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Abstract

This thesis serves as a self-contained review of some recent advances in the study of
three-dimensional N' = 4 quiver gauge theories and their Coulomb branch moduli
spaces in particular. Our investigation leverages and develops the Hilbert series and
abelianisation approaches and finds them mutually complementary. Their synthe-
sis provides an explicit construction of the Coulomb branch with several desirable
properties: for example, the global symmetry is made explicit and any complex mass
deformation is easily derived. Moreover, it naturally handles two generalisations of
quiver gauge theories: non-simply laced quivers and previously unknown wreathed

quivers. Many concrete examples are provided to illustrate the concepts.
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Chapter 1
Introduction

Quantum field theory is one of the greatest success stories of theoretical physics.
Gravity notwithstanding, a field theory called the Standard Model can seemingly
account for almost every experimental datum collected by particle experimentalists.
At the same time, the theory is famously difficult and even the simplest models
quickly give rise to complicated phenomena commonly known as quantum corrections
for which one can account by mastery of Feynman diagrams, renormalisation theory,
lattice simulations or other sophisticated techniques. Such things make the life of
a theorist difficult. Fortunately there are upsides to being unbound by experiment.
A model, though not a reflection of reality, can still be useful if it is tractable. This
simple idea accounts for much of the interest in the study of supersymmetry and
this thesis is no exception.

Supersymmetry allows us to say a fair amount about the possibility space of
vacua, ie. field configurations devoid of perturbations colloquially known as parti-
cles. The more supersymmetry we add, the tighter it holds our hand. “Two doses”
of supersymmetry, or N/ = 2 in a familiar four-dimensional setting, are equivalent to
four doses, or N/ = 4, in three dimensions, which will be the primary arena consid-
ered in this work. Points in the space of vacua, also known as the moduli space, can
be distinguished by different outcomes of thought experiments or, more technically,
vacuum expectation values of operators. A particularly well-behaved class of such
operators form the so-called chiral ring, which itself admits a rich structure. Morally
(and imprecisely) speaking, it splits into two parts: the Higgs and Coulomb branch
chiral rings. In the spirit of specialisation exhibited so far, we will be focussing
almost solely on the Coulomb branch chiral ring.

Most of the Coulomb branch is inaccessible from the classical limit of a quantum
field theory. New operators arise in the quantum regime and the chiral ring is
endowed with the structure of an algebra. The full space of vacua parametrised by
the Coulomb branch chiral ring — known as the Coulomb branch — typically carries

a symmetry group. While it has been studied for some time, the evidence has been



either somewhat indirect or demonstrated only on very simple examples. In other
words, Coulomb branches were rarely constructed as algebraic varieties on which
one could demonstrate the alleged symmetry. The work presented in this thesis is
one small step towards plugging this explanatory hole.

Due to a large amount of supersymmetry the Coulomb branches which arise in
this way possess a particular property of being hyper-Kdahler. Roughly speaking,
they are to quaternions what Kahler spaces are to complex numbers. Every hyper-
Kahler space is also symplectic, and, since such spaces are typically not smooth
everywhere, we will sometimes call them symplectic singularities. The simplest
families of examples can be constructed from minimal building blocks called nilpotent
orbits and Stodowy slices and we will find that many Coulomb branches considered
in this thesis can be so decomposed. And in fact, this relation can be reversed:
Coulomb branches are increasingly being recognised as a potent way to generate
and classify symplectic singularities.

In Chapter 2] we introduce the essential background: Lie algebras and their
canonical matrix realisations, quiver gauge theories and their Coulomb branches,
the monopole formula and abelianisation. In Chapter |3| we combine the knowl-
edge gained by application of the monopole formula with concreteness inherent in
abelianisation to explicitly describe Coulomb branches of basic simply laced quiv-
ers as algebraic varieties. Chapter 4| explains how to generalise these methods to
non-simply laced and novel wreathed quivers which are two related but inequivalent

quiver analogues of non-simply laced Dynkin diagrams.
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Chapter 2

Essential background

2.1 Lie algebras

One question recurs throughout this work: what is the symmetry of this space?
The natural tools for answering it come from the theory of Lie groups and Lie
algebras, which are fortunately widely known among theoretical physicists. The
algebra describes the symmetry while its representations are objects which are acted
upon by it. We will see physical observables characterising the Coulomb branch
assemble into representations of a particular symmetry, by which we mean that they
form one or more tensors of the symmetry algebra and that all operator relations
also form tensors of the very same algebra. Once the Coulomb branch is described
as a space parametrised by values of particular tensors subject to tensorial relations,
the action of the symmetry group becomes manifest and the recurring question is
answered; that is the overarching strategy explored in this thesis.

Following a flash review of the basics, we develop a concrete matrix realisation
of type AD algebras and define a folding operation which automatically generates
analogous constructions for types BCG. This review is by no means exhaustive
or even particularly self-contained as this material is already well covered by many

excellent sources, for example the excellent [3].

2.1.1 Lie groups and Lie algebras

We define a group G as a set with an associative and invertible operation ¢ and a
special element e € G such that for all g € G, eo g = g ¢ e = g. Invertibility means
that for every g there exists a g7! € G such that gog ' =g log=ce.

A group G which is furthermore a manifold is called a Lie group. For example,
translations and rotations form Lie groups. Synergy between differentiability and
group axioms leads to a very fortunate property. The tangent bundle of a Lie group

is trivial and the tangent space at the identity element e can be pushed anywhere
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using invertible actions of the group called the left translations L,. In this way a
vector at the tangent space T.G defines a left-invariant vector field. The set of such
fields, along with the standard Lie derivative, forms a Lie algebra g which contains
almost all information about the group apart from the set of connected components
7o(G) and the fundamental group 7 (G). In particular the groups O(n) and SO(n)
of orthogonal matrices in n dimensions with determinant +1, resp 1, share the
same Lie algebra, even though O(n) is strictly larger than SO(n). Thanks to the
correspondence between left-invariant vector fields and vectors in 7,G we may think
of the Lie algebra g as a description of the group “around the identity”; these would
correspond e.g. to small translations or rotations.

Formally a Lie algebra g is a vector space with an additional bilinear and anti-

symmetric operation called the Lie bracket:
[ ]raxg—g (2.1)

with the Jacobi identity for all X,Y, Z € g:
[X,Y],Z]+ [[Z, X], Y]+ [[Y, Z], X] = 0. (2.2)

If g is a vector space of matrices, or some subset thereof, the matrix commutator
acts as a Lie bracket.

Given the fact that our need to study Lie algebras came from wanting to under-
stand Lie groups, which are real manifolds, we might expect g to be a vector space
over the field of real numbers. It turns out that extending the defining field to the
complex numbers, or complexifying the Lie algebra, greatly simplifies matters, as is
so often the case; a single complexified Lie algebra can have several real forms, i.e.
Lie algebras over real numbers which complexify to it.

We will assume that g, viewed as a vector space, has a finite dimension. Let {X;}
form a basis of g. Then g is fully specified by this data along with the structure

constants cfj defined by

(X0, Xj) =D i X (2.3)

We will call the X; generators of g.

2.1.2 Simple Lie algebras

The algebra g may contain abelian elements X which commute with everything in

the algebra, i.e. [X, g] = 0. The algebra then splits as

9 = Babel S Yss (24)
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where g.pe are the abelian elements and g is the remainder which we call a semisim-
ple Lie algebra.

If there exists a basis of gg such that the generators split as {X;} = {Y;} U{Y/}
with [V;, Y]] = 0 then we say gg is decomposable and we can split the algebra into
parts generated by Y;, resp. Y/; each is potentially decomposable in turn. This

process terminates and we get the following decomposition:
9= gavet @ P o (2.5)

with g; non-decomposable factors called simple Lie algebras. From now on, unless

stated otherwise, assume Lie algebras are simple by default.

2.1.3 Chevalley-Serre basis and Dynkin diagrams

Let h C g be the maximal commutative Lie subalgebra of a simple Lie algebra g
and call it the Cartan subalgebra. Its dimension is uniquely given and referred to as
the rank of g, denoted below as rank(g) or n.

Consider a set of linear operators [H, -] defined for all H € h under which all

H' € b have zero eigenvalues:
[H,H'] = 0. (2.6)

The complement of b in g is spanned by vectors {E,; a € ®} which are also
eigenvectors under the aforementioned operators, but this time with non-vanishing

eigenvalues:

[H,E,| = o(H)E,. (2.7)

a is called a root of g and E is the associated root vector, while ® is the root space.
(Note that while a € ® generate h*, ® is a discrete space embedded in h.) The root
space ® is non-degenerate, meaning that if a, 5 € ® then VH € b : a(H) = B(H)
implies E, o< Ez. Consequently there is a one-to-one correspondence between roots
a and one-dimensional vector spaces spanned by FE,,.

Given that b is a vector space, we can see that roots « are themselves vectors in
the dual vector space h* of the Cartan subalgebra. Endowing b with a basis {H;}

then also defines a basis for the roots:
[Hi, Ea] = O[(HZ)EO[ = OéiEa (28)

With everything in place, a Lie algebra can now be decomposed into a Cartan-

Weyl basis as
g=bh+{E, «ac d}. (2.9)

13



Finite-dimensional simple Lie algebras admit a classification. The first step is
to express them in a canonical Chevalley-Serre basis (which is a more specialised
Cartan-Weyl basis) defined by the (integer-valued) Cartan matrix r;; with 1 <
i,j < rankg. The Chevalley-Serre basis is generated (as a Lie algebra) by rank g
positive simple root vectors E;, rank g negative simple root vectors £_; and rank g
generators H; of the commutative Cartan subalgebra § together with a Lie bracket

[-, -] subject to relations

[Hi, H;] =0 (2.10)

[H, Bxj] = +x;Fy; (2.11)

(B, E_j] = Hiby; (2.12)
By, ]" " By =0. (2.13)

The final relation is called the Serre relation. Note that while roots a are generally
associated with one-dimensional vector spaces spang(E,), partly fixes the
simple root vector representatives, up to F4; — cfclEﬂ.

The remaining elements of the Lie algebra g are generated by repeated action of
[E1;,-]. Note that this prescription only specifies a Lie algebra up to isomorphism.

The Cartan matrix s;; obeys several constraints following from Lie theory:
® K =2

° Ifij:() — Iiji:()

Kij € Z<g for i # j

detk >0

e The rows and columns of k;; cannot be rearranged to make the matrix block-

diagonal.

This leaves only a small number of matrices which turn out to be in one-to-
one correspondence with Dynkin diagrams, collected in Figure [2.1, at least up to
isomorphism. Conversely, given a Dynkin diagram one can reconstruct a Lie algebra
isomorphism class.

The correspondence between simple Lie algebras and Dynkin diagrams works in

the following (invertible) way:

e The subscript n on the algebra denotes both the number of nodes in the

diagram and the number of positive simple roots in the algebra.

e The Cartan matrix x;; is then an n x n matrix such that:

14



’ Algebra \ Dynkin diagram

A, ~ sl(n +1,C) %M
2 n—1 7
B, ~s0(2n+1,C) %****QIQ
2 n—1 N
C,, ~ usp(2n, C) %****QIQ
2 n—1 N
n—1
D,, ~ s0(2n,C) O—O----(n-2
1 2 n

7
Eq

e O—O=0—0
1 2 3 4
ok 1 2

Figure 2.1: Simple Lie algebras and their corresponding Dynkin diagrams with
labelled nodes

15



—/{7;7;:2

— Ky, is related to the number of directed edges from node ¢ to node j. If
the nodes are connected by a single edge then k;; = k; = —1. In the
case of multiple edges, depicted by m links with an arrow pointing from

node 4 to node j, the relevant entries read x;; = —m and kj = —1.

The set of positive root vectors is the set of root vectors which can be generated
by (finitely many) Lie brackets of positive simple root vectors; its elements are
labelled F,,. The set of negative root vectors is its analogue, but generated by
negative simple root vectors, with elements F_,. We can also omit the sign and

denote the generic root vector as F,.

Recall from that a root vector « is labelled by its eigenvalues «; under the
action of [H;,-]. The eigenvalues of simple roots a; can be represented by Cartan
matrix row vectors as (o;j)+; = £(k;); = £k;;. The basis in which the integers (o) 4,
are evaluated is called the basis of fundamental fweightsﬂ. Although important in the
theory of Lie algebras and their representations, it is less suitable for our purposes
than the simple root basis which expands a root (or equivalently a root vector’s

eigenvalues) in terms of simple roots (or eigenvalues of positive simple root vectors):

n

ta = Z g ={chy, ... ch), (2.14)

i=1
where the final expression should be understood as shorthand notation for the im-

mediately preceding expansion in the simple root basis.

The Jacobi identity implies that
[Hi, [Bia, Expl] = (£a £ B)i[Eia, Eigl (2.15)

It follows that, since the Lie algebra is generated by brackets of simple root

vectors, all ¢!, are integers.

Moreover, since any positive (negative) root vector F, is constructed by finitely
many bracket operations between positive (negative) simple root vectors, all its ¢!,
are positive (negative).

One can easily convert the components («); of « from the basis of fundamental

weights to the simple root basis by multiplying with ! from the right:

(@)1 (@] (57 = (L, ..., ™) (2.16)

1'Weights are a generalisation of roots for other representations of the Lie algebra.

16



For a concrete example, consider the roots of As:

du, = {[1,0,1],[=1,1,1),[1,1,—1],[-1,2, 1] [2,—1,0],]0,—1,2],

’ ’ (2.17)
0,1, -2],[-2,1,0],[1, =2,1],[-1, —1,1],[1, =1, —=1],[~1,0, —1]}

The numbers in square brackets state components of the roots in the basis of
fundamental weights. Multiplying on the right by the inverse of the Cartan matrix
k! amounts to expressing a root in terms of the simple root basis (for which we

use angled brackets). For example,

[1,0,1](k™1) = (1,1,1)
(1,1, -1](x") = (1,1,0)
[2,—1,0](k™") = (1,0,0)
[0,—1,2](x™*) = (0,0, 1>

[~1,-1,1](s™") = (~1,-1,0)

All roots of A, are given by unbroken strings of 1 or —1. We will see later
that possible entries exactly correspond to a set of particularly interesting physical
operators, the monopole generators of type A quivers. For now notice how the Lie

bracket acts:

[E(1,0,0>> E(0,1,0>} X E<1,1,0> (2-18)
[E(1,1,0>,E(0,0,1>} X E<1,1,1) (2-19)

The precise coefficients, i.e. structure constants, are in this case 1. While many
relations between structure constants can be found, the constants are not necessarily
uniquely fixed. Every choice produces a different (but isomorphic) algebra, so it
makes more sense to speak of Chevalley-Serre bases, each of which satisfies relations
—. We will select one which leaves monopole operators in their simplest

form.

Chevalley-Serre basis: Matrix realisation 1

This thesis describes a method of assembling generators of the Coulomb branch
chiral ring into irreducible representations of the Coulomb branch symmetry. There
will always be a set of generators transforming in the coadjoint representation of
the symmetry and the remainder of this section will build towards constructing it,
as a set of matrices, for the classical algebras ABC'D and the exceptional G5. In
order to derive the matrix realisation of the coadjoint representation we will first

look for its dual, the corresponding adjoint representation, which is equivalent to

17



finding a matrix realisation of one particularly nice basis of the Lie algebra itself:
the aforementioned Chevalley-Serre basis.
An alternative matrix realisation of Chevalley Serre bases (but given for all

simple Lie algebras) can be found in [4].

Type A

We start with the simplest example: the algebras A, ~ sl(n + 1,C) specified by a
linear Dynkin diagram. To facilitate the construction of the Chevalley-Serre basis in
the form of concrete matrices (with the Lie bracket implemented through commuta-
tors), we introduce one final basis for roots: the orthonormal basis given by e; — e,

where e; are the orthonormal basis vectors of C"*!. Simple roots are represented as

ag; = te; F €it1 (220)

and brackets act by adding the orthonormal representatives up to an overall factor,

e.g.
[EJrl: E+2] = [Ee1*€27 Eez*e:’,] X By —eq (2'21>

which is really a restatement of [E,, Es] o< E,g, but with one notational advantage.
Since any root can be expressed in the simple root basis as an unbroken string of
+1, the e; — e¢; cover and exhaust all roots. Each root is therefore labelled by
two numbers, ¢ and j, with ¢ < j for positive roots and ;7 < ¢ for negative roots.
The orthonormal representation then provides a more compact labelling scheme for

simple root vectors:

Evig) €= ¢ (i < J) (2.22)
E—(i:j) € — € (’L > j) (223)

so in particular E,; = E,(;41). In words Ei;) is the root whose weight vector
(in the simple root basis) consists of a string of £1 starting at ¢ and terminating at
J—1.

It is now easy to guess that the matrix representative of E. ;.;) is precisely the
zero matrix with the 7, j or j,7 component changed to +=1. We choose the convention
in which the single non-zero component of any simple root E.y (i1 is +1 and fix

the remaining signs by demanding [E.(;.;), E+(jr) = —FE4r). (This choice allows

a neat correspondence between monopoles and roots in Sections [3.1.3| and [3.1.4})
Representatives of the Cartan subalgebra can be found by applying (2.12)). The

resulting Chevalley-Serre basis is

(gi,j>ab - 5ia5jb (224>

18



By = (1) i (2.25)
E_ij = (1) &, (2.26)
Hi=FEi;— Eit1i11 (2.27)

Remember from the discussion under that there is some freedom in specifying
the correspondence between a simple root and its root vector, namely a C* factor
shared between a pair of positive and negative simple roots. Here we make an
ultimately arbitrary choice: we could have, for example, omitted the signs in ([2.25|)
and . But this way we get that [E 1.9y, Fy(2:3)] = —[Era.s)] (for nin A, at
least 2), which will mimic an exactly parallel structure studied in Section and
onwards: the Poisson bracket between monopole operators. It will hopefully become
apparent that this similarity is worth it, and at any rate we needed to choose some
convention, and this one works at least as well as any other.

The resulting structure of alternating signs can already be seen in the following

example of sl(4,C) = Az, where the coefficients ¢ range over C:

ad(sl(4,0) =3¢ Y cusm ,Jk+2cz

p
€1 €(1,0,0) —C1,1,00  C1,1,1)
_ C(-100)  —CG Tt Coro  —CoL)
—C(-1,-10)  C0,-1,00 —C2tC3 Coou)
\ C<71771771> _C<0771771> C<070771> _03
( (2.28)
= E Cs(i:5) s(z 7) E ciH
1<i<j<n
\ S€{+,—}
p
+ + +
€1 C1:9 —C1:3 Ci:4
- + +
_ Clpg —C1+C Ca:3 —Cay
o - — +
—Cr3 Co.3 —Cy+C3  Cgy
L\ €14 —Cay C3:4 —G3

The final step is to identify the corresponding coadjoint basis which is dual to

the adjoint basis with respect to the scalar product
(X,Y) = tr(XY). (2.29)

Labelling elements of the Chevalley-Serre basis X, with the index m ranging

from 1 to dim g, we compute the matrix C'

Corn = t1( X Xin).- (2.30)
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Up to an overall multiplicative constant (the second order Dynkin index [3]), Cyun
is precisely the Killing form K (X,,, X,). It is well known that the Killing form is

non-degenerate and so C' can be inverted. We use it to define matrices

X = Z(C_l)mep (2.31)

p

satisfying the property

(X7, X)) = r(X7 X)) = (CT)ptr(XpX0) = (C7' Chopns = O (2.32)

p

X constitute the desired basis for the coadjoint representation of g and dualisation
% : g — g" can be defined through linear extension of ([2.31).

For the Chevalley-Serre basis of type A one gets EL 5 = Ex)- On the other
hand the Cartan subalgebra mixes in a non-trivial way and while the dual H is
still in the Cartan subalgebra, it is a linear combination of H;. K(H,E*) = 0 for
any H € h and a € ®. As a result the matrix C' becomes block-diagonal in the
Chevalley-Serre basis with C|,, the restriction of this linear transformation to the
Cartan subalgebra, one of the blocks. Since C' is non-degenerate its block C'|, must

also be invertible and (22.31]) specialises to

H; = (Cly)y;'H;. (2.33)

J
Type D
The orthonormal basis for D,, is exhausted by roots of the form +e; Fe; or e; £e;

(1 <i,7 <n) and the simple roots are in particular given by

ay; & e, Fe; ,1§z§n—1
8 o (2.34)
Qyp & £e,_1 £e,.

The remaining root vectors (and hence their corresponding roots) are obtained
through bracket products of simple root vectors. For example (using angled brackets

to signify expansion in the simple root basis),

[E(1,1,0,0>7 E<0,0,1,0>] X E(1,1,1,0> (2-35)
[E(1,1,1,1>, E<0,1,0,0>] X E(1,2,1,1>- (2-36)
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0 1 1

(a) (b) (c)

Figure 2.2: Numbers represent root components (in the simple root basis) at each
node.

This corresponds to addition in the orthonormal basis:

<1, 1, 1, O> — €1 — €4 = (61 - 62) + (62 — 63) + (63 - 64) (237)
<17 2, 1, 1> =e€1+e= (61 — 62) + 2(62 — 63) + (63 — 64) + (63 + 64). (238)

Whereas positive (negative) roots of A,, corresponded to strings of 1 (—1) in the
simple root basis, the situation is marginally more complicated for D,,. The roots

can be categorised as:

1. Unbroken strings of +1 anywhere on the Dynkin diagram (e.g. Fig. [2.2a).
They are the +e; F ¢; and +e; & ¢, in the orthogonal basis.

2. £1 on both spinor ((n — 1)-th and n-th) nodes and an arbitrarily long string
of £1 towards the vector (first) node (e.g. Fig. [2.2b)). They are the t+e; +e, 4

in the orthogonal basis.

3. £1 on both spinor nodes, a string of £2 starting at the (n — 2)-th node and
terminating before the first node, continued by a string (of length at least 1)
of £1 toward the first node (e.g. Fig. [2.2¢). They form the rest of the te; £e;

in the orthogonal basis.

We can therefore find two integers 7, j associated to each root, just as in the case
of A algebras. The complex Lie algebra of D,,, soc(2n), acts linearly on the vector
space C?" and the adjoint representation therefore admits realisation as a 2n x 2n
antisymmetric matrix, which naturally breaks into 2 x 2 blocks indexed precisely
by i, = 1,...,n. Antisymmetry of matrices in soc(2n) also relates the two off-
diagonal 2 x 2 blocks indexed by 7,5 and j,7 (where ¢ # 7). This is schematically
represented by the following matrix, which has zeroes everywhere apart from two
2 x 2 blocks D sitting in the (2¢ — 1)-th and 2i-th row, (27 — 1)-th and 2j-th column

and vice versa, modified by an overall constant dependent on the position of the D
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block within the larger matrix:

2% 1&2 ... 2-1&2j
I \
) — i/ Dw C2A-1&2 (g g
— (i) (DT — 2j—-1&2j

Since the same indices ¢ and j also label roots through the orthonormal basis,
we should expect a correspondence between the two and indeed, each pair of off-
diagonal blocks D contains precisely 4 complex degrees of freedom: just enough to
represent all of e; —e;, e; +¢;, —e; +¢; and —e; —e; for 1 < i < j < n. Each
root is represented by a slightly different D block, which we will denote D, _ for
roots of the form e; —e; (i < j), Doy for e; +e; and D_,, D__ for their respective

counterparts among negative roots. They are given by:

o i1
MO W |

The full block D is then a linear combination of the four matrices above,

D(Z]) = C$@D+_ + C$2D++ + CQQD_J'_ + ng,)D__. (240)

Therefore the matrix realisation represents roots as

€; — € < @(Z]) LDy = E(—f—i,—j) (241)
V=

e +e; <> g3) (1 = Eyi ) (2.42)

—e; + €5 < .@(w) C(_ii)zl = E(—i,-l—j) (243)

—€; — € < @(Z]) i)y = E(—i,—j) (244)
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where 1 <4 < j < n and all other coefficients ¢ vanish.

All that remains is to define appropriate generators of the Cartan subalgebra,
but that is easily achieved by invoking (2.12)). A Cartan subalgebra generator is
given by

20—-1& 21 2i+1&2i+2

} \J
0
H; = H 0 — 2i—1&2i
0 —H — 2i+1&2i42
0
(2.45)
fora=1,...,n—1, where

0 1
a () v

and the remaining entries of H; are zero. The final Cartan generator differs only

very slightly from H,_;, as one might expect:

n—3&2n—2 2n—1& 2n

{ 1
0
o= - : . (247)
H 0 — 2n—1& 2n
0 H — 2n+1&2n+2

The full adjoint representation is then realised as

adj(so(2n,C)) = Z D E i o) + Z ¢ H; (2.48)
1<i<j<n 1<i<n
r,s €{+,—}

where coefficients ¢ range over C.

As was the case with type A Chevalley-Serre bases, we finish this section by iden-
tifying the basis of the coadjoint representation. The generalisation is completely
straightforward. We define the dual of a root vector X}, =3 (C1),,,X,, through
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the inverse of the matrix

Con = tr( X Xn), (2.49)

which is again proportional to the non-degenerate Killing form. As was the case
with type A, positive root vectors are swapped with their negative counterparts,

although now an overall rescaling factor is involved:

1
E? E(—Ti,—sj)v r,Ss e {+, —} (250)

(ri,sf) — 5
There is no additional subtlety in the dualisation of the Cartan subalgebra, which

again mixes non-trivially through the the restriction of the Killing form to bh:

H = Z(cyh);jlﬂj. (2.51)

2.1.4 Folding of Lie algebras

Some pairs of simple Lie algebras can be related by an operation called folding
[5], which acts on an algebra’s Dynkin diagram and its internal structure. In a
prototypical example, the D, algebra folds into Bs; in other words, rotations in
eight dimensions are restricted to seven. Moreover, we show folding maps the Dy
Chevalley-Serre basis to its B3 counterpart.

Dynkin diagrams can be folded if there is a graph automorphism such that there
is no edge connecting a node to its own image. (A node and its image may be
connected through an intermediary node.) In particular, the diagrams for As, 1,
D,, or Eg satisfy this constraint as they possess Sy graph automorphisms, while the
special case Dy is invariant under S3. In a unique case, Bjs folds to G5 despite lacking
an obvious graph automorphism (see Figure 30.14 in [5]). The associated algebra g
is then folded to g by the following recipe, which simultaneously recovers the folded

Chevalley-Serre basis.

Chevalley-Serre basis: Matrix realisation II

First let us denote the set of automorphisms by I', which is in practice either Sy or

Ss3, and its elements by 7 € I'. We write

(i) = j (2.52)

to express that under the automorphism 7 the i-th node is mapped to the j-th node.
The fact that 7 is a Dynkin diagram automorphism translates into the following
invariance of the Cartan matrix under the action of m: Kr()r(j) = K-

The folding function f takes as input nodes of the unfolded Dynkin diagram and
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o i Dynkin diagram of | Dynkin d}agram of projection
g g
1 iQn] 1
) ‘2n—2 2 1,2n —1—1
Azn_l Cn : ! : :
n—1 n+1 On-—1 Syt
H ntl—n-—1
n On n—mn
1 1
‘2 i2 1—1
Dn+1 BTL : :
n—1 OTL—]. SQ:
n—1—n-1
e nol n nn+l—n
1 5 il
2 4 H2 1,51
E@ F4
; 5 S, 2,42
33
6 4 64
1
1
2 22
3 4
O\f:a El
5 c, s . 1,3—1
5 2 T l2e2

Figure 2.3: Foldable simple Lie algebras. Note that numbers label nodes and do not
indicate gauge groups as these are not quiver theories. The S5 in the last row is a
special case treated in several places in the main text.
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maps them to appropriate nodes in the folded diagram. Consequently, fom = f.
As an example, take A, 1 which folds to C,, and think of f as acting on indices ¢
of the original linear diagram. f acts as f(1) = f(2n—1) =1, f(2) = f(2n—2) =2

and so on, but f(n) = n.

The folding procedure is now easily stated:
H= ) H (2.53)

Eyi= Y Ey (2.54)

This defines the Chevalley-Serre basis for the folded algebra g. In the case of As, 1,
the folded algebra is indeed C,.

Special care must be taken when folding non-simple root vectors. Sometimes a
sign change is required to preserve the algebra homomorphism g — f(g). Consider
the case of A3 — Cy. Az includes two elements E1o = —[F1, Ey] and Eqy3 = —[FEs, F3).
According to the definition of folding just given, E, = E, + F5 and Ey = E,. Then
it follows that

ElZ = —[El,Ez] = —[E1 + E5, By] = — ([Eh, Es] + [Es, Es]) = Eip — Eas.

In this specific case it is clear that the sign flips because the third node, which comes
after the second, is mapped to the first, which comes before the second. Likewise it
is clear that such a scenario will never occur in the case D,,; 1 — B, and only comes
into play for Ay,_1 — C,,, B3 — G5, Dy — G5 and Eg — F}.

The interested reader can easily check (2.10))-(2.12)) and (2.13]) with a bit more
effort. To illustrate the typical calculation, we will confirm (2.11)) for A; folding to

(5. The Cartan matrix of (5 is

2 -1 0
k=|-1 2 -1 (2.55)
0o -2 2
and
[]Z[27 Eg] = [HQ + H4, Eg] = —E3 — E3 = —2E3 = KgQEg (256)
[Hg, EQ] = [H3, E2 + E4] = —E2 - E4 = —EQ = /€23E2 (257)

Folded Lie algebras sometimes preserve additional tensors. In the case of C,
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there exists a tensor J such that for every X in C),
X'+ JX =0. (2.58)

We can also reverse this statement: every X in Ay, ; which satisfies (2.58)) is in C,,.

In our convention J assumes the following form:

0 .0 0
0 ... 0 —1 0
0o ... 1 0
J=| o0 (2.59)
0 -1
1

-1 0

The other case of this type is G, which is the subalgebra of SO(7) preserving

the following rank 3 antisymmetric tensor ¢:
Z ¢a’cha’a + Z ¢ab’ch’b + Z gbabc’Xc’c =0
a’ v c

for all X € (G5. Given our choice of Chevalley-Serre basis the tensor can be defined

as
¢127 - _¢136 = _¢145 = ¢235 - _¢246 - _¢347 = _¢567 =1

with the remaining values either fixed by antisymmetry or equal to 0.

The dual Chevalley-Serre basis of linear forms { X/} is defined to obey X (X;) =
0;; for all X; in the Chevalley-Serre basis. In practice we realise X, as square matrices

of the same dimension as X; and represent the evaluation as the linear extension of
Xi(X;) = (X7, Xj) = (X, X7) = tr (X7 X)) (2.60)

The dual Chevalley-Serre bases of “parent” and folded algebras are related:

[T % 1 *
H; =z > H; (2.61)
" )=
[ 1 *
Eiizg > Ei (2.62)
b GfG)=i

where #; denotes the multiplicity of node i defined as

#io= |10 =i f0) =i} (2.63)
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For example:

L ) = = S (Hy HY) Z = #J S (264)
5 #]k

where the second-to-last equality follows from the fact that £ = [ can only occur if
both fold to the same node, i.e. ¢ = j, and that this can happen for #; joint choices
of (identical) k and [.

We close this section with a brief discussion of the aforementioned case of Bs
folding to GGy despite a lack of graph automorphisms. This is easily elucidated with
a quick detour through Djy:

HE = P + HP (2.65)
oS = HP + HP? + HP? = AP + 0f (2.66)

where we decorate each Cartan generator with a superscript denoting its algebra.
As illustrated — and the pattern holds up for remaining G5 basis elements — G5 can

be expressed as a folding of Bj in the same way that Bj is a folding of D,.

2.2 Supersymmetric quantum field theories

We assume that the reader is familiar with quantum field theory (QFT) at least
at the level of any number of excellent textbooks [0, [7] and supersymmetry at the
level of [§]. A quantum field theory is, as the name suggests, a theory of fields,
or objects distributed across all of space-time and transforming in a representation
of the global symmetry of the space-time, e.g. the Poincaré group associated to
four-dimensional space-time. Unlike classical fields, quantum fields at rest can only
be perturbed in discrete chunks, and the minimal such chunk is called a particle.
Correspondingly, every fundamental (perturbative) particle arises as a perturbation
of an underlying field. It follows that understanding “quantum fields at rest” is a
crucial prerequisite for studying particle physics.

“Resting” configurations of quantum fields are known as vacua and form the fo-
cus of this thesis. While generic QFTs can have a unique vacuum, theories imbued
with supersymmetry often possess uncountably many — each with its own character-
istic particle content. Our work here is to essentially catalogue (a class of) them.

Since the world around us is — or in any case seems to be — four-dimensional,
QFT is typically introduced to students in the context of four dimensions. However
QFTs can exhibit radically different phenomena in different dimensions. For exam-

ple, some particle-like dynamics can arise not as minimal perturbations of a field
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but as a topological phenomenon analogous to a twist on the Mobius strip: the twist
can travel the length of the strip but such a configuration is not exactly ‘close’ to
an untwisted cylindrical strip. The presence of such features, which are themselves
heavily influenced by dimensionality, ought to have an effect on small perturbations
and by extension particle content, so methods for studying vacua may vary across
different dimensions — as is indeed the case. This thesis is largely concerned with
three-dimensional physics but its applicability is wider: higher-dimensional super-
symmetric theories can often be related to a 3d case, opening the possibility for a
breakthrough with intrinsically three-dimensional techniques; see eg [9-11] for ap-
plications in four dimensions and [I2HI7] for a recent series of novel results in five-

and six-dimensional physics achieved with 3d methods.

2.2.1 4dN =1

In keeping with the aforementioned pedagogical bias, we start with a discussion of
supersymmetry in four dimensions, largely following the conventions of [§], particu-
larly where indices and contractions are concerned. A 4d N' = 1 theory is defined on
a space-time whose symmetry is described by the four-dimensional Poincaré algebra,
which is in turn extended by two supercharges Qu, Qs transforming as spinors of
50(4); this extension is known as the Poincaré superalgebra, with (anti-)commutation

relations

{Qa. Qa} = 2(0") 5P (2.67)
[Qa, P! = [Qa, P'] = 0 (2.68)
[Qa, M*™] = (6")2Q5 (2.69)

The four-vector o# is matrix-valued:

(2.70)
52 0 —i »3 1 0
1 0 0 -1
and
ot = (0%, —a") (2.71)
o = i( hGY — gvgh) (2.72)

Supercharges generate transformations which turn bosonic fields into fermions

and vice versa and so a non-trivial representation of the superalgebra must involve
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both bosonic and fermionic components.

