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1. Introduction. 

1.t Avertissement. 

Ce cours s'adressant aux expérimentateurs je dois le commencer par un 

avertissement: la théorie des phénomènes habituellement classés sous le généri-

que "jets" reste â faire. Ce qui suit c'est de la phér^ménologie de multiproduc-

tion mélangée â des spéculations inspirées par la chromodynamique (QCD). 

La cohérence interne de l'ensemble n'est pas garantie, 

f.2 Définition d'un jet. 

Qu'est-ce-qu'un jet ? On peut formuler diverses définitions, chacune 

ayant ses avantages et ses inconvénients. La définition donnée ci-dessous n'est 

pas très contraignante mais elle a l'avantage de s'appliquer événement par 

événement. J'espère que la signification de la notion "jet" se précisera par la 

suite, quand j'aurai discuté des propriétés des jets. 

Considérons un groupe de particules dont les impulsions sont p^, j=l, 

2,...,N. Ces particules forment un jet s'il existe une direction dans l'espace, 

définie par un vecteur unité n, telle que typiquement 

Pj • n >> | Pj x n | (1) 

Puisqu'on admet que l'inégalité (1) pourrait ne pas être satisfaite pour 

certaines particules, la définition donnée ci-dessus contient une ambiguité. 

Il ne servirait à rien de se débarrasser de cette ambiguité en adoptant une 

définition plus précise. En effet, un jet n'est pas produit en isolation et, 

nous le verrons, la dynamique même de la production des jets implique qu'il y a 

des particules dont le "statut" est intrinsèquement ambigu, dans le sens qu'elles 

peuvent être associées aussi bien à un jet qu'à un autre. 

1 . 3 Qu'est-ce-qu'on observe ? 

Laissez-moi vous rappeler qu'on observe deux jets opposés (au référen-

tiel du centre de masse) dans les collisions inélastiques typiques hadron-hadron. 

Ceci est connu depuis près de 30 ans et constitue une des grandes découvertes 

faite par les cosmiciens. Plus récemment,on a observé des jets hadroniques dans 

la diffusion profondement inélastique lepton-hadron et dans l'annihilation 

e + e -*• hadrons. Enfin, dans les rares collisions hadron-hadron où des hadrons 

sont émis avec de grandes impulsions transverses, ces hadrons tendent à former 

deux jets (donc, dans ce cas précis on observe, au total, la formation de 

quatre jets: deux jets "habituels" et, en plus, les deux jets associés à la 
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production â grand PT)* 

Je n'ai pas l'intention de passer en revue la situation expérimentale. 

Je voudrais seulement souligner l'universalité du phénomène de production des 

jets: dans toute collision entre particules élémentaires qui aboutit â la multi-

production des hadrons, ces hadrons forment des jets, pour autant que l'énergie 

disponible soit suffisamment grande. 

1.4 Un mécanisme universel ? 

Etant donné qu'on observe les jets un peu partout, une question se pose 

tout naturellement: la production des jets est-elle une manifestation d'un 

mécanisme universel, commun à l'ensemble des processus mentionnés dans la 

section précédente ? La chromodynamique suggère la réponse suivante à cette 

question: 

A l'origine de la mu1tiproduction il y aurait (presque) toujours une 

tentative de séparation dans l'espace des sources de couleur. La couleur étant 

confinée, toute tentative pour séparer les sources de couleur aboutirait â la 

production de jets hadroniques orientés selon les directions de mouvement des 

1 

sources . 

La précédente affirmation est composée de deux volets, que nous allons 

examiner séparément. Voyons d'abord s'il y a une séparation des sources de 

cou leur sous - i ci cente dans les phénomènes de mu 11iproduction. 

La situation est particulièrement claire dans tous les cas où inter-

viennent des leptons. Par exemple dans e+e y qq •+ hadrons les sources de 

couleur qu'on tente de séparer sont le quark et l'antiquark. Le cas de la 2 

diffusion profondement inëlastique 1epton-hadron est à peine plus compliqué : 

Plaçons-nous au référentiel où le hadron initial et le y (ou W) virtuel 

ont des impulsions colinëaires. Supposons que le hadron se meut de gauche à 

droite avec une quadri-impulsion p = (P,P,0,0) et que c'est le parton qui porte 

la fraction x de P qui absorbe le photon. Alors, la quadri-impuls ion du photon 
2 2 2 

est q = (-xP+Q /4xP, -xP-Q /4xP,0,0), où Q = - q.q > 0. Une fois le photon 

absorbé on trouve un parton (quark ou antiquark) qui se meut de droite à gauche 

2 . . . 

avec l'impulsion -Q /4xP et le système hadronique résiduel (coloré !) qui file 

de gauche à droite avec l'impulsion (l-x)P.La difference avec le cas e + e •*• qq 

c'est que maintenant une des sources de couleur est étendue au lieu d'être ponc-

tuelle. 



- 2 7 -

Le processus de Drell et Yan , qq -+-1Ï, est responsable de la production 

des paires leptoniques lourdes dans les collisions hadron-hadron. Plaçons-nous 

au référentiel de centre de masse des deux hadrons incidents. Il est évident que 

la production de la paire 11 sera accompagnée de l'émergence de deux systèmes 

hadroniques résiduels et colorés se mouvant dans des directions opposées. Dans 

ce cas-ci les sources de couleur qui tentent de se séparer sont toutes les deux 

étendues. 

Passons aux interactions purement hadroniques, en commençant par la 

production à grand p . Cette dernière est due à la diffusion "dure" des consti-

tuants des hadrons incidents. Si deux constituants colorés (quarks ou gluons) su-

bissent une diffusion élastique "dure" on aboutit à une séparation temporaire de 

•k 
quatre sources de couleur . 

Le cas de la diffusion "molle" hadron-hadron (petits p^) est un peu moins 

clair. La diffusion "molle" est caractérisée par des grandes distances et par des 

— 1 3 — 2 3 

temps longs (comparés â 10 cm ou â 10 sec !). Par contre, l'image qui repré-

sente un hadron commti un faisceau de partons quasi-libres n'est, évidemment, qu ' 

un"instantané". Cette image est surtout utile quand l'interaction elle-même dure 

un laps de temps très bref (ceci est le cas dans les interactions à grand trans-

fert d'impulsion). Le lien entre la physique des quarks et gluons et la phénomé-

nologie de multiproduction "molle" (reposant sur les concepts qui ne font pas 

intervenir la notion de couleur) est un sujet de recherche passionnant, mais qui 

est loin d'être vraiment compris. En particulier la relation exacte entre les 

forces fondamentales (agissant entre quarks et gluons et ayant une portée infinie 

dans l'espace de rapidité) et les forces effectives (celles qui agissent entre 

hadrons observables et qui semblent bien avoir une portée finie en rapidité) 

n'est pas encore bien claire. Cela dit, on peut essayer d'imaginer comment les 

choses se passent: 

* Dans le cadre du CIM (Constituent Interchange Model)'* on imagine facilement des 
processus "durs", tels que (qq) + (qq) ( q q ) + ( q q ) » qui mettent en jeu des 
constituants sans couleur uniquement. A n ' exi «fte aucune indication que de tels 
processus jouent un rôle quelconque dans la production à grand p T . En fait, si 
on croit aux règles de comptage dimensionnel de Brodsky-Farrar , le processus que 
je viens de mentionner donne une contribution au spectre inclusif qui tombe comme 
p"12 (pour x =2p,r/s fixe), ce qui n'est pas très compétitif. 
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Au référentiel de centre de masse, deux hadrons, ressemblant à des 

disques à cause de la contraction de Lorentz, se rapprochent à grande vitesse. 

