

+
4

(ϕ2,a − ϕ3)(ϕ2,a − ϕ4)
(4.21)

and the remaining operators follow the same pattern ẽ〈a,b,2c〉 = e〈a,b,c,c〉 or ẽ〈a,b,c〉 =

e〈a,b,c,0〉 + e〈a,b,0,c〉 if c 6= 0 and ẽ〈a,b,0〉 = e〈a,b,0,0〉 otherwise. Notice a feature common

to components of the moment map on which P acts non-trivially: the prefactor from

the operator becomes the inverse multiplicity required in the definition of the new

dual basis, e.g.

P (h3)H∗3 + P (h4)H∗4 =
h3 + h4

#3

H∗3 +
h3 + h4

#3

H∗4

=(h3 + h4)
H∗3 +H∗4

#3

=h̃3
#3H̃

∗
3

#3

=h̃3H̃
∗
3 .

(4.22)

Just asND4 satisfies certain matrix relations which identify the space it parametrises

as the (closure of the) minimal nilpotent orbit of D4, so does NB3 obey several re-

lations appropriate for a B3 nilpotent orbit. The space should be an orbifold of the

minimal orbit of D4, so it should in particular have the same quaternionic dimen-

sion, namely 5. That is precisely the dimension of the next-to-minimal orbit of B3
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with the HWG [20]

HWG(t, µi) =
1

(1− µ2t2)(1− µ2
1t

4)
(4.23)

This space is parametrised by a matrix M satisfying the relations (computed using

standard plethystic techniques)8

t4[000] : trN2 = 0

t4[002] : N ∧N = 0 (4.24)

t6[010] : N3 = 0

We describe a relation by its R-symmetry weight appearing in the exponent of t

and the global symmetry representation in which it transforms. This often, but not

always, specifies the tensorial form of the relation, which we provide on the other

side of the colon. The notation N ∧ N should be understood as the contraction∑
lmno εijklmnoNlmNno with the rank 7 antisymmetric invariant tensor of so(7).

One can check that the moment map NB3 satisfies the identities in (4.24) modulo

abelianised relations. To show that there exist no other independent relations,

or generators for that matter, one can calculate the Hilbert series of the ring as

described below. This computation shows that indeed (4.24) form the complete set

of relations for the next-to-minimal orbit of so(7). Note that this is an instance of

Case 2 of the Kostant-Brylinski Figure 4.4.

4.2.3 Wreathed quivers

The previous section establishes that some Coulomb branches can be orbifolded by

a quiver automorphism. We will now argue that the orbifold can also be recovered

as the Coulomb branch of the original quiver after gauging its automorphism. It is

natural to ask if the resulting theory is also a quiver theory which could be studied

without reference to the original, ungauged theory. This is indeed possible, albeit

at the cost of generalising the notion of a quiver theory to wreathed quivers.

Traditionally a quiver theory is described by a quiver diagram in which nodes

represent gauge or flavor groups and links represent appropriately charged matter.

Wreathed quiver theories add wreathed legs denoted by (·) o Sn with an associated

wreathing group Sn. See Fig. 4.5 for two prototypical examples. The top right

quiver has a single wreathed node while the bottom right quiver is an example of a

8A similar set of relations appears in [131], albeit for the next-to-minimal orbit of D4. The
methods employed therein can be extended to the present case: given a general nilpotent orbit,
one can construct the quiver for which it is the Higgs branch and look for matrix relations implied
by the F -terms.
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quiver with a longer wreathed leg.

Abelianisation of wreathed quivers

The Coulomb branch of a wreathed quiver can be studied through abelianisation

with relatively minor changes, but it is cumbersome to write them down in full gen-

erality. We find much greater clarity in (entirely equivalent) abelianised calculations

performed on discretely gauged non-wreathed quivers. In practice, this amounts to

keeping the indices, Poisson and abelianised chiral structure from the non-wreathed

quiver while imposing invariance under the projector 4.12. For illustrative pur-

poses, and to draw a link to [100, 101], we present two particularly simple examples

depicted in Fig. 4.5.

There are very few new elements in the wreathed quiver theory depicted in the

top right quiver of Fig. 4.5. The third node brings six variables u±3,a and ϕ3,a,

a ∈ {1, 2}, much like a U(2) node would. The wreathing group acts similarly to a

Weyl group in that it permutes the index a and all physical operators are invariant

under it.

Abelianised relations on the middle node read

u+
2,au

−
2,a = −(ϕ2,a −M2)(ϕ2,a − ϕ1)(ϕ2,a − ϕ3,1)(ϕ2,a − ϕ3,2)

(ϕ2,1 − ϕ2,2)2
(4.25)

and the relations on the third node are essentially unchanged:

u+
3,au

−
3,a = −(ϕ3,a − ϕ2,1)(ϕ3,a − ϕ2,2). (4.26)

Interestingly, the latter can be read in two ways: either as the relation of a U(1) oS2

node, or as

u+
3,au

−
3,a = −(ϕ3,a − ϕ2,1)(ϕ3,a − ϕ2,2)

(ϕ3,1 − ϕ3,2)2
(ϕ3,1 − ϕ3,2)2, (4.27)

which is appropriate for a U(2) node with adjoint matter. This explains why in

[100, 101] a “bouquet” of n U(1) nodes combined into U(n) with adjoint matter: at

the level of the Coulomb branch, there is no difference between U(1) o Sn and U(n)

with adjoint matter.

The case of the bottom right quiver in Fig. 4.5 is slightly more subtle. The

first and second gauge nodes, which are inside the scope of a two-fold wreathing,

each come with six variables u±i,a and ϕi,a, a ∈ {1, 2}. However, the pattern of

abelianised relations, which can be determined by consistency with discrete gauging

of the bottom left quiver in Fig. 4.5, is as follows:

u+
1,au

−
1,a = −(ϕ1,a −M1)(ϕ1,a − ϕ2,a) (4.28)
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u+
2,au

−
2,a = −(ϕ2,a − ϕ1,a)(ϕ2,a − ϕ3) (4.29)

u+
3 u
−
3 = −(ϕ3 − ϕ2,1)(ϕ3 − ϕ2,2) (4.30)

Note in particular that the index a “stretches” across several nodes (but not the

mass variable, which is shared by all legs). The wreathing group S2 again acts on this

index, and invariance under it is a necessary prerequisite for operator physicality.

The Coulomb branch has C3 symmetry and the moment map parametrises the next-

to-minimal nilpotent orbit of this algebra. Its components include:

e〈±1,0,0〉 = u±1,1 + u±1,2 (4.31)

e〈0,±1,0〉 = u±2,1 + u±2,2 (4.32)

e〈0,0,±1〉 = u±3 (4.33)

e〈±1,±1,0〉 =
u±1,1u

±
2,1

ϕ1,1 − ϕ2,1

+
u±1,2u

±
2,2

ϕ1,2 − ϕ2,2

(4.34)

e〈0,±1,±1〉 =
u±2,1u

±
3

ϕ2,1 − ϕ3

+
u±2,2u

±
3

ϕ2,2 − ϕ3

(4.35)

e〈±1,±1,±1〉 =
u±1,1u

±
2,1u

±
3,1

(ϕ1,1 − ϕ2,1)(ϕ2,1 − ϕ3)

+
u±1,2u

±
2,2u

±
3,1

(ϕ1,2 − ϕ2,2)(ϕ2,2 − ϕ3)
(4.36)

e〈0,±2,±1〉 =
u±2,1u

±
2,2u

±
3

(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)
(4.37)

e〈±1,±2,±1〉 =
u±1,1u

±
2,1u

±
2,2u

±
3,1

(ϕ1,1 − ϕ2,1)(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)

+
u±1,2u

±
2,1u

±
2,2u

±
3,1

(ϕ1,2 − ϕ2,1)(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)
(4.38)

e〈±2,±2,±1〉 =
u±1,1u

±
1,2u

±
2,1u

±
2,2u

±
3,1

(ϕ1,1 − ϕ2,1)(ϕ1,2 − ϕ2,2)(ϕ2,1 − ϕ3)(ϕ2,2 − ϕ3)
(4.39)

h1 = 2(ϕ1,1 + ϕ1,2)− (ϕ2,1 + ϕ2,2) (4.40)

h2 = −(ϕ1,1 + ϕ3,1) + 2(ϕ2,1 + ϕ2,2)− 2ϕ3 (4.41)

h3 = −(ϕ2,1 + ϕ2,2) + 2ϕ3 (4.42)

4.2.4 Monopole formula for wreathed quivers

Consider now a wreathed quiver. To compute the monopole formula, we need to

replace the Weyl group in (2.181) with an appropriate discrete group, necessarily a

subgroup of Sr which contains the Weyl group W of the gauge group G and leaves

∆(m) invariant. Generically, several such discrete groups exist. Our choice, which

we dub WΓ, is the wreath product of the Weyl group W by the wreathing group Γ:
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WΓ =W o Γ , W ⊆WΓ ⊆ Sr . (4.43)

Formula (2.181) generalises readily for such a group, setting

HSΓ(t) =
1

|WΓ|
∑

m∈Zr

∑

γ∈WΓ(m)

t2∆(m)

det (1− t2γ)
. (4.44)

This is the monopole formula for the wreathed quiver.

A comment on computational complexity

The monopole formula in the form (4.44) is very time-consuming to evaluate nu-

merically in a series expansion in t. For such a task, it is preferable to preprocess

it somewhat, using the high level of symmetry that it presents. In particular, if the

group Γ can be written as a product of two groups WΓ = W1 ×W2, then one can

split the summation into two sums.

This procedure involves finding a subset of Zr which contains exactly one element

of each orbit ofWΓ. In the context of Weyl groups, or more generally Coxeter groups,

this is called a fundamental chamber. For instance, if WΓ = W as in (2.174), then

this group can be used to order the magnetic charges in increasing order for each

node. Then one uses the identity

PU(n)(t
2;m1, . . . ,mN) := PSn(t;m1, . . . ,mn) =

1

n!

∑

γ∈Sn(m)

1

det (1− t2γ)
(4.45)

for the Casimir factors as defined in the appendix of [48]. This is done in the usual

way of presenting the monopole formula.

For wreathed quivers, WΓ does not decompose in general as a direct product of

symmetry groups. One can introduce symmetry factors exactly as in (4.45), via

PWΓ
(t2;m) =

1

|WΓ|
∑

γ∈WΓ(m)

1

det (1− t2γ)
. (4.46)

The formula (4.44) can then be rewritten

HSΓ(t) =
∑

m∈Weyl(GoΓ)

PWΓ
(t;m)t2∆(m) , (4.47)

where Weyl(G oΓ) is a principal Weyl chamber for the group G oΓ. We now illustrate

the procedure on three examples and most explicitly on the third.
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Example 1 : subgroups of S3

Consider the quiver corresponding to the affine D4 Dynkin diagram (see the first

column of Figure 4.18). One of the four rank-one nodes is a flavor node, so we can

define the graph by the vertices

V = {a, b, c, d} F = {e} (4.48)

where a denotes the central node, and

E = {(a, b), (a, c), (a, d)} E ′ = {(a, e)} . (4.49)

The corresponding ranks are na = 2, nb = nc = nd = ne = 1. The total gauge

group is G = U(2) × U(1)3 with rank r = 5. The Weyl group is W = S2. The

magnetic charges are elements m = (ma,1,ma,2,mb,mc,md) ∈ Z5 and the conformal

dimension is given by

2∆(m) =
2∑

i=1

(|ma,i−mb|+ |ma,i−mc|+ |ma,i−md|+ |ma,i|)−2|ma,1−ma,2| . (4.50)

The group S5 includes 156 subgroups which can be gathered into 19 conjugacy

classes. These 19 classes are partially ordered and form a Hasse diagram. For ∆

to be invariant, we have to select those groups Γ which are subgroups of S2 × S3

(this is also known as the dihedral group D12), and moreover to satisfy (4.43) the

groups Γ have to contain S2 as a subgroup. Out of the 19 classes of subgroups, 9 are

subgroups of D12, and out of these 9, 6 contain a S2 as a subgroup. However there

are two equivalent but non-conjugate S2 subgroups of D12, and we have to pick one

of them. We are then left with 4 classes of subgroups, which can be identified with

the 4 classes of subgroups of S3 (S3, Z3, Z2 and 1). Clearly, in this simple example

this analysis is slightly superfluous and the result could have been guessed. We end

up with 4 inequivalent groups Γ, and we can readily evaluate the expression (4.44):

HSZ2 =
(1 + t2)(1 + 17t2 + 48t4 + 17t6 + t8)

(1− t2)10
(4.51)

HSZ2×Z2 =
(1 + t2)(1 + 10t2 + 20t4 + 10t6 + t8)

(1− t2)10
(4.52)

HSZ2×Z3 =
(1 + t2)(1 + 3t2 + 20t4 + 3t6 + t8)

(1− t2)10
(4.53)

HSZ2×S3 =
(1 + t2)(1 + 3t2 + 6t4 + 3t6 + t8)

(1− t2)10
(4.54)
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Name Generators Cardinality
Trivial - 1
S2 (12) 2

Double transposition (12)(34) 2
Z4 (1234) 4

Normal Klein (12)(34), (13)(24) 4
Non-normal Klein (12), (34) 4

Dih4 (1234) ,(13) 8
Z3 (123), 3
S3 (12) , (13) 6
A4 (123) , (124) 12
S4 (12) , (13) , (14) 24

Figure 4.6: Subgroups of S4

which identify the spaces as the (closure of the) minimal nilpotent orbit of SO(8),

next to minimal of SO(7), double cover of the subregular orbit of G2 [126], and the

subregular orbit of G2.

