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The equations that follow from kappa symmetry of the type II Green–Schwarz string are a certain 
deformation, by a Killing vector field K , of the type II supergravity equations. We analyze under what 
conditions solutions of these ‘generalized’ supergravity equations are trivial in the sense that they 
solve also the standard supergravity equations. We argue that for this to happen K must be null and 
satisfy dK = iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided 
by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the 
closely related homogenous Yang–Baxter sigma models. When one performs non-abelian T-duality of a 
string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to 
the trace of the structure constants. This is expected to lead to an anomaly but we show that when 
K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-
anomalous non-abelian T-duality.
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1. Introduction

It was shown in [1] that the equations for the target space 
fields which follow from the requirement of kappa symmetry of 
the type II Green–Schwarz superstring (or BRST invariance of the 
pure spinor string at the classical level1) are in fact not, as pre-
viously thought, the standard type II supergravity equations but 
rather a certain deformation of these by a Killing vector K . When 
K is set to zero the equations reduce to the standard supergrav-
ity equations. These generalized supergravity equations were first 
written down (in the bosonic sector) in [4] as the equations sat-
isfied by the target space fields [5] of the so-called η-deformed 
AdS5 × S5 superstring [6]. They were interpreted as the conditions 
for one-loop scale invariance of the string sigma model, while the 
conditions for one-loop Weyl invariance are stronger, namely the 
standard supergravity equations. It was also shown in [4] that so-
lutions of the generalized supergravity equations are related by 
T-duality, at the classical level in the sigma model ignoring in par-

E-mail address: wulff @physics .muni .cz.
1 It was claimed in [2] that one gets the standard supergravity equations but extra 

assumptions, such as an SL(2, R)-invariant formulation in the IIB case, were made 
there. See also [3].
https://doi.org/10.1016/j.physletb.2018.04.025
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
ticular the shift of the dilaton, along the isometry defined by K to 
solutions of standard supergravity.2

Here we will ask under what conditions it is possible for a so-
lution to the generalized supergravity equations with K �= 0 to also 
be a solution of the standard supergravity equations (without do-
ing T-duality). We will refer to such solutions as ‘trivial’ since for 
these the deformation of the supergravity equations by K becomes 
trivial. Naively it might seem that this should not be possible, 
however some explicit examples of such backgrounds are in fact 
known, a pp-wave example found in [8] (see also [9]) and, very 
recently, certain deformations of AdS3 × S3 × T 4 in [10]. These ex-
amples are closely related to so called homogeneous Yang–Baxter 
(YB) deformations of supercoset sigma models [11–13].

There is an interesting tension here with the standard expec-
tation from sigma model anomalies. This tension comes about as 
follows. In was suggested in [14], and demonstrated in several ex-
amples, that homogeneous YB deformations should be equivalent 
to non-abelian T-duality [15] on a centrally extended subalgebra 
(an important special case of this being so called TsT transforma-

2 When K is time-like one gets a solution of type II* rather than type II super-
gravity. When K is null one cannot carry out the T-duality directly. However, if there 
is a commuting null isometry, one can T-dualize in both null directions, which is 
equivalent to a time-like and a space-like T-duality, to get a solution of (type II*) 
supergravity, e.g. [7].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tions [16]).3 This was subsequently proven in [19] and a different 
perspective was also introduced – YB models are equivalent to first 
adding a topological term (a closed B-field defined by a Lie al-
gebra 2-cocycle) to the sigma model action and then performing 
non-abelian T-duality. The general construction of such deformed 
T-dual (DTD) models as applied to supercoset strings was worked 
out in [20]. It is known that the target space of YB sigma mod-
els in general solves the generalized supergravity equations (this 
follows since they can be formulated as Green–Schwarz strings) 
[21]. The Killing vector K turns out to be proportional to the trace 
of the structure constants of the subalgebra which was T-dualized 
on [20]. Therefore K vanishes precisely when this subalgebra is 
what is known as unimodular. In fact, since the work of [22,23], 
one expects a (mixed) anomaly for non-abelian T-duality on non-
unimodular algebras.

But if it is possible to have solutions of generalized supergravity 
with non-vanishing K , which nevertheless also solve the standard 
supergravity equations, the corresponding sigma models should be 
Weyl invariant and the anomaly should be absent. Therefore there 
should be exceptions to the naive expectation that non-abelian T-
duality on a non-unimodular algebra gives rise to an anomaly.

Here we will show that this is indeed the case and that the 
analysis based on the anomalous terms in the YB sigma model 
action agrees with an analysis based purely on the generalized 
supergravity equations. In particular we will argue that a trivial 
solution of the generalized supergravity equations should have K
null and satisfying dK = iK H with H = dB the NSNS three-form 
field strength. Similarly we will show that these conditions are also 
precisely what is needed for the anomalous terms in the YB sigma 
model action to go away.

We will also show that any symmetric pp-wave solution of 
the generalized supergravity equations is of this form with dK =
iK H = 0.

