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Abstract

We present an improved search for electroweak single top quark production
using 2.2 fb−1 of CDF II data collected between 2002 and 2007. The analysis
employes a matrix element technique which is used to calculate event probability
densities for the signal and background hypothesis. The ratio of signal and
background event probability densities is used as a discriminant variable which
we will fit to the data. We search for a combined single top s- and t-channel
signal as well as s- and t-channel separately. We measure a cross section of
2.3+0.8

−0.7 pb assuming a top quark mass of 175 GeV/c2. This allows a measurement

of |Vtb| = 0.90+0.14experiment
−0.15 ± 0.07theory . and |Vtb| > 0.61 at 95% confidence.

We use the MCLIMIT [20] to calculate the signal significance. The expected
(median) p-value for this analysis is 0.0000050 which corresponds to a 4.4σ signal
significance assuming single top quark production at the rate predicted by the
Standard Model. The observed p-value is 0.00021, corresponding to a 3.5σ excess
in data.
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0 Changes since Blessing for Winter Conferences

2008

Since blessing for the Winter Conferences 2008 we performed a few (small) changes
which are summarized below. The changes resulted in a shift in cross section on the
order of 0.1 pb and a shift in sensitivity/significance of 0.1 standard deviations, as
shown in the summary table below.

Winter Conference 2008 Publication 2008 (2.2/fb)
Cross section 2.2+0.8

−0.7 pb 2.3+0.8
−0.7 pb

Expected p-value 4.5 sigma 4.4 sigma
Observed p-value 3.4 sigma 3.5 sigma

• Removed truncation of shape uncertainties for JES, ISR, FSR, and PDF as de-
cided in the top group meeting (May 1st 2008), described in CDF9251.

• Systematic shape errors are smoothed using a 5 bin median smoothing procedure
to remove statistical fluctuations in several low statistics systematic samples.

• The background estimation has changed slightly due to the following effects:

– A small bug in the background estimate was fixed : The Method2 prediction
had been counting the integer (jet.isTag) instead of (jet.isTag==1) which
resulted in counting negative tags as well as positive tags (mostly affected
the charm background)

– New 2.2 fb−1 mistag matrix and asymmetry corrections are included in the
background estimate (remove the previously used period 13 scale factor with
additional uncertainty).

– The JointPhysics scale factor class has been extended to period13 data (and
not scaled from data period 12)

– CMX Arches and CMX Miniskirt/Keystone contributions are accounted for
in the lepton ID and trigger efficiency scale factors described in CDF9185.

• The determination of PDF errors are changed to be in sync with other top quark
analyses at CDF.

• ISR and FSR rate and shape variations are treated as correlated uncertainties,
since deviation from the default settings would influence both effects in the same
way.
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1 Introduction

Finding single top quark production is challenging since it is rarely produced (σsingletop ∼
2.9pb) in comparison with other processes with the same final state like W+jets and
tt̄. The signal to background ratio of the analysis is small, typically on the order of
S/B∼1/18 [1, 2]. This calls for a better discrimination of signal and background events
which can be achieved by using more information to characterize each event.

This note describes a new analysis technique that attempts to make optimal use of
information in the data. The implementation of the method is derived from a precision
measurement of the top quark mass and W helicity in tt̄ lepton+jets events using a
matrix element analysis technique [3]. Although the main ingredients of the analysis
are based on the calculation of event probabilities as in the mentioned analyses, this
note presents a novel approach on how to apply these event probability densities to a
search.

For the current iteration, our analysis was significantly improved. We have added
several matrix element calculations for background sources (most notably a tt̄ proba-
bility density, see section 2.6), added new “loose” muon types (as described in [4]) and
extended the acceptance to the W+3 jet bin as well as improved transfer functions (see
section 2.4.1).

2 Methodology

The method presented here relies on the evaluation of event probability densities for
signal and background processes based on the Standard Model differential cross-section
calculation.

The data for the first Tevatron Run II single top publication [5] was of the form of
measured values of the kinematic variable HT for each observed event. The shape of
the HT templates used in the likelihood method corresponds to the shape of the dif-
ferential cross-section distributions dσ/dHT for signal and background. An improved
discrimination between signal and background processes could be achieved by includ-
ing all kinematical shapes or variables. That is by calculating the fully differential
cross section on an event-by-event basis for the signal hypothesis and the background
hypothesis to quantify how likely the event is to be either signal or background.

In general a differential cross-section is given by [6]:

dσ =
(2π)4|M |2

4
√

(q1 · q2)2 − m2
q1

m2
q2

dΦn(q1 + q2; p1, .., pn) (1)

where |M | is the Lorentz invariant matrix element; q1, q2 and mq1
, mq2

are the four
momenta and masses of the incident particles; and dΦn is the n-body phase space given
by [6]:

dΦn(q1 + q2; p1, .., pn) = δ4(q1 + q2 −
n∑

i=1

pi)
n∏

i=1

d3pi

(2π)32Ei

(2)
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The CDF detector would be ’ideal’ if we could measure all four momenta of the
initial and final state particles very precisely. In this case we could use this formula
without modification and normalize it to the total cross section to define the event
probability:

Pevt ∼
dσ

σ

However, several effects have to be considered: (1) the initial state interaction is initi-
ated by partons inside the proton and antiproton, (2) neutrinos in the final state are
not identified directly, and (3) the energy resolution of the detector can not be ignored.
To address the first point, the differential cross section is folded over the parton distri-
bution functions. To address the second and third points, we integrate over all particle
momenta which we do not measure (e.g. pz of the neutrino), or do not measure very
well, due to resolution effects (e.g. jet energies). The integration reflects the fact that
we want to sum over all possible particle variables (y) leading to the observed set of
variables (x) measured with the CDF detector. The mapping between the particle
variables (y) and the measured variables (x) is established with the transfer function,
W (y, x). After incorporating the effects mentioned above, the event probability takes
the form:

P (x) =
1

σ

∫

dσ(y)dq1dq2f(x1)f(x2)W (y, x) (3)

where dσ(y) is the differential cross section in terms of the particle variables; f(xi) are
the PDFs, with xi being the fraction of the proton momentum carried by the parton
(xi = Eqi

/Ebeam); and W (y, x) is the transfer function. Substituting Equation 1 and
2 into Equation 3, and considering a final state with four particles (n=4), the event
probability becomes:

P (x) =
1

σ

∫

2π4|M |2f(x1)

|Eq1
|
f(x2)

|Eq2
| W (y, x)dΦ4dEq1

dEq2
(4)

where the masses and transverse momenta of the initial partons are neglected (i.e.
√

(q1 · q2)2 − m2
q1

m2
q2
' 2Eq1

Eq2
).

As it will be explained in the next section, in this analysis we calculate event prob-
abilities with the signal hypothesis for s-channel and t-channel and with background
hypothesis with the major contributions.

We construct an event probability discriminant, EPD, using the signal and back-
ground probabilities to measure the single top content in data. The idea is to con-
struct a distribution which is a superposition of the single-top and background event-
probability-discriminant shapes and find the single-top and background normalizations
such that if the N events observed in data were chosen from respective single-top and
background Poisson distributions having those means, the likelihood of observing these
particular data would be maximized.

Section 2.1 presents the event selection employed and the expected number of
events. In Section 2.3 we will show the different matrix element used in the event
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probabilities. In Section 2.4 we will derive the transfer function and make certain as-
sumptions on the mapping between particles and measured objects. Section 2.5 will
show the calculation of the phase space factor. Section 2.6 will add all these pieces
into event probabilities. We explain the construction an event probability discriminant
using the signal and background probabilities in Section 2.8 and the likelihood used to
fit the data in Section 2.9. The rest of the note discusses the systematic uncertainties
and the results on the data.

2.1 Event Selection and Expected Number of Events

Candidate events for this analysis are selected by requiring a W + 2 jet event topology
where the W decays leptonically, W → eνe and W → µνµ. One or both of the two
jets should be identified as a b-jet using the secondary vertex tag requirement. The
detailed event selection and the estimate strategy has been performed and summarized
in a separate CDF note [1, 2]. Table 1 lists the expected event yield. For the MC based
background estimates [2] only covers uncertainty on the event detection efficiency.