Example 2 : subgroups of S4

We now consider the same quiver as in the previous example, namely the affine D4

quiver, but we use the fact that the gauge group of the theory is really

U(1)4 × U(2)

U(1)
(4.55)

where the U(1) acts diagonally. This form makes the S4 symmetry of the quiver

explicit, and this S4 contains as a subgroup the S3 which is studied in the previous

example. Following the approach of this section, one can define a wreathed quiver

for each conjugacy class of subgroups of S4. Part of the results presented here

already appear in unpublished summer work by Siyul Lee [132], where the cycle

index technique was used. The group S4 admits 30 subgroups that can be organized

into 11 conjugacy classes, as listed in Figure 4.6, where we give a name to each class

of subgroups.

For each subgroup, one can compute the Hilbert series (4.44). The results are

gathered in Figure 4.8, where they are arranged in the shape of the Hasse diagram

of the subgroups of S4. We give some details about the computation in appendix C.

We also give the first orders of the series expansions of these Hilbert series, along

with their plethystic logarithms, in Figure 4.7. The coefficient of the t2 term gives

the dimension of the isometry group of the Coulomb branch.
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Subgroup Perturbative Hilbert series PLog
Trivial 1 + 28t2 + 300t4 + 1925t6 + ... 28t2 − 106t4 + 833t6 + ...
S2 1 + 21t2 + 195t4 + 1155t6 + ... 21t2 − 36t4 + 140t6 + ...

Double transposition 1 + 16t2 + 160t4 + 985t6 + ... 16t2 + 24t4 − 215t6 + ...
Z4 1 + 9t2 + 83t4 + 497t6 + ... 9t2 + 38t4 − 10t6 + ...

Normal Klein 1 + 10t2 + 90t4 + 515t6 + ... 10t2 + 35t4 − 55t6 + ...
Non-normal Klein 1 + 15t2 + 125t4 + 685t6 + ... 15t2 + 5t4 − 70t6 + ...

Dih4 1 + 9t2 + 69t4 + 356t6 + ... 9t2 + 24t4 − 25t6 + ...
Z3 1 + 14t2 + 118t4 + 693t6 + ... 14t2 + 13t4 − 49t6 + ...
S3 1 + 14t2 + 104t4 + 539t6 + ... 14t2 − t4 − 7t6 + ...
A4 1 + 8t2 + 48t4 + 223t6 + ... 8t2 + 12t4 + 7t6 + ...
S4 1 + 8t2 + 48t4 + 210t6 + ... 8t2 + 12t4 − 6t6 + ...

Figure 4.7: Wreathed quivers obtained from the affine D4 quiver by acting on the
legs by all subgroups of S4.
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Example 3 : wreath product of non Abelian groups

We now consider the quiver

1

a

2

b

3

c 2

d

1

2

e

1 (4.56)

whose Coulomb branch is the closure of the nilpotent orbit of so(10) associated

with the partition [24, 12]. The letters in red give our assignment of magnetic charge

for the various gauge groups. The rank is r = 10 and the Weyl group is W =

S1 × S2 × S3 × S2 × S2. In order to preserve ∆, we need a symmetry of the quiver,

which is given by permutation of the two legs containing the nodes d and e. So there

are only two allowed groups WΓ, namely WΓ = W and an extension WΓ of W of

index 2. Let’s focus on this second group.

The factors S1 × S2 × S3 in W are unaffected by the permutation, so we omit

them in the matrix discussion that follows. The commutant of this part in S10 is

S4, which acts by permuting the four magnetic fugacities (d1, d2, e1, e2). The group

WΓ is then the product WΓ = S1 × S2 × S3 × Γ′ where S2 × S2 ⊂ Γ′ ⊂ S4. We can

describe Γ′ explicitly as generated by the following two permutation matrices:




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



,




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



. (4.57)

This group is isomorphic to the dihedral group of order 8, that we denote by Dih4.

With this explicit description, it is now possible to evaluate (4.44), and one finds

the Hilbert series for the Coulomb branch of the wreathed quiver,

HSS1×S2×S3×Dih4 =
1 + 14t2 + 106t4 + 454t6 + 788t8 + 454t10 + 106t12 + 14t14 + t16

(1− t2)20(1 + t2)−2
.

(4.58)

The corresponding HWG and other data concerning this space are gathered in the

middle column of Figure 4.21.

However, the sum involved in the computation is difficult to evaluate in practice,

and it is useful to use the symmetries to avoid unnecessary repetitions, as explained

above. In the present case, the sum in (4.44) forWΓ = S1×S2×S3×Dih4 becomes
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(4.47) where the sum over the Weyl chamber is given by:

1

|WΓ|
∑

m∈Z10

−→
∑

a

∑

b1≤b2

∑

c1≤c2≤c3




∑

d1 ≤ d2

<

e1 ≤ e2

+
∑

d1 ≤ d2≤ =
e1 ≤ e2




(4.59)

The notation here should be clear, with the chargesm = (a, b1, b2, c1, c2, c3, d1, d2, e1, e2) ∈
Z10 denoted with the letters as in (4.56). The first three sums in the right hand side

of (4.59) exploit in the standard way the symmetric groups, which allow to order

the charges. The same principle is used to get the summation range over indices

(d1, d2, e1, e2). Inside the sum, one of course introduces symmetry factors (4.46).

Let’s now explain the summation range for the last four indices in (4.59).

Γ′ is the dihedral group Dih4, of order 8, or the group of symmetries of the square

e1

d1

d2

e2

(4.60)

The elements of Γ′ are listed in Figure 4.9, with some of their properties. Without

entering into the details of the theory of Coxeter groups, let us note that the Weyl

chambers in R4 are delimited by subspaces fixed by the order 2 elements in the

group. Formally, the Weyl group of a simple Lie algebra, the principal Weyl chamber

is defined as the set of charges m which satisfy the inequalities

α ·m ≥ 0 (4.61)

for every simple root α. However, in the present case the order 2 elements don’t

necessarily fix a hyperplane in R4 (the −1 eigenspace can have dimension > 1). The

condition (4.61) then has to be replaced by a more general condition, which we now

explain on our example. We leave the study of the general case, and the connection

with Coxeter group theory, for future work.

The elements of order 2 in WΓ can be read from Figure 4.9. For every element

α of order 2 in WΓ, seen as a group of endomorphisms of its representation space,

we pick a basis (δαi ) of the kernel of this endomorphism in a consistent way (with

i = 1, . . . , dim ker(α)). This is done in the third column of Figure 4.9. The principal

Weyl chamber is then defined by

δα ·m ≥ 0 , (4.62)
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Permutation Order −1 eigenspace Inequality

Identity 1
d1 ↔ d2 2

(
−1 1 0 0

)
d1 ≤ d2

e1 ↔ e2 2
(

0 0 −1 1
)

e1 ≤ e2

d1 ↔ d2, e1 ↔ e2 2

(
−1 1 0 0
0 0 −1 1

)
e1 < e2 or

e1 = e2 and d1 ≤ d2

d1 ↔ e1, d2 ↔ e2 2

(
−1 0 1 0
0 −1 0 1

)
d2 < e2 or

d2 = e2 and d1 ≤ e1

d1 ↔ e2, d2 ↔ e1 2

(
0 −1 1 0
−1 0 0 1

)
d1 < e2 or

d1 = e2 and d2 ≤ e1

d1 → e1 → d2 → e2 → d1 4
d1 → e2 → d2 → e1 → d1 4

Figure 4.9: Elements of the group Dih4. In the first column, they are presented as
permutations, acting on (d1, d2, e1, e2). The second column is the order of the ele-
ment, the third gives a basis of the−1 eigenspace in the (d1, d2, e1, e2) representation.
The last column displays the condition imposed by (4.62).

which generalizes (4.61). The subtlety in (4.62) comes from the cases where dim ker(α) >

1. When this is the case, δα ·m is an element of Rdim ker(α) and we need to say what

we mean by ≥. A simple choice, which we adopt here, is to pick the lexicographic

order

(x, y) ≤ (x′, y′)⇔ y < y′ or (y = y′ and x ≤ x′) . (4.63)

Doing this for every order 2 element in Figure 4.9, we get the conditions listed in

the last column of that figure. Combining all these conditions together, we obtain

the summation range in (4.59).

4.2.5 HWG for wreathed quivers

We now explain how to perform the orbifold at the level of the HWG. The starting

point is the HWG of the Coulomb branch C of a quiver, which can be wreathed by

a finite permutation group Γ. The goal is to compute the HWG for C/Γ.

In the following, we give the general prescription, and at the same time we

illustrate with three examples Γ = Z2, Z3 and S3 to keep the discussion concrete.

We first recall that the group Γ has a well defined character table, which is a square

matrix whose columns are labelled by conjugacy classes of elements of Γ, and whose

rows are labelled by irreducible representations of Γ. For our three examples, these

character tables are
Γ = Z2 1 −1

Cardinality 1 1

1 1 1

ε 1 −1

(4.64)
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Γ = Z3 1 ω ω2

Cardinality 1 1 1

1 1 1 1

f 1 ω ω2

f 1 ω2 ω

Γ = S3 Id 3-cycles 2-cycles

Cardinality 1 2 3

1 1 1 1

ε 1 1 −1

2 2 −1 0

(4.65)

These character tables contain in each entry the trace of the matrices of the conju-

gacy class in the corresponding representation. One way to refine this information

is to give, instead of the trace, the list (unordered, and with repetitions allowed) of

the eigenvalues of these matrices. We will need these eigenvalues in equation (4.70).

On our three examples, we get

Γ = Z2 1 −1

Cardinality 1 1

1 {1} {1}
ε {1} {−1}

(4.66)

Γ = Z3 1 ω ω2

Cardinality 1 1 1

1 {1} {1} {1}
f {1} {ω} {ω2}
f {1} {ω2} {ω}

Γ = S3 Id 3-cycles 2-cycles

Cardinality 1 2 3

1 {1} {1} {1}
ε {1} {1} {−1}
2 {1, 1} {ω, ω2} {1,−1}

(4.67)

Of course in each case the sum of the eigenvalues listed in (4.66), (4.67) gives the

characters (4.64), (4.65). Let us call Cj the conjugacy classes (j = 1, . . . , n, with

n the number of conjugacy classes, and C1 is the class of the identity element),

cj = |Cj| their cardinalities, ρi the irreducible representations (i = 1, . . . , n, and ρ1

is the trivial representation), and di their dimensions. Finally we denote by Λi,j the

list of eigenvalues for Cj in ρi. For a representation R which is not irreducible, we

similarly denote by ΛR,j the list of eigenvalues of the class Cj in the representation

R. The elements of ΛR,j are denoted λkR,j for k = 1, . . . , dimR. This list is easily

obtained from the decomposition of R in irreducible representations. Note that

λkR,1 = 1 for all k.

We now show how to compute the HWG for an orbifold Coulomb branch based

on an initial Coulomb branch that admits a finite HWG. We say that HWG(C)
is finite is there exist two lists of monomials, that we denote (M1, . . . ,MK) and

(M ′
1, . . . ,M

′
K′), in the highest weight fugacities (µl) and the variable t, so that the
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HWG is

HWG(C) =

K′∏
k′=1

(1−M ′
k′)

K∏
k=1

(1−Mk)

. (4.68)

We assume that HWG(C) can be written in that way; this is a non-trivial assump-

tion, as it is known that many Coulomb branches don’t satisfy it.

