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The Hénon–Heiles system in the general form has been considered. In two nonintegrable cases with

the help of the Painlevé test new special solutions have been found as Laurent series, depending on three

parameters. The obtained series converge in some ring. One of parameters determines a location of the

singularity point, other parameters determine coefficients of series. For some values of these parameters the

obtained Laurent series coincide with the Laurent series of the known exact solutions. It is established, that

in other nonintegrable cases the similar special solutions do not exist.

1. The Painlevé property and integrability

A Hamiltonian system in a 2s–dimensional phase space is called completely integrable (Liouville
integrable) if it possesses s independent integrals which commute with respect to the associated
Poisson bracket. When this is the case, the equations of motion are (in principal, at least) separable
and solutions can be obtained by the method of quadratures.

When we study some mechanical or field theory problem, we imply that time and space coor-
dinates are real, whereas the integrability of motion equations is connected with the behavior of
their solutions as functions of complex time and (in the case of the field theory) complex spatial
coordinates.

S.V. Kovalevskaya was the first, who proposed [1] to consider time as a complex variable and to
demand that solutions of the motion equations have to be single-valued, meromorphic functions on
the whole complex (time) plane. This idea gave a remarkable result: S.V. Kovalevskaya discovered
a new integrable case (nowadays known as the Kovalevskaya’s case) for the motion of a heavy
rigid body about a fixed point [1] (see also [2, 3]). The work of S.V. Kovalevskaya has shown the
importance of application of the analytical theory of differential equations to physical problems. The
essential stage of development of this theory was a classification of ordinary differential equations
(ODE’s) in order of types of singularities of their solutions. This classification has been made by
P. Painlevé.

Let us formulate the Painlevé property for ODE’s. Solutions of a system of ODE’s are regarded
as analytic functions, may be with isolated singular points [4, 5]. A singular point of a solution is said
critical (as opposed to noncritical) if the solution is multivalued (single-valued) in its neighborhood
and movable if its location depends on initial conditions2. The general solution of an ODE of order
N is the set of all solutions mentioned in the existence theorem of Cauchy, i.e. determined by the
initial values. It depends on N arbitrary independent constants. A special (particular) solution
is any solution obtained from the general solution by giving values to the arbitrary constants. A

1E-mail address: svernov@theory.sinp.msu.ru
2Solutions of a system with a time-independent Hamiltonian can have only movable singularities.
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singular solution is any solution which is not special, i.e. which does not belong to the general
solution.

Definition. A system of ODE’s has the Painlevé property if its general solution has no
movable critical singular point [6, 7].

If a system has not the Painlevé property, but, after some change of variables, the obtained
system possesses this property, then the initial system is said to have the weak Painlevé property.

There exist two differences between the structure of solutions of linear differential equations and
nonlinear ones. Linear ODE’s have no singular solution and their general solutions have no movable
singularity.

Investigations of many dynamical systems, Hamiltonian [8–10] or dissipative (for example, the
Lorenz systems [10–13]), show that a system is completely integrable only for such values of pa-
rameters, at which it has the Painlevé property (or the weak Painlevé property). Arguments,
which clarify the connection between the Painlevé analysis and the existence of motion integrals,
are presented in [14, 15]. If the system misses the Painlevé property (has complex or irrational
“resonances”), then the system cannot be ”algebraically integrable” [16, 17]. At the same time the
integrability of an arbitrary system with the Painlevé property has yet to be proved. There is not
an algorithm for construction of the additional integral by the Painlevé analysis. It is easy to give
an example of an integrable system without the Painlevé property [18]: H = 1

2p
2 + f(x), where

f(x) is a polynomial which power is not lower than five. The given system is trivially integrable,
but its general solution is not a meromorphic function. The study of complex-time singularities is
a useful tool for the analysis of not only integrable systems, but also chaotic dynamics [19].

The Painlevé test is any algorithm, which checks some necessary conditions for a differential
equation to have the Painlevé property. The original algorithm, developed by P. Painlevé and used
by him to find all the second order ODE’s with Painlevé property [7], is known as the α-method.
The method of S.V. Kovalevskaya is not as general as the α–method, but much more simple. The
remarkable property of this test is that it can be checked in a finite number of steps. This test can
only detect the occurrence of logarithmic and algebraic branch points. To date there is no general
finite algorithmic method to detect the occurrence of essential singularities3.