The outline of the rest of this note is as follows. First we re-
call the form of the generalized supergravity equations. We then 
discuss the simplest solutions, namely symmetric pp-wave spaces, 
and show that they typically have K �= 0 but also solve the stan-
dard supergravity equations. In section 4 we address the general 
question of when a solution to the generalized supergravity equa-
tions is trivial in the sense that it also solves the standard ones. 
The existence of such solutions is in tension with the expectations 
from non-abelian T-duality. We resolve this tension, in the con-
text of bosonic YB models, in section 5 by showing that in fact the 
anomalous terms go away in precisely these cases. We end with 
some conclusions.

2. Generalized type II supergravity equations

Here we will recall the generalized supergravity equations for 
the type IIB case. The type IIA equations can be written in an es-
sentially identical form and everything we say will apply equally, 
modulo trivial replacements, to the type IIA case. The field content 
consists of the metric gmn and the NSNS two-form B , with field 
strength H = dB , just like in standard supergravity, but instead of 
the dilaton there is a one-form X and the RR field strengths are 
replaced by n-form fields F (n) which are no longer (a priory) de-
fined in terms of potentials. In addition there is a (non-dynamical) 
Killing vector field K . These satisfy [4,1]4

3 Other, closely related, interpretations are e.g. [17,18].
4 We set all fermionic fields to zero. Our conventions for differential forms are 

as follows. We write an n-form as α = 1
n! ean ∧ · · · ∧ ea1 αa1 ···an and the exterior 

derivative acts from the right. The inner product on forms is defined as 〈α, β〉 =
1
n! αa1 ···an βa1 ···an and the norm |α|2 = 〈α, α〉. The Hodge dual is defined as
∇(a Kb) = 0 , dX + iK H = 0 , iK X = 0 , (2.1)

the generalized Einstein equation

Rab = −2∇(a Xb) + 1
2 〈ia H, ib H〉 + 1

2F
(1)
a F (1)

b

+ 1
2 〈iaF (3), ibF (3)〉 + 1

4 〈iaF (5), ibF (5)〉
− 1

4 (|F (1)|2 + |F (3)|2)ηab , (2.2)

the equations of motion for B and X

d ∗ H + 2X ∧ ∗H − 2 ∗ dK −F (1) ∧ ∗F (3) +F (3) ∧F (5) =0 ,

(2.3)

d ∗ X − 2|X |2 − 2|K |2 + 1
2 |H|2 − 1

2 |F (3)|2 − |F (1)|2 =0 ,

(2.4)

and the generalized RR equations of motion

∗d ∗F (1) − 〈X,F (1)〉 − 〈H,F (3)〉 = 0 ,

∗d ∗F (3) − i XF (3) + K ∧F (1) − ∗(H ∧F (5)) = 0 , (2.5)

with the five-form self-dual as usual, ∗F (5) = F (5) , and ‘Bianchi 
identities’

iKF (1) =0 , (2.6)

dF (1) + X ∧F (1) − iKF (3) =0 , (2.7)

dF (3) + X ∧F (3) − H ∧F (1) − iKF (5) =0 , (2.8)

dF (5) + X ∧F (5) − H ∧F (3) + ∗(K ∧F (3)) =0 . (2.9)

The equations of motion and Bianchi identities for the generalized 
RR field strengths can be compactly encoded in a single equation 
for the anti-symmetric 32 × 32 bispinor

Sαiβ j =
−

(
iσ 2γ a F (1)

a + 1
6σ 1γ abc F (3)

abc + 1
2·5! iσ

2γ abcde F (5)

abcde

)αiβ j

(2.10)

as

γ a∇aS − (Xa + σ 3 Ka)γ
aS

+ 1
8 Habcγ

aσ 3Sγ bc + 1
24 Habcγ

abcσ 3S = 0 . (2.11)

If K vanishes the second equation in (2.1) tells us that we 
can write X = dφ for some scalar field φ.5 It is then easy to see 
that the generalized supergravity equations reduce to the standard 
ones with φ being the dilaton. One can therefore think of these 
equations as a deformation of standard supergravity by the Killing 
vector field K .

It is interesting to ask whether there are solutions with K �= 0
which nevertheless solve also the standard supergravity equations. 
We will analyze the conditions for this to happen below. But first 
we will show that this indeed happens for the simplest class of 
solutions – symmetric pp-wave backgrounds.

∗α = 1

(10 − n)!n! ea10−n ∧ · · · ∧ ea1 εa1 ...a10−n
bn ···b1 αb1 ···bn ,

so that ∗2 = 1 and α ∧ ∗α = (−1)[n/2]|α|2e0 ∧ · · · ∧ e9 where ε0123456789 = 1. We 
have

∗(X ∧ ∗α) = (−1)ni X α , ∗d ∗ α = 1

(n − 1)! ebn−1 ∧ · · · ∧ eb1 ∇aαab1 ...bn−1 .

We also use the shorthand notation iaα = i∂a α = 1
(n−1)! ean ∧ · · · ∧ ea2 αaa2 ···an .

