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Abstract We compute and investigate the behavior of
scalar quasinormal frequencies for static, asymptotically anti
de Sitter nh-stu black hole solution of N = 2, D = 4
supergravity. We report their exact expression when the hori-
zon topology is flat. The modes are purely imaginary unless
they carry high angular momentum number. These modes
for spherical horizon topology were numerically computed
by using continued fraction method and found to be of two
kinds. One such family consists of purely negative imagi-
nary modes. The other family consists of complex modes
with their imaginary part always negative, depicting stabil-
ity of black holes against scalar perturbations. The complex
modes show symmetry about imaginary axis, linear relation-
ship with inverse temperature for large horizon radius and
increased oscillation frequency for higher harmonics. Many
of these properties are common to a family of black holes
which asymptotes to anti de Sitter space, thus pointing to
common features of thermalization dynamics of a class of
dual holographic theories.

1 Introduction

Due to unique combination of presence of high curvatures
in their geometry and simplicity of many of the known solu-
tions, black holes have remained promising candidates to
learn about novel quantum aspects of gravity. One useful
such property is given by quasinormal modes in the black
hole background. When one perturbs a black hole or its sur-
rounding geometry, the perturbation oscillates like a normal
mode of a closed system. These perturbations always decay
with the corresponding frequencies usually being complex. A
class of them either radiate out to infinity (for asymptotic flat
or de Sitter case) or vanish at the boundary (for asymptotic
anti de Sitter case). Such black hole oscillations are known as
“quasi-normal modes” and they encode important properties
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about the dynamics of the black hole. The negative imaginary
part of the complex frequencies is inversely proportional to
the temperature of black hole. Quasinormal modes dominate
the late time behaviour of the dynamics of the black hole akin
to hydrodynamic modes. In the later stages of black hole for-
mation, the gravitational waves include certain quasinormal
modes that dominate the emission.

Quasinormal modes of black holes have been an interest-
ing topic of discussion because they are those characteristics
of black holes which do not depend on initial perturbations
and are functions of black hole parameters only. This means
that quasinormal modes encode unique characteristic fea-
tures which hopefully can lead to the direct identification
of the black hole existence. Recent interest in quasinormal
modes of black holes arose since these quasi-normal frequen-
cies are relevant to experiments for detecting gravitational
waves such as the recent detection by LIGO of these waves
emanating from colliding black holes [1]. The gravitational
waves can also be emitted from supernovae or coalescence
of binary neutron stars, which are thought to eventually form
a black hole. Such waves, at late times, can have frequen-
cies or features similar to those calculated for quasinormal
modes. In general, quasinormal modes are important in black
holes dynamics and appear in processes such as birth of black
holes, collisions of two black holes, decay of different fields
in a black hole background, etc [2–4].

Another source of interest in quasinormal modes is due
to existence of a correspondence between asymptotic anti de
Sitter gravity and quantum field theory in flat space-time,
widely known as gauge/gravity correspondence [5]. Accord-
ing to this correspondence, a large static black hole in asymp-
totically AdS spacetime corresponds to an approximately
thermal state of conformal field theory. The perturbation in
the black hole corresponds to perturbation in thermal state,
and the decay of the perturbation describes the return to the
thermal equilibrium. So we can obtain a prediction for ther-
malization time scale in the strongly coupled field theory by
introducing a perturbation in holographically dual AdS black
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hole solution which will ultimately evolve according to the
quasi-normal frequencies. Thus, the quasinormal mode of an
AdS black hole has an interpretation as a time scale for the
approach to thermal equilibrium. Moreover, these modes are
also related to Green’s function of appropriate operator cor-
responding to the perturbation in holographically dual field
theories. There, the poles of the Green’s function are the
quasi-normal frequencies. Thus, quasinormal modes using
this duality has led to important progress in our understand-
ing of the physics of a class of gauge theories [6–9].