In 1980, motivated by the work of S.V. Kovalevskaya [1], M.J. Ablowitz, A. Ramani and
H. Segur [21] developed a new algorithm of the Painlevé test for ODE’s. They also were the first
to point out the connection between the nonlinear partial differential equations (PDE’s), which
are soluble by the inverse scattering transform method, and ODE’s with the Painlevé property.
Subsequently the Painlevé property for PDE was defined and the corresponding Painlevé test (the
WTC procedure) was constructed [22, 23] (see also [20, 24–32]). With the help of this test it
has been found, that all PDE’s, which are solvable by the inverse scattering transforms, have the
Painlevé property, may be, after some change of variables. For many integrable PDE’s, for example,
the Korteweg–de-Vries [10] and the sine–Gordon [24] equations, the Bäcklund transformations and
the Lax representations result from the WTC procedure [23, 25, 26, 32]. For certain nonintegrable
PDE’s special solutions were constructed using this algorithm [33, 34].

The algorithm for finding special solutions for ODEs in the form of a finite expansion in powers
of unknown function ϕ(t−t0) has been constructed in [35, 36]. The function ϕ(t−t0) and coefficients
have to satisfy some system of ODE, often more simple than an initial one. This method has been
used to construct exact special solutions for some ODE’s [37, 38]. With the help of the perturbative
Painleve test [31] four-parameter generalization of an exact three-parameter solution of the Bianchi
IX (Mixmaster) cosmological model has been constructed [39].

3Different variants of the Painlevé test are compared in [20, R. Conte paper].
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2. The Hénon–Heiles Hamiltonian

In the 1960s the models of the star motion in an axial-symmetric and time-independent potential
have been developed [40, 41, 42] to show either existence or absence of the third integral for some
polynomial potentials. The motion equations admit two well-known integrals (energy and angular
momentum) and would be solved by the method of quadratures if the third integral of motion is
known. However, for many polynomial potentials the obtained system has not the second integral
as a polynomial function. Due to the symmetry of the potential the considered system is equivalent
to two-dimensional one.

To clarify the question about the existence of the third integral Hénon and Heiles [42] considered
the behavior of numerically integrated trajectories. Emphasizing that their choice of potential does
not proceed from experimental data, they have proposed the Hamiltonian

H =
1

2

(
x2
t + y2

t + x2 + y2
)

+ x2y −
1

3
y3, (1)

because: on the one hand, it is analytically simple; this makes the numerical computations of
trajectories easy; on the other hand, it is sufficiently complicated to give trajectories which are far
from trivial. Indeed, for low energies the Hénon–Heiles system appears to be integrable, in so much
as trajectories (numerically integrated) always lay on well-defined two-dimensional surfaces. On the
other hand, for high energies many of these integral surfaces are destroyed, it points on absence
of the third integral. Subsequent investigations [43, 44] show, that in the complex t-plane singular
points of solutions of the motion equations group in self-similar spirals. It turns out extremely
complicated distributions of singularities, forming a boundary, across which the solutions can not
be analytically continued.

The generalized Hénon–Heiles system is described by the Hamiltonian:

H =
1

2

(
x2
t + y2

t + λx2 + y2
)

+ x2y −
C

3
y3 (1′)

and the corresponding system of the motion equations:
{
xtt = −λx− 2xy,

ytt = −y − x2 + Cy2,
(2)

where xtt ≡ d2x
dt2

and ytt ≡
d2y
dt2

, λ and C are numerical parameters.
Due to the Painlevé analysis the following integrable cases of (2) have been found:

(i) C = −1, λ = 1,
(ii) C = −6, λ is an arbitrary number,
(iii) C = −16, λ = 1

16 .

In contradiction to the case (i) the cases (ii) and (iii) are nontrivial, so the integrability of these
cases had to be proved additionally. In the 1980’s the required second integrals were constructed [45–
48]. For integrable cases of the Hénon–Heiles system the Bäcklund transformations [35, 36] and the
Lax representations [27, 28, 50] have been found.