5 This may not be true globally but we will only be interested here in local prop-
erties of the generalized supergravity equations.
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3. Symmetric pp-wave solutions

Symmetric space solutions are particularly simple to analyze 
since, by definition, the (gauge-invariant) supergravity fields (in the 
present case X, H, F (n)) must be proportional to invariant forms 
and therefore all terms involving derivatives of these in the super-
gravity equations drop out and we are left with a set of algebraic 
equations to solve. Of the symmetric spaces the simplest are pp-
waves, or Cahen–Wallach spaces. A d-dimensional Cahen–Wallach 
space, C Wd , has metric

ds2 = 2dx+dx− + Aijx
i x j(dx−)2 + dxidxi , (3.1)

with Aij a non-degenerate symmetric bilinear form which can 
be taken to be diagonal A = diag(a1, . . . , ad−2). The only non-
vanishing component of the Ricci tensor is R−− = −tr A. The in-
variant forms are the constants (or volume form) together with 
ci1···in dx− ∧ dxi1 ∧ · · · ∧ dxin with ci1···in constant, e.g. [24].

We are then looking for solutions of the generalized supergrav-
ity equations of the form C Wd ×R

10−d . The analysis is very similar 
to the one performed in [25] for the standard type IIB case. Any 
invariant form consists of three pieces: the volume form on C Wd
wedged with some number of dxi (i = d − 1, ..., 8) from R10−d , 
a sum of other invariant forms on C Wd wedged with invariant 
forms on R10−d i.e. something of the form dx− ∧ · · · (without dx+) 
and finally an invariant form on R10−d . The norm of these are re-
spectively negative, null and positive and we will write accordingly 
e.g. F (n) = F (n)

− + F (n)
0 + F (n)

+ . It is not hard to see that the gen-
eralized Einstein equation (2.2) in the transverse C W -directions 
gives H− = F (n)

− = F (n)
+ = 0 so that |F (n)|2 = 0 (the LHS is zero 

and the RHS is a sum of negative terms). The components of 
the same equation in the Riemannian directions then imply that 
also H+ = 0 so that all fluxes are null. Since X is a one-form 
X− = 0 automatically and therefore |X |2 ≥ 0 and the X equation 
of motion (2.4) implies that K is either time-like or null. How-
ever, if K is time-like the remaining equations (e.g. iK H = 0) force 
H = F (n) = 0 but this is inconsistent with the (−−)-component 
of the generalized Einstein equation. We conclude that K is null, 
which implies that also X is null. From the remaining equations 
one finds iKF (n) = K ∧ F (n) = dK = iK H = 0 but it is easy to 
see that this, together with the fact that K is null, reduces the 
generalized supergravity equations to the standard ones (plus the 
decoupled Killing vector field K ).

We have shown that any symmetric pp-wave solution of the 
generalized supergravity equations is in fact also a solution of the 
standard supergravity equations. This explains why this happened 
in [8,9]. Next we turn to the general question of under what con-
ditions this happens.

4. Trivial solutions

We want to ask when solutions of the generalized supergravity 
equations are trivial, in the sense that they solve also the standard 
supergravity equations, even though K �= 0.

Assume first that iK H �= 0. Then we see from (2.1) that we 
cannot write X = dφ so there seems to be an obstruction to intro-
ducing the dilaton, which we need to make contact with standard 
supergravity. However, since all fields are isometric with respect to 
the isometry generated by K , it must be that B transforms under 
the isometry by a gauge transformation, i.e. LK B = d
(K ) , where 
LK = diK + iK d is the Lie derivative along K , for some one-form 

(K ) which depends on K . If we cancel this by a compensating 
B-field gauge transformation we have 0 = LK B = iK H + diK B and 
we can solve the equation for dX in (2.1) by taking
X = dφ + iK B . (4.1)

Now we observe that for g, B, φ to solve the standard supergrav-
ity equations it is of course necessary that φ, the would-be dilaton, 
be invariant under gauge transformations of the B-field. This is not 
generically true when we solve for X as above since X is invari-
ant (by definition) but iK B is not. Note that in solving for X we 
have partially gauge fixed the B-field gauge invariance by requir-
ing LK B = 0. Therefore a necessary condition to get a standard 
supergravity solution is that the gauge transformation of iK B must 
vanish for all transformations preserving the gauge condition, i.e.

iK d
 = 0 , ∀
 such that diK d
 = 0 . (4.2)

Next we note that we may take 
 = K since diK dK = dLK K = 0
(LK K = 0 is easily seen to follow from the fact that K is a 
Killing vector). Therefore we find the condition iK dK = 0 or equiv-
alently |K |2 = constant (the integral curves of K are therefore 
geodesics). In fact we can take a more general gauge parameter 

 = f K where f is any isometric function, iK df = 0. Then we 
find iK d
 = f iK dK − iK (df ∧ K ) = −df |K |2 = −d( f |K |2), and for 
this to vanish for general f we must have that K is null,

|K |2 = 0 . (4.3)

We will now argue that iK B ∝ K . If we assume that also the gen-
eralized RR field strengths F (n) solve the standard supergravity 
equations it follows from the generalized Einstein equation (2.2)
that iK B is Killing and from the e.o.m. for X (2.4) that it must 
then also be null for this equation to reduce to the correspond-
ing standard supergravity one (i.e. the same equation with K = 0). 
Since iK B is also orthogonal to the null vector K it must in fact 
be proportional to K , as claimed. It is perhaps not obvious that as-
suming that the generalized RR field strengths become directly the 
standard ones, without some K -dependent redefinitions, gives the 
most general possibility. However, we can still reach the same con-
clusion without this assumption as follows. Taking the trace of the 
generalized Einstein equation (2.2) and adding twice the e.o.m. for 
X (2.4) we get an equation which does not involve the RR fields. 
Comparing to the corresponding equation in standard supergravity 
we get the condition