It’s tempting to ask: why bother? What does supersymmetry bring us? Adding
symmetry to a problem can drastically reduce its complexity and simplify calcu-
lations. Supersymmetry is valuable because it makes computations tractable, and
the more supersymmetry there is, the easier the math becomes. Some of the truly
exceptional simplifications relevant for our purposes require N' = 2 supersymmetry
or more, but since they are special cases of N'=1 (as one can always just “forget”
about some of the symmetry), it makes sense to start with the less supersymmetric
N =1 theories.

Supersymmetric field theories are theories of fields. By complete analogy with
standard non-supersymmetric theory, fields can have components: for example the
vector field A, has four components Ag, Ay, Az, A3. However, on-shell particle states
of those fields may be constrained by classical equations of motion to fewer compo-
nents, e.g. the photon’s two polarisations. We will now describe a few important
superfields and indicate their particle components, assuming the particles are mass-

less.

A scalar superfield is a function defined on an extension of space-time called

superspace, which adds two grassmannian variables 6, 6:

S(x,0,0) = ¢(z) + 0y(z) + Ox(z) + 00M (z) + 00N (z) + (0o"0)V,,(x)

- - - (2.73)
+(00)0N(z) + (00)0p(x) + (0080)D(x)

S can be decomposed into component fields ¢,vq, Xa, M, N, V,, A, P and D which
form irreducible representations of the Lorentz group. ¢, M, N and D are scalar
fields, V, is a vector field and both v, po and Ya, A are Weyl spinor fields trans-

forming in conjugate spinorial representations.

More careful analysis shows that S is a reducible representation of the Poincaré

superalgebra. Expressing the supercharges in terms of differential operators acting

on fields,

0 G
_ i (. .pB_ T
= g = e g (2.74)
, O iy, 0 |
Qo = 1%‘1‘ (0")pe S

we can find two other differential operators which commute with them and therefore

preserve supersymmetry:

0 _s 0
— wy .pB
D, B —1—1(0 ) 59 B (2 75)
5 _ O s O '
Da = e+ )i g
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Since both DS and DS are superfields, we can impose e.g. DS = 0 as a consistent
supersymmetric condition on S to restrict to a smaller representation of the Poincaré
superalgebra.

A chiral superfield ® satisfies D® = 0. It can be expanded as

O(x,0,0) = p(x) + V200 (x) + 00F (x) + 00”00, ¢(x)

i wp 1 Y3} 10
75 (09)0,0(2)0"8 — £(60)(89)9,0"9()

with four bosonic components bundled into two complex scalar fields ¢, F' and four

(2.76)

fermionic components in 1,. It realises matter fields in supersymmetric theories.
The auxiliary field F' can be directly solved for using the equations of motion. The
(on-shell) particle states form a complex scalar field and one Weyl spinor.

The superfield ® subject to D® = 0 is called antichiral, admits an entirely
analogous expansion in component fields and represents matter in the representation
conjugate to that of chiral superfields. Its on-shell states are described by one
complex scalar and a Weyl spinor (of the chirality opposite to that of chiral superfield
Weyl spinors).

The last case of relevance for us is the vector superfield A constrained by AT = A.

It expands into

A(x,0,0) = O(x) +ifx(x) —ifx(x) + %99 (M(x) +iN(z)) —
+00"9A,(z) + 1000 (—i)\(x) + %0“0,»((;15)) — 1060 <)\(x) - %a“@ui(aj)

+%(99)(99) (D(x) = 50.0"C(2)

with C, M, N, D as real scalar fields and A, a vector field for a total of 8 bosonic
degrees of freedom and fermionic fields x, A with 4 degrees of freedom each. Unsur-
prisingly it can act as the supersymmetric generalisation of the gauge field. Once
again one of the scalar fields, D, is auxiliary, meaning that writing out the equations
of motion allows one to directly solve for it. The superfield’s on-shell particle states
form a constrained vector field and a spinor called the gaugino.

Now we have enough to define AV = 1 supersymmetric electrodynamics (SQED)
by specifying its Lagrangian. To that end we introduce the chiral supersymmetric
abelian field strength

(2.78)



It can be shown that W, contains the usual field strength F),, as a component field.

The superfields transform under the U(1) gauge group in the following way:

d; — NP, (2.79)
ol — pleir (2.80)
Ao A— %(A—AT) (2.81)
W — elthyeiah (2.82)
where A is a chiral superfield.
The kinetic term for the gauge field is written as
1 o

where X P denotes the component field of X appearing at order f(6,0).

6,9)
The vector superfield can also appear in the Lagrangian in another way, as long

as it plays the role of a U(1) gauge field, in the form of a Fayet-Iliopoulos term
Lr = fAU(1)|909’9 (2.84)

where £ is a real parameter of the theory. While Fayet-Iliopoulos parameters play
an interesting role in the study of Higgs branches, in what follows we will set them
to 0.

The (anti-)chiral fields ®; (1 <1 < n) enter the Lagrangian as

Ly = (0le*a,) ‘ + (W (@), + hec.) (2.85)

0000
with W (®;) a holomorphic, gauge-invariant combination of fields W (®;); in the case
of a single ® we necessarily have W (®) = 0.

Putting everything together, the Lagrangian of SQED reads

ﬁSQED =Lo+ L4+ Lyr1. (286)

This formalism can be extended to other gauge groups and supersymmetric Yang-
Mills theories in the following way. Let G be a non-abelian gauge group. An asso-
ciated gauge transformation A is an element of Lie(G) whose components are chiral
superfields. (E.g. if G = SU(n) then A is an n x n traceless matrix with chiral
superfield components.) Its effects on chiral ® in the fundamental representation,

chiral ® in the antifundamental representation and (superfield and gauge) vector A
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are:

d; — A0, (2.87)
(i)i — <i>ie_A (288)
24— M2, (2.89)

The non-abelian field strength ¥V must be modified to

W, = —-DD (e_ZADaezA)

transforming as

W — e MWeh,

The kinetic term for vector superfields is amended to

1 R
ﬁA = 2—g2(tI"WW|99 + trWW’H—é) (290)

and the (fundamental) chiral field Lagrangian becomes

Lo= (cpje?f‘cb,) ‘ + (W(®,)|,, + h-c.) (2.91)

0600
with W (®;) again a holomorphic, gauge-invariant combination of ®;. To gener-
alise to non-fundamental chiral fields, one need only cast A into the appropriate

representation of the gauge algebra.

2.2.2 4d N =2

Just as the Poincaré algebra was extended by two supercharges @ and @ into the
N = 1 Poincaré superalgebra, so can it in turn be extended by adding another

distinct pair of @, Q with suitable (anti-)commutative properties:

{Q2, Q8 = 2(0") 3 Pu0™” (2.92)
{Q),QF} = eapz?” (2.93)

where the second equation introduces antisymmetric central charges Z4Z. Central
charges necessarily vanish for massless representations and will be set to 0 in the
following discussion.

A theory with two pairs of supercharges is appropriately denoted N' = 2. For
some theories swapping the two sets of charges is also a symmetry of the theory and
in some cases they may even be continuously rotated into one another (though see

[18] for a counter-example). All transformations of this kind form the R-symmetry
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of the theoryP} In this case the R-symmetry is su(2)g x u(1), but the latter abelian

factor is unimportant for this discussion.

N = 2 supersymmetric representations are larger than their N' = 1 counterparts
and can be decomposed into them. Recall that the action of a single supercharge
turns a bosonic component field into a fermionic compotent field of the same super-
charge (or vice versa). With two supercharges to choose from, bosonic component
fields will form representations of the R-symmetry, as will their fermionic counter-
parts. To simplify matters, the following discussion of N' = 2 fields will only concern
particle states and neglect the remaining off-shell components of their respective su-

perfields.
The N = 2 vector supermultiplet V' consists of two N' = 1 multiplets: the

vector multiplet A and the chiral multiplet ®, both transforming in some group’s
adjoint representation. In terms of particle states, it contains a vector field A,(z)
and a complex scalar field p(z) with two real degrees of freedom each, and two Weyl
spinors ¢ (z) and A(z) for a total of four fermionic degrees of freedom. While the

vector and scalar are singlets under su(2)g, the spinors form a doublet.

The N' = 2 version of matter fields comes from hypermultiplets composed of
one N = 1 chiral multiplet @ and one antichiral multiplet Qf. The two multiplets
necessarily transform in conjugate representations of the gauge group G, which are
typically specified by reference to the representation of @), e.g. the fundamental
representation of G. The component supermultiplets are often referred to as the
quark and anti-quark, respectively. The hypermultiplet’s particle states consist of
two complex scalars ¢(z) and ¢'(z) in an su(2)g doublet and two Weyl spinors and
su(2) scalars ¢ and 1.

N = 2 invariance seriously constrains the class of admissible Lagrangians. The

vector contribution now takes the form

1 1
N= , o
LY== EIm[T tr ®fe2lA ]q)‘eeéé + 57 tr W, W ‘99] (2.94)
where 7 = % + % is the complexified gauge coupling.
Massless hypermultiplets contribute to the Lagrangian as
1 : . .
,CN:2 - 1 t ( i ,A s i,—A T) ’ 2.95
a A m{r tr (QUe7Qi + Qe 7 990’9+TW!99] (2.95)
where the superpotential takes the form
W =2 tr QQ. (2.96)

2Formally an R-symmetry is a symmetry which does not commute with the supersymmetry
generators.
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This notation is general across choices of gauge group and matter representations.
For example, N; quarks () coupled to an SU(N.) gauge field would be represented
by a N, x N; matrix, Q would be an Ny x N, matrix with ® an V. x N, matrix. The
trace is then understood to be over the fundamental representation, i.e. ranging
over the Ny flavors.

The full Lagrangian is then written as

LN=2 = =2 =2 (2.97)

2.2.3 Quiver gauge theories

We have seen that supersymmetry places strict constraints on Lagrangians. As a
pleasant consequence, the full structure of many theories can be succinctly specified
by a quiver diagram, or quiver for short. The main features are already visible in
the quiver depiction of N' =2 SQCD:

N =1 notation | N' = 2 notation
N
f Nf
Ql @
N, N,
)

On the N' = 1 side, we see several features

e Circle node N,.: gauge group U(N,) with a A/ = 1 vector multiplet; also
called the gauge node

e Square node N;: flavor group SU(Ny); also called the flavor node

e Arrow (: chiral multiplet transforming in the fundamental representation of
U(N.) and antifundamental representation of SU(Ny)

e Arrow Q': antichiral multiplet transforming in the antifundamental repre-

sentation of U(/V,) and fundamental representation of SU(Ny)
e Loop ®: vector multiplet transforming in the adjoint representation of U(IV,)

Note in particular that the loop is consistent with our notation for arrows as the
adjoint representation it denotes carries one each of fundamental and antifunda-

mental indices. (Matter can also appear in more general representations of the

35



gauge group, but for the purposes of this thesis we will be content with the options
presented above.)

Restricting to N/ = 2 allows more condensed quiver notation. In the case of
unitary gauge groups, N' = 2 matter always comes packaged in a hypermultiplet.
N =1 language encodes it as two opposite arrows but since they always come as a
pair, we can represent the A = 2 hypermultiplet as a single unoriented line. And
because N = 2 gauge groups always bring an extra chiral multiplet “loop”, the
N = 2 quiver can simply absorb the loop into the definition of a gauge node.

This recipe for N' = 2 quivers can only generate undirected quivers. However,
directed edges have appeared in the literature since their first appearance in [I1].
Such quivers are described as non-simply laced on account of their resemblance to
non-simply laced Dynkin diagrams (i.e. of types BCFG). (We stress that connecting
two nodes with multiple undirected edges does not make a quiver non-simply laced
under to this convention.) They feature prominently in Chapter [4]

Quivers need not have (special) unitary gauge and flavor groups. Families of
orthosymplectic quivers have been studied in [16, 19-23]. Such quivers exhibit an
alternating pattern of (special) orthogonal and symplectic nodes. A link between
an orthogonal and symplectic node represents matter in the half-hypermultiplet rep-

resentation: essentially a hypermultiplet with a reality condition [19]. The quiver

O O L]
SO(2)  USp(2) SO(4)

(2.98)

is one such example. More general examples, mixing unitary nodes alongside or-
thosymplectic ones, have also been studied. In this thesis we restrict to purely

unitary theories.

2.2.4 3dN =4

Although the formalism described in the previous sections was introduced in the con-
text of four-dimensional theories, it is easily adapted for work in three dimensions,
where most of the discussion presented in this thesis takes place. For example, the
quiver description can be adopted without modification. For an overview of general
3d N = 4 features see [24].

A popular way to reduce the dimension of a theory is to compactify it. In the
simplest case some of the infinite directions of space-time are replaced by circles —
the theory is said to be put on a torus — and their radii are shrunk to zero. For
concreteness, say we take a four-dimensional theory, whose space-time symmetry
(neglecting translations) is the Lorentz group SO(3,1). It includes SO(2,1) as

its subgroup and so every SO(3,1) representation must decompose into irreducible
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representations of SO(2,1). This type of reduction turns four-dimensional N' = 2
theories into their three-dimensional N' = 4 counterparts. The increase in AV signifies
that the two independent sets of supercharges in four dimensions decompose further
into 4 independent sets of three-dimensional supercharges. The total number of
supercharge components, however, remains constant. Since there are eight of them,
we say that both 4d N = 2 and 3d N = 4 are theories with eight superchargesﬂ

The R-symmetry of 3d N = 4 theories is expanded to SO(4), which rotates the
four supercharges among each other, and decomposes as su(2)y x su(2)¢; this fact
will be relevant when we discuss moduli spaces.

We still refer to 3d N = 4 representations by their 4d N’ = 2 names, and most of
the internal effects of dimensional reduction are immaterial for our purposes. The
hypermultiplet, for example, still contains two complex scalars.

The vector multiplet, on the other hand, gains a second complex scalar from its
vector component field A,: without loss of generality, assume we compactify along
the third dimension so A3 = o forms the trivial representation under SO(2,1).
Moreover the remaining vector A; = (Ag, Ay, Ag) defines a two-form field strength
F = dA which is Hodge-dual to the one-form xF. A one-form can be (locally)
interpreted as the exterior derivative of a scalar field v, i.e. *F = dvy. We call v
the dual photon. Together with ¢ and the complex scalar ¢ contained within the
chiral multiplet @, it forms one of four real scalar degrees of freedom in 3d N = 4
multiplets. ¢ and Az together transform as (1,3) under su(2)y x su(2)¢, so we can
bundle them together into a new representation ¢ with three real components. The
dual photon is invariant under both factors. The vector multiplet also includes a
Dirac spinor .

Note that both 3d N/ = 4 hypermultiplets and vector multiplets contain precisely
four real scalar degrees of freedom. This is the first sign of a very special property
of three-dimensional theories with eight supercharges: loosely speaking, one can
exchange gauge and matter fields to get another consistent 3d N = 4 theory with
closely related properties. We call this property three-dimensional mirror symmetry,
as it relates “mirrored” pairs of theories and will briefly return to it in Section [2.3.7|

Three-dimensional N' = 4 actions admit a supersymmetric Chern-Simons term
25

k 21 <
yy tr (A/\dA—gA/\A/\Aan)\/\—FZDU) (2.99)

but £ # 0 has the effect of removing massless degrees of freedom in the IR (and

3This is a frustrating convention as “supercharge” typically refers to a spinor representation
formed of supercharge components. However, in this instance, it refers to the components them-
selves. So a more accurate description would be theories with eight supercharge components. In fact,
it’s now clear why 4d N' = 2 turns to 3d N’ = 4 but remains a “theory with eight supercharges”:
the eight components remain but are repackaged into a larger number of smaller spinors.
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furthermore reduces supersymmetry to N' = 3). Since our interest in these theories
stems from the complex structure of their IR degrees of freedom, we want to preserve

as many as possible and uniformly set &k to 0.

2.3 Moduli space

Among the simplest aspects of a quiver theory one can study is its moduli space, or

the set of all admissible vacua.

Let |©2) be a vacuum state, defined by the property that the energy (Q| H |Q) is
minimised. The vacuum preserves the space-time symmetry of the theory, so two
distinct vacua can only differ in the vacuum expectation values (VEVs) (Q O Q)
where O is a Lorentz-invariant operator. Each VEV is therefore a (Lorentz) scalar.
The space of all vacua is called the moduli space, and it is parametrised by admis-
sible values of VEVs. Note that this is the site of a crucial conceptual switch: we

transition from talking about theories to talking about geometrical spaces.

Quantum field theories can behave very differently at various energy scales and
some theoretical approaches are only suitable in specific energy regimes. For ex-
ample, quivers are typically specified using UV data. However, vacua, being by
definition a low-energy concept, are naturally studied in IR and renormalisation
can have significant effects on a theory’s moduli space. Neglecting these so-called

quantum corrections for now, one can schematically expand the scalar part of the

Lagrangian in (2.97) as

Lol = étr F(y)* + étr 0,:00'0; +tr 0,40'q" + tr 0,407 — V(v,,4.4",4, 7).
(2.100)
where we stressed that F' is just the repackaged dual photon 7. A choice of
(v, é,q,q",G,q") such that V(v,0,q,q4",G,G") = 0 corresponds to a choice of vac-
uum. While generic non-supersymmetric theories will typically have unique vacua,
or perhaps a discrete set, supersymmetric theories tend to have “flat directions” in
the potential V. In other words the vacua form continuous spaces, which may (and

often do) contain singularities.

The F' and D fields in the Lagrangian are non-dynamical and so can be easily
substituted by solutions to their Fuler-Lagrange equations. The potential then

simplifies to the schematic form

- 1
V(77¢JQ7qT7Q7 qT) - Q_‘QQDADA—’_Z’FSOP (2101)
{¢}
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where

DA = "tr oI T (2.102)
{¢}
oW
F,=— 2.103

with {¢} = {7,6,¢,q¢",4,G'} the set of scalar fields, A an adjoint index, T the
generator of the gauge group representation under which ¢ transforms and tr the
corresponding trace. Note that F' is here the auxiliary scalar field and that both D
and F' appear as squares so must vanish to globally minimise the potential. (Non-
local minima tend to break supersymmetry whereas the global minimum maximally
preserves it.)

There are three classes of vacua for 3d N' = 4 theories encoded by the potential
V.

e Higgs branch #: All scalar VEVs in vector multiplets vanish and hyper-
multiplet scalars take values constrained by V (0,0, ¢, ¢, ¢, G') = 0. The forced
vanishing of F' and D terms defines a set of algebraic equations for hyper-
multiplet scalars. Field configurations differing only in the choice of gauge
are identified. H is an affine algebraic variety. Only the su(2)3 part of R-

symmetry acts non-trivially on this space.

e (Classical) Coulomb branch C.: All scalar VEVs in hypermultiplets vanish
and scalars in vector multiplets take values in the zero locus of V (7, ¢, 0,0, 0, 0).
The D-terms force a set of commutation relations and C. is therefore para-
metrised by scalars in the Cartan subalgebra of the gauge group G. Only the

su(2)¢ part of R-symmetry acts non-trivially on this space.

e Mixed branches M;: Some hypermultiplet and some vector multiplet VEVs
are non-zero. This case is usually omitted as it can be treated by tools devel-
oped for Higgs and Coulomb branches. Both factors of the R-symmetry act

non-trivially.

The classical Coulomb branch then undergoes important quantum corrections which
“enhance” it to the full (and strictly larger) Coulomb branch C.
The overall moduli space M is the union of the Higgs branch, Coulomb branch,

and typically several mixed branches:

M=nucu| JM; (2.104)

Notably, each branch carries hyper-Kdahler structure, implying that its real di-

mension is divisible by 4 and that it carries three complex structures satisfying
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quaternion-like relations. More information on hyper-Kahler spaces is provided in
Section 2.3.2]

The various branches of the moduli space intersect at the origin where all scalar
fields vanish. As the title of the thesis suggests, we will focus almost exclusively
on the Coulomb branch, with very infrequent mentions of the Higgs branch and
virtually no appearance of a mixed branch.

We will look at the Higgs and Coulomb branches in more detail but first we need

to introduce a concept central to their study: the chiral ring.

2.3.1 Chiral ring

We restrict our attention to chiral operators which break one half of N = 4 su-
persymmetry, i.e. [Qp, O] # 0 for @, drawn from a two-dimensional subspace of
superchargesﬂ Operators with this property are also called half BPS.

Let Op and O, be two such operators; moreover, since we are interested in moduli
spaces, the operators will be taken as bosonic and Lorentz-invariant. Then, for the

two-dimensional space of preserved supercharges (),:
[Qp, 0103 = [Qp, O1]O02 + O1]Qy, Os] =0 (2.105)

and so 010, is also chiral. Since linear combinations of chiral operators are also
(trivially) chiral, we say that such operators form a (generically non-commutative)
chiral ring.

Let us investigate some properties of vacuum expectation values of chiral ring
operators. A fundamental relation between supercharges states that {Q),, Qp} x P,
the momentum operator, which acts by translating operators. So the space-time
variation of O can be quickly computed through the supersymmetric generalisation
of the Jacobi identity:

[P, O] X [{Qpa Qp}a O] = _{[@pu O]> Qp} - {[O, Qp]a @p} = {Qpa [Qpa O]} (2-106)

However, any VEV of the form ({Q,,O’}) vanishes and consequently the VEV
(O(z)), which we may a priori expect to vary over space-time, is necessarily con-
stant.

Finally we consider the space-time variation of the product operator Oy (z)O5(0).

[P, 01(x)02(0)] o [{Qp, @y}, O1(2) O2(0)] = {Qy, [Qp, O1(2)O(0)]}  (2.107)

4Note that this subspace has four supercharge components, since each supercharge is a two-
dimensional spinor.
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following the same manipulations as above. It follows that 9(O;(x)O2(0)) = 0, i.e.
the product is independent of the operators’ separation. We can therefore move

O1(z) to infinity and use the cluster decomposition principle to separate the VEV:

(01(2)0(0)) = Iim (O1(2)0(0)) = Tim (O4())(0x(0))
:<01(0)><O2(0)> = <(91><(92>

(2.108)

where we used the fact that (O;(x)) are constant and in the last step suppressed

space-time dependence.

To recapitulate, the VEV of a chiral operator is a single complex number, prod-
ucts are also chiral and the VEV of a product is simply the product of the VEVs.
Moreover, sums of operators are chiral and the identity is also a chiral operator. The
set of chiral ring VEVs therefore satisfies the necessary properties of a commutative
ring. It is common (though imprecise) to refer to “the ring of chiral operator VEVs”
as “the chiral ring”, and we will follow this convention throughout the rest of this

work.

Now pick a branch of the moduli space, say the Coulomb branch, and fix a N' = 2
subalgebra, which is equivalent to choosing a complex structure. Coulomb branch
operator{] form su(2)c representations, whose action rotates the choice of complex
structure (or N' = 2 subalgebra). The operator can be represented by its highest
weight component under su(2)¢, which turns out to be chiral for a judicious choice of
supercharges. So elements of a certain chiral ring are in one-to-one correspondence
to su(2)e multiplets of Coulomb branch operators, because they form their highest
weight components. We call this particular ring the Coulomb branch chiral ring and
denote it C[C[f] (Put aside any worries about the fact that C[C] would traditionally
stand for the ring of holomorphic functions on C. We will get to this point very

soon.)

The chiral rings studied in this work can be presented in the following form of a

freely generated ring quotiented by an ideal:
R =C[0,,0y,...]/T (2.109)

We will refer to the O; — which stand in for VEVs of gauge-invariant chiral operators
— as generators. Elements of Z are called relations and we usually find that the ideal

is non-trivial but finitely generated.

5By which we mean their VEVs!
6A detailed recent account of this construction can be found in [26], albeit for the more com-
plicated (but relevant) example of a theory on a sphere.
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2.3.2 Interlude: Hyper-Kahler spaces

The presence of eight supercharges implies that the Higgs and Coulomb branches
each carry three independent complex structures, imbuing them with overall hyper-
Kahler structures, which are roughly the quaternionic equivalent of a complex mani-
fold; as a consequence their real dimension is divisible by four. Hyper-Kahler spaces
were first named in [27] and appeared in the physical literature in [28], describing
a Higgs branch. Other than the three complex structures, such spaces also carry a
triplet of (real) symplectic two-forms w. We arbitrarily select one complex structure;
an SU(2) symmetry rotates between the possible choices. Given a fixed complex
structure, we can also combine two of the real symplectic two-forms into a complex
symplectic two-form; from here on out, when we mention the symplectic form, we
will be referring to this complex two-form.

The SU(2) symmetry also acts on holomorphic and anti-holomorphic coordinates
of the hyper-Kéhler space. For example, the space H = C? carries two holomorphic
coordinates 21, 2o and two anti-holomorphic coordinates z;, Z, [29]. They form SU(2)
doublets 71 = (21, 22) and 75 = (29,21) and zj, resp. 2z, are their highest weight
representatives. Indeed any monomial in z; and 2z, i.e. a homogeneous holomorphic
function, is the highest weight of a suitable SU(2) representation. Similarities to
the discussion of chiral rings just a few paragraphs above are not accidental; in fact
they are the central prerequisite for the line of inquiry advocated in this thesis.

It is generally believed that, at least for three-dimensional N' = 4 Higgs and
Coulomb branches, Higgs (Coulomb) branch chiral rings are isomorphic to the ring
of holomorphic functions on the Higgs (Coulomb) branch moduli space.

This statement ties together supersymmetric gauge theory and algebraic geom-
etry through the medium of Hilbert’s Nullstellensatz. Let J be an ideal of a ring
R, V(R) the set of points in the ambient space on which it vanishes, I(X) the ideal
of polynomials vanishing on a set of points X and v/J the radical of J. Then the
Nullstellensatz states that

I(V(J) =V (2.110)

So finding the set of vanishing polynomials on V' (J) is almost a left inverse of V,
and an honest left inverse if .J is a radical ideal (i.e. equal to its own radical). It is
worth flagging here that switching between geometry and algebra carries with it a
risk and sometimes our tools may only find the radical v/J rather than J (the true
ring of chiral ring VEVs). See [30] for a striking example in 5d Higgs branches at
infinite coupling: the chiral rings in question include nilpotent elements which are
absent from a reconstruction using three-dimensional Coulomb branches, since this

technique is only sensitive to the radical of ring relations Z in ([2.109).

However, there are no nilpotent elements in 3d N' = 4 Coulomb branches and
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we can safely study it (as a geometric space) by analysing the ring of (physical)
chiral operators. If we find the chiral ring is isomorphic to the coordinate ring of a
particular geometric space, we have good grounds to claim that the Coulomb branch
is isomorphic to that very space. That is the general motivation of this thesis.

Let G be a Lie group with an action on a hyper-Kahler space M, i.e. G is a
continuous symmetry[’] Then there exists a moment map p : M — Lie(G)* which
encodes flows along the manifold. In particular, if £X is the vector field preserving

the symplectic (and complex) structure generated from X € Lie(G), we have that

d(p (X)) (€) =w (€%,¢") =Y (2.111)

for any X, Y € Lie(G).
The symplectic form also implies the existence of a Poisson bracket between

holomorphic functions on M satisfying the following property:

{(X), p(YV)} = p ([X, Y]). (2.112)

Finally we point out that p is a function from the space M to the dual of the
symmetry’s Lie algebra — in other words it is a coadjoint-valued function. At the
same time g is holomorphic thanks to the hyper-Kéahler structure. Taken together,
the dim G components of x must correspond to (some) chiral ring elements. Con-
sequently, the chiral ring includes at least enough independent operators to fill out
a coadjoint representation of the global symmetry of a given branch of the mod-
uli space. Much of this thesis is concerned with constructing the Coulomb branch

moment map for various families of theories.

2.3.3 Higgs branch

We provide a very terse description of the Higgs branch. The interested reader is
advised to look at any one of several historical or contemporary treatments [20, 23,
29], B1H34] for more details and concrete examples.

The Higgs branch is the space of vacua in which all scalar VEVs associated to
vector multiplets vanish and only VEVs associated to gauge-invariant combinations
of scalars in the theory’s hypermultiplets are allowed to take non-zero values. If we
think of {V = 0} as the set of Higgs branch constraints, i.e. the set of equations
coming from D and F' terms after vector multiplet scalars are set to zero, we can

write

H — <C2><nurn. of hypermultiplets/{v — O}H)/g (2113>

"Note that G is the theory’s gauge symmetry and G is the symmetry of its space of vacua. The
two are not independent but their relation is complex and involves the matter representation R.
The curious reader should keep reading on: this connection lies at the core of this thesis.
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where we also indicated that field configurations related by the action of the gauge

group G are to be identified.

Standard non-renormalisation arguments [35] show that Higgs branches do not
receive quantum corrections, so classical analysis is entirely sufficient. Moreover,
they are largely robust under dimensional reduction, although a few quantum-
mechanical effects appear in other dimensions. As studied in [36H43] and more
recently in [14, [I7], Higgs branches of supersymmetric theories in five and six di-
mensions (and eight supercharges) “enhance” in the UV as gauge coupling becomes
infinite and instanton operators, resp. tensionless strings, turn massless. Four di-
mensional physics offers an analogue in Argyres-Douglas points [10, 44], [45]. In the
present setting of three dimensions such matters need not concern us and we shall

be satisfied with classical computations of the type described above.

As an example take U(2) SQCD with 4 flavors and let g5 be a scalar field with
gauge index @ and flavor index p and ¢? the conjugate field. The F' terms in ([2.103])

imply

Gl =0 (2.114)

arq) — Gi'q = (2.115)
Define the “meson matrix” of gauge-invariant operators
M} = q;q; (2.116)

and notice that
r _ a~q . b~r
MIM; = q7q2q,G, =0 (2.117)

The flavor group SU(4) also comes with €,,s and €?"® tensors which allow us to
check the rank of M:

/

ey o MY MY M = (@7 Gpa505) (e G5 2 ) = O (2.118)
since for every term at least two of a,b,c must be the same and (wlog assuming
a=">) q;qg is symmetric in p <> ¢ but contracted to a tensor antisymmetric in the

same indices. Therefore the rank of M is at most 2.

The attentive reader might notice we never made use of the D-term and indeed
they are secretly made redundant by the imposition of gauge invariance, or rather

invariance under the complexified gauge group; for details see [46].

The Higgs branch described above is our first example of a nilpotent orbit closure,
a space parametrised by a single (co)adjoint matrix with a nilpotency condition
(here M? = 0) and potentially other relations (here rank M < 2). In fact, M is
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secretly the Higgs branch moment map. This particular space is the next-to-minimal
nilpotent orbit closure of su(4), also known as Oy [20}, 47, 48], and consists of

traceless matrices conjugate to

X2y = (2.119)

o O o O
o O o O
S = O O

o O o =

2.3.4 Interlude: Nilpotent orbits

Nilpotent orbits [49] form an important class of hyper-Kéhler spaces, largely due
to their simplicity: while any hyper-Kahler space must have at least one coadjoint
representation’s worth of operators to form the moment map, the coordinate ring of
a nilpotent orbit of an algebra g is generated by a single generator in the coadjoint
representation of g [50]. The moment map is then precisely the set of the coordinate
ring’s generators. Relations between ring elements can be read off from constraints
on the moment map. As a result, identifying the space as a nilpotent orbit greatly
simplifies matters, as we no longer have to talk about dim M operators subject to
a (usually fairly large) number of relations. Instead, we have one moment map g
with only a handful of constraints specified by its contractions with other copies of

itself or available invariant tensors.

Nilpotent orbits of g are defined as coadjointf| orbits of nilpotent matrices in g.
To illustrate the concept we provide a full characterisation of nilpotent orbits of
sl(n,C). Precise definitions for the remaining classical groups can be found e.g. in
[49].

The first step is to take a nilpotent element X € sl(n,C), i.e. X* = 0 for some

k. It can be transformed to its Jordan-normal form

I,

I,
X,dy) = . (2.120)

I

8Nilpotent orbits can also be defined as adjoint orbits of nilpotent matrices, but as long as g
is semisimple there is a one-to-one correspondence between coadjoint and adjoint nilpotent orbits.
Since our moment maps are coadjoint, we stick with the appropriate, coadjoint definition.
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where J), is the A; x \; block matrix

10
01
000 -- 00
= (2.121)
0
0 0 0

and \; appear in descending order, i.e. A\ > Ay > --- > Ay. Note that Zfil A =n,
so the set of Jordan-normal matrices of the form is in one-to-one correspon-
dence to partitions of \. We denote a particular partition X = (A, ..., An) and use
it to label nilpotent orbits. Other classical groups have a similar correspondence

between nilpotent orbits and a precisely defined subset of partitions, see [49].
The nilpotent orbit Oy is itself defined as
O; ={A7'X;A | Ae SL(n,C)}. (2.122)

Note that every X € Oj shares the nilpotency condition X ¥ = 0 with the “proto-
type” element X.

Let us consider nilpotent orbits of sl(2,C) for the sake of concreteness. There

are two partitions X of n = 2: (1,1) = (12) or (2). The first partition corresponds

00
X2 2.123
(1)(0 o) ( )

O {(g g) } (2124

The case of X = (2) is more interesting;

01
X 2.125
(2) (0 0) (2.125)
and the orbit is now larger:

Op) = {A—l <O é) Al Ae SL(n,C)} (2.126)

to the Jordan-normal matrix

whose orbit is a single point:

0
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where

b
A= <a d) ,ad — be = 1. (2.127)

c

The elements of O(y) therefore have the form

cd d?
X = 2.128
(—02 —cd) ( )

Note that although X ¢ O2), there is a sequence X; € Oy which can get
arbitrarily close to O(2y, i.e. O(j2y is included in the closure @(2) of Oy. In fact,

the closure is just the union of the two orbits:

0(2) = 0(2) U 0(12). (2.129)

Closures of nilpotent orbits are of particular importance to the study of super-
symmetric vacua. Many of the theories we investigate will have Coulomb or Higgs
branches of precisely this type. Luckily closures are as easily categorised as nilpo-
tent orbits. Take any two partitions X and N of A. The set of partitions is partially

ordered by the domination relation
L J J
AN =y N> N (2.130)
i=1 i=1

The closure of Oy is then defined as the union of all nilpotent orbits Oy, such that
X > ). Note that this immediately implies the inclusion relation @X D @X'-

This structure can be represented with a Hasse diagram, which is best introduced
on an example. Let g = sl(6,C). The partitions of 6, and therefore the nilpotent
orbits of sl(6,C), are exhausted by

{(6),(5,1),(4,2),(4,1%),(3%), (3,2, 1), (3,1%),(2%), (2%, 1%),(2,17), (1°)}  (2.131)
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The Hasse diagram reads [29] 49]

O)
As

O
x|

O,2)

ai Ay
Oa,12) Os2)
Ay A
O,2,1)
as
O(3,13) O23)
ai Ay
O(2212)

as
Op14
as

Car (2.132)

The diagram contains a wealth of information about nilpotent orbits of s((6,C).
First we need to understand the notation. Each node is a nilpotent orbit labelled
by the corresponding partition of 6. A link connecting a higher-placed orbit to a
lower-placed one implies that the higher partition dominates the lower and hence
the closure of the higher orbit includes the closure of the lower orbit. In fact one
can think of the closure of an orbit as “its node and everything connected to it from

below”.