Les deux disques se recouvrent pendant un temps très bref. Pour décrire ce qui 

se passe pendant ce temps on peut recourir au modèle des partons. Les deux 

hadrons peuvent échanger (interchanger) des partons qui ont (momentanément) une 

faible énergie (de l'ordre d'un GeV ou moins), sans que cela implique un grand 

transfert d'impulsion. L'échange (1'interchange) de partons équivaut, en général, 

à l'échange de couleur. Par conséquent, les objets qui se séparent après le bref 

recouvrement ne sont plus des hadrons "ordinaires" mais plutôt des sources 

étendues de couleur. (Quand c'est un singulet de couleur, par exemple (qq)Q, qui 

est échangé, les objets qui se séparent sont des hadrons "ordinaires", en général 

des hadrons excités. La définition d'un jet donnée au §1.2 est tellement générale 

qu'elle admet qu'on qualifie de jet l'ensemble des produits de désintégration 

d'un hadron excité. Ce n'est pas ces jets "banals", associés aux événements à 

quasi-deux-corps, qui nous intéresseront dans la suite de ce cours). 

Résumons: j'ai illustré à l'aide d'exemples particuliers la thèse selon 

laquelle la multiproduction est la conséquence d'une séparation (temporaire) des 

sources de couleur (je mets à part les réactions où l'état final est composé 

d'un petit nombre de hadrons excités, car ce n'est pas le cas typique). Voyons 

maintenant ce qui suit une séparation des sources de couleur. 

La chromodynamique quantique possède la propriété bien connue de "liberté 

asympto tique" qui signifie que le couplage effectif devient nul quand la distance 

entre les sources tend vers zéro^. Inversement, le couplage augmente quand la 

distance grandit. En raison (principalement) de l'échec des tentatives de produire 

les quarks dans des chocs à haute énergie, on s'attend à ce que deux sources de 

couleur augmentent indéfiniment leur énergie potentielle en s'éloignant l'une de 

l'autre. Si on confère à deux sources de couleur une grande impulsion relative, 

les sources tr> s'éloignant l'une de l'autre convertissent leur énergie cinétique 

en énergie du champ de couleur. Dans ce champ de couleur se créeront spontanément 

des paires qq, qui en se recombinant vont donner les hadrons observables. En 

chromodynamique, les grands transferts d'impulsion sont pénalisés (grand trans-

fert d'impulsion •*-*• petite distance). On s'attend, par conséquent, â ce que les 

particules produites par le processus de hadronisation gardent la mémoire des 

directions de mouvement des sources originelles de couleur, en s'alignant appro-

ximativement selon cesdirections. 
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Je vais maintenant illustrer mes propos en utilisant un modèle spécifi-

que. N'étant pas un "complicateur professionnel" je choisis le modèle le plus 

simple possible. En jouant avec ce modèle nous serons amenés tout naturellement 

à formuler quelques idées qui, apparemment, transcendent le modèle, car on les 

retrouve dans d'autres approches (plus complexes et plus sophisitquées). 

2. Un modèle semi-classique^. 

2.1 Les hypothèses. 

Nous allons considérer un monde fictif où il n'y a que 1+1 dimensions: 

une dimension d'espace et le temps. On supposera que l'énergie potentielle d'une 

paire c, .iar k-an tiquark* croît linéairement avec la distance qui sépare les 

membres de la paire: 

V -(x) = X | x | , X > 0 (2) 

La force entre q et q est donc indépendante de distance et attractive. 

On postulera aussi que 

\ q ( X > " V q q ( x ) = ~ A M ' <3> 

* * 

et que les forces entre quarks ent antiquarks sont additives 

Les quarks et les antiquarks seront traités comme des points matériels 

classiques avec masse nu lie: 
m = 0 (4) 

q 

Nous admettrons cependant que des paires qq soient crëees dans le champ entre 

un q et un q (avec, initialement, une énergie cinétique nulle). 

2.2 Un méson. 

Considérons une paire qq au repos. Soit mqjj l a masse de la paire (ou, 

si l'on veut, du méson). Les équations du mouvement s'écrivent: 

dpq/dt = - X (5a) 

dp_/d t = + X (5b) 
q 

"k 
Ce sont des quarks entre guillemets: dans 1+1 dimensions il n'y a pas de spin 

et je négligerai les complications dues à la couleur. 

**Dans notre monde fictif il y a autant de quarks que d'antiquarks et les baryons 
n1 exi s tent pas. 
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où p (p-) dénote l'impulsion du quark (antiquark) et t est le temps. 

Supposons qu'à t=0 q et q se trouvent au même point de l'espace et que p q (0) > 0. 

Alors (c = Id = I): 

P q (t) = -P g (t) - - Xc + m q 5 / 2 , 0 < t < m q _ / A 

( 6 ) 

P q (t) - - P q < 0 - Xt - 3mq./2 , mq-/X <t < 2mq-/X 

etc. 

Ce mouvement oscillatoire est représenté graphiquement par la figure la. 

^ temps 

espace 
(a) (b) 

Fig. 1 

La période d'une oscillation complète est At = 2m et la distance maximum 
qq 

entre q et q est (Ax) = m - /X . Evidemment n M max qq 

\ q = I P q f O I + i P q ^ H + \ q C *<«=>] , (7) 

comme il se doit. 