The fact that Γ is a symmetry group translates into the fact that to the above

expression are associated two representations R and R′ of Γ, not necessarily ir-

reducible, of respective dimensions K and K ′, such that the numerator and the

denominator of the above expression transform according to these representations.

Then HWG(C) can be written

HWG(C) =

K′∏
k′=1

(1− λk′R′,1M ′
k′)

K∏
k=1

(1− λkR,1Mk)

. (4.69)

From this expression it is then straightforward to write the conjectured HWG for

the orbifold

HWG(C/Γ) =
1

|Γ|
n∑

j=1

cj ×

K′∏
k′=1

(1− λk′R′,jM ′
k′)

K∏
k=1

(1− λkR,jMk)

. (4.70)

We illustrate how this formula works in practice on the example of the D4 affine

quiver. All HWGs and quivers are gathered in Figure 4.18. Consider for instance

the HWGs written in terms of G2 fugacities. The closure of the minimal nilpotent

orbit of D4 has HWG equal to PE [2µ1t
2 + µ2t

2 + µ2t
4]. The identification of the

irreducible representations is as follows:

Z2 : HWG(C) = PE
[
1µ1t

2 + εµ1t
2 + 1µ2t

2 + εµ2t
4
]

(4.71)

Z3 : HWG(C) = PE
[
fµ1t

2 + fµ1t
2 + 1µ2t

2 + 1µ2t
4
]

(4.72)

S3 : HWG(C) = PE
[
2µ1t

2 + 1µ2t
2 + εµ2t

4
]

(4.73)

We then use equation (4.70) to obtain

HWG(C/Z2) =
1

2

(
1

(1− µ1t2)2(1− µ2t2)(1− µ2t4)

+
1

(1− µ1t2)(1 + µ1t2)(1− µ2t2)(1 + µ2t4)

)

=
1− µ2

1µ
2
2t

12

(1− µ1t2)(1− µ2t2)(1− µ2
1t

4)(1− µ1µ2t6)(1− µ2
2t

8)
.(4.74)
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HWG(C/Z3) =
1

3

2∑

i=0

1

(1− ωiµ1t2)(1− ω−iµ1t2)(1− µ2t2)(1− µ2t4)

=
(1− µ6

1t
12)

(1− µ2t2)(1− µ2t4)(1− µ2
1t

4)(1− µ3
1t

6)2
. (4.75)

HWG(C/S3) =
1

6

(
1

(1− µ1t2)2(1− µ2t2)(1− µ2t4)

+
2

(1− ωµ1t2)(1− ω2µ1t2)(1− µ2t2)(1− µ2t4)

+
3

(1− µ1t2)(1 + µ1t2)(1− µ2t2)(1 + µ2t4)

)

=
1− µ6

1µ
2
2t

20

(1− µ2t2)(1− µ2
1t

4)(1− µ3
1t

6)(1− µ2
2t

8)(1− µ3
1µ2t10)

.(4.76)

This reproduces the results in [105].

Eighth case of Figure 4.4 We can apply similar methods to the eighth line of

Figure 4.4. The HWG for the minimal nilpotent orbit of F4, written in terms of D4

fugacities, is PE[(µ1 + µ2 + µ3 + µ4)t2]. The weights µ1, µ3 and µ4 correspond to

the external nodes of the Dynkin diagram. In order to perform the Z2
2 quotient, we

charge them under the three distinct Z2 subgroups and apply formula (4.70). This

way one gets the HWG

1

4

∑

ε1=±1

∑

ε2=±1

1

(1− ε1ε2µ1t2)(1− µ2t2)(1− ε2µ3t2)(1− ε1µ4t2)
(4.77)

which evaluates to PE[µ2t
2 + (µ2

1 + µ2
3 + µ2

4)t4 + µ1µ3µ4t
6 − µ2

1µ
2
3µ

2
4t

12]. One can

check that this is indeed the HWG for the closure of the [3, 22, 1] orbit of so(8). An

alternative way of seeing the same computation relies on the fact that C3/Z2
2 is a

weighted hypersurface in C4.

4.2.6 Higgs branch of wreathed quivers

In this subsection, we turn to the Higgs branch of wreathed quivers. This is in

contrast with the rest of the section, which focuses on the Coulomb branch of the

3d N = 4 theories, but it serves several purposes. First, it demonstrates that

wreathed quivers do indeed provide a well-defined hyper-Kähler quotient, which can

be associated with a gauge theory whose gauge group is disconnected. Secondly,

we explain how to compute the Hilbert series of such quivers, using an averaging

procedure. Finally, it allows the study of the geometric action of wreathing on the

Higgs branch and contrasts it with the parallel action on the Coulomb branch.
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We focus on a simple but rich example, the affine D4 quiver, and compute the

Higgs branch of all the wreathed quivers that appear in Figure 4.8. Let Γ be a

subgroup of S4. We consider the wreathed quiver defined by this group acting on

the four U(1) nodes. This produces (when Γ is non-trivial) a disconnected gauge

group, as follows directly from the definition (4.1). Disconnected gauge groups have

been considered in the context of the plethystic program in [133], where groups

were extended by outer automorphisms, following a formula of Wendt [134]. Here

the context is different but the techniques spelled out in [133] apply. In fact, the case

considered here is particularly easy to handle because the groups which are being

wreathed are all U(1) groups, therefore the Haar measure is not modified. We pick

fugacities zi (i = 1, 2, 3, 4) for the U(1) factors and fugacity y for the U(2) factor

(after ungauging a diagonal U(1)). It follows that the Higgs branch Hilbert series is

obtained via a Molien-Weyl integral which is written explicitly as

HSHΓ (t) =
1

|Γ|
∑

γ∈Γ

∫

zi,y

dµ(zi, y)F [(zi, y, t, γ) , (4.78)

where the measure is

dµ(zi, y) =
dz1

2πiz1

dz2

2πiz2

dz3

2πiz3

dz4

2πiz4

(1− y2)dy

2πiy
(4.79)

and

F [(zi, y, t, γ) =
det (14 − γt2) (1− t2)(1− t2y2)(1− t2y−2)

det (14 − γtyD) det (14 − γty−1D) det (14 − γtyD−1) det (14 − γty−1D−1)
(4.80)

with D the diagonal matrix Diag(z1, z2, z3, z4). The integral over the zi and y fu-

gacities are performed over the contours |zi| = |y| = 1. Note that (4.78) makes it

manifest that γ ∈ Γ can be considered as a discrete fugacity for the disconnected

gauge group U(1) o Γ. The integrals (4.78) are readily evaluated for each of the 11

subgroups of S4, and the resulting Hilbert series are presented in Figure 4.10.

We make a few comments on the results. First, the Hilbert series coincide with

those of Du Val singularities C2/J , with J a finite subgroup of SU(2), of ADE type.

Specifically, four instances occur, namely J = D4, D6, E6, E7, that can be identified

using the degrees of invariants of the corresponding groups. In particular, this shows

that the quaternionic dimension of the Higgs branches of all these quivers is 1.
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Gauge invariant operators As a check of the computations presented in Figure

4.10, we briefly show how the same results can be obtained from a counting of invari-

ant operators. We call Ai and Bi the scalars in the chiral multiplets transforming as

bifundamentals of U(2) and U(1)i, for i = 1, 2, 3, 4, Ai being a column vector and Bi

being a row vector9. For simplicity, we ungauge one of the U(1) groups, say U(1)4,

and study the action of the wreath product by a subgroup Γ of S3 permuting the

three remaining U(1) gauge groups.

The F-term equations on U(1)i are

For i = 1, 2, 3, BiAi = 0 . (4.81)

The F-term equations on the U(2) group are

4∑

i=1

AiBi = 0 . (4.82)

Taking the trace of (4.82) and combining with (4.81) we obtain

B4A4 = 0 . (4.83)

Gauge invariants are paths in the quiver of the form B4αi1 · · ·αirA4 subject to the

relations above, using the shorthand notation αi = AiBi. An irreducible gauge

invariant is one that can not be written as a product of other non-trivial gauge

invariants, so it can be written B4αi1 · · ·αirA4 where the indices can not take the

value 4. The F-term relations imply that

αiαi = 0 and
4∑

i=1

αi = 0 . (4.84)

In particular an irreducible gauge invariant can not contain three αi’s or more.10 So

generators of the Higgs branch coordinate ring contain either one or two αi’s. The

generators containing one αi are Xi = B4αiA4 (i = 1, 2, 3) subjected to X1 + X2 +

X3 = 0, and transform in the irreducible two-dimensional representations of S3. The

generators with two αi’s are built from Yij = B4αiαjA4. Note that Yij = −Yji and

that Y12 = Y23 = Y31, which shows that the Yij transform in the ε representation of

S3. Finally, there is a relation between the two families, for instance in the form

X1X2X3 = B4α1α4α2α4α3A4 = B4α1α3α2α1α3A4 = −Y 2
12 . (4.85)

9Their components are the q and q̃ of Sec. 2.3.3.
10Consider for instance B4αiαjαkA4 with i 6= j, j 6= k and i, j, k 6= 4. If i 6= k then one finds

B4αiαjαkA4 = −B4αi(αi + αk + α4)αkA4 = B4αiα4αkA4 = (B4αiA4)(B4αkA4). If i = k then
B4αiαjαiA4 = −B4αiαjαlA4 with l 6= i, j, 4 and we’re back in the previous case.
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Γ Generators Relation Space

S1

t4 : x = X1

t4 : y = X2

t6 : z = Y12

xy(x+ y) = z2 C2/D4

S2

t4 : x = X1 +X2

t8 : y = X1X2

t10 : z = Y12(X1 −X2)
xy(x2 − 4y) = z2 C2/D6

Z3

t6 : x = Y12

t8 : y = X2
1 +X1X2 +X2

2

t12 : z = (X1 −X2)(2X1 +X2)(X1 + 2X2)
−27x4 + 4y3 = z2 C2/E6

S3

t8 : x = X2
1 +X1X2 +X2

2

t12 : y = Y 2
12

t18 : z = Y12(X1 −X2)(2X1 +X2)(X1 + 2X2)
4x3y − 27y3 = z2 C2/E7

Figure 4.11: Generators and relations for operators on the Higgs branch of the affine
D4 quiver wreathed by subgroups of S3.

C
(

1 2

1

1

1

)
C
(

1 2 2

1

)
=C
(

1 2 [1] o S2

1

)

(a) (b) (c)

Figure 4.12: The Coulomb branch of the D4 quiver (left) is orbifolded by an S2

action into a Coulomb branch shared by two distinct quivers.

Putting all this together, we obtain the Hilbert series PE[2t4 + t6 − t12] for the

affine D4 quiver (the Xi have weight 4 while the Yij have weight 6). To deal with

the wreathed quivers, we have to impose the additional gauge invariance under the

discrete factor Γ. The spectrum of operators on the Higgs branch is a subset of the

one determined above for trivial Γ. The results are gathered in Figure 4.11.

Comparison with adjoint matter Consider the case depicted in Fig. 4.12. In

[100, 101] it was pointed out that the Coulomb branch of the quiver (b) is an orbifold

of the Coulomb branch of the quiver (a). We have argued that the Coulomb branch

of the wreathed quiver (c) is also that very same orbifold. Let’s look at the Higgs

branch of quiver (b).

The (quaternionic) dimension of the Higgs branch, when there is complete Hig-

gsing, which is the case here, is equal to the number of matter multiplets mi-

nus the number of gauge multiplets. The D4 quiver therefore has dim HD4 =
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(4 ·2 ·1)− (3 ·1+22) = 1, as do all the wreathed quivers. The quiver (b) has a Higgs

branch of quaternionic dimension dim HU(2)
loop = (2 ·2 ·1+2 ·2+22)−(1+2 ·22) = 3, of

which one dimension is a free factor H from the trivial factor in the adjoint loop. We

can be more precise and compute the Hilbert series using the hyper-Kähler quotient,

finding

PE[2t]PE[3t2 + 2t5 − t12] . (4.86)

The first term comes from a free contribution H which can be discarded. The second

term can be identified as the Hilbert series for an intersection of a S lodowy slice

and the nilpotent cone in the C3 algebra, namely the transverse slice between the

maximal orbit (of dimension 9) and the O[4,12] orbit of dimension 7, see Table 12 in

[21] (labelled [210] therein). The global symmetry on this space is Sp(1) under which

the generators of the chiral ring transform in the [2] and the [1] representations,

respectively. This space makes a rare occurrence of a symplectic singularity which

is also a hypersurface in C5. In fact it has been suggested that all hypersurface

symplectic singularities of dimension 2 are intersections of S lodowy slices of the

nilpotent orbit O[2n−2,12] and the nilpotent cone in Cn [135]. This family appears

in the context of trivertex theories where the rank of Cn is interpreted as the genus

of a Riemann surface (A1 class S theory on a Riemann surface of genus n and one

puncture). See section 7.2 of [136] and equation (7.12) for the hypersurface equation.