The three integrable cases of the Hénon–Heiles system correspond precisely to the stationary
flows of the only three integrable cases of fifth-order polynomial nonlinear evolution equations of
scale weight 7 (respectively the Sawada–Kotega, the fifth-order Korteweg–de Vries and the Kaup–
Kupershmidt equations) [36, 49, 50].

The Hénon–Heiles system is a model, not only actively investigated by various mathematical
methods, but also widely used in physics, in particular, in gravitation [52, 53] and plasma theory [54].
The models, described by the Hamiltonian (1′) with some additional nonpolynomial terms, are
actively studied [50, 55–57] as well.
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3. Nonintegrable cases

The general solutions of the Hénon–Heiles system are known only in integrable cases [57], in
other cases not only four-, but even three-parameter exact solutions have yet to be found. The aim
of this paper is to find new three-parameter special solutions as Laurent series.

The procedure for transformation the Hamiltonian to a normal form and for construction the
second independent integral in the form of formal power series in the phase variables x, xt, y and
yt (Gustavson integral) has been realized for the Hénon–Heiles system both in the original (λ = 1,
C = 1) [41] (see also [58]) and in the general forms [59, 60]. Using the Bruno algorithm [61, 62]
V.F. Edneral has constructed the Poincaré–Dulac normal form and found [63, 64] (provided that
all phase variables are small) local families of periodic solutions. Recently it has been found that a
local series around the singularities in the complex (time) plane can be transformed to some local
series around the singularities at the fixed points in phase space and analyzed via normal forms
theory [65, 66].

The Hénon–Heiles system as a system of two second order ODE’s is equivalent to the fourth
order equation4:

ytttt = (2C − 8)ytty − (4λ+ 1)ytt + 2(C + 1)y2
t +

20C

3
y3 + (4Cλ− 6)y2 − 4λy − 4H, (3)

where H is the energy of the system.

To find a special solution of the given equation one can assume that y satisfies some more simple
equation. For example, the well-known solutions in terms of the Weierstrass elliptic functions [67]
satisfy the following first-order differential equation:

y2
t = Ãy3 + B̃y2 + C̃y + D̃, (4)

where Ã, B̃, C̃ and D̃ are some constants. D̃ is proportional to energy H (arbitrary parameter),
therefore, the obtained solutions are two-parameter ones.

E.I. Timoshkova [68] generalized equation (4):

y2
t = Ãy3 + B̃y2 + C̃y + D̃ + G̃y5/2 + Ẽy3/2 (5)

and found new one-parameter solutions of the Hénon–Heiles system in nonintegrable cases (C = − 4
3

or C = − 16
5 , λ is an arbitrary number). These solutions (i.e. solutions with G̃ 6= 0 or Ẽ 6= 0) are

derived only at D̃ = 0, therefore, substitution y = %2 gives:

%2
t =

1

4

(
Ã%4 + G̃%3 + B̃%2 + Ẽ%+ C̃

)
. (6)

Let us consider in detail these two nonintegrable cases. Substituting y = %2 in (3) we obtain:

%tttt% = 4%ttt%t − 3%2
tt + (2C − 8)%tt%

3 − (4λ+ 1)%tt%−+(6C − 4)%2
t %

2

−(4λ+ 1)%2
t +

10C

3
%6 + (2Cλ− 3)%4 − 2λ%2 − 2H.

(7)

It is easy to verify that solutions of equation (6) with G̃ 6= 0 or Ẽ 6= 0 satisfy equation (7) if

4For given y(t) the function x2(t) is a solution of a linear equation. System (2) is invariant under exchange x to
−x.
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1. C = −
4

3

Ã = −
4

3
, B̃ =

s(λ)− 8λ− 93

66
,

C̃ =
8984s(λ)λ− 3669s(λ) + 760256λ2 − 990696λ+ 273105

81312
,

G̃ = ±

√
10(−13s(λ) + 952λ− 945)

√
33(498960λ2 − 336105λ+ 31185)

√
R1(λ), Ẽ = ∓

√
10

231
√

33

√
R1(λ);

Ã = −
4

3
, B̃ =

−s(λ)− 8λ− 93

66
,

C̃ =
−8984s(λ)λ+ 3669s(λ) + 760256λ2 − 990696λ+ 273105

81312
,

G̃ = ±

√
10(13s(λ) + 952λ− 945)

√
33(498960λ2 − 336105λ+ 31185)

√
R2(λ), Ẽ = ±

√
10

231
√

33

√
R2(λ),

(8.1)

where

s(λ) =
√

7(1216λ2 − 1824λ+ 783),

R1(λ) ≡ (20008λ2 − 37173λ+ 13581)s(λ) + 2099776λ3 − 4911144λ2 + 3943233λ− 1006425,

R2(λ) ≡ −(20008λ2 − 37173λ+ 13581)s(λ) + 2099776λ3 − 4911144λ2 + 3943233λ− 1006425.