Je laisse au lecteur le soin de vérifier qu'un méson en mouvement est.bien 

représenté par la figure lb. La superficie ue la région hachurée est invariante 

sous la transformation Lorentz. La distance maximum entre q et q est contractée 

à e-^m - / X , où y est la rapidité du méson. qq 

N.B. : En supposant qu'à 3+1 dimensions une paire qq ressemble au^si à une 

corde, on trouve facilement une relation entre le moment cinétique maximum d'un 
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méson ( q q ) e t s a m a s s e 
8 

J max " ( l / 2 < \ q > ' ( 8 ) 

Le c o e f f i c i e n t d e v a n t (M - ) p e u t e t r e i n t e r p r e t e comme é t a n t l . i p e n t e a ' de 
qq K 

- 2 l a t r a j e c t o i r e Regge d o m i n a n t e , a ' „ • 1 GeV . C e c i d o n n e une e s t i m a t i o n de A , 
K 

0 . 1 6 GeV , ( 9 ) 

q u i n ' e s t p a s t r è s é l o i g n é e de c e q u ' o n t r o u v e en é t u d i a n t l a s p e c t r o s c o p i e d e s 

9 

p s i o n s . Pour a r r i v e r â ( 8 ) on c o n s i d è r e un r o t a t e u r r e l a t i v i s t e de l o n g u e u r L 

d o n t l e s b o u t 3 t o u r n e n t â l a v i t e s s e de l a l u m i è r e . L ' é n e r g i e (au r e p o s ) d ' u n 

é l é m e n t de l o n g u e u r d J?, du r o t a t e u r e s t é v i d e m m e n t AdZ ( v o i r e q . ( 2 ) ) . Un c a l c u l 

s i m p l e ( f a i t e s - l e ! ) mène au r é s u l t a t s u i v a n t : 
M _ 

qq 
tt X; 

TT A L / 2 max 

d ' o ù l ' é q u a t i o n ( 8 ) . 

( 1 0 a ) 

( 1 0 b ) 

En r e v e n a n t au "monde l i n é a i r e " e t en u t i l i s e n t ( 9 ) on o b s e r v e que l e r a y o n 

— 1 3 d ' u n meson e s t de l ' o r d r e de ( Ax) / 2 , c ' e s t - à - d i r e e n v i r o n 0 . 5 x 10 cm. max 

J ' a i u t i l i s é l a m a s s e du r h o comme l a m a s s e " t y p i q u e " d ' u n meson l é g e r . Compte 

t e n u de l a g r o s s i è r e t é d e l ' e s t i m a t i o n l e r é s u l t a t n ' e s t p a s m a u v a i s . 

2 . 3 La mu 1 1 i p r o d u c t i o n . 

n
 N 

A \ 

Fig. 2 
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Comme exemple d'un processus de mu 111productIon nous allons prendre le cas de 

e + e qq •+• hadrons. 

Ce qui pourrait se passer est illustré par la figure 2. Une paire quark-antiquark 

(qq) est créee au point (0,0) de 1'espace-temps. Deux autres paires sont créées 

à (t ,x ) et (t, ,x ). Au point (T,X) le quark b et l'antiquark a se rejoignent Q â D D 

et forment un état lié en mouvement (cf. fig.lb). Il est facile de vérifier que 

les forces s'annulent dans la région d ' espace-temps comprise entre qa, ab et bq 

(pour t > max(t , t,)).En particulier aucune force n'agit sur le méson (ba) qui a b 
se propage librement. 

Nous supposons que 

E " < ' a > c in 
E b b (t ) - 0 
c i n 

( M ) 

Par conséquent on a 
ps H t - t ) a T * t » t a , (1 2a) 

e t 

pb = -X(t - t b) T >< t >, t L . (1 2b) 

Ceci nous permet de trouver l'impulsion du méson (ba), 

p b â " p b ( T ) + p I ( T ) = ^ V a » ' 

ainsi que son énergie 

Ebâ • lpb (T )l + lpS ( T ) I = X (2T - ca ' 'b5' 
Puisque par ailleurs on a 

( 1 3 ) 

(14) 

T - t = X - x a a (15a) 

e t 

T " Cb = " X + xb ' 
on obtient â partir de (14) 

(15b) 

b a X(xb - x a ) ( 1 6 ) 

Le temps nécessaire pour qu'apparaisse le méson (ba) est égal à 

T = (t + t, + x, - x )/2. a b b a (17) 

Ce temps prend sa valeur minimum quand x_ •t et x,= t, . Donc a b b 

T . = x, - x min b a Eb-a/A (18) 

Les équations (16) et (18) seront utiles dans la discussion du chapitre suivant, 
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3. Propriétés générales des jets. 

3.! Cascade "in-out". 

L'équation (18) peut être ré-écrite sous la forme 

T min " ( E b à / m b i ) ( m b â / ^ <'9> 

qui rend mieux compte de sa signification physique : m, -/A c'est le temps 
b a 

propre minimum nécessaire à la formation du méson. Ce temps propre subit la 

dilatation de Lorentz quand le méson n'est pas produit au repos. Le fait que le 

temps propre soit fini , qu'un hadron ne peut être crée instar.tanément, implique 

que le temps qu'il faut pour produire un hadron est proportionnel à son énergie. 

Par conséquent, les particules lentes sont produites le plus tôt et les parti-

cules rapides le plus tard . En d'autres termes, le processus de multiproduction 

démarre dans la région des faibles rapidités et s'étend progressivement vers des 

rapidités de plus en plus grandes (en valeur absolue). C'est l'image de ce qu'on 

appelle après Bjorken la cascade "ins ide-outside" ou "in-out"'®. Notez que cette 

image est valable dans n'importe quel référentiel. (La particule qui est émise 

la première dans un référentiel peut être produite la dernière dans un autre. 

Dans le cadre familier de la théorie de perturbation il peut aussi être constaté 

que l'ordre d'émission des particules dépend du repère: un diagramme de Feynman 

de la théorie relativiste représente une somme de plusieurs diagrammes ordonnés 

dans le temps. Le poids relatif des différents diagrammes ordonnés dépend du 

référentiel. Vous pouvez vérifier cette affirmation en prenant comme exemple 

les diagrammes ordonnés qui décrivent, à l'ordre le plus bas, la diffusion 

élastique dans la théorie avec l'interaction cubique g i ). 

L'image d'unecascade "in-out" est commune à tous les modèles qui tentent de 

représenter d'une manière réaliste le développement dans l'espace-temps du pro-

cessus de la production multiple des hadrons. Elle trouve sa confirmation empi-

rique dans la quasi-absence d'une cascade intra-nucléaire dans les collisions 

hadron-noyau à haute énergie'' (les secondaires rapides sont formées en dehors 

du noyau et ne peuvent plus subir des rediffusions). 

3.2 La hiérarchie de saveur. 

Dans la section 2.3 on a étudié la conversion en mésons d'une paire qq 

créée initialement. En général, les mésons créés forment deux jets, un associé 

au quark et l'autre à l'antiquark. Considérons un de ces deux jets, par exemple 

12 
celui associé au quark. On peut y établir une hiérarchie de saveur : d'abord il 
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y a le méson qui contient. Le quark initial, ensuite il y e le méson qui coolripot: 

le quark de la paire dont 1 1 ant j quark s'est associé au quark initial, etc. Tint: 

qu'on néglige la production de baryons il n'y a pas d'ambiguïté. 