Process Number of Events in 2.2 fb−1 Sample
W + 2 jets W + 3 jets

s-channel signal 40.3 ± 5.8 13.1 ± 1.9 stop00
t-channel signal 60.8 ± 8.9 19.9 ± 2.6 stopm0
Wbb̄ 451.1 ± 136.0 138.0 ± 41.7 btopXp
Wcc̄ + Wc 372.5 ± 114.8 103.2 ± 31.8 ctopXw,stopwX
Mistags 337.1 ± 41.9 101.6 ± 12.8 ptopXw, utopXw

anti-electron /
non − W 60.5 ± 24.2 21.0 ± 8.4 jet-electron /

non-isolated data
WW 40.5 ± 4.5 14.3 ± 1.6 itopww
WZ 20.0 ± 1.6 5.8 ± 0.5 itopwz
ZZ 0.6 ± 0.1 0.3 ± 0.1 itopzz
Z + jets 25.5 ± 3.8 10.5 ± 1.5 ztopXY
tt̄ dilepton 48.2 ± 6.9 40.9 ± 5.8 ttop75
tt̄ non-dilepton 93.8 ± 13.4 286.9 ± 40.8 ttop75
Total signal 101.1 ± 14.7 30.0 ± 4.7
Total prediction 1550.8 ± 256.6 753.7 ± 87.6

Observed in data 1546 719

Table 1: Number of expected single top and background events in 2.2/fb of CDF data
passing all event selection requirements.

As mentioned in the previous section, in this analysis, we calculate event probability
densities for the s-channel and t-channel single top processes, as well as for the Wbb̄,
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Wcj, Mistags (Wgg) and tt̄ background processes. The diboson, Wcc and non-W
events are assumed to be represented fairly well by the background probability density.

2.2 Non-triggered Muons

In this iteration of the analysis, we have included new non-triggered muons according
to the work of [4]. The acceptance gain is equivalent to 50% of the CMUP contribution
for the signal sample, while the background acceptance is increased by about 35%. The
overall sensitivity gain is estimated to be 7%.

2.3 Matrix Element

We calculate the matrix element (|M |2) for the event probability at leading order per-
turbation theory by using the HELAS (HELicity Amplitude Subroutines for Feynman
Diagram Evaluations) package [7]. The correct subroutine for a given process are au-
tomatically generated by the MadGraph program [8]. We use different subroutines for
calculating event probabilities for the s-channel, t-channel, Wbb̄, Wcj, Wgg, and tt̄
hypotheses in the two-jet bin. Figures 1 to 6 show the different Feynman diagrams
used for each channel.

Figure 1: Leading order Feynman diagram for s-channel single top quark production
and decay used in the calculation of the s-channel event probability in the two-jet bin.

In the three-jet bin, we calculate event probabilities for s-channel, t-channel, WBb̄,
and tt̄, as shown in Figures 7 to 10.

2.4 Transfer Function

The transfer function, W (y, x), provides the probability of measuring the set of ob-
servable variables (x) that correspond to the set of production variables (y). The set
(y) represents all final state particle momenta at the particle level, while the set (x)
represents the measured momenta (of the corresponding object) with the CDF detec-
tor. In the case of well-measured objects, W (y, x) is taken as a δ-function (i.e. the
measured momenta are used in the differential cross section calculation). When the
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Figure 2: Leading order Feynman diagram for t-channel single top quark production
and decay used in the calculation of the t-channel event probability in the two-jet bin.

Figure 3: Leading order Feynman diagram for Wbb̄ production and decay used in the
calculation of the Wbb̄ event probability in the two-jet bin.

detector resolution cannot be ignored, W (y, x) is taken as a Gaussian-type function.
For unmeasured quantities, like the momenta of the neutrino, the transfer function is
unity (the transverse momenta of the neutrino, however, can be inferred from energy
and momentum conservation).

Lepton momenta are well-measured with the CDF detector and we will assume
δ-functions for them (first factor of Equation 5). The jet angular resolution of the
calorimeter is also good (on the order of σ∆R

' 0.07) and we assume δ-functions for
the transfer function of the jet directions (second factor of Equation 5). The resolution
of the measured jet energies, however, is not negligible and the transfer function is
derived in Section 2.4.1. Using these assumptions, W (y, x) takes the following form for
the four particle final state we consider in the single top search (lepton, neutrino and
two jets):

W (y, x) = δ3(~p y
l − ~p x

l )
2∏

i=1

δ2(Ωy
i − Ωx

i )
2∏

j=1

Wjet(Epartonj
, Ejetj) (5)

where ~p y
l and ~p x

l are the produced and measured lepton momenta, Ωy
i and Ωx

i are
the produced quark and measured jet angles, and Epartonj

and Ejetj are the produced
quark and measured jet energies.
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Figure 4: Leading order Feynman diagrams for Wcj production and decay used in the
calculation of the Wcj event probability in the two-jet bin.

2.4.1 Jet-Parton Energies Transfer Functions

The transfer between parton and jet energies is determined by the transfer function
Wjet(Eparton, Ejet). The standard CDF jet energy corrections correct the energies of jets
in a way that the means of the corrected jet energies and the original parton energies
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Figure 5: Leading order Feynman diagrams for Wgg production and decay used in the
calculation of the Wgg event probability in the two-jet bin.

are equal. Such corrections, however, do not account for the shape of the difference
in energies: the shape of the δE = (Eparton − Ejet) distribution). This distribution is
asymmetric and features a significant tail at positive δE, as shown in Figure 11.

We parameterize the δE distribution as a sum of two Gaussian functions: one to
account for the sharp peak and one to account for the asymmetric tail:

Wjet(Eparton, Ejet) =
1√

2π(p2 + p3p5)
(exp

−(δE − p1)
2

2p2
2

+ p3 exp
−(δE − p4)

2

2p2
5

) (6)

where the parameters pi have a linear dependence on Eparton, i.e.

pi = ai + biEparton

A total of 10 parameters (a1, b1, .., a5, b5) are therefore required to specify Wjet(Eparton, Ejet).

After specifying the transfer function, we can apply the general event probability
of Equation 4 to the case of the single top analysis.
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Figure 6: Leading order Feynman diagrams for tt̄ production and decay used in the
calculation of the tt̄ event probability in the two-jet bin.

For the summer 2007 analysis we have implemented transfer functions with more
information. We now use the energies stored in cone 0.7 jets when available. We also
include different transfer functions for 3 different detector η regions.

Our event selection still requires 2 cone 0.4 jets. We use transfer functions obtained
with 0.7 cone jets for events where we find only 2 tight cone 0.7 jets. In the s-channel
MC this is 84% of the events. Tight cone 0.7 jets are defined in the same way as cone
0.4 (pT >20 GeV and |η| <2.8). The remaining 16% events are treated with cone 0.4
transfer functions.
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Figure 7: Leading order Feynman diagram for s-channel single top quark production
and decay used in the calculation of the s-channel event probability in the three-jet
bin.

A different transfer function is obtained for cone 0.4 and cone 0.7 jets in different
|η| regions defined as: 0-0.9, 0.9-1.2, and 1.2-2.8.