∗d ∗ X ′ + e2φ |X ′|2 = 0 , (4.4)

where X ′ = e−2φ iK B . Integrating this equation we find that the in-
tegral of the normal component of X ′ over a surface equals the 
integral of e2φ |X ′|2 over the volume enclosed. This gives a com-
plicated non-local expression for X ′ which does not seem sensible, 
unless |X ′|2 = 0. Since X ′ is null and orthogonal to the null vector 
K it must again be proportional to K .

Using X = dφ + iK B (note that this implies that φ is isomet-
ric, iK dφ = 0), |K |2 = 0 and iK B = f K , with f and arbitrary iso-
metric function (as follows from d ∗ X ′ = 0), the X e.o.m. (2.4)
reduces to the standard equation of motion for the dilaton pro-
vided that 1

2 |F (3)|2 + |F (1)|2 reduces to the same expression in 
terms of RR field strengths F (n) = eφ[dC (n) + . . .]. Contracting the 
generalized Einstein equation (2.2) with K b we find that also 
2〈iaF (3), iKF (3)〉 + 〈iaF (5), iKF (5)〉 + |F (1)|2 Ka must reduce to the 
same with F (n) = eφ F (n) for any value of the index a. From this 
it is clear that we must take the generalized RR field strengths 
to reduce to the standard RR field strengths (this argument does 
not rule out some very special exceptions of course). The remain-
ing components of the generalized Einstein equation then forces f
to be a constant. The remaining equations now imply f 2 = 1 and 
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since the sign of K is irrelevant (a sign change of K , H, F (3) leaves 
all equations invariant) we find

X = dφ − K , |K |2 = 0 ,

dK = iK H , Kaγ
aS(1 + σ 3) = 0 , (4.5)

where the last equation for the RR field strengths is equivalent to

iKF (2n+1) = −K ∧F (2n−1) , n = 0,1,2 . (4.6)

In this derivation we assumed that iK H �= 0. Let’s now look at 
the case when iK H = 0 so that dX = 0 and we can directly write 
X = dφ. Taking the trace of the generalized Einstein equation plus 
twice the X e.o.m. again implies that K is null. Proceeding as 
above we find also that dK = 0 and the same conditions on the RR 
field strengths. We conclude that (except for possibly some very 
special cases) the conditions for a generalized supergravity solu-
tion to be also a standard supergravity solution is precisely (4.5). 
Note that the case when dK = 0, which is the case for the sym-
metric pp-waves discussed in the previous section, is somewhat 
trivial since in that case we can write K = du and therefore K can 
be removed by a shift of the dilaton φ → φ + u (an explicit exam-
ple can be found in appendix B of [8] and, in hindsight, also the 
pp-wave background discussed in [26]).

Note also that the condition iK B = −K , which we found, can 
also be written K m(gmn + Bmn) = 0 so that K is a null vector of 
the generalized metric g + B . The importance of this condition was 
noted in the example found very recently in [10], a generalization 
of a YB deformation of AdS3 × S3 × T 4 (to allow for non-zero H) 
with R = J01 ∧ (p0 + p1) (cf. [21]), which unlike the pp-waves has 
dK �= 0.

We now turn to a derivation of the same conditions from the 
vanishing of the non-abelian T-duality anomaly in the case of YB 
sigma models.

5. Anomaly for Yang–Baxter sigma models

As mentioned in the introduction there is some tension be-
tween the statement that we can have solutions with non-zero 
K which also solve the standard supergravity equations, i.e. they 
should define one-loop Weyl invariant sigma models, and the ex-
pectation from non-abelian T-duality that when K �= 0, i.e. the al-
gebra is non-unimodular, there should be an anomaly. Here we will 
resolve this tension by showing, on the example of bosonic homo-
geneous YB models, that in fact the anomaly goes away precisely 
when the conditions (4.5) are satisfied. Note that YB models are a 
special case of so-called DTD models, obtained by adding a closed 
B-field and performing non-abelian T-duality (or T-dualizing on a 
centrally extended subalgebra) [14,19,20]. We will work with this 
special case here since these models have been of some interest 
in the literature and since the expressions are somewhat simpler 
than the general non-abelian T-duality case. For these models we 
can also directly use the expressions for the target space fields de-
rived in [21]. Although, as we will see, the form of the background 
fields for these models does not actually allow for non-trivial solu-
tions of (4.5). It is clear however that the results will extend in a 
simple way to general DTD supercoset models and in particular to 
non-abelian T-duality of supercoset models since the calculations 
for these are essentially identical to the YB ones [20]. Note that 
in particular it should be straightforward to realize the examples 
found in [10] as DTD models by starting from the AdS3 × S3 × T 4

supercoset with non-zero H . In fact the result should be valid even 
when one does not start from a supercoset model.