An asymptotic anti de Sitter black hole in gauged super-
gravity theories provides a dual description of certain
strongly coupled non abelian quantum field theory at finite
temperature. Due to inherent symmetries, these theories are
more amenable to calculations and have been well studied in
literature as a representative of black holes in presence of var-
ious matter. For more richer situations, we choose in this arti-
cle to calculate quasi-normal modes of scalar perturbations in
the background of BPS black hole solution inN = 2, D = 4
Fayet-Iliopoulos gauged supergravity theories which contain
certain scalar potential and a non-homogenous special Kahler
manifold parameterized by the vector multiplet scalars [10].
The solution is referred as a non-homogeneous deformation
of stu model (nh-stu). The remainder of the paper is organized
as follows. In Sect. 2, we briefly review the nh-stu black hole
solution of N = 2, D = 4 supergravity. In Sect. 3, we drive
the scalar field equation in this black hole background. We
solve it to get exact quasinormal modes for flat horizon topol-
ogy in Sect. 4. In Sect. 5, we analyze the field equation for the
case with spherical horizon topology to express an implicit
equation for quasinormal modes using modified version of
continued fraction method [11–14]. Numerical results from
computation of quasinormal modes and their behavior are
discussed in Sect. 5.1. The concluding Sect. 6 contains some
outlook and scope for future studies.

2 Review of N = 2, D = 4 supergravity solution

We present a brief description in this section of a solution of
N = 2, D = 4 supergravity coupled to nV Abelian vector
multiplets. More details are available in original paper [10].
We represent the space time indices by greek letters. The
bosonic field content consists of a veilbein eaμ, nV +1 vector
potentials denoted as AΛ

μ with Λ = 0, . . . , nV and nV com-
plex scalars denoted as zi with i = 1, . . . , nV . The vector
potential A0

μ denotes graviphoton while the rest of them are
components of vector supermultiplets.

The scalar moduli space is a special Kahler manifold. It
is a symplectic bundle over a base of nV dimensional Hodge
Kahler manifold with covariant holomorphic sections

V =
(

LΛ

MΛ

)
. (1)

Kahler covariant derivative is denoted as

DiV = ∂iV − 1

2
(∂iK)V. (2)

Here, K is the Kahler potential. A symplectic inner product
constraint i〈V,V〉 = 1 restricts the section V which can also
be written in terms of a holomorphic symplectic vector as

V = eK/2

(
X A

FA

)
. (3)

The couplings between vectors and scalars are given by a
field dependent matrix NΛΣ = RΛΣ + iIΛΣ , where RΛΣ

and IΛΣ are real and imaginary parts of NΛΣ . The relation
is written as

MΛ = NΛΣ LΣ and Di M̄Λ = NΛΣ Di L̄
Σ. (4)

One also constructs a superpotential L using a symplectic
inner product between Fayet-Illioupoulos parameters G =
(gΛ, gΛ) and symplectic vector V as L = 〈G,V〉. The scalar
potential is given in terms of the superpotential as Vg =
gi j̄ DiLD̄ j̄ L̄ − 3|L|2.

The bosonic Lagrangian is

L = R

2
− gi j∂μz

i∂μ z̄ j + 1

4
IΛΣ FΛ

μνF
Σμν

+ 1

8
√−g

εμνρσRΛΣ FΛ
μνF

Σ
ρσ − Vg. (5)

A metric ansatz for a static and spherically symmetric
black hole is taken in [10],

ds2 = −e2U (r)dt2 + e−2U (r)(dr2 + e2ψ(r)dΩ2
κ ), (6)

where dΩ2
κ = dθ2 + f 2

κ (θ)dφ2 is a constant curvature 2D
metric with fκ = (sin θ, θ, sinh θ) for hyperbolic, flat and
spherical metrics denoted by κ = (1, 0, −1) respectively.
The solution can be written containing a metric

ds2 = −e2U (r)dt2 + e−2U (r)(dr2 + e2ψ(r)dΩ2
k ), (7)

e2U (r) = (ar2 − c1)
2

l2A(ar − c4)
√

(ar + 2c2)(ar + 2c3)
,

e2ψ = (ar2 − c1)
2,

where lA is the radius of the asymptotic AdS metric which
will be taken to be unity from now onwards [10]. The con-
stants c1, c2, c3 and c4 can be expressed in terms of gauge
couplings, charges and a parameter denoting nonhomogene-
ity. Moreover, c4 = c2 +c3 and constant a can be set to unity
by scaling radial variable. The above solution represents a
black hole, with a horizon at r0 = √

c1/a. Three charges
and FI parameters together satisfy Dirac quantization condi-
tion given as g0 p0 − gi pi = −κ . In terms of the parameters
chosen here, this constraint assumes the form