Finally, each link is labelled by a geometric transverse slice between two adjacent
orbits. As we have seen, a nilpotent orbit corresponds not only to a partition, but
also to a nilpotent element X € g. The Jacobson-Morozov theorem allows one to
complete this element to a standard sl(2,C) triple {X,Y, H} and define the affine
space [21], [51]

Sx = X + ker([Y, ]) (2.133)

which we can call the transverse (or Stodowy) slice in g. Of particular interest is the
intersection of this slice with another nilpotent orbit. Let us consider two nilpotent
orbits Oy 5 such that O; D O,. Select any X € Oy and define Sp, x = Sx N O;.
Then O; and So,,x %X Oy are isomorphic in a neighbourhood of X. And this is
precisely what the links’ labels imply in the Hasse diagram: the transverse slice
of a smaller orbit inside the closure of the larger orbit is (isomorphic to) a known
geometric space, and the closure of the larger orbit is locally isomorphic to a product
of the smaller orbit and the labelled space: for example Og) is locally isomorphic to

O@1) x As. The A; denote Kleinian singularities C?%/Z;, while the a; are minimal
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nilpotent orbits of the corresponding A; algebra (ie of sl(i + 1,C))] The minimal
nilpotent orbit is the smallest non-trivial orbit, here O 14y; it is always unique. The
maximal orbit, here O, and the subregular (next-to-maximal), here O(s 1y, are also
always uniquely specified.

Closures of nilpotent orbits are generally not manifolds. Instead they form a
rich family of symplectic singularities, i.e. singular spaces with symplectic structure
(plus a few extra conditions). For example, O 1y is a singular subspace of @(6),
by which we mean the symplectic structure partially degenerates on it. The Hasse
diagram clearly shows that @(571) is itself singular in turn. We say that the subspace
with the same “degree of singularity” (same degeneration of the symplectic form)
is a symplectic leaf of the larger space, e.g. O(s) is a symplectic leaf of @(6), but
@(5,1) is not on account of including even more singular subspaces (eg Os,9)). A
symplectic singularity necessarily has a unique top symplectic leaf, although this
need not be true of an arbitrary symplectic space.

We will often specify closures of nilpotent orbits in terms of the degree of nilpo-
tency as well as information about the rank or trace of (possibly powers of) each
element. But makes it clear that it is sufficient to enforce rank or trace
constraints on the “prototype” Xy (or powers thereof) to enforce constraints on
every X € Oy. Notably, the same constraints also hold for every nilpotent orbit
Oj contained in the closure @X- In fact, the full set of rank and trace conditions
forms algebraic relations for the closure @X' Since our study of moduli spaces yields
this type of relations, the results must be closures of nilpotent orbits rather than
nilpotent orbits simpliciter.

From now on, in the interest of brevity, when we identify a moduli space as a
nilpotent orbit, we will implicitly understand it as “the closure of this nilpotent or-
bit”. Almost all Coulomb and Higgs branches analysed in this thesis will be closures
of nilpotent orbits although a handful will have a more complicated structure. They
will, in any case, be examples of symplectic singularities with an associated Hasse
diagram.

Many theories whose Higgs or Coulomb branches are nilpotent orbits or other
hyper-Kéahler varieties were tabulated in [20], 22 32, 52]. Hasse diagrams were used
to study the geometry of nilpotent orbits in [53, 54] and served as a valuable tool in

the study of moduli spaces of quiver gauge theoris in [15] [16, 23] 29] 52 55, [56].

2.3.5 Classical Coulomb branch

The following discussion follows [57), 58].

9A; and a; do not exhaust the possibilities of transverse slices. There are also the other Kleinian
singularities, D; and F;, and nilpotent orbits b;, ¢;, d;, €;, f4, g2, and other much less frequently
encountered spaces.
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The Coulomb branch is characterised by vanishing hypermultiplet VEVs. The
D-term ([2.102)) reduces to

(¢4, 98] =0 (2.134)

for A, B ranging over adjoint indices. This implies that the adjoint-valued ¢4 lie in
a maximal commuting subalgebra of Lie(G), which is also known as its Cartan subal-
gebra. A generic choice of ¢4 breaks G to U(1)™ 9, Each ¢, contributes three real
scalar degrees of freedom while each U(1) factor brings one extra massless photon.
Assuming no Fayet-Iliopoulos or Chern-Simons terms, all 4(rank G) scalars remain
massless in quantum theory, i.e. no mass terms are generated by renormalisation.
Since the ¢4 commute, they can be simultaneously diagonalised (at least for the
gauge groups we consider, i.e. unitary, symplectic or orthogonal). For example, for

SU(2), the solitary non-vanishing VEV can be gauge-transformed to a canonical

s 0
o= (0 _S> (2.135)

which is unique up to s — —s, the Weyl group of SU(2). The fourth scalar, the

form

dual photon transforms as v — —v under it (as the Weyl transformation acts by
charge conjugation). The classical Coulomb branch is then ((R* — Ajp) x S1)/S,.
In general, the classical Coulomb branch takes roughly{| the form

Ca = (R? x Shyrank G /)y, (2.136)

where Wy is the Weyl group of the overall gauge group. Note that the Weyl group
of U(1) is the trivial group.

2.3.6 Quantum Coulomb branch

The Coulomb branch is greatly influenced by quantum effects. The quiver specifies
the theory in the UV but the moduli space must be analysed in the IR. Historically
the Coulomb branch was first understood for theories with the gauge group G = U(1)
[57,59]. As described above, the photon could be dualised into a scalar and massive
hypermultiplets and W-bosons could be explicitly integrated out. The theory’s
low energy description is perturbatively renormalised, but the process mercifully
terminates after one-loop corrections to provide a renormalised Lagrangian encoding
the hyper-Kahler metric on the Coulomb branch. There are several issues with this
approach which necessitate an overall change of strategy. The first is that dualisation

of non-abelian vector multiplets remains an open problem. One can try to sidestep

10Here we gloss over issues arising from possibly enhanced gauge symmetry, see [58]; the classical
Coulomb branch is strictly speaking smaller than what we indicate here.
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this issue by considering a theory whose gauge group G is broken to the maximal
torus (Cartan subgroup) U(1)™9 by the choice of vacuum, but such an approach
is not reliable everywhere on the Coulomb branch. In particular, some choices of
VEVs leave certain W-bosons massless. But even abelian theories with G = U(1)"
are problematic as the complexity of calculations quickly pulls results out of reach.

A more fruitful approachm considers the emergence of a certain type of local
disorder operator, the 't Hooft monopole operator [62] in the IR. It has a straight-
forward UV description, which is then allowed to flow into the infrared. We first
take the vector of real scalars q;i, 1 < i < rank G along with the dual photon ~*

(normalised to periodicity 27) and define

eXi = B U (2.137)
i = ¢; + i3 (2.138)

Crucially, both types of operators are chiral and their VEVs can therefore parametrise
supersymmetric vacua. is the classical expression for the monopole while
is a complex scalar operator which we sideline for now. For now it is impor-
tant that the monopole “eats up” two scalar degrees of freedom.

Roughly speaking, a monopole operator’s semi-classical contribution to the (Eu-

S = e85 with f3; belonging to a set of simple roots of

clidean) path integral is e~
the GNO-dual algebra, selected so that Re(x) - 8; = ¢* - 8; > 0 [24, 63, 64]. As
long as ¢3 is sufficiently large, the classical expression describes the mag-
netic monopole well. But it is clearly not suitable at small ¢ and since ¢ — oo
as we flow to the IR in three dimensions the domain of validity becomes ever more
restrictive. We must therefore look for an alternative description and indeed find
one in an explicit SCFT construction [65], 66] of the monopole as a singularity in
the fundamental gauge and scalar fields in the Euclidean path integral.

Let us start with the U(1) case. A bare monopole operator V,,(z), labelled by m
(to which we return shortly) inserts a Dirac monopole singularity at x and modifies
the gauge field around the insertion point. In standard spherical coordinates (r, €, )
centred around z{

Ay ~ —(£1 —cosf)dy (2.141)

SIE

HWe follow the discussions of [26] 48], [60), 61]
12Monopoles should still preserve the Coulomb branch N = 2 subalgebra, which translates to
the BPS condition
(d—iA)g® = —x F (2.139)

where F' is the usual field strength associated to A. To satisfy the equation, an analogous singularity
must be inserted in the ¢3(x) field near z:

¢~ —. (2.140)
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The gauge connections A4 are specified in two patches, which can be thought of as
the northern and southern hemispheres of an S? surrounding z. The two fields must
be related by a gauge transformation, constraining m by the Dirac quantisation
condition:

exp(2mim) = 1. (2.142)

Abelian monopoles are therefore labelled by integers called magnetic charges — and
that’s almost everything we need to know. This thesis is not at all concerned with,
say, profiles of gauge fields. We are interested in vacuum expectation values of
operators and how they vary across the moduli space. For now, knowing how to

label and relate monopoles in abelian theories is all that matters since they provide

the VEVs.

The non-abelian case is significantly more involved but crucial to our work. A
Dirac monopole is an abelian singularity, so the set of (bare) non-abelian monopoles
should correspond to all the ways of inserting U(1) into the gauge group G up
to choice of gauge; let us label such operators v,,. But two insertions related by
choice of gauge should be identified. The honest, gauge-invariant, physical monopole
operator must then be defined as the sum over v,, insertions where m are related
by a gauge transformation; we denote this gauge-invariant insertion V,,. We see
then that the gauge-invariant expressions are labelled by m € Hom(U(1),G)/G ~
Hom(U(1), T)/Wg, the set of cocharacters of G. Another way to see this is to write

down the generalised Dirac quantisation condition [67]

exp(2mim) = 1g. (2.143)

There is an isomorphism between cocharacters and Weyl orbits in the coweight
lattice AY, or equivalently the weight lattice of the GNO (i.e. Langlands) dual group
LG [68]. Each Weyl orbit comes with one dominant weight lying in the principal

Weyl chamber. Let m? be such a dominant weight. We now have
m” € Trg/Wrg. (2.144)

As long as our gauge group is fully unitary, i.e. G =[], U(r;), then, since LUy =
U(r), we have
m? e [[z"/S.. (2.145)

where the quotient by S,, ~ Wy, can be taken to enforce the order mfl > mfz >
cee > mfm. So we can now label our monopole operators V,,,» without fear of leaving

any of them out.
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Now let us range over m € Wgm?, the Weyl orbit of m”. We have

Vo = Y U (2.146)

meWgmP

To give a pair of concrete examples, let G = U(2) (for both cases). Then m? =
(mP, mP

mP . mb) where mP > ml and we can insert the gauge invariant monopoles
Vivo) = v + Vo), (2.147)
Vi = va- (2.148)

Yet again the structure of labels is of singular and overwhelming importance —
at least so far. We will refine this point of view shortly. But for now we have learnt

enough about bare monopole operators.

Note that the discussion above becomes considerably more involved for quivers
with gauge factors other than U(r) such as SU(n), SO(n) or USp(n): in such theo-
ries a gauge-invariant monopole insertion may involve sums over abelian monopole
insertions labelled by m ¢ Wgm?®. This phenomenon, called monopole bubbling [69],
has been studied in [T0H75] and also recently in [60] [76] (with a secret appearance
in (2.3) of [77]) using methods closely related to abelianisation (see Section [2.4.2)).

Not all monopole operators are bare, however. Monopoles can also be dressed by
complex scalars ([2.138)) in vector multiplets. Let us start by dressing the “empty”

monopole: the unit operator.

The Harish-Chandra isomorphism states that elements of the centre of the uni-
versal enveloping algebra of G — i.e. gauge-invariant operators — are in one-to-one
correspondence to polynomials in ¢;, 1 < ¢ < rank@G, invariant under the Weyl
group Wg of G. If G = U(n) then the space of such operators is generated by
tr(¢") = Y7, ©F, the Casimir operators of U(n).

Now pick a monopole V,,». The choice of magnetic charge m” typically breaks
the gauge group to a subgroup. For example, if G = U(3), we can have mP =
(1,1,0), breaking the gauge group into G(m?) = U(2) x U(1), or the subgroup

D

which leaves m" invariant. Its Weyl group is reduced to a Sy subgroup. Now

express the monopole as a sum over abelian insertions

Vi = > Vm =v10 (2.149)
meWg(1,1,0)

We dress a polynomial by multiplying the dominant contribution with a suitable

polynomial P(g) = P(p1,p2,¢3) and the sub-dominant contributions v,,.,,» by
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S

S
|

= P(w(¢1), w(p2),w(ps)), which can be denoted

[P(SB)V(LLO)} = Z P(w - @)vm = P(p1, 02, 903)7)(1,1,0) +e (2.150)

meWg(1,1,0)

To ensure that the newly defined operator is still gauge-invariant, it must be in-
variant under the action of the Weyl group. Since a subgroup Se C S3 is unbroken
by the bare monopole’s magnetic charge, the sum over w € Wg does not permute
the first two indices. Consequently dressing the monopole in a polynomial which is
not invariant under the same S, would spoil its Weyl- and hence gauge-invariance.
So the rule is that the dressing polynomial’s contribution to the dominant insertion
must be invariant under the gauge subgroup which leaves the dominant magnetic

charge invariant.

Note that the trivial insertion m = (0,...,0) can still be dressed by polyno-
mials which are symmetric under the full Weyl group of the theory. We will call
these scalar gauge invariants the Casimir operators, on account of their one-to-one

correspondence with the gauge group’s Casimir invariants.

This will suffice as an intro to the zoo of Coulomb branch chiral ring elements.
However, just specifying — really barely listing — them is not enough. For example,
a product of two operators may be equal to a third one; this would constitute a
ring relation. And to understand a chiral ring as the coordinate ring of a moduli
space, we need to catalogue these relations as well as list elements which they relate.
Fortunately several recent works have developed tools addressing precisely these

concerns. We turn to them in the section on Coulomb branch methods.

More precise descriptions of monopole operators as operators in the SQFT can
be found across several modern treatments [26, 60] [78, [79] from which we draw
inspiration for methods described in some of the following sections. Another recent
approach models monopole operators using brane insertions in string backgrounds
[61, 80]. A mathematical treatment of Coulomb branches and their coordinate rings
was provided in [81H83] and recently expanded in [84] for the case of non-simply laced
quivers. [85] proved using the mathematical description that Coulomb branches of

simply laced quiver gauge theories without loops are symplectic singularities.

Finally, before moving on, we make the first inroad into understanding a principal
feature of the Coulomb branch: its symmetry. Take a unitary quiver, i.e. one whose
gauge nodes are unitary groups U(r;). Each such node includes a U(1) factor. The
Hodge dual of its field strength J = «FY(M is a conserved current on account of the

Bianchi identity dFV(M=0 and independently of equations of motion:

*xdxJ=—+dF'M =0, (2.151)
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The conserved current .J is called topological due to its relation to twists of the
gauge group’s principal bundle. Any conserved current indicates the presence of a
continuous symmetry by Noether’s theorem.

Monopoles can be charged under this symmetry. Their topological charge is

given by:
g(mP) = mea €Z. (2.152)
a=1

Note that ¢; is invariant under the action of the Weyl group. Each monopole operator
can have any combination of integral topological charges (even 0 at every node) while
scalar operators are always topologically uncharged.

Assuming that the quiver is goolej and its gauge group is G = [[, U(r:),
we expect the Coulomb branch to carry a U(1)"™ symmetry, or equivalently admit
a faithful U(1)" action. The true symmetry of the space might be much larger

however, and it generally is in the cases we cover in this thesis.

2.3.7 Mirror symmetry

It was noticed in [59] that 3d N = 4 theories come in pairs such that the Higgs
branch of one is the Coulomb branch of the other and vice versa. This mysterious
property, known as 3d mairror symmetry, was given a string-theoretic explanation
in [86]. Many 3d N = 4 theories can be constructed as effective theories for fields
living on branes in Type IIB string theory; see e.g. [19 0] for later refinements.
The Type IIB S-duality acts e.g. by exchanging D5 and NS5 or D1 and F'1 branes.
Higgs and Coulomb branches can be read off brane theories, provided one rearranges
the branes in a suitable way and keeps track of so-called Hanany- Witten transitions.
It can be shown that the effect of S-duality on the low-energy brane theory is to
swap its Higgs and Coulomb branches. Since S-duality maps one brane system to
another, the low energy theory of the first system is mirror-dual to the that of the

second. For example,
H/C =C/H (2.153)

In the years preceding developments covered in the following section, techniques
for computing Higgs branches were much more advanced than for Coulomb branches.
One would therefore often learn about a theory’s Coulomb branch by taking its

mirror dual and analysing the mirror’s Higgs branch. We will at times use this trick

3Which quivers are good is explained under (2.171]).
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for an independent check of results achieved by standalone methods.

Mirror symmetry continues to attract active interest among researchers. []7]
investigated its effect on two-dimensional supersymmetric boundary conditions. [8§]
recently studied more general classes of 3d N = 4 operators which included Higgs
and Coulomb branch chiral rings while [89] studied two classes of twist-translated
operators in non-abelian theories which are related to, but more refined than the
Higgs and Coulomb branch chiral rings, effectively tying together the work in [26] [33),
341160, 90]. A recent series of papers [77, 80, [91] revisited the string-theoretic setting

of mirror symmetry. A large number of mirror pairs can be found in [20, [32] 52].

2.4 Coulomb branch methods

With essential background out of the way, we can focus on computational methods
used to study Coulomb branches. A variety of approaches is available, some of which
have already been mentioned. Early attempts focused on computing its metric [59],
but such calculations soon became intractable. Later works [65, 66] explicitly con-
structed monopole operators in the QFT, but this too quickly becomes prohibitive
as theories increase in complexity beyond SU(2) SQCD with Ny flavors. [19] (cor-
rectly) conjectured an extension of these results and computed quantum numbers
of monopole operators for a large class of theories, stating several strong results
about Coulomb branches. The conjecture was later verified in [92] 93]. A major
breakthrough was reported in [I1], 48] where the quantum numbers were combined
with the plethystic programme of [94] 95] to create the monopole formula which
could calculate the Hilbert series of the Coulomb branch chiral ring. In 78] [79] the
authors succeed at expressing monopole generators using a novel approach called
abelianisation, which was further developed by [26, [60, [61], (77, [80, 96, 97].

This thesis documents a novel method synthesising the monopole formula and
abelianisation approaches. Some familiarity with these techniques is therefore a
prerequisite. The next two sections should provide a relatively self-contained account
to bring the reader up to speed.

It is helpful to keep in focus why we care about the chiral ring in the first place: it
corresponds to the coordinate ring of an algebraic variety, and the variety is exactly
the moduli space. But this correspondence is a ring isomorphism and it is not always
straightforward to look at two rings and judge whether or not they are isomorphic.
You can either express both in some kind of canonical basis, or try to bypass the
need for a common basis altogether. Operator counting takes the latter route while
the central method of this thesis, developed over subsequent chapters, takes a stab

at the former.
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Gauge and matter representations

It will prove useful to adopt a particular convention for weights of matter and gauge
field representations under the gauge group. As is often the case with conventions,
this one was selected for its compatibility with pre-existing tools: the monopole
formula (see Sec. and techniques developed in [60]. There is no particular
physical insight in this choice and we include it merely to improve reproducibility

of our calculations.

The matter fields transform in a (usually reducible) representation R while gauge

vectors transform under the representation V.

Recall that (in unitary theories) the matter representation consists of two hy-
permultiplets in mutually conjugate representations. Consider the unitary quiver

below, along with its full matter and gauge representations:

O—0O—]
L2 3 (2.154)

R = {(£1:¥1,0:0,0,0), (£1;0,F1;0,0,0), (0; =1,0; 1,0, 0), (0; £1,0; 0, F1, 0),
(05%1,00,0,51), (050, £1; F1,0,0), (0;0, +150, F1,0), (0;0,£1; 0,0, F1)}
(2.155)

V = {(0;0,0;0,0,0), (0; +1,¥1;0,0,0), (0; 0, 0;0,0,0), (0;0,0;0,0,0)}  (2.156)

Each vector contains charges under U(1), U(2) and SU(3), in this order. Entries
of R clearly describe bifundamental fields charged under adjacent nodes. Gauge
representation weights do not “cross” nodes and, in the case of unitary quivers, either
carry no charge (and belong to the U(1) factor or Cartan subalgebra of SU(n)) or
carry one unit each of charge 1 and —1 in two components of the same gauge node;
there is one weight for each choice of components. In this particular case, the first
vector corresponds to the U(1) photon and the remaining terms are the U(2) gauge

bosons.

Both methods driving this thesis, the monopole formula and abelianisation, re-
quire that we only use half the weights in R for the formulas and disregard the
rest or, equivalently, that we iterate over pairs of weights related by a sign flip (i.e.
charge conjugation). The choice of representative will never affect the monopole
formula, but may result in an overall sign flip in abelianised calculations. However,

the sign can always be reabsorbed into the definition of an abelianised variable.
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We have found the following convention clean and useful as it produces uniform
signs. First, let us label weight components using two indices ¢ and a, where i ranges
over gauge nodes and a over the dimensions of its Cartan torus. Then split R into

two disjoint and equally large sets:

R =R}, UR,, Vw e R : (wiq>0=weR)AN(weR], & —weR,).
(2.157)
The convention is agnostic about whether a weight with w; , = 0 belongs to RZG or
R

2,a?

but no calculation hinges on that fact, so it may be left indeterminate. The
monopole formula is even less picky about signs and we define R = Rt LU R~ to be
any partition such that w € Rt & —w € R™.

2.4.1 Operator counting

The operator counting, or Hilbert series approach to Coulomb branch chiral rings
was pioneered in [I1]. The two main insights behind this method are that we can
often easily identify a set of “basic” symmetries of the Coulomb branch and that
we in principle know exactly how many operators carry any particular combination
of charges under them. This information is preserved by ring isomorphisms, so it
has to be the same for any description of the physical chiral ring (which we can
specify) and the coordinate ring of a putative geometric description of the Coulomb
branch (which we would like to find) and constitutes a highly non-trivial test which is
sometimes sufficient to fully specify the chiral ring presentation in ([2.109). Operator
counting is a state-of-the-art method for analysing Coulomb branches. It has given
rise to vast swathes of novel results, helped identify novel mirror pairs and previously
unknown relations between theories [11], T4HT6], 20} 22| B2, 52, O8-105] and served as
the inspiration behind mathematical work which finally gave the Coulomb branch a
rigorous definition [8IH83]. See [106] for a longer review of this approach.

To help formalise the following discussion, let us first discuss the concept of a
graded ring and its Hilbert series. Consider a ring R which can be decomposed into

a (potentially infinite) direct sum of vector spaces R, for non-negative s

R= P R, (2.158)

SGZzo
such that the grading plays well with multiplication:
reERNye R, =12y € R,y (2.159)

We say that R is a graded ring. If R is a polynomial ring then the elements of R;

are called homogeneous polynomials.
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Its Hilbert series is defined as

HSp(t) = ) (dim R,)t* (2.160)

SGZZO

where the dummy variable ¢ is called the fugacity. The series can often be explicitly

summed up into a rational function.

As an example consider the coordinate ring R = Clz,y|/(z* — y) of a parabola.
If we assign grade 1 to x and grade 2 to y, we can list all independent monomials

forming bases of vector subspaces R;:

RO . 1
R1 . T
Ry : 2=y
2.161
Rs: 3 = xy ( )

Ry: 2*=2%%=y

and so on; it is clear that each R, is one-dimensional. The Hilbert series is therefore

HSr(t) =1+t +2 +3 4+t - = ——. (2.162)

One can also consider multigraded rings which split into vector spaces labelled
by ZZO X 2"

f= D Ris,ir,.ooiv) (2.163)
(5=i17---7in)€ZZO><Z”
such that
T € Ririyin) NY € Rs i) = Y € Rirgsintir,oviintin) - (2.164)

The Hilbert series can now be refined by introducing fugacities for each component
of the grading:

HSR(t) = (dim Ry i,,...i))t° [ 2™ (2.165)

(81100100 €L X L1 k=1

For a more sophisticated example than above, and one which uses multigrading,

2

consider the affine variety in C* defined by xy = 22. Its coordinate ring is R =
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Clz,y, 2]/ {xy — w?) with grading

x (2,1)
Yy (27 _1)
w: (2,0)

Note that the relation zy — w? is homogeneous in both components of the grading.

We can once again provide a partial list of independent monomials:

R[) . 1
Ry : T,Y,w
Ry : 22,2, 2y = w? (2.166)

. 3 .2, — 2 2 _ 2,3 ,,3
RG- ",y = TWw-,2Yy" =yw-, Yy ,w

with trivial Ry, for £ odd. The associated Hilbert series calculation is slightly trickier,
but also more insightful. We know that the final result looks like the Hilbert series
of the freely generated ring Rgee = Clx,y,w], except we should not double count
the ideals (zy) and (w?), i.e. we should subtract the contribution from the ideal
(w?)R:

11—t
(1 —22)(1 — £2271)(1 — 12)

HSk(t, z) = HSg, (t,2) — t'"HSg, . (t, 2) = (2.167)

This is, in fact, the Hilbert series of one of the simplest hyper-Kahler varieties,
C?/Z,, which happens to be isomorphic to the affine variety defined by xy = w?. Tt

expands as

HSp(t,2) =1+ (z+ 14+ + (P +z+1+2 427t -0 =

(Z ZJ) 125 — ZX[2S](2)t2S
s=0

s=0 j=—s

(2.168)

where xppq(2) = >°__, 2 is the character of the s[(2,C) irreducible representation
(irrep) [2s]. That might not be immediately obvious since the weight content of
an irrep is often stated in the basis of fundamental weights, e.g. [2] is the sl(2,C)
adjoint irrep. But the exponents of z in xs4 correspond to components of weights
in the simple root basis. This is an unfortunate but necessary awkwardness: highest
weights of irreps are most naturally expressed in the fundamental weight basiﬂ

while unitary quivers provide us with grading in the simple root basis, and we will

14 All components of the highest weight, expressed in the basis of fundamental weights, must be
non-negative integers, and conversely any vector of this form is a valid highest weight uniquely
specifying an irrep.
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use this convention throughout the thesis.

Coming back to the actual content of the series, we see that the coordinate
ring breaks into representations of s[(2, C); this is a strong indicator of the space’s
symmetry under the action of this algebra (and the corresponding Lie group). And

indeed we can make it explicit by arranging the three generators into an sl(2,C)

M = (iw v ) (2.169)
y —iw

We have that tr(M) = 0 and det(M) = w? — xy = 0. There is a natural action
Ae SU2): M — AMA™! mapping M to another adjoint (traceless) matrix while
leaving the determinant relation invariant, i.e. det(AMA™!) = det(M) = 0. So we

can think of the variety as the set of s[(2, C) matrices with vanishing determinant,

adjoint matrix:

which also happens to be the (closure of the) minimal nilpotent orbit of s((2,C).
And although we just explicitly demonstrated that the space is symmetric under
SU(2), resp. sl(2,C), we could have guessed that it might be — based only on the
decomposition of the Hilbert series into s[(2,C) characters.

The example demonstrates a very important point. Assuming we can endow our
chiral ring with a grading and compute its Hilbert series, we have gained a powerful
tool, as the Hilbert series is invariant under ring isomorphisms, at least if they play
well with the grading — but hold that thought for now. Assuming we chose our
grading well, and we found the chiral ring’s Hilbert series, we need only take the
result and compare it against a catalogue of Hilbert series of hyper-Kéahler spaces
to find candidates for the moduli space. But while two isomorphic hyper-Kéhler
spaces certainly share the exact same Hilbert series — again modulo worries about
the grading — two different hyper-Kahler spaces can share a Hilbert series.

It is easy to come up with an almost trivial example. Take the C?/Z, variety
we just saw but slightly modify the defining relation to xy = w(w + ¢), where ¢ is a
dimensionful parameter (and not a new ring element). Whereas the original space
has a singularity at the origin (where the Z, action degenerates), this deformed space
removes it. However, it is easy to see that the deformation makes no difference to
the Hilbert series.

This case provides us with a very important lesson: Hilbert series do not uniquely
identify spaces. But they certainly rule some out. And if we can remove dimensionful
parameters from the chiral ring description, we can rule out yet more.

There is only one candidate for a dimensionful parameter in a 3d N’ = 4 theoryIE:
the hypermultiplet masses. Hypermultiplets transforming under the fundamental

representation of a gauge group factor (rather than a bifundamental representa-

15Recall that we explicitly turned off all Chern-Simons and Fayet-Iloupoulos terms and the gauge
coupling is infinite in the IR.
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tion under two gauge factors) also carry a flavor symmetry, which shows up as a
square node in the theory’s quiver. Just as circular nodes imply the presence of
associated vector multiplets, the square node encodes background vector multiplets,
whose scalar VEVs are the background magnetic flux and complex mass of a hy-
permultiplet. We will put background fluxes to the side; see [98] for a practical
use of fluxes in Coulomb branch computations and [I03] for an investigation of this
parameter’s effects on the moduli space. The complex mass, on the other hand, will
play a role, and at times be explicitly set to 0 but otherwise left arbitrary. Methods
which rely solely on operator counting typically turn complex masses off; it is one
of the main advantages of the method presented in this thesis that it can handle

non-zero masses.

With all this preamble out of the way, we will now proceed to enumerate linearly
independent operators in the Coulomb branch chiral ring and reparametrise the

Coulomb branch Hilbert series using physical charges.

Recall from Section that monopole operators can come in bare or dressed
forms, where the latter is obtained by multiplying the dominant monopole insertion
(i.e. the one associated to the dominant weight of the cocharacter labelling the bare
monopole) with a polynomial and Weyl-symmetrising the resulting gauge-dependent
operator. This dressing polynomial must in turn be invariant under whichever part
of the gauge group remains unbroken by the monopole. We will count operators by
considering all operators with the same monopole charge together, with a unique

bare monopole and a tower of polynomially dressed descendants.

Enumerating bare monopoles is easy and we already did the bulk of the work in
Section[2.3.6 They are labelled by cocharacters of the gauge group G, or equivalently
by elements from the lattice I'.; /Wrg. We have mentioned that U(r) gauge factors
come with a U(1) topological symmetry of the Coulomb branch. The charge under
this (diagonal) U(1) is the sum of magnetic weights ¢; = >, ,mP € Z. If G =
H?:1 U(r;), we can assign n integers to a given monopole, corresponding to charges

under the n distinct topological U(1) symmetries.

There is one final charge to consider. Recall that the R-symmetry of 3d N = 4
theories is SO(4) ~ SU(2)¢ x SU(2)3. The factor SU(2)¢ acts on Coulomb branch
operators while SU(2)y acts on operators in the Higgs branch. SU(2)¢ rotates the
three Coulomb branch complex structures and corresponding N/ = 2 subalgebras.

Chiral operators are highest weight elements of SU(2)¢ representations.

Irreducible representations of SU(2) are characterised by a single weight or, in
physics parlance, spin; we normalise this quantity so that the lowest non-trivial

spin is 1/2, as is common in physics literature. A tensor product of two SU(2)
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representations decomposes into irreps as
[n)@[m]=[n+m]&-- (2.170)

where the omitted irreps have strictly lower spin. It follows that the product of
highest weight elements of two SU(2) irreps is again the highest weight element
for an SU(2) irrep — and its spin obeys the pattern of (2.159). Moreover SU(2)
irreps are labelled by non-negative half-integers, so (after rescaling by a factor of
2) we see that spin under SU(2)¢ could provide the (first component of a multi-)
grading for the Coulomb branch chiral ring, which must be a non-negative integer.
Understanding spin under SU(2)¢ is now top priority.

(As a remark, since all Coulomb branch operators transform trivially under the
Higgs half of the overall R-symmetry, there will be no risk of confusion in referring
to SU(2)c and R-symmetry interchangeably in the sequel.)

We now define an important property of unitary 3d N’ = 4 quiver theories with
profound influence on the Coulomb branch. First, let A denote the IR R-symmetry
spin of a Coulomb branch operator. We follow [19] and call a theory good if A > %
for all such operators, ugly if A > % and some operators saturate the unitarity bound
A= % or bad if the Coulomb branch includes operators with A < %

[19] provide a formula for the spin of monopole operators by relating it to their
conformal dimension in the free UV theory. The bad news is that the correspondence
is generically only guaranteed to work in the UV: whereas the conformal dimension
in the UV SCFT is necessarily equal to the R-symmetry spin in the same UV theory,
the UV and IR R-symmetries need not be the same. However, there is also good
news: they show that in the particular case of good and ugly theories, the two
R-symmetries are identified, R-symmetry spin becomes a protected quantity under
the RG flow and the conformal dimension is preserved as well. And since we only
concern ourselves with good theories, we are good to go. We will also henceforth
refer to R-symmetry spin and conformal dimension interchangeably.

But how can we tell if a theory is good, bad or ugly? This question is readily
answered in the special case of unitary quiver theories. Define the excess e; of a
node U(r;) as [19]

e; = # flavors, — 2r;, (2.171)

where the first term effectively sums the ranks of nodes attached to U(r;). If a
node has zero excess, we say that it is balanced. A unitary quiver theory is good
if e; > 0 for all nodes indexed by i. A unitary quiver with e; > —1 for all 7 (and
the inequality saturated by at least one node) may be ugly or bad, but it is always
ugly if the inequality is only saturated by a single node. An ugly theory’s chiral ring

will include an even number of operators of spin 1/2, say 2n of them; the Coulomb
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branch will then factorise as C = C,eq X H". Unitary quivers with e; < —1 are always
bad and their RG flows are less well behaved. In particular operator counting, as
presently understood, fails miserably. We focus exclusively on good quivers; bad
theories have been studied in e.g. [96, 107, [108].