The same family also appears as a Coulomb branch of the mirror quiver in the work

of [137] where the identification as a transverse slice is made, as well as an explicit

form of the hypersurface equation. The Hasse diagram is

2

1

0

Dn+1

A1

(4.87)

In summary, the two quivers on the right of Figure 4.12 share the same Coulomb

branch, but only the wreathed quiver’s Higgs branch shares the original quiver’s

Higgs branch dimension, as one would expect from discrete gauging.

4.2.7 Mirror symmetry and discrete gauging

Many 3d N = 4 quiver theories admit a dual description as a theory whose Higgs

branch is the original’s Coulomb branch and vice versa; this property is known as

3d mirror symmetry [19, 59, 138] and is a consequence of S-duality for theories with

brane realisations. One should therefore expect to be able to find the mirror dual

of discrete gauging. As it turns out, it is already known.

Let us consider the paradigmatic case of quivers in Figure 4.13. The Coulomb
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Coulomb Quiver Discretely Gauged Higgs Quiver Discretely Gauged

1 2

1

1

1

1

1 2 [1] o S2

O8

C1

O7

C1 O1

C = min D4 C = n.min B3 = min D4

S2
H = min D4 H = n.min B3 = min D4

S2

Figure 4.13: Illustration of the relation between i) discrete gauging’s effects on
the Coulomb branch and ii) discrete gauging’s effects on the Higgs branch of a
corresponding electric quiver.

branch of the quiver in the first column is the minimal nilpotent orbit of D4. Its dual

is depicted in the third column of the same figure; the symmetry of its Higgs branch is

the same as the symmetry on the flavor node. Each matter hypermultiplet is coupled

to a mass which can be viewed as a background vector multiplet. This vector can in

turn be gauged, turning the quiver into the one depicted in the fourth column; such

an operation was first reported as “the case O(1)” in [129]. The new gauge node

O(1) ∼= Z2
∼= S2 represents the discrete symmetry of the gauged vector. In this case

the gauge group is enlarged. We claim this is the mirror dual of the process covered

in the previous section. Somewhat confusingly, both procedures are called discrete

gauging11 but they act differently. On the left quiver an automorphism is gauged;

on the right we gauge a background vector.

If the enhancement of the mirror is discrete, so must be the original’s. Moreover,

since discrete gauging of background vectors is a genuine action on quiver theories,

so is its mirror dual.

4.3 Quiver folding

The next discrete operation allows for a natural interpretation of non–simply laced

quivers, which were identified in [11] through the use of the monopole formula. It

was already well established [48] that many ADE nilpotent orbits could be recovered

as Coulomb branches of unitary quiver theories and that there is a robust connec-

tion between choice of quiver and the resulting nilpotent orbit. In particular, the

quiver should be balanced and shaped like the desired symmetry algebra’s Dynkin

diagram. Consequently one might assume that quivers whose Coulomb branches

reproduce BCFG nilpotent orbits would resemble the non-simply laced BCFG

Dynkin diagrams. [11] conjectured a minimal modification to the monopole formula

11We are not aware of a physics reference for discrete gauging on the Higgs branch but believe
it to be fairly well known among physicists interested in Higgs branches of quiver gauge theories.
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1 2

1

1

1

1 2 1

1

1 1 1 1 1

1 1

1 1 1

1

Figure 4.14: Quivers on the left fold into quivers on the right.

which reflected the enigmatic multiple link, checking against earlier tentative results

of [139] on F4 and G2 spaces. Although the conjecture was highly successful in its

goal, giving support to the existence of non-simply laced quivers and allowing further

study [140], precise details of multiple links remained elusive12. They have made an

appearance in the study of little string theory [141] or gauge-vortex duality [142] and

W -algebras associated to them were studied in [143]. A mathematical treatment of

folding and Coulomb branches of non-simply laced quivers was recently provided

in [84]. Some of the phenomena in [144, 145] can be reinterpreted as folding the

five-dimensional theories’ magnetic quivers [15].

In this section we show (using an alternative approach to [84]) that the multiple

link can be interpreted as the result of quiver folding ; see Fig. 4.14 for examples. We

first utilise abelianisation to show that Coulomb branches of A2n−1 (Dn+1) quivers

fold into spaces with Cn (Bn) symmetry and derive the effects of folding on the

monopole formula. We then reinterpret folding as an action on the quiver itself,

showing that it produces non-simply laced quivers; in particular, our analysis of the

monopole formula on examples reproduces the form in [11, 84].

Note that the examples below focus on nilpotent orbit quivers only because they

are most easily studied using tools we have developed. We expect folding to be a

completely general operation. For example, the quiver of Section 4.1.2 in [102] folds

into the quiver in (7.1) of [105] as can be guessed by mapping µ2N−i 7→ µi for i < N

in the former’s HWG and comparing to the HWG of the latter quiver.

4.3.1 Action on the Coulomb branch

Although one can fold a quiver directly, the operation can also be performed on

a discretely gauged Coulomb branch. The prerequisites for folding and discrete

12According to [11], Jan Troost suggested that quivers of this type might be understood as folded
simply laced quivers, an idea that ultimately finds validation in [84] and our results.
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gauging are identical: a quiver with an automorphism. We start yet again with the

example of a D4 quiver in the bottom left of Fig. 4.14. Recall that in (4.20) the

discretely gauged quiver’s operator ẽ〈0,0,1〉 is defined as e〈0,0,1,0〉+ e〈0,0,0,1〉 = u+
3 +u+

4 .

A space is folded by restricting it to the subspace fixed under the action of the

symmetry, which in this case generates the constraints u+
3 = u+

4 as well as ϕ3 = ϕ4

and so on; we denote this space Ĉ and in general use hats to denote variables on

the folded space. Note that mass parameters must be set to identical values across

folded legs; sometimes this removes all independent mass parameters but one and,

as a result, even though the original space is mass-deformable, the folded space is

not.

As long as we stay on Ĉ there is no more need to track each individual wreathed

variable. To reduce to a minimal necessary set we introduce the folding map

F (xi,a) =
x̂I,a
#i

(4.88)

F (x+ y) = F (x) + F (y) (4.89)

F (cxmyn) = cF (x)mF (y)n (4.90)

where the multiplicity #i denotes the number of nodes that fold onto the same node

as node i, x and y are arbitrary operators, c is a complex number and I = minj{j :

π(j) = π(i)}. In particular, F (u+
3 ) = F (u+

4 ) =
û+

3

2
. As a result, F (ẽ〈0,0,1〉) = û+

3 =

ê〈0,0,1〉.

The folding map has a simple interpretation. Abelianised variables of the initial,

unfolded quiver, partition into orbits of the automorphism. The folding map merely

sets every single variable in that orbit to the same value; for convenience, basic

abelianised variables are normalised by node multiplicity. In other words, the folded

Coulomb branch is a restricted subspace of the discretely gauged quiver’s Coulomb

branch.

While abelianised variables fold in a completely trivial manner, composite oper-

ators are more interesting. For example, let’s fold the operator in (4.20):

ê〈0,1,2〉 = F (ẽ〈0,1,2〉) =

= F (e〈0,1,1,1〉) =

=
∑

a=1,2

F (u+
2,au

+
3 u

+
4 )

F (ϕ2,a − ϕ3)F (ϕ2,a − ϕ4)
=

∑

a=1,2

û+
2,aû

+
3

2/4

(ϕ2,a − ϕ̂3/2)2
=

∑

a=1,2

û+
2,aû

+
3

2

(2ϕ2,a − ϕ̂3)2

(4.91)
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If the folded space is to retain the original’s hyper-Kähler property, the symplec-

tic property in particular must be preserved and the Poisson brackets on the folded

space must close. In other words for any f̂ , ĝ ∈ C[Ĉ] we require {f̂ , ĝ} ∈ C[Ĉ], ie.

{f̂ , ĝ} = π
(
{f̂ , ĝ}

)
. It is enough to show that generators x̂i,a of the Poisson algebra

satisfy this property:

{xi,a, xj,b} = F (xk,c) = F (xπ(k),c) = π (F (xk,c)) = π ({xi,a, xj,b}) (4.92)

where we restrict to the folding locus

xi,a = xπ(i),a,∀π ∈ Γ ⊂ Aut Q. (4.93)

where Γ is the subgroup by whose action we fold.

So we have in our hands two pieces: a “folded” subspace (with its coordinate

ring) and a Poisson bracket on this space. If we assume that the complex structures

also properly restrict to the subspace, we have a new hyper-Kähler space to study.

What is it? What is its symmetry?

Now we re-establish contact with discrete gauging. For Õi ∈ C[C̃]2 and Ôi ∈
C[Ĉ]2, we have

{Õi, Õj} =
∑

k

c k
ij Õk (4.94)

and therefore the relations in particular hold on the automorphism’s fixed point,

which is the folded subspace:

{Ôi, Ôj} =
∑

k

c k
ij Ôk. (4.95)

Therefore, unless some folded Ôk identically vanish, the two algebras have identical

structure constants and are in fact isomorphic as Lie algebras. A simple proof in

appendix B shows that Ôk is not 0 everywhere on the folded space so we conclude

that folded spaces have the same continuous symmetries as their discretely gauged

counterparts.

In particular, a A2n−1 (Dn+1) quiver’s Coulomb branch folds into a Cn (Bn)-

symmetric space of strictly lower dimension and the minimal nilpotent orbit of

D4 folds into the minimal nilpotent orbit of B3. Of course this space is just the

Coulomb branch of a non-simply laced quiver, and we claim this is no coincidence:

although we have so far only explored folding as an action on the Coulomb branch,

we conjecture it is in fact merely one facet of an action on the quiver theory and

that all non-simply laced quivers can be understood as folded simply laced quivers.

As was hinted in Section 2.1.4, in some special cases a B3 non-simply laced

quiver, eg. the bottom right quiver in Fig. 4.14, can fold into G2 despite the lack
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of an obvious symmetry. There is one major difference however: multiplicities are

assigned in a more involved manner. As a prerequisite, the “short root” (i.e. third)

gauge node must have the same rank and number of flavors as the “vector root”

(i.e. first node). We can unfold the B3 quiver into a D4 shape by simply reversing

the folding procedure. Let us denote the variables of that quiver’s Coulomb branch

e.g. ϕD4
i , with ϕB3

i and ϕG2
i the partially and fully folded counterparts. Then at the

D4 → G2 folding locus the following holds:

ϕD4
1 = ϕD4

3 = ϕD4
4 = ϕB3

1 =
ϕB3

3

2
=
ϕG2

1

3
(4.96)

So the B3 quiver can fold to G2 as if µ1 = 3 and µ3 = 3
2
.

4.3.2 Monopole formula: examples

To show that folded quivers become non-simply laced, we compute two explicit

examples and conjecture that the pattern generalises.

min A3 → min C2

The first check will be done on quivers in Figure 4.16 by folding two U(1) nodes.

Let HSA and HSC be the Hilbert series of the initial and folded quivers, respec-

tively:

HSA(t, x, y, z) =
1

(1− t2)3

∑

q1,q2,q3∈Z
t|q1|+|q1−q2|+|q2−q3|+|q3|(xy)q1

(
x

y

)q3
zq2 (4.97)

HSC(t, x, z) =
1

(1− t2)2

∑

r1,r2∈Z
t|r1|+|r1−2r2|xr1zr2 . (4.98)

The unrefined Hilbert series are:

HSA(t, 1, 1, 1) =
(1 + t2) (1 + 8t2 + t4)

(1− t2)6 (4.99)

HSC(t, 1, 1) =
1 + 6t2 + t4

(1− t2)4 . (4.100)

Note the unusual fugacity y in HSA which is crucial in the following calculations.