3c2
2 + 3c2

3 + 2c2c3 − 2r2
0 = −κ. (8)
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The topology of horizon can be either spherical, flat or hyper-
bolic, corresponding to the value of κ = (1, 0,−1). In the
asymptotic limit r → ∞, the metric in Eq. (7) becomes
AdS4. On the other hand, when r approaches the horizon
r0, the spacetime becomes AdS2 × Σ . The metric con-
tains three free parameters and full general analysis will
be tedious. However, one can obtain some simplification by
looking at a particular subset of the parameter space where
c4 = 2c2 = 2c3. We will focus on this representative metric
among the above family of metrics given in Eq. (7) in later
sections. The metric now reduces to

ds2 = − (r2 − r2
0 )2

(r2 − c2
4)

dt2 + (r2 − c2
4)

(r2 − r2
0 )2

dr2 + (r2 − c2
4)dΩ2

κ .

(9)

Dirac quantization condition now determines the parameter
c4 in terms of horizon radius and curvature of horizon,

c4 =
√

1

2
(2r2

0 − κ). (10)

The black hole in Eq. (9) has a temperature T−1 = 2πr0(1−
B), where B denotes

c2
4
r2

0
.

3 The scalar field equation

We further explore the solution in previous section by study-
ing scalar perturbations in its background. Perturbations of
gravity solutions are very important to study their intrinsic
properties, such as their natural frequencies and to test their
stability against such perturbations. The study of perturba-
tions of gravitational objects, such as a black hole is closely
linked to the gravitational wave emission. The perturbations
are falling into the black hole at the horizon and are outgo-
ing at the boundary for asymptotic flat spacetimes. Since the
potential for asymptotic AdS space time rises exponentially
near the boundary, the perturbation modes vanish there for
such cases. Each frequency of emission spectrum is usually
complex whose real part tells about oscillations of the per-
turbations and the imaginary part is related to the damping
timescale. These modes are called quasi-normal modes. The
simplest such perturbations are scalar perturbations. In order
to compute the quasinormal modes associated with decay of
the scalar field around our 4 dimensional nh-stu black hole,
we must solve the Klein Gordon equation for scalar expressed
as[

1√−g
∂μ(

√−ggμν∂ν) − m2

]
Φ = 0, (11)

where the determinant of metric (7) is,
√−g = e(2ψ(r)−2U (r)) fκ(θ). (12)

Thus, we get the following scalar field equation for our black
hole background,

∂r [e2ψ(r)∂rΦ] − e(2ψ(r)−4U (r))∂2
t Φ

+ 1

fκ(θ)
∂θ [ fκ(θ)∂θΦ] + 1

f 2
κ (θ)

∂2
φΦ

−m2e(2ψ(r)−2U (r))Φ = 0, (13)

where we have rearranged the terms so that the separability of
the equation is apparent. This form, along with the spherical
symmetry and time independence of the metric, suggests the
following decomposition of the solution in terms of radial
and angular variables,

Φ = e−iωt R(r)Y l
m(θ, φ). (14)

Here, Y l
m(θ, φ) are spherical harmonics and l denotes the

angular momentum number. The radial part of the field equa-
tion turns out to be,

∂r [e2ψ(r)∂r R] + [ω2e(2ψ(r)−4U (r))

−l(l + 1) − m2e(2ψ(r)−2U (r))]R = 0. (15)

After substitution of the values of metric coefficients, the
equation reduces to

d2R

dr2 + 4r

(r2 − r2
0 )

dR

dr
+

[
ω2(r2 − c2

4)
2

(r2 − r2
0 )4

− l(l + 1)

(r2 − r2
0 )2

− m2 (r2 − c2
4)

(r2 − r2
0 )2

]
R = 0. (16)

It will be convenient for later analysis to map the entire region
of interest (r0 < r < ∞), into a finite parameter range. In

order to do so, we change the variable to z = 1− r2
0
r2 , resulting

in

4z(1 − z)
d2R

dz2 + 2(4 − 3z)
dR

dz

+ 1

r2
0

[
κ2(z)ω2

z3 − l(l + 1)

z
− m2r2

0 σ(z)

z(1 − z)

]
R = 0, (17)

where σ(z) = (1 − B) + Bz. The new dimensionless vari-
able z vanishes at the horizon and approaches unity at the
boundary. We need to take into account horizon topology for
further analysis.