We will temporarily adopt a more flexible indexing and allow the result to take
a more general form. Instead of assigning an integer to gauge groups, we will label
them by the vertex to which they correspond. The notation will later revert to
the practice of labelling gauge factors by integers, typically the usual labels for

corresponding Dynkin diagrams.

Consider first a unitary simply laced quiver. The underlying graph is formed
by a set of vertices V' and a set of (unoriented) edges E C S*(V). To each vertex
v € V is associated a gauge group U(r,), and to each edge e € E is associated
a hypermultiplet in the bifundamental representation of U(r,) x U(r,) where e =
(v,v). Finally, we have a set of flavor vertices F # () with global symmetries
SU(ng) for f € F, and a set of edges E' C V' x F. An edge € = (v, f) encodes ny
hypermultiplets in the fundamental representation of U(r,). The total gauge group
is

g=1Jve) (2.172)

and it has rank

r=>yr. (2.173)

The Weyl group is
w=]][5.. (2.174)

veV

A magnetic charge is an element m € Z". The conformal dimension A(m) of a

bare monopole (with magnetic charge m) is defined by

Z izimm M|+ Y Z"ﬂmm ZZ 1M =10 -

(v')eE =1 /=1 (v,f)eE’ i=1 veV i=1 j=1
(2.175)

Incidentally, the above equation can be significantly streamlined and generalised to

non-unitary simply laced quivers as
= Z |w-m|—2]a~m|. (2.176)
weRt acV

where we follow the conventions set out in Sec. 2.4 However, the form in (2.175)) is

more practical for calculations in this thesis.

We can now assemble the Hilbert series counting all gauge-invariant (and lin-
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early independent) Coulomb branch chiral ring elements. The conformal dimension
formula implies that, for every (linearly independent) bare monopole insertion of
charge m, the Hilbert series will contain a contribution of ¢*2(™) . Note that the
coefficient of ¢ counts double the spin, which is always necessarily integral — and,
for good and ugly theories, necessarily non-negative, with identity as the unique t°

operator.

A bare monopole can be dressed by scalar operators as in . Each elemen-
tary operator ¢ has conformal dimension (and hence spin) 1. We need to count how
many there are for each choice of m. Fortunately this translates to a straightfor-
ward combinatoric question. Take a single gauge factor U(r,) for now. m contains a
component, or possibly a number of components, corresponding to magnetic charge
under this factor — call it m,,. Then U(r,) is broken by m,, into a subgroup [ [, U(74.),
> i Tvi = T, with the Weyl group [], S,, ;. The admissible polynomial dressings are
all the polynomials which are symmetric under this product Weyl group. If we can
get a generating function for them of the form g,, . ;(t) = 1+ aﬁ,ll?mﬁ + afj?vvit‘* +oee

then we can assemble a Hilbert series contribution
2200 T gmwi (£) (2.177)

counting every monopole insertion of charge m, bare or not. Note that the term for
the trivial insertion, m = (0, ...,0), would count all gauge-invariant polynomials in

@, i.e. the Casimir operators.

The solution is well known, but before we state it, let us put this discussion in
more formal terms, which will incidentally become quite useful as we later discuss
wreathed quivers. For I' a subgroup of S, and m a magnetic charge, define the
stabiliser as

I'(m)={g€Tllg-m=m}. (2.178)

We certainly have that W C S,.. In the previous paragraph’s notation, W(m) =
Hfu 7 S”’v,i .

The generating function is then given by the Molien series [109]:

1 1
- S (2.179)
2
W] ey det (1 — t2y)

where v can be represented e.g. as a permutation matrix acting on R". In the case

of W(m) =TI, 5.

we get

v,1

Tv,i

1 1 1
Wwe;(m)m = Hnm (2.180)

v,i d=1
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Finally the (unrefined) Hilbert series for the Coulomb branch of the quiver is

given by the monopole formula [I1], which can be written as

tQA(m)

HS(t) = HSyy(t) |Z > e i (2.181)

mezZ" yeW(m

This formula can be further refined by labelling each monopole insertion with
its charge under the topological symmetry ¢, as defined in (2.152)). We only need

introduce |V| extra fugacities z,:

. ( un(m)> £20(m)
HSret(t, 20) = HSretan(t, 2) = —— L (2182
i 20) = A (t,20) = 35 2; %: det (1 — {29) (2.182)

Defining the formula is only half the battle: it must be also be computable in
reasonable time to be of much use. We refer to [I10] for an interesting algebraic
look at the difficulties surrounding computations of the monopole formula; here we

merely gloss over them.

Assume that we have the form ([2.182)) expanded as an infinite series:

reft Zv Zps Zv (2183)

Now comes the crucial part: the polynomial p,(z,) multiplying ¢* is — trivially —
a character of the topological symmetry [[, U(1). But it may also be a character
for a larger group. One might think that could happen by chance for a particular
order in ¢, but it would be much less likely that all coefficients of ¢°, for all s, are
characters of the same larger group — and there are general results constraining the

coeflicients even further.

If there is in fact a larger symmetry group acting on the Coulomb branch (in
which case we’d say that its symmetry is enhanced), then there would have to exist
an associated set of conserved currents. And if these currents could be shown to
leave a trace in the chiral ring, the Hilbert series might store a strong hint about

the symmetry.
As shown in [IT1], a unitary 3d SCFT’s conserved primary currents exhibit R-

symmetry spin 1. [24] places conserved currents inside N/ = 2 linear multiplets.
(Note that the dual photon is the lowest component of a linear multiplet and that
linear multiplets can be dualised to chiral multiplets.) Weaving the two together,
[19] note that in 3d N/ = 4 SCFTs conserved currents appear in multiplets whose
lowest component is a scalar in a N/ = 2 chiral superfield with R-symmetry spin

1. Note that this is fully consistent with the idea that the topological symmetry
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(with its conserved current xF") is a direct result of the existence of U(1) superfields
which contain complex scalars of R-symmetry spin 1. Consequently the order 2
contribution to the Hilbert series is counting at least the generators of the global

symmetry.

Finally, currents associated to a global symmetry form its adjoint representation.
Absent more information or physical arguments the Hilbert series is only counting
the dimension of the algebra, which is of course not enough to determine its struc-
ture constants, but the presence of a term readily interpreted as an adjoint irrep’s
character is a strong hint that the global symmetry of the Coulomb branch is larger
than U(1)2 ™19

For example the Coulomb branch of the quiver

O—]
12 (2.184)

has topological symmetry U(1) coming from its single gauge node, but the coefficient

of t at every order in its Hilbert series

o0

HS(t2) = Xpy ()t (2.185)

s=0

is an sl(2, C) character, including the adjoint representation Xf2[§2’(c) at order 2. The
Coulomb branch symmetry algebra is then likely enhanced to overall sl(2, C). New
directions on the Coulomb branch correspond to VEVs of monopole operators; we

will shortly see this example worked out in explicit detail.

Note that the Hilbert series is preserved under complex mass deformation. If we
read off the isometry of the SCF'T Coulomb branch from the Hilbert series, and the
series remains untouched upon turning on complex mass parameters, it is natural
to conjecture that the isometry will also remain intact. We will be able to confirm

it for worked examples.

So Hilbert series suggests the isometry; it also gives us quite a bit more than
that. The coefficient at the lowest non-trivial order in 2 must correspond to (at least
some of) the generators. The Casimir operators must be linear if they are present
at that order at all and the monopole operators must be bare. In fact most of the
rather special quivers in this thesis have Coulomb branch chiral rings generated by

operators at order 2, i.e. by linear Casimirs and (specific) bare monopole operators.

16That said, it is relatively straightforward to find physical arguments which do bridge the divide
and associate exponents of z, with structure constants, at least in the case of unitary quivers [19]
— it gets more complicated when the rank of the UV topological symmetry is less than the rank of
the enhanced symmetry.
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They assemble into the coadjoint representationm of the isometry — and the isome-
try is precisely the simple Lie algebra represented by the quiver reinterpreted as a
Dynkin diagram. Note that generic good quivers may have chiral rings generated
by operators beyond lowest order in ¢.

We should mention an important subtlety regarding the monopole formula’s
implicit grading, which we alluded to earlier. Recall that we are interested in finding
an isomorphism between the Coulomb branch and a hyper-Kéahler algebraic variety,
and that it induces an isomorphism between the chiral ring and the coordinate ring.
It should in particular map the R-symmetry (on the chiral ring side) to the SU(2)
which rotates the three complex structures (on the hyper-Kéhler space). This is
always assured: since SU(2) has rank 1, the map is unique (i.e. without mixing),
possibly up to a trivial scalar factor. But we would like the isomorphism to also
reveal the Coulomb branch symmetry by mapping it to the symmetry on the variety,
in a way that makes the symmetry obvious. This part is trickier. As we saw in the
example earlier in this section, we can guess that a space is symmetric under g
if its Hilbert series decomposes as ) x%(z,)t* into a sum over characters of (not
necessarily irreducible) representations of g, further multiplied by ¢*. But it is not
always straightforward to identify a polynomial as a character. It would be easy if the
character were put into a canonical form — perhaps the exponents of z, correspond
to components of g weights in the simple root basis. The cases in this thesis happen
to have this extremely useful property, and specifically for the simple root basis, but
it is not guaranteed in the general case.

Operator counting can do one more thing for us: it can pin down the relations
between generators. This is largely thanks to its sensitivity to the symmetry: if
generators form tensors of the symmetry group then so must relations, since other-
wise they would break the symmetry. Close analysis of a Hilbert series expansion
will typically reveal that there are fewer operators at higher orders in ¢ than would
be expected from free (symmetric) products of generating tensors; they must be
“removed” by a set of relations which transform in irreducible representations of the

Symmetry@. To be clear, this type of analysis can only ever say “representation R

1TThe Hilbert series does not distinguish between adjoint and coadjoint representations. Earlier
works, which relied heavily on the monopole formula, often claimed that the order ¢ operators
form an adjoint representation. We will see on many concrete examples that the natural object
that comes out, the moment map, is in the coadjoint representation.

To see why, take for granted that most of the Coulomb branches studied herein are (closures of)
nilpotent orbits, ie. orbits of a nilpotent element under the action of the adjoint representation,
and let p € C be a point on the Coulomb branch. Then the previous sentence merely says that
there is an adjoint action Ad on p. Now let z(-) : C — C be an element of the coordinate ring
C|[C]. The expression z(p) should be invariant under the action of the symmetry group, as we
simultaneously shift the point p and the coordinate function z(-). But that is just to say that,
if p — Adgyp, = transforms under the correct representation R as z(-) — Rgyx(-) = x(Adg-1-):
precisely the defining equation of the coadjoint representation Ad*.

18This claim can be recast in more technical terms of plethystic logarithms and syzygies [94} 05].
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is missing at order t*” — but if there is only one candidate tensor transforming in
R, we know it to be our relation. Assume we found the recurring example
by computing the monopole formula of a quiver. We could tell that the Coulomb
branch is generated by one adjoint matrix at order 2. Then, because the second
symmetric product of the adjoint representation contains the trivial representation,
which is not represented at order t* of the Hilbert series, we see there must be a
relation transforming in that same (i.e. trivial) representation. Assuming all com-
plex mass parameters are set to 0, this relation must be tr(M?) = 0 or, equivalently,
det(M) = 0. If mass parameters M, are allowed, the relation can be modified to
tr(M?) = q(M;), where ¢ is a quadratic polynomial (since masses always have confor-
mal dimension 1 and hence count at order ¢?). Still, this is a win: operator counting
reduces the complexity of the original task to finding coefficients of ¢, which can be
attempted by another method.

The monopole formula has seen some improvements over the years. [11] mod-
ified it with the addition of non-simply laced quivers to the world of quiver gauge
theories. While they were not explicitly constructed (say, as Lagrangian theories), it
was relatively straightforward to modify the monopole formula such that, when com-
puted for non-simply laced quivers, the results made sense and followed the pattern
of their simply-laced cousins. In particular, it is well known that balanced quiv-
ers’ Coulomb branch symmetry enhances according to the Dynkin diagram which
the quiver resembles. For example, balanced linear quivers exhibit A, symmetry.
Non-simply laced balanced quivers were found to have B,,, C,, Fy or Gy symmetry.

The only difference introduced by non-simply laced quivers to the monopole
formula is a modification of (2.175)) to

Ny T/ Ny
2A(m) = D >N ki — Ruwamus| > D nglmyl
(v")eE i=1 i'=1 (v,f)EE" i=1
N (2.186)
D) DU
veV i=1 j=1
where x is defined as follows:
® Ryy = 2
® Ky = kyy = —n if v and v" are connected by n undirected edges
® Ky = —N, Ky, = —1 if v and v’ are connected by an n-valent directed edge

from v to v’

The similarity to Cartan matrices is, of course, not coincidental and reappears in

the abelianised formalism.

We also touch upon it towards the end of this section.
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Figure 2.4: Examples of balanced quivers of type A, B, C, resp. D

Note on Coulomb branch symmetries

It was already apparent in [59] that Coulomb branches exhibit interesting patterns
of symmetry enhancement. This insight was sharpened in [19] who noticed that
enhancement comes from balanced nodes, i.e. those with zero excess (2.171). The

extent of wisible enhancement can be summarised by the following statement:

Let @ be a quiver with @), and @), the subquivers consisting of balanced,
resp. unbalanced gauge nodes and assume that () has at least one flavor
node. To read off the Coulomb branch symmetry of (), reinterpret the shape
of @y as a set of Dynkin diagrams; their corresponding simple algebras give

the non-abelian part of the symmetry. The abelian part is U(1)I94l.

All quivers considered in this thesis are fully balanced like those in Fig. [2.4]
although our methods should generalise well to more generic cases. Since fully
balanced quivers necessarily have the same shape as a Dynkin diagram of some
simple algebra g, we say that the quiver is of type g, eg type A,. We can also choose
to omit the index and talk about quivers of type B, for example, if the claims made

apply to the whole family of type B, quivers.

Highest weight generating functions

As noted above, Hilbert series expand into the form , in which the t* are mul-
tiplied by a character of the Coulomb branch symmetry algebra g. A character can
be a very large polynomial, numbering as many monomial terms as the dimension
of its associated representation. But it carries no more information than the highest
weights of its components’ irreducible representations.

For example, take the variety C?/Z, and its Hilbert series

HS(,2) = Y Xpos (2)8° = 1+ xpopt” + xpapt" + - - (2.187)
s=0

The highest weight generating function [112] expresses just as much information
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(assuming an implicit choice of algebra g):

HWG(t, n) = Z P =14 22 4ttt 4 - (2.188)
s=0

A HWG is a generating function for the highest weights of irreducible representations
at a particular order counted by ¢. In the above example, u?t? tells us that there are
operators at order 2 and that they assemble into the irrep labelled by the exponent
of the fugacity p, i.e. [2]. For rankg > 1 we introduce rank g fugacities u; whose
individual exponents correspond to the i-th component of the highest weight, e.g.
p1pes denotes the adjoint irrep [101] of sl(4, C).

HWGs are not just a tidy way of expressing characters. For example, x[ - X[2] =
X[+ X0 but p?-p? = p?, so the algebra of characters and fugacities is a bit different.

This can lead to neater expressions. For example, the HWG of C?/Z, is just
- 1
HWG(t, ) = W = 2.189
(t, 1) ;u peyrr (2.189)

a simpler expression than (2.168]). The relative reduction in complexity between
Hilbert series and HWGs is a generic feature for nilpotent orbits, whose structure
is heavily geometrically and algebraically constrained. We will use both types of

generating functions throughout this thesis.

Ungauging of U(1)

The equation is invariant under a simultaneous shift of all magnetic charges
by the same integer, i.e. m — m + ¢ for some fixed ¢, assuming the quiver is
free of flavor nodes. In such theories any non-trivial monopole generates an infinite
family of c-shifted monopoles with the same conformal dimension and the Hilbert
series is undefined. Fortunately, we can select a particular (but arbitrary) magnetic
charge m; and use the shift by ¢ to set this charge to 0, reflecting the fact that an
overall U(1) decouples from the rest of the theory. The Hilbert series of the resulting
Coulomb branch C(m; = 0) may be well-defined. The operation corresponds to the
factorisation

C=C(m;=0)x (R*x S (2.190)

Where the latter factor is the Coulomb branch of a free U(1) theory. In string-
theoretic descriptions the operation typically removes the degree of freedom corre-

P14

sponding to the branes’ “centre of mass”.

If m; is the sole magnetic charge of a U(1) node then the node is effectively

converted to a flavor node. This action is often called "ungauging the U(1)” in the
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literature. If the quiver is simply laced then all possible choices lead to equivalent
Coulomb branches. If no U(1) node is present then one of the other magnetic charges
must be set to 0; this case is much less studied and we will not make any general
claims.

Note that the situation is much more complicated in the case of non-simply laced
quivers, see [105], where one choice of ungauged U(1) node produces a cover, resp.

orbifold of the Coulomb branch associated to a different choice.

Reading relations off the Hilbert series

We briefly describe the method by which we extract chiral ring relations from the
Coulomb branch Hilbert series. Assume that the Hilbert series is refined with fugac-
ities z; counting charge under a Cartan subalgebra of the Coulomb branch symmetry

algebra g. The Hilbert series expands as

HS(t,2:) = Y po(z)t’ (2.191)

SEZZO

where p4(z;) are characters of g.

We first state the general strategy for a nilpotent orbit, whose coordinate ring
is generated by a single (co)adjoint representation with spin 1. The quaternionic
dimension of each Coulomb branch is easily calculated by summing up gauge ranks,
which is unaffected by discrete gauging. Knowing the dimension and global symme-
try, we can look up the space in [32]@

We could then expand the highest weight generating function, comparing (poly-
nomial) coefficients of #*" to the character representation of the n-th symmetric
product Sym"adj(g) and find missing representations suggesting the existence of re-
lations. Or we can perform the same computation in a more elegant fashion using

the plethystic logarithm:

— (k) N ‘
L(HS(t, z;)) ’ log HS ng zi)t® — re(z)t (2.192)

k=1 s=1

where p(k) is the Mobius function and the polynomials gs(z;) and 7,(z;) are charac-
ters of g corresponding respectively to the generators and relations of the Coulomb
branch. If the space is a complete intersection, the list of g, and r, is finite. The
minimal set of relations is typically present in the first few orders of ¢t. For ex-
ample, the (closure of the) minimal nilpotent orbit of any simple algebra g (whose

coordinate ring is generated by one coadjoint generator [50]) is described by a set

9The paper differs from this thesis in the simple root convention for Gy: for this thesis the
(co)adjoint representation goes by [01] whereas in [32] the two labels are swapped.
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of Joseph relations [113] [114] of its coordinate ring. They are always necessarily
quadratic in the coadjoint generator and remove every tensor in Sym?*(adj g) other
than the highest weight component?™] In more general cases we go to slightly higher
order, t% or t8. Then, where feasible, one can verify that that the full set of rela-
tions are identified: it suffices to calculate the Hilbert series of a ring defined by
dim g generators subject to the relations in question and compare it to tabulated
expressions.

This procedure is only slightly modified in the few isolated cases in this thesis
where the Coulomb branch is not a nilpotent orbit. The chiral ring is then gener-
ated by more generators, which are in these particular cases also coadjoint. Their

contribution will be visible in the PL.

2.4.2 Abelianisation

There are drawbacks to operator counting. The monopole formula is an inherently
indirect method of understanding what the Coulomb branch chiral ring operators
are. As physicists we like to see things that plug into path integrals or between bras
and kets and study relations between them. Operator counting can only do what it
says on the tin: count those operators and perhaps say a thing or two about charges
under various symmetries. In this section we introduce the fully explicit method of
abelianisation, which acts as a counterbalance of sorts to operator counting.

The procedure was first introduced in [78] and given more conceptual background
in [79]. The monopole operator appears as one endpoint of a vortex worldline, i.e. it
can generate or annihilate a topological vortex. One can then study the physics of
this vortex in the language of one-dimensional quantum mmechanics on its world-
line. In this setting many calculations become much easier and the authors were able
to prove several technical results which are reported below. In [26, [60] a slightly dif-
ferent approach was chosen: the spacetime is now a three-sphere and the worldlines
are great circles. This work was able to fully generalise abelianisation to non-unitary
gauge groups while making more inroads on the related project of quantisation de-
formationP™ [80] recast the U(1) results of [78] in the language of brane systems,
finishing the job for non-abelian groups in [61]. [97] used abelianisation to study the
class of star-shaped quivers while [96] confronted the issue of bad theories and [77]
trained their eyes on USp(2N) SQCD.

Chapter [3| contains very explicit and pedagogical examples of abelianised con-

structions and Chapter [4] builds on them by abelianising non-simply laced quivers.

20¢.g. the sl(n,C) case is generated by the adjoint representation sl(n,C) = [1,0,...,0,1] with
Sym?[1,0,...,0,1] = [2,0,...,0,2]4+[0,1,0,...,0,1,0]+[0,...,0]. The space has [0,1,0,...,0,1,0]
and [0, ...,0] relations.

21Very briefly: every symplectic manifold admits a natural QM-like non-commutative deforma-
tion. Since Coulomb branches are symplectic, studying their deformations is interesting.
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Accordingly, we intend this section to serve as a reference rather than a gentle intro-
duction to the method. The reader is advised to skim this section on a first reading

and proceed to the next chapter.

As we noted in Section [2.3.6, Coulomb branch operators can be constructed as
gauge-invariant combinations of abelian insertions, where the gauge invariance is
achieved by averaging over the action of the Weyl group. Abelianisation merely

extends this approach.

One first defines the abelianised chiral ring, which is then reduced by the action
of the gauge symmetry’s Weyl group. Let ¢ index the vertices and hence gauge
group factors of a quiver gauge theory. Each gauge node G; contributes several basic

¥

7,a)

variables to the ring: U g and ; ,, where 1 < a < rank G;. We will sometimes
blur the distinction between the three types of variables by dropping all identifying
information except for the node and gauge indices, leaving only x;,. The variables

satisfy abelianised relations

Hw Rt <w7(5>|wi,a\
ubug, = et (2.193)
i,a Vi,a Haev<a’¢>\az,a\

where ¢ = (4,0171, s Onrank Gns M, - anN}L>, N} is the number of fundamental
flavors on the i-th node, and both the roots o and weights w are expressed as weights

in the weight basis of the theory’s gauge group G = [[_, G;, i.e. the one introduced
in Sec 2.4

For example U(2) with 4 fundamental flavors comes with the following matter

and gauge representations:

R =1{(1,0;-1,0,0,0),...(1,0;0,0,0, —1), (0,1; —1,0,0,0),. .. (0,1;0,0,0, —1)}
(2.194)
with the first two charges belonging to U(2) and the last four belonging to SU(4)
and

v ={(1,-1;0,0,0,0),(—1,1;0,0,0,0)} (2.195)

where the vanishing weights associated to the commuting part of U(2) have been

omitted.

The Coulomb branch is a symplectic space so its chiral ring carries a Poisson

bracket, which descends from a bracket defined on the abelianised ring:

{pia uin} = £uf, (2.196)

a wj = ‘wi,a|
futy i) = o w0
’ ’ a@i,a Haev<a7 QD) Yia
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ut ut

i.a%ib . . .
{uz:'taa u;tb} = :I:Hij ﬁﬂi,a_;?j,b it <Z7 a) 7é (J’ b>

(2.198)

where k;; is defined as in Section and the remaining Poisson brackets vanish.

These Poisson brackets, along with the abelianised relations , generate
every element of the “abelianised” chiral ring C[C,pel]. The true Coulomb branch
chiral ring C[C] is a particular sub-ring of the Weyl-symmetrised ring C|[Cape]'V¢.
But which subring? That is one of the central mysteries of each of the following
sections — and many paths may lead to the correct answer. Ours will follow a robust
and well-motivated strategy: we will leverage information from the Hilbert series to
identify the correct subring, picking Weyl-invariant abelianised operators with the
correct representation-theoretic properties as dictated by the physics. Appendix [A]
offers a comparison with an alternative approach but the reader is advised to read
it only after Chapter [3]
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Chapter 3

Simply laced unitary quivers

We have introduced two approaches to studying the Coulomb branch: operator
counting and abelianisation. Unsurprisingly, each comes with its strengths and
drawbacks. Operator counting is very general, straightforwardly algorithmic and
naturally captures the isometry of the Coulomb branch and representation-theoretic
content of chiral ring relations, reducing the problem of finding the moduli space
to identifying coefficients for finitely many linear combinations of finitely many op-
erators. The representation-theoretic data is also often sufficient to solve this lat-
ter problem. However, turning on complex mass deformations compromises the
computational utility of this method. Operator counting also rarely aids physical
interpretation of particular chiral ring operators. On the other hand the recent
abelianised construction leverages operators’ physical properties, naturally handles
complex mass deformations and in principle fully specifies the moduli space for ar-
bitrary quivers. However, the way in which it is defined does not draw out the
Coulomb branch symmetry, corresponding representation-theoretic data and as a
result physical relations between gauge-invariant chiral operators are difficult to

extract.

This chapter demonstrates that operator counting and abelianisation can be
synthesised into a new approach which combines their strengths, removes many of
their drawbacks and provides a new and powerful way to derive relations between
gauge-invariant operators in 3d N = 4 theories. We refer to it as the synthetic

method. To aid exposition, examples are restricted to very simple quiver theories.

First, a quick definition. Quiver (Panyushev) height [115] leverages the similarity
between Dynkin diagrams of simple Lie algebras and subgraphs of quivers formed
by all gauge nodes and can be calculated by taking the dot product between the

vector of Coxeter labels and the vector of flavor ranks. For example, the family of
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type D quivers

1 (3.1)

whose Coxeter labels are (1,2,...,2,1,1), has height
(0,1,...,0,0,0)-(1,2,...,2,1,1) = 2. (3.2)

This chapter’s examples are drawn from families of balanced quiver gauge the-
ories of type A and D (ie. shaped like their namesakes among Dynkin diagrams).
These specific type A quivers feature at least one U(1) gauge node while type D
quivers have Panyushev height 2; these examples have been studied in [20] using
only operator counting. Chapter |4 expands this approach to types B, C' and G, also
of height 2. All of these quivers have at least one flavor node.

Although it may seem that we have narrowed the class of quivers almost out
of existence, we have merely restricted to cases covered in [20], whose Coulomb
branches are closures of nilpotent orbitsE]. They are the simplest exemplars of their
kind and hence a suitable arena for development of a new technique. We expect
that once our method is established for these basic cases most — if not all — of the
imposed restrictions can be lifted and the description will generalise to varieties

beyond nilpotent orbits.

3.1 Type A: generalities

3.1.1 min A;: A simple example

The main results of this chapter are best introduced as generalisations of two con-
crete results, both of which originally appeared in [78] in some form. The simpler

of the two concerns SQED with two electrons:

O—L
L2 (3.3)

We will initially set both electrons’ masses to 0. The Hilbert series of the theory,
calculated using the monopole formula from Section is

"'We will continue to trade accuracy for brevity and refer to closures of nilpotent orbits as,
simply, “nilpotent orbits” in what follows.
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1 1 1
HS(t) = 1+(z+1+;)t2+(z2+z+1+;+§)t4+0(zﬁ6)
=1+ W +1+wHP+ (W +w? +1+w 2 +w Ht* + O(t%)
=1+ 2> + [4t* + O(t®) (3.4)

where z — w? cast it into a manifest sum of s[(2,C) characters [n] = w" + w" 2 +
cee #

The series identifies a generator — call it N — transforming in the (co)adjoint
representation [2]. If the ring were freely generated then we would see a singlet
[0] and a tensor transforming in [4] at quadratic order, but the singlet is absent.
Hence there must be a quadratic singlet relation, which can only take the form
Adet N + B tr(N?) = 0 for some A, B; a quick calculation shows that every generic

choice of A, B is equivalentﬂ. The relation can also be written as

t40] : N? =0, (3.5)

which identifies the space of N, ie. the Coulomb branch of this theory, as a nilpotent
orbit of sl(2) ~ A;. We have already seen this example several times. For future
reference, note how we choose to report relations: the exponent of ¢ is twice the R-
symmetry spin, followed by the highest weight of the relation and then the explicit
tensorial relation itself.

This is a good result but some information is lost. There are three operators in
N, but what are they physically? How do they assemble into the matrix realisation
of N? How should we physically interpret the relation N? = 0? If we set electrons’
(complex) masses to M, would the relation change to Tr(N?) = M?? Hilbert series
can help with some of these questions but they are not the most suitable tools.

Let’s explore this problem using the algebraic construction of the chiral ring
pioneered in [78]. This approach has several virtues: it is directly connected to
physics and very cleanly handles complex mass deformations of the theory. However
the Coulomb branch isometry remains hidden.

The ring is generated by two monopole operators u* and one scalar operator ¢

subject to the relation

utuT = —(p — My)(p — Ma) (3.6)

where the M; are complex masses of electrons. It is important to note that this
relation comes “for free” from the definition of the chiral ring provided by [78].
This is a particularly simple example. There are no generators beyond u* and ¢
and no relations beyond . In other words, this is our chiral ring, but it is not

2Exceptions such as A = B = 0 would reduce the relation to 0 = 0 and we can disregard them
because the Hilbert series indicates there is a non-trivial scalar relation.
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immediately obvious that it describes (a deformation of) a nilpotent orbit of sl(2, C).
We want to develop a synthetic approach which adapts an important result of
[78]: the Coulomb branch, being hyper-Kéhler, has a moment map transforming in

the coadjoint representation of s[(2, C) and specifically given by

M- M- —
u= {97277 v (3.7)
ut —p+i 4+ 22

Recall that the adjoint and coadjoint representations of sl(2,C) are isomorphic
and the Hilbert series has no way of distinguishing between them, so N may in fact
be a coadjoint generator. We will see that it is most naturally expanded in the
coadjoint representation’s basis as defined in section [2.1.3]

1t also obeys the same relation as N of :

5 —(MIH?_Q"DF +utu” 0 (M — My)?
L= ——T9y9 (3.8)
+uru

H= (M +My—20)?

0 1 42 4
where we used (3.6 to simplify some quadratic expressions. Note that when the
masses are taken to 0 — that is, precisely in the case considered using Hilbert series
— the equation reduces to u? = 0.

Several features of this result are noteworthy:

e The matrix p is traceless and hence belongs to s[(2) (or s[(2)*) — but is valued
in the chiral ring R rather than C. The operator counting approach implied the
existence of a coadjoint matrix N whose complex coefficients are constrained
by relations. The synthetic approach defines u as a ring-valued matrix and
matrix relations are reinterpreted as consequences of chiral ring relations which

can be fully specified prior to embedding into a matrix.

e 5[(2,C) has a natural (co)adjoint action on p and components of p generate

the chiral ring — so u = N.

e The fact that there are no independent higher-order relations is assured by

Hilbert series.

e However, the Coulomb branch Hilbert series provides no way of fixing the

coefficient on the complex-mass-deformed relation.

All of the above generalises to all examples considered in this section and helps

illustrate some of the utility of our synthetic method.
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3.1.2 max Ay: A slightly more complicated example

For the second example we pick the theory

O—0O—
1 2 3 (3.9)

Its gauge group is U(1) x U(2). Both gauge nodes are balanced so its Coulomb
branch has an sl(3,C) ~ Ay symmetry. We present its Hilbert series in terms of

topological fugacities zq, zo and wy, ws related by

—1

w; = sz” (3.10)

2 -1
(2 ) o

and we use the notation [p1, p2] as shorthand for the s((3, C) character with highest
weight [p1, pa], eg.

where k;; is the Cartan matrix

2 2
|
[1,1] = wywg + —- 4+ 2 424 2L g D220 (3.12)
Wo W1 W w1 Wy Wz

We call w;, resp. z; fundamental weight, resp. simple root fugacities for reasons
which will shortly become apparent.
This notation significantly simplifies the Hilbert series and manifests its nature

as a class function:

1 1 1
HS(t) =1+ (zizp+ 21+ 20+ 2+ — + — + —)t* + O(t*)
21 Z9 2129

=14+ [1,1)t2 + ([2,2] + [1,1])t* + ([3,3] + [2,2] + [3,0] + [0, 3])t° + O(t%)
(3.13)

A closer look at the Hilbert series (to all orders) shows that the (massless) chiral
ring is generated by a single s[(3,C) (co)adjoint tensor — whose character appears
in (3.12)) — subject to

which amounts to setting all eigenvalues to 0 and describes the maximal nilpotent

orbit of sl(3,C).
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The Hilbert series predicts 8 generators in total, two of which are linear Casimirs.
Expressing wi'wh? = [p1, po] and 27" 25? = (ny,ns), we observe the following corre-

spondence to bare monopoles with magnetic charges m = (my;ma 1, mas):

[2, —1] +(1,0) <+ m = (1:0,0)
[—1,2] +(0,1) +> m = (0;1,0)
[1,1] <(1,1) &> m = (1;1,0)
—2,1] <>(—1,0) <> m = (—1;0,0)
[—1,2] <»(0,—1) <> m = (0; —1,0)
[—1,—1] <>(—1,-1) &> m = (—1;—-1,0)

It turns out that although the basis of fundamental weights is useful for pinning
down the symmetry and representation content, going back to z;, or the basis of

simple roots, is more physically transparent so we will keep working in that basis.

We can now construct explicit generators and will label them as follows: gener-
ating monopole operators are indexed by corresponding roots, ie Vi, »,), and linear
Casimirs ® carry the index of their gauge node, ie. ®,. [I8] provides a recipe in

terms of auxiliary gauge-dependent abelianised fields ui, @1, uzjfl, u§2, 2,1 and @g9:

ot
Vi = u
ot +
Viony = gy + Us s
+,,+ +,.+
Uy Ug g Uy Ug 9
+
Y1 — P21 P17 P22

Vi =

‘/<07_l> = UJ;,]. + u;,Z

Uy Ug 4 Uy Ug o
— 3 + I
$1— P21 P1— P22
O =y

‘/271771>

Dy = a1 + P22

The algebraic construction also posits a set of relations:
ufuy = —(p1— @2.1)(p1 — p22)

B (2,1 — 01) (a1 — Mo 1) (a1 — Mo o) (021 — My 3)
T (P21 — p2,2)?
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s, = — (P22 — 1) (P22 — Moi1)(p22 — Map)(p22 — Mas)
T (P21 — p2,2)?