By comparison with known Hilbert series, we find that the two Coulomb branches

are the (closures of the) minimal nilpotent orbits of A3 and C2.

We will now derive the action HSA → HSC in two steps.

At the level of bare monopole operators, many become duplicate. For example,

(u+
1 )2, u+

1 u
+
3 and (u+

3 )2 all fold to
(û+

1 )2

4
. More generally, a bare monopole monomial in
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the A3 theory can be expressed (not necessarily uniquely) as a product of generators

Oq1,q2,q3 =
∏

i

e〈qi1,qi2,qi3〉 (4.101)

where qj =
∑

i q
i
j. Note that |qi1 − qi3| ∈ {0, 1}. The S2 symmetry exchanges

e〈qi1,qi2,qi3〉 ↔ e〈qi3,qi2,qi1〉 and acting with it on any number of operators in the product

produces a monopole in the A3 theory which folds to the exact same monopole in

the C2 theory. “Flipping” a single operator in this way leaves q1 and q3 unchanged

or changes both by ±1 with opposite signs so that q1 + q3 is preserved. Sequential

action on all the monopoles in the product produces Oq3,q2,q1 . It follows that in this

chain of flips there is an operator O q1+q3
2

,q2,
q1+q3

2
or O q1+q3+1

2
,q2,

q1+q3−1
2

, depending on

the parity of q1 + q3. Since all operators in the chain fold to the same operator,

the C2 monopole formula better count precisely one of them. We will pick either

O q1+q3
2

,q2,
q1+q3

2
or O q1+q3+1

2
,q2,

q1+q3−1
2

(of which precisely one exists), which translates

to selecting only monopoles with q1 = q3 or q1 = q3 + 1, respectively.

To accomplish this we must extract only the terms constant and linear in y,

as can be seen from (4.97): terms constant in y come from the charge sublattice

q1 = q3 while linear terms all satisfy q1 = q3 + 1. To set up later generalisation we

further slightly modify the prescription to an equivalent form: we will extract every

operator at order y0 and average over operators at order y and y−1.

The second step corrects for scalar dressing: one extraneous scalar field must

be removed since ϕ1 = ϕ3 = ϕ̂1

2
. We need only multiply the entire expression with

1− t2 to remove the newly duplicate U(1) dressing factor 1
1−t2 .

We conjecture that these two modifications are sufficient to represent the action

of folding on the Hilbert series.

To implement them, we multiply the (unsummed) monopole formula by the

kernel 1
2πiy

(
1 + 1

2

(
y + 1

y

))
and and integrate around y = 0, picking up the desired

contributions by the residue theorem. Finally we multiply by the scalar factor

(1− t2):

HSC(t, x, z) = (1− t2)

∮
dy

2πiy

(
1 +

1

2

(
y +

1

y

))
HSA(t, x, y, z) (4.102)

And indeed:

RHS =
1

2
(1− t2)−2

∮
dy

2πiy

(
y +

1

y
+ 2

) ∑

q1,q2,q3∈Z
t|q1|+|q1−q2|+|q2−q3|+|q3|(xy)q1

(
x

y

)q3
zq2

=
1

2
(1− t2)−2

∮
dy

2πiy

∑

q1,q2,q3∈Z
t|q1|+|q1−q2|+|q2−q3|+|q3|xq1+q3yq1−q3−1zq2 +
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1

2
(1− t2)−2

∮
dy

2πiy

∑

q1,q2,q3∈Z
t|q1|+|q1−q2|+|q2−q3|+|q3|xq1+q3yq1−q3+1zq2 +

(1− t2)−2

∮
dy

2πiy

∑

q1,q2,q3∈Z
t|q1|+|q1−q2|+|q2−q3|+|q3|xq1+q3yq1−q3zq2

=
1

2
(1− t2)−2

∑

r2∈Z,r1∈(2Z+1)

t|(r1+1)/2|+|(r1+1)/2−r2|+|r2−(r1−1)/2|+|(r1−1)/2|xr1zr2 +

1

2
(1− t2)−2

∑

r2∈Z,r1∈(2Z+1)

t|(r1−1)/2|+|(r1−1)/2−r2|+|r2−(r1+1)/2|+|(r1+1)/2|xr1zr2 +

(1− t2)−2
∑

r2∈Z,r1∈(2Z)

t|r1/2|+|r1/2−r2|+|r2−r1/2|+|r1/2|xr1zr2

= (1− t2)−2
∑

r2∈Z,r1∈(2Z+1)

t|(r1+1)/2|+|(r1+1)/2−r2|+|r2−(r1−1)/2|+|(r1−1)/2|xr1zr2 +

(1− t2)−2
∑

r2∈Z,r1∈(2Z)

t|r1|+|r1−2r2|xr1zr2

= (1− t2)−2
∑

r1,r2∈Z
t|r1|+|r1−2r2|xr1zr2

In particular note the appearance of 2 in |r1−2r2|, the novel feature in non-simply

laced quivers’ monopole formulas.

minD4 → minG2

We now look at the folding of three U(1) gauge nodes of the D4 minimal nilpotent

orbit quiver. We again assign fugacities to the nodes: call z the fugacity for the U(2)

node, and xy1, xy2

y1
, x 1

y2
the fugacities for the three U(1) nodes. This parametrisation

is chosen so that folding corresponds to an integration over the yi, which have an A2

symmetry. Note that this prescription generalises the previous example, where the

“folding fugacity” appeared as y and y−1, which are related by an A1 symmetry.

The folding equation becomes

HSG2(t, x, z) = (1− t2)2

∮
dy1

2πiy1

dy2

2πiy2

f(y1, y2)HD4(t, x, y1, y2, z)

with

f(y1, y2) = 1 +
1

3

(
y1 +

1

y1

+ y2 +
1

y2

+
y2

y1

+
y1

y2

)
.

Note that this kernel is a natural generalization of the previous case f(y) =

1 + 1
2
(y + y−1). We conjecture that the monopole formula of a quiver with n U(1)

legs folds by integration over the kernel

f(y1, . . . yn−1) = 1 +
1

n
χ
An−1

f (y1, . . . , yn−1) (4.103)
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u±1 , ϕ1 u±2 , ϕ2

u±3 , ϕ3 u±4 , ϕ4

û±1 , ϕ̂1 û±2 , ϕ̂2

Figure 4.15: Example of folding two “parallel” links which do not originate from
the same node. Note that folding does not introduce a multiple link in this case.

where χ
An−1

f is the character of the An−1 fundamental representation.

The steps outlined above can be generalised to longer legs, larger gauge groups

and, presumably, to completely arbitrary legs. However, rather than undertaking

this task ourselves, we refer to [84] for a systematic look at the link between folding

and the modified monopole formula of [11].

4.3.3 Non-simply laced quivers

It is possible to generalise abelianisation, including the Poisson structure, directly

to non-simply laced framed quivers; the generalisation of the monopole formula was

already achieved in [11]. The input data are a list of gauge nodes with optional

fundamental matter and a connectivity matrix κ defined precisely like the Cartan

matrix of a Dynkin diagram. One can always unfold the quiver Q̂ into a simply

laced quiver Q. Keeping with the term’s use in previous sections, the number of

nodes of Q which fold onto the i-th node of Q̂ is called the multiplicity #i of node i.

Each node still contributes three abelianised variables û±i,a and ϕ̂i,a but the re-

lations are slightly modified. They can be derived by demanding consistency with

folding; recall that xi,a = x̂i,a/#i on the subspace preserved by discrete action. For

simplicity we present them in the case of quivers with one multiple edge:

û+
i,aû
−
i,a = −#2

i

∏
w∈R+

i,a
〈w, ~̂ϕ/~#〉gi(w)|wi,a|

∏
α∈Φ〈α, ~̂ϕ/~#〉|αi,a|

(4.104)

where R is defined as if the quiver were simply laced (ie. the multiple link were

replaced with one simple link), ~̂ϕ/~# denotes a vector of ϕ̂i,a/#i and gi(w) is an

auxiliary function defined as

gi(w) =




|κji| if w connects the node i to node j,

1 otherwise
(4.105)

and κ is the Cartan matrix of the non-simply laced quiver.
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The derivation of Poisson brackets is slightly more subtle. As a concrete example,

consider a quiver with nodes 1 to 4 (plus possibly others) such that 1 and 2 , resp.

3 and 4 are connected, and 3 and 4 fold onto 1 and 2, respectively (see Fig 4.15).

Then

{ϕ̂1, û
+
1 } = {ϕ1 + ϕ3, u

+
1 + u+

3 }
∣∣
x1=x3

= ({ϕ1, u
+
1 }+ {ϕ3, u

+
3 })
∣∣
x1=x3

=

= ϕ1 + ϕ3

∣∣x1=x3
x2=x4

= ϕ̂1 (4.106)

Similarly, and keeping to the same quiver for this example,

{û+
1 , û

+
2 } = {u+

1 + u+
3 , u

+
2 + u+

4 }
∣∣x1=x3
x2=x4

= 2{u+
1 , u

+
2 } = 2κ12

u+
1 u

+
2

ϕ1 − ϕ2

= 2κ12
û+

1 /2 û
+
2 /2

ϕ̂1/2− ϕ̂2/2
(4.107)

Note that the factor of 2 comes from the two links which fold onto each other.

Now that the procedure is clear it readily generalises:

{ϕ̂i,a, û±i,a} = ±û±i,a (4.108)

{û+
i,a, û

−
i,a} = #2

i

∂

∂ϕ̂i,a

∏
w∈R〈w, ~̂ϕ/~#〉gi(w)|wi,a|
∏

α∈Φ〈α, ~̂ϕ/~#〉|αi,a|
(4.109)

{û±i,a, û±j,b} = ±κSij
#ij

#i#j

û±i,aû
±
j,b

ϕ̂i,a/#i − ϕ̂j,b/#j

(4.110)

where κS is a “simply laced” Cartan matrix defined as κSij = max(κij, κji) (essen-

tially throwing away information about multiplicity of edges) and #ij is the link

multiplicity of the edge between nodes i and j defined as the number of its pre-

images in the unfolded quiver. Remember that just as in the case of abelianised

relations this form is appropriate for quivers with one multiple edge.

4.4 Examples

In this section we study several cases of nilpotent orbit quivers, ie. quiver theories

whose Coulomb branches are nilpotent orbits. Their chiral rings are generated

by moment maps, which we explicitly construct; recall that such moment maps

transform in the coadjoint representation coadj(g) ' adj(g) of the Coulomb branch

symmetry. The chiral ring data is completed by providing a set of relations which

also form representations of the Coulomb branch symmetry. We discretely gauge

and fold such quivers and examine the resulting Coulomb branches in turn.

Most spaces encountered in this section are nilpotent orbits; their coordinate

rings are generated by a single coadjoint representation. But there are a few cases

which are not nilpotent orbits: their Coulomb branches are generated not only by

140



Initial Discretely Gauged Folded

1

1 1 1

1

[1 1] o S2 1

1

1 1

3

0

a3

3

2

0

c1

c2

2

0

c2

µ1µ3t
2 (A3)

(µ2
1 + µ2)t2 (C2)

µ2
1t

2 + µ2
2t

4 µ2
1t

2

Figure 4.16: A3 minimal nilpotent orbit and its discrete reductions.

coadj(g) but also by chiral ring elements in other representations of g. If the quiver

is balanced, for the examples studied in this section, we find that the remaining

generators also assemble into coadjoint (or sometimes trivial) representations and

the bulk of our techniques still applies. One such case appears in Sec. 4.4.2. The

resulting spaces are not as comprehensively tabulated as nilpotent orbits and we

generally have to turn to more varied sources to find their Hilbert series or highest

weight generating functions.

4.4.1 min A3 → (n.)min C2

A-type quivers tend to have very simple moment maps which can be presented in

reasonably compact form, allowing us to present the action of discrete gauging and

folding.

The quivers we choose, as exhibited in Figure 4.16, also exhibit an interesting

pattern of complex mass deformation. As a general rule, all ϕi,a abelian moduli and

Mi,a parameters only appear in the abelian algebra as differences and as a result

the moduli space is invariant under reparametrisations ϕi,a → ϕi,a + c, Mi,a →
Mi,a + c. Since there are precisely two mass parameters, the moduli space relations

can be modified by terms proportional to M1−M3, ie. a complex mass deformation.