2. C = −
16

5

Ã = −
32

15
, B̃ =

4q(λ)− 1680λ− 784

1309
,

C̃ =
(14160λ− 685)q(λ) + 1413120λ2 − 2454000λ+ 168855

3916528
,

G̃ = ±
13q(λ) + 224λ+ 1239

√
1122(3769920λ2 − 2539460λ+ 235620)

√
P1(λ), Ẽ = ∓

5

5236
√

1122

√
P1(λ);

Ã = −
32

15
, B̃ = −

4q(λ) + 1680λ+ 784

1309
,

C̃ =
−(14160λ− 685)q(λ) + 1413120λ2 − 2454000λ+ 168855

3916528
,

G̃ = ±
−13q(λ)− 224λ− 1239

√
1122(3769920λ2 − 2539460λ+ 235620)

√
P2(λ), Ẽ = ∓

5

5236
√

1122

√
P2(λ),

(8.2)

where
q(λ) ≡

√
35(2048λ2 − 1280λ+ 387),

P1(λ) ≡ −(4174336λ2 + 1642672λ− 115389)q(λ) + 1578967040λ3−
− 712893440λ2 + 332211600λ− 18740295,

P2(λ) ≡ (4174336λ2 + 1642672λ− 115389)q(λ) + 1578967040λ3−
− 712893440λ2 + 332211600λ− 18740295.

The general solution of (6) has one arbitrary parameter and can be expressed in elliptic functions.
The Timoshkova’s substitution gives four one-parameter sets of solutions for each value of λ. The
case of C = −16

5 and λ = 1
9 has been considered in [69].

341



4. Results of the Painlevé test

The Ablowitz–Ramani–Segur algorithm of the Painlevé test appears very useful to find asymp-
totic solutions as a formal Laurent series.

We assume that the behavior of solutions in a sufficiently small neighborhood of the singularity
is algebraic, it means that x and y tend to infinity as some powers of t− t0:

x = aα(t− t0)α and y = bβ(t− t0)β , (9)

where α, β, aα and bβ are some constants. We assume that real parts of α or β are less then zero,
and, of course, aα 6= 0 and bβ 6= 0.

If α and β are integer numbers, then substituting

x = aα(t− t0)α +

Nmax∑

k=1

ak+α(t− t0)k+α and y = bβ(t− t0)β +

Nmax∑

k=1

bk+β(t− t0)k+β (10)

one can transform the ODE system into a set of linear algebraic systems in coefficients ak and bk.
With the help of some computer algebra system, for example, the system REDUCE [70, 71], these
systems can be solved step by step and solutions can be automatically found with any accuracy.
But previously one has to determine values of constants α, β, aα and bβ and to analyze systems
with zero determinants. Such systems correspond to new arbitrary constants or have no solutions.
Powers at which new arbitrary constants enter are called resonances. The Painlevé test gives all
information about possible dominant behaviors and resonances (see, for example, [10]). Moreover,
the results of the Painlevé analysis point out cases, in which it is useful to include into expansion
terms with fractional powers of t− t0.

For the generalized Hénon-Heiles system there exist two possible dominant behaviors and reso-
nance structures [10, 44, 72]:

Case 1: Case 2: (β < <e(α) < 0)

α = −2, α =
1±
√

1−48/C

2 ,

β = −2, β = −2,

aα = ±3
√

2 + C, aα = c1 (an arbitrary number),

bβ = −3, bβ = 6
C

,

r = −1, 6, 5
2 −
√

1−24(1+C)

2 , 5
2 +

√
1−24(1+C)

2 r = −1, 0, 6, ∓
√

1− 48
C

In the Table the values of r denote resonances: r = −1 corresponds to arbitrary parameter t0;
r = 0 (in the Case 2) corresponds to arbitrary parameter c1. Other values of r determine powers
of t, to be exact, tα+r for x and tβ+r for y, at which new arbitrary parameters enter (as solutions
of systems with zero determinants).