The general target space geometry for YB sigma models was 
derived in [21]. Here we will only consider the bosonic case so 
we will set fermions and fermionic components of the R-matrix to 
zero (the geometry for this case can also be found in [27]). From 
appendix B of [21] we have the expression for the Killing vector 
K ,

K a = −η

2
K̂I J tr

(
[T I , RT J ]Adg(1 + Ad−1

h )P a
)

= −(1 + Adh)
a

b[ηR g]bc
c . (5.1)

Here η is the deformation parameter appearing together with the 
anti-symmetric matrix R defined on (a subalgebra of) the isometry 
algebra, e.g. g = so(2, 4) × so(6), and satisfying the classical Yang–
Baxter equation, [R X, RY ] − R([R X, Y ] + [X, RY ]) = 0 ∀X, Y ∈ g. 
The generators of g are denoted T I and K̂I J is the non-degenerate 
metric defined by the trace. The adjoint action by an element of 
the isometry group G is Adg X = g X g−1 and R g = Ad−1

g RAdg . The 
element h gives a local Lorentz-transformation and is defined in a 
certain way in terms of g and R , see [21] for further details. We 
can write K in a way that will be more useful for our purposes as

K = −ηnI tr
(

Ad−1
g T I R g[A(2)

+ + A(2)
− ]

)

= 1

2
nI tr

(
Ad−1

g T I [A+ − A−]
)

= 1

2
tr

(
ng[A+ − A−]) , (5.2)

or, in components,

Ka = η[(1 + Adh)R gng]a . (5.3)

Here we have defined nI = f̃ J
J I , the trace of the structure con-

stants for the subalgebra where R is defined (we have used the fact 
that R I J f K

I J = 2R K InI ). Note that nI = 0 if this subalgebra is uni-
modular. Here we are interested in the non-unimodular case where 
K is non-vanishing. We have also defined ng = Ad−1

g n, n = nI T I . 
The one-forms A± = O−1± (g−1dg) where O± = 1 ± 2ηR g P (2) and 
P (2) denotes the projection on the translational (or “coset”) gener-
ators Pa of g while P (0) projects on the Lorentz generators Jab . We 
have A(2)

+ = ea Pa with ea the vielbein of the generalized supergrav-

ity background and A(2)
− = Ad−1

h A(2)
+ the Lorentz-rotated vielbein 

[21]. We will need the square of K ,

|K |2 = −η2tr
(

ng R g P (2)(2 + Adh + Ad−1
h )R gng

)
. (5.4)

We will also need the expression for iK B . From [21] we have 
Bab = 2η[R g]ab and we get

iK B = eb K a Bab

= −2η2eb [R g P (2)(1 + Adh)R gng]b

= −2η2tr
(

A(2)
+ R g P (2)(1 + Adh)R gng

)

= 2η2tr
(

P (2)R g(A(2)
+ + A(2)

− )R gng

)

= ηtr
(

ng R g(A(2)
+ − A(2)

− )
)

= − 1
2 tr

(
ng[A+ + A− − 2g−1dg]) , (5.5)

where we have used the definition of A± .
We now turn to the question of the anomalous terms in the 

YB sigma model action. These follow from those for non-abelian 
T-duality by carrying out the field redefinition which relates these 
to the YB model [19]. This field redefinition is complicated but 
it plays no role for the present discussion. The anomalous terms 
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come from an extra term in the first order sigma model action 
which is the first step in non-abelian T-duality. This term is [23], 
following the notation of [14],

Lnon−local = α′σnI∂
i A I

i , (5.6)

and comes from the Jacobian for the change of variables g−1dg →
A in the path integral. Note that the conformal factor σ =
∂−2√g R(2) is non-local in the worldsheet metric. Note also the 
α′ signifying that this is a one-loop effect. It is now a simple mat-
ter to carry out the non-abelian T-duality (i.e. integrate out A), 
with this term included, and then the field redefinitions leading 
to the YB model following the steps in [20]. One finds that the 
YB model Lagrangian including the non-local anomaly terms takes 
the form (we drop the dilaton term since it is not needed for the 
present analysis)6

L = − η(γ i j + εi j)tr
[(

P (2)(g−1∂i g) + α′ng∂iσ
)

×O−1+ R g

(
P (2)(g−1∂ j g) + α′ng∂ jσ

)]

+ 1
2 (γ i j + εi j)tr

[
(g−1∂i g)P (2)(g−1∂ j g)

]
. (5.7)

Here we have used the fact that n is invariant under conjugation 
by an element of the subgroup where R is defined. Let us look 
at the terms linear in n first. Using A± = O−1± (g−1dg) and O± =
1 ± 2ηR g P (2) they can be written

Ln = α′

2
γ i j∂iσ tr

[
ng(A+ j + A− j − 2g−1∂ j g)

]

+ α′

2
εi j∂iσ tr

[
ng(A+ j − A− j)

]
. (5.8)

Using the expression for K and iK B in (5.2) and (5.5) this can be 
written, using for simplicity worldsheet form notation with pull-
backs to the worldsheet being understood and dropping the overall 
factor of α′ , as

−dσ ∧∗iK B +dσ ∧ K ∼ −dσ ∧∗(iK B + K )+σd∗ K +σdK , (5.9)

where in the second step we added and subtracted the same term 
and dropped total derivatives. Now

d ∗ K = ∇ ∗ ea Ka + ∗ea ∧ eb ∇b Ka , (5.10)

but the last term vanishes by the Killing vector equation. Finally 
we have, adding and subtracting σ iK H ,

Ln ∼ −dσ ∧ ∗(iK B + K ) + σ(∇ ∗ ea Ka + iK H) + σ(dK − iK H) .

