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1. Introduction,

1.1 Avertissement.,

Ce cours s'adressant aux expérimentateurs je dois le commencer par un
avertissement: la théorie des phénoménes habituellement classés sous le généri~
que "jets" reste 4 faire., Ce qui suit c'est de la phér~ménologie de multiproduc-
tion mélangée & des spéculations inspirédes par la chromodynamique (QCD).

La cohérence interne de l'ensemble n'est pas garantie. .

.2 Définition d'un jet.

Qu'est-ce-qu'un jet ? On peut formuler diverses définitions, chacune
ayant ses avantages et ses inconvénients., La définition donnée ci~dessous n'est
pas tré&s ccntraignante mais elle a l'avantage de s'appliquer &vénement par
événement, J'espére que la signification de la notion "jet" se précisera par la
suite, quand j'aurai discuté des propriétés des jets.

Considérons un groupe de particules dont les impulsions sont ;j’ i=1,
2,...,N. Ces particules forment un jet s'il existe une direction dans l'espace,
définie par un vecteur unité n, telle que typiquement

FUERNE T o
Puisqu'on admet que 1'indgalité (1) pourrait ne pas €tre satisfaite pour
certaines particules, la définition donnZe ci-dessus contient une ambiguité.

Il ne servirait 3 rien de se débarrasser de cette ambiguité en adoptant une
définition plus précise. En effet, un jet n'est pas produit en isolation et,

nous le verrons, la dynamique méme de la production des jets implique qu'il y a
des particules dont le "statut" est intrinsé@quement ambigu, dans le sens qu'elles

peuvent &tre associées aussi bien & un jet qu'd un autre.

1.3 Qu'est-ce-qu'on observe ?

Laissez-moi vous rappeler qu'on observe deux jets opposés (au référen-
tiel du centro de masse) dans les collisions inélastiques typiques hadron-hadron.
Ceci est connu depuis prés de 30 ans et constitue une des grandes dé&couvertes
faite par les cosmiciens. Plus récemment,on a observé des jets hadroniques dans
ia diffusion profondement in&lastique lepton-hadron et dans 1'annihilation
e+e- -+ hadrons. Enfin, dans les rares collisions hadron-hadron ot des hadrons
sont é€mis avec de grandes impulsions transverses, ces hadrons tendent 3 former
deux jets (donc, dans ce cas pré&cis on observe, au total, la formation de

quatre jets: deux jets "habituels" et, en plus, les deux jets associé&s & la
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production & grand pT).

Je n'ai pas l'intention de pasgser en revue la situation expérimentale.
Je voudrais seulement souligner 1'universalité du phénoméne de production des
jets: dans toute collision entre particules élémentaires qui aboutit & la multi-
production des hadrons, ces hadrons forment des jets, pour autant que l'énergie

disponible soit suffisamment grande.

1.4 Un mécanisme universel ?

Etant donné qu'on observe les jets un peu partout, une question se pose
tout naturellement: la production des jets est-elle une manifestation d'un
mécanisme universel, commun & l'ensemble des processus mentionnés dans la
section précédente ? La chromodynamique suggére la réponse suivante i cette
question:

A l1'origine de la multiproduction il y aurait (presque) toujours une
tentative de séparation dans 1l'espace des sources de couleur. La couleur &tant
confinée, toute tentative pour séparer les sources de couleur aboutirait & la
production de Jjets hadroniques orientés selon les directions de mouvement des
sources].

La précédente affirmation est composée de deux volets, que nous allons
examiner séparément. Voyons d'abord s'il y a une séparation des sources de
couleur sous—jacente dans les phé&noménes de multiproduction.

La situation est particuliérement claire dans tous les cas oli inter-
viennent des leptons. Par exemple dans e+e_ >y - qa + hadrons les sources de
couleur qu'on tente de sé&parer sont le quark et l'antiquark. Le cas de la
diffusion profondement inélastique lepton-hadron est 3 peine plus compliqué2:

Plagons-nous au référentiel oll le hadron initial et le y (ou W) virtuel
ont des impulsions colinéaires. Supposons que le hadron se meut de gauche &
droite avec une quadri-impulsion p = (P,P,0,0) et que c'est le parton qui porte
la fraction x de P qui absorbe le photon. Alors, la quadri-impulsion du photon

est g = (—xP+Q2/4xP, -xP-Q2/4xP,0,O), oii Q2= - q.q > 0. Une fois le photon

absorbé on trouve un parton (quark ou antiquark) qui se meut de droite 3 gauche

avec l'impulsion -Q2/4xP et le systédme hadronique ré&siduel (coloré !) qui file
. . . . . + - -

de gauche a8 droite avec 1'impulsion (i-x)P.La difference avec le cas e e + qq

c'est que maintenant une des sources de couleur est &tendue au liéu d'@tre ponc-

tuelle.
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Le processus de Drell et Yan3, qa +11, est respongable de la production
des paires leptoniques lourdes dans les collisions hadron-hadron. Plagons-nous
au référentiel de centre de masse des deux hadrons incidents. Il est évident que
la production de la paire 11 sera accompagnée de 1'é&mergence de deux systémes
hadroniques résiduels et colorés se mouvant dans des directions opposées. Dans
ce cas-cl les sources de couleur qui tentent de se séparer sont toutes les deux
étendues,

Passons aux interactions purement hadroniques, en commengant par la
production & grand booe Cette derni&re est due & la diffusion "dure" des consti-
tuants des hadrons incidents, Si deux constituants colorés (quarks ou gluons) su-
bissent une diffusion élastique "dure'" on aboutit 3 une séparation rtemporaire de
guatre sources de couleur™,

Le cas de la diffusion "molle" hadron-hadron (pefits pT) est un peu moins
clair. La diffusion "molle" est caractérisée par des grandes distances et par des
temps longs (comparés & IO_]3cm ou & 10—23sec !). Par contre, l'image qui repré-
sente un hadron comme un faisceau de partons quasi-libres n'est, évidemment, qu'
un"instantané". Cette image est surtout utile quand l'interaction elle-méme dure
un laps de temps trés bref (ceci est le cas dans les interactions & grand trans-
fert d'impulsion). Le lien entre la physique des quarks et gluons et la phénome-