Supposons que les paires aa, bb,cc,.,, sont créées 3 x « x < .,. (cf. 

figure 2). Alors le méson (cb) est d'un cran plus haut: dans la lu. érarchie a va >. a 

méson (ba). Cependant, l'énergie E cg ® A(x x^) n ' e f pas nécessairemenf 

plus grande que E ^ ~ À (x^ - xfl) car x < x^ <• x n'implique pas que 

x, - x < x - x, . De même la rapidité v ;• n'est pas nécessairement plus 
b a c b - J cb 1 

grande que la rapidité y -, Le résultat: de cette discussion s« résume, 'tens la 

constatation suivante s l'ordre en rapidité ne coincide pas toujours avec la 

hiérarchie de saveur. En particulier, il ne faut pas s'attendre à ce que le 

rué s on le n 1 u s rapide conti enrm toujours le. quark qui a i. n i n e le jet:. 

3 , 3 L ' é n e r g l e tu p u 1 s i o n d a n jet. 

Soient: , E . , v> . "> • i ! . ., .. . , , les ci u a dr i - impu 1 s ions des hadrons constituant 

un i « ? Définissons 1 'ay.e ci u i et par la direction du vecteur P = ^ p. et 
J J 

calculons la différence entre P = I ? I et E = ? E.. 
' ' J J 

En ut i 1 i s s n t 1 ' a p p r o x i m « tj.on T. <= 1 « i: i v i s t k 

a. K, m 7 / ?.Ë . (20) 
•V 1 

ou in d ëno ta V a mi. s se trssï./ers::. ov ob tie rit 

E - P - J ( E . - P J / / ) 

- J ^ t / 2 E . (21) 

Supposons qu'il y a un long plateau en rapidité dans le spectre inclusif, c'est-

à-dire que la multiplicité différentielle a la forme 

dN = hdx/x, (x^=E^/E > < m T > /E), (22) 

ou h est la hauteur du plateau (la forme exacte dans la région de fragmentation 

n'a pas d'importance pour l'argument qui suit; ce qui compte c'est: le. d : .< /x} . 

En utilisant (22) on trouve qu'en moyenne 

< E - P > -s: ( < > h/2E) f 1 dx/x 2 

* M T > / E 

= h < > /2 < m T > (?.3V 

Si <le Sureroi-t Prob(m I) -V. cxp (-const .m^,) „ alors < c\,r > - 2 < m T > " et on obtient 

< E - p > - h < m T > (24) 
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(ce résultat est mentionné dans l'article de Field et Feynman, cité dans ma 

référence 18). Le côté droit de (24) est empiriquement de l'ordre de 1 GeV. 

2 2 1/2 
L'équation (24) implique que la masse d'un jet, M. = (E - P ) , est, en 

J G L 

1 / 2 

moyenne, de l'ordre de (2h < mT> E) et tend vers « quand E + ». 

En écrivant l'équation (22) j'ai un peu anticipé sur la discussion ulté-

rieure, mais je n'ai pas fait de supposition qui serait en contradiction avec 

les données sur les jets, bien au contraire. Le petit calcul que je viens de 

faire montre que (E,?) ne peut pas être identifié avec la quadri-impuls ion 

( E , ? ) du quark (ou antiquark, selon le cas) qui a initié le jet : 

(E,P) £ (E ,Pq). Bien que 1'ênergie-impulsion soit conservée globalement, par 

exemple dans e + e qq •*• hadrons, on n'a pas de conservation d ' énergie-impul-

sion dans q hadrons et q •*• hadrons séparément. Il existe une incertitude 

intrinsèque, de l'ordre de 1 GeV en moyenne, dans toute tentative de déterminer 

E q et/ou | P^ |. C'est lié au fait que la cascade "in-out" commence par 

l'émission des particules lentes qu'on peut aussi bien associer à un jet qu'à 

un au tre. 

L'erreur irréductible dans la détermination de l'énergie-impulsion du 

parton "parent" à partir des énergies-impulsions des hadrons observables a des 

conséquences importantes pour la phénoménologie. En effet, on voudrait inter-

préter les sections efficaces pour les processus fondamentaux (calculées, par 

exemple, dans le cadre de QCD perturbative) comme des sections efficaces pour 
— 8 

la production de jets. Cependant, si la section efficace tombe comme E^ et 

si E = E i 1 GeV, alors l'incertitude concernant la valeur de la section q 

efficace de production d'un jet d'énergie E = 5 GeV correspond à un facteur 

de 20, ce qui est beaucoup. 1 3 

3.4 La charge moyenne d'un jet de quark 

La charge électrique d'un jet est un nombre entier qui fluctue d'un événe-

ment à l'autre. On pourrait s'attendre à ce que la charge moyenne des particules 

formant un jet soit égale à la charge du quark initial. En général ce n'est pas 

vrai car, là aussi, on commet une erreur systématique. Considérons un jet initié 

par un quark de charge Q q . Après la création des paires qq et la recombinaison 

des quarks et antiquarks en mésons finals, il reste toujours un antiquark 

"laissé pour compte" (en fait il s'intègre à un autre jet). Par conséquent la 

charge moyenne d'un jet de quark est 
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<• Q > - q - E Q, Prob(f) (25) 
q f r 

où on somme sur les saveurs f et Prob(f) est la probabilité de création d'une 

paire q f q f -

1 4 

Il y a environ trente ans Schwinger a calculé le taux de production des 

paires e +e dans un champ électrique uniforme. Il a trouvé que ce taux est pro-

portionnel â exp(- Trm /e E), où m et e sont la masse et la charge de l'électron 

et E dénote l'intensité du champ électrique externe. Le problème de Schwinger 

ressemble suffisamment à celui qui nous intéresse pour qu'il soit légitime d'en 

déduire que le taux de production des paires q^q^ doit décroitre rapidement avec 

la masse m^ du quark de saveur f. Les données sur la production à grand p^ 

suggèrent que 

Prob(u) = Prob(d) = 2 Prob(s) >> Prob(c) (26) 

Ceci donne 

Qq ~ < Q > = | x 0.4 - 5 x 0 . 4 - i x 0.2 = 0.07 (27) 

3.5 L'ordre à courte portée (?) . 

L'idée de l'ordre à courte portée (SR0 = Short Range Order; je pense à la 

version forte de l'hypothèse) vous est certainement familière. Cette idée est 

très bien illustrée par l'analogie de Feynman-Wilson ' : 

L'état à mu 11i-particul es ressemble à un liquide non-critique enfermé dans un 

très long cylindre. La rapidité y et l'impulsion transverse p^ d'une particule 

représentent les coordonnées d'une "molécule" du liquide. SR0 englobe la 

constance du < pT > , l'invariance d'échelle à la Feynman, la courte portée 

des correlations etc. 