There are several structural features to point out. Firstly, operators such as ¢2
and ¢, 2 are gauge-dependent quantities; in fact, the Weyl group of U(2) transforms
one into the other. Their sum ®; = @21 + @29, however, is gauge-invariant, as
would be eg. @919 (recall the discussion in Section . We will always reserve
p, resp. P, for gauge-dependent, resp. gauge-independent manifestations of the
scalar superpartners of gauge bosons and ¢; , will refer to the a-th gauge-dependent
(abelianised) scalar superpartner of the gauge bosons associated to the i-th node.

Secondly, complex mass parameters M, ,, again labelled as being the p-th mass
on the ¢-th node, enter relations in a similar way to complex scalars ¢. This is
explained by the fact that complex masses can be interpreted as scalar VEVs of
background vector supermultiplets with analogous coupling rules.

Thirdly, monopole operators V(4 +1y have a curious structure of rational func-
tions (and also the property of gauge-invariance-by-averaging which was just men-
tioned). The nature of such operators is, in our experience, a common source of
confusion. One could think of e.g. ufuz,/(p1 — 1) as a new abstract ring ele-

mentf’| along with the relation

U ug, o+
m(% —Qa1) = Ui Uy (3.16)

The chiral ring is still specifically a ring and division is not in general defined as a
valid operation.
Fourthly, the theory’s chiral ring includes the quadratic Casimir operator (9 192 2

— in fact it’s already present in the UV description. It is easy to check that

P2.1P22 = _(I)l(q)l - @2) - V<1,0>V<71,0> (3-17)

Our method does not provide an algorithmic recipe for deriving this relation but its
existence is ensured.

Finally, relations are given in terms of the abelianised and hence gauge-dependent
fields. But the Coulomb branch only has directions corresponding to gauge-indepen-
dent operators. So we would like to find gauge-independent relations to complement
them; indeed, they should be exactly the relations predicted by Hilbert series. Our
synthetic method can determine them.

The prescription for the coadjoint moment map (and the chiral ring generator)

3Some practitioners (e.g. [77,[97]) like to think of it as a separate abelianised variable ua_l 0)

with the relation (3.16]), but we have found it helpful for computational purposes to reduce these
variables to rational functions of the more basic uii’a and ¢; , and our presentation follows that
convention.
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is

O, — M2,1+M§,2+M2,3 Vi_10) Vi
N = ‘/(1,0> _¢1 + @2 - M2Y1+M32Y2+M2’3 ‘/<0’71>
Vo Voo PR -0
(3.18)

and indeed, one easily confirms that
2
t10,0] : tr(N?) Zg(M22,1 + M3y + M3y — My Moy — Moy Mas — Mao My 3)

(3.19)
1
t6[0, 0] . tl"(N?’) :5(2]\/[271 — M272 — M273)(2M272 — M271 - M273) (3 20)
. (2M2,3 - M2,1 - M2,2)

both of which vanish in the massless limit. The last three expressions can be dras-
tically simplified under the simultaneous reparametrisation My; = M —ny, Myo =

M +ny — ng, My 3 = M + ny and shift in scalar variables ¢; , — ¢; o + M:

31 Viciegy —Vici-y

N=1 Vi —-P21+P Vo1 (3.21)
Vi Vi — o,

t40,0] : tr(N?) = 2(n? + n3 — niny) (3.22)

£9[0,0] : tr(N?) = 3nina(ng — ny) (3.23)

We have simultaneously derived gauge-invariant relations in the chiral ring and
generalised them for the case of massive quarks, demonstrating the advantages of

the synthetic method over pure operator counting or algebraic construction.

3.1.3 Construction of generators and gauge-dependent re-

lations

All balanced quivers of type A, (of type A with n gauge nodes) and at least one
gauge node of rank 1 share the same pattern of generators [20]. They always have
R-symmetry spin 1 and include n linear Casimirs originating from gauge scalars at
the n gauge nodes. The remaining generators are bare monopole operators labelled

by their topological charges ¢ = (q1, - .. ,qn)ﬁ uniquely without any degeneracies.

4Topological charge vectors are written with angled brackets in anticipation of a thorough
correspondence between their associated generating monopole operators and roots in the isometry
algebra.
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Every monopole generator exhibits the following pattern of charges:
¢g=1(0,...,0,£1,...,4+1,0,...,0), (3.24)

or an uninterrupted string of +1 padded by zeroes. The string of ones can stretch to
each end so, for example, (1,1, 1) is a valid charge vector of a monopole generator in
an As quiver. The choice of +1 or —1 must be made consistently in a given charge
vector so no Az monopole generator carries the charge vector (1,—1,0) or other
similarly “mixed” charges. Such monopole operators still exist within the chiral
ring but we do not count them among a canonical set of generators.

Overall we get n? + n monopole operators and n linear Casimirs which together
generate the chiral ring. [78] provides a general prescription for these generators in
terms of gauge-dependent quantities, or abelianised variables as they are described
in the original paper. The prescription was tested on several linear quivers in the
original paper and succeeded when compared against known results. Principles
behind the proposal have received further support in [79, [80] which exploit quantum
mechanics of vortices and string theory respectively. The chiral ring can be specified

algorithmically:

e Label each gauge node with an index i € {1,...,n} starting from the leftmost

node. Let r; be the rank of the unitary group U(r;) at the gauge node i.

e Define the abelianised ring R.,.. We merely adapt the more general procedure
of Section to linear quivers.

1. Any node with gauge group U (r;) and index i gives rise to 3r; abelianised

variables: u;

i,a)

u; , and @; ., where a runs from 1 to r;. They physically
correspond to directions in the moduli space of the fully broken gauge
group U(1)". As an abelian theory it gives rise to r; different monopoles
of charge +1 under the various U(1) factors — those would be the u;fa -
their counterparts with charges —1 — the u;, — and complex scalars in
the vector supermultiplet — the ¢, ,. They are essentially eigenvalues of

the adjoint-valued scalar superpartner of gauge bosons.

2. We identify all topologically charged generators of the abelianised ring.
Some of these operators carry no topological charge except +1 at a single
node ¢; we call such operators minimally charged and they are already
represented by r; operators ufa The remaining monopole generators
are topologically charged under several adjacent nodes and have to be
constructed from the abelianised variables. They can be built in different

(but equivalent) ways.
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— [78] defines the Poisson bracket {-, -} acting on the abelianised chiral
ring; we reproduce it in (3.38). An abelianised monopole charged

under adjacent nodes 7 and 7 + 1 is given by

ut,uf

+ + i,a 1+1,b
Uy, Us X ———— 3.25
{uia U1} P—— (3.25)
with coefficient £1. This can be extended by the action of an adjacent

node, eg. U, .

+ 4+ + o+ +
Ui aWit1p 4 Ui oWit1,pWiv2,c 396
{—, N :Ui+2,c} X } - (3.26)
Pia Pi+1b (@z,a Wz—l—l,b)(@oz—i-l,b 90z+2,c)

This operator can again be extended by the action of an adjacent
node; the maximal operator “stretches” between the leftmost and

the rightmost nodes.

— Alternatively one can just give a general prescription for the non-
minimally charged monopole generator. We will adopt this method

and define a monopole charged +1 under nodes i,7+1,...,7—2,5—1

as
+ +
_ Uiy Wit 0, (3.27)
53, (04-05-1) (Qoi,ai - (pi+17ai+l> e (cpj—Q,aj—Q - on—l,aj—l)
In particular, ufa = ut Note that we selected the sign to be

i:941,(a)”
positive for all monopoles.

3. A flavor node of rank s; connected to the gauge node i contributes com-

plex mass parameters M, ,, where p runs from 1 to s;.

4. Define A(7) as the set of gauge nodes (resp. their indices) adjacent to node
i; for most nodes A(i) = {i—1,i+1} but A(1) = {2} and A(n) = {n—1}.

5. For each gauge node define two auxiliary polynomials:

P(z)= [] (== Mip) (3.28)

Qi(z) = [[ z—wia) (3.29)



6. Abelianised variables are subject to relations’

o Pi(i.) HjeA(i) Qj(¥i.a) 3.30
ui,aui,a - H ( N )2 ( . )
b#a sz,a Soz,b

which can be repackaged as generators of the ideal

I = <u+ - Pi(pia) HjEA(i) Qj(%‘,a)>

T
v [hsa(0ia — #ip)?

(3.31)

7. The abelianised ring R, is then a quotient of a polynomial ring freely

generated by scalars and monopole generators:

Rabel = C[ui:j,(ai,...,aj,lﬁ ('07;701]/'[ (332)
with 1 <i<j<n+l1.

e The overall gauge group of the quiver is G = [[,U(r;). Its Weyl group is
then W(G) =[], S.,. W(G) has a natural action on the u, and ¢;,: each
Sy, permutes indices a for a fixed 7. The true, physical chiral ring R can only
include gauge-invariant operators and so must be a subset of the restriction of
R.pel to W(G)-invariant polynomials:

RC Ry = Cluj; )i V9T (3.33)

0:5,(as 500051

where uf] ( _yare interpreted using (|3.27)) and indices are implicitly ranged

iy

over.

Several elements of R;\;{(ﬂg) are significant enough to deserve a name:
+

+
u- s U
VE = ur = e 114 3.34
:J (;d i:5,(a,...,d) ;d (Cia = Pit1p) " (Pj—2,c — Pj-1,d) ( )

q)i - Z Pia <335)

Hilbert series computations for balanced type A quivers show that such operators
form (at least some of) the generating set for R. It will also be helpful to repackage

mass parameters into symmetric polynomials:

M; =Y M, (3.36)
p=1

+

®Note that these relations fix R-symmetry spin of bare abelianised monopoles (e

logical charge conjugation should commute with R-symmetry and ¢ have spin 1.

since topo-
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—

M= (My,... M,) (3.37)

All that remains is to pin down which Wg-invariant subring of Rane is the
Coulomb branch chiral ring. In this work we advocate explicitly constructing tensors
whose components generate the chiral ring, and for simple enough quivers there is

only one: the moment map.

3.1.4 Moment map

The moment map of a symplectic space is a coadjoint-valued map, so we should be
able to expand it in the basis . The coefficients will be precisely the VEVs of
Coulomb branch operators of Section [3.1.3} in fact both the monopole generators
and dual root vectors are labelled by unbroken strings of +£1 padded by zeroes and
there are as many linear Casimirs as there are generators of the Cartan subalgebra,
although here the correspondence is marginally more involved.

The symplectic structure of the Coulomb branch gives rise to the Poisson bracket
on operators , which is closely related to the moment map and described by

its action on the abelianised variables in [78]:

{(piﬂﬂ ui:a} = j:uz:",:a

0 [Pileia) [Lea Qi(ia)

{uj_a’ U of =
’ ' 590i,a Hb;ﬁa(‘;@i,a - Spi,b)Q (338)
+  +
U= u-
{uf, uty} = £r—20
T PYia — Pjb

The remaining undetermined brackets vanish.
In fact, one can think of the moment map N as a homomorphism from the Lie
algebra of the Coulomb branch symmetry to the Poisson algebra of operators. More

explicitly, for all X,Y € g
tr(N[X,Y]) = {tr(NX), tr(NY)}. (3.39)

So choosing XY = E, or H;, we can see that the operators e, = tr(NE,) and
h; = tr(N H;) form the Lie algebra g under the Poisson bracket. We can take this

fact and work backwards: the moment map is assembled as

rank g
N=> e.E,+ Y hH; (3.40)
acd a=1

so if we can find operators e, and h; which reproduce the Lie algebra of g, we can

explicitly construct the moment map.
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Identifying e, is easy. Recall from Section [2.1.3] that root vectors can also be

labelled El.;.j); these are the same labels as we have on Vf;, and there is a neat

Correspondence.
ex(ij) = tr(NEsi)) = Vi5 (3.41)
with
rank G;

Viian Z uf (3.42)

the simple root vectors; it is completely determined by the monopole operators’
topological charges [19].
We are still missing the operator analogues of Cartan elements H; in (2.11]), but

only momentarily. One can easily check that
{Z liikq)k — Mi, e:l:j} =+ Z mikéjkeij = :l:/iije:tj (343)
k k
and less easily, but straightforwardly on concrete cases, that

{€+i, 671‘} = Z /fikq)k — Ml (344)
k

We can then define h; = ), ki Py — Mﬂ and construct the coadjoint-valued

moment map:

NM)= > ewpEluy +ZhH*

1<i<j<n
se{+,—}
CI)I(M) - ‘/1T2 - _V1TS (_1>n+1V1:7n+1
Vis —®1(M) + ©2(M) Vo o (D" Vo
= Vi3 Vais —Do(M) + 3(M) -+ (1) Wy
(_1)n+1‘/1—:~_n+1 (_1)n‘/2+n+1 (_l)nilvz’)—:‘rn—&-l e _i)n(]\_j
(3.45)

where ®;(M) = (C~k®); — (C~'M ) The homomorphism (3.39) follows from the
definition of N and (2.32]).
Hilbert series then predict that components of N (6) will generate the Coulomb

SNote that M; can be viewed as a scalar component of a background vector supermultiplet
associated to the flavor node adjacent to ¢ and that the definition of h; treats it on the same
footing as scalar components of vector supermultiplets of gauge nodes j adjacent to ¢, for which
Rij = —1.

“"C~1k =1 for type A and ]1 for type D, respectively, given our choices of bases.

8We treat the complex masses M as parameters of the theory rather than new moduli. Then
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branch chiral ring R:
R = C[N;(0)]/1 (3.46)

where [ is the ideal of gauge-dependent relations as defined in (3.31]).

This claim is already non-trivial (and was made in [78] for cases of type A). To see
this note that as a gauge-invariant operator, the Casimir invariant » 5, _,_, <r; PiaPib
can be found in the chiral ring. It should be possible to express it in terms of ring
generators Nij(ﬁ) but that clearly cannot be done without invoking some relations in
I and we would like a guarantee that those relations are sufficient for this purpose.

However, one should expect such a guarantee on theoretical grounds. On the
one hand, the abelianisation approach manifestly includes all Casimir invariants of
©iq. On the other hand, Casimir invariants of degree d exhibit R-symmetry spin
d and all chiral rings considered in this section are generated by operators of spin
1, as computed using Hilbert series methods. Therefore any Casimir invariants of
degree greater than 1 must be equal to some combination of spin 1 operators.

We are not aware of a generic formula for relations between Casimir invariants
and moment map components but they can always be derived with a sensible ansatz:
just try all linear combinations of generators with vanishing topological charges with

the correct overall R-symmetry spin.

3.2 Type A: further examples

Previous sections identify gauge-invariant generators of the chiral ring and lay the
groundwork for generalisation to more general quivers. The current section con-
cludes our investigation of quivers of type A by expressing (3.46)) as a ring quotiented

by an ideal of gauge-invariant relations.

3.2.1 minA,

The Coulomb branch of the quiver

1
1 1

C~1Mis just a vector of complex numbers and components of IV (6) are straightforwardly generated

—

as shifts of components of N(M) by constant numbers and vice versa, so the two generating sets
are equivalent.

(3.47)
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has the highest weight generating function [20]

1
HWG(t, ;) = —— 3.48
(t18) = T (3.48)
which identifies a single (co)adjoint generator N subject to several relations trans-
forming in particular representations. We can compare this HWG against known
tables of nilpotent orbits [QO]H and find that it is the minimal nilpotent orbit. This

variety is fully described by a set of quadratic Joseph relations:

£410,1,0,...,0,1,0] : rank N(0) < 1 (3.49)
t40,...,0] : tr(N(0)%) =0 (3.50)

One can now construct the chiral ring and the moment map (3.45)) to explicitly
check that, in fact,

M, — M, M, — M
4 . a __ §a L n b_ l?—l LA =
£10, 1,0, 01,01 (V7 = 1T (N = 92— — (a ) = 0 (351)
My — M)* + (—n)F(M; — M,,)*
A0, 0] te() — &Zigz(l " o (3.52)

where N = N (M ) and we redefined M; =: M;; to reduce clutter.

This calculation is particularly tractable owing to the quiver’s abelian gauge
nodes and was partially performed in [78]. Note that when complex mass parameters
are set equal the equations reproduce predictions from Hilbert series. Moreover,
the left hand sides of 1) and generate an ideal J (M ) of gauge-invariant

operators. The chiral ring is then given by

R = CIN, (31))/1(31) = C[N, (31)]/7(3]) (3.53)

—

N;; and J(M) are both specified in terms of gauge-invariant operators, making good

on our promise to define the chiral ring purely in terms of physical moduli.

The space can be identified with T*P™ which is known to have a single deforma-

tion parameter, here the difference of masses.

9This particular family of spaces had been studied earlier e.g. in [IT}, [48, 59, [86] 112} [116H120],
appearing for example as the reduced moduli space of one SU(n + 1) instanton.
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3.2.2 maxA,

Coulomb branches of quivers

n+1

1 2 1

are isomorphic to maximal nilpotent orbits of sl(n+ 1, C) [20]. Its structure is most

(3.54)

easily seen by calculating the unrefined Hilbert series [20]:

i (1 — )
(1 — ¢2)(nt1-1

HS(t) = =1+ (n+1)* =1 +... (3.55)
We see that their chiral rings are again generated by the (co)adjoint generator N
defined by (3.45)). The (massless) relations can be read off from the Hilbert series’
numerator:

t2*0,...,0] : tr(N(0)*) =0 (3.56)

for2<k<n+1.

Calculating complex-mass-deformed relations for general n proves much more
challenging than for minimal nilpotent orbits but numerical calculations at low

enough n are viable. It suffices to replace N(0) — N(M) and straightforwardly
evaluatd™

en=1
0] - tr(N(M)?) = 2n? (3.57)

e n—2
£4[0,0] = tr(N(M)?) =2(n? + n2 — nins) (3.58)
£9[0,0] : tr(N(M)?) =3n1ny(ng — ny) (3.59)

e n=23
£40,0] : tr(N(M)?) = 2(n? + n2 + n2 — niny — nans) (3.60)
£9[0,0] = tr(N(M)?) = 3na(ns — ny)(ng — ny + ns) (3.61)

0Complex masses were reparametrised My = M —n; + njp1 (with n,41 = 0) for cleaner
presentation; the parameter M automatically drops out.
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£0,0] = tr(N(M)*) = 23 nf + 3n3(n? +n3) — 2na(nf + ninj + ning +n3))

(3.62)

These relations are necessary and sufficient, as can be seen from their theories’

Hilbert series.

3.3 Type D: generalities

3.3.1 s50(8,C): An example

The synthetic method extends to balanced quivers of type D and height 2 which we

demonstrate on one of the simplest examples. The quiver

1

1 (3.63)

is shaped as the Dynkin diagram of Dy, suggesting so(8, C) symmetry of the Coulomb
branch. Its HWG shows that the chiral ring is generated by 28 generators assembled
into the (co)adjoint representation N of so(8,C) [20]:

1

The (massless) relations can also be identified through operator counting or,
since the space is the minimal nilpotent orbit, simply by reading off the quadratic

Joseph relations:

t4([2,0,0,0] + [0,0,0,0]) : N(0)> =0 (3.65)
)i N (0)zp = 0 (3.66)

The operators in N correspond to 4 generators of the Cartan subalgebra, 12
positive roots and their 12 negative root counterparts. As expressed in the simple

root basis, the positive roots are:

ot = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0), (0,1, 1,0),

(3.67)
(0,1,0,1),(1,1,1,0),(1,1,0,1),(0,1,1,1), (1,1,1,1), (1,2,1,1)}
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Roots label monopole operators by specifying charges at appropriate nodes: the
first integer gives the topological charge under the leftmost node, followed by topo-
logical charges at the central, top right and finally bottom right node. Each node
also contributes a topologically uncharged linear Casimir corresponding to the gen-
erator of the Cartan subalgebra h C s0(8,C) carrying the same label. The fully
assembled coadjoint generator — again playing the role of the moment map to the

theory’s Coulomb branch — is

= = (1,0,0,0) = (1,1,0,0) = (1,1,1,0)
Ho, D<1,2,1,1> D(1,1,1,1> D<1,1,0,1>
 (1,0,0,0) 3 3 ~ (0,1,0,0) ~(0,1,1,0)
N(M) = _(Dél,zmi)T H(_?l + ;{)2) D<0,1,1,1> Déo,l,o,lg
= = (1,1,0,0 = (0,1,0,0 = = = = (0,0,1,0
_(D<1,1,1’1§)T _(D§0’171’1§)T H(=e: <+ 2a + 24) D<0,o,o,1>
= (1,1,1,0 = (0,1,1,0 = (0,0,1,0 = =

_<D§1,1,0,1>)T _<D<0,1,0,1>)T _(D<o,0,0,1§)T H(_q)3 + CI)4)

(3.68)

(Vo + Via +Va+Vig) Va—Via—Va+ Vo

Vo + Voo —Va+ Vg i(Vo+Voy—Vs—V_p)

1
4
0 i
H-= ( o ) (3.70)
®; — (C'M), (3.71)

The V,, and ®; are gauge-invariant objects which can be expressed in terms of
gauge-dependent abelianised variables; those are in turn defined just as in Section
3.1.3] The explicit expressions are:

1 =¢ (3.72)

Dy = o1+ P22 (3.73)

P35 = 3 (3.74)

Py =4 (3.75)
Vie1,000) =t (3.76)
Vio,41,00) = Uy + U (3.77)
Vioos10) = U3 (3.78)
Viooo.1) = U (3.79)
Vid1,41,00 = U?u;tl Ufu;tz (3.80)

P1— P21 P11~ P22
Vio+1,41,00 = uzilu?,i + uzizugt (3.81)

Y21 — ¥P3 P22 — L3
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Vio,£1,0,41) = (70“2,1U490 + @umu; (3.82)
2,1 — P4 2,2 — P4
N .
Vistirir0) = Uy Uy U3 n Up Uy 9Us (3.83)
S (1 — @il)jgwi —w3)  (p1— §02i,2)j£802f — 3)
Vid1,41,041) = T B2 + 1%,0M (3.84)
o (1 — @il)(i@zil — 1) (g1 — @iz)(i¢2f — ¢4)
Vioste141) = Uy Uz Uy n Ug oUg Uy (3.85)
T (P21 — p3) (021 — 1) (22 — 93) (P21 — pa)
£+ + +

Uy Ug U3 Uy

(01 — @2,1) (2.1 — ©3) (P21 — ©a)

3.86
b gt (3.:56)

(901 - 902,2)(802,2 - 803)(%’2,2 - @4)
(2,1 — 22)%U5 Uy Uy pUT UL
01— @2,1) (1 — 02.2) (P21 — ©3) (P22 — ¥3) (P21 — 1) (P22 — 1)
(3.87)

Vid1,41,41,41) =

_|_

Vid1,42,41,41) = (

with (3.31]) acting on abelianised variables as the ideal of relations. A simple exercise

in computer-assisted algebra is sufficient to check that (3.65]) and (3.66|) are satisfied
by N(0) and further that the gauge-invariant Joseph relations still hold without

—

modification for N(M):

t4([2,0,0,0] +[0,0,0,0]) : N(M)> =0 (3.88)
#4([0,0,2,0] +[0,0,0,2]) : N(M)g; N(M)zy = 0 (3.89)

This is not to say that complex mass parameters have no effect at all on the
Coulomb branch: they modify the generator N (M ) itself by shifting scalar operators.
However, this effect can be fully removed by redefining scalar fields with the opposite
shift. The algebraic structure of relations (|3.88|) and is also preserved in this
particular case. Consequently, complex mass physically reparametrises rather than

deforms this Coulomb branch.

Note that for this is the only result consistent with preservation of Coulomb
branch symmetry under mass deformation since there are no so(8, C)-invariant ten-
sors which could stand on the right hand side of that particular relation. ({3.88|)
could have been deformed by (M M )15, judging solely on representational grounds.
However the mass can be explicitly defined away in the abelianised treatment by
©Via F Piq + Moy without affecting the structure of the chiral ring and hence the

relations.
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3.3.2 Charges of chiral ring generators

If the D-type quiver is of height 2 the chiral ring is generated by spin 1 operators
assembled into the adjoint representation of so(2n,C). The generators again split
into linear Casimirs, of which there is one per node, and bare monopole operators
labelled by topological charges. In this section we gather our knowledge about the
latter.

Extensive sets of Hilbert series calculations [20] applied to these theories show
that all monopole operators at R-symmetry spin 1 belong to one of two categories.
The following classification identifies a monopole generator with a labelled quiver

diagram whose flavour nodes and gauge rank information have been removed:

e Unbroken (and linear) strings of either only +1 or only —1 stretching anywhere
across the quiver — see Figure for an example stretching all the way to

the spinor node.

e Unbroken strings of +1 (with uniform choice of sign) with charges +1 on both
rightmost (spinor) nodes — see Figure 2.2b] If both spinor nodes are turned
on then a string of £2 (with the same choice of sign as 1) can be extended
from the trivalent node arbitrarily far to the left, terminating with a string of

+1 which must have length at least 1 — see Figure [2.2¢]

It will prove convenient to arrange topological charges into linear vectors and we
pick the usual convention, ie. the first n — 2 entries describe charges on the linear
segment from the first node to the trivalent node and the n— 1-th, resp. n-th entries

belong to the top right, resp. top bottom nodes.

3.3.3 Construction of the chiral ring

Construction of the chiral ring is closely analogous to that of Section with
differences arising only with respect to monopoles whose topological charges stretch
across multiple nodes.

The simplest and cleanest way to identify monopole operators is to utilise the
symplectic structure defined in [78] and captured in the Poisson brackets of operators
(13.38).

Minimally charged (gauge-invariant) monopoles at node ¢ are defined as
U = Z Ufa (3.90)

and we can use the action they induce along with the Poisson bracket, {Uij:7 -}, to

generate the entire set of bare monopole operators. The procedure is inductive on
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the sum of topological charges of a monopole, ¢ = ) ¢;, where we treat positive and

negative monopoles separately:

e Restrict to positively charged monopole operators and take the first non-trivial
case of ¢ = 1. These are the minimally charged monopoles and their descrip-

tion is given above.

e To get the expression for a positive monopole operator V' with topological
charges ¢ whose sum is » .¢; = ¢ = r + 1 one can start by assuming the
inductive hypothesis, that is, expressions are known for all bare monopole op-
erators up to and including overall topological charge » > 1. The classification
of monopoles given in the previous section is enough to establish that there
exists a monopole operator V' with topological charges 7" such that ) . r; =7
and ¢ — 7 is the usual unit vector €;. Then the monopole V' is obtained as

follows:
V= j:{U;r, V’} (3.91)

and the sign is chosen so that, when scalar fields in denominators are ordered
“lowest indices to the left, highest indices to the right” — eg. in combinations
(p1 — ¢3) but not (¢4 — @9) — the expressions are monic. This generates all

positive monopoles.

e To generate negative monopoles merely replace positive abelianised monopole

variables with their negative counterparts: u;, — u;,.

In the s0(8,C) example the monopole operator with highest overall topological
charge was obtained by
Vi < {Us, Vi (3.92)

and it is worth taking a look at the structure of (3.87) to see how this monopole

operator arrives at overall R-symmetry spin 1.

3.3.4 Moment map

All that remains to define the Coulomb branch moment map is to associate gener-

ators of the coadjoint basis with monopole and linear Casimir operators.

e For monopole operators use the correspondence between roots on the one hand
and pairs of integers and signs on the other described in (2.41H2.44]) to translate

labels in the simple root basis into the orthonormal basis:
Vo < V@ (3.93)
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where r,s € {+,—} and 1 < i < j < n and pair them with the corresponding
dual root vectors:

EEkri,sj) 7 C(risg) = V}Ef” (3.94)

e Linear Casimirs need to be suitably combined to reproduce Poisson brackets

analogously to the case of type A; a mass shift is also allowed by the abelianised

Poisson brackets:

J

Putting everything together the moment map comes out as

N = Z e(riysj)EZ(ri,sj) + Z hZHz* (396)
1<i<j<n 1<i<n
rs €{+,—}

This prescription tends to lead to matrices which struggle to fit on a page so we
refer to the case of s0(8,C) in (3.68)) as an exemplar.

The moment map still generates the Lie algebra homomorphism (3.39), albeit
for a D,, algebra.

3.4 Type D: further examples

3.4.1 minD,

The D,, analogue of quivers investigated in Section is

1
4( }7 o .. 1
12 2

1 (3.97)

Their Coulomb branches are the closures of minimal nilpotent orbits of D,, with

HWG [20]
1

HWG(t) = ——. 3.98
0= (3.98)

The Joseph relations on such an orbit are
t*([2,0,...,0] +1[0,...,0]) : N(0)® = (3.99)
£4([0,0,0,1,0,...,0]) : rank N(0) < 1 (3.100)
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and have been numerically verified for low values of n. The lack of a complex
mass deformation in the minimal nilpotent orbit of s0(8,C) generalises to minimal
nilpotent orbits of so(2n,C) with n > 4.

3.4.2 n.min Dy

We provide one final example of D,, nilpotent orbits, the next-to-minimal nilpotent

orbit quivers

2
1
2 2
1 (3.101)
The relations can be deduced from [20]
1— 12,25
HWG(t, pi) = kil (3.102)

(1= pat?) (1 — p3t*) (1 — pt?)
and are given by the tensor relations

—,

t4([0,0,0,0]) : tr(N(0)?) = 0 (3.103)
#4([0,0,2,0] 4 [0,0,0,2]) : N(0);;; N(0)zg = 0 (3.104)

and have been verified by our methods. Turning on masses leads to the related set

of equations

£4([0,0,0,0]) : te(N(3T)2) = %(Ml,1 M) (3.105)

#4([0,0,2,0] +[0,0,0,2]) : N(M); N(M)y = 0 (3.106)

The trace equation shows that this Coulomb branch has a complex mass deforma-

tion.

3.5 Synthetic method: a summary

Computations in the previous chapter demonstrated that operator counting and
abelianisation can be fruitfully combined in a new approach which we refer to as
the synthetic method. We chose to adapt the method to the structural peculiarities
of type AD quivers to aid exposition, but here we provide a clean, quiver-agnostic
and general prescription which will serve us well in analysing quivers of BCG type

in the following chapter.
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Abelianised variables ¢; , have weight 2 (spin 1) under the R—symmetryEL while
the Poisson bracket scales with weight —2. Weights of ufa can be read off from
(2.193)). The Coulomb branch chiral ring of any good or ugly theory is graded by
R-symmetry weights as C[C] = > C|C]; where CI[C]; is the vector space of all

Coulomb branch chiral ring operators with R-symmetry weight 7.

iGZZO

Any Coulomb branch operator O with well-defined R-symmetry weight j defines
a map {O,-} : C[C]; = C[C];+j—2 and therefore operators in C[C], form a closed
Poisson algebra. This algebra is precisely the symmetry algebra g of the Coulomb
branch and all operators in C|C]; necessarily assemble into tensors of the C[C],
algebra g. In this thesis we focus almost exclusively on good (in fact, balanced)
theories whose Coulomb branch chiral rings are generated by operators in C[C], and
whose symmetry algebra g is simple. Consequently, C[C], operators assemble into a
single (coadjoint) representation of g — the moment map of the symmetry — which
has a matrix realisation for all cases in this work. We may also consider cases whose
ring is generated by C[C], operators transforming in the coadjoint representation
along with another set of C[C], operators, also in the coadjoint representation, in

which case the following discussion straightforwardly generalises.

The synthetic method itself can be summarised as follows. Let X, € g form a
basis of g satisfying [ Xy, Xi] = >, cuimXm. There is a basis of C[C], formed by Oy
such that {Ok, O} = > ctimOn. If X} are dual to X, ie. (X}, X)) = g, the

moment map NIE is explicitly constructed as
N=> 0.X;. (3.107)
k

This definition guarantees that (N, -) acts as a Lie algebra homomorphism:

{(V, Xi), (N, X} = (N, [ X, X) (3.108)

The choice of Oy is heavily constrained — enough, in fact, to allow us to select
an almost uniquelﬂ set of operators from C[Capa]"™¢ to form components of N. And
since N generates the Coulomb branch chiral ring, we have found a set of generators
for C[C].

The moment map IV satisfies certain matrix relations, which can be inferred from

the Hilbert series of the Coulomb branch. Let us denote the ideal they form as I,

"The R-symmetry is assumed to be the SU(2) factor acting non-trivially on the Coulomb
branch. An operator’s weight is twice its conformal dimension.

12WWe reserve the usual symbol for moment maps, u, for highest weight fugacities.

131t is enough to declare u u:ra a positive simple root operator to fix the remaining choices, at
least in the quivers we consider.
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and let 14 stand for the ideal of abelian relations (2.193]). Then we claim that
C[C] = C[N(uf,, ¢ia)]/1a = CIN]/Ins. (3.109)

Note that the third object contains no abelian expressions (and hence no potentially
troubling factors of 1/(¢; — ¢;)). In this last step abelianised relations and compo-
nents of N, both expressed in terms of abelianised variables u* and ¢, are replaced
by symbolic components of N (ie. N;;) with matrix relations also expressed in terms
of components of N.

It is in effect a change of variables to a set which is well-defined even on the
non-abelian locus of the moduli space. On the other hand, the less-than-perfect
abelianised representation brings with it a major advantage: it is very explicit and
rigid. We can use it to construct the generator IV, independently check its relations
and also calculate ezact coefficients in these relations (including dependence on mass
parameters) — something which is forever off-limits to any method relying solely on

Hilbert series, all while keeping representation theory front and centre.
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Chapter 4

Wreathed and non-simply laced

unitary quivers

4.1 Introduction

In this chapter we clarify the relation between several concepts relating to 3d N = 4
Coulomb branches of BCFG type. It has been known since [I1] that the Coulomb
branch monopole formula [48] can be extended to quivers in the form of non-simply
laced framed Dynkin diagrams. However, while all the ingredients of a simply laced
Dynkin diagram — gauge and flavor nodes, hypermultiplet links — are readily in-
terpretable, it was unknown at the time what to make of the novel multiple link.
Recently [84] argued that their Coulomb branches result from a discrete folding op-
eration on Coulomb branches of simply laced quivers. We independently derive and
illustrate the same claim through the method of abelianisation [78]. We also de-
velop a second, related but distinct discrete operation which was previously studied
in [100] T0T]. Both aspects expand on our previous work in [I].