' (reposant sur les concepts qui ne font pas

nologie de multiproduction "molle'
intervenir la notion de couleur) est un sujet de recherche passionnant, mais qui
est loin d'@tre vraiment compris. En particulier la relation exacte entre les
forces fondamentales (agissant entre quarks et gluons et ayant une portée infinie
dans l'espace de rapidité) et les forces effectives {(celles qui agissent entre
hadrons observables et qui semblent bien avoir une portée finie en rapidité)

n'est pas encore bien claire. Cela dit, on peut essayer d'imaginer comment les

choses se passent:

* Dans le cadre du CIM (Constituent Interchange Model)a on imagine facilement des
processus "durs", tels que (qq) + (gq) =+ (q§) + (qq)_, qui mettent en jeu des
constituants sans couleur uuiqﬁ%ment. P n'exiske aucun® indication que de tels
processus jouent un rdle quelconque dans la production & grand P, En fait, si
on croit aux régles de comptage dimensionnel de Brodsky-FarrarS, le processus que
je viens de mention?er donne une contribution au spectre inclusif qui tombe comme
p;“'(pour xT=2pT/sl 2 fixe), ce qui n'est pas trés comp&titif.
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Au référentiel de centre d¢ masse, deux hadrons, ressemblant & des
disques & cause de la contraction de Lorentz, se rapprochent & grande vitesse.
Les deux disques se recouvrent pendant un temps trés bref. Pour décrire ce qui
se passe pendant ce temps on peut recourir au modé&le des partons. Les deux
hadrons peuvent &changer (interchanger) des partons qui ont (momentan&ment) une
faible énergie (de 1'ordre d'un GeV ou moins), sans que cela implique un grand
transfert d'impulsion, L'échange (l'interchange) de partons équivaut, en général,
4 1'échange de couleur. Par cons@quent, les objets qui se séparent aprés le bref
recocuvrement ne sont plus des hadrons "ordinaires' mais plutSt des sources

étendues de couleur. (Quand c'est un singulet de couleur, par exemple (qq) qui

o’
est échangé, les objets qui se s&parent sont des hadrons "ordinaires'", en général
des hadrons excit&s. La définition d'un jet donnée au §1.2 est tellement générale
qu'elle admet qu'on qualifie de jet l'ensemble des produits de désintégration
d'un hadron excité@. Ce n'est pas ces jets "banals", associés aux é&vé@nements 3
quasi-deux-corps, qui nous interesseront dans la suite de ce cours).

'ai illustré 3 l'aide d'exemples particuliers la thése selon

Résumons: j
laquelle la multiproduction est la conséquence d'une séparation (temporaire) des
sources de couleur (je mets & part les réactions oii 1'&tat final est composé
d'un petit nombre de hadrons excités, car ce n'est pas le cas typique). Voyons
maintenant ce qui suit une séparation des sources de couleur.

La chromodynamique quantique possé&de la propriété bien connue de "liberté
asymptotique"” qui signifie que le couplage effectif devient nul quand la distance
entre les sources tend vers zéroe. Inversement, le couplage augmente quand la
distance grandit. En raison (principalement) de 1'échec des tentatives de produire
les quarks dans des chocs 3 haute énergie, on s'attend 3 ce que deux sources de
couleur augmentent indéfiniment leur énergie potentielle en s'éloignant 1'une de
l'autre. Si con confére & deux sources de couleur une grande impulsion relative,
les sources en s'@loignant l'une de 1'autre convertissent leur &nergie cinétique
en énergie du champ de couleur. Dans ce champ de couleur se créeront spontanément
des paires qq, qui en se recombinant vont donner les hadrons observables. En
chromodynamique, les grands transferts d'impulsion sont pénalisés (grand trans-
fert d'impulsion ++ petite distance). On s'attend, par conséquent, 3 ce que les
particules produites par le processus de hadronisation gardent la mémoire des
directions de mouvement des sources originelles de couleur, en s'alignant appro-

ximativement selon cegdirections.
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Je vais maintenant illustrer mes propos en utilisant un modéle spécifi-
que. N'étant pas un "complicateur professionnel" je choisis le modéle le plus
simple possible., En jouant avec ce modéle nous serons amenés tout naturellement
& formuler quelques idées qui, apparemment, transcendent le modé&le, car on les

retrouve dans d'autres approches (plus complexes et plus sophisitquées).

2. Un modéle semi—classigge7.

2.1 Les hypothéses.

Nous allons considérer un monde fictif od il n'y a que 1+1 dimensions:
une dimension d'espace et le temps., On supposera que l'éBnergie potentielle d'une
paire ¢aark—antiquark® croit linéairement avec la distance qui sépare les
membres de la paire:

V -(x) = A | x| , X > 0 (2)

La force entre q et a est done indépendante de distance et attractive.

On postulera aussi que

Vag(®) = VeoGo) = = x|, (3)

et que les forces entre quarks ent antiquarks sont additives =
Les quarks et les antiquarks seront traités comme des points matériels
classiques avec measse nulle:
m, = 0 (4)

Nous admettrons cependant que des paires qgq soient créees dans le champ entre

un q et un q (avec, initialement, une énergie cinétique nulle).

2.2 Un méson.
Considérons une paire qq au repos. Soit mqa la masse de la paire (ou,
si 1l'on veut, du méson). Les équations du mouvement s'écrivent:

o (5a)

dp _/dt
pq

n
+1
>

dpa/dt (5b)

Ce sont des quarks entre guillemets: dans 1+1 dimensions il n'y a pas de spin
et je négligerai les complications dues 3 la couleur.

**Dans notre monde fictif il y a autant de quarks que d'antiquarks et les baryons

n'existent pas.
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ol Py (pa) dénote 1'impulsion du quark (antiquark) et t est le temps,
Supposons qu'a t=0 q et q se trouvent au méme point de l'espace et que pq(O) >0,

Alors (c = % = 1):

pq(t) = -pq(t) = - At + mqa/z , 0 <¢ < mqa/A

(6)
t) = = t) = At - 3m_./2 ~ < =/A
Pq( ) Pq( ) qq/ . mqq/k <t 2mqq/
etc.
Ce mouvement oscillatoire est représent@ graphiquement par la figure la,
7/
4 temps <
N\
\‘»
/7
/7
—_—
espace
(a) (b)
Fig.1
La période d'une oscillation compl&te est At = 2mqa/A et la distaunce maximum
entre q et q est (Ax)max = L /A . Evidemment
-= t + -(t + vV -
™o [. P (t) |+ [ pgle)] q3 [ x(0)1 (7)

comme il se doit.

Je laisse au lecteur le soin de vérifier qu'un m&son en mouvement est bien
représent& par la figure Ib. La superficie ve la région hachurée est invariante
sous la transformation Lorentz. La distance maximum entre q et § est contractée
a e—qua/A , ot y est la rapidité& du méson.