2.4.2 Parameters for Wjet(Eparton, Ejet)

We determine the parameters of the transfer function Wjet(Eparton, Ejet) for the b-
jet case using the s-channel Monte Carlo sample. For light jets we use the t-channel
sample. These transfer functions are also applied to the background probabilities with b
or light-jets. For the winter 2008 analysis we implemented transfer functions obtained
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Figure 8: Leading order Feynman diagram for t-channel single top quark production
and decay used in the calculation of the t-channel event probability in the three-jet
bin.

from gluons which are later applied to all the probabilities with gluons in the final
state. (This transfer functions were obtained only in one region of η and from the Wc
process.) We apply all event selection requirements of the single top analysis and match
reconstructed jets to the quarks. The quark is required to be aligned within a cone
of ∆R < 0.4 around the reconstructed jet-axis in order to be considered ’matched’.
We correct the matched jet up to level 5 corrections and write out the jet energy
together with the energy of the original particle. We do this for cases where we have
exactly 2 jets of cone 0.7 size. In cases where there are less or more than 2 jets of
cone 0.7 we use the cone 0.4 jets energies matched to the quark. As an example, the
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distribution of measured jet energies for cone 0.4 versus the original parton energy of
the b quark is shown in the upper plot of Fig. 12. The parameters of the transfer
function are then derived by performing a maximum likelihood fit to these events. If
n(Ejet, Eparton)dEjetdEparton is the number of jets with jet energies between Ejet and
Ejet +dEjet, and particle energies between Eparton and Eparton +dEparton in this sample,
then:

n(Ejet, Eparton)dEjetdEparton = n(Eparton)dEpartonWjet(Eparton, Ejet)dEjet (7)

where n(Eparton)dEparton is the number of particles with an energy between Eparton

and Eparton + dEparton. The parameters of Wjet(Eparton, Ejet) are determined such to
maximize the agreement in Equation 7.

The parametrization for cone 0.4 is shown in the bottom plot of Fig. 12. The
upper plot shows the two dimensional distribution of Eparton vs Ejet obtained from the
Monte Carlo sample, while the bottom plot shows the prediction of this shape in a
functional contour plot using the transfer function and the particle density n(Eparton).
The performance of the parametrization is best shown in Fig. 13 and 14, which shows
the δE = (Eparton−Ejet) distribution (histogram) compared to the prediction from the
transfer function (solid line) for the central η region for cone 0.4 and 0.7, respectively.

We do similar tests in different η regions and for light jets and find similar agreement
between Monte Carlo prediction and the parametrization.

Finally, we compare the previous transfer function with this new derived one. We
build a discriminant (see later sections) and compare the efficiency for background and
signal using 2000 events s-channel and Wbb̄. Figure 15 shows an improvement of this
new transfer function over the previous used one.

In a similar way we test the new transfer functions for gluons. Figure16 shows
a good agreement between our prediction and the Monte Carlo. Figure 17 shows an
improvement with respect of the previous discrimination by using this transfer function
in the construction of the Wc probability.
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Figure 9: Leading order Feynman diagram for Wbb̄ production and decay used in the
calculation of the Wbb̄ event probability in the three-jet bin.
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Figure 10: Leading order Feynman diagrams for tt̄ production and decay used in the
calculation of the tt̄ event probability in the three-jet bin.
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Figure 11: Distribution of δE = (Eparton−Ejet) for matched jets to partons in s-channel
(b-jets), t-channel (light-jets), Wc (gluon-jets) Monte Carlo events (passed through full
detector simulation).
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Figure 12: TOP: Lego plot of Eparton vs Ejet (passed through full GEANT detector
simulation) for a sample of matched jets of cone 0.4 to partons in s-channel single
top Monte Carlo events. BOTTOM: Functional form of Eparton vs Ejet, where Ejet is
predicted using the transfer function Wjet(Eparton, Ejet) of Equation 6 and the particle
density n(Eparton).



2.4 Transfer Function 19

Entries  6578

Mean    5.142

RMS     9.207

-50 0 50 100 150
0

500

1000

Entries  6578

Mean    5.142

RMS     9.207

Entries  10036

Mean    10.84

RMS     14.24

-50 0 50 100 150
0

500

1000

Entries  10036

Mean    10.84

RMS     14.24

Entries  4309

Mean    16.18

RMS     20.69

-50 0 50 100 150
0

100

200

300

400

Entries  4309

Mean    16.18

RMS     20.69

Entries  2239

Mean    24.04

RMS     29.94

-50 0 50 100 150
0

50

100

150

Entries  2239

Mean    24.04

RMS     29.94

Figure 13: Distributions of δE = (Eparton − Ejet) for different ranges of parton energy
of matched jets to partons (20-60, 60-100, 100-140, 140-240 GeV). The histograms are
(s-channel) single top Monte Carlo events after full detector simulation and cone 0.4
jet (level 5) corrections. The solid line corresponds to the transfer function using the
parameters of cone 0.4.
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Figure 14: Distributions of δE = (Eparton − Ejet) for different ranges of parton energy
of matched jets to partons (20-60, 60-100, 100-140, 140-240 GeV). The histograms are
(s-channel) single top Monte Carlo events after full detector simulation and cone 0.7
jet (level 5) corrections. The solid line corresponds to the transfer function using the
parameters of cone 0.7.
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Figure 15: Comparison of the discriminant between previous and new TF.



22 2 METHODOLOGY

Entries  94078

Mean   -3.808

RMS     8.762

-50 0 50 100 150
0

5000

Entries  94078

Mean   -3.808

RMS     8.762

Entries  40089

Mean   -0.8639

RMS     13.43

-50 0 50 100 150
0

2000

4000

Entries  40089

Mean   -0.8639

RMS     13.43

Entries  15003

Mean    1.239

RMS     17.59

-50 0 50 100 150
0

500

1000

1500

Entries  15003

Mean    1.239

RMS     17.59

Entries  10000

Mean    6.473

RMS     24.11

-50 0 50 100 150
0

200

400

600

800
Entries  10000

Mean    6.473

RMS     24.11

Figure 16: Distributions of δE = (Eparton−Ejet) for different ranges of parton energy of
matched jets to gluons (20-60, 60-100, 100-140, 140-240 GeV). The histograms are Wc
Monte Carlo events after full detector simulation and cone 0.7 jet (level 5) corrections.
The solid line corresponds to the transfer function using the parameters of cone 0.7.
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Figure 17: Comparison of the discriminant between previous and new TF.
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2.5 Phase Space

The integration of the differential cross section has to be performed over 14 variables
corresponding to the momentum vectors of the four final state particles (12 variables)
and the longitudinal momenta of the initial state partons (2 variables). There are 11 δ-
functions inside the integrals: four for total energy and momentum conservation (part
of the phase space factor, see Equation 2) and seven for the transfer function (three
for the lepton momentum vector and four for the jet angles, see Equation 5). The
calculation of the event probability therefore involves a three dimensional integration.
The integration is performed numerically over the absolute value of the quark momenta
(ρi = |~pi|) and the longitudinal momentum of the neutrino (pν,z). The phase space for
single top events is derived in Appendix A and has been expressed as a function of the
variables (ρ1, Ω1, ρ2, Ω2, ~pl, m

2
W ). The result is:

dΦ4 = δ(Eq1
+ Eq2

−
4∑

i=1

Ei) δ(pq1,z + pq2,z −
4∑

i=1

pi,z)

× dm2
W

|2El
pν,z

Eν
− 2pν,z|

d3~pl

(2π)32El

1

(2π)32Eν

2∏

i=1

ρ2
i dρidΩi

(2π)32Ei

(8)

2.6 Event Probability Densities

Substituting the phase space factor (Equation 8) and the transfer function (Equation
5) into the expression for the event probability (Equation 4), we obtain:

P (x) =
1

σ

∫

2π4|M |2f(x1)

|Eq1
|
f(x2)

|Eq2
| δ

3(~p y
l − ~p x

l )
2∏

i=1

δ2(Ωy
i − Ωx

i )
2∏

j=1

Wjet(Ejet, Eparton)Φ4

×δ(Eq1
+ Eq2

−
4∑

i=1

Ei)δ(pq1,z + pq2,z −
4∑

i=1

pi,z)d
3~pldm2

W dEq1
dEq2

2∏

i=1

dρidΩi (9)

where,

Φ4 =
2π4

(2π)9

1

2El

1

2Eν

ρ2
1

2E1

ρ2
2

2E2

1

|2El
pν,z

Eν
− 2pl,z|

The integration over Eq1
and Eq2

eliminates the two δ-functions in the second line
of Equation 9. The integration over the lepton momenta and the quark solid angles
eliminate the δ-functions in the first line of Equation 9 associated with W (y, x). The
final event probability takes the form:

P (x) =
1

σ

∫

dρ1dρ2dm2
W

∑

comb,ν

|M |2f(q1)

|q1|
f(q2)

|q2|
Φ4

2∏

i=1

Wjet(Eparton,i, Ejet,i) (10)

For events with two b-jets (like s-channel single top), we don’t know which jet came
from the top quark decay so we have to calculate the probability for both possible jet-
parton assignments. The total probability is summed over both combinations. We also
try both combinations when there are two tags.
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For three-jet events, we have the same basic configuration with one more jet. For
s-channel, t-channel, and Wbb̄ diagrams this is a radiated gluon. This requires us to
perform four integrals instead of three. We assume that the tag information is correct
and try all combinations consistent with the tag.