4 Quasinormal modes for flat horizon topology

We consider here the case when the geometry along two
transverse spacelike directions is a plane. This subspace is
conformally flat and horizon of the black hole has flat topol-
ogy. This is also denoted by κ = 0 case in Sect. 2. One obtains
additional simplification of the scalar equation in this case
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so that one can analyze the problem analytically and obtain
exact expressions for the quasinormal modes even with non
trivial scalar mass. In this section, we elaborate in this direc-
tion. The constant c4 simplifies to be equal to the horizon
radius r0. The constant B in the differential equation reduces
to unity. The scalar field equation for general mass simplifies
to become

2z2(1 − z)
d2R

dz2 + z(4 − 3z)
dR

dz

+
[

ω2 − l(l + 1)

2r2
0

− m2z

2(1 − z)

]
R = 0. (18)

It has regular singular points at 0, 1 and ∞ and hence, it
offers exact solution in terms of hypergeometric function.

R(z) = zα(1 − z)s−αF

[
s, s + 1

2
, 2α + 2, z

]
, (19)

where,

α = −1

2
− i

2r0

√
ω2 − l(l + 1) − r2

0 ,

s = 1

4
+

√
4m2 + 9

4
− i

2r0

√
ω2 − l(l + 1) − r2

0 . (20)

The above solution is ingoing at the horizon. The conjugate of
the above solution will be another independent solution of the
differential equation. Since it is outgoing at the horizon, we
can neglect it and focus on the solution in Eq. (19) above. We
require the solution in (19) to be vanishing at the boundary
for quasinormal frequencies. Hence, we expand the solution
at boundary using an identity satisfied by hypergeometric
function. ( See for example, (15.3.6) of [15].)

R(z) ∼ zα(1 − z)s−α Γ [2α + 2]Γ [2α − 2s − 3/2]
Γ [a]Γ [a − 1/2]

×F

[
s, s + 1

2
, 2s − 2α − 1

2
, 1 − z

]

+zα(1 − z)α−s+3/2 Γ [2α + 2]Γ [2s − 2α − 3/2]
Γ [s]Γ [s + 1/2]

×F

[
a, a − 1

2
, 2α − 2s + 5

2
, 1 − z

]
, (21)

where, a = 2α + 2 − s. The asymptotic behavior at the
boundary of the two parts of the above solution determines
that the former is a non normalizable mode and the latter is a
normalizable mode. The latter mode vanishes as (1 − z)−β ,
with β = (

√
4m2 + 9 − 9)/4 as one approaches boundary.

To satisfy the quasinormal mode boundary conditions, the
whole solution should vanish at the boundary. So we need
the coefficients of non normalizable mode to vanish, which
occurs if either 2α − s + 2 + n = 0 or 2α − s + n + 3

2 = 0
for n ≥ 0 is satisfied. It results in the Gamma function in the
denominator of the coefficient of the non normalizable mode

to diverge. These two conditions can together be written as

4α − 2s + 3 + n = 0 for n ≥ 0,

i.e.
2i

r0

√
ω2 − l(l + 1) − r2

0 = 2n + 1 −
√

4m2 + 9.

(22)

It can be rewritten to obtain an expression for quasinormal
frequency as

ω2 = l(l + 1) + r2
0 − r2

0

4

[
2n + 1 −

√
4m2 + 9

]2
, (23)

with ω being the positive imaginary root of the above expres-
sion. Hence, we observe that in this peculiar case, any quasi-
normal mode is going to be purely imaginary. Another pecu-
liarity is that one can get real ω for large angular momentum
number. Such modes are purely oscillating at the horizon
and shouldn’t contribute to decay of the perturbations. Since
the asymptotic metric is anti de Sitter space, we can think
of boundary value of scalar field acting as a source for per-
turbations for certain operator O in the dual field theory in
the context of gauge/gravity correspondence. The form of
two point Green’s function of the dual operator can be easily
calculated from the expression (21) to be

G[O,O] ∼ Γ [a]Γ [a − 1/2]Γ [2s − 2α − 3/2]
Γ [s]Γ [s + 1/2]Γ [2α − 2s − 3/2] . (24)

Hence, the quasinormal modes can also be interpreted as
poles of the above Green’s function [3,4,16,17].