N.B. : En supposant qu'id 3+] dimensions une paire qf ressemble aussi 3 une

corde, on trouve facilement une relation entre le moment cinétique maximum d'un
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méson (qq) et sa masseaz

Tnax = (172 1) o (8)
Le coefficient devant (Mqa)2 peut &tre interprété comme &tant l. pente a'R de
la trajectoire Regge dominante, u'R = | GeV-Z. Ceci donne une estimation de A ,
A = 0.16 Gev?, (9)

qui n'est pas trds éloignée de ce qu'on trouve en &étudiant la spectroscopie des
psionsg. Pour arriver & (8) on consid@re un rotateur relativiste de longueur L
dont les bouts tournent & la vitesse de la lumiére. L'é@nergie (au repos) d'un
élément de longueur df du rotateur est é&videmment AdR (voir eq.(2)). Un calcul
simple (faites-le!) méne au rénultat suivant:

M . = TAIL 10
qq (10a)

g = m P2 (10b)
d'cl l'équation (8).

En revenant au '"monde linéaire"” et en utiliscunt (9) on observe que le rayon
d'un meson est de l'ordre de ( Ax)max/z’ c'est-3~dire environ 0.5 Xlo_wcm.
J'ai utilisé la masse du rho comme la masse '"typique'" d'un meson léger. Compte

tenu de la grossiéreté de l'estimation le résultat n'est pas mauvais.

2.3 La multiproduction.

tq 'tb T
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Comme exemple d'un processus de multiproduction nous allons prendie le cas de
e+e— -+ qa + hadrons.

Ce qui pourrait se passer est illustré& par la figure 2. Une paire quark-antiquark
(qa) est créee au point (0,0) de l'espace-temps. Deux autres paires sont créées

a (ta,xa) et (tb,xb). Au point (T,X) le quark h et l'antiquark a se rejoignent

et forment un état 1i& en mouvement (cf., fig.Ib), Il est facile de vérifier que
les forces s'annulent dans la région d'espace-temps comprise entre aa, ab et bq
(pour t > max(ta,tb)).En particulier aucune force n'agit sur le méson (ba) qui

se propage librement.

Nous supposons que

E%%(e ) = E°® (¢ ) =0 (n
.ein cin
Par conséquent on a
- = -— >
Pz Ale - t) » T2t >, (12a)
et
P, = -A(t - tb) ’ T >t > tye (12b)

Ceci nous permet de trouver 1l'impulsion du mé&son (ba),

Pz = pb(T) + pa(T) = l(tb-ta). (13)

ainsi que Bon &nergie

E gz Iyl + e Ml = 2@ - =t (14)

Puisque par ailleurs on a

T - ta = X - X, - (15a)

et
T -t ==X + x. (15b)

on obtient & partir de (14)
EbE = X(xb - xa). (16)

Le temps nécessaire pour qu'apparaisse le méson (ba) est égal &

T = (b, + t  +x - x.)/2. (17)

Ce temps prend sa valeur minimum quand X, = -t et X = tb. Donc
= - = 18
T in X X Eba/l (18)

Les &quations (16) et (18) seront utiles dans la discussion du chapitre suivant.
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3. Propriétés générales des jets,

3.1 Cascade "in-out".

L'équation (18) peut &tre ré-écrite sous la forme

Thin = (Epz/mpz)(m

b/ M) (19)
qui rend mieux compte de sa signification physique : mbE/A c'est le temps
propre minimum nécessaire 3 la formation du méson. Ce temps propre subit la
-dilatation de Lorentz quand le méson n'est pas produit au repos. Le fait que le
temps propre soit fini , qu'un hadron ne peut &tre crée instantandment, implique
que le temps qu'il faut pour produire un hadron est proportionnel & son énergie.
Par conséquent, les particules lentes sont produites le plus t3t et les parti-
cules rapides le plus tard . En d'autres termes, le processus de multiproduction

démarre dans la région des faibles rapidités et s'étend progressivement vers des

rapidités de plus en plus grandes (en valeur absolue)., C'est l'image de ce qu'on
10

appelle aprés Bjorken la cascade "inside-outside' ou "in-out'

Motez que cette
image est valable dans n'importe quel référentiel. (La particule qui est émise
la premiére dans un référentiel peut €tre produite la derniére dans un autre.
Dans le cadre familier de la théorie de perturbation il peut aussi &tre constaté
que l'ordre d'émission des particules dépend du repé&re: un diagramme de Feynman
de la théorie relativiste représente une somme de plusieurs diagrammes ordonnés
dans le temps. Le poids relatif des différents diagrammes ordonnés dépend du
référentiel. Vous pouvez vérifier cette affirmation en prenant comme exemple

les diagrammes ordonnés qui décrivent, 3 l'ordre le plus bas, la diffusion
élastique dans la théorie avec l'interaction cubique g éa).

L'image d'unecascade "in-~out" est commune 3 tous les modéles qui tentent de
représenter d'une mani&re réaliste le d&veloppement dans l'espace~temps du pro-
cessus de la production multiple des hadrons. Elle trouve sa confirmation empi-
rique dans la quasi-absence d'une cascade intra-nucléaire dans les collisions

5 - .11 . . .
hadron-noyau 3 haute énergie (les secondaires rapides sont formées en dehors

du noyau et ne peuvent plus subir des rediffusions).

3.2 La hiérarchie de saveur.
Dans la section 2.3 on a &tudi& la conversion en mésons d'une paire qgq

créée initialement. En général, les mésons cré&és forment deux jets, un associé

P

au quark et l'autre & l'antiquark. Considérons un de ces deux jets, par exemple

. . . . . . : 12 .
celui associé au quark. On peut y établir une hié&rarchie de saveur “: d'abord il
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y a le méson qui contient le quark initial, ensuite il y s le méson qui contiznt
le quark de la paire dont 1'antiguark s'est associ& au quark initial., etc. Tant
qu'on néglige la production de baryons il n'y a pas d'ambiguitsd.