The tt̄ matrix element is a special case, because its final state is not the same as
single top and the events only filter in when final state particles go undetected. For
the two-jet case, we use a diagram in which one final-state W boson is undetected
while the other decays leptonically. Then we integrate over all three components of
the momentum of the missing particle. In the three-jet case, we assume a lepton+jets
diagram wherein one light jet is undetected, and we integrate over the momentum of
the missing jet. This requires six integrals in the two-jet case and seven in the three-jet
case.

2.7 Numerical Integration

We perform the three-dimensional integrations with a C++ version of the CERN li-
brary function DADMUL[13]. This algorithm is a fully deterministic adaptive quadra-
ture technique that works well for up to three integrations. However, it becomes pro-
hibitively slow for more than three integrals, so we moved to a Monte Carlo integration
technique. We use the CERN library algorithm DIVONNE as implemented and im-
proved in the CUBA integration package[14]. This is a Monte-Carlo-based integration
based on stratified sampling and aided by methods from numberical optimization. It
gives consistent answers with adaptive quadrature for three-integral matrix elements
and gives answers that are self-consistent to at least five significant figures.

We ask each algorithm to converge to 1% estimated error in ten million function
calls. Calculating all probabilities (seven for the two-jet bin and four for the three-jet
bin) takes from five to ten minutes per event, most of which time is used by the tt̄
matrix element calculation.

2.8 Event Probability Discriminant

The event probability density makes use of all measured quantities1 to specify each
event. This should provide good discrimination between signal and background. It uses
both possible jet combinations in the event so that the right jet-parton association is
always included. The expression for the event probability of Equation 10 can be applied
to the s-channel and t-channel single top process as well as to the major backgrounds in
the analysis, namely Wbb̄, Wcc̄ and Wcj. Only the matrix element has to be changed
to represent the desired process.

We use the event probability densities as ingredients to build an event probability
discriminant, i.e. a distribution which separates signal from background which we can
use to fit the data. Figure 18 shows three different possible discriminants. The first

1The only exception is the unclustered energy, the energy deposited in the calorimeter from all
sources except from leptons and jets.
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of the three just plots the correlation of the s-channel probability vs Wbb̄ background
for s-channel and Wbb̄ Monte Carlo events. The s-channel single top events (red) are
separated fairly well2 from the background (blue). Since the separation of signal and
background is more enhanced along the y = x line, a one dimensional projection of this
separation is the ratio of signal and background probability, EPD = Ps/Pb shown in
the middle. Perhaps the most intuitive discriminant is the ratio of signal over signal +
background probability EPD = Ps/(Ps + Pb) (shown on the right). This discriminant
is close to zero for ratios dominated by Pb and close to unity for ratios dominated by
Ps. This is the discriminant we will use in this analysis.
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Figure 18: Several event-probability-discriminants (EPD). Correlation of the s-channel
probability vs Wbb̄ background (left); Ratio of signal and background probability (mid-
dle) and ratio of signal over signal + background probability (right).

2.8.1 Including Secondary Vertex Information

Several of the sizable backgrounds in the single top analysis listed in Table 1 don’t
actually have a b-quark in the final state, but are falsely identified as such. This happens
either because a light quark jet is falsely identified to have a displaced secondary
vertex (mistags) due to tracking resolution or because real heavy charm quark decays
happen to have a sufficiently long life-time to be tagged by the secondary vertex tagger.
Therefore, it would be useful to have better separation of b-quark jets from charm or
light quark jets. The matrix element based event-probabilities use all event kinematic
information to characterize signal and background but can not distinguish b quark jets
from charm or light quark flavor jets. On the other hand, the Karlsruhe Neural Net
b-tagger uses secondary vertex information, like the secondary vertex mass, the number
of tracks, the decay length of the b quark and 22 more variables to distinguish b-quark
jets from charm or light quark flavor jets. [9].

Figure 19 shows the neural network b-tagger output for b jets and non-b jets back-
ground (left). Both distributions are very well separated. In this analysis we can
include the neural network b-jet information by using the network output as a b-
jet probability in our discriminant. This is motivated by the right plot of Fig. 19

2The s-channel separation from background is in fact harder than for the t-channel due to less
kinematically distinct features.
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Figure 19: Neural network b-tagger output for b jets and non b jets background (left).
Neural Network b-tag output vs purity (right) [9].

which shows the network output versus b-jet purity. We define the b-jet probability as
b = 0.5 · (network output + 1). Since single top always has at least one b quark in the
final state we re-write the event probability discriminant as:

EPD =
b · Psingletop

b (Psingletop + PWbb̄ + Ptt̄) + (1 − b) (PWcc̄ + PWcj + PMistag)
(11)

In addition, each probability can receive a normalization constant to adjust the
relative weight for that probability. We tune these constants in Monte Carlo to achieve
the greatest expected sensitivity, while making sure every bin is sufficiently populated
in Monte Carlo statistics. We also create separate discriminants for the single-tag and
double-tag bins. This gives us the ability to tune the discriminants differently in the
two tag bins: t-channel dominates in the single-tag bin, but s-channel is much greater
in the double-tag bin. In the double-tag bin, we multiply the b-jet probabilities of both
jets as a weight.

There is a small additional gain from weighting the two possible t-channel diagrams
separately. One case has an u quark and a b quark in the initial state while the other
has a ū quark and a b. The matrix elements are identical, but the PDFs are different, so
we gain sensitivity from treating them separately. We also gain some sensitivity from
the Wg + jet matrix element for mistags, which is identical to the Wc + jet matrix
element with different PDFs, transfer functions, and quark masses. The weights we
use are shown in Table 2.

2.8.2 Distributions of the Event Probability Discriminant

In principle, we could define separate discriminants for s-channel and t-channel and
search for them separately. In this note, however, we will focus on the combined search
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2 jet 3 jet
Single-tag Double-tag Single-tag Double-tag

s-channel 3 5 5 4
t-channel (u quark) 0.023 0.02 4 3.96
t-channel (d̄ quark) 0.605 0.04 0.044 0.04

Wbb̄ 1.513 0.917 1.1 0.5
Wcc̄ 0.045 0.0033 1 0.5

Wc+jet 0.25 0.017 — —
Wg+jet (Mistag) 0.005 0.0033 — —

Wgg (Mistag) 0.005 0.0067 — —
tt̄ 0.0001 0.00003 0.0045 0.0045

Table 2: Coefficients used to weight the various event probability densities in the
discriminant. Mistag and Wc+jet diagrams are not calculated in the three-jet discrim-
inant because they are less significant backgrounds.

only, which uses only the two discriminants described above. As can be seen from
Figure 20 the separation between signal and background is better for the t-channel in
the single-tag case but better for the s-channel in the double-tag case. Separation is
better in the two-jet bin than the three-jet bin.

2.9 The Likelihood Function

The likelihood function, L, is a function of the unknown Poisson means for signal and
background and is defined such that it expresses the joint probability of observing the
N data events at their respective values of the event probability discriminant. The
values of the Poisson means at which L achieves its maximum, corresponds to the
most probable estimate for the true signal and background content in the data sample.