5 Quasinormal modes for spherical horizon topology

We focus in this section on the case when a two sphere metric
is transverse to radial direction. It is also referred as κ = 1
in section (2). Since the quasinormal modes represent decay
of the perturbations in the gravity background, the dominant
ones will be those that can be easily excited. We will hence
restrict this study to massless modes i.e. we take m = 0. The
radial equation reduces to

d

dr

[
e2ψ(r) dR

dr

]
+ [ω2e(2ψ(r)−4U (r)) − l(l + 1)]R = 0.

(25)

The above Eq. (17) is a second-order ordinary differential
equation with only one irregular singularity at z = 0, which
makes the series expansion about the horizon divergent. So,
it does not offer solution using Frobenius method. We further
investigate it for its asymptotic behavior.

1. Behavior near horizon: As we approach horizon, r →
r0, x → 1 and z → 0. One can assume the solution near the
boundary as R(r) = exp[ψ(r)] inspired by WKB method
to find solution and obtain non linear equation for ψ(r).
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Expanding ψ(r) in series and keeping the leading terms and
appropriate sign leads to

R → z−
i
4 (1+B)ω exp

(
i(1 − B)ω

2z

)
(1 + · · · ). (26)

The sign is chosen so that the field radiate only in inward
direction at the horizon. The horizon radius r0 is set to unity
by redefining ω and l.

2. Behavior near boundary,
Near boundary, r → ∞, x → 0 and z → 1. The boundary

z = 1 is a regular singularity of the equation, thus latter
admits a power series solution near the boundary,

R → (1 − z)3/2(1 + · · · ). (27)

Appropriate sign is chosen above so that the solution decays
at infinity.

In order to impose both the requisite boundary conditions,
we consider the following expansion of the solution

R = (1 − z)3/2z−
i(1+B)ω

4 e
i(1−B)ω

2z

∞∑
n=0

an(1 − z)n (28)

The quasi-normal mode boundary condition are satisfied if
and only if

∑
an(1 − z)n converges at both boundaries. To

examine the convergence of above summation, we first obtain
the recurrence relation of coefficients an of the Eq. (28). To
do so, we substitute the above series expansion (28) into Eq.
(17) and we obtain a three term recurrence relation:

α0a1 + β0a0 = 0, (29)

αnan+1 + βnan + γnan−1 = 0. (30)

Here, the recurrence coefficients are,

αn = −8(n + 1)(2n + 5)

βn = (32n2 − 32n + 48) + 4l + 4l2 − 30iω + 10i Bω

−4ω2 + n(112 − 24iω + 8i Bω)

γn = −(16n2 − 48n + 80) + 14iω + 14i Bω + ω2

+2Bω2 + B2ω2 + 8(n − 1)i(9i + ω + Bω)

The recurrence coefficients αn, βn and γn are simple func-
tions of n and the parameters (l, B and ω) of the differential
equation.

One possible way to test convergence of the power series in
(28) at both the boundaries is to analyze the large-n behavior
of an+1

an
.

The ratio of the successive an will be given by the infinite
continued fraction,

an+1

an
= − γn+1

βn+1 − αn+1γn+2

βn+2 − αn+2γn+3

βn+3 − · · ·

(31)

We obtain a characteristic equation for quasi-normal frequen-
cies by evaluating (31) at n=0,

a1

a0
= − γ1

β1 − α1γ2

β2 − α2γ3

β3 − · · ·

(32)

Alternatively, the above ratio can also be determined using
Eq. (29) to be

a1

a0
= −β0

α0
. (33)

Using the above two relations, one obtains the desired char-
acteristic equation,

β0 − α0γ1

β1 − α1γ2

β2 − α2γ3

β3 − · · ·

= 0. (34)

The roots of the above equation will be the sought after quasi-
normal frequencies.