However both discrete gauging and folding remove one half of mass parameters by

forcing M1 = M3, which can in turn be set to 0 by the reparametrisation above. As

a result only the original space can be deformed by one triplet of mass parameters.
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Initial quiver

To remind the reader we reproduce abelianised relations restricting u±i , ϕi for i =

1, 2, 3:

u+
1 u
−
1 = −(ϕ1 −M1)(ϕ1 − ϕ2) (4.111)

u+
2 u
−
2 = −(ϕ2 − ϕ1)(ϕ2 − ϕ3) (4.112)

u+
3 u
−
3 = −(ϕ3 − ϕ2)(ϕ3 −M3) (4.113)

The Coulomb branch is generated by

NA3 =




ϕ1 − 3M1+M3

4
u−1 − u−1 u

−
2

ϕ1−ϕ2

u−1 u
−
2 u
−
3

(ϕ1−ϕ2)(ϕ2−ϕ3)

u+
1 −ϕ1 + ϕ2 + M1−M3

4
u−2 − u−2 u

−
3

(ϕ2−ϕ3)

− u+
1 u

+
2

ϕ1−ϕ2
u+

2 −ϕ2 + ϕ3 + M1−M3

4
u−3

u+
1 u

+
2 u

+
3

(ϕ1−ϕ2)(ϕ2−ϕ3)
− u+

2 u
+
3

(ϕ2−ϕ3)
u+

3 −ϕ3 + M1+3M3

4




(4.114)

and one can read its relations either from the HWG [20]

HWG(t, µi) =
1

1− µ1µ3t2
(4.115)

or simply from the Joseph relations, which are obeyed by any minimal nilpotent

orbit:

t4 ([101] + [000]) : N2 = −1

2
(M1 −M3)N +

3

16
(M1 −M3)21 (4.116)

t4[020] :
∑

a′,b′

εa′b′[cdN
a′

a N
b′

b] = − 1

16
(M1 −M3)2εabcd (4.117)

Discrete Gauging

The A3 moment map discretely gauges to the following expression:

NC2 =




1
2
(ϕ̃1 + ϕ̃3) 1

2
(ũ−1 + ũ−3 ) 1

2
(− ũ−1 ũ

−
2

ϕ̃1−ϕ̃2
+

ũ−2 ũ
−
3

ϕ̃2−ϕ̃3
)

ũ−1 ũ
−
2 ũ
−
3

(ϕ̃1−ϕ̃2)(ϕ̃2−ϕ̃3)

1
2
(ũ+

1 + ũ+
2 ) −1

2
(ϕ̃1 + ϕ̃3) + ϕ̃2 ũ−2

1
2
(
ũ−1 ũ

−
2

ϕ̃1−ϕ̃2
− ũ−2 ũ

−
3

ϕ̃2−ϕ̃3
)

1
2
(− ũ+

1 ũ
+
2

ϕ̃1−ϕ̃2
+

ũ+
2 ũ

+
3

ϕ̃2−ϕ̃3
) ũ+

2 −ϕ̃2 + 1
2
(ϕ̃1 + ϕ̃3) 1

2
(ũ−1 + ũ−3 )

ũ+
1 ũ

+
2 ũ

+
3

(ϕ̃1−ϕ̃2)(ϕ̃2−ϕ̃3)
1
2
(
ũ+

1 ũ
+
2

ϕ̃1−ϕ̃2
− ũ+

2 ũ
+
3

ϕ̃2−ϕ̃3
) 1

2
(ũ+

1 + ũ+
2 ) 1

2
(−ϕ̃1 − ϕ̃3)




(4.118)

and the resulting space is expected to have quaternionic dimension 3 and exhibit C2

symmetry. The next-to-minimal nilpotent orbit of C2 is a suitable candidate. Its

HWG reads [20]

HWG(t, µi) =
1

(1− µ2
1t

2)(1− µ2
2t

4)
(4.119)
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suggesting several relations:

t4 ([00] + [01]) : N2 = 0 (4.120)

t6[20] : rank(N) ≤ 2 (4.121)

(Note that in our convention we multiply Cn matrices as ordinary matrices, ie.

without insertion of an ε tensor.) The second of these relations can be written

equivalently as ∑

b,c,d,b′,c′,d′

εa′b′c′d′ε
abcdN b′

b N
c′

c N
d′

d = 0.

In other words, an explicit algebraic description of the Coulomb branch of the dis-

cretely gauged quiver is

{N ∈ gl(4,C)|N2 = 0, rank(N) ≤ 2, NTJ − JN = 0} . (4.122)

Folding

The folded moment map is similar:

NC2 =




1
2
ϕ̂1

1
2
û−1 − û−1 û

−
2

ϕ̂1−2ϕ̂2
− (û−1 )2û−2

(ϕ̂1−2ϕ̂2)2

1
2
û+

1 −1
2
ϕ̂1 + ϕ̂2 û−2

û−2 û
−
1

(ϕ̂1−2ϕ̂2)

− û+
1 û

+
2

ϕ̂1−2ϕ̂2
û+

2 −ϕ̂2 + 1
2
ϕ̂1

1
2
û−1

− (û+
1 )2û+

2

(ϕ̂1−2ϕ̂2)2

û+
2 û

+
1

(ϕ̂1−2ϕ̂2)
1
2
û+

1 −1
2
ϕ̂1




(4.123)

The Coulomb branch has dimension 2 and C2 symmetry, which agrees with the

minimal nilpotent orbit with HWG [20]

HWG(t, µi) =
1

1− µ2
1t

2
(4.124)

This space satisfies slightly more stringent (Joseph) relations:

t4 ([00] + [01]) : N2 = 0 (4.125)

t4[02] : rank(N) ≤ 1 (4.126)

The second of these relations can be written equivalently as Na′

[aN
b′

b] = 0. In other

words, an explicit algebraic description of the Coulomb branch of the folded quiver

is

{N ∈ gl(4,C)|N2 = 0, rank(N) ≤ 1, NTJ − JN = 0} . (4.127)
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4.4.2 min D4 → G2

G2 is small yet non-trivial enough to serve as an excellent illustration of the tech-

niques studied in this section. Since it is only fourteen-dimensional, we provide the

complete folding prescription from both D4 and B3:

G2 = spanC
(
EG2

±1322 , E
G2

±132, E
G2

±122, E
G2
±12, E

G2
±1 , E

G2
±2 , H

G2
1 , HG2

2

)

EG2

±1322 = ED4

±12234 = EB3

±12232

EG2

±132 = ED4
±1234 = EB3

±1232

EG2

±122 = −ED4
±123 − ED4

±124 + ED4
±234 = −EB3

±123 + EB3

±232

EG2
±12 = ED4

±12 − ED4
±23 − ED4

±24 = EB3
±12 − EB3

±23

EG2
±1 = ED4

±1 + ED4
±3 + ED4

±4 = EB3
±1 + EB3

±3

EG2
±2 = ED4

±2 = EB3
±2

HG2
±1 = HD4

±1 +HD4
±3 +HD4

±4 = HB3
±1 +HB3

±3

HG2
±2 = HD4

±2 = HB3
±2

Recall that G2 is characterised as the subalgebra of B3 which preserves a partic-

ular rank 3 antisymmetric tensor φ; for more details see Section 2.1.4.

The goal of this subsection is to identify quivers whose Coulomb branches are

generated by operators in one G2 coadjoint representation [01]; such spaces are

necessarily nilpotent orbits. We also study one related space whose coordinate ring

is generated by coadjoint generators but is not a nilpotent orbit. The following

sections should be read alongside Figures 4.17 and 4.18.

Note that because the quiver has only flavor node of rank 1, the G2 spaces studied

below cannot be deformed by a complex mass.

We provide the first few symmetric products of the (co)adjoint representation

for reference:

Sym2[01] = [20] + [00] + [02] (4.128)

Sym3[01] = [30] + [21] + [01] + [10] + [03] (4.129)

Sym4[01] = [40] + [31] + [22] + [11] + 2[20] + [00] + 2[02] + [04] (4.130)
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Initial quiver

The next few examples share the quiver on the left of Figure 4.18 as the common

starting point. Its Coulomb branch is the minimal nilpotent orbit of D4 which

is parametrised by a coadjoint (antisymmetric) matrix M subject to the Joseph

relations

([2000] + [0000]) t4 : N2 = 0 (4.131)

([0020] + [0002]) t4 : N ∧N = 0 (4.132)

We refer the reader to its treatment in [1] for more details.

Folding

The minimal nilpotent orbit of D4 folds into the minimal nilpotent orbit of G2 whose

quiver is depicted in Figure 4.17 under the label [01]. To verify this claim we can

look at the highest weight generating function of the minimal nilpotent orbit of G2

[20]

HWG(t) =
1

1− µ2t2
= 1 + µ2t

2 + µ2
2t

4 + . . . (4.133)

or recall that the Joseph relations tell us that the coadjoint generator is constrained

by the quadratic relation

([20] + [00]) t4 : N2 = 0. (4.134)

Direct computation shows that the relation is satisfied by N defined either by

folding the moment map of the D4 minimal nilpotent orbit quiver or directly using

the non-simply laced prescription.

S3 discrete gauging

The five-dimensional subregular orbit of G2 is known to be the S3 quotient of the

minimal nilpotent orbit of D4 [100] so it should be the Coulomb branch of the

appropriate D4 quiver after discrete gauging, see row [02] of Figure 4.17. One can

either symmetrise the D4 moment map using the projector defined in (4.12) or,

given the G2 Chevalley Serre basis {Xi}, form the G2 moment map NG2 from its D4

counterpart ND4 as

NG2 =
∑

i

X∗i tr (ND4Xi) .

The highest weight generating function is
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HWG(t) =
1 + µ3

1µ2t
10

(1− µ2t2)(1− µ2
1t

4)(1− µ3
1t

6)(1− µ2
2t

8)
=

1+µ2t
2 +
(
µ2

1 + µ2
2

)
t4 +

(
µ3

1 + µ2µ
2
1 + µ3

2

)
t6 +

(
µ4

1 + µ2µ
3
1 + µ2

2µ
2
1 + µ4

2 + µ2
2

)
t8 +. . .

(4.135)

Two relations are needed this time:

[00]t4 : trN2 = 0 (4.136)

[10]t6 : N ∧N ∧N = 0 (4.137)

and both are satisfied by the coadjoint NG2 .

Mixed folding and S2 gauging

Midway between the two previous examples lies a nilpotent orbit of dimension 4. It

is known [32] to be non-normal13 and hence not expected to be the Coulomb branch

of any quiver since both simply and non-simply laced quivers are necessarily normal

[82, 84]. However we conjecture that it can be recovered by using a specific and

non-generic discrete operation on the minimal nilpotent orbit quiver of B3, which

is itself four-dimensional. This would make our construction the first non-normal

Coulomb branch in the literature.

We first construct the moment map NB3 of the underlying B3 quiver. The quiver

has no obvious automorphism so rather than using the projector form in (4.12) we

define the Chevalley-Serre basis {Xi} of G2 and project using the trick from the

previous quiver calculation:

NG2 =
∑

i

X∗i tr (NB3Xi) (4.138)

We depict the conjectured quiver theory in Figure 4.17 on row 10.

13An irreducible affine variety is normal if its coordinate ring is an integrally closed domain
[148].
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The HWG of this orbit is given by[20]14

HWG(t) =
1− µ6

1t
12

(1− µ2t2) (1− µ2
1t

4) (1− µ3
1t

6)

= 1 +µ2t
2 +
(
µ2

1 + µ2
2

)
t4 +

(
µ3

1 + µ2
1µ2 + µ3

2

)
t6 +

(
µ4

1 + µ3
1µ2 + µ2

1µ
2
2 + µ4

2

)
t8 + . . .

(4.141)

Compared to the subregular nilpotent orbit we find an extra relation at t8 in the

[02] representation. The condition that N2 is of rank at most 1 is of this type.

In total the moment map is expected to satisfy three relations:

[00]t4 : tr(N2) = 0 (4.142)

[10]t6 : N ∧N ∧N = 0 (4.143)

[02]t8 : rank(N2) ≤ 1 (4.144)

and indeed all are met by our coadjoint NG2 . The last relation (4.144) can be written

as
∑

m,n (NamNmbNcnNnd −NamNmdNcnNnb) = 0. We have checked analytically

that the three relations above form a complete set of relations.