We perform a binned likelihood fit to the event probability discriminant. We choose
five free parameters in the fit. The single top, W+bottom jets (i.e. Wbb̄,WZ,ZZ,
Z+jets, non-W ), W+charm jets (i.e. Wcc̄, Wcj, WW , ), mistags and tt̄ normalization
(i.e. cross-sections). We group the templates into W+bottom jets , W+charm jets and
mistags in the likelihood fit since the contributing histograms look similar and they are
expected to behave similar under variations of the NN b-tagger used. The histograms
which contribute to the single top, W+bottom, W+charm and Mistag templates are
shown in Figure 25.

To make it easier to compare the different fit parameters, we define the fit parameter
as βj = σFit

j /σSM
j where βj is unity when the fit result corresponds to the expected

number of events obtained from the independent Method 2 signal/background estimate:

L =
5∏

j=2

Gj(βj; σj)
B∏

k=1

e−µk · µnk

k

nk!
(12)
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Figure 20: Discriminants for all signal and background processes. The top two plots
show the two-jet bin while the bottom plots show the three-jet bin. Single-tag dis-
criminants are on the left side, while double-tag discriminants are on the right. All
histograms are normalized to unit area.

The Gaussian constraints to the backgrounds are given by:

Gj(βj; σj) =
1

√

2 π · σ2
j

exp



−1

2
·
(

βj − 1.0

σj

)2


 (13)

µk = βsingle top ·Tjk +βW+bottom jets ·Tjk +βW+charm jets ·Tjk +βmistags ·Tjk +βtt̄ ·Tjk (14)

The index k runs over the bins of the fitted histogram. The template histograms
are normalized to the predicted number of events as shown in Table 3. This means,
∑B

k=1 Tjk = Npred
j . Figure 21 shows the templates used in the likelihood.

In addition, the prediction in each bin needs an additional Gaussian uncertainty due
to the limitations of Monte Carlo statistics. Each bin is allowed to fluctuate according
to the total uncertainty in that bin, which is the sum in quadrature of the weight of
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Figure 21: Templates of EPD for each dataset used in the likelihood function. Each
template is composed of processes combined and weighted according to the Standard
Model prediction. These templates are for the two-jet single-tag bin.
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Figure 22: EPD templates for the two-jet double-tag bin.

each event. This prevents us from overestimating our sensitivity due to a fluctuation
in Monte Carlo.
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Figure 23: EPD templates for the three-jet single-tag bin.
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Figure 24: EPD templates for the three-jet double-tag bin.

3 Incorporating Systematic Uncertainties

Systematic uncertainties can bias the outcome of this analysis and have to be incorpo-
rated into the result. We address systematic uncertainty from several different sources:
(1) jet energy scale (2) initial state radiation (3) final state radiation (4) parton dis-
tribution functions (5) the event generator, the uncertainty in the event detection
efficiency and luminosity (6) neural network jet flavor separator uncertainty, (7) ALP-
GEN Monte Carlo factorization and renormalization scale uncertainty (8) uncertainty
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Figure 25: EPD distributions for processes that contribute to the single top (top left),
b-like (top middle), c-like (top right), mistag (bottom left) and tt̄ templates (bottom
middle). All histograms are normalized to unit area. When they are combined to make
the template histograms, the correct relative normalization is used. These histograms
show the two-jet single-tag case.

(j) Process Number of events expected in 2.2/fb Gaussian constraint ∆j

(1) Npred
single top 135.7±19.7 N/A

(2) Npred
bottom−like 757.2±186.9 24.7%

(3) Npred
charm−like 569.2±157.6 27.7%

(4) Npred
Mistag 448.0±74.1 16.5%

(5) Npred
tt̄ 493.3±70.3 14.3%

Table 3: Number of expected single top and background events in 2.2fb−1 of CDF data
used to normalize the likelihood fitter templates and Gaussian constraints.

on the mistag model, (9) uncertainty on the non-W flavor composition, and (10) un-
certainty on the modeling of the Monte Carlo simulation, as estimated from the most
discrepant shapes in the control variables.

Systematic uncertainties can influence both the expected event yield (normaliza-
tion) and the shape of the discriminant distribution.
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Figure 26: EPD distributions for the two-jet double-tag case.

Normalization uncertainties are estimated by recalculating the acceptance using
Monte Carlo samples altered due to a specific systematic effect. The single top nor-
malization uncertainty is the difference between the systematically shifted acceptance
and the default one and are shown in Table 4.

The effect of the uncertainty in the jet energy scale is evaluated by applying jet-
energy corrections that describe ±1σ variations to the default correction factor. Sys-
tematic uncertainties due to the modeling of ISR and FSR are obtained from dedicated
Monte Carlo samples where the strength of ISR/FSR was increased and decreased in
the parton showering to represent ±1σ variations [11]. To evaluate the uncertainty
associated with the specific choice of parton distribution functions, we use the rec-
ommendation from the joint physics group and vary the 40 independent eigenvectors
of the CTEQ parton distribution functions and compare to the MRST PDFs. We
quadratically sum the uncertainty from the CTEQ and MRST PDF uncertainty if the
difference between the CTEQ and MRST PDFs is larger than the CTEQ uncertainty.

The effect of event generator, event detection, b-tag scale factor, and luminosity
uncertainty is determined from the background estimate (for the signal template only;
the background templates have these numbers included in their Gaussian constraints).
The neural network jet flavor separator has a systematically shifted outputs that we
employ as systematic uncertainty. ALPGEN Monte Carlo systematic uncertainties in
shape are estimated from dedicated samples—rate uncertainties are already included
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Figure 27: EPD distributions for the three-jet single-tag case.

in the background normalization uncertainties.

The uncertainty on the mistag model shape is determined by weighting pretag data
with the mistag matrix [19]. The non-W flavor composition is determined from studies
made using the neural net b-tagger to estimate the flavor composition of the non-W
samples. The uncertainty is estimated by comparing the default flavor ratios (45% b,
40% c, 15% light) with an “extreme” estimate (60% b, 30% c, 10% light).

In order to account for possible mis-modeling in Monte Carlo, we assign a systematic
to variables that look sufficiently discrepant to suspect a mis-modeling. We do this by
re-weighting the templates using the distributions of that variable in the sideband of
events which have at least one taggable jet but no tagged jets. Two variables (Figure 29
were chosen for this systematic: the pseudo-rapidity of the second jet, which shows an
excess in data in the far forward region, asymmetrically on the east side; and the
quantity ∆R between the two jets, in which the Monte Carlo comes close but does not
match the data perfectly.

For all backgrounds the normalization uncertainties are represented by the uncer-
tainty on the predicted number of background events, obtained from Method2 and are
incorporated in the analysis as Gaussian constraints in the likelihood fit: G(βj|1, ∆j).
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Figure 28: EPD distributions for the three-jet double-tag case.

The individual ∆j were listed in Table 3.

L(β1, ... , β5; δ1, ... , δ11) =
B∏

k=1

e−µk · µnk

k

nk!
︸ ︷︷ ︸

Poisson term

·
5∏

j=2

G(βj|1, ∆j)

︸ ︷︷ ︸

Gauss constraints

·
11∏

i=1

G(δi, 0, 1)

︸ ︷︷ ︸

Systematics

(15)

where, µk =
5∑

j=1

βj ·
{

11∏

i=1

[1 + |δi| · (εji+H(δi) + εji−H(−δi))]

}

︸ ︷︷ ︸

Normalization Uncertainty

(16)

· αjk
︸ ︷︷ ︸

Shape P.