(5.11)

The second term is precisely σ times the equation of motion of the 
string sigma model projected along K . It can therefore be removed 
by a, albeit non-local, field redefinition. In fact, forgetting about 
higher order terms in α′ , this field redefinition is simply an isom-
etry shift Xm → Xm + α′σ K m (equivalently the term in question 
is proportional to the divergence of the isometry Noether current 
J = K − ∗iK B , e.g. [29]). One might worry that such a shift, being 
non-local, would not be allowed. However, the non-locality here 
is only in the worlsheet metric and not in the dynamical fields 
Xm themselves and furthermore, being a simple shift, this change 
of variables does not lead to a non-trivial Jacobian from the path 

6 For an attempt to derive (some of) the generalized supergravity equations by 
varying with respect to σ see [28].
integral measure. Another justification for dropping these terms 
is that, given our earlier analysis of the generalized supergravity 
equations, this leads to a sigma model whose target space solves 
the standard supergravity equations and which is therefore Weyl 
invariant and non-anomalous. The remaining terms in (5.11) van-
ish precisely when the conditions (4.5) are satisfied which is what 
we wanted to show.

Although they are higher order in α′ let us also consider the 
n2-terms in (5.7). They are

Ln2 = − α′ 2ηγ i j∂iσ∂ jσ tr
(

ngO−1+ R gng

)

= −α′ 2ηγ i j∂iσ∂ jσ tr
(

ng[O−1+ − 1]R gng

)

=2α′ 2η2γ i j∂iσ∂ jσ tr
(

ng R g P (2)O−1+ R gng

)

= α′ 2η2γ i j∂iσ∂ jσ tr
(

ng R g P (2)[1 + Adh]R gng

)
= − 1

2α′ 2γ i j∂iσ∂ jσ |K |2 , (5.12)

where in the last step we used (5.4). Again this vanishes precisely 
when K is null in accordance with (4.5). This resolves the apparent 
tension between the fact that we have a supergravity solution with 
K �= 0, which should be non-anomalous, on the one hand, and the 
expectation from non-abelian T-duality that K �= 0 should imply 
an anomaly on the other, by showing that this expectation is too 
naive and there can be special cases where the anomalous terms 
cancel in a non-trivial way.

Unfortunately, for the standard (bosonic) YB sigma models con-
sidered here, obtained by starting with a coset sigma model with-
out WZ term, it is not hard to see that the condition K + iK B = 0
forces [ng R g]a = 0 which actually implies that K vanishes. There-
fore the Weyl invariant YB models are precisely the unimodular 
ones of [21]. The anomaly analysis here should however apply 
more generally, with only minor modifications, to all models con-
structed using non-abelian T-duality, in particular, as already men-
tioned, to the examples of [10] where K is not forced to vanish. 
It would be interesting to find in which classes of models one can 
avoid the anomaly in this way.

6. Conclusion

We have shown that the generalized supergravity equations, 
which follow from kappa symmetry of the Green–Schwarz super-
string (or one-loop scale invariance), can have ‘trivial’ solutions in 
the sense that they solve also the standard supergravity equations. 
We have argued that this happens precisely when the conditions 
in (4.5) are satisfied, in particular the Killing vector K should be 
null. All symmetric pp-wave solutions are in fact of this type as we 
have seen.7 The tension with the expectation from non-abelian T-
duality that K �= 0, which corresponds to non-abelian T-duality on 
a non-unimodular algebra, should be anomalous was resolved, in 
the specific context of bosonic YB models, by showing that in fact, 
upon a non-local field redefinition, the anomalous terms cancel for 
these backgrounds. It would be nice to find an interpretation for 
this non-local field redefinition.

In the case of standard (bosonic) YB models, one finds that the 
remaining conditions on K do not have any non-trivial solutions 
and therefore this class of models does not seem to realize the 
possibility of canceling the anomaly in a non-trivial way. The ex-
tension to general non-abelian T-duality, or more generally DTD 

7 One could also obtain such solutions by starting with a generalized supergrav-
ity solution and taking a boosted limit where K becomes null, e.g. [30]. I thank 
A. Tseytlin for this comment.
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models [19], and in particular the interesting examples of [10], 
should be straight-forward however and one should be able to re-
cover also the conditions on the RR fields (4.6) from the analysis 
of the anomaly. Perhaps this analysis can also be extended to the 
case of Poisson-Lie T-duality, cf. [31,32]. It would be interesting to 
find what is needed in order to have non-trivial solutions of this 
form.