5.1 Numerical results

To determine the quasi-normal frequencies we have to find
the roots of the desired characteristic equation (34) which
involves an infinite continued fraction whose elements are
functions of the frequency. The suitable frequency satisfying
them can be found numerically using Newton-Raphson root-
finding algorithm.1 The elements of the infinite continued
fraction are functions of ω and we can get more number of
quasi-normal frequencies as roots by increasing the number
of terms in the continued fraction. The characteristic equation
have an infinite number of terms, so we need to make an
approximation by truncating it to certain number of terms
before looking for the roots. So, for any desired accuracy,
one needs to find the roots of the equation by increasing the
number of terms in the truncated continued fraction. For a
root with lowest imaginary value, we plot a graph between
its imaginary part vs number of iterations.

From the Fig. 1, we can see the quasi-normal modes are
fast converging with increasing the number of iterations. We
estimate the convergence to be exponential and fit these con-
verging data as a function of number of iterations (n),

ω = a + b exp

(−n

c

)
(35)

where, a = −0.448261 , b = −3.75736 and c = 8.51034
with goodness of fit parameter χ2 = .00083. Lower the value

1 We implemented root finding algorithm using MATHEMATICA soft-
ware.
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0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations (n)

-I
m
( ω

)

B=1/2

l=2

Fig. 1 ω with n for B = 1/2

Table 1 Quasi-normal frequencies for B = 1/2

l n Re(ω) Im(ω) l n Re(ω) Im(ω)

0 25 0.8573 −3.1686 2 25 2.3539 −2.6727

26 0.8640 −3.1364 26 2.3541 −2.6730

27 0.8609 −3.1079 27 2.3544 −2.6732

28 0.8503 −3.0840 28 2.3547 −2.6732

39 0.8337 −3.0652 29 2.3548 −2.6731

30 0.8120 −3.0652 30 2.3550 −2.6729

1 25 1.3909 −2.8650 3 25 3.3729 −2.5954

26 1.3984 −2.8665 26 3.3729 −2.5954

27 1.4045 −2.8648 27 3.3729 −2.5954

28 1.4086 −2.8612 28 3.3729 −2.5954

29 1.4105 −2.8569 29 3.3729 −2.5954

30 1.4106 −2.8525 30 3.3729 −2.5954

of c, the faster will be the convergence, thus requiring lower
number of terms for any given desired accuracy. We also list
the values in Table 1.

From the table, we can say that for each value of l after
taking 30 number of terms in the continued fraction, quasi-
normal frequency is becoming constant up to two decimal
points. So we decided to truncate with 30 number of terms
for further results and calculations. One notable aspect of
our calculation is that we also obtained some purely imagi-
nary modes as quasinormal frequencies even using continued
fraction method. We list them in Table 2. The possibility of
such modes in other simpler situations has been reported in
literature [18,19].

Our characteristic equation has two parameters l and B. So
we computed first ten lowest order quasi-normal modes from
l = 0 to l = 5 with B = 1/2, which are shown explicitly in
Fig. 2. Here, the size of the black hole is fixed to unity, i.e.
(r0 = 1).

Table 2 Imaginary quasi-normal frequencies for B = 1/2

l Re(ω) Im(ω) l Re(ω) Im(ω)

0 0.0 −0.23559 3 0.0 −0.80073

0.0 −0.80522 0.0 −1.85155

0.0 −1.77237 0.0 −3.55538

0.0 −4.40241 0.0 −6.9749

0.0 −26.8484 0.0 −25.6236

0.0 −36.5261 0.0 −35.9239

0.0 −54.2701 0.0 −53.9987

0.0 −45.2377 0.0 −44.8469

1 0.0 −0.35889 4 0.0 −1.09163

0.0 −1.04091 0.0 −2.34747

0.0 −2.23218 0.0 −4.33724

0.0 −4.90604 0.0 −8.41743

0.0 −26.656 0.0 −24.6883

0.0 −36.4274 0.0 −35.5081

0.0 −54.2251 0.0 −53.8163

0.0 −45.1731 0.0 −44.5822

2 0.0 −0.55516 5 0.0 −1.42751

0.0 −1.41471 0.0 −2.9055

0.0 −2.86867 0.0 −5.22298

0.0 −5.82491 0.0 −10.285

0.0 −26.2581 0.0 −23.306

0.0 −36.228 0.0 −34.9706

0.0 −54.1348 0.0 −53.5865

0.0 −45.0432 0.0 −44.2464

−2 0 2 4 6 8 10
−60

−40

−20

0

Re(ω)