Supposons que les paires aZ, bﬂ,cz,.,a sont créées & L < xb«f LU (cf.

figure 2). Alors le méson (cb) est d'un cran plus haut dans la hiérarchie que le

méson (ba). Cependant, 1'8Bnergie Ecg = k(xc . xb) n'err pas nécessairement
lus grande que E .- = Ay, - x car ¥ < X, < % n'implique pas que

P 8 q ba (v 2’ a b c plique | q

X, - X < X = X,. De méme la rapidite i+ mnlest pas nécessairemeni plus

b a c b P Yeb F P

grande que la rapidité Ypa Le résultat de cetre discussion se résume dans la
constatation suivante : l'ordre en rapidité ne coincide pas toujours avec la
hierarchie de saveur. En particvlier, il ne faut pas s'attendre & ce que le
neson te vnilne rapide contrenpae toujours le quark gui & inirte le jer.

3.3 L'énergie impulsion dur jet.

. ] 3 . , ’ W . . .
Soient .Einj)r i b,2,..,, Yes gquadri-impulsions des hadrons constituant
) e s ' , . . . > X >
un jel Definissone 1'ave du jet par la direction du vecteur P = P pj et
. . - g z
ralculons le différence entre P = l P t et B = i Ej.
En nktilisant 1'spprowmimation relaiilvizte
?
o, O R A (20)
Sy J A 3
ou o, dEnnte 3 magsge Lranssevsa. op obtient
E -~ p = r (E, - p. )
Ry
- T m’_/2E (21)
3 iT

Supposons qu'il y a un long plateau en rapidité dans le spectre inclusif, c'est-
8-dire que la multiplicité différentielle a la forme

dN = hdx/x, (xj=Ej/E > mg > /E), (22)
ou h est la hauteur du plateau (la forme exacte dans la région de fragmentation
n'a pas d'importance pour l'argument qui suit; ce qui compte c'est le dx/x).

En utilisant (22) on trouve qu'en moyenne

1
< E - P >~ (<m2 > h/2E) s dx/x2

T
< m, >I{E
= h < m2 > [2 <m, > (23>
T T o
. . . 2 2 .
Si de guTeroOit Prob(mT) \,cxp(-constmmT)p alore <m > = 2 < "> et on obtrient
<E-P> = h <m, > (24)

T
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(ce résultat est mentionné dans 1'article de Field et Feynman, cité dans ma

référence 18). Le c8t8& droit de (24) est empiriquement de l'ordre de 1 GeV,

L'équation (24) implique que la masse d'un jet, Mjet = (E2 P2)l/2’ est, en
moyenne, de l'ordre de (2h <mT> E)]/2

En écrivant l1'équation (22) j'ai un peu anticipé sur la discussion ulté-

et tend vers « quand E -+ o,

rieure, mais je n'ai pas fait de supposition qui serait en contradiction avec
les données sur les jets, bien au contraire. Le petit calcul que je viens de
faire montre que (E,P) ne peut pas &tre identifié avec la quadri-impulsion
(Eq,?q) du quark (ou antiquark, selon le cas) qui a initié& le jet :

> >
(E,P) # (Eq,Pq). Bien que l1'énergie-impulsion soit conservée globalement, par
exemple dans ete” o qq - hadrons, on n'a pas de conservation d'énergie-impul-

sion dans q - hadrons et q -+ hadrons séparément. Il existe une incertitude

intrinséque, de l'ordre de 1 GeV en moyenne, dans toute tentative de déterminer

-
Eq et/ou | Pq |. C'est 1i& au fait que la cascade "in-out' commence par
1'émission des particules lentes qu'on peut aussi bien associer 3 un jet qu'a

un autre.
L'erreur irréductible dans la détermination de l'énergie-impulsion du

parton '

'parent” & partir des énergies-impulsions des hadrons observables a des
conséquences importantes pour la phénoménologie. En effet, on voudrait inter-
préter les sections efficaces pour les processus fondamentaux (calculées, par
exemple, dans le cadre de QCD perturbative) comme des sections efficaces pour
la production de jets. Cependant, si la section efficace tombe comme E;s et

si Eq =E I GeV, alors l'incertitude concernant la valeur de la section
efficace de production d'un jet d'énergie E = 5 GeV correspond & un facteur

de 20, ce qui est beaucoup.

3.4 La charge moyenne d'un jet de quarkls.

La charge électrique d'un jet est un nombre entier qui fluctue d'un &véne-
ment & l'autre., On pourrait s'attendre 3 ce que la charge moyenne des particules
formant un jet soit &gale & la charge du quark initial. En général ce n'est pas
vrai car, 13 aussi, on commet une erreur systématique. Considérons un jet initié
par un quark de charge Qq. Aprés la création des paires qq et la recombinaison
des quarks et antiquarks en m&sons finals, il reste toujours un antiquark

"laiss& pour compte" (en fait il s'intégre 3 un autre jet). Par conséquent la

charge moyenne d'un jet de quark est
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<Q > = Qq - ? Qg Prob (f) (25)

ot on somme sur les saveurs f et Prob(f) est la probabili.é de création d'une
paire aqu.

Il y a environ trente ans Schwinger14 a calculé le taux de production des
paires e*e” dans un champ électrique uniforme. I1 a trouvé que ce taux est pro-
portionnel d exp(~ ﬂmzle E), ol m et e sont la masse et la charge de 1'électron
et E dénote l'intensité du champ &lectrique externe. Le probléme de Schwinger
ressemble suffisamment & celui qui nous intéresse pour qu'il soit légitime d'en

déduire que le taux de production des paires q doit décroitre rapidement avec

£9¢
la masse me du quark de saveur f., Les données sur la production & grand Pr

suggérent que

Prob(u) = Prob(d) = 2 Prob(s) >> Prob(c) (26)

Ceci donne

L0
!
A
o
v
n
wir
X
(=}
F=8
t

x 0.2 = 0.07 (27)

Wi—
Wi—

3.5 L'ordre & courte portée (7).

L'idée de 1'ordre & courte portée (SRO Short Range Order; je pense i la
version forte de l'hypothése) vous est certainement familiére, Cette idée est
trés bien illustr8e par l'analogie de Feynman~wilson|5:

L'état 3 multi-particules ressemble 3 un liquide non-critique enfermé& dans un
trés long cylindre. La rapidité y et 1'impulsion transverse ;T d'une particule
représentent les coordonnées d'une "molécule'" du liquide. SRO englobe la
constence du < Pr > l'invariance d'échelle & la Feynman, la courte portée
des correlations etc.

La compréhension de la multiproduction dans les chocs "moux'" hadron-
hadron s'organise autour de l'hypothése SRO. Nous savons que SRO ne peut pas
8tre une loi exacte, méme asymptotiquement, &tant nécessairement brisé par les
effets diffractifs, Mais bien que ces effets diffractifs soient appréciables, on
peut les contr8ler, au moins d'une manié&re approchée]6.