La compréhension de la multiproduction dans les chocs "moux" hadron-

hadron s'organise autour de l'hypothèse SR0. Nous savons que SR0 ne peut pas 

être une loi exacte, même asymptotiquement, étant nécessairement brisé par les 

effets diffractifs. Mais bien que ces effets diffractifs soient appréciables, on 

peut les contrôler, au moins d'une manière approchée'^. 

Puisque SR0 est apparemment la propriété de base de la mu 11iproduction 

"molle", l'argument de l'universalité de jets incite à prédire que pour tout jet 

on a < p̂ , > = const, l'invariance d'échelle, corrélations à courte portée en 

rapidité etc. Et, en effet, les données accumulées jusqu'à présent'ne permettent 

pas de conclure qu'il exisce une différence qualitative notable entre les jets 
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produits dans les interactions "dures" et ceux qu'on observe dans les collisions 

hadroniques "molles". Cependant, on peut douter du bien fondé de l'argument de 

1'universali té. 

Les calculs perturbatifs en chromodynamiqne quantique suggèrent que dans les 

chocs "dures" les sources de couleur qu'on tente de séparer émettent une radia-

tion de freinage (bremsstrahlung) . Les quanta émis par bremsstrahlung s'alignent 

approximativement selon la direction de la source primitive de couleur et,ensemble 

avec cette source, forment un jet. Ce jet est constitué des particules colorées 

uniquement et je vais le désigner par l'expression "jet de couleur". Une discus-

sion des jets de couleur, pour être utile, nécessiterait des considérations 

techniques qui nous mèneraient au-delà des limites imposées à ce cours. Je 

voudrais seulement mentionner que l'impulsion transverse moyenne des particules 

formant un jet de couleur n'est pas constante: l'échelle est fixée par l'impulsion 

totale du jet. On a donc < p T > % const.xP, à des logP près. 

Tant qu'on ne contrôle pas les effets non-perturbatifs, qui sont à l'origine 

du confinement de la couleur et de la conversion des quarks et des gluons en 

hadrons observables, il subsiste une incertitude quant à l'interprétation des 

résultats obtenus dans le cadre perturbatif. Vers quel état hadronique évolue un 

jet de couleur ? Strictement parlant je ne connais pas de réponse entièrement 

satisfaisante à cette question. 

Il se pourrait que 1'hadronisation d'un jet de couleur se manifeste par 

l'émergence d'un "jet" des jets hadroniques, chaque jet constituant ayant une 

structure semblable à celle des jets produits dans les interactions hadroniques 

molles. Aux énergies des expériences actuelles il y aurait un recouvrement 

considérable entre les jets constituants et, en plus, le nombre de ces jets 

serait petit. Ceci expliquerait qu'on ne voit pas encore de difference signi-

ficative entre les jets produits dans les interactions "dures" et "molles". 

L'image que je viens d'esquisser tente de concilier les enseignements de QCD 

perturbative avec l'idée que SRO est une propriété de base de tout phénomène 

de multiproduction. Il va de soi qu'il ne s'agit que d'une pure spéculation. 

C'est l'effet qui est, selon toute vraisemblance, à l'origine de la violation 
d'invariance d'échelle dans la diffusion profondement inélastique lepton-hadron. 
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L e s m o d è l e s d e s jets d e q u a r k u t i l i s é s d a n s l a l i t t é r a t u r e p h é n o m é n o l o -

g i q u e e t , p l u s p a r t i c u l i è r e m e n t , l e s m o d è l e s d o n t j e d i s c u t u r a i p l u s l o i n , 

s o n t e m p r u n t é s n l a p h y s i q u e d o s i n t o r n c. t i o n s I n i d r o n i I|UPS " n u l l e s " , C e t 

" e m p r u n t " e s t parfaitement j u s t i f i é . D'une p a r t on t r a v a i l l e a v e c et1 q u ' o n 

a . D'autre part, 1 e s m o d e l f s en q u e s t i o n s o n t s il L i s f a i H a n t s d u p o i n t d e v u e 

p h é n o m é n o l o g i q u e , d a n s l e s e n s q u'ils p e r m e t t e n t (le r e p r o d u i r e l e s d o n n é e s 

existantes. 

3 . 6 J e t s g l u o n i q u e s . 

Les calculs perturbatifs en QCD suggèrent que le mécanisme e + e •*• qq -*• 

•*• hadrons, bien que dominant, ne devrait pas être exclusif. Par exemple, le 

mécanisme e + e -* qq + gluon haJrons devrait aussi contribuer à l'annihila-

tion e + e , en donnant lieu à la production de 3 jets hadroniques. Les énergies 

accessibles avec PEP ou PETRA sont suffisantes pour que la production de 3 jets 

soit cinématiquement réalisable. En fait, l'absence d'événements à 3 jets 

serait troublante et montrerait que notre compréhension de la chromodynamique 

est encore moindre que nous le pensons (ou que QCD n'est pas la théorie des 

interactions fortes). Cela dit, personne n'a encore formulé des prédictions 

vraiment crédibles quant aux propriétés des jets gluoniques. C'est la raison 

pour laquelle, ce cours se limite, en pratique, aux jets initiés par des quarks. 

4. Deux modèles complémentaires. 

Deux modèles phénoménologiques sont les plus utilisés dans l'étude des jets. 

Le premier c'est le modèle d'émission indépendante'^(UJM = Uncorrelated Jet 

1 8 
Model). Le deuxième c'est le modèle récursif 

L'UJM repose sur l'hypothèse simplificatrice qui stipule que l'amplitude 

de diffusion est le produit de facteurs dont chacun dépend de l'impulsion d'une 

seule particule: 

taux différentiel de 

production de N parti-

cules 

N N 

* 6 * ( P • i=i p j } i=> £ ; ( p i } d 3 p i / E j ( 2 8 ) 

Pour produire les données on choisit pour fj(p^) 'ine fonction rapidement décroi-

ssante de l'impulsion transverse, par exemple 

f (p )= A exp(-B p ) (29) 
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où A et B sont des constantes. Avec le choix (29) la probabilité d'une confi-

guration donnée est proportionnelle au volume correspondant de l'espace de 

phase cylindrique. 

Il y a très peu de dynamique dans l'UJM, juste assez pour reproduire les 

faits les plus saillants (essentiellement les spectres à une particule). Le 

modèle joue dans l'étude de la production multiple un rôle très semblable à 

celui joué par le modèle de Fermi dans la recherche et l'étude des résonances. 

Il permet de mettre en évidence des effets dynamiques nouveaux, en donnant aux 

chercheur un moyen de les distinguer des réflections cinêmatiques d'autres 

effets, bien connus ceux-là. Je ne poursuivrai pas ici la discussion de l'UJM 

car c'est un modèle vieux de (5 ans et bien familier à tout le monde. 