The main concepts, presented in Fig. can be summarised as follows.

Quivers with an automorphism possess a discrete symmetry relating gauge groups.
By analogy with continuous gauge groups, it, or any of its subgroups, can be gauged]
and we demonstrate that this results in a theory whose Coulomb branch is a discrete
quotient of the original, where the action by which we quotient is directly induced
by the quiver automorphism (or subgroup thereof). This operation, which we call
discrete gauging, produces wreathed quivers. Previous work [T100, 10T] generated
similar results on the Coulomb branch by replacing n U(1) nodes by a U(n) node
with adjoint matter.

In contrast, quiver folding relates Coulomb branches of pairs of simply laced and

non-simply laced quiver gauge theories. To be clear, we show the action on the

IDiscretely gauging string backgrounds is of course an old idea which has generated a lot of
discussion, for example in [I2THI25], and the findings of this section may be viewed as a new entry.
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Coulomb branch and conjecture that one can view it as one effect of an action on
the theoryﬂ However, we have been unsuccessful in our attempts to write down the
path integral or compute the Higgs branch of folded theories. Coulomb branches of
balanced As,_1—type quivers, ie. framed linear quivers satisfying the balance con-
ditionﬂ and exhibiting sl(2n, C) symmetry on the Coulomb branch, can be “folded”
into Coulomb branches of balanced C,,—type quivers with usp(2n, C) symmetry. Bal-
anced D,—type quiver Coulomb branches, ie. Coulomb branches of balanced framed
quivers shaped like D,, Dynkin diagrams, can be “folded” into Coulomb branches
of balanced B,,_i—type quivers. Go—type quiver Coulomb branches can be similarly
obtained from D,—type quivers while Fy—type quivers are folded Eg—type quivers.
The folded spaces are fixed points under the group action induced by the quiver
automorphism and we show that they are symplectic leaves of spaces obtained by
discretely gauging their respective original Coulomb branches. In some cases dis-
tinct subgroups of the quiver automorphism can give identical sets of fixed points
(eg. S3 and Zs of the D, affine quiver) and their folded spaces coincide; as a result,
there are “fewer” folded than wreathed quivers.

Actions of both discrete gauging and folding on the Coulomb branch are readily
interpreted through a geometric lens, see Figure [£.2l We claim that, since discrete
gauging is implemented by restricting the chiral ring to invariants of a symmetry
group action I'; the resulting space is an orbifold of the initial Coulomb branch
under I' — and since the Poisson structure respects this group action, the orbifold
inherits a natural symplectic structure. If the original space is a nilpotent orbit of
some algebra then the orbifold is sometimes, but not always, a nilpotent orbit of the
relevant folded algebra, but it is in any case symmetric under the folded algebra’s
action.

Folding, on the other hand, reduces the Coulomb branch to the fixed subspace
under the same group action I'. We show that it has a Poisson structure and,
since the fixed subspace is (a singular) part of the corresponding orbifold, the Hasse
diagram [I7] of the folded space is a subdiagram of the orbifold’s Hasse diagram.
In all known cases a nilpotent orbit folds to another nilpotent orbit (of the folded
algebra). This situation is reminiscent of a general phenomenon identified in [126],
in which orbits in the small affine Grassmannian for an algebraic group G (the
subvariety of the affine Grassmannian corresponding to the so-called small coweights

of G; see [127] for a friendly introduction addressed to physicists) possess a Z, global

2In the rest of this text we will elide the distinction between folding a quiver theory and folding
its Coulomb branch, but wish to be clear that we present solid evidence only for the latter and at
best circumstantial evidence for the former.

3A node is balanced when the contributions of gauge and matter to the RG flow of the gauge
coupling exactly cancel out assuming the quiver is understood as a 4d theory. Assuming simply
laced unitary quivers without loops, this amounts to the condition that twice the node’s rank
equals the sum of all surrounding (gauge or matter) nodes’ ranks.
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Figure 4.1: (Top left) k generic subquivers @} through @)} and m identical subquivers
()1 through @, are connected to a common central U(n) node. (Top right) Wreathed
quiver. (Bottom right) Non-simply laced quiver. The multiple link has valence m,
here depicted for m = 2.

involution — here these orbits would be depicted as the left portion of Figure [.2]
Some of these orbits can be mapped to so-called Reeder pieces which are the union of
two nilpotent orbits of GG, one which can be identified with a Zs quotient of the affine
Grassmannian slice, and the other as the Z, fixed points — respectively the middle
and right parts of Figure [£.2l Coulomb branches of framed unitary ADE quivers
were identified with slices in the associated affine Grassmannian [83], following the
construction [81], 82], and the Z, involution of [126] is realized on the quiver as
leg permutations like in Figure .1 As a consequence, several of the examples
discussed below follow from the geometric point of view from these previous works;
the present chapter sheds a new light on this topic by providing quivers for each of
the three spaces, and giving formulas to compute the Hilbert series and HWGs of
their closures.

Figure|4.3|features a third discrete action called crossing. Flavorless simply laced
quiver theories possess a certain freedom of reparametrisation: the gauge group G
factorises as G/U (1) x U(1), with the decoupled U(1) factor contributing a (geomet-
rically uninteresting) factor of R? x S! to the Coulomb branch, which is discarded by
convention. Crucially, while the choice of U(1) is somewhat constrained, the allowed

options are in practice equivalent and one can in particular choose to ungauge any
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Figure 4.2: (left) Initial Coulomb branch with highlighted Z, symmetry. (middle)
Coulomb branch of the discretely gauged quiver depicted as an orbifold of the original
space. Note that bold edges form a singular subspace under the Zy symmetry. (right)
Coulomb branch of the folded quiver, the subspace fixed under the Zs symmetry.

given U(1) node without affecting the Coulomb branch. The situation is modified
for non-simply laced quivers, where ungaugings on opposite sides of the directed
multiple link give rise to pairs of Coulomb branches where one is the discrete quo-
tient of the other. We list this case for the sake of completeness, but do not study
it further in this thesis. The reader could instead consult the recent treatment in
[T05).

Kostant-Brylinski reductions

In [I128] the authors identified that discrete quotients of certain minimal nilpotent
orbits were equivalent to (generically non-minimal) nilpotent orbits of other algebras;
their results are summarised in Figure[4.4] The same pattern is observed in discrete
gauging and we claim that our construction is a physical realisation of their cases
1,2,3,4 and 9. We empirically confirmed this conjecture using both Hilbert series
and abelianisation methods as in [I] up to low but non-trivial rank. The lines
painted in green (cases 2, 3, 4 and 9) correspond to wreathed simply laced quivers.
Case 1, painted in red, stands apart because of the non-simply laced initial quiver;
although the moduli space can be described algebraically using abelianised variables,
the explicit implementation of the monopole formula for non-simply laced wreathed
quivers is postponed for future investigations.

A recent work [105] showed that cases 5, 6 and 7 (yellow in Figure occur
in Coulomb branches of non-simply laced quivers. The Z,, quotient corresponds to
gauging a U(1) node on the “long” end of an edge of multiplicity n» and ungauging
another U(1) node on the “short” end. The quiver realisations of all eight known

cases are collected in Figure [4.4}

4[129] provide more examples of discrete and non-discrete quotients in nilpotent orbits.
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- ) (dimension
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Figure 4.3: Discrete actions on the quiver

Case number 8 still presents a challenge, and we are not aware of any quiver

realisation of the corresponding Z3 quotient. However the HWGs are under control,

and are discussed briefly at the end of Section [4.2.5]
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Figure 4.5: Quivers on the left wreathe into quivers on the right.

4.2 Discrete gauging

Our first example of a discrete quiver operation, discrete gauging, orbifolds the
Coulomb branch by a subgroup of the quiver’s automorphisms. Another operation,
which also acts on the Coulomb branch as an orbifold, was previously studied in
[100, 101}@ Ours differs in several respects: it preserves the dimension of the Higgs
branch as well as the Coulomb branch, allows for consistent and successive discrete
gauging of nodes into “larger” nodes and generalises beyond acting on a collection of
n U(1) nodes (which form a U(n) node with adjoint matter in [100, 101]) to acting
on n copies of arbitrary gauge groups or “legs” of the quiver.

It is possible to discretely gauge any quiver of the type depicted in the top left
corner of Fig. , ie. one with m identical legﬁ Q; (and potentially other legs Q")
connected to a single common node which we call the pivof’| One discretely gauges
the m identical legs by extending the overall gauge group with the symmetric group
Sm, or a subgroup thereof, which permutes the gauge factors associated with each
leg. We say that we have gauged the quiver’s automorphism. For example, three
legs composed solely of U(1) nodes will arrange into a U(1) ¢ S3 node, while two
legs with U(2) x U(1) gauge nodes will combine to give (U(2) x U(1))?.Sy, with S
simultaneously exchanging U(2) and U (1) factors.

Our strategy in this section consists of the following steps. We first demonstrate
the existence of a well-defined orbifolding operation on the Coulomb branch, giving
results consistent with existing literature. Then we suggest that the operation acts

on the quiver as a whole in a way that can be deduced from the Coulomb branch

5In contrast to our treatment, these works did not claim to discretely gauge the theory, but
restricted their claims only to effects on the Coulomb branch.

5A leg can have arbitrary shape and in particular need not be linear.

"It may be possible to discretely gauge quivers without a pivot node but we do not have a
successful case to present.
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action and that the results of this operation should be viewed as quivers in their
own right, even if they often cannot be written down using existing notation; we
introduce the concept of wreathed quivers to get over this difficulty; see Figure [4.5| for
two examples. We support this claim by generalising the monopole formula to this
family of quivers and computing an example, as well as calculating a few wreathed
quiver Higgs branches. We also conjecture that a well known Higgs branch operation

is the 3d mirror to this operation on the Coulomb branch.

4.2.1 Wreath product

We pause for a moment to introduce the notion of the wreath product G T of a
group G by a permutation group I' C S, (the integer n is understood in the notation
G T, which we could denote G ¢, I' if there is a risk of confusion) [130]. As a set,

we define
GZnFEGzl“:(HGi)xF, (4.1)

i=1
where the x denotes the Cartesian product of sets, not the direct product of groups.
There are n copies G, ..., G, of the group G. An element of (g,0) € G T is an
ordered list of n elements g; of G' together with a permutation ¢ € I'. The group

multiplication law is given, for (¢g,0) € GUI" and (¢’,0’) € G T, by

(g.0) - (¢, 0") = (go(g'),00"), with (go(¢))i = gigy-1; - (4.2)

Intuitively, G I" is the direct product of n copies of GG, which can in addition be
permuted by I'.

In this section we consider wreath products where G is a unitary group U(r), or
more generally a direct product of finitely many unitary groups U(ry) X - -+ X U(7).
In this case, in particular in the quivers, we extend the usual shorthand notation
in which U(r) is replaced by the rank r, and we write r 2 I for U(r) ¢ I', and more
generally [ry -+ 7] D for (U(ry) x -+ x U(rg)) L

4.2.2 Action on the Coulomb branch

We will first study this procedure through the lens of Coulomb branch abelianisation.
The goal is to show that the Coulomb branch can be reduced to an orbifold by an
automorphism of the quiver.

Since each node contributes several variables to the abelianised chiral ring, there

is an induced S, action permuting them. For any 7 € S,,, we have
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ﬂ-(xi,a) ‘= Tr(i),a (43)

Action on more complicated (polynomial or rational) functions of these variables is

defined by action on indices of the full expression. For example
7 (u;, U;fb) = ujr(z’),au:rr(j),b' (4.4)

Note that mass parameters should be treated as numbers (parameters) rather than

ring elements (VEVs); therefore m does not act on them, ie.
T(M;io) = M;,. (4.5)
In fact, this constraint forces
T(M;o) = Miq = Mr(i).a- (4.6)

To see this consider the A5 theory which gauges to the bottom right quiver in Fig.
4.5k

m(uyuy) =7 (=(p1 — w2) (1 — M1)) = — (w5 — @a)(05 — M) (4.7)
ugus = — (05 — @a) (05 — M) (4.8)

Since 7(uf u; ) = ug us , the two mass parameters must be equal to preserve symme-

try under 7. This is a sensible constraint: if M; # My then the mass deformation

breaks the quiver’s S, symmetry.

We should check that the form of the Poisson brackets (|2.196))-(2.198)) is com-
patible with this action in the sense that {m(x),7(y)} = 7({z, y}).

{1(01a), T(0E,}) = (@t w2y} = £ty = 7 ({0100u5)) (4.9)

N 0 wer\W, T 3))|wial
CIUARUA) ST M}=3%@ga@&ﬁ(g&am— (R

(4.10)

u-_,. u .
w(i),aYn(5).b
{m(ui), (w5} = {uz 00 Uy o} = 5 Pr(i)a — sojrm L (e uial) (411)

The first line is clearly compatible with the action. The second line also succeeds
with a simple relabelling: wr;) <> w; and oz <> ;. The third line is similarly
preserved because Kr()r(j) = Kij is a consequence of the automorphism. In fact, it

is noteworthy that the third line forces the action of 7 to preserve connectedness
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while the second line enforces identical gauge and matter content on each leg Q);.

To implement the quotient on the Coulomb branch chiral ring, it is enough to
declare that only S,,—invariant operators are physical. This is easily done through
the use of a projector:

1
P()=— > w(). (4.12)
TESm

Every operator of the form P(O) is physical.

The effect on the Coulomb branch is then transparent. If C and C are Coulomb
branches of, respectively, the original quiver and discretely gauged quivers, the two

spaces are related by
C=C/S, (4.13)

ie. the discretely gauged Coulomb branch is a S,, orbifold of the original space.
This construction leads to new Coulomb branches which were previously unknown,

provided that they are orbifolds of known Coulomb branches.

Note that nothing prevents generalisation from .5, to arbitrary subgroups I' of
Sm, for instance the alternating group A,, or cyclic group Z,,. We investigate one

such example in Section [4.4.2]

The projector acts remarkably simply on moment maps of type AD quivers as

studied in [1I]. In fact, if Na,, , is the moment map for a type As, ;1 quiver then

P(Na,,_,) = N, (4.14)

is a C,, moment map and P acts component-wise. Similarly,

P(Np,,,) = Ng,. (4.15)

To see this action on an example, and to illustrate why its action on moment
maps is so simple, consider the top left quiver in Fig. Select the Chevalley-Serre
basis of D4 and its operator counterpart, ie. the basis of operators in C[C|y which
replicates — with Poisson brackets. We will denote the algebra elements
and their duals with capital letters, reserving lower case letters for operators with

appropriate commutation relations. In this notation, the moment map is

Np, = > hHf + Y (eaBl+e_aE",) . (4.16)

1<i<4 acdt

In the interest of concreteness we perform the projection by P in full detail. Start
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with the moment map of Dy:

Np, =h1H] + hoH5 + hsH; + hyH)
+ €(+1,000) E{11,0,0,0) T €0,£1,0.0)E0,+1,0,0)
+ €40,0,41,0 E{0,0,41,0) T €0,0,021) E{p.0,0.1)
+ €(1,41,0,00Ele1 11,000 T €0,21,21,0 Efo 11,41,0) T €0,41,0,41) Eo 11,0,41)
+e@141,41.00 Bl 11,0100 T €110+ B 410401y + €041,21,41) Elo 11,41, 41)

e e a1 20 Bl 10141y T e@ia2 0120 Bl 1041 41)
(4.17)

The projector acts on operators:

P(Np,) =Y P(h)H; + Y (Plea)E, + Ple_o)E",)

1<e<4 acdt
_P(hl)H* + P(ho)H; + P(h3)H; + P(hy)H}
€(+£1,0,0,0) ) (£+1,0,0,0) + P<€<0,i11070>)E<07i170,0>

€0.0,+1,0)) (0,0,41,0) T P (e, 0707i1))E2k0,0,0,i1)

B(

P(

Ple1,4100) E1 4100 T Pe0+1,41,0) Ejp 11,41,0)

(6 0,+£1,0,+1 )E(o +1,0,+1) + P( <il,i1,i1,0>)Ezkil,ﬂ,ﬂ,m
(6 +1,+1,0,41 )E<:l:1,:|:170,:|:1) + P(e(oil,il,il))ETO,:I:L:I:L:H)
P(

C(+1,41,41 il))ETil,il,il,il) + P(eﬁ:l,i?,il,il))Ezkil,izil,im
hs + h hs + h
3—; 4H§ n (hs —5 1)

* *
+ €(£1,0,0,0) E(ﬂ,o,o,o) + 6(0,i1,0,0>E<0,i1,0,0>

—h H? + hoHj + H;

€(0,0.£1,0) T €(0,00,£1) . €(0,0,£1,0) T €(0,0,0,£1) s
* 2 Efooz10) F 9 El0,0,0,41)

€(0,41,+1,0) + €(0,+1,0,+£1)
* k] k] k] k] "y
+ 6(:|:1,:i:1,0,0>E(i1,i1,0,0) + 92 E<O,i1,i1,0>

€(0,41,+£1,0) T €(0,4£1,0,+1) o €(+1,4£1,4+1,0) T €(£1,41,0,£1) o
5 0,41,041) T 5 (+1,41,£1,0)

€(+1,41,£1,0) T €(£1,41,0,£1)

+ 7 Bl 1041 +€oa1,41,60 B 11 41 41)

+ e(il,:tl,:tl,:ﬂ)Ezkil,il,il,il) + €<i1,i2,i17i1>E&Lﬂ,il,il)
Hy + Hy

2
+ €(+1,0,0,0) E<*i1,o,o,o> + €(0,£1,0,0) Ezko +1,0,0)

B + E7
(0,0,4£1,0) (0,0,0,41) x
5 + €<i1,i1,0,0)E(ﬂ:1,:ﬁ:1,070>

=hy1HY | + hoHy + (hs + hy)

+ (€<0,0¢1,0) + 6(0,0,0,¢1>)

Efo 14100 T Eio+1041
+ (€(0,41,41,0) + €(0,41,0,41)) < ) 5 { )
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* *
B via0 T Elc041)

2

+ (€(1,41,41,0) + €(+£1,41,0,41))

*

+ €<O,i1,i1,il)E(o,j:l,:l:l,:l:l)

+ €<i17i17i1:i1>E?il,il,ﬂd:l) + 6<i1,i2,i1,¢1>E&Lﬂ,iuﬂ)

+ é<ﬂ:1,0,0>EZki1,0,0> + é<0,ﬂ:1,0>EZ<0¢1,0) + é(O,O,i1>E<*0,0¢1>

+ €1,41,00 Bl 41,0 T €0,21,21) Efp 11,41y

+ 111,40 Bl 11 11y + €0,21,22) Efg 41,49

+ é<i1¢1,i2>EZ}1,i1,i2) 1 €(t1,+2,+2) E<*il,i27i2>
=Np, (4.18)

where we defined

hs = hs + hy = 2(3 + @4) — 2(p2,1 + P22) (4.19)
€(0,0,1) = €(0,0,1,0) T €(0,0,0,1) = ug +uy (4.20)
_ ug ugug
€(0,1,2) = €(0,1,1,1) = Z 20 3 4 (4.21)

a:1’2 (()02701 - (p3)(g027a - @4)

and the remaining operators follow the same pattern €p2:) = €(apc,c) OF €(ape) =
Clab,e0) T €lap0,e) if ¢ # 0 and € p0) = €(ap0,0) otherwise. Notice a feature common
to components of the moment map on which P acts non-trivially: the prefactor from
the operator becomes the inverse multiplicity required in the definition of the new

dual basis, e.g.

hs +h hs +h
P(hy)Hj + P(hy)Hy =———Hj + =" H;
#3 #3
H:+ H*F
—(hg + hy) =24
s (4.22)
- g H
=h
7
—hsH.

Just as Np, satisfies certain matrix relations which identify the space it parametrises
as the (closure of the) minimal nilpotent orbit of Dy, so does Np, obey several re-
lations appropriate for a Bs nilpotent orbit. The space should be an orbifold of the
minimal orbit of Dy, so it should in particular have the same quaternionic dimen-

sion, namely 5. That is precisely the dimension of the next-to-minimal orbit of Bj
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with the HWG [20]

1
(1 — pot?)(1 = pit*)

HWG(t, p;) = (4.23)
This space is parametrised by a matrix M satisfying the relations (computed using

standard plethystic techniques)ﬁ

t4[000] : trN? =0
t4002] : NAN =0 (4.24)
t9[010] : N*> =0

We describe a relation by its R-symmetry weight appearing in the exponent of ¢
and the global symmetry representation in which it transforms. This often, but not
always, specifies the tensorial form of the relation, which we provide on the other
side of the colon. The notation N A N should be understood as the contraction
> tmmo EijkimnoNim Nno With the rank 7 antisymmetric invariant tensor of so(7).

One can check that the moment map Np, satisfies the identities in modulo
abelianised relations. To show that there exist no other independent relations,
or generators for that matter, one can calculate the Hilbert series of the ring as
described below. This computation shows that indeed form the complete set
of relations for the next-to-minimal orbit of so(7). Note that this is an instance of
Case 2 of the Kostant-Brylinski Figure [£.4]

4.2.3 Wreathed quivers

The previous section establishes that some Coulomb branches can be orbifolded by
a quiver automorphism. We will now argue that the orbifold can also be recovered
as the Coulomb branch of the original quiver after gauging its automorphism. It is
natural to ask if the resulting theory is also a quiver theory which could be studied
without reference to the original, ungauged theory. This is indeed possible, albeit
at the cost of generalising the notion of a quiver theory to wreathed quivers.
Traditionally a quiver theory is described by a quiver diagram in which nodes
represent gauge or flavor groups and links represent appropriately charged matter.
Wreathed quiver theories add wreathed legs denoted by (-) 1S, with an associated
wreathing group S,. See Fig. for two prototypical examples. The top right

quiver has a single wreathed node while the bottom right quiver is an example of a

8A similar set of relations appears in [I31], albeit for the next-to-minimal orbit of D,. The
methods employed therein can be extended to the present case: given a general nilpotent orbit,
one can construct the quiver for which it is the Higgs branch and look for matrix relations implied
by the F-terms.
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quiver with a longer wreathed leg.

Abelianisation of wreathed quivers

The Coulomb branch of a wreathed quiver can be studied through abelianisation
with relatively minor changes, but it is cumbersome to write them down in full gen-
erality. We find much greater clarity in (entirely equivalent) abelianised calculations
performed on discretely gauged non-wreathed quivers. In practice, this amounts to
keeping the indices, Poisson and abelianised chiral structure from the non-wreathed
quiver while imposing invariance under the projector |4.12, For illustrative pur-
poses, and to draw a link to [T100, T0T], we present two particularly simple examples
depicted in Fig. [4.5

There are very few new elements in the wreathed quiver theory depicted in the
top right quiver of Fig. . The third node brings six variables uia and @3,
a € {1,2}, much like a U(2) node would. The wreathing group acts similarly to a
Weyl group in that it permutes the index a and all physical operators are invariant
under it.

Abelianised relations on the middle node read

a M. a a a
uluy, = — (02, 2) (P20 — ¢1) (2, 2903,1)(902, ©32) (4.25)
n (2.1 — p22)
and the relations on the third node are essentially unchanged:
Us glzq = — (P30 — 021) (P30 — P2,2). (4.26)

Interestingly, the latter can be read in two ways: either as the relation of a U(1)1 5,
node, or as
wbug, = — (¥3,0 — 21) (P30 — P22)
o (¢31 — p32)?
which is appropriate for a U(2) node with adjoint matter. This explains why in
[100] 101] a “bouquet” of n U(1) nodes combined into U(n) with adjoint matter: at
the level of the Coulomb branch, there is no difference between U(1)S,, and U(n)
with adjoint matter.
The case of the bottom right quiver in Fig. is slightly more subtle. The

first and second gauge nodes, which are inside the scope of a two-fold wreathing,

(903,1 - 803,2)27 (4-27)

each come with six variables ufa and ¢; ., a € {1,2}. However, the pattern of
abelianised relations, which can be determined by consistency with discrete gauging
of the bottom left quiver in Fig. [4.5 is as follows:

+

U Uy, = — (P10 — M1)(P10 — ©2.0) (4.28)
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U3 sy = — (P20 — Pra) (P20 — ©3) (4.29)
uguy = —(5 — 21)(p3 — P2.2) (4.30)

Note in particular that the index a “stretches” across several nodes (but not the
mass variable, which is shared by all legs). The wreathing group Ss again acts on this
index, and invariance under it is a necessary prerequisite for operator physicality.
The Coulomb branch has C5 symmetry and the moment map parametrises the next-

to-minimal nilpotent orbit of this algebra. Its components include:

e(t100) = Uiy + Ui, (4.31)
Clo£1,0) = Uz + Ui (4.32)
C(0.0.41) = Uj (4.33)
+  + + +
U7 1 U U7 oUW
€(+1,£1,0) = e e — (4.34)
PY1,1 — P21 P12 — P22
+ + + +
Ugy U3 Ug U3
e = : —+ : 4.35
(0:1,21) V21— Y3 P22 — P3 ( )
+1,41,41) =
< ) (901,1 - 902,1)(902,1 - 903)
+ +  +
U7 5U5 5 U
i 1,22 2U3 1 (4.36)
(901,2 - 902,2)(802,2 - 803)
¢ — AR (4.37)
0,£2,+1) — .
< ) (902,1 - 903)(802,2 - 803)
L ui g b,
1,42,41) =
( ) (%01,1 - §02,1)(802,1 - 903)(902,2 - 903)
(901,2 - 802,1)(902,1 - 903)(902,2 - 903)
o i yut g b L)
2,42 41) = .
( ) (%01,1 - §02,1)(901,2 - 902,2)(902,1 - 903)(<P2,2 - <P3)
hi = 2(p11 + 012) — (021 + P22) (4.40)
he = —(<,01,1 + 803,1) + 2(902,1 + 902,2) — 23 (4.41)
hy = —(p2.1 + v22) + 23 (4.42)

4.2.4 Monopole formula for wreathed quivers

Consider now a wreathed quiver. To compute the monopole formula, we need to
replace the Weyl group in with an appropriate discrete group, necessarily a
subgroup of S, which contains the Weyl group W of the gauge group G and leaves
A(m) invariant. Generically, several such discrete groups exist. Our choice, which

we dub Wr, is the wreath product of the Weyl group W by the wreathing group I':
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Wr = W1T, WCWr C8,. (4.43)

Formula ([2.181]) generalises readily for such a group, setting

HSr(t) \Wp\ > Z T | (4.44)

meZL” veWrp(

This is the monopole formula for the wreathed quiver.

A comment on computational complexity

The monopole formula in the form is very time-consuming to evaluate nu-
merically in a series expansion in ¢. For such a task, it is preferable to preprocess
it somewhat, using the high level of symmetry that it presents. In particular, if the
group I' can be written as a product of two groups Wr = W; x W, then one can

split the summation into two sums.

This procedure involves finding a subset of Z" which contains exactly one element
of each orbit of Wr. In the context of Weyl groups, or more generally Coxeter groups,
this is called a fundamental chamber. For instance, if Wr = W as in , then
this group can be used to order the magnetic charges in increasing order for each

node. Then one uses the identity
PU(n)(tQ;mh...,mN) = P5n<t;m1,..., Z det 1—t2 ) (445)

for the Casimir factors as defined in the appendix of [48]. This is done in the usual

way of presenting the monopole formula.

For wreathed quivers, Wr does not decompose in general as a direct product of

symmetry groups. One can introduce symmetry factors exactly as in (4.45)), via

Py, (tQ; m)

\ Z det 1—t2 det(l=)° (4.46)
The formula (4.44]) can then be rewritten

HSr(t) = Y Pap(t;m)t*20m, (4.47)

meWeyl(GI)

where Weyl(GT") is a principal Weyl chamber for the group Gi:I". We now illustrate

the procedure on three examples and most explicitly on the third.
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Example 1 : subgroups of 53

Consider the quiver corresponding to the affine D, Dynkin diagram (see the first
column of Figure 4.18)). One of the four rank-one nodes is a flavor node, so we can
define the graph by the vertices

V ={a,b,c,d} F = {e} (4.48)
where a denotes the central node, and

E ={(a,b),(a,c),(a,d)} E' = {(a,e)}. (4.49)

The corresponding ranks are n, = 2, n, = n. = ng = n. = 1. The total gauge
group is G = U(2) x U(1)® with rank r = 5. The Weyl group is W = S,. The
magnetic charges are elements m = (mq 1, Mq 2, Mp, Me, My) € Z° and the conformal

dimension is given by

2

2A(m) = Z(|ma,i—mb|+|ma,i—mc|+|ma7i—md| +|mai|) —2|ma1 —ma2| . (4.50)

i=1

The group Ss5 includes 156 subgroups which can be gathered into 19 conjugacy
classes. These 19 classes are partially ordered and form a Hasse diagram. For A
to be invariant, we have to select those groups I' which are subgroups of Sy x S5
(this is also known as the dihedral group D;3), and moreover to satisfy the
groups [" have to contain S5 as a subgroup. Out of the 19 classes of subgroups, 9 are
subgroups of Dis, and out of these 9, 6 contain a Sy as a subgroup. However there
are two equivalent but non-conjugate Sy subgroups of Dis, and we have to pick one
of them. We are then left with 4 classes of subgroups, which can be identified with
the 4 classes of subgroups of S3 (S3, Zs, Zy and 1). Clearly, in this simple example
this analysis is slightly superfluous and the result could have been guessed. We end

up with 4 inequivalent groups I', and we can readily evaluate the expression (4.44]):

(14 %) (1 + 17¢* + 48t* + 17¢° + ¢8)

HS;, = T (4.51)
HSys, — (1+2)(1 + 1(01752:;22)?54 + 10t + %) (4.52)
e = I
HSy.s = (1+t?)(1 +(Zl’)ti4t—2§3f: + 3t% + %) (4.54)
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Name Generators Cardinality
Trivial - 1
Sy (12) 2
Double transposition (12)(34) 2
Z, (1234) 4
Normal Klein (12)(34), (13)(24) 4
Non-normal Klein (12), (34) 4
Dih, (1234) ,(13) 8
Zs (123), 3
Ss (12) , (13) 6
Ay (123) , (124) 12
S (12), (13) , (14) 24

Figure 4.6: Subgroups of Sy

which identify the spaces as the (closure of the) minimal nilpotent orbit of SO(8),
next to minimal of SO(7), double cover of the subregular orbit of G [126], and the

subregular orbit of G.

Example 2 : subgroups of 5,

We now consider the same quiver as in the previous example, namely the affine D,

quiver, but we use the fact that the gauge group of the theory is really

U(1)* x U(2)

T (4.55)

where the U(1) acts diagonally. This form makes the S; symmetry of the quiver
explicit, and this S4 contains as a subgroup the S3 which is studied in the previous
example. Following the approach of this section, one can define a wreathed quiver
for each conjugacy class of subgroups of S;. Part of the results presented here
already appear in unpublished summer work by Siyul Lee [I32], where the cycle
index technique was used. The group S; admits 30 subgroups that can be organized
into 11 conjugacy classes, as listed in Figure [1.6], where we give a name to each class
of subgroups.

For each subgroup, one can compute the Hilbert series (4.44)). The results are
gathered in Figure [4.8] where they are arranged in the shape of the Hasse diagram
of the subgroups of S;. We give some details about the computation in appendix [C]
We also give the first orders of the series expansions of these Hilbert series, along
with their plethystic logarithms, in Figure 4.71 The coefficient of the #? term gives

the dimension of the isometry group of the Coulomb branch.
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Subgroup

Perturbative Hilbert series

PLog

Trivial
Sy
Double transposition
Ly
Normal Klein
Non-normal Klein
Dihy
L
S3
Ay
Sy

1 + 28t + 300t* 4+ 1925t6 + ...
1+ 21¢? + 195t* 4+ 1155¢6 + ...
1 4+ 16¢? + 160t* 4+ 9856 + ...

1 4 9¢2 + 83t* + 497t5 + ...

1+ 10¢2 4+ 90t* + 5155 + ...
1+ 152 + 125t* 4+ 685t% + ...

1+ 9t% 4+ 69t* + 356t5 + ...

1+ 14¢% + 118t* + 6936 + ...
1+ 14¢2 + 104t* + 539¢6 + ...

1+ 82 4 48t* + 22316 + ...
1+ 82 4 48¢* + 2105 + ...

28t% — 106t* + 833t° + ...

212 — 36t* 4 140t5 + ...
16t + 24t* — 2155 + ...
9t% 4 38t — 106 + ...
10t? + 35t* — 55¢5 + ...
15t2 + 5t* — 7015 + ...
0t2 4 24¢* — 25¢6 + ...
142 + 13t* — 49¢6 + ...
1482 — 4 — 715 + ...
8t2 + 12t* + 716 + ...
8t2 4+ 12t* — 65 + ...

Figure 4.7: Wreathed quivers obtained from the affine D, quiver by acting on the
legs by all subgroups of Sj.
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Example 3 : wreath product of non Abelian groups

We now consider the quiver

(4.56)

whose Coulomb branch is the closure of the nilpotent orbit of s0(10) associated
with the partition [24,12]. The letters in red give our assignment of magnetic charge
for the various gauge groups. The rank is r = 10 and the Weyl group is W =
S1 X Sy x S5 x S x Sy. In order to preserve A, we need a symmetry of the quiver,
which is given by permutation of the two legs containing the nodes d and e. So there
are only two allowed groups Wr, namely Wr = W and an extension Wr of W of

index 2. Let’s focus on this second group.