Another related point, which we have not addressed so far, is 
what happens to the (local) terms in the sigma model action that 
depend on K . These appear first at the quartic order in fermions, 
as is easily seen from [33], in light of the generalized supergrav-
ity constraints in [1]. In fact since K is a null isometry it is natural 
to use a kappa symmetry gauge fixing adapted to this isometry, 
Kaγ

aθ = 0, and in this gauge it is not hard to show that the terms 
involving K go away leaving us with the standard Green–Schwarz 
action. Even without this kappa symmetry gauge fixing our analy-
sis guarantees that it must be possible to remove these terms by a 
field redefinition in the non-anomalous cases.

We leave the question of whether there is any deeper signifi-
cance to these backgrounds for the future.

Acknowledgements

It is a pleasure to thank Riccardo Borsato, Ben Hoare and Stijn 
van Tongeren for interesting discussions related to this topic, and 
Arkady Tseytlin for useful discussions and helpful comments on a 
draft of this note.

References

[1] L. Wulff, A.A. Tseytlin, Kappa-symmetry of superstring sigma model and gen-
eralized 10d supergravity equations, J. High Energy Phys. 1606 (2016) 174, 
arXiv:1605 .04884.

[2] N. Berkovits, P.S. Howe, Ten-dimensional supergravity constraints from the pure 
spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75, arXiv:hep -
th /0112160.

[3] A. Mikhailov, Cornering the unphysical vertex, J. High Energy Phys. 1211 (2012) 
082, arXiv:1203 .0677.

[4] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban, A.A. Tseytlin, Scale invariance of the 
η-deformed AdS5 × S5 superstring, T-duality and modified type II equations, 
Nucl. Phys. B 903 (2016) 262, arXiv:1511.05795.

[5] G. Arutyunov, R. Borsato, S. Frolov, Puzzles of η-deformed AdS5× S5, J. High 
Energy Phys. 1512 (2015) 049, arXiv:1507.04239.

[6] F. Delduc, M. Magro, B. Vicedo, An integrable deformation of the AdS5×S5 su-
perstring action, Phys. Rev. Lett. 112 (2014) 051601, arXiv:1309 .5850.

[7] D. Orlando, S. Reffert, J.-i. Sakamoto, K. Yoshida, Generalized type IIB supergrav-
ity equations and non-Abelian classical r-matrices, J. Phys. A 49 (2016) 445403, 
arXiv:1607.00795.
[8] B. Hoare, S.J. van Tongeren, On jordanian deformations of AdS5 and supergrav-
ity, J. Phys. A 49 (2016) 434006, arXiv:1605 .03554.

[9] D. Roychowdhury, On pp wave limit for η deformed superstrings, arXiv:1801.
07680.

[10] J.-i. Sakamoto, Y. Sakatani, Local β-deformations and Yang–Baxter sigma model, 
arXiv:1803 .05903.

[11] C. Klimcik, Yang–Baxter sigma models and dS/AdS T duality, J. High Energy 
Phys. 0212 (2002) 051, arXiv:hep -th /0210095.

[12] C. Klimcik, On integrability of the Yang–Baxter sigma-model, J. Math. Phys. 50 
(2009) 043508, arXiv:0802 .3518.

[13] I. Kawaguchi, T. Matsumoto, K. Yoshida, Jordanian deformations of the AdS5 ×
S5 superstring, J. High Energy Phys. 1404 (2014) 153, arXiv:1401.4855.

[14] B. Hoare, A.A. Tseytlin, Homogeneous Yang–Baxter deformations as non-abelian 
duals of the AdS5 sigma-model, J. Phys. A 49 (2016) 494001, arXiv:1609 .02550.

[15] X.C. de la Ossa, F. Quevedo, Duality symmetries from nonAbelian isometries in 
string theory, Nucl. Phys. B 403 (1993) 377, arXiv:hep -th /9210021.

[16] D. Osten, S.J. van Tongeren, Abelian Yang–Baxter deformations and TsT trans-
formations, Nucl. Phys. B 915 (2017) 184, arXiv:1608 .08504.

[17] T. Araujo, I. Bakhmatov, E. Colgáin, J. Sakamoto, M.M. Sheikh-Jabbari, K. 
Yoshida, Yang–Baxter σ -models, conformal twists, and noncommutative Yang–
Mills theory, Phys. Rev. D 95 (2017) 105006, arXiv:1702 .02861.

[18] J.-i. Sakamoto, Y. Sakatani, K. Yoshida, Homogeneous Yang–Baxter deformations 
as generalized diffeomorphisms, J. Phys. A 50 (2017) 415401, arXiv:1705 .07116.

[19] R. Borsato, L. Wulff, Integrable deformations of T -dual σ models, Phys. Rev. 
Lett. 117 (2016) 251602, arXiv:1609 .09834.

[20] R. Borsato, L. Wulff, On non-abelian T-duality and deformations of supercoset 
string sigma-models, J. High Energy Phys. 1710 (2017) 024, arXiv:1706 .10169.

[21] R. Borsato, L. Wulff, Target space supergeometry of η and λ-deformed strings, 
J. High Energy Phys. 1610 (2016) 045, arXiv:1608 .03570.