Z3 discrete gauging

Although elsewhere in the section we discretely gauge or fold Sm quiver automor-

phisms, discrete gauging by a subset of Sm is perfectly well defined. Here we consider

the Z3 discrete gauging of the D4 quiver studied in this section. Its Coulomb branch

was previously investigated in [105] under the name C
D

(3)
4

. The plethystic logarithm

of its highest weight generating function was reported as15

PL(t) = [01]t2+([01]−[00])t4−([01]+[10]+[20]+[00])t6−([01]+[10]−[02])t8+O(t10).

(4.145)

This space is not a nilpotent orbit. It is generated by two coadjoint matrices at

quadratic and quartic order in t respectively. The lower coadjoint matrix N is also

14We can compare this expression with the HWG for the minimal B3 orbit, written in terms of
G2 fugacities, which reads [20]

HWG(t) =
1

(1− µ1t2) (1− µ2t2)
= 1 + (µ1 + µ2) t2 +

(
µ2
1 + µ1µ2 + µ2

2

)
t4

+
(
µ3
1 + µ2

1µ2 + µ1µ
2
2 + µ3

2

)
t6 +

(
µ4
1 + µ3

1µ2 + µ2
1µ

2
2 + µ1µ

3
2 + µ4

2

)
t8 + . . . (4.139)

The difference between the two expressions is

µ1t
2

1− µ2t2
= µ1t

2 + µ1µ2t
4 + µ1µ

2
2t

6 + µ1µ
3
2t

8 + ... (4.140)

15Paper [105] also follows the opposite root convention to the present discussion.
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the moment map and looks precisely like the one obtained by S3 symmetric gauging.

Since Z3 ⊂ S3, there are operators in this theory which are removed if the remaining

S2 ⊂ S3 symmetry is imposed. One of the simplest operators is

ẽ4
〈10〉 = u+

1 (ϕ4 − ϕ3) + u+
3 (ϕ1 − ϕ4) + u+

4 (ϕ3 − ϕ1). (4.146)

As its label suggests, ẽ4
〈10〉 is a t4 operator which acts as the first simple root under

action of the moment map’s components. And just as one can “rotate” a simple root

into any other root by repeated action of the Lie bracket, it is possible to repeatedly

act with the Poisson bracket on ẽ4
〈10〉 to generate an entire t4 adjoint representation’s

worth of operators which can be bundled together to form the second coadjoint

matrix R. For example:

ẽ4
〈01〉 = −{ẽ〈−10〉, {ẽ〈01〉, ẽ

4
〈10〉}} (4.147)

The plethystic logarithm suggests several relations between N and R but we find

it is not too helpful in this case. For example, its syzygies obscure several relations at

order t8. Accordingly, we opt for a different approach to identify the relations. [105]

identifies a non-simply laced quiver with the same Coulomb branch, which is itself

a folded version of the quiver in Figure 8 of [131]; the latter paper reports matrix

relations. In general folded relations follow the form of the original quiver’s; indeed

they must as they are merely the original relations restricted to the folded subspace.

Accounting for several coincidences in G2 (eg N3 ∝ (trN2)N, {N,R} ∝ N ∧ R)

and a different numerical factor in the last relation, we are left with the following

relations:

[00]t4 : trN2 = 0 (4.148)

[10]t6 : N ∧N ∧N = 0 (4.149)

[01]t6 : [N,R] = 0 (4.150)

([20] + [00])t6 : {N,R} = 0 (4.151)

([20] + [00])t8 : R2 = 0 (4.152)

[02]t8 : (N2)
[b

[a (N2)
d]
c] =

1

54
R b
a R

d
c (4.153)

We are able to verify all of them symbolically, but cannot guarantee that they form

a minimal set of relations as our current techniques run against a computational

limit.
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4.4.3 D5 → B4

We close off by studying discrete gauging and folding on a family of quivers. Figures

4.19, 4.20 and 4.21 present results of discrete gauging and folding on three D5 nilpo-

tent orbit quivers. The Hilbert series, HWGs and quivers were originally reported

in [20, 22].

Figures 4.19-4.21 follow the same pattern. The first line shows the unitary mag-

netic quivers. The second line shows the equivalent orthosymplectic magnetic quiv-

ers (ie. with the same Coulomb branch); our discrete gauging appears to be the

unitary analogue of gauging an O(1) group in these quivers as studied in [22]. The

third line shows an electric quiver, by which we mean a classical quiver theory whose

Higgs branch is the Coulomb branch under study. Several quivers may share this

property; in particular the ones chosen here need not be the 3d mirrors. Note in

those electric quivers the appearance of an O1 = Z2 gauge group in the middle col-

umn. The last lines show the Hasse diagrams, HWG and relations. The HWG use

B4 fugacities except in the first column where D5 fugacities are also used.

We draw the reader’s attention to several interesting properties.

Firstly, a D–type moment map in the Chevalley-Serre basis is too long to print

but both discrete gauging and folding have clear and discernible effects on it. The

original, unfolded moment map transforms in the coadjoint (antisymmetric) matrix

representation of so(10,C). Upon either discrete operation, all components along the

last row and column vanish and the originally 10× 10 matrix effectively becomes a

9×9 antisymmetric matrix padded by zeroes – and hence transforms in the coadjoint

representation of so(9,C).

Secondly, in the case of the next-to-next-to-minimal nilpotent orbit we wreathe a

U(2) node rather than the simple and well understood case of U(1), demonstrating

that discrete gauging generalises to gauge ranks higher than 1. Finally, in the

same example, each wreathed U(2) node comes with one flavor so the triplet of

spaces exhibits interesting complex mass deformation behaviour analogous to that

of Section 4.4.1: only the initial space can be deformed by complex mass, and

turning on two inequivalent mass parameters spoils the S2 symmetry required for

both discrete gauging and folding.

Note that notation of the form N ∧ · · · ∧N denotes antisymmetrisation over all

indices, or equivalently contraction with the appropriate Levi-Civita tensor.

In Figures 4.19-4.21, we have colored the terms of the HWG which are charged

under the Z2 action in violet.
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4.4.4 The Cn family

We end this section with a family of quivers labelled by an integer n ≥ 4 whose

Coulomb branch global symmetry is E7 for n = 4 and SU(2n) for n > 4; see

Figure 4.22. The S2 symmetry exchanging the two legs can be discretely gauged

and folded. After folding, the global symmetry is Sp(n). The resulting family of

quivers, appearing on the rightmost column in Figure 4.22, is called the Cn family.

As can be seen from the Hasse diagrams, both Coulomb branches are stratified into

n−2 symplectic leaves. The quivers can then be interpreted as magnetic quivers for

the Higgs branch of rank n−3 SCFTs in four dimensions. For n = 4 one recovers the

E7 theory studied in [149, 150], and for n = 5 one of the rank-2 theories identified

in [151, 152].
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Chapter 5

Conclusion

The author hopes that this work can serve as an approachable introduction to several

recent methods in the study of 3dN = 4 Coulomb branches. It covered the necessary

background and introduced a certain kind of workflow for a typical calculation:

1. Calculate the Hilbert series and identify representations of generators and

relations under the Coulomb branch isometry.

2. Explicitly construct gauge-invariant monopole operators and scalar operators

out of abelianised variables and attempt to assemble them into the aforemen-

tioned generator representations.

3. Test gauge-invariant relations at the SCFT point and, if successful, turn on

complex mass parameters to identify SUSY-preserving deformations of the

Coulomb branch.

We built on several results of [78], particularly the explicit and physically in-

terpretable construction of the Coulomb branch moment map for many balanced

unitary quivers of type A. We were able to extend our understanding to a sub-

class of type D quivers. We also found two natural extensions to non-simply laced

quivers: quiver folding and wreathing.

While our examples only cover a narrow slice of available quiver theories we

believe the general workflow fully generalises to many (all?) 3d N = 4 theories

and that future practitioners will carry forward the methods used and in some cases

developed by the author. Several interesting and rich research problems are within

reach.

For example, increase in quiver height adds several new generators to the chiral

ring of type D quivers. It would be interesting to express them in terms of abelia-

nised variables and construct their gauge-invariant relations. A similar phenomenon

appears upon generalisation to quivers without a U(1) node and our methods could

provide a novel window into quiver subtractions of [52].
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We may also sacrifice balance. Quivers with one overbalanced node (excess

greater than 0) were recently identified as relevant to the vacuum structure of five-

dimensional supersymmetric theories. Such quivers’ chiral rings are generated by a

tensor in the coadjoint representation and additional tensors in another representa-

tion of the overall symmetry.

Finally, it should be possible to extend our methods to orthosymplectic quivers

but such a move would require a generalisation of the analysis in [78] along the lines

of [77]. We have carried out preliminary investigations and found that the moment

map is encoded differently than in the unitary case, as if adapted to a different

choice of basis of the symmetry algebra.
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Appendix A

U(2) with 4 flavors and abelianised

rings

The main text describes a two-stage method to explicitly construct the chiral ring:

first generate a set of abelianised operators and then, guided by representation-

theoretic data from the Hilbert series, select certain Weyl-invariant combinations to

form tensor generators of the ring and verify that they satisfy the correct relations.

The method does not require a deep dive into abelianisation and the precise relation

between C[Cabel] and C[C], so we leave such discussion out of the main body and

address some of the potential concerns in this appendix.

First, we set the stage. Starting with abelianised variables, the Poisson bracket

(2.198) generates new elements of the abelianised ring which cannot be expressed

by adding and multiplying basic variables. The full abelianised ring1 C[Cabel] is

constructed as the ring underlying the Poisson algebra generated by abelianised

variables u±i,a and ϕi,a subject to relations (2.193) and (2.196-2.198).

1We stress that this notion of the abelianised ring is a departure from that of [78], where it is
introduced in (4.9) (with minor notational differences) as

C[Mabel
C ] =

(
C[{u±A}, {ϕa}, {(MW

j )−1}j∈roots]/(abelianised relations)
)WG

. (A.1)

In essence, this “abelianised” ring is the Weyl-invariant part of a ring generated by all abelianised
monopoles, scalar operators and all inverse masses (i.e. 1/(ϕa − ϕb)) modulo relations between
abelianised monopoles. The authors follow with clarification that this is emphatically not the
Coulomb branch chiral ring, since a) the inverse masses are not defined everywhere on it (i.e. when
ϕa = ϕb), and even if one restricts to the “discriminant locus” of the Coulomb branch (that is, the
points where ϕa 6= ϕb), b) this ring contains extra elements.

To see that the two “abelianised” rings C[Mabel
C ] and C[Cabel] are inequivalent, take the theory

U(2) with 4 flavors (as in the remainder of this appendix). Then the element 1/(ϕ1 − ϕ2)2 is
included in C[Mabel

C ] but absent from C[Cabel]. (A comparison between C[Mabel
C ] and C[Cabel]WG

may appear to be fairer, since both objects are Weyl-symmetric, but it makes no difference since
C[Cabel]WG ≤ C[Cabel] implies that the element in question does not belong to the Weyl-invariant
ring C[Cabel]WG either.)

We use C[Cabel] as an active computational precursor to the Coulomb branch chiral ring and
therefore reserve it the name abelianised ring despite any confusion it may cause when compared
to the similarly denoted ring in [78].
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In the interest of concreteness consider the case of a U(2) theory with 4 flavors.

Elements such as 1/(ϕ1−ϕ2) (inverse masses of W -bosons) never appear in C[Cabel]

on their own. On the other hand, the abelianised relation

u+
1 u
−
1 = −

∏
1≤i≤4(ϕ1 −Mi)

(ϕ1 − ϕ2)2
(A.2)

does contain an inverse mass as part of an expression. This is worrying because, as

ϕ2 → ϕ1, this function diverges and so indicates that either the locus ϕ1 = ϕ2 is not

in the Coulomb branch (a solution which should be rejected on physical grounds),

or else the function is not in the Coulomb branch chiral ring. The latter is correct:

every element of C[C] must be Weyl-invariant, and this one clearly is not. But that

only raises another worry. Consider the Weyl-invariant polynomial

u+
1 u
−
1 + u+

2 u
−
2 = −

∏
i(ϕ1 −Mi)

(ϕ1 − ϕ2)2
−
∏

i(ϕ2 −Mi)

(ϕ1 − ϕ2)2
. (A.3)

It also diverges as ϕ2 → ϕ1. Any workable prescription for reducing C[Cabel] to C[C]
must exclude this polynomial from the ring2.