The factors S; x S5 x S3 in W are unaffected by the permutation, so we omit
them in the matrix discussion that follows. The commutant of this part in Sy is
Sy, which acts by permuting the four magnetic fugacities (di, da, €1, €3). The group
Wr is then the product Wr = S; x S5 x S3 x IV where Sy x Sy C IV € S;. We can

describe I explicitly as generated by the following two permutation matrices:

0100 0010
1000 000 1
, (4.57)
0010 1000
0001 0100

This group is isomorphic to the dihedral group of order 8, that we denote by Dihy.
With this explicit description, it is now possible to evaluate (4.44]), and one finds
the Hilbert series for the Coulomb branch of the wreathed quiver,

1 4 142 4+ 106t* + 45416 + 788¢8 + 45410 + 10612 + 1414 + 16
HSSIXSQX53XDih4 = (1 o t2>20<1 + t2)—2 ’

(4.58)
The corresponding HWG and other data concerning this space are gathered in the
middle column of Figure

However, the sum involved in the computation is difficult to evaluate in practice,

and it is useful to use the symmetries to avoid unnecessary repetitions, as explained

above. In the present case, the sum in (4.44)) for Wr = S x S3 x S3 x Dihy becomes
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(4.47) where the sum over the Weyl chamber is given by:

|V\1/py > =X Yoo+ > (4.59)

mez10 a bi<byci<ce<cz | d1 < do dp < do
A IN I
er < e3 er < ez

The notation here should be clear, with the charges m = (a, by, by, ¢1, 2, ¢3,d1, do, €1, €3) €
Z'° denoted with the letters as in . The first three sums in the right hand side
of exploit in the standard way the symmetric groups, which allow to order
the charges. The same principle is used to get the summation range over indices
(dy,da, eq,e2). Inside the sum, one of course introduces symmetry factors .

Let’s now explain the summation range for the last four indices in (4.59)).

[ is the dihedral group Dihy, of order 8, or the group of symmetries of the square

dl €2

€1 da (4.60)

The elements of I are listed in Figure [£.9] with some of their properties. Without
entering into the details of the theory of Coxeter groups, let us note that the Weyl
chambers in R* are delimited by subspaces fixed by the order 2 elements in the
group. Formally, the Weyl group of a simple Lie algebra, the principal Weyl chamber

is defined as the set of charges m which satisfy the inequalities
a-m>0 (4.61)

for every simple root . However, in the present case the order 2 elements don’t
necessarily fix a hyperplane in R? (the —1 eigenspace can have dimension > 1). The
condition then has to be replaced by a more general condition, which we now
explain on our example. We leave the study of the general case, and the connection

with Coxeter group theory, for future work.

The elements of order 2 in Wr can be read from Figure 4.9, For every element
a of order 2 in Wr, seen as a group of endomorphisms of its representation space,
we pick a basis (%) of the kernel of this endomorphism in a consistent way (with
i =1,...,dimker(c)). This is done in the third column of Figure[4.9, The principal
Weyl chamber is then defined by

§%-m >0, (4.62)
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Permutation \ Order \ —1 eigenspace \ Inequality

Identity 1
dy < dy 2 (-1 100) dy < dy
e1 & es 2 (0 0 —1 ].) 61§62
-1 1 0 0 e1 < ey or
di <> da, €1 ¢ €2 2 (0 0 —1 1) e1 =eg and dy < d,
-1 0 1 0 dy < eg or
dy <> e1, dy <> €9 2 (0 -1 0 1) dy = ey and dy < ey
0 -1 1 0 d; < ey or
di > €2, dy <> €1 2 (_1 0 0 1> dy = e and dy < €3
dy — el —dy— ey — dy 4
dy = ey —dy —ep — dy 4

Figure 4.9: Elements of the group Dihy. In the first column, they are presented as
permutations, acting on (dy,ds, €1, e2). The second column is the order of the ele-
ment, the third gives a basis of the —1 eigenspace in the (dy, da, €1, €2) representation.
The last column displays the condition imposed by (4.62).

which generalizes (4.61)). The subtlety in (4.62)) comes from the cases where dim ker(«) >
1. When this is the case, 6% - m is an element of RE™ker (@) and we need to say what

we mean by >. A simple choice, which we adopt here, is to pick the lexicographic
order

(z,y) < (@ y) ey<y or(y=y andz <2'). (4.63)

Doing this for every order 2 element in Figure [4.9] we get the conditions listed in
the last column of that figure. Combining all these conditions together, we obtain

the summation range in (4.59)).

4.2.5 HWG for wreathed quivers

We now explain how to perform the orbifold at the level of the HWG. The starting
point is the HWG of the Coulomb branch C of a quiver, which can be wreathed by
a finite permutation group I'. The goal is to compute the HWG for C/T.

In the following, we give the general prescription, and at the same time we
illustrate with three examples I' = Z,, Z3 and S3 to keep the discussion concrete.
We first recall that the group I' has a well defined character table, which is a square
matrix whose columns are labelled by conjugacy classes of elements of I', and whose
rows are labelled by irreducible representations of I'. For our three examples, these

character tables are
I'=2,

Cardinality
1

€

(4.64)

— = = =
—_
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r=72; |1 w w? I'=95; |Id 3-cycles 2-cycles
Cardinality {1 1 1 Cardinality | 1 2 3
1 11 1 1 1 1 1 (4.65)
f 1 w w? € 1 1 -1
f 1w w 2 2 -1 0

These character tables contain in each entry the trace of the matrices of the conju-
gacy class in the corresponding representation. One way to refine this information
is to give, instead of the trace, the list (unordered, and with repetitions allowed) of
the eigenvalues of these matrices. We will need these eigenvalues in equation .

On our three examples, we get

I' =12, 1 -1
Cardinality | 1 1 (4.66)
1 {1} {1}
€ {1} {-1}
=173 1 w w? ['=Ss Id  3-cycles 2-cycles
Cardinality | 1 1 1 Cardinality 1 2 3

1 {1y {1 {1} 1 {1y {1} {1}

{1} {w} {w?} € {1 {1y {1

{1} {o?} {w} 2 {11} {ww?} {1,-1}
(4.67)

Of course in each case the sum of the eigenvalues listed in ([4.66]), gives the

characters , . Let us call C; the conjugacy classes (j = 1,...,n, with

n the number of conjugacy classes, and C] is the class of the identity element),

|

¢; = |C}| their cardinalities, p; the irreducible representations (i = 1,...,n, and p;
is the trivial representation), and d; their dimensions. Finally we denote by A; ; the
list of eigenvalues for C; in p;. For a representation R which is not irreducible, we
similarly denote by Ag ; the list of eigenvalues of the class C; in the representation
R. The elements of Ag; are denoted A}, ; for k = 1,... ,dim R. This list is easily
obtained from the decomposition of R in irreducible representations. Note that
Apy =1 for all k.

We now show how to compute the HWG for an orbifold Coulomb branch based
on an initial Coulomb branch that admits a finite HWG. We say that HWG(C)
is finite is there exist two lists of monomials, that we denote (M, ..., M) and

(M, ..., M}.), in the highest weight fugacities (1;) and the variable ¢, so that the
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HWG is

1101 1)
HWG(C) = 00— (4.68)
10— )

We assume that HWG(C) can be written in that way; this is a non-trivial assump-

tion, as it is known that many Coulomb branches don’t satisfy it.

The fact that I' is a symmetry group translates into the fact that to the above
expression are associated two representations R and R’ of I', not necessarily ir-
reducible, of respective dimensions K and K’, such that the numerator and the

denominator of the above expression transform according to these representations.
Then HWG(C) can be written

Kl
[T (1= Ner M)

HWG(C) = =2 . (4.69)
k[ll(l — Np1Mi)

From this expression it is then straightforward to write the conjectured HWG for

the orbifold

n [1(1- )\%/JM;Q/)

HWG(C/T) = — Y ¢; x =2 . (4.70)
i=1 (1— M My)
k=1

We illustrate how this formula works in practice on the example of the D, affine
quiver. All HWGs and quivers are gathered in Figure 4.18] Consider for instance
the HWGs written in terms of G5 fugacities. The closure of the minimal nilpotent
orbit of Dy has HWG equal to PE [2p1t? + pot? + pot?]. The identification of the

irreducible representations is as follows:

Zy :  HWG(C) = PE [1ut® + ept® + 1pot® + epot?] (4.71)
Zs :  HWG(C) = PE [fuut® + fuit® + 1pot® + 1pst? (4.72)
Sy HWG(C) = PE [2umt* + 1pot® + epat?) (4.73)

We then use equation (4.70) to obtain

1 1
HWG(C/Z2) - 5 ((1 . /~L1t2)2(1 _ :U’2t2)(1 — /~52t4)

1
+
(1= mt?)(1 4+ pat?) (1 — pat®)(1 + u2t4))
(1= pat?) (1 — pat?) (1 — pit*) (1 — papuot®) (1 — p3t®)
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1< 1
HWG(C/Zs) = 5 lz: 1— wipnt?)(1 — w=int?)(1 — pat?)(1 — pot?)
B (1 — pft'?)
(1 — pot?) (1 — puot*) (1 — pft*) (1 — puift®)? e
1 1
HWG(C/SS) = 8 ((1 _ M1t2)2(1 — ﬂ2t2)(1 — ,u2t4)

2
_l’_
(1= wm) (1 — ) (1 — )L — pat?)

3
_|_
(1 — pat?) (1 + pat?)(1 — pat?) (1 + M2t4))
- L— it (4.76)
(1= pat?) (1 — p3t4) (1 — p3t6)(1 — p3t5) (1 — pipat'®) ©

This reproduces the results in [105].

Eighth case of Figure We can apply similar methods to the eighth line of
Figure .4, The HWG for the minimal nilpotent orbit of Fj, written in terms of Dy
fugacities, is PE[(uy + p2 + p3 + pa)t?]. The weights p1, ps and gy correspond to
the external nodes of the Dynkin diagram. In order to perform the Z3 quotient, we
charge them under the three distinct Zy subgroups and apply formula . This
way one gets the HWG

1
Z Z Z — ereap1t2) (1 — p1ot?) (1 — eapist?) (1 — €1 p14t?) (4.77)

61 +1 ea= :I:l

which evaluates to PE[uat? + (u? + p3 + p3)t* + pipapat® — p2pipit'?). One can
check that this is indeed the HWG for the closure of the [3,22, 1] orbit of s0(8). An
alternative way of seeing the same computation relies on the fact that C*/Z2 is a

weighted hypersurface in C*.

4.2.6 Higgs branch of wreathed quivers

In this subsection, we turn to the Higgs branch of wreathed quivers. This is in
contrast with the rest of the section, which focuses on the Coulomb branch of the
3d N' = 4 theories, but it serves several purposes. First, it demonstrates that
wreathed quivers do indeed provide a well-defined hyper-Kahler quotient, which can
be associated with a gauge theory whose gauge group is disconnected. Secondly,
we explain how to compute the Hilbert series of such quivers, using an averaging
procedure. Finally, it allows the study of the geometric action of wreathing on the

Higgs branch and contrasts it with the parallel action on the Coulomb branch.
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We focus on a simple but rich example, the affine D4 quiver, and compute the
Higgs branch of all the wreathed quivers that appear in Figure Let I" be a
subgroup of S;. We consider the wreathed quiver defined by this group acting on
the four U(1) nodes. This produces (when I' is non-trivial) a disconnected gauge
group, as follows directly from the definition . Disconnected gauge groups have
been considered in the context of the plethystic program in [133], where groups
were extended by outer automorphisms, following a formula of Wendt [134]. Here
the context is different but the techniques spelled out in [133] apply. In fact, the case
considered here is particularly easy to handle because the groups which are being
wreathed are all U(1) groups, therefore the Haar measure is not modified. We pick
fugacities z; (i = 1,2,3,4) for the U(1) factors and fugacity y for the U(2) factor
(after ungauging a diagonal U(1)). It follows that the Higgs branch Hilbert series is

obtained via a Molien-Weyl integral which is written explicitly as
1
S = 73 [ du P nta), (4.78)
’YEF ZiY

where the measure is

_dz dzp dzg dz (1—yP)dy
 2mizy 2mizs 2mizg 2mizy  2miy

du(z:,y) (4.79)

and

Ploptn) det (14— 1) (1 = #)(1 = P41 = 2y )
DY) et (14 — vtyD) det (14 — vty D) det (14 — ytyD~1) det (14 — yty—1 D)
(4.80)

with D the diagonal matrix Diag(z1, 22, 23, 24). The integral over the z; and y fu-
gacities are performed over the contours |z;| = |y| = 1. Note that makes it
manifest that v € ' can be considered as a discrete fugacity for the disconnected
gauge group U(1) . The integrals are readily evaluated for each of the 11
subgroups of Sy, and the resulting Hilbert series are presented in Figure [4.10]

We make a few comments on the results. First, the Hilbert series coincide with
those of Du Val singularities C?/.J, with J a finite subgroup of SU(2), of ADE type.
Specifically, four instances occur, namely J = Dy, Dg, Eg, E7, that can be identified
using the degrees of invariants of the corresponding groups. In particular, this shows

that the quaternionic dimension of the Higgs branches of all these quivers is 1.
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Gauge invariant operators As a check of the computations presented in Figure
we briefly show how the same results can be obtained from a counting of invari-
ant operators. We call A; and B; the scalars in the chiral multiplets transforming as
bifundamentals of U(2) and U(1);, for i = 1,2, 3,4, A; being a column vector and B;
being a row vectorﬂ For simplicity, we ungauge one of the U(1) groups, say U(1)y,
and study the action of the wreath product by a subgroup I' of S3 permuting the
three remaining U(1) gauge groups.

The F-term equations on U(1); are
Fori=1,2,3, B;A;=0. (4.81)

The F-term equations on the U(2) group are

4
> AB;=0. (4.82)
=1

Taking the trace of (4.82)) and combining with (4.81]) we obtain
ByAy = 0. (4.83)

Gauge invariants are paths in the quiver of the form Bjay, --- ;. A4 subject to the
relations above, using the shorthand notation «; = A;B;. An irreducible gauge
invariant is one that can not be written as a product of other non-trivial gauge
invariants, so it can be written Byay, -- -y, A4 where the indices can not take the

value 4. The F-term relations imply that
4
a;o; = 0 and Z a; =0. (4.84)
i=1

In particular an irreducible gauge invariant can not contain three «;’s or morem So
generators of the Higgs branch coordinate ring contain either one or two «;’s. The
generators containing one «; are X; = Byja; Ay (i = 1,2, 3) subjected to X7 + X5 +
X3 =0, and transform in the irreducible two-dimensional representations of S3. The
generators with two «;’s are built from Y;; = Byo;a;A4. Note that Y;; = —Y); and
that Yio = Yo3 = Y3;, which shows that the Yj; transform in the € representation of

S3. Finally, there is a relation between the two families, for instance in the form

X1X2X3 = B4a1a4a2a4a3A4 = B40410630620610[3A4 = —Y122 . (485)

9Their components are the ¢ and § of Sec.

0Consider for instance Byo;ajapAyq with @ # 4, j # k and i, j,k # 4. If i # k then one finds
B4aiajakA4 = —B4ai(ai + o + Oz4)OékA4 = Bioyouap Ay = (B4aiA4)(B4akA4). If ¢+ = k then
Biajajo; Ay = —Byogajoq Ay with | # 4, 7,4 and we're back in the previous case.
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r Generators Relation Space
. =X,
S1 th: y=X, ry(r+y) =2* | C*/ Dy
% 2=Yp
t4 .= Xl + X2
So B y=X1X, zy(x? — 4y) = 22 | C*/ Dy
0 2 =Yp(X; — Xy)
t°: =Y
Zg ts LYy = X12 + X1X2 + X22 —271'4 + 4y3 = 2’2 Cz/EG
2 2= (X; — X0)(2X, + Xo)(X; + 2X,)
B =X+ X1 X0+ X3
Sy |t y=Y3 dady — 2Ty® = 22 | C?/E;
tlg .= YiQ(Xl — XQ)(ZXl + XQ)(Xl + 2X2)

Figure 4.11: Generators and relations for operators on the Higgs branch of the affine
D, quiver wreathed by subgroups of Sj.

1 1 1
C(l 5 1) —) C(l 2 2 >:C<1 2 [1]252)
1

Figure 4.12: The Coulomb branch of the D4 quiver (left) is orbifolded by an S,
action into a Coulomb branch shared by two distinct quivers.

Putting all this together, we obtain the Hilbert series PE[2t* + ¢ — ¢!?] for the
affine Dy quiver (the X; have weight 4 while the Y;; have weight 6). To deal with
the wreathed quivers, we have to impose the additional gauge invariance under the
discrete factor I'. The spectrum of operators on the Higgs branch is a subset of the

one determined above for trivial . The results are gathered in Figure [4.11]

Comparison with adjoint matter Consider the case depicted in Fig. £.12] In
[100], T0OT] it was pointed out that the Coulomb branch of the quiver (b) is an orbifold
of the Coulomb branch of the quiver (a). We have argued that the Coulomb branch
of the wreathed quiver (c) is also that very same orbifold. Let’s look at the Higgs
branch of quiver (b).

The (quaternionic) dimension of the Higgs branch, when there is complete Hig-
gsing, which is the case here, is equal to the number of matter multiplets mi-

nus the number of gauge multiplets. The D, quiver therefore has dim Hp, =
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(4-2-1) = (3-1+422) = 1, as do all the wreathed quivers. The quiver (b) has a Higgs
W) = (2:2:14+2-242%) — (1+2-2%) = 3, of

which one dimension is a free factor H from the trivial factor in the adjoint loop. We

branch of quaternionic dimension dim H

can be more precise and compute the Hilbert series using the hyper-Kahler quotient,
finding
PE[2t]PE[3t* + 2t° — t'?] . (4.86)

The first term comes from a free contribution H which can be discarded. The second
term can be identified as the Hilbert series for an intersection of a Stodowy slice
and the nilpotent cone in the C3 algebra, namely the transverse slice between the
maximal orbit (of dimension 9) and the Oy ;2) orbit of dimension 7, see Table 12 in
[21] (labelled [210] therein). The global symmetry on this space is Sp(1) under which
the generators of the chiral ring transform in the [2] and the [1] representations,
respectively. This space makes a rare occurrence of a symplectic singularity which
is also a hypersurface in C°. In fact it has been suggested that all hypersurface
symplectic singularities of dimension 2 are intersections of Stodowy slices of the
nilpotent orbit Opy,_s12) and the nilpotent cone in C, [I35]. This family appears
in the context of trivertex theories where the rank of C, is interpreted as the genus
of a Riemann surface (A4; class S theory on a Riemann surface of genus n and one
puncture). See section 7.2 of [136] and equation (7.12) for the hypersurface equation.
The same family also appears as a Coulomb branch of the mirror quiver in the work
of [I37] where the identification as a transverse slice is made, as well as an explicit

form of the hypersurface equation. The Hasse diagram is

o2
Dn+1

°1 (4.87)
“le

In summary, the two quivers on the right of Figure [4.12|share the same Coulomb
branch, but only the wreathed quiver’s Higgs branch shares the original quiver’s

Higgs branch dimension, as one would expect from discrete gauging.

4.2.7 Mirror symmetry and discrete gauging

Many 3d N = 4 quiver theories admit a dual description as a theory whose Higgs
branch is the original’s Coulomb branch and vice versa; this property is known as
3d mirror symmetry [19, 59, 138 and is a consequence of S-duality for theories with
brane realisations. One should therefore expect to be able to find the mirror dual
of discrete gauging. As it turns out, it is already known.

Let us consider the paradigmatic case of quivers in Figure The Coulomb
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’ Coulomb Quiver ‘ Discretely Gauged H Higgs Quiver ‘ Discretely Gauged ‘

1
1 1 Os Oy
1 2
1 1 2 118 Ch C, O
C = min D, C = n.min Bgzm.%ﬁl H =min D, | H =n.min Bgz%ﬁ‘

Figure 4.13: Ilustration of the relation between i) discrete gauging’s effects on
the Coulomb branch and ii) discrete gauging’s effects on the Higgs branch of a
corresponding electric quiver.

branch of the quiver in the first column is the minimal nilpotent orbit of D,. Its dual
is depicted in the third column of the same figure; the symmetry of its Higgs branch is
the same as the symmetry on the flavor node. Each matter hypermultiplet is coupled
to a mass which can be viewed as a background vector multiplet. This vector can in
turn be gauged, turning the quiver into the one depicted in the fourth column; such
an operation was first reported as “the case O(1)” in [129]. The new gauge node
O(1) = Zy = S5 represents the discrete symmetry of the gauged vector. In this case
the gauge group is enlarged. We claim this is the mirror dual of the process covered
in the previous section. Somewhat confusingly, both procedures are called discrete
gauging'!| but they act differently. On the left quiver an automorphism is gauged;
on the right we gauge a background vector.

If the enhancement of the mirror is discrete, so must be the original’s. Moreover,
since discrete gauging of background vectors is a genuine action on quiver theories,

S0 is its mirror dual.

4.3 Quiver folding

The next discrete operation allows for a natural interpretation of non—simply laced
quivers, which were identified in [I1] through the use of the monopole formula. It
was already well established [48] that many AD E nilpotent orbits could be recovered
as Coulomb branches of unitary quiver theories and that there is a robust connec-
tion between choice of quiver and the resulting nilpotent orbit. In particular, the
quiver should be balanced and shaped like the desired symmetry algebra’s Dynkin
diagram. Consequently one might assume that quivers whose Coulomb branches
reproduce BC'F'G nilpotent orbits would resemble the non-simply laced BCFG

Dynkin diagrams. [11] conjectured a minimal modification to the monopole formula

1\We are not aware of a physics reference for discrete gauging on the Higgs branch but believe
it to be fairly well known among physicists interested in Higgs branches of quiver gauge theories.
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1 1 1
@—Q—Q—Q—E% E—&E@
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Figure 4.14: Quivers on the left fold into quivers on the right.

which reflected the enigmatic multiple link, checking against earlier tentative results
of [I39] on Fy and G5 spaces. Although the conjecture was highly successful in its
goal, giving support to the existence of non-simply laced quivers and allowing further
study [140], precise details of multiple links remained elusiveF_?]. They have made an
appearance in the study of little string theory [141] or gauge-vortex duality [142] and
W-algebras associated to them were studied in [I43]. A mathematical treatment of
folding and Coulomb branches of non-simply laced quivers was recently provided
in [84]. Some of the phenomena in [144] I45] can be reinterpreted as folding the
five-dimensional theories’ magnetic quivers [15].

In this section we show (using an alternative approach to [84]) that the multiple
link can be interpreted as the result of quiver folding; see Fig. for examples. We
first utilise abelianisation to show that Coulomb branches of As, 1 (D,y1) quivers
fold into spaces with C, (B,) symmetry and derive the effects of folding on the
monopole formula. We then reinterpret folding as an action on the quiver itself,
showing that it produces non-simply laced quivers; in particular, our analysis of the
monopole formula on examples reproduces the form in [I1], 84].

Note that the examples below focus on nilpotent orbit quivers only because they
are most easily studied using tools we have developed. We expect folding to be a
completely general operation. For example, the quiver of Section 4.1.2 in [102] folds
into the quiver in (7.1) of [I05] as can be guessed by mapping poy_; — p; for i < N
in the former’s HWG and comparing to the HWG of the latter quiver.

4.3.1 Action on the Coulomb branch

Although one can fold a quiver directly, the operation can also be performed on

a discretely gauged Coulomb branch. The prerequisites for folding and discrete

12 According to [11], Jan Troost suggested that quivers of this type might be understood as folded
simply laced quivers, an idea that ultimately finds validation in [84] and our results.
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gauging are identical: a quiver with an automorphism. We start yet again with the
example of a D, quiver in the bottom left of Fig. [4.14, Recall that in the
discretely gauged quiver’s operator €. 1y is defined as e(,0,1,0) + €(0,0,0,1) = ug +uy.
A space is folded by restricting it to the subspace fixed under the action of the
symmetry, which in this case generates the constraints u3 = uj as well as 3 = ¢4
and so on; we denote this space C and in general use hats to denote variables on
the folded space. Note that mass parameters must be set to identical values across
folded legs; sometimes this removes all independent mass parameters but one and,
as a result, even though the original space is mass-deformable, the folded space is

not.

As long as we stay on C there is no more need to track each individual wreathed

variable. To reduce to a minimal necessary set we introduce the folding map

F(ri) = "y (4.88)
F(x+y)=F(x)+ F(y) 4.89
Fex™y") = cF(z)" F(y)" (4.90)

where the multiplicity #; denotes the number of nodes that fold onto the same node
as node i, x and y are arbitrary operators, ¢ is a complex number and I = min,;{j :

7(j) = w(i)}. In particular, F(ud) = F(uj) = % As a result, F(é01)) = U3 =

€(0,0,1)-

The folding map has a simple interpretation. Abelianised variables of the initial,
unfolded quiver, partition into orbits of the automorphism. The folding map merely
sets every single variable in that orbit to the same value; for convenience, basic
abelianised variables are normalised by node multiplicity. In other words, the folded
Coulomb branch is a restricted subspace of the discretely gauged quiver’s Coulomb

branch.

While abelianised variables fold in a completely trivial manner, composite oper-

ators are more interesting. For example, let’s fold the operator in (4.20)):

€12 = F(Ep1,2) =
= F(€<0,1,1,1>) =

F(ug g uy)

N Z F(@za - <P3)F(802,a - <P4) N

a=1,2
P )
Ug qUs /4

2 (P20 — P3/2)7

a=1,2

(4.91)

ft a2

j : u2,au3

—A,)2
(12172 (2s027a 803)
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If the folded space is to retain the original’s hyper-Kéhler property, the symplec-
tic property in particular must be preserved and the Poisson brackets on the folded
space must close. In other words for any f,§ € C[C] we require {f,§} € C[C], ie.
{f, gr=m <{f, g}) It is enough to show that generators z;, of the Poisson algebra
satisfy this property:

{Tia i} = F(are) = F(@am.e) = 7 (F(2re)) = 7 ({Tia: 750}) (4.92)
where we restrict to the folding locus
Tia = Tr(i),a, VT € I C Aut Q. (4.93)

where I is the subgroup by whose action we fold.

So we have in our hands two pieces: a “folded” subspace (with its coordinate
ring) and a Poisson bracket on this space. If we assume that the complex structures
also properly restrict to the subspace, we have a new hyper-Kahler space to study.
What is it? What is its symmetry?

Now we re-establish contact with discrete gauging. For O; € C[C], and O; €

A

C[C]2, we have
k

and therefore the relations in particular hold on the automorphism’s fixed point,

which is the folded subspace:
{0:,0;} => ¢,/ On. (4.95)
k

Therefore, unless some folded O, identically vanish, the two algebras have identical
structure constants and are in fact isomorphic as Lie algebras. A simple proof in
appendix |B| shows that Oy, is not 0 everywhere on the folded space so we conclude
that folded spaces have the same continuous symmetries as their discretely gauged
counterparts.

In particular, a As,—1 (Dy,41) quiver’'s Coulomb branch folds into a C,, (B,)-
symmetric space of strictly lower dimension and the minimal nilpotent orbit of
D, folds into the minimal nilpotent orbit of Bs. Of course this space is just the
Coulomb branch of a non-simply laced quiver, and we claim this is no coincidence:
although we have so far only explored folding as an action on the Coulomb branch,
we conjecture it is in fact merely one facet of an action on the quiver theory and
that all non-simply laced quivers can be understood as folded simply laced quivers.

As was hinted in Section in some special cases a B3 non-simply laced

quiver, eg. the bottom right quiver in Fig. [4.14] can fold into G5 despite the lack
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of an obvious symmetry. There is one major difference however: multiplicities are
assigned in a more involved manner. As a prerequisite, the “short root” (i.e. third)
gauge node must have the same rank and number of flavors as the “vector root”
(i.e. first node). We can unfold the Bj quiver into a D, shape by simply reversing
the folding procedure. Let us denote the variables of that quiver’s Coulomb branch
e.g. gpf) *, with gpf * and gpiGQ the partially and fully folded counterparts. Then at the
D4y — (G5 folding locus the following holds:
O

ot =gt =t = = T = (4.96)

[\ [N}

So the Bj quiver can fold to G5 as if uy = 3 and u3 =

4.3.2 Monopole formula: examples

To show that folded quivers become non-simply laced, we compute two explicit

examples and conjecture that the pattern generalises.

min Az — min Cs

The first check will be done on quivers in Figure by folding two U(1) nodes.
Let HS? and HS be the Hilbert series of the initial and folded quivers, respec-
tively:

q.
HSA(t,x,y,z) _ . 1 5 Z t|‘J1|+|‘11_‘Y2‘+|‘I2_‘13|+“13|(;(;y)‘h (f) ’ ~92 (4‘97)
( _t) q1,92,43€7Z Y
1
HSC(t,$,Z) - (1——152)2 Z t|7’1|+\r1—2r2|$7’12r2 . (498)

r1,72€Z

The unrefined Hilbert series are:

1+¢%) (1+ 82+t

HS(¢,1,1,1) = ( T (4.99)
2 4
HSC(t,1,1) = Tt—t;;f (4.100)

Note the unusual fugacity y in HS? which is crucial in the following calculations.
By comparison with known Hilbert series, we find that the two Coulomb branches
are the (closures of the) minimal nilpotent orbits of Az and Cs.

We will now derive the action HS? — HS® in two steps.

At the level of bare monopole operators, many become duplicate. For example,

.t
(uf)?, ufug and (u3)? all fold to %. More generally, a bare monopole monomial in
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the A theory can be expressed (not necessarily uniquely) as a product of generators

Olh#lz,% = He(qi,qg,qgj (4'101>
where ¢; = >, ¢5. Note that |¢ — ¢5| € {0,1}. The S, symmetry exchanges
€lqi ging) < €l gingl) and acting with it on any number of operators in the product
produces a monopole in the Az theory which folds to the exact same monopole in
the C5 theory. “Flipping” a single operator in this way leaves ¢; and g3 unchanged
or changes both by +1 with opposite signs so that ¢; + ¢3 is preserved. Sequential
action on all the monopoles in the product produces Oy, 4, 4,- It follows that in this

chain of flips there is an operator Qg +4s g, 21tas OT Oartaztt g, 0031 depending on
2 b b 2 2 b 3 2

the parity of ¢; + g3. Since all operators in the chain fold to the same operator,

the C5 monopole formula better count precisely one of them. We will pick either

Oay+as g, 412z OF Oqy+agt1 g, 418371 (of which precisely one exists), which translates
2 b b 2 2 b b 2

to selecting only monopoles with ¢ = ¢3 or ¢ = ¢3 + 1, respectively.

To accomplish this we must extract only the terms constant and linear in vy,
as can be seen from : terms constant in y come from the charge sublattice
¢q1 = q3 while linear terms all satisfy ¢; = g3 + 1. To set up later generalisation we
further slightly modify the prescription to an equivalent form: we will extract every

operator at order ¢° and average over operators at order y and y~!.

The second step corrects for scalar dressing: one extraneous scalar field must
be removed since p; = p3 = %. We need only multiply the entire expression with
1 — t? to remove the newly duplicate U(1) dressing factor 1.

We conjecture that these two modifications are sufficient to represent the action

of folding on the Hilbert series.

To implement them, we multiply the (unsummed) monopole formula by the
kernel - (1 + % (y + i)) and and integrate around y = 0, picking up the desired

2wy

contributions by the residue theorem. Finally we multiply by the scalar factor
(1 —t?):

HSC(t, x, 2) = (1 — t?) f{ Ay (1 + % (y + 5)) HSA(t, 2,9, 2) (4.102)

2y

And indeed:

L2 d Y L @l o1 a2 +laz—asl+as| z)*®
RHS = 5(1_15) — y+-+2 Z laltla-alta—alHal (g o (2 e
‘11#12)‘]362 y
Z t|fI1|+\Q1*q2|+|tI2*tI3|+\tI3\leJrQSyth*q?ﬁthIz+

q1,92,93€Z
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%(1_752)2% dy Z t|tI1|+\!I1*Q2|+|CI2*(13|+\l13\xfI1+q3yq1*Q3+1Zq2+

271
q1,42,93€Z
a2 J 4y lg11+la1 a2+ lez—aa | +Hlas] a1 +as., @15 a2
(1—1t%) — Z t T By N
2Ty
q1,92,93€Z

— %(1_752)—2 Z D)2+ (r+1) [2=ra |+ |ra = (r1=1) /2[+[(r1 =1) /2] .r1 22 4
ro€Z,r1€(2Z+1)
%(1_#)-2 Z Hlri=1)/21+|(r1=1)/2=r2Hlra—(ri+1) /214 [(r1+1) /2] pr1 ez
ro€Z,r1€(2Z+1)
(1—t2)_2 Z t\r1/2|+|r1/2 ra|+|ra— r1/2|+\7‘1/2| 1,2
ro€Z,r1€(27Z)
- (1_152)—2 Z D /214 (r 1) 2= r2 [ lra = (ri=1) /204 (r1=1) /2] por1 vz
ro€Z,r1 €(2Z+1)

(1 _ t2>72 Z t‘?"1‘+|7’1727‘2| TlZT‘Q

ro€Z,r1 € (ZZ)

— E Zf|1”1|+|7“1 27| T2

r1,ro€Z

In particular note the appearance of 2 in |r; —2r5|, the novel feature in non-simply

laced quivers’ monopole formulas.

min Dy — min Go

We now look at the folding of three U(1) gauge nodes of the D, minimal nilpotent
orbit quiver. We again assign fugacities to the nodes: call z the fugacity for the U(2)
node, and zy,, z {2, x— the fugacities for the three U(1) nodes. This parametrisation
is chosen so that foldmg corresponds to an integration over the y;, which have an A,
symmetry. Note that this prescription generalises the previous example, where the

1

“folding fugacity” appeared as y and y~", which are related by an A; symmetry.

The folding equation becomes

dy:  dys
HS% (¢ = 1—t227{— HP4(t
( 73:72) ( ) 27_[_?;3/1 27Tiy2 f(y17y2) ( » Ly Y1, Y2, Z)

with
f(yl,y2):1+1 (y1+i+y2+i+%+ﬂ) )
3 Y Yoo Y1 Y
Note that this kernel is a natural generalization of the previous case f(y) =
1+ 1(y +y~'). We conjecture that the monopole formula of a quiver with n U(1)

legs folds by integration over the kernel

1
[ ) = 1+ o ) (4.103)
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Figure 4.15: Example of folding two “parallel” links which do not originate from
the same node. Note that folding does not introduce a multiple link in this case.

' is the character of the A,,_; fundamental representation.

where X?”’

The steps outlined above can be generalised to longer legs, larger gauge groups
and, presumably, to completely arbitrary legs. However, rather than undertaking
this task ourselves, we refer to [84] for a systematic look at the link between folding

and the modified monopole formula of [11].

4.3.3 Non-simply laced quivers

It is possible to generalise abelianisation, including the Poisson structure, directly
to non-simply laced framed quivers; the generalisation of the monopole formula was
already achieved in [II]. The input data are a list of gauge nodes with optional
fundamental matter and a connectivity matrix « defined precisely like the Cartan
matrix of a Dynkin diagram. One can always unfold the quiver @ into a simply
laced quiver (). Keeping with the term’s use in previous sections, the number of
nodes of ) which fold onto the i-th node of Q is called the multiplicity #; of node 1.