Puisque SRO est apparemment la propriété@ de base de la multiproduction
"molle", 1'argument de l'universalité de jets incite & prédire que pour tout jet

-

on a < > = const, l'invariance d'échelle, corrélations & courte portée en

Pr

rapidité ete. Et, en effet, les données accumulées jusqu'ad présent ne permettent

pas de conclure qu'jl exisce une différence qualitative notable entre les jets
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produits dans les interactions "dures" et ceux qu'on observe dans les collisions
hadroniques '"molles". Cependant, on peut douter du bien fondé& de 1l'argument de
l'universalité,

Les calculs perturbatifs en chromodynamiqne quantique suggérent que dans les
chocs "dures'" les sources de couleur qu'on tente de séparer é&mettent une radia-
tion de freinage (bremsstrahlung)*. Les quanta &mis par bremsstrahlung s'alignent
approximativement selon la direction de la source primitive de couleur et,ensemble
avec cette source, forment un jet, Ce jet est constitué des particules colorées
uniquement et je vais le désigner par l'expression "jet de couleur". Une discus-
sion des jets de couleur, pour &tre utile, nécessiterait des considérations
techniques qui nous méneraient au-deld des limites imposées & ce cours. Je
voudrais seulement mentionner que l'impulsion transverse moyenne des particules
formant un jet de couleur n'est pas constante: 1l'&chelle est fixée par l'impulsion

totale du jet. On a donec < Py > v const.xP, 3 des logP prés.

Tant qu'on ne contrdle pas les effets non-perturbatifs, qui sont 3 l'origine
du confinement de la couleur et de la conversion des quarks et des gluons en
hadrons observables, il subsiste une incertitude quant @ l'interprétation des
résultats obtenus dans le cadre perturbatif. Vers quel &tat hadronique &évolue un
jet de couleur ? Strictement parlant je ne connais pas de réponse enti&rement
satisfaisante 3 cette question.

I1 se pourrait que l'hadronisation d'un jet de couleur se manifeste par
l1'émergence d'un "jet" des jets hadroniques, chaque jet constituant ayant une
structure semblable & celle des jets produits dans les interactions hadroniques
molles. Aux énergies des expériences actuelles il y aurait un recouvrement
considérable entre les jets constituants et, en plus, le nombre de ces jets
serait petit, Ceci expliquerait qu'on ne voit pas encore de difference signi-
ficative entre les jets produits dans les interactions "dures" et "molles".
L'image que je viens d'esquisser tente de concilier les enseignements de QCD

perturbative avec 1'idée que SRO est une propriété de base de tout phénoméne

de multiproduction. Il va de soi qu'il ne s'agit que d'une pure spéculation.

* ' , . s b s s . .
C'est 1'effet qui est, selon toute vraisemblance, 3 l'origine de la violation
d'invariance d'échelle dans la diffusion profondement iné&lastique lepton~hadron.
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Les modéles des jets de quark utilisés dans la litterature phénoménolo-
gique et, plus particulidrement, les modéles dont je discutcerai plus loin,
sont empruntds & la physique des interactions hadroniques "molles", Cet
"emprunt'" est parfaitement justifié. D'une part on travaille aveec ce qu'on
a. D'autre part, les mod@les en question sont satisfaisants du point de vue

phénoménologique, dans le sens qu'ils permettent de reproduire les données

existantes.

3.6 Jets gluoniques.

{ 5 P . + -
Les calculs perturbatifs en QCD suggérent que le mécanisme e e > qq =
> hadrons, bien que dominant, ne devrait pas &tre exclusif. Par exemple, le

mécanisme e’ e - qq *+ gluon - hairons devrait aussi contribuer & 1'annihila-
tion e+e—, en donnant lieu 3 la production de 3 jets hadroniques. Les énergies
accessibles avec PEP ou PETRA sont suffisantes pour que la production de 3 jets
soit cinématiquement réalisable. En fait, 1'absence d'&vénements 4 3 jets
serait troublante et montrerait que notre compréhension de la chromodynamique
est encore moindre que nous le pensons (ou que QCD n'est pas la théorie des
interactions fortes). Cela dit, personne n'a encore formulé des prédictions

vraiment crédibles quant aux proprid&tés des jets gluoniques. C'est la raison

pour laquelle ce cours se limite, en pratique, aux jets initiés par des quarks.

4, Deux modéles complémentaires.

Deux mod&les phé&noménologiques sont les plus utilisés dans 1'&tude des jets.
Le premier c'est le modéle d'émission indépendante]7(UJM = Uncorrelated Jet
Model). Le deuxi&me c'est le mod@éle récursif!®.

L'UJM repose sur l'hypothése simplificatrice qui stipule que l'amplitude

de diffusion est le produit de facteurs dont chacun dépend de 1'impulsion d'une

seule particule:

" taux différentiel de N

= =

production de N parti-| =~ GA(P -z p.)

, D .Y E. (p.) dup./E, 28
j=1 Pi) oo By (pg) d3Py/E; (28)

cules
Pour produire les données on choisit pour fj(pj) “ne fonction rapidement décroi-

ssante de l'impulsion transverse, par exemple

fj(pj)= A exp(~B p..) (29)

JT
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ot A et B sont des constantes., Avec le choix (29) la probabilité d'une confi~-
guration donnée est proportionnelle au volume correspondant de 1l'espace de
phase cylindrique,

Il y a trés peu de dynamique dans 1'UJM, juste assez poutr reproduire les
faits les plus saillants (essentiellement les spectres 3 une particule). Le
modéle joue dans l1'é&tude de la production multiple un rdle trés semblable &
celui joud par le mod&le de Fermi dans la recherche et 1'é&turde des ré&sonances.

I1 permet de mettre en &vidence des effets dvnamiques nouveaux, en donnant aux
chercheur un moyen de les distinguer des réflections cinématiques d'autres
effets, bien connus ceux-13. Je ne poursuivrai pas ici la discussion de 1'UJM
car c'est un modéle vieux de 15 ans et bien familier & tout le monde.