The author is aware of two candidate prescriptions. [78] suggest in their Section

6.3 that C[C] can be generated as a Poisson algebra by a certain small set of Weyl-

invariant operators, namely all single-node bare monopoles
∑

a u
±
i,a and single-node

elementary symmetric polynomials in ϕi,a, i.e.
∑

a ϕi,a,
∑

a<b ϕi,aϕi,b etc. This

is borne out in all cases which we have studied in depth and which do not involve

monopole bubbling. In many cases an alternative method is available and we are able

to define the Coulomb branch chiral ring by directly specifying its generators3 in the

abelianised formalism, with relations following directly from (2.193) as summarised

in Section 3.5. The two approaches have given identical results on every unitary

quiver which the author has studied.

First approach Consider first the construction in [78] which only uses u±1 + u±2 ,

ϕ1 + ϕ2 and ϕ1ϕ2 to generate the entire ring as a Poisson algebra. We wish to

construct u+
1 u
−
1 + u+

2 u
−
2 . There are only a few things one could try. Since the

Poisson bracket {·, ·} has dimension −1, the action of {ϕ1ϕ2, ·} increases dimension

by 1 while {ϕ1 + ϕ2, ·} and {u±1 + u±2 , ·} preserve it. At the same time the space

of ∆ = 2 operators is finite so successive use of {ϕ1 + ϕ2, ·} will only bring finitely

many new elements to consider. And we are only interested in operators of vanishing

topological charge.

Let’s start with (u+
1 + u+

2 )(u−1 + u−2 ) which includes an extra contribution of

2The simple, but incorrect prescription C[C] = C[Cabel]WG would fail it. We thank an anonymous
reviewer for bringing this to our attention.

3That is, generators of a ring, as opposed to a Poisson algebra.
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u+
1 u
−
2 + u+

2 u
−
1 ; it must be removed to create (A.3). There is nothing else left to do

without using the dimension-raising Poisson bracket:

{ϕ1ϕ2, u
+
1 + u+

2 } = u+
1 ϕ2 + u+

2 ϕ1 (A.4)

{u+
1 ϕ2 + u+

2 ϕ1, u
−
1 + u−2 } = −ϕ2

1 − ϕ2
2 − (u+

1 + u+
2 )(u−1 + u−2 ) (A.5)

This ring element does not help and it does not take much work to convince oneself

that we have exhausted all non-trivial options, which implies the construction in

[78] is free of the problematic element (A.3).

Second approach We can also explicitly construct ring generators in represen-

tations of the moduli space symmetry. The Coulomb branch Hilbert series of this

theory reads

HS(t) = 1 + t2[2] + t4([4] + [2] + [0]) +O(t3)

with plethystic logarithm

PL(HS)(t) = t2[2] + t4[2]− t6 − t8

implying that its chiral ring is generated by six generators forming two adjoint

representations [2] which we label N and R. This representation forces constraints

on any putative abelianised construction. For any X, Y ∈ su(2), expressed as square

2× 2 matrices,

{tr(NX), tr(NY )} = tr(N [X, Y ]) (A.6)

and

{tr(NX), tr(RY )} = tr(R[X, Y ]). (A.7)

One can then use these constraints to find abelianised expressions of N and R. In

the massless case they are

N =

(
ϕ1 + ϕ2 u−1 + u−2
u+

1 + u+
2 −ϕ1 − ϕ2

)

(as in [1]) and

R =

(
−1

2

(
ϕ2

1 + ϕ2
2 + (u+

1 + u+
2 )(u−1 + u−2 )

)
u−1 ϕ2 + u−2 ϕ1

u+
1 ϕ2 + u+

2 ϕ1
1
2

(
ϕ2

1 + ϕ2
2 + (u+

1 + u+
2 )(u−1 + u−2 )

)
)
.

One can check that the Lie algebra homomorphisms (A.6) and (A.7) are satisfied,

and further that this choice of N , consistent with previous work, fixes the choice of

R up to a scalar factor (assuming the positively charged monopole is of the form
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u+ϕ). One can also check that these two generators satisfy precisely the relations

predicted by the Coulomb branch Hilbert series.

Agreement with the Hilbert series licences us to claim that components of N and

R (two of which are redundant, for a total of 6 independent entries) generate C[C].
Observe that there is no way to generate eg. (u+

1 )2 + (u+
2 )2 from the generators

presented here. In fact the ∆ = 2 subspace of C[C] is generated by i) quadratic

combinations of components of N and ii) components of R. Notably, it is impossible

to construct the counter-example (A.3) with these building blocks.

Comparison between the two approaches It is interesting to compare the two

approaches to reducing the abelianised ring to C[C]: the new off-diagonal terms in

R appear as {ϕ1ϕ2, u
±
1 + u±2 } and diagonal terms are straightforwardly constructed

from ϕ1ϕ2 and components of N even without the use of a Poisson bracket.

In summary neither approach generates the divergent function (A.3). One can

therefore interpret the appearance of inverse masses in (A.2) as a sign that we

were dealing with the wrong variables and relations. The correct variables are i)

elements of a certain Poisson algebra or ii) components of two coadjoint tensors,

which themselves satisfy several tensorial relations. In the latter case, abelianised

relations are crucial in deriving and testing the form of these coadjoint tensors, but

ultimately serve as a ladder to be thrown away once the tensors are obtained. As

mentioned above the two approaches agree on every unitary quiver of which the

author is aware.
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Appendix B

Folded Lie algebras are the same

as discretely gauged Lie algebras

As mentioned in the main text, the Lie algebra of the discretely gauged space is

given by

{Õi, Õj} =
∑

k

c k
ij Õk. (B.1)

for Õi which form a basis of C[C̃]2. In particular these operators vary across the

moduli space. Restricting to the folded subspace, we find

{Ôi, Ôj} =
∑

k

c k
ij Ôk. (B.2)

This does not necessarily mean that the two Lie algebras are isomorphic as some of

the RHS terms could vanish if Ôk vanishes identically. We will now prove that this

does not happen.

Õk is a non-constant symmetric function in variables attached to wreathed legs;

call them ~xi where i labels the leg. So we can rewrite the operator as f(~x1, . . . ~xn)

for some n. At the fixed point ~xi = ~x, so the operator becomes f(~x, . . . , ~x). Assume

it vanishes everywhere. Then

∇~xf(~x, . . . , ~x) =
∑

i

∇~xif(~x1, . . . ~xn)

∣∣∣∣∣
~xj=x

. (B.3)
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However all the summands are identical under the restriction:

(∇~xif(~x1, . . . ~xn))j = lim
ε→0

f(~x1, . . . , ~xi + εei, . . . , ~xn)− f(~x1, . . . , ~xi, . . . , ~xn)

ε

= lim
ε→0

f(~xi + εei, . . . , ~x1, . . . , ~xn)− f(~xi, . . . , ~x1, . . . ~xn)

ε

=
(
∇~x′1f(~x′1, . . . ~x

′
n)
)
j

∣∣∣
~x′1 = ~xi

~x′i = ~x1

~x′j 6=1,i = ~xj

(B.4)

so

(∇~xif(~x1, . . . ~xn))j

∣∣∣
~xj=~x

= (∇~x1f(~x1, . . . ~xn))j

∣∣∣
~xj=~x

. (B.5)

Then

∇~xf(~x, . . . , ~x) = n∇~x1f(~x1, . . . ~xn)
∣∣
~xj=x

6= 0 (B.6)

unless ∇~xif(~x1, . . . ~xn)
∣∣
~xj=~x

vanishes, i.e. f(~x1, . . . ~xn) is a constant, which contra-

dicts the assumption that Õk is non-constant. It follows that both the discretely

gauged and folded spaces have isomorphic Lie algebras and hence share the same

continuous symmetry.
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Appendix C

Computation of Hilbert series

with S4 wreathing

The computation of the exact Hilbert series presented in Figure 4.8 can be done in

principle using (4.44). However it is often useful to massage this formula until a

more manageable form can be used in practice. In this appendix, we give the result

of such manipulations in the case of the quiver at hand. Derivations use simple

algebra and are not detailed here.

Using the notations of (4.48), but using the gauge group (4.55), one can set

ma,2 = 0 and ma,1 ≡ ma and the conformal dimension can be expressed in terms of

m = (ma,mb,mc,md,me) (C.1)

as

2∆(m) = |ma−mb|+|ma−mc|+|ma−md|+|ma−me|+|mb|+|mc|+|md|+|me|−2|ma| .
(C.2)

One then computes the auxiliary sums

Σi =
∞∑

ma=0

∑

(mb,mc,md,me)∈Rangei

t2∆(m) (C.3)

where Rangei is defined in Figure C.1. The exact value of the sums Σi is straight-

forward to compute (note the absence of Casimir factors!) and is given in Figure

C.1 as well.

Let’s now pick a subgroup Γ of S4. For µ ∈ Z4 we call OS4(µ) the orbit of µ

under the action of S4. This orbit can be written as a disjoint union of n(µ) orbits

under Γ,

OS4(µ) =

n(µ)∐

j=1

OΓ(µj) (C.4)
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i Rangei Σi

1 mb < mc < md < me
t6(4+16t2+18t4+13t6+4t8+t10)

(1−t2)6(1+t2)3

2
mb = mc < md < me

mb < mc < md = me

t4(2+9t2+10t4+9t6+3t8+t10)
(1−t2)5(1+t2)3

3 mb < mc = md < me
t4(4+7t2+7t4+3t6+t8)

(1−t2)5(1+t2)2

4
mb = mc = md < me

mb < mc = md = me

t2(2+3t2+4t4+2t6+t8)
(1−t2)4(1+t2)2

5 mb = mc < md = me
t2+5t4+5t6+6t8+2t10+t12

(1−t2)4(1+t2)3

6 mb = mc = md = me
(1−t+t2)(1+t+t2)(1+t4)

(1−t2)3(1+t2)2

Figure C.1: Definitions of the ranges involved in the sums (C.3), and exact values
of these sums. When there are two possible ranges, this means that the two choices
lead to the same sums.

where the µj ∈ Z4 are representatives of these orbits, (not uniquely!) determined

by the above equation. Using the notation (4.46), that we recall here,

PΓ(t2;µ) =
1

|Γ|
∑

γ∈Γ(µ)

1

det (1− t2γ)
, (C.5)

one can define the modified Casimir factor

P̃Γ(t2;µ) =

n(µ)∑

j=1

PΓ(t2;µj) . (C.6)

The rationale behind this definition is that we have evaluated the sums (C.3) which

are adapted to the full group S4, and the Casimir factors for the group Γ have to be

collected accordingly. This being done, the Hilbert series for the Coulomb branch

of the wreathed quivers are simply

HSΓ(t) =
6∑

i=1

P̃Γ(t2;µi)Σi , (C.7)

where µi ∈ Z4 is any element satisfying the condition Rangei. Using this formula, all

the Hilbert series of Figure 4.8 are evaluated in a fraction of a second on a standard

computer.

178


	Introduction
	Essential background
	Lie algebras
	Lie groups and Lie algebras
	Simple Lie algebras
	Chevalley-Serre basis and Dynkin diagrams
	Folding of Lie algebras

	Supersymmetric quantum field theories
	4d N=1
	4d N=2
	Quiver gauge theories
	3d N=4

	Moduli space
	Chiral ring
	Interlude: Hyper-Kähler spaces
	Higgs branch
	Interlude: Nilpotent orbits
	Classical Coulomb branch
	Quantum Coulomb branch
	Mirror symmetry

	Coulomb branch methods
	Operator counting
	Abelianisation


	Simply laced unitary quivers
	Type A: generalities
	min A1: A simple example
	max A2: A slightly more complicated example
	Construction of generators and gauge-dependent relations
	Moment map

	Type A: further examples
	min An
	max An

	Type D: generalities
	so(8,C): An example
	Charges of chiral ring generators
	Construction of the chiral ring
	Moment map

	Type D: further examples
	min Dn
	n.min D4

	Synthetic method: a summary

	Wreathed and non-simply laced unitary quivers
	Introduction
	Discrete gauging
	Wreath product
	Action on the Coulomb branch
	Wreathed quivers
	Monopole formula for wreathed quivers
	HWG for wreathed quivers
	Higgs branch of wreathed quivers
	Mirror symmetry and discrete gauging

	Quiver folding
	Action on the Coulomb branch
	Monopole formula: examples
	Non-simply laced quivers

	Examples
	min A3 -> n.min C2
	min D4 -> G2
	D5 -> B4
	The Cn family


	Conclusion
	U(2) with 4 flavors and abelianised rings
	Folded Lie algebras are the same as discretely gauged Lie algebras
	Computation of Hilbert series with S4 wreathing