·
{

11∏

i=1

(1 + |δi| · (κjik+H(δi) + κjik−H(−δi)))

}

︸ ︷︷ ︸

Shape Uncertainty

(17)

All systematic normalization and shape uncertainties are incorporated in the analy-
sis into the likelihood as nuisance parameters, conform with a fully Bayesian treatment
[15]. We take the correlation between normalization and shape uncertainties for a
given source into account [16]. The relative strength of a systematic effect due to
the source i is parameterized by the nuisance parameter δi in the likelihood function,
constrained to a unit-width Gaussian (last term in Equation 15). The ±1σ changes
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in the normalization of process j due to the ith source of systematic uncertainty are
denoted by εji+ and εji− (see Equation part 16). The ±1σ changes in bin k of the HT

templates for process j due to the ith source of systematic uncertainty are quantified
by κjik+ and κjik− (see Equation part 17). H(δi) represents the Heaviside function,
defined as H(δi) = 1 for δi > 0 and H(δi) = 0 for δi < 0. The Heaviside function is
used to separate positive and negative systematic shifts (for which we have different
normalization and shape uncertainties). The variable δi appears in both the term for
the normalization (Equation 16) and the shape uncertainty (Equation 17), which is
how correlations between both effects are taken into account.

We marginalizing the likelihood function by integrating L(β1, β2, β3, β4, β5, δ1, ..δ11)
over the nuisance parameters β2, β3, β4, β5, δ1, ..δ11 for many possible values of the single
top cross-section β1 from [0..5]. The resulting reduced likelihood L(β1) is a function of
the single top cross-section β1 only.

We list all systematic acceptance changes due to systematic uncertainties (aside
from the uncertainty in the background estimate, which includes luminosity, generator,
b-tagging, and heavy flavor uncertainties) in Table 4 and Table 5.

Systematic Process 1 tag 2 tag
JES Single top −0.6% / +0.3% +2.2% / −1.1%
JES b-like +6.0% / −6.6% +9.7% / −9.9%
JES c-like +6.1% / −5.6% +10.0% / −10.0%
JES tt̄ +9.9% / −9.4% +8.5% / −7.6%
ISR Single top +1.9% / +2.1% +0.3% / +6.6%
ISR tt̄ −2.6% / −7.1% +0.6% / −9.4%
FSR Single top +4.8% / −0.7% +7.5% / +0.8%
FSR tt̄ −5.1% / −2.6% −8.0% / −1.7%
PDF Single top −3.0% / +3.0% −2.0% / +2.0%
PDF tt̄ −1.8% / +1.8% −1.7% / +1.7%
mtop Single top +1.7% / −1.1% +1.0% / −0.6%
mtop tt̄ −3.0% / +1.4% +0.5% / +3.0%

Table 4: Rate systematic uncertainties used in this analysis for the W + 2 jet bin .
The mtop samples are used not as a systematic but as a different mass point for the
measurement.

Figures 30 through 38 show the shifts in the distributions caused by shifts of one
standard deviation in the different sources of uncertainty.
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Systematic Process 1 tag 2 tag
JES Single top −9.4% / +10.3% −8.3% / +4.2%
JES b-like +6.8% / −6.3% +9.5% / −10.0%
JES c-like +4.7% / −5.6% +15.4% / −11.4%
JES tt̄ +4.6% / −5.1% +5.5% / −5.1%
ISR Single top −3.3% / −4.8% +5.8% / −5.0%
ISR tt̄ −0.6% / −4.5% −0.5% / −6.6%
FSR Single top −3.3% / −3.8% +2.2% / −2.3%
FSR tt̄ −3.4% / −2.2% −3.4% / −2.7%
PDF Single top −2.6% / +2.6% −1.9% / +1.9%
PDF tt̄ −1.8% / +1.8% −1.7% / +1.7%
mtop Single top +3.2% / −2.7% +2.7% / −2.6%
mtop tt̄ −0.7% / +0.8% −0.6% / −1.0%

Table 5: Rate systematic uncertainties used in this analysis for the W + 3 jet bin.
The mtop samples are used not as a systematic but as a different mass point for the
measurement.
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Figure 29: Distributions which suggest a mis-modeling in Monte Carlo, binned so as
to be flat in data (to reduce the effect of statistical uncertainties) and the resulting
weights assigned: pseudorapidity of the second jet in the two-jet bin, pseudorapidity
of the third jet in the three-jet bin, and ∆R between the jets in the two-jet bin.
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Figure 30: Shape systematics for the single top template.
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Figure 31: Shape systematics for initial and final state radiation and top mass for the
tt̄ template. The top mass samples (170 and 180 GeV/c2) are not used as a source
of systematic uncertainty, but are used to illustrate the change in the shape of the
distribution for different top masses.



41

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

b-like

Jet Energy Scale 2 jet 1 tag

Default

σ+1

σ-1

b-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

2

4

6

b-like

Jet Energy Scale 2 jet 2 tag

Default

σ+1

σ-1

b-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

b-like

Jet Energy Scale 3 jet 1 tag

Default

σ+1

σ-1

b-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

1.4

b-like

Jet Energy Scale 3 jet 2 tag

Default

σ+1

σ-1

b-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

c-like

Jet Energy Scale 2 jet 1 tag

Default

σ+1

σ-1

c-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

0.5

1

c-like

Jet Energy Scale 2 jet 2 tag

Default

σ+1

σ-1

c-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

c-like

Jet Energy Scale 3 jet 1 tag

Default

σ+1

σ-1

c-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

c-like

Jet Energy Scale 3 jet 2 tag

Default

σ+1

σ-1

c-like

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

20

40

60

Mistags

Jet Energy Scale 2 jet 1 tag

Default

σ+1

σ-1

Mistags

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4
Mistags

Jet Energy Scale 2 jet 2 tag

Default

σ+1

σ-1

Mistags

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Mistags

Jet Energy Scale 3 jet 1 tag

Default

σ+1

σ-1

Mistags

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

Mistags

Jet Energy Scale 3 jet 2 tag

Default

σ+1

σ-1

Mistags

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

tt-bar

Jet Energy Scale 2 jet 1 tag

Default

σ+1

σ-1

tt-bar

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

tt-bar

Jet Energy Scale 2 jet 2 tag

Default

σ+1

σ-1

tt-bar

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

tt-bar

Jet Energy Scale 3 jet 1 tag

Default

σ+1

σ-1

tt-bar

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Event Probability Discriminant
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

tt-bar

Jet Energy Scale 3 jet 2 tag

Default

σ+1

σ-1

tt-bar

0 0.2 0.4 0.6 0.8 1

Re
la

tiv
e 

di
ffe

re
nc

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 32: JES systematic uncertainty evaluated in background events.
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Figure 33: Neural net jet flavor separator systematic uncertainty evaluated in back-
ground events.
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Figure 34: Jet flavor separator systematics uncertainty evaluated on the single-top
template.
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Figure 35: Background systematic uncertainties, including mistag model uncertainty,
ALPGEN factorization and renormalization scale uncertainty, and non-W uncertainty.
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Figure 36: Systematic uncertainty due to mis-modeling of last jet pseudo-rapidity.
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Figure 37: Systematic uncertainty due to mis-modeling of last jet pseudo-rapidity.
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Figure 38: Systematic uncertainty due to mis-modeling of ∆R between the two jets.
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Figure 39: Systematic uncertainty due to mis-modeling of ∆R between the two jets.
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3.0.1 Testing the Maximum Likelihood Method

To test the maximum likelihood method, we apply it to many pseudo-experiments.
Each pseudo-experiment consists of a sample of simulated data similar to the one we
would expect to obtain from repeated CDF II experiments. The distribution of fitted
parameters can then be statistically examined.

Each pseudo-experiment consists of an ensemble of EPD values randomly gener-
ated according to the expected EPD distribution (template) for signal and background.
Each pseudo-experiment is composed of Nsingle top, NW+b jets, NW+c jets, NMistag and
Ntt̄ Monte Carlo events, respectively. We first modify the normalization of the tem-
plates by allowing all systematic uncertainties (including background normalization
uncertainty) to fluctuate as a Gaussian with a width determined by their uncertainties.
In the case of asymmetric errors, we take a different Gaussian for positive and negative
values of the nuisance parameter, causing a discontinuity at the central value. Having
arrived at the template normalizations for a given pseudo-experiment, we compute the
particular values of Nsingle top, NW+b jets, NW+c jets, NMistag and Ntt̄ by numerically
Poisson fluctuating the signal and background predictions summarized in Table 3.