Le modéle recursif est un modéle dynamique. En dépit de sa simplicité il
réunit 1l'ensemble des prédictions "raisonnables"(ou qui nous paraissent telles
a8 1'heure actuelle) concernant les jets., Un &cart des donndes par rapport au
modé&le ne signifie pas nécéssairement qu'on a trouvé quelque chose d'intéressant,
Mais le modéle fournit un standard. Prenons par exemple la question suivante:
quelles sont les chances qu'un jet ait &té& initié par le quark u, &tant donné
que le hadron le plus rapide du jet est chargé positivement ? Est-ce plutdt
12, 50% ou 99% ? Devant une question comme celle-ci 1'UJM est impuissant. Par
contre le modé&le recursif suggére une réponse (nous reviendrons a8 ce probléme)

qu'on a tout lieu de croire "raisonnable".

5. Le modéle récursif‘?

5.1. Le principe récursif.

Considérons l'ensemble statistique de tous les jets pouvant &tre produits
par un certain mécanisme, que nous n'avons pas & préciser pour l'instant, et
ayant la quadri-impulsion P = (E,P). Il sera commode d'avoir un symbole spéci-
fique pour désigner cet ensemble: J(P).

Nous supposerons que si P' est rbtenu de P par la transformation de Lorentz L
alors J(P') s'obtient de J(P) en appliquant L & tout jet faisant partie de J(P).
Les effets d'interférence quantique seront négligés. On postulera que dans
chaque jet, appartenant 3 l'ensemble J(P), il y a une particule singuli&re dont

le "statut spécial'" est défini par le principe récursif énoncé ci-dessous:



- 40 ~

[ un jet appartenant 28 J(P)] = (la particule singuliére) +
+{ un jet appartenant & J(P - p) oli p est la quadri-impulsion de 1la
particule singulizre )

La signification exacte du principe récursif deviendra plus claire dans la
section suivante, oll je montrerai que le principe récursif implique l1l'existence
d'une sé&rie d'équations intégrales interessantes.

Remarques:

(i) La validité du principe récursif signifie 1l'existence d'une hiérarchie
spécifique parmi les particules secondaires. Cette hi&rarchie est illustrée
par la figure 3. La particule de rang | c'est la particule singuliére dans
J(P). La particule de rang 2 c'est la particule singuliére de 1l'ensemble
J(P - p) obtenu en enlevant la particule de rang | de l'ensemble originel

J(P) etc.

Fig.3

(ii) le rang d'une particule n'est pas directement observable.

(iii) On ne doit pas confondre le rang d'une particule avec la place
qu'occupe le temps d'émission de la particule dans la séquence des temps
d'émission. Le rang est un concept invariant tandis que 1'ordre des temps
d'émission des particules dépend du choix de référentiel. Par conséquent il

n'y a pas nécessairement de contradiction entre le principe récursif et la
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dynamique "in-out'" du processus de production (contrairement 4 l'affirmation
faite initialement par Field et Feynman; depuis, Field a d'ailleurs admis qu'ils
se sont trompés).

5.2 Les &quations intégrales du modéle (1+1 dimensions)

Pour simplifier la discussion (et surtout la notation) je me limiterai au
cas oli toutes les particules produites sont identiques et ol il n'y a que 1+1
dimensions.

Considérons 1l'ensemble J(P) de jets et soit h(P;P) le spectre inclusif
invariant de la particule de rang !. Puisqu'il n'y a qu'une seule particule de
rang 1, ‘

SEPIh(p;P)y = I (30)
oli (dp) est 1'élément invariant d'espace de phase relativiste. Soit ik(p],...pk;
P) le spectre inclusif invariant 3 k particules, normalisé& conventionnellement:

I (dpye.. (dpy) ik(pl,-..,pk sP) = < N(N=1).,..(N-k+1) > (31)
oli N est la multiplicité;

Il est facile de se convaincre que le principe récursif conduit 3 1'équa-

tion suivante:

ik(pl""’pk sP) =

k
= I h(pj ;P) 1k—1(pl’°"’pj-lfpj+l""’pk 3P - pj) +
j=1
+ S Wdp) hip 5 P) i (p,y-asp 5 P op) (32)

La fonction ik(pl,...,pk 3P ) c'est la probabilité que dans un jet on trouve
une particule avec 1'énergie-impulsion p,, une autre avec p ,, etc. I1 se
peut que ce soit la particule de rang | qui ait 1'impulsion pj. Dans ce cas,
selon le principe récursif, le spectre inclusif est égal 3

h(pj 3P ) ik_](pl,...,p 5-17 pj+],...,p Kk 3P - pj). Il y a évidemment k situa-
tions de ce genre et on doit sormer les probabilité&s correspondantes (sommer
sur j). Ceci donne le terme inhomogéne de 1'&quation (32). Le terme intégral
représente la probabilité& qu'aucune des impulsions PpsecesPy n'appartient 3
la particule de rang ]. Dans ce cas, l'énergie-impulsion de la particule de

rang 1 étant p , le spectre inclusif est &gal a h(p ;P ) ik(p],...,pk;P - p).
Il faut bien sfir sommer sur tous les pp possibles.

Faisons tendre vers 1'ipfini la masse du jet: M = (p.p)'/z- Choisissons le
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référentiel de telle fagon que les impulsions des particules energiques soient
toujours positives. Supposons que dans la limite M =+ o le spectre de la parti-
cule de rang |1 soit invariant par rapport aux changements d'échelle

h( p; P) = h(z),
oli z = p/P, Dans ce cas, et dans la méme limite on a

Lprserspe 3 M) » i (2 5.0052,),
oil z, = p]/P,..., z, = pk/P. D'autre part (dp) » dz/z. L'équation (32) prend

la forme asymptotique suivante:

lk(zl,...,zk)= i , ]
k 2 “j-1 j+1 k
_ . e, s e ey
r ohzg) iy Oy =z, 1-2z. e
3=1 ] j J b
Zy 2k
+ S dz/z) w(2) i (5=5seees T ) (33)
En particulier, pour k=1 on trouve
l-zl zl
i (z,) = h(z,) + S (dz/z) h(z) i ( ———— ) (34)
1% ] 0 1 1 - z

La limite supérieure d'intégration vient du fait que il(x)=0 pour x>1 (cette
limite est implicite dans (33)).

Remarques:

1 ttention a a notation: € nombre moyen e articules ans interva e
(i) Attenti al tati 1 b y de p icul d 1'int 11

(z,z+dz) est &gal 3 i, (2) dz/z.

(ii) Il est évident que il(z) + h(z) quand =z - 1. Dans ce sens la parti-
cule de rang | c'est 1la "leading particle".