For integrability of system (2) all values of α and r have to be integer (or rational) and all systems
with zero determinants have to have solutions at any values of included in them free parameters. It
is possible only in the integrable cases (i) — (iii).

Those values of C, at which α and r are integer (or rational) numbers either only in the Case 1
or only in the Case 2, are of interest for search of special solutions.

Let’s consider all cases, when there exist special (no singular) solutions, representable as a three-
parameter Laurent series (may be, multiplied on

√
t− t0). From the requirement that all values

of r but one are integer and positive we obtain, that the general solution can be represented as a
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Laurent series or at C = −1 and C = − 4
3 (the Case 1), or at C = − 16

5 , C = −6 and C = −16

(the Case 2, α =
1−
√

1−48/C

2 ). And also at C = −2, when two types of singular behaviour coincide.
Let’s consider all these possibilities.

At C = −2 (in the Case 1) aα = 0. It is the consequence of the fact that, contrary to our
assumption, the behaviour of the solution in the neighborhood of a singular point is not algebraic,
because its dominant term includes logarithm [10]. At C = −6 and any value λ the exact four-
parameter solutions are known. In cases C = −1 and C = −16 the substitution of unknown function
as Laurent series gives the equations in λ: accordingly λ = 1 and λ = 1

16 , hence, in nonintegrable
cases special three-parameter local solutions have to include logarithmic terms. Single-valued three-
parameter solutions can exist only in two nonintegrable cases, at C = − 16

5 and at C = − 4
3 . It

is remarkable, that new solutions have been obtained [68] namely in these nonintegrable cases. In
this paper we show how these one-parameter exact periodic solutions can be generalized to three-
parameter Laurent series solutions.

5. New solutions

5.1. Finding of solutions in the form of formal Laurent series

Let us consider the Hénon–Heiles system with C = − 16
5 . In the Case 1 some values of r are

not rational, so it is a nonintegrable system. To find special asymptotic solutions let us consider
the Case 2. In this case α = − 3

2 and r = −1, 0, 4, 6, hence, in the neighborhood of the singular
point t0 we have to seek x in such form that x2 can be expand into Laurent series, beginning from
(t− t0)−3. Let t0 = 0, substituting

x =
√
t



c1t
−2 +

∞∑

j=−1

ajt
j



 and y = −
15

8
t−2 +

∞∑

j=−1

bjt
j

in (2), we obtain the following sequence of linear system in ak and bk:






(
k2 − 4

)
ak + 2c1bk = −λak−2 − 2

k−1∑

j=−1

ajbk−j−2,

(
(k − 1)k − 12

)
bk = − bk−2 −

k−1∑

j=−2

ajak−j−3 −
16

5

k−1∑

j=−1

bjbk−j−2.

(11)

If k = 2 or k = 4, then the determinant of (11) is equal to zero. To determine a2 and b2 we have
the following system:






c1

(
557056c8

1 + (15552000λ− 4860000)c41 + 864000000b2 +

+ 108000000λ2 − 67500000λ+ 10546875
)

= 0,

818176c8
1 +

(
15660000λ− 4893750

)
c41−

− 810000000b2 − 6328125 = 0.

(12)

As one can see this system does not include terms, which are proportional to a2, hence, a2 is an
arbitrary parameter (a constant of integration).
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We discard the solution with c1 = 0 and obtain the system in c̃1 ≡ c4
1 and b2. System (12) has

solutions only if

c̃1 =
1125(4

√
35(2048λ2 − 1280λ+ 387)− 1680λ+ 525)

167552
,

c̃1 =
1125(−4

√
35(2048λ2 − 1280λ+ 387)− 1680λ+ 525)

167552
.

(13)

We obtain new constant of integration a2, but we must fix c1, so number of constants of integra-
tion is equal to 2. It is easy to verify that b4 is an arbitrary parameter, because the corresponding
system is equivalent to one linear equation. So, using Painlevé test, we obtain four solutions which
depend on three parameters, namely t0, a2 and b4. With the help of some computer algebra system
these solutions can be obtained with arbitrary accuracy.