Le modèle recursif est un modèle dynamique. En dépit de sa simplicité il 

réunit l'ensemble des prédictions "raisonnables"(ou qui nous paraissent telles 

â l'heure actuelle) concernant les jets. Un écart des données par rapport au 

modèle ne signifie pas nécessairement qu'on a trouvé quelque chose d'intéressant. 

Mais le modèle fournit un standard. Prenons par exemple la question suivante: 

quelles sont les chances qu'un jet ait été initié par le quark u, étant donné 

que le hadron le plus rapide du jet est chargé positivement ? Est-ce plutôt 

1%, 50% ou 99% ? Devant une question comme celle-ci l'UJM est impuissant. Par 

contre le modèle recursif suggère une réponse (nous reviendrons à ce problème) 

qu'on a tout lieu de croire "raisonnable". 

5. Le modèle recursif*? 

5 . ]. Le principe recursif. 

Considérons l'ensemble statistique de tous les jets pouvant être produits 

par un certain mécanisme, que nous n'avons pas à préciser pour l'instant, et 

ayant la quadri-impu1 sion P = (E,P). Il sera commode d'avoir un symbole spéci-

fique pour désigner cet ensemble: J(F). 

Nous supposerons que si P' est obtenu de P par la transformation de Lorentz L 

alors J(P') s'obtient de J(P) en appliquant L à tout jet faisant partie de J(P). 

Les effets d'interférence quantique seront négligés. On postulera que dans 

chaque jet, appartenant à l'ensemble J(P), il y a une particule singulière dont 

le "statut spécial" est défini par le principe récursif énoncé ci-dessous: 
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[ un jet appartenant â J(P)1 = (la particule singulière) + 

+ [ un jet appartenant à J(P - p) où p est la quadri-impu1 s ion de la 

particule singulière 1 

La signification exacte du principe récursif deviendra plus claire dans la 

section suivante, où je montrerai que le principe récursif implique l'existence 

d'une série d'équations intégrales intéressantes. 

Remarques : 

(i) La validité du principe récursif signifie l'existence d'une hiérarchie 

spécifique parmi les particules secondaires. Cette hiérarchie est illustrée 

par la figure 3. La particule de rang 1 c'est la particule singulière dans 

J(P). La particule de rang 2 c'est la particule singulière de l'ensemble 

J(P - p) obtenu en enlevant la particule de rang 1 de l'ensemble originel 

J(P) etc. 

(ii) le rang d'une particule n'est pas directement observable. 

(iii) On ne doit pas confondre le rang d'une particule avec la place 

qu'occupe le temps d'émission de la particule dans la séquence des temps 

d'émission. Le rang est un concept invariant tandis que l'ordre des temps 

d'émission des particules dépend du choix de référentiel. Par conséquent il 

n'y a pas nécess a irement de contradiction entre le principe récursif et la 

rang 1 

rang 2 
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dynamique "in-out" du processus de production (contrairement à l'affirmation 

faite initialement par Field et Feynman; depuis, Field a d'ailleurs admis qu'ils 

se sont t rompes). 

5.2 Les équations intégrales du modèle (1+1 dimensions) 

Pour simplifier la discussion (et surtout la notation) je me limiterai au 

cas où toutes les particules produites sont identiques et où il n'y a que 1+1 

d imens ions. 

Considérons l'ensemble J(P) de jets et soit h(P;P) le spectre inclusif 

invariant de la particule de rang 1. Puisqu'il n'y a qu'une seule particule de 

rang 1 , 

/(dp ) h (p ; P) = I (30) 

où (dp) est l'élément invariant d'espace de phase relativiste. Soit 

P) le spectre inclusif invariant à k particules, normalisé conventionne1lement: 

/ (dpf)... (dpk) i k ( p ) , . . . , p k ;P) = < N(N-1)...(N-k+1) > (31) 

où N est la multiplicité. 

Il est facile de se convaincre que le principe récursif conduit à l'équa-

tion suivante: 

i k (p,.•••»p k = 

k 

= E h ( P j ;P) i k _ , ( p , , . . . , p j + ] , . . . , p k ;P - pj) + 

j = l 

+ / (dp) h(p ; P) i k ( P ] p k ; P - p) (32) 

La fonction i (p.,...,p ; P ) c'est la probabilité que dans un jet on trouve 
te l k 

une particule avec l'énergie-impulsion p , une autre avec p ^> etc. Il se 

peut que ce soit la particule de rang 1 qui ait l'impulsion Pj . Dans ce cas, 

selon le principe récursif, le spectre inclusif est égal à 

h(pj ;P ) i k_ j (p| P j_]> Pj+i>-- 'P k S? Pj)• Il y a évidemment k situa-

tions de ce genre et on doit sormer les probabilités correspondantes (sommer 

sur j). Ceci donne le terme inhomogène de l'équation (32). Le terme intégral 

représente la probabilité qu'aucune des impulsions pj,...,p k n'appartient à 

la particule de rang 1. Dans ce cas, 1'énergie-impulsion de la particule de 

rang 1 étant p , le spectre inclusif est égal à h(p ;P ) i (p^ , . ..,pk;P - p) . 

Il faut bien sûr sommer sur tous les p possibles. 

1 / 2 
Faisons tendre vers l'infini masse du jet: M =. (p.p)' . Choisissons le 
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référentiel de telle façon que les impulsions des particules énergiques soient 

toujours positives. Supposons que dans la limite M °° 1 e spectre de la parti-

cule de rang 1 soit invariant par rapport aux changements d'échelle : 

h( p; P) - h(z ) , 

où z = p/P. Dans ce cas, et dans la même limite on a 

V P i Pk ; p ) - z k } ' 

où Zj = p / P , . . . , z k = / P. D'autre part (dp) -»• dz/z. L'équation (32) prend 

la forme asymptotique suivante: 

i k(z 1,...,z k)= 

k zi "j-1 Zj+I Z k 

j k-1 - z. 1 - z. - z. i - 3. 
j=l J J J 1 J 

+ f (dz/z) h(z) ik(-p|ri-,..., ) (33) 

En particulier, pour k=1 on trouve 

i,(z,) = h ( z j ) + V ' (dz/z) h(z) ij( *[ z ) (34) 

La limite supérieure d'intégration vient du fait que ij(x)=0 pour x > 1 (cette 

limite est implicite dans (33)). 

Remarques : 

(i) Attention à la notation: le nombre moyen de particules dans l'intervalle 

(z,z+dz) est égal à i^(z) dz/z. 

(ii) Il est évident que i^(z) -+ h(z) quand z -+• 1 . Dans ce sens la parti-

cule de rang 1 c'est la "leading particle". 