(iii) Le terme inté&gral dans (34) est positif (pour z1 < 1). Par conséquent
il(z) > h(z), sauf pour z=1. Mais on ne peut trouver qu'une seule particule
avec z > 1/2. Cela signifie que la particule de rang | n'est pas toujours
la plus rapide. En d'autres termes, la hié&rarchie postulée par le principe
récursif ne coincide pas avec l'ordre en rapidité.

(iv) On peut démontrer que les solutions des Bquations (33) satisfont
automatiquement les contraintes dues & la conservation de l1'énergie-impulsion.
En particulier, 1'&quation (34) implique que
fldz i (z) =1 (35)

0 i
quel que soit h(z). Dérivez vous-méme 1'Bquation (35) en par‘ant de 1'é&quation

(34) et en utilisant la forme asymptotique de la condition de normalisation
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(30), viz.

1
J (dz/z) h{(z) = 1 (36)

0

(v) En général, la solution de l'équation (34) s'obtient en employant la
technique de la transformé& de Mellin. Pour des choix simples de h{z) on peut
trouver des solutions explicites. Par exemple, si h{(z) = (l+a) =z (I--z)a alors
i](z) = (1+a) (l—z)a, un résultat facile 3 vérifier,

(vi) Un point capital. Etant donné& que le rang n'est pas observable

1'équation (34) toute seule est d'une utilité limitée. Elle peut 8tre considé-
rée comme définissant h(z). Notez cependant que la méme fonction h(z) détermine
par le biais de 1'&quation (33) l'ensemble des spectres inclusifs. Le meilleur
emploi du modé&le est le suivant: on détermine h(z) & partir du i](z) observé

en résolvant l'équation (34) "3 l'envers". Ensuite, une fois 1la fonction h(z)
connue, on calcule tout ce qu'on veut, les fonctions de corrélation, la distri-
bution de multiplicité, etc.

5.3 La multiplicité et les corrélations.

Il nous sera utile d'introduire un symbole simple pour désigner le moment
y P

binomial <« N(N=~i).,..(N=k+1) > (cf.eq. (31)):

B < N(N-1)...(N-k+1) > (37)

k def
Le moment Bk est une fonction de l'énergie-impulsion du jet : Bk= Bk(P)
1/2

(8videmment B, ne dépend que de la masse du jet M = (P.P) ). En intégrant les

k

deux c8tés de 1'équation (32) par rapport i Py+++spP, et en tenant compte de 1a

définition de Bk on obtient

B (P) = [ (dp) h(p3P) [ k B, _ (P-p) + B, (P-p)] (38)

L'intégrale sur B peut €tre €liminée en utilisant 1'é&quation analogue a (38)

k-1

mais pour B (P). En continuant les &liminations on arrive finalement & 1'é&qua-

k-1

tion suivante:

-1d k1

™M=

—_— B _.(P) = J (dp) (p;P) B, (P-p) (39)
=0 (k-j)y r k7J

En posant k=1,2 etc, on obtient une série infinie d'équations intégrales.
Nous allons employer une technique mathématique &prouvée, qui consiste & rempla-
cer la série d'équations par une seule &quation que satisfait une fonctjion

dépendant d un paramétre supplémentaire.
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D&finissons la fonction génératrice
k
G(t,P) = T Bkt /k ! (40)
def k .
I1 est facile de vérifier (faites le !) que
G(tlp) = z (]"‘t)N Prob(N) (4])
N
Multipliant les deux cdtés de (39) par tk/k! et sommant sur k on obtient aprés

un peu d'algébre 1'équation intégrale que satisfait la fonction G(t,P):

G(t,P) = (1+t) [ d(p) h(p;P) G(t,P-p) (42)
Passons d la limite M = (P.P)]/2 + ® , Au repére ol P et P sont paralléles on
a

(P-p)z - M2 - 2(P2 + M2)1/2 (p2 + m2)1/2 + 2Pp

= M2 - 2(p + M2/2P)(p + m2/2p) + 2Pp
= m?(1-2), (43)
pour autant que 7 = pP/P >> m/M. Donc, asymptqtiquement

G(e,M%) = (1+¢) of] (dz/z) h(z) G [t, M2(1 - 2)1 (44)

La solution de cette équation c'est
e M%) = ace) )2, (45)
oll A(t) est arbitraire et a(t) est déterminé& par l'&quation & valeurs propres
suivénte: .
o Gee) F (dale) () (1= () (46)
0

En tenant compte de la condition de normalisation (36) on trouve
a(0) = 0 , 47)
puis on trouve les dé&rivées de a(t) 3 t=0 en différentiant successivement les

deux c&étés de 1'équation (46). Par exemple,

1
a'(0) = da/dt = -1/ [ (dz/z) h(z) 1n(1-2) (48)
. |t=0 0

fontes ces dérivées, et en partant la fonction a(t), existent pour autant que
La fonction h(z) ne soit pas trop singuli&re 3 z=1.
L'8quation (45) résume toute l'information concernant la distribution de

multiplicité, Par exemple:

2]
<N > = —2 g(e,M%) n a'(0) 1nM2 (49)
Bt ‘t=0

La multiplicité augmente logarithmiquement avec la masse du jet:
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le coefficient du logarithme, donné par (48), n'est rien d'autre que la hauteur
du plateau de rapidité.
Les piuramétres de corrélation de Mueller sont définis comme les dérivées

logarithmiques de la fonction génératrice:

k
£ = e in G(thz) s k= 2,3,... (50)
k def Stk |t=0

Le paramétre f, est égal 8 la fonction de corrélation inclusive de l'ordre k

k

intégrée par rapport aux k rapidités. L'@quation (45) donne

E, ™ a(k)(o) en M@ (51)

La croissance logarithmique de f, avec la masse du jet signifie que, dans le

k
modéle, les corrélations inclusives sont de courte portée en rapidité.

N 5.4 L'introduction des saveurs.

Vous avez déja probablement remarqué qu'il y a un paralléle entre la
hiérarchie postulée par le modéle récursif et la hiérarchie de saveur. On n'a
qu'3d identifier les deux pour que la saveur soit introduite dans le cadre du
modé&le récursgif.

Comme dans le reste de ce cours on négligera la production des baryons.