At C = − 4
3 the situation is similar. In the Case 1 we have r = −1, 1, 4, 6. Substituting

x =
√

6t−2 +
∞∑

k=−1

dkt
k and y = −3t−2 +

∞∑

k=−1

fkt
k

in system (2), we receive a sequence of linear systems in dk and fk:






(
(k − 1)k − 6

)
dk + 2

√
6fk = −λdk−2 − 2

k−1∑

j=−1

djfk−j−2,

2
√

6dk +
(

(k − 1)k − 8
)
fk = − fk−2 −

k−1∑

j=−1

djdk−j−2 −
4

3

k−1∑

j=−1

fjfk−j−2.

(14)

The systems corresponding to k = −1, 2, 4 have a zero determinant. The first system (k = −1)
always has infinite number of solutions and f−1 is a parameter. We have to fix this parameter to
solve the system corresponding to k = 2. This system has solutions (f2 is a new arbitrary parameter)
only if

f−1 = ±

√√
7(1216λ2 − 1824λ+ 783)− 140λ+ 105

385
,

f−1 = ±

√
−
√

7(1216λ2 − 1824λ+ 783)− 140λ+ 105

385
,

f−1 = 0.

(15)

Similarly to case C = − 16
5 at k = 4 the system is reduced to one equation. Thus, at C = − 4

3
we have five three-parameter (t0, f2 and f4) solutions. If we choose f−1 = 0, then we obtain three-
parameter solution which generalizes known two-parameter solution in terms of Weierstrass elliptic
functions. Other solutions generalize four one-parameter solutions, found in [68]. So, we can made
a conclusion that all one-parameter solutions for both C = − 16

5 and C = − 4
3 can be generalized.

5.2. Convergence of the obtained series

When a formal series is obtained the question about its convergence arises. The convergence
of psi-series solutions of the generalized Hénon–Heiles system on some real time interval has been
proved in [72]. For Laurent series solutions it is easy to find conditions, at which the obtained series
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converge at 0 < |t| 6 1 − ε, where ε is any positive number. Our series converge in the above-
mentioned ring, if ∃N such that ∀n > N |an| 6 M and |bn| 6 M . Let |an| 6 M and |bn| 6 M for
all −1 < n < k, then from (8) we obtain:

|ak| 6
2M(k + 1) + |λ|+ 2|c1|

|k2 − 4|
M, |bk| 6

21Mk + 26M + 5

5|k2 − k − 12|
M. (16)

It is easy to see that there exists such N that if |an| 6 M and |bn| 6 M for −1 6 n 6 N , then
|an| 6 M and |bn| 6 M for −1 6 n < ∞. So one can prove the convergence, analyzing values of a
finite number of the first coefficients of series.

6. Conclusion

Using the Painlevé analysis one can not only find integrable cases of dynamical systems, but
also construct special solutions in nonintegrable cases.

We have found the special solutions of the Hénon–Heiles system with C = − 16
5 and C = − 4

3
as Laurent series, depending on three parameters. For some values of two parameters the obtained
solutions coincide with the known exact periodic solutions. Any obstacle to the existence of three-
parameter single valued solutions is absent, so, the probability of finding of new exact two- or may
be even three-parameter solutions, which generalize the solutions found in [68], is high.

The author is grateful to R.I. Bogdanov and V.F. Edneral for valuable discussions and
E.I. Timoshkova for comprehensive commentary of [68]. This work has been supported by the
Russian Foundation for Basic Research under grants N◦ 00-15-96560 and N◦ 00-15-96577 and by
the grant of the scientific Program “Universities of Russia” N◦ UR.02.03.002.
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de Stockholm, 1895), Paris, 1896. Reprinted in: Oeuvres de P. Painlevé , vol. 1, ed. du
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[8] T. Bountis, H. Segur, F. Vivaldi, Integrable Hamiltonian Systems and the Painlevé Property,
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[30] R. Conte, The Painlevé Analysis of nonlinear PDE and related topics: a computer algebra
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Lett. A, 1984, vol. 102, pp. 329–331.
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