Each node still contributes three abelianised variables ﬁfu and ¢;, but the re-
lations are slightly modified. They can be derived by demanding consistency with
folding; recall that z;, = Z;,/#; on the subspace preserved by discrete action. For

simplicity we present them in the case of quivers with one multiple edge:

HwER‘*‘ (w7 5/#>gi(w)\wiya|
Uyl = = — == (4.104)
- Ha€@<aa @/#)'ai,a\

where R is defined as if the quiver were simply laced (ie. the multiple link were
replaced with one simple link), <§/ 4 denotes a vector of $ia/#i and g;(w) is an

auxiliary function defined as

|k;i|  if w connects the node 7 to node j,
gi(w) = (4.105)
1 otherwise

and k is the Cartan matrix of the non-simply laced quiver.
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The derivation of Poisson brackets is slightly more subtle. As a concrete example,
consider a quiver with nodes 1 to 4 (plus possibly others) such that 1 and 2 , resp.
3 and 4 are connected, and 3 and 4 fold onto 1 and 2, respectively (see Fig 4.15]).
Then

{9517 ﬁ’ii_} = {901 + ¥3, U’i’_ + u;}‘xlzm = ({9017 UT—} + {9037'”;_})}331:363 =

~

=@+ @3‘%22 =¢1 (4.106)

Similarly, and keeping to the same quiver for this example,

+,,+ Nt 2@4-/2
it Yy = Tyt e utut - ut e = 200ty = 2 ity _ ay /2 a3
{ay, a3 } = {ui +ug,uy +U4}|x§:mi {ul, ug } "‘012('01 ~ Rm—@l/Q— 25/2

(4.107)

Note that the factor of 2 comes from the two links which fold onto each other.

Now that the procedure is clear it readily generalises:

{Bia, a;.'fa} = ia;fa (4.108)
) o Hw€R<w’¢/#>gi(w)|wi,a‘

{05, = #i s (4.109)
Odia [Tocale, @/ F#) il
ft et
{aF,, 05} = £k i ba gb (4.110)

Tt Pial i — Qi H

S S

]
tially throwing away information about multiplicity of edges) and #;; is the link

where £ is a “simply laced” Cartan matrix defined as k7, = max(k;;, ~j;) (essen-
multiplicity of the edge between nodes ¢ and j defined as the number of its pre-
images in the unfolded quiver. Remember that just as in the case of abelianised

relations this form is appropriate for quivers with one multiple edge.

4.4 Examples

In this section we study several cases of nilpotent orbit quivers, ie. quiver theories
whose Coulomb branches are nilpotent orbits. Their chiral rings are generated
by moment maps, which we explicitly construct; recall that such moment maps
transform in the coadjoint representation coadj(g) ~ adj(g) of the Coulomb branch
symmetry. The chiral ring data is completed by providing a set of relations which
also form representations of the Coulomb branch symmetry. We discretely gauge
and fold such quivers and examine the resulting Coulomb branches in turn.

Most spaces encountered in this section are nilpotent orbits; their coordinate
rings are generated by a single coadjoint representation. But there are a few cases

which are not nilpotent orbits: their Coulomb branches are generated not only by
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Figure 4.16: A3 minimal nilpotent orbit and its discrete reductions.

coadj(g) but also by chiral ring elements in other representations of g. If the quiver
is balanced, for the examples studied in this section, we find that the remaining
generators also assemble into coadjoint (or sometimes trivial) representations and
the bulk of our techniques still applies. One such case appears in Sec. [£.4.2] The
resulting spaces are not as comprehensively tabulated as nilpotent orbits and we
generally have to turn to more varied sources to find their Hilbert series or highest

weight generating functions.

4.4.1 min A3z — (n.)min Cy

A-type quivers tend to have very simple moment maps which can be presented in
reasonably compact form, allowing us to present the action of discrete gauging and

folding.

The quivers we choose, as exhibited in Figure [1.16, also exhibit an interesting
pattern of complex mass deformation. As a general rule, all ¢; , abelian moduli and
M, , parameters only appear in the abelian algebra as differences and as a result
the moduli space is invariant under reparametrisations ¢;, — @iq + ¢, M;q —
M; ., + c. Since there are precisely two mass parameters, the moduli space relations
can be modified by terms proportional to M; — M3, ie. a complex mass deformation.
However both discrete gauging and folding remove one half of mass parameters by
forcing My = M3, which can in turn be set to 0 by the reparametrisation above. As

a result only the original space can be deformed by one triplet of mass parameters.
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Initial quiver

To remind the reader we reproduce abelianised relations restricting uii, p; for i =
1,2, 3:

uiuy = —(p1 — Mi)(p1 — pa) (4.111)
uyty = —(p2 — ¢1)(p2 — 1) (4.112)
uiuz = —(p3 — p2) (03 — Ms) (4.113)

The Coulomb branch is generated by

©1 — 3My+Ms ur uy Uy Uy Uy Ug
! 4 ! P12 (p1—p2)(v2—3)
+ _ My —Ms - __upug
Ny, = U1 A U2 (p2—¢3)
3 utud _ _
172 + M1 M3
T P12 Uy —p2 + Y3+ 7 Usg
i g ot oy 4 M
(p1—p2)(p2—p3) (p2—3) 3 4
(4.114)

and one can read its relations either from the HWG [20]

1
HWG(t, ;) = ——— 4.115
(t i) = 7= Tt (4.115)
or simply from the Joseph relations, which are obeyed by any minimal nilpotent

orbit:

1 3

t* ([101] + [000]) : N? = —§(M1 — M3)N + 1—6(M1 — M;)*1 (4.116)
/ / 1

t4[020] : E €a’b’[chg Né)] = —E(Ml - M3)2€abcd (4117)

a’ b

Discrete Gauging

The A3 moment map discretely gauges to the following expression:

1/~ - 1/me | o~ 1, @y iy iy a5 g i
5( 1+ @3) §<u1 + U ) 5(_9511752 9522*33) (flf%ﬂ%@jiﬁ?:)ﬁ
Ne. s(af +a7) —5(B1+ @3) + B2 Uy %(';f_% —=L)
- afaf afal ~ ~ - - e
’ %(—%1_;2 + %) Uy ~@a2+ 3(P1 + B3) 3 (g + 1)
aradad 1, afar adad 1/~4+ | ~+ 1 ~ <
(@1*9’152)2(4{323*@) 5(5511*52 o 4(322*;3) §(u1 T Uy ) §<_('01 o (‘03)
(4.118)

and the resulting space is expected to have quaternionic dimension 3 and exhibit Cs
symmetry. The next-to-minimal nilpotent orbit of Cs is a suitable candidate. Its

HWG reads [20]
1

(1 — pit?)(1 = p3t*)
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suggesting several relations:

t*([00] + [01]) : N* =0 (4.120)
t°[20] : rank(N) < 2 (4.121)

(Note that in our convention we multiply C,, matrices as ordinary matrices, ie.
without insertion of an e tensor.) The second of these relations can be written

equivalently as
/ / !
E ga/b/c/d/gadeNé) NCC Nccll — 0
bye,db ¢ d!

In other words, an explicit algebraic description of the Coulomb branch of the dis-

cretely gauged quiver is

{N € gl(4,C)|[N?* =0, rank(N) <2, N'J-—JN =0}. (4.122)

Folding

The folded moment map is similar:

o g

1. 1n= Uy Uy (a3 )*d,

= U e —— — L

2¥1 271 $1—2¢p2 (¢1—2¢2)?

1o+ _ 1z 5 o Uy Uy
Ng, = 281 291 P 2 (#1-262) (4.123)

Cy — ,a+,&+ .
L I aF —Pa+ 1o La=
122 2 2T 9¥l 2%
_ _(@)%ag i3 0 1ot _1la
(p1—2¢2)2 (P1-2¢2) 271 2

The Coulomb branch has dimension 2 and C5 symmetry, which agrees with the
minimal nilpotent orbit with HWG [20]

HWG(t, i) = ——= 4.124
(1) = =2 (1124)
This space satisfies slightly more stringent (Joseph) relations:
t*([00] + [01]) : N? =0 (4.125)
t4[02] : rank(N) < 1 (4.126)

The second of these relations can be written equivalently as N[‘;/Nf]' = 0. In other
words, an explicit algebraic description of the Coulomb branch of the folded quiver
is

{N € gl(4,C)|[N?* =0, rank(N)<1, N'J—-JN=0}. (4.127)
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4.4.2 min Dy, — Gy

(G5 is small yet non-trivial enough to serve as an excellent illustration of the tech-
niques studied in this section. Since it is only fourteen-dimensional, we provide the

complete folding prescription from both D, and Bs:

_ Ga Go Go Go Go Ga Ga Ga

Ga _ 1Dy _ B3
‘E‘:|:1322 - E:I:12234 - 'E:i:12232

G2 _ D4 _ B3
E:t132 - E:I:1234 - ‘E’:|:1232

Gy Dy Dy Dy Bg Bs
Ej:122 - _E:I:123 - E:t124 + E:I:234 - _E:I:123 + Ej3232

Effz = E£f2 - E£§3 - E£§4 = Efi’Q - Efg?,
ESt = B + B3 + BLf = B + BY3
ES3 = BL; = By

HE = H2Y + HY + HOp = HiY + H

G2 _ D4 _ B3
H:I:2 L2 T H:I:2

Recall that G5 is characterised as the subalgebra of B3 which preserves a partic-
ular rank 3 antisymmetric tensor ¢; for more details see Section [2.1.4

The goal of this subsection is to identify quivers whose Coulomb branches are
generated by operators in one Gy coadjoint representation [01]; such spaces are
necessarily nilpotent orbits. We also study one related space whose coordinate ring
is generated by coadjoint generators but is not a nilpotent orbit. The following
sections should be read alongside Figures and

Note that because the quiver has only flavor node of rank 1, the G5 spaces studied
below cannot be deformed by a complex mass.

We provide the first few symmetric products of the (co)adjoint representation

for reference:

Sym?[01] = [20] + [00] + [02] (4.128)
Sym?[01] = [30] + [21] + [01] + [10] + [03] (4.129)
Sym*[01] = [40] + [31] + [22] + [11] + 2[20] + [00] + 2[02] + [04] (4.130)
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Initial quiver

The next few examples share the quiver on the left of Figure as the common
starting point. Its Coulomb branch is the minimal nilpotent orbit of D, which
is parametrised by a coadjoint (antisymmetric) matrix M subject to the Joseph

relations

(]2000] 4 [0000]) #* : N* =0 (4.131)
([0020] 4 [0002])t* : N AN =0 (4.132)

We refer the reader to its treatment in [I] for more details.

Folding

The minimal nilpotent orbit of D, folds into the minimal nilpotent orbit of G5 whose
quiver is depicted in Figure under the label [01]. To verify this claim we can
look at the highest weight generating function of the minimal nilpotent orbit of G,
[20]

1

or recall that the Joseph relations tell us that the coadjoint generator is constrained

by the quadratic relation
([20] + [00]) t* : N? = 0. (4.134)

Direct computation shows that the relation is satisfied by N defined either by
folding the moment map of the D, minimal nilpotent orbit quiver or directly using

the non-simply laced prescription.

S; discrete gauging

The five-dimensional subregular orbit of (G5 is known to be the S3 quotient of the
minimal nilpotent orbit of D, [100] so it should be the Coulomb branch of the
appropriate Dy quiver after discrete gauging, see row [02] of Figure [£.17] One can
either symmetrise the D, moment map using the projector defined in or,
given the G Chevalley Serre basis {X;}, form the G moment map Ng, from its D,

counterpart Np, as
Na, = Y X; tr (Np,X).
i

The highest weight generating function is
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L+ gt ™
O = Tt = 20 (1 = 1201 = i3F)

U puot? (g + 13) E 4 (15 + popad + p15) 10+ (i + pragsl + papd + pio + pi5) 5+ ..

(4.135)

Two relations are needed this time:
[00]t* : trN? =0 (4.136)
[10]t° : NANAN =0 (4.137)

and both are satisfied by the coadjoint Ng,.

Mixed folding and S; gauging

Midway between the two previous examples lies a nilpotent orbit of dimension 4. It
is known [32] to be non-normal¥| and hence not expected to be the Coulomb branch
of any quiver since both simply and non-simply laced quivers are necessarily normal
[82, 84]. However we conjecture that it can be recovered by using a specific and
non-generic discrete operation on the minimal nilpotent orbit quiver of Bz, which
is itself four-dimensional. This would make our construction the first non-normal

Coulomb branch in the literature.

We first construct the moment map Np, of the underlying Bs quiver. The quiver
has no obvious automorphism so rather than using the projector form in (4.12f) we
define the Chevalley-Serre basis {X;} of Gy and project using the trick from the

previous quiver calculation:

Ne, = > X[ tr(Np, X)) (4.138)

We depict the conjectured quiver theory in Figure on row 10.

BAn irreducible affine variety is normal if its coordinate ring is an integrally closed domain
[148].
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The HWG of this orbit is given by[20][7]

1 — pft??

(1= pot?) (1 = pit*) (1 — put)

=1+ puot® + (g + p3) t*+ (1 + pipe + 13) 0+ (i + g + pips + pi3) 5+ ..
(4.141)

HWG(t) =

Compared to the subregular nilpotent orbit we find an extra relation at ¢® in the
[02] representation. The condition that N? is of rank at most 1 is of this type.

In total the moment map is expected to satisfy three relations:

[00]t* : tr(N?) =0 (4.142)
[10]t° : NANAN =0 (4.143)
[02]¢® : rank(N?) < 1 (4.144)

and indeed all are met by our coadjoint N¢,. The last relation (4.144]) can be written
as Zmn (Nam NooNen Npg — Nam NiaNen Nnp) = 0. We have checked analytically

that the three relations above form a complete set of relations.

Zs discrete gauging

Although elsewhere in the section we discretely gauge or fold S, quiver automor-
phisms, discrete gauging by a subset of .S,, is perfectly well defined. Here we consider
the Z3 discrete gauging of the D, quiver studied in this section. Its Coulomb branch

was previously investigated in [105] under the name C The plethystic logarithm

Df’)'
of its highest weight generating function was reported ad']

PL(t) = [01]¢*+([01]—[00])¢* — ([01]+[10]+[20]+[00] )° — ([01] +[10] — [02])¢*+ O ().
(4.145)
This space is not a nilpotent orbit. It is generated by two coadjoint matrices at

quadratic and quartic order in t respectively. The lower coadjoint matrix N is also

We can compare this expression with the HWG for the minimal Bs orbit, written in terms of
G2 fugacities, which reads [20]

1
HWG(t) = —1 24 (2 2) 4
© O ) (-l (2 o+ u2) € o (7 + pnpez + 113)

+ (uf + pipe + papd 4 p3) ° + (i + pipe + ping + paps + po) t° 4+ ... (4.139)

The difference between the two expressions is

2

ot
1 - i pat? 4 p ot + gt + ppst® + (4.140)
- M2

5Paper [105] also follows the opposite root convention to the present discussion.
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the moment map and looks precisely like the one obtained by S3 symmetric gauging.
Since Zz C S5, there are operators in this theory which are removed if the remaining

Sy C 53 symmetry is imposed. One of the simplest operators is

€lo) = ui (s — 3) +ui (1 — a) + ui (03 — 1) (4.146)

As its label suggests, é‘(‘10> is a t* operator which acts as the first simple root under
action of the moment map’s components. And just as one can “rotate” a simple root
into any other root by repeated action of the Lie bracket, it is possible to repeatedly
act with the Poisson bracket on é?10> to generate an entire t* adjoint representation’s
worth of operators which can be bundled together to form the second coadjoint

matrix R. For example:

éVA<101) = _{é(—IO)a {é<01>, éé(llm}} (4.147)

The plethystic logarithm suggests several relations between N and R but we find
it is not too helpful in this case. For example, its syzygies obscure several relations at
order t®. Accordingly, we opt for a different approach to identify the relations. [105]
identifies a non-simply laced quiver with the same Coulomb branch, which is itself
a folded version of the quiver in Figure 8 of [I31]; the latter paper reports matrix
relations. In general folded relations follow the form of the original quiver’s; indeed
they must as they are merely the original relations restricted to the folded subspace.
Accounting for several coincidences in Gy (eg N3 oc (trN?)N,{N,R} «x N A R)
and a different numerical factor in the last relation, we are left with the following

relations:

[00]¢* : trN? =0 (4.148)
[10]t° : NANAN =0 (4.149)
[01]t°: [N,R] =0 (4.150)
([20] + [00])t° : {N, R} =0 (4.151)
([20] + [00])t* : R* =0 (4.152)
021+ (V) P(v?) ! = 5—143;’351 (4.153)

We are able to verify all of them symbolically, but cannot guarantee that they form
a minimal set of relations as our current techniques run against a computational

limit.
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4.4.3 D5 — By

We close off by studying discrete gauging and folding on a family of quivers. Figures

[4.19] [4.20] and [4.21] present results of discrete gauging and folding on three Ds nilpo-

tent orbit quivers. The Hilbert series, HWGs and quivers were originally reported
in [20] 22].

Figures follow the same pattern. The first line shows the unitary mag-
netic quivers. The second line shows the equivalent orthosymplectic magnetic quiv-
ers (ie. with the same Coulomb branch); our discrete gauging appears to be the
unitary analogue of gauging an O(1) group in these quivers as studied in [22]. The
third line shows an electric quiver, by which we mean a classical quiver theory whose
Higgs branch is the Coulomb branch under study. Several quivers may share this
property; in particular the ones chosen here need not be the 3d mirrors. Note in
those electric quivers the appearance of an O = Zy gauge group in the middle col-
umn. The last lines show the Hasse diagrams, HWG and relations. The HWG use
By fugacities except in the first column where D5 fugacities are also used.

We draw the reader’s attention to several interesting properties.

Firstly, a D—type moment map in the Chevalley-Serre basis is too long to print
but both discrete gauging and folding have clear and discernible effects on it. The
original, unfolded moment map transforms in the coadjoint (antisymmetric) matrix
representation of s0(10, C). Upon either discrete operation, all components along the
last row and column vanish and the originally 10 x 10 matrix effectively becomes a
9 x 9 antisymmetric matrix padded by zeroes — and hence transforms in the coadjoint
representation of s0(9, C).

Secondly, in the case of the next-to-next-to-minimal nilpotent orbit we wreathe a
U(2) node rather than the simple and well understood case of U(1), demonstrating
that discrete gauging generalises to gauge ranks higher than 1. Finally, in the
same example, each wreathed U(2) node comes with one flavor so the triplet of
spaces exhibits interesting complex mass deformation behaviour analogous to that
of Section only the initial space can be deformed by complex mass, and
turning on two inequivalent mass parameters spoils the Sy symmetry required for
both discrete gauging and folding.

Note that notation of the form N A--- A N denotes antisymmetrisation over all
indices, or equivalently contraction with the appropriate Levi-Civita tensor.

In Figures [4.1944.21] we have colored the terms of the HWG which are charged

under the Z, action in violet.
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4.4.4 The C),, family

We end this section with a family of quivers labelled by an integer n > 4 whose
Coulomb branch global symmetry is E; for n = 4 and SU(2n) for n > 4; see
Figure 4.22] The S5 symmetry exchanging the two legs can be discretely gauged
and folded. After folding, the global symmetry is Sp(n). The resulting family of
quivers, appearing on the rightmost column in Figure [£.22] is called the C,, family.
As can be seen from the Hasse diagrams, both Coulomb branches are stratified into
n — 2 symplectic leaves. The quivers can then be interpreted as magnetic quivers for
the Higgs branch of rank n—3 SCFTs in four dimensions. For n = 4 one recovers the
E7 theory studied in [149] [150], and for n = 5 one of the rank-2 theories identified
in [151] 152].
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Chapter 5
Conclusion

The author hopes that this work can serve as an approachable introduction to several
recent methods in the study of 3d A/ = 4 Coulomb branches. It covered the necessary

background and introduced a certain kind of workflow for a typical calculation:

1. Calculate the Hilbert series and identify representations of generators and

relations under the Coulomb branch isometry.

2. Explicitly construct gauge-invariant monopole operators and scalar operators
out of abelianised variables and attempt to assemble them into the aforemen-

tioned generator representations.

3. Test gauge-invariant relations at the SCFT point and, if successful, turn on
complex mass parameters to identify SUSY-preserving deformations of the

Coulomb branch.

We built on several results of [78], particularly the explicit and physically in-
terpretable construction of the Coulomb branch moment map for many balanced
unitary quivers of type A. We were able to extend our understanding to a sub-
class of type D quivers. We also found two natural extensions to non-simply laced
quivers: quiver folding and wreathing.

While our examples only cover a narrow slice of available quiver theories we
believe the general workflow fully generalises to many (all?) 3d N = 4 theories
and that future practitioners will carry forward the methods used and in some cases
developed by the author. Several interesting and rich research problems are within
reach.

For example, increase in quiver height adds several new generators to the chiral
ring of type D quivers. It would be interesting to express them in terms of abelia-
nised variables and construct their gauge-invariant relations. A similar phenomenon
appears upon generalisation to quivers without a U(1) node and our methods could

provide a novel window into quiver subtractions of [52].
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We may also sacrifice balance. Quivers with one overbalanced node (excess
greater than 0) were recently identified as relevant to the vacuum structure of five-
dimensional supersymmetric theories. Such quivers’ chiral rings are generated by a
tensor in the coadjoint representation and additional tensors in another representa-
tion of the overall symmetry.

Finally, it should be possible to extend our methods to orthosymplectic quivers
but such a move would require a generalisation of the analysis in [78] along the lines
of [77]. We have carried out preliminary investigations and found that the moment
map is encoded differently than in the unitary case, as if adapted to a different

choice of basis of the symmetry algebra.
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Appendix A

U(2) with 4 flavors and abelianised

rings

The main text describes a two-stage method to explicitly construct the chiral ring:
first generate a set of abelianised operators and then, guided by representation-
theoretic data from the Hilbert series, select certain Weyl-invariant combinations to
form tensor generators of the ring and verify that they satisfy the correct relations.
The method does not require a deep dive into abelianisation and the precise relation
between C[Cupa] and C[C], so we leave such discussion out of the main body and
address some of the potential concerns in this appendix.

First, we set the stage. Starting with abelianised variables, the Poisson bracket
(2.198]) generates new elements of the abelianised ring which cannot be expressed
by adding and multiplying basic variables. The full abelianised ringl| C[Cape] is

constructed as the ring underlying the Poisson algebra generated by abelianised

variables ufa and ¢; , subject to relations (2.193)) and ([2.19642.198).

1We stress that this notion of the abelianised ring is a departure from that of [78], where it is
introduced in (4.9) (with minor notational differences) as

CIM2 = (CH{uF}, {pal, {(M;V) ™"} jeroots]/ (abelianised relations))wG : (A1)

In essence, this “abelianised” ring is the Weyl-invariant part of a ring generated by all abelianised
monopoles, scalar operators and all inverse masses (i.e. 1/(p, — ¢p)) modulo relations between
abelianised monopoles. The authors follow with clarification that this is emphatically not the
Coulomb branch chiral ring, since a) the inverse masses are not defined everywhere on it (i.e. when
©Ya = ¢»), and even if one restricts to the “discriminant locus” of the Coulomb branch (that is, the
points where ¢, # ¢3), b) this ring contains exrtra elements.

To see that the two “abelianised” rings C[M2P°!] and C[Capel] are inequivalent, take the theory
U(2) with 4 flavors (as in the remainder of this appendix). Then the element 1/(p1 — 2)? is
included in C[M2P°!] but absent from C[Capel]. (A comparison between C[M2Pe!] and C[Cape]Ve
may appear to be fairer, since both objects are Weyl-symmetric, but it makes no difference since
ClCabe1]¢ < C[Cape] implies that the element in question does not belong to the Weyl-invariant
ring C[Cape])"Ve either.)

We use C[C,pel] as an active computational precursor to the Coulomb branch chiral ring and
therefore reserve it the name abelianised ring despite any confusion it may cause when compared
to the similarly denoted ring in [78].
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In the interest of concreteness consider the case of a U(2) theory with 4 flavors.
Elements such as 1/(p1 — ¢2) (inverse masses of W-bosons) never appear in C[Capel

on their own. On the other hand, the abelianised relation

_ngig(%pl — M;)
(1 — p2)?

ufuy =

(A.2)

does contain an inverse mass as part of an expression. This is worrying because, as
Y9 — 1, this function diverges and so indicates that either the locus ¢; = @9 is not
in the Coulomb branch (a solution which should be rejected on physical grounds),
or else the function is not in the Coulomb branch chiral ring. The latter is correct:
every element of C|C] must be Weyl-invariant, and this one clearly is not. But that
only raises another worry. Consider the Weyl-invariant polynomial

w4+ udug = LG = M) TLi(ee — Mz) (A3)

(1 — p2)? (1 — pa)?

It also diverges as ps — 1. Any workable prescription for reducing C[C,pel] to C[C]
must exclude this polynomial from the ringﬂ

The author is aware of two candidate prescriptions. [78] suggest in their Section
6.3 that C|C| can be generated as a Poisson algebra by a certain small set of Weyl-
invariant operators, namely all single-node bare monopoles > ufa and single-node
elementary symmetric polynomials in ¢; 4, i.e. >, @ias D, <b Piapip ete. This
is borne out in all cases which we have studied in depth and which do not involve
monopole bubbling. In many cases an alternative method is available and we are able
to define the Coulomb branch chiral ring by directly specifying its generatorﬂ in the
abelianised formalism, with relations following directly from ([2.193)) as summarised
in Section [3.5 The two approaches have given identical results on every unitary

quiver which the author has studied.

First approach Consider first the construction in [78] which only uses ui + uj,
v1 + @2 and Y19 to generate the entire ring as a Poisson algebra. We wish to
construct uju; + uju;. There are only a few things one could try. Since the
Poisson bracket {-, -} has dimension —1, the action of {19, -} increases dimension
by 1 while {¢1 4+ ¢,-} and {uf + ui,-} preserve it. At the same time the space
of A = 2 operators is finite so successive use of {¢1 + @9, -} will only bring finitely
many new elements to consider. And we are only interested in operators of vanishing
topological charge.

Let’s start with (u; + ug)(u; + uy) which includes an extra contribution of

2The simple, but incorrect prescription C[C] = C[Cape1]”V¢ would fail it. We thank an anonymous
reviewer for bringing this to our attention.
3That is, generators of a ring, as opposed to a Poisson algebra.
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ufuy + ugul; it must be removed to create (A.3). There is nothing else left to do

without using the dimension-raising Poisson bracket:

{102, uf +uz } = uf 2 + uz 1 (A.4)
{uf s +ufor,uy +uy} = =97 — 05 — (uf +ug)(uy +uy) (A.5)

This ring element does not help and it does not take much work to convince oneself

that we have exhausted all non-trivial options, which implies the construction in
[78] is free of the problematic element ({A.3]).

Second approach We can also explicitly construct ring generators in represen-
tations of the moduli space symmetry. The Coulomb branch Hilbert series of this
theory reads

HS(t) = 1+ #*[2] + t*([4] + [2] + [0]) + O(#?)

with plethystic logarithm
PL(HS)(t) = t*[2] + t'[2] — t° — ¢*

implying that its chiral ring is generated by six generators forming two adjoint
representations [2] which we label N and R. This representation forces constraints
on any putative abelianised construction. For any XY € su(2), expressed as square

2 X 2 matrices,
{tr(NX),tr(NY)} = tr(N[X,Y]) (A.6)

and

{tr(NX), tr(RY)} = tr(R[X,Y)). (A7)

One can then use these constraints to find abelianised expressions of N and R. In

the massless case they are

N — Y1+ u; +uy
o\ Fuf - —
1 2 $1— P2
(as in [1]) and

ro (2 (] +ud) (e ) U s + Uy or
o + + 1(,42 2 + +\ (0 — - ’
Uy P+ Uz 1 5 (07 + 93 + (uf +uz)(uy +uy))

One can check that the Lie algebra homomorphisms (A.6) and (A.7]) are satisfied,
and further that this choice of N, consistent with previous work, fixes the choice of

R up to a scalar factor (assuming the positively charged monopole is of the form
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utp). One can also check that these two generators satisfy precisely the relations
predicted by the Coulomb branch Hilbert series.

Agreement with the Hilbert series licences us to claim that components of N and
R (two of which are redundant, for a total of 6 independent entries) generate C[C].
Observe that there is no way to generate eg. (uj)? + (uj)? from the generators
presented here. In fact the A = 2 subspace of C[C] is generated by i) quadratic
combinations of components of NV and ii) components of R. Notably, it is impossible

to construct the counter-example ((A.3]) with these building blocks.

Comparison between the two approaches It is interesting to compare the two
approaches to reducing the abelianised ring to C[C]: the new off-diagonal terms in
R appear as {¢1py, uF +ui} and diagonal terms are straightforwardly constructed
from 19 and components of N even without the use of a Poisson bracket.

In summary neither approach generates the divergent function . One can
therefore interpret the appearance of inverse masses in as a sign that we
were dealing with the wrong variables and relations. The correct variables are i)
elements of a certain Poisson algebra or ii) components of two coadjoint tensors,
which themselves satisfy several tensorial relations. In the latter case, abelianised
relations are crucial in deriving and testing the form of these coadjoint tensors, but
ultimately serve as a ladder to be thrown away once the tensors are obtained. As
mentioned above the two approaches agree on every unitary quiver of which the

author is aware.
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Appendix B

Folded Lie algebras are the same

as discretely gauged Lie algebras

As mentioned in the main text, the Lie algebra of the discretely gauged space is
given by
{@i; @J} = Z Cl-jkOk. (Bl)
k
for O; which form a basis of C[C],. In particular these operators vary across the

moduli space. Restricting to the folded subspace, we find

{@i; éj} = Z Cijk@k. (BQ)

k
This does not necessarily mean that the two Lie algebras are isomorphic as some of
the RHS terms could vanish if Oy vanishes identically. We will now prove that this

does not happen.

O is a non-constant symmetric function in variables attached to wreathed legs;
call them 7; where ¢ labels the leg. So we can rewrite the operator as f(#,...7,)
for some n. At the fixed point #; = Z, so the operator becomes f(Z,...,Z). Assume

it vanishes everywhere. Then

Vaf(Z,...,8) =Y Vaf(F,...3)| . (B.3)

175



However all the summands are identical under the restriction:

5 5 . f(fl,n-,fi‘i_gei,---,fn)_f<fl,---7fi,---7fn)
(vfif(xlv"'xn))j :lli% c
— lim f(fi—keei,...,fl,...,fn) —f(fz,,fl,fn)
o e—0 g
= (Va (T, ... 7)), (B-4)
( J:lf( 1 n))] fll — —»i
T, =17
f;'?ﬁl,z = _’J
SO
(Ve (@1, %0)); | = (Va f(@,. . 7)), | (B.5)
=% 2=
Then
Vaf(Z,...,7) =nVg f(T, .. .fn)|fj:m £ 0 (B.6)
unless Vz f(21, .. .fn)|fj:£ vanishes, i.e. f(¥,...Z,) is a constant, which contra-

dicts the assumption that O,, is non-constant. It follows that both the discretely
gauged and folded spaces have isomorphic Lie algebras and hence share the same

continuous symmetry.
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Appendix C

Computation of Hilbert series

with S, wreathing

The computation of the exact Hilbert series presented in Figure [4.8 can be done in
principle using (4.44). However it is often useful to massage this formula until a
more manageable form can be used in practice. In this appendix, we give the result
of such manipulations in the case of the quiver at hand. Derivations use simple

algebra and are not detailed here.
Using the notations of (4.48), but using the gauge group (4.55]), one can set

Mg = 0 and m,; = m, and the conformal dimension can be expressed in terms of
m = (Ma, My, Me, Mg, Me) (C.1)
as

2A(m) = |mg—mp|+|me—me|+|me—mg|+|me—me|+|mp|+|me|+|ma|+|me| —2|ma| -
(C.2)

One then computes the auxiliary sums

o0

Si= ) > {28 0m) (C.3)

ma=0 (my,mc,mq,me)ERange;

where Range; is defined in Figure [C.I] The exact value of the sums ¥; is straight-
forward to compute (note the absence of Casimir factors!) and is given in Figure
as well.

Let’s now pick a subgroup I' of Sy. For u € Z* we call O%(u) the orbit of u
under the action of Sy. This orbit can be written as a disjoint union of n(u) orbits

under I,

(1)
0% () = T] O (my) (C.4)
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i Range; 2
t6(4+16t2+18t4+13t6+4t8+t10)
(1-12)°(14¢2)°

1 mp < Me < Mg < Mk

o | M= <mg < M, #4(249¢2410¢4+916 43¢5+ 410)
my < Me < Mg = Me (1-2)°(1+422)°

3 B t4 (4476247414310 +4%)
my < Me = Mg < Me (17t2)5(1+t2)2

4 My =Me = Mg < Me 2 (2431244114260 +4°)
my < Me = Mg = Me (1-t2)*(1+£2)*

25t 4515 +6t5 421104412
(1—t2)*(1+12)°
(1—t+t2> (1+t+t2) (1+t4)
(1—t2)°(1+¢2)*

51 mp=me < Mg = Mk

6| mp=m.=mg=m,

Figure C.1: Definitions of the ranges involved in the sums (C.3), and exact values
of these sums. When there are two possible ranges, this means that the two choices
lead to the same sums.

where the p; € Z* are representatives of these orbits, (not uniquely!) determined
by the above equation. Using the notation (4.46|), that we recall here,

9 1 1
Pr(t ?M) = ‘F_lwz det (1 _ t2’y) ’ (C'5)

€r(p)
one can define the modified Casimir factor

n(p)

Pr(tsp) = 3 P(s ). (C.6)

The rationale behind this definition is that we have evaluated the sums ((C.3]) which
are adapted to the full group Sy, and the Casimir factors for the group I' have to be
collected accordingly. This being done, the Hilbert series for the Coulomb branch

of the wreathed quivers are simply

6

HSp(t) = ZPF(tZS 1) (C.7)

=1

where p; € Z* is any element satisfying the condition Range;. Using this formula, all
the Hilbert series of Figure are evaluated in a fraction of a second on a standard

computer.
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