(iii) Le terme intégral dans (34) est positif (pour z^ < 1). Par conséquent 

ij(z) > h(z), sauf pour z = l . Mais on ne peut trouver qu'une seule particule 

avec z > 1/2. Cela signifie que la particule de rang 1 n'est pas toujours 

la plus rapide. En d'autres termes, la hiérarchie postulée par le principe 

récursif ne coincide pas avec l'ordre en rapidité. 

(iv) On peut démontrer que les solutions des équations (33) satisfont 

automatiquement les contraintes dues à la conservation de l'énergie-impulsion. 

En particulier, l'équation (34) implique que 

1 
/ dz i (z) = 1 (35) 
0 1 

quel que soit h(z). Dérivez vous-même l'équation (35) en par'ant de l'équation 

(34) et en utilisant la forme asymptotique de la condition de normalisation 
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(30), viz. 

1 

f (dz/z) h ( z ) = 1 (36) 

0 

(v) En général, la solution de l'équation (3A) s'obtient en employant la 

technique de la transformé de Mellin. Pour des choix simples de h(z) on peut 

trouver des solutions explicites. Par exemple, si h(z) = (1+a) z (l-z)a alors 

ij(z) = (1+a) (l-z)a, un résultat facile à vérifier. 

(vi) Un point capital . Etant donné que le rang n'est pas observable 

l'équation (34) toute seule est d'une utilité limitée. Elle peut être considé-

rée comme définissant h(z). Notez cependant que la même fonction h(z) détermine 

par le biais de l'équation (33) l'ensemble des spectres inclusifs. Le meilleur 

emploi du modèle est le suivant: on détermine h(z) à partir du i^(z) observé 

en résolvant l'équation (34) "à l'envers". Ensuite, une fois la fonction h(z) 

connue, on calcule tout ce qu'on veut, les fonctions de corrélation, la distri-

bution de multiplicité, etc. 

5.3 La multiplicité et les corrélations. 

Il nous sera utile d'introduire un symbole simple pour désigner le moment 

binomial < N(N-i)...(N-k+1) > (cf.eq. (31)): 

B k d = f < N(N-l)...(N-k+1) > (37) 

Le moment B^ est une fonction de 1 ' ênergie-impuls ion du jet : B k =
 B

k ( P ) 

1 /2 
(évidemment B^ ne dépend que de la masse du jet M = (P.P) ) . En intégrant les 

deux côtés de l'équation (32) par rapport à pj...,pk et en tenant compte de la 

définition de B, on obtient 
k 

B k (P) = ; (dp) h(p;P) [ k Bk_|(P-p) + B k(p-p)] (3P) 

L'intégrale sur peut être éliminée en utilisant l'équation analogue à (38) 

mais pour B^_j(P). En continuant les éliminations on arrive finalement à l'équa-

tion suivante: 

ï ( - D j k ! 
L = / ( d p ) h (p ; P) B (P-p) (39) 

j=0 (k-j) ! * 

En posant k=l,2 etc, on obtient une série infinie d'équations intégrales. 

Nous allons employer une technique mathématique éprouvée, qui consiste à rempla-

cer la série d'équations par une seule équation que satisfait une fonction 

dépendant d'un paramètre supplémentaire. 
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Définissons la fonction génératrice 

G(t,P) = Z B tk/k ! (40) 
def k K 

11 est facile de vérifier (faites le !) que 

G ( t, P) = Z (l+t)N Prob(N) (41) 

N k 
Multipliant les deux côtés de (39) par t /k! et sommant sur k on obtient après 

un peu d'algèbre l'équation intégrale que satisfait la fonction G(t,P): 

G(t,P) = (1 + t) / d(p) h(p;P) G(t,P-p ) (42) 

Passons à la limite M = (P.P)'^2 » . Au repère où P et p sont parallèles on 

a 

(P-p)2 = M 2 - 2(P2 + M 2 ) 1 / 2 (P2 + m 2 ) 1 / 2 + 2PP 

~ M 2 - 2(P + M2/2P)(p + m 2/2p) + 2Pp 

- M2(1-z), (43) 

pour autant que 7. = P/P >> m/M. Donc, asymptotiquement 

G(t,M 2) = (1+t) f (dz/z) h(z) G [t, M2(I - z)] (44) 
0 

La solution de cette équation c'est 

G(t,M2) = A ( t ) ( M 2 ) 3 ( t ) , (45) 

où A(t) est arbitraire et a(t) est déterminé par l'équation à valeurs propres 

s u ivan te: 

1 = (1+t) / (dz/z) h(z) (l-z) a ( t ) (46) 
0 

En tenant compte de la condition de normalisation (36) on trouve 

a ( 0) = 0 , (47) 

puis on trouve les dérivées de a(t) à t=0 en différentiant successivement les 

deux côtés de l'équation (46). Par exemple, 

a'(0) = da/dt = -1/ /\dz/z) h(z) ln(l-z) (48) 
| t = 0 0 

Toutes ces dérivées, et en partant la fonction a(t), existent pour autant que 

La fonction h(z) ne soit pas trop singulière à z=l. 

L'équation (45) résume toute l'information concernant la distribution de 

multiplicité. Par exemple: 

< N > = — G(t,M2) ^ a ' (0) lnM2 (49) 
3t | t=0 

La multiplicité augmente logarithmiquement avec la masse du jet: 
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le coefficient du logarithme, donné par (48), n'est rien d'autre que la hauteur 

du plateau de rapidité. 

Les paramètres de corrélation de Mueller sont définis comme les dérivées 

logarithmiques de la fonction génératrice: 

. _ S k Un G(t,M2) , k - 2,3,... (50) 

k def 8 t k I'"0 

Le paramètre f^ est égal iî la fonction de corrélation inclusive de l'ordre k 

intégrée par rapport aux k rapidités. L'équation (45) donne 

f k * a ( k ) ( 0 ) a n m
2 (5 1) 

La croissance logarithmique de f^ avec la masse du jet signifie que, dans le 

modèle, les corrélations inclusives sont de courte portée en rapidité. 

t 5.4 L'introduction des saveurs. 

Vous avez déjà probablement remarqué qu'il y a un parallèle entre la 

hiérarchie postulée par le modèle récursif et la hiérarchie de saveur. On n'a 

qu'à identifier les deux pour que la saveur soit introduite dans le cadre du 

modèle récursif. 

Comme dans le reste de ce cours on négligera la production des baryons. 

La fonction h(z) est maintenant remplacée par une matrice dont l'élément 

h -(z) est égal â la probabilité que le méson de rang 1 soit de type qa et 
q a 

emporte la fraction z de l'impulsion du jet (q dénote la saveur du quark primi-

tif). La généralisation des équations intégrales de la section 5.2 est évidente. 