Im
(ω

)

B=1/2

l=0
l=1
l=2
l=3
l=4
l=5

Fig. 2 First 15 quasi-normal mode for l = 0 to 5 and B = 1/2

Next, we calculated first 45 quasi-normal frequencies for
a representative case of B = 1

2 , l = 2 and plotted a graph
between real vs imaginary parts of the frequencies. Finally we
found a symmetry about the imaginary ω-axis. This feature
is a common feature for quasinormal modes in AdS black
holes [11,12] (see Fig. 3).
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Fig. 3 First 45 quasi-normal frequencies for l = 2 and B = 1/2
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Fig. 4 Size of horizon vs Imaginary part of quasi-normal frequencies
for l = 2

Behavior of quasinormal modes while increasing the size
of the black hole can be studied by changing r0 which in our
case is related to change in parameter c4 or B. We plotted
a graph between size of the black hole (r0) and the quasi-
normal frequencies in Fig. 4. This also depicts the variation
of the mode with temperature which is inversely proportional
to the size of the black hole horizon.

From the above figure, we can say that the imaginary part
of the quasi-normal frequency of the large size black hole is
the linear function of r0 and this linear relation doesn’t apply
for the intermediate size of the black hole [20]. In this aspect,
we find the black hole in our case behaves very similar to AdS
black holes [6,11,12,21–25].

6 Conclusion

In this article, we have calculated quasinormal modes for nh-
stu black hole solution of N = 2, D = 4 supergravity. The
calculation is amenable for a particular constraint on charges

and gauge couplings given as c2 = c3 in terms of parameters
defined in Sect. 2. In this case, the scalar perturbation equa-
tion contains only 3 singularities. For the case of flat horizon
topology, it can be exactly solved in terms of hypergeomet-
ric functions. These solutions lead to two classes of quasi-
normal modes, one being purely imaginary. Higher angular
momentum numbers in comparison with given scalar mass
and horizon radius can result in other class of purely real
modes.

We also explored massless scalar perturbations for com-
pact black hole solution of above kind with spherical hori-
zon topology. We proved by adapting an argument for AdS
black holes [6] that all quasinormal modes here will have
non vanishing negative imaginary component. (See appendix
A). So, they all can be interpreted as decaying, thus render-
ing the black hole stable against any massless scalar pertur-
bation. Furthermore, the quasinormal modes obtained here
can be divided into two types, one are purely imaginary
negative modes. Higher angular momentum number con-
tributes to faster decay of any such mode. The second kind
of modes are complex frequencies with negative imaginary
part. Here, the effect of increasing the angular momentum
number contributes to shriller oscillations of the mode given
by higher magnitude of real part of quasinormal frequen-
cies. These complex modes come in pairs, i.e. for any given
quasinormal mode, its negative conjugate is also another
mode. Graphically, it leads to quasinormal modes placed
symmetrically in the lower half of complex ω plane. This
complex conjugate symmetry of the roots is in consonance
with the reflection principle in scattering, when quasinor-
mal modes are interpreted as singularities of the scattering
amplitude for an effective gravitational potential felt by trav-
eling perturbations [26–29]. When behavior of a quasinor-
mal frequency with respect to horizon radius is investigated
for given angular momentum number, we found a linear
relationship for larger size of black holes. This relationship
breaks down for intermediate size. Reducing horizon size
leads to proportionate increase in the temperature of Hawk-
ing radiation. At intermediate sizes, one is likely to encounter
a Hawking-Page transition [30], which depicts instability
of anti de Sitter black holes preferring thermal gas in anti
de Sitter space. Patterns of quasinormal modes do encode
effects of phase transitions in many situations [31]. Most
of the patterns obtained here for complex quasinormal fre-
quencies are common with those obtained for simpler setting
of AdS-Schwarzschild black holes, pointing to very general
properties. This points towards general characteristics about
dynamics of scalar hydrodynamic modes in holographically
dual strongly coupled gauge theories [4]. Full spectrum of
quasinormal modes also paves a way to find one loop parti-
tion function determinant in such theories [32,33].
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Appendix A