Before we draw values from the templates, we first distort the templates by the
shape systematic uncertainties. Each systematic parameter associated with a shape
uncertainty causes each template to change shape, so we distort templates accordingly
before drawing events from them.

Once the systematic uncertainties have been properly accounted for, we randomly
draw Nsingle top, NW+b jets, NW+c jets, NMistag and Ntt̄ events from the Monte Carlo
templates of Figure 21. The obtained dataset represents one pseudo-experiment. The
ensemble of EPD values are, of course, different for each pseudo-experiment.

We test the machinery with a linearity check. This involves taking different input
values of the single top cross section, ranging from zero to four times the Standard
Model expectation, and checking that the median of many pseudo-experiments returns
the fit value that we put in. (We use the median because the Bayesian prior at zero pre-
vents fitted cross sections from getting any lower, thus biasing the mean of results that
go close to zero.) We marginalize all nuisance parameters in each pseudo-experiment
to produce a cross section and plot the median at each value. The resulting plot is
shown in Figure 41. The pull distribution shows that the fitter is unbiased, as shown
in Figure ??.
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Figure 40: A check of the linearity of the likelihood and marginalization machinery in
pseudo-experiments generated at different values of the single top cross section. The
line is a diagonal line representing the ideal values and the markers indicate the median
values of the pseudo-experiments at each point. The yellow band covers 68% of the
pseudo-experiments and the green band covers 95%.
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Figure 41: The pulls from the linearity check. We add the pulls for all different values
of beta greater than 0.8. Because of the cutoff in the Bayesian prior, we cannot plot
unbiased pulls near a beta of zero.
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3.0.2 Multiple Fit Regions

To increase the sensitivity of the analysis, we create separate templates for the un-
triggered muons, which have a substantially different background composition from
the rest of the subdetectors. We create templates for single and double tags separately,
and for the two-jet and three-jet bins separately. We fit for one common cross section
across all eight different regions when we perform the final fit. This allows us to include
information from

3.0.3 Template Binning

We performed a test in each of our twenty channels to determine the optimal bin-
ning. Once the effect of Monte Carlo statistics was considered, we saw little change
in sensitivity with the number of bins, and we settled on 40 bins, which gave a 1%
improvement over the 30-bin templates.
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3.1 Cross Check of the Method

We have seen in previous sections how the event-probabilities are defined and cal-
culated. In this section we cross-check whether the MC prediction of the event-
probability-discriminant
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Figure 42: Comparison of the event probability input 4-vectors for untagged W + 2 jet
control data (with at least one taggable jet) compared to the Monte Carlo prediction.

represents the data well without looking at the single top candidate events. We
choose the “taggable but not tagged” side-band data. That is, we select W+2 jets
events according to our nominal event selection and require that at least one jet is
taggable but that neither are tagged by the SECVTX algorithm. This event selection
is orthogonal to the single top signal region while it still represents a very similar kine-
matic event topology. Another advantage is that this sample has very little contribution
from top (<0.5%). The measured quantities which are input in the probabilities are
the same as in the single top analysis, namely the measured four-vectors of the lepton
as well as the measured four-vectors of the leading and second leading jet. Figures 42
and 43 shows data/Monte Carlo comparisons for the measured four-vector components
of the lepton and the two jets. Figures 44 and 45 shows the transverse momentum and
pseudo-rapidity distribution for the same reconstructed objects. We use ALPGEN W
+ 2 jet Monte Carlo and W + 2 jet data events. The Monte Carlo distributions are
normalized to the data. We find generally good agreement between data and Monte
Carlo prediction. We also plot the distribution of the event probability discriminant
shown in Figure 46. The agreement is good, which assures us that the event probability
discriminant in Monte Carlo is well represented by data.
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Figure 43: Comparison of the event probability input 4-vectors for untagged W + 3 jet
control data (with at least one taggable jet) compared to the Monte Carlo prediction.
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Figure 44: Comparison of the event probability input pT and pseudo-rapidity distribu-
tion for untagged W + 2 jet control data (with at least one taggable jet) compared to
the Monte Carlo prediction.

We also cross-checked the shape of our tt̄ template by looking in the tt̄-enriched
data tagged lepton + 4 jets sample. Figure 47 shows the comparison. The lepton
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Figure 45: Comparison of the event probability input pT and pseudo-rapidity distribu-
tion for untagged W + 3 jet control data (with at least one taggable jet) compared to
the Monte Carlo prediction.

+ 4 jets sample has an expected tt̄ contribution of about 75%. In these plots, the
Monte Carlo distributions are normalized to the data. Within statistics, we find good
agreement in the data and Monte Carlo shapes.

After performing cross-checks in data sidebands, we take a look at the tagged W+2
jets data. Figures 48 and 49 show all six input variables. We compare data to Monte
Carlo distributions normalized to the Method 2 prediction for the tagged W+2 jets
data, i.e. the single top signal region. For shape comparison, the stacked Monte
Carlo distributions are scaled to the data using an overall scale factor of 1.15. Within
uncertainty, we find good agreement between data and Monte Carlo.
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Figure 46: Comparison of the event probability discriminant for W+ 2 jet Monte Carlo
and W+ 3 jet data in the ’taggable but untagged’ control sample. The error bars on
the data points are Gaussian errors.
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Figure 47: Comparison of the event probability discriminant for lepton + four jets data
and Monte Carlo, using the leading two jets in the matrix element calculation. Only
the data and the dominant tt̄ sample were processed; the other backgrounds use the
two-jet shapes. The left-hand plots are the single tagged events and the right-hand
plots are double-tagged. The top plots are in the two-jet bin and the bottom plots are
in the three-jet bin.
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Figure 48: Comparison of the event probability input variables for Monte Carlo pre-
diction and data in the W+2 jet signal region.
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Figure 49: Comparison of the event probability input variables for Monte Carlo pre-
diction and data in the W+3 jet signal region.
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4 Result with CDF II Data

We apply the analysis to 2.2 fb−1 of CDF Run II data. We compare the EPD distri-
bution of 2260 candidate events with the sum of predicted single top and background
templates.

In order to extract the most probable single top content in the data we perform the
maximum likelihood method described in Section 2.9. The posterior p.d.f is obtained
by using Bayes’ theorem:

p(β1|data) =
L∗(data|β1)π(β1)

∫ L∗(data|β ′
1)π(β ′

1)dβ ′
1

where L∗(data|β1) is the reduced likelihood and π(β1) is the prior p.d.f. for β1. We
adopt a flat prior, π(β1) = H(β1), in this analysis, with H being the Heaviside step
function.

The most probable value (MPV) corresponds to the most likely combined single
top production cross section given the data. The uncertainty corresponds to the range
of highest posterior probability density which covers 68.27% [6].

We perform marginalization using the likelihood function of Equation 15 with all
systematic rate and shape uncertainties included in the likelihood function. The most
probable value for the single top cross section is obtained at 2.3+0.8

−0.7 pb. The posterior
probability density is shown in Figure 51.

It is useful to check that our background constraints are not biasing our answer by
performing an unconstrained fit, in which the Gaussian constraints on the background
normalizations are removed. Unfortunately, such a fit has no meaning in a marginal-
ization method, so to use the information we must perform a fit, profiling the nuisance
parameters. This can only be done reliably when the nuisance parameters are smooth
and symmetric, so we perform the fit with only the background constraints and without
the additional systematic uncertainties. The resulting fit gives a value of 2.6+0.7

−0.7 pb,
and the resulting templates are shown in Figure 52.

If we remove the constraints and perform the fit again, we get a fit value of 2.7+0.8
−0.7.

The resulting templates are shown in Figure 53. This indicates that our normalization
constraints are not biasing our answer.