La fonction h(z) est maintenant remplacée par une matrice dont l'élément

hq;(z) est égal 2 la probabilité que le méson de rang | soit de type qa et
emporte la fraction z de 1'impulsion du jet (q dénote la saveur du quark primi-
tif)., La généralisation des équations intégrales de la section 5.2 est évidente.
Soit, par exemple, i S:z(z) le spectre inclusif du meson de type ba dans un jet

ba

initi& par un quark de saveur q. Alors

i (')(z) = h,-(z) 5 + 12e (dz'/2z') T h =-(z') i £l)( Z ) (52)
ba;q ba bq S qc ba;c 1
0 c -2
Le terme inhomogéne est non nul pour b=q seulement (pourquoi ?).
J'abandonne maintenant la discussion analytique du mod&le pour décrire
briévement 1'expérience sur ordinateur de Fiell et Feynman.

5.5 Simulation Monte—-Carlo (3+] dimensions).

Nn simplifie considérablement le probléme en supposant, ce qui est parfai-
tement raisonable, que la création des paires, qui est 3 l'origine de l'hadroni-

sation, ne dépend pas de la saveur du quark primitif:

hoz(®) = v, h(2) (53)
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ol

Sy, o= 1 (54)

Dés qu'on veut générer des jets Monte Carlo il se pose tout de suite la
question: quelle est la signification de la variable z quand zP est petit, disons
de 1'ordre de 1| GeV ? En effet, l'artifice théorique qui consiste a4 prendre la
limite asymptotique n'est pas de mise dans une simulation sur ordinateur. On s'en

sort en re-définissant la variable 2z:

E. + p.
2 = PN Y]
j def (55)
J de E + P
Le nouveau z différe de l'ancien pour des particules peu Energiques seulement.
Le tirage des événements se fait par &tapes. On se place initialemeht &

une énergie Eo >> E.
(i) On tire les 2 successifs selon la loi de probabilité
Prob(z) dz = h(z) dz/=z

N.B: h(z)/z est dénoté f(1-z) dans l'article de Field et Feynman.

On tire les saveurs @ s 85500 selon la probabilité Prob(a)= Y, -

. » . =+ > I3 ’ N .
On tire les impulsions transverses Voo VI"" selon une distribution Gaussiennec.

(ii) Par définition on pose:

particule de rang 1

saveur = qa,
By+py, T 21 (Pp *+ Egd
-»> =;,> _->
Prr 1~ Vo
partiéule de rang 2
saveur = a, a,
E, + Py " 2,(1=2)) (Py + E()
> >
Par = Va T VgL
etc.
(iii) On choisit au hasard le spin du méson (aj5j+]). Par souci de simpli-

cité,seulement le nonet pseudoscalaire et le nomnet vectoriel sont pris en compte.
On simule la désintégration des résonances en pions finals. Cela produit une

- >
suite de quadri-impulsions des pions produits: (m],k]), (mz,kz),...

(iv) On passe au repére originel en faisant la transformation suivante:



E + P

i
. . )
] iy 3 iy
! Eg*P,
et on garde uniquement les particules dont les impulsions satisfont & la

condition
’
in
Les pions du jet ont, par comstruction, des impulsions longitudinales posi-

>

tives. Le jet d'&nergie finie satisfait automatiquement & la condition de frag-
mentation limite. En fabriquant d'abord un jet d'énergie plus grande que celle

4 laquelle on s'intér.sse et en le "

coupant'" ensuite on récupére les pions
dont 1'impulsion longitudinale est positive malgré le fait qu'ils soient des
produits de dé&singration de ré&sonances ayant p, < 0. Il est évident que l'éner-
gie du jet Monte Carlo n'est pas exactement E, que son impulsion n'est pas
exactement P, etc.

Faisons un rapide décompte des paramétres. Tout d'abord il y a une fonction

inconnue h(z). Le choix de Field et Feynman consiste @ prendre

h(z)/z = f£f(l1-2) ] - a + 3a(I-z)2

La conservation d'isospin implique Yo = Yq- Cela fait | paramétre libre si on
néglige les quarks lourds (charmés, etc) et si l'on tient compte de la contrainte
(54). Le paramétre suivant est lg rapport entre les probabilités qu'un méson
(aj5j+l) soit un 0 ou un 1 . Finalement il y a la dispersion de la Gaussienne
qui décrit la distribution des impulsions transverses,

Field et Feynman postulent que Prob(0 )= Prob(1 ) (en fait, le choix
Prob(l )= 3 Prob(0 ) serait plus naturel)., Pour reproduire les données sur le
rapport K+/1r+ observé dans la production 3 grand Pr ils posent Y& Y4= 2Y s
La dispersion de la Gaussienne est déterminée en ajustant < kT> . Enfin, pour
reproduire les fonctions de fragmentation des quarks observées dans les expé-

riences leptoniques ils sont amenés i poser a=0.77 .

5.6 Un exemple de résultat de 1'expérience sur ordinateur de Field et

Feynman .
Je reviens & la question soulevée, en passant, dans la section 4: comment
déterminer la saveur du quark qui est 38 l'origine d'um jet observé ?
Une réponse partielle & cette question se trouve dans la table 15 de
l1'article de Field et Feynman, dont j'en reproduis ici une partie.

Les auteurs ont géné&ré un ensemble de jets dont 1'Energie moyenne est de
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10 GeV. L'ensemble contient autant de jets initié&s par un quark u que par un

quark d. La qualité du crit@re choisi pour dé&terminer la saveur du quark primi-

tif est chiffrée par deux paramétres:

la sliretd = (V - F)/(V + F)

1'éfficacitéd = (v + F)/N,

N= nombre total de jets examinés

V= nombre de fois oli le crit&re a permis d'obtenir la réponse correcte.

F= nombre de fois oili le crit&re a conduit 3 une réponse

L'efficacité d'un critére donné est,

en général,

fausse.

plus petite que | car le cri-

tére n'est pas toujours applicable. Voici quelques résultats instructifs:

critdre choisi pour déterminer 1la la sfireté 1'é6fficacité
saveur du quark primitif ¢

(a) si la charge du hadron 1le

plus rapide est > 0 (< 0) alors q=u (d) 27% 607
(b) si la charge du hadron chargé le

plus rapide est > 0( < 0) alors q=u (d) 2527 997
(c) si la charge du hadron chargé

ayant z> 0,5 est > 0 ( < 0) alors q=u (d) 457 147
(d) si les deux hadrons chargés les plus

rapides ont des charges > 0 (< 0) alors

g = u (d) 46% 312
(e) si la charge totale du jet est

> 0 ( < 0y alors g=u (d) 457 667%
(f) si la charge totale des hadrons ayant

z > 0.1 est >0 ( <0) alors g=u (d) 387 627

Les questions pertinentes de C.PANDA m'ont beaucoup aidé

\

de ce cours.

dans la rédaction
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