Soit, par exemple, ^ba • q ̂  Z ̂  ^ 6 s P e c t r e inclusif du meson de type ba dans un jet 

initié par un quark de saveur q. Alors 

1 - z 
i, 11 ) (z) = h, - (z) 5. + / (dz'/z') Z h -(z') i . ^ 1 ^ — ) (52) 
ba ; q ba bq J qc ba;c . t 

0 c 1 - 2 

Le terme inhomogène est non nul pour b=q seulement (pourquoi ?). 

J'abandonne maintenant la discussion analytique du modèle pour décrire 

brièvement l'expëriencp sur ordinateur de Fieli* et Feynman. 

5.5 Simulation Monte-Carlo (3+1 dimensions). 

On simplifie considérablement le problème en supposant, ce qui est parfai-

tement raisonable, que la création des paires, qui est â l'origine de l'hadroni-

sation, ne dépend pas de la saveur du quark primitif: 

h q— ( z) = y a h(z) (53) 
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oû 

S Y a • 1 (54) 

Dès qu'on veut générer des jets Monte Carlo il se pose tout de suite la 

question: quelle est la signification de la variable z quand zP est petit, disons 

de l'ordre de 1 GeV ? En effet, l'artifice théorique qui consiste à prendre la 

limite asymptotique n'est pas de mise dans une simulation sur ordinateur. On s'en 

sort en re-définissant la variable z: 

E . + p . 
z = - J J// f 5 5 1 
j d e f E + P ( 5 5 ) 

Le nouveau z diffère de l'ancien pour des particules peu énergiques seulement. 

Le tirage des événements se fait par étapes. On se place initialement â 

une énergie E >> E. 
o 

(i) On tire les Zj successifs selon la loi de probabilité 

Prob (z) dz = h(z) dz/z 

N.B: h(z)/z est dénoté f(l-z) dans l'articlo de Field et Feynman. 

On tire les saveurs a,, a_,... selon la probabilité Prob(a)= y . I & a 

On tire les impulsions transverses Vq, v^,.., selon une distribution Gaussienne. 

(ii) Par définition on pose: 

particule de rang 1 

saveur = qa 

El+P1,/ = z i ( p o + V 

P1T = V1 ~ V0-

particule de rang 2 

saveur = a ̂  a^ 

E 2 + P2,/ = Z
2
( , - Z 1 > ( P 0 + V 

Ï*2T = ^2 ~ 

etc. 

(iii) On choisit au hasard le spin du méson ( a ^ a ^ ^ ) . Par souci de simpli-

cité, s eu 1 ement le nonet pseudoscalaire et le nonet vectoriel sont pris en compte. 

On simule la désintégration des résonances en pions finals. Cela produit une 

suite de quadri-impulsions des pions produits: (ojj.kj), (u^»^^''"' 

(iv) On passe au repère originel en faisant la transformation suivante: 



et on garde uniquement les particules dont les impulsions satisfont à la 

condition 

k .' > 0 
1 II 

Les pions du jtt ont, par construction, des impulsions longitudinales posi-

tives. Le jet d'énergie finie satisfait au Comatiquement à la condition de frag-

mentation limite. En fabriquant d'abord un jet d'énergie plus grande que celle 

à laquelle on s'intéresse et en le " coupant" ensuite on récupère les pions 

dont l'impulsion longitudinale est positive malgré le fait qu'ils soient des 

produits de désingration de résonances ayant p^ < 0. Il est évident que l'éner-

gie du jet Monte Carlo n'est pas exactement E, que son impulsion n'est pas 

exactement P, etc. 

Faisons un rapide décompte des paramètres. Tout d'abord il y a une fonction 

inconnue h(z). Le choix de Field et Feynman consiste â prendre 

h(z)/z = f( 1 -z) = 1 - a + 3a(l-z)2 

La conservation d'isospin implique y u
 = Yj» Cela fait 1 paramètre libre si on 

néglige les quarks lourds (charmés, etc) et si l'on tient compte de la contrainte 

(54). Le paramètre suivant est le rapport entre les probabilités qu'un méson 

s ° i c u n 0 o u u n ' • Finalement il y a la dispersion de la Gaussienne 

qui décrit la distribution des impulsions transverses. 

Field et Feynman postulent que Prob(0 )= Prob(l ) (en fait, le choix 

Prob(l )- 3 Prob(0 ) serait plus naturel). Pour reproduire les données sur le 
•f + 

rapport K. / TT observé dans la production à grand p T ils posent y = Y^ = 2y . 

La dispersion de la Gaussienne est déterminée en ajustant < k ^ > . Enfin, pour 

reproduire les fonctions de fragmentation des quarks observées dans les expé-

riences leptoniques ils sont amenés à poser a=0.77 . 

5.6 Un exemple de résultat de l'expérience sur ordinateur de Field et 

Feynman . 

Je reviens à la question soulevée, en passant, dans la section 4: comment 

déterminer la saveur du quark qui est à l'origine d'un jet observé ? 

Une réponse partielle â cette question se trouve dans la table 15 de 

l'article de Field et Feynman, dont j'en reproduis ici une partie. 

Les auteurs ont généré un ensemble de jets dont l'énergie moyenne est de 
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10 GeV. L'ensemble contient autant de jets initiés par un quark u que par un 

quark d. La qualité du critère choisi pour déterminer la saveur du quark primi-

tif est chiffrée par deux paramètres: 

la sûreté = (V - F)/(V + F) 

l'éfficacitë = (V + F)/N, 

où 

N= nombre total de jets examinés 

V= nombre de fois où le critère a permis d'obtenir la réponse correcte. 

F= nombre de fois où le critère a conduit à une réponse fausse. 

L'efficacité d'un critère donné est, en général, plus petite que 1 car le cri-

tère n'est pas toujours applicable. Voici quelques résultats instructifs: 

la sûreté l'éfficacitë 

27% 60% 

25% 99% 

4 5% 14% 

46% 31% 

45% 66% 

38% 62% 

cratère choisi pour déterminer la 

saveur du quark primitif q 

(a) si la charge du hadron le 

plus rapide est > 0 (< 0) alors q=u (d) 

(b) si la charge du hadron chargé le 

plus rapide est > 0( < 0) alors q=u (d) 

(c) si la charge du hadron chargé 

ayant z > 0 . 5 est > 0 ( < 0) alors q=u (d) 

(d) si les deux hadrons chargés les plus 

rapides ont des charges > 0 (< 0) alors 

q = u (d) 

(e) si la charge totale du jet est 

> 0 ( < 0) alors q=u (d) 

(f) si la charge totale des hadrons ayant 

z > 0.1 est > 0 ( < 0) alors q = u (d) 

Les questions pertinentes de C.PANDA m'ont beaucoup aidé dans la rédaction 

de ce cours. 
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