5 Expected Sensitivity and Hypothesis Test

We interpret the result using the CLs/CLb method developed at LEP [20]. We compare
our data against two models, one asserting that the data is due to background processes
only (b) and one which includes Standard Model single top production in addition to
the background processes (s+b). We propagate all systematic uncertainties in our
statistical method as described in the next section 3. Using the test statistic Q =
L(data)|s+b

L(data)|b
we compute the probability (p-value) that the background only (b) model

fluctuated equal or up to the observed value Qobs in the data (observed p value) and
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Figure 50: CDF data compared to Monte Carlo prediction for signal and background.
The top plots show the two-jet bin while the bottom plot shows the three-jet bin;
the left-hand plots show the single-tagged events while the right-hand plots show the
double-tagged events.

to the median Q value of signal+background (s+b) pseudo-experiments (expected p-
value). Figure 54 shows the distribution of the test statistics for pseudo-experiments
performed for (b) and (s+b). We expect a p-value of 3 × 10−4 % (4.5σ). and observe
a p-value of 0.03% (3.4σ) in the data.

6 Measurement of |Vtb|
We can measure the CKM matrix element |Vtb| by using the fact that the cross section
of single-top processes is proportional to |Vtb|2 (due to the single tb electroweak vertex in
the Feynman diagram). Therefore, we need only take the square root of our measured
cross section divided by the expected Standard Model cross section. This measurement
assumes |Vtd|2 + |Vts|2 << |Vtb|2 and a Standard Model V-A and CP-conserving Wtb
vertex.
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Figure 51: Marginalized likelihood of the single top cross section using 2.2/fb of data.
The error band shows the 68% uncertainty (all systematics included) on the measure-
ment.

We account for theory uncertainty due to the dependence of the single top cross-
section on the top quark mass, the factorization and renormalization scales, parton
distribution functions and the value of αs as discussed in [22]. We measure: |Vtb| =
0.90+0.14experiment

−0.15 ± 0.07theory.
We can also calculate a lower limit on |Vtb| by integrating our posterior probability

density in |Vtb|2. Using a flat prior for |Vtb|2 from 0 to 1 we obtain |Vtb| > .64 at 95%
confidence (see Figure 55).

7 Conclusions

We have used the matrix element analysis technique in a direct search for electroweak
single top quark production. Our search was done simultaneously for s-channel and
t-channel single top production. To extract the most probable single top content in
data, we apply a maximum likelihood technique. All sources of systematic rate and
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Figure 52: Matrix element EPD fit with only background normalization uncertainties
constrained to their predicted values.

shape uncertainty are included in the likelihood function. We have analyzed 2.2 fb−1of
CDF Run II data and measure a combined s- and t-channel single top production cross
section of:

σsingletop = 2.3+0.8
−0.7 pb (all systematics included)

assuming a top quark mass of 175 GeV/c2. This allows us to measure the value of
|Vtb| = 0.90+0.14experiment

−0.15 ± 0.07theory and set a limit of |Vtb| > 0.64 at 95% confidence.
We use the MCLIMIT program [20] to calculate the signal significance. The observed
p-value in 2.2fb−1 of CDF data is 0.00021. The expected (median) p-value in pseudo-
experiments is 0.0000050.
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A Calculation of Phase Space for Single Top Events

For s-channel single top events3, qq′ → tb̄ → bb̄lν, the phase space factor can be written
as:

dΦ4(q1 + q2; p1, p2, p3, p4) = δ4(q1 + q2 −
4∑

i=1

pi)
4∏

i=1

d3~pi

(2π)32Ei

(18)

where q1 and q2 are the four momenta of the initial quarks; p1, p2 are the four momenta
of the b and b̄ quark, respectively; and p3, p4 are the four momenta of the lepton and
neutrino, respectively. It is convenient to change variables from momenta (~p1, ~p2, ~p3, ~p4)
to (ρ1, Ω1, ρ2, Ω2, ~pl, ~pν,T , mW ) where ρi = |~pi| is the absolute momentum of the quarks,
Ωi are the quark solid angles, and mW is the mass of the W boson. One way to perform
the transformation is to use the recursive character of the phase space [6]:

4∏

i=1

d3~pi

(2π)32Ei

= δ(p2
W − m2

W )dm2
W

4∏

i=1

d3~pi

(2π)32Ei

=
dm2

W

| ∂p2

W

∂pν,z
|

d3~pl

(2π)32El

d~pν,T

(2π)32Eν

2∏

i=1

ρ2
i dρidΩi

(2π)32Ei

(19)

In the last step, the δ-function was integrated with respect to pν,z using:

∫

f(x)δ[g(x)]dx =
f(a)

|g′(a)| , at g(a) = 0 (20)

The partial derivative becomes (neglecting neutrino and lepton masses):

∂p2
W

∂pν,z

=
∂(pl + pν)

2

∂pν,z

=
∂

∂pν,z

(m2
l + m2

ν + 2ElEν − 2pl,zpν,z − 2~pl,T~pν,T )

= 2El

pν,z

Eν

− 2pν,z (21)

Finally, we substitute Equation 19 into Equation 18 and integrate two δ-functions
with respect to the transverse momentum of the neutrino ~pν,T . The remaining two
δ-functions are integrated with respect to the initial quark’s longitudinal momentum
and energy in the event probability. The expression for the phase space for single top
events is:

dΦ4 = δ(Eq1
+ Eq2

−
4∑

i=1

Ei) δ(pq1,z + pq2,z −
4∑

i=1

pi,z)

× dm2
W

|2El
pν,z

Eν
− 2pν,z|

d3~pl

(2π)32El

1

(2π)32Eν

2∏

i=1

ρ2
i dρidΩi

(2π)32Ei

(22)

3and similar for other W + 2 jet topologies
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B Comparison of profiling and marginalizing like-

lihoods

The Bayesian prescription for dealing with nuisance parameters (systematic uncertain-
ties, in this case) is to integrate them out, a procedure often referred to as “marginaliza-
tion” [6]. However, it is often more convenient to fit the nuisance parameters instead,
usually referred to “profiling.”. Profiling has two major advantages: it is faster to run
and simpler to implement (using the well-understood MINUIT package), and it gives
best-fit values for not only the parameter of interest (cross section) but also for all the
nuisance parameters, which provides interesting extra information.

However, profiling is only an approximation to the proper Bayesian method, and its
validity as an approximation relies upon certain criteria. In particular, it requires the
shape of the reduced likelihood function for all nuisance parameters to be smooth with
single peaks, because it uses the best fit value and error in place of a full integration.
A reduced likelihood shape, that has two sharp peaks will not be treated properly by
the profiling approximation.

Because of its advantages in implementation and speed, we used profiling in past
analyses and planned to use it in this one. However, in this analysis, we found that
several of our reduced likelihood distributions had a double-peak structure: the most
severe case we found came from the the jet energy scale nuisance parameter (Figure 56).
Most likely, the choice of asymmetric rate and shape uncertainties are the cause of the
observed double peak structures in the distribution of the reduced likelihood functions
for some nuisance parameters. We concluded that the profile likelihood method was
not a proper approximation of the full Bayesian method in this particular case and
decided to switch to a fully marginalization method as provided by MCLIMIT [20].

We tested the coverage of the profiling method by fitting ten thousand pseudo-
experiments thrown in the way discussed in section 3.0.1. We only use the systematic
uncertainties from the background normalizations in this test because we know that
asymmetric errors are untrustworthy in the profiling method. We plot the central
fit values, fit error, and pull ((true value - fit value) / fit error) for each parameter,
following the prescription for asymmetric errors and Gaussian constraints given in [21].
The results are plotted in Figure 57 and show that we have coverage in this method.

We verified that marginalization and profiling yielded the same result when only
symmetric systematic uncertainties were present. These uncertainties are Gaussian
by construction and thus should come out the same for both methods. Adding the
jet energy scale systematic caused both answers to shift, but by different amounts, as
expected, because profiling responds incorrectly to the systematic uncertainty.
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Figure 56: A profiled likelihood scan of the jet energy scale nuisance parameter. The
double-peak structure indicates that profiling will be unable to properly handle this
parameter and motivates the switch to marginalization.
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Figure 57: A profiled likelihood scan of the jet energy scale nuisance parameter. The
double-peak structure indicates that profiling will be unable to properly handle this
parameter and motivates the switch to marginalization.
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