[22] E. Alvarez, L. Alvarez-Gaume, Y. Lozano, On nonAbelian duality, Nucl. Phys. B 
424 (1994) 155, arXiv:hep -th /9403155.

[23] S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer, G. Veneziano, Remarks on 
nonAbelian duality, Nucl. Phys. B 435 (1995) 147, arXiv:hep -th /9409011.

[24] J. Figueroa-O’Farrill, Symmetric M-theory backgrounds, Cent. Eur. J. Phys. 11 
(2013) 1, arXiv:1112 .4967.

[25] J. Figueroa-O’Farrill, N. Hustler, Symmetric backgrounds of type IIB supergrav-
ity, Class. Quantum Gravity 30 (2013) 045008, arXiv:1209 .4884.

[26] B. Hoare, R. Roiban, A. Tseytlin, On deformations of AdSn×Sn supercosets, 
J. High Energy Phys. 1406 (2014) 002, arXiv:1403 .5517.

[27] H. Kyono, K. Yoshida, Supercoset construction of Yang–Baxter deformed 
AdS5×S5 backgrounds, PTEP (2016) 083B03, arXiv:1605 .02519, 2016.

[28] M. Hong, Y. Kim, E. Ó Colgáin, On non-Abelian T-duality for non-semisimple 
groups, arXiv:1801.09567.

[29] L. Wulff, Superisometries and integrability of superstrings, J. High Energy Phys. 
1405 (2014) 115, arXiv:1402 .3122.

[30] K. Sfetsos, A.A. Tseytlin, Four-dimensional plane wave string solutions with 
coset CFT description, Nucl. Phys. B 427 (1994) 245, arXiv:hep -th /9404063.

[31] B. Hoare, F.K. Seibold, Poisson–Lie duals of the η deformed symmetric space 
sigma model, J. High Energy Phys. 1711 (2017) 014, arXiv:1709 .01448.

[32] D. Lust, D. Osten, Generalised fluxes, Yang–Baxter deformations and the O (d, d)

structure of non-abelian T-duality, arXiv:1803 .03971.
[33] L. Wulff, The type II superstring to order θ4, J. High Energy Phys. 1307 (2013) 

123, arXiv:1304 .6422.

http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A32303136746A75s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A32303136746A75s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A32303136746A75s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4265726B6F766974733A323030317565s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4265726B6F766974733A323030317565s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4265726B6F766974733A323030317565s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4D696B6861696C6F763A323031326964s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4D696B6861696C6F763A323031326964s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4172757479756E6F763A323031356D716As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4172757479756E6F763A323031356D716As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4172757479756E6F763A323031356D716As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4172757479756E6F763A32303135717661s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4172757479756E6F763A32303135717661s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib44656C6475633A32303133717261s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib44656C6475633A32303133717261s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4F726C616E646F3A32303136717175s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4F726C616E646F3A32303136717175s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4F726C616E646F3A32303136717175s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303136687768s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303136687768s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib526F7963686F7764687572793A3230313871737As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib526F7963686F7764687572793A3230313871737As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53616B616D6F746F3A323031386B7273s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53616B616D6F746F3A323031386B7273s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B6C696D63696B3A323030327A6As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B6C696D63696B3A323030327A6As1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B6C696D63696B3A323030386571s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B6C696D63696B3A323030386571s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B61776167756368693A32303134717761s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B61776167756368693A32303134717761s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A3230313677736Bs1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A3230313677736Bs1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib64656C614F7373613A31393932766369s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib64656C614F7373613A31393932766369s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4F7374656E3A32303136647666s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4F7374656E3A32303136647666s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib417261756A6F3A323031376A6B62s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib417261756A6F3A323031376A6B62s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib417261756A6F3A323031376A6B62s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53616B616D6F746F3A32303137637075s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53616B616D6F746F3A32303137637075s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A32303136706173s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A32303136706173s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A32303137717378s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A32303137717378s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A323031366F7365s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib426F727361746F3A323031366F7365s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib416C766172657A3A313939346E70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib416C766172657A3A313939346E70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib456C69747A75723A313939347269s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib456C69747A75723A313939347269s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4669677565726F612D4F46617272696C6C3A32303131746E70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4669677565726F612D4F46617272696C6C3A32303131746E70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4669677565726F612D4F46617272696C6C3A32303132776878s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4669677565726F612D4F46617272696C6C3A32303132776878s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303134706E61s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303134706E61s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B796F6E6F3A323031366A7179s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4B796F6E6F3A323031366A7179s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6E673A32303138746C70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6E673A32303138746C70s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A323031346B6A61s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A323031346B6A61s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53666574736F733A313939346663s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib53666574736F733A313939346663s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303137756B71s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib486F6172653A32303137756B71s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4C7573743A323031386A7378s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib4C7573743A323031386A7378s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A323031336B6761s1
http://refhub.elsevier.com/S0370-2693(18)30309-5/bib57756C66663A323031336B6761s1

	Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly
	1 Introduction
	2 Generalized type II supergravity equations
	3 Symmetric pp-wave solutions
	4 Trivial solutions
	5 Anomaly for Yang-Baxter sigma models
	6 Conclusion
	Acknowledgements
	References