We present here an argument to show that for our black hole
with spherical horizon topology (κ = 1), the imaginary part
of the quasinormal frequencies are always negative. This cal-
culation is an adaptation of similar calculation in [6] for our
case. According to the boundary condition for the quasi-
normal mode, the field radiates in only inward direction at
the horizon and the solution at the horizon is given in Eq.
(26),

R → z−
i
4 ω(1+B) exp

(
iω(1 − B)

2z

)
(A1)

The solution must decay in time and it is only possible if
the imaginary part of the ω is negative, i.e., the condition for
stable mode is Im(ω) < 0. To prove the condition for any
mode, we consider the following form for the solution,

R(z) = exp

(
iω(1 − B)

2z

)
X (z) (A2)

Let us also denote the function z2√
1−z

by f . Then Eq. (25)
becomes

[ f Xz]z − 2bXz√
1 − z

+ X

[
ω2η(z) − b

2(1 − z)3/2

− l(l + 1)

4(1 − z)3/2

]
= 0, (A3)

where b = iω(1−B)
2 and

η(z) = 1

4r2
0 z

2
√

1 − z

(
z

1 − z
+ B(1 − B)

)
. (A4)

Multiplying (A3) by X∗ and integrating from z = 0 to z = 1
results in∫ 1

0
dz

[
− f

∣∣Xz
∣∣2 − 2b√

1 − z
X∗Xz +|X |2

{
ω2η(z)

− b

2(1 − z)3/2 − l(l + 1)

4(1 − z)3/2

}]
= 0. (A5)

We note that for 0 < z < 1 and 0 < B < 1, η(z) is
manifestly positive real function. The conjugate of Eq. (A5)
is

∫ 1

0
dz

[
− f

∣∣Xz
∣∣2 − 2b∗

√
1 − z

X X∗
z +|X |2

{
ω∗2

η(z)

− b∗

2(1 − z)3/2 − l(l + 1)

4(1 − z)3/2

}]
= 0. (A6)

The difference between Eqs. (A5) and Eq. (A6) is∫ 1

0
dz

[
− 2b√

1 − z
X∗Xz + 2b∗

√
1 − z

X X∗
z

+|X |2
{
(ω2 − ω∗2

)η(z) − (b − b∗)
2(1 − z)3/2

}]
= 0. (A7)

We integrate by parts the second term in above expression to
get∫ 1

0
dz

2b∗XX∗
z√

1 − z
= −2b∗∣∣X (r0)

∣∣2

−
∫ 1

0
dz

[
2b∗X∗Xz√

1 − z
+ b∗|X |2

(1 − z)3/2

]
, (A8)

where, X (r0) is the value of the function X at the horizon.
We write ω as ω = ωR + iωI . Then, one can simplify and get
b+b∗ = −ωI

r0
(1−B) and ω2 −ω∗2 = 4iωRωI . Simplifying

Eq. (A7) using Eq. (A8) and these results, one obtains∫ 1

0
dz

(1 − B)X∗Xz

r0
√

1 − z
= b∗

ωI

∣∣X (r0)
∣∣2

−
∫ 1

0
dz|X |2

{
2iωRη(z) + (1 − B)

4r0(1 − z)3/2

}
. (A9)

We use the above result to replace the second term in Eq. (A5).
After a little simplification and rearrangement, one obtains

ωI

∫ 1

0
dz

[
f
∣∣Xz

∣∣2 +|X |2
{

l(l + 1)

4(1 − z)3/2 +|ω|2 η(z)

}]

= −|ω|2 (1 − B)

2r0

∣∣X (r0)
∣∣2

. (A10)

One observes that all terms in the integrand on the left hand
side are manifestly positive for 0 < z, B < 1. Then Eq.
(A10) will be satisfied only if ωI is negative. Hence all solu-
tions must decay in time and this black hole with spherical
horizon topology is stable against scalar perturbations.
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