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Abstract

In this thesis, response of some representative topological materials is studied when Time Rever-
sal Symmetry (TRS) is broken. Topological materials include topological insulators, topological
semimetals and topological superconductors. We study the topological response in silicene and it
is shown to be encoded in terms of Berry curvature, magnetic moment, Hall conductivity and po-
larization. It is found that when TRS is broken via external magnetic field the topological response
of silicene is valley dependent and leads to valleytronics. Magnetic response of Weyl semimetals
is investigated when TRS is broken in the presence of external magnetic field tilted at an angle θ.
Magnetic susceptibility is found to be anisotropic which can be employed to distinguish orbital,
spin-orbital and spin response. In addition to the above mentioned near equilibrium responses
of Dirac materials, far from equilibrium dynamics of Dirac materials is studied through quantum
quenching. The persistant Hall current is shown to exist for late times in semi-Dirac materials
even in the presence of TRS; which is contrary to what one expects for equilibrium states.
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Chapter 1

Introduction

Topology is a well established branch of mathematics which has found numerous applications in
condensed matter physics. There has been a great deal of recent interest in the study of topological
phases in materials. A remarkable aspect of topological phases is their robust behavior against
certain deformations in the Hamiltonian. The history of topological phases in condensed matter
systems started with the discovery of the quantization of Hall conductivity[1] in 2D electron gas
in the presence of a strong magnetic field. Extreme quantization of Hall conductivity was found to
have topological origins. The quantization of Hall conductivity was a ground breaking discovery
and this laid the foundation of topological phases in condensed matter[2, 3, 4, 5, 6, 7, 8] in the
presence of strong magnetic field. The appearane of non- zero Hall conductivity was attributed
to breaking of Time Reversal Symmetry (TRS) in a 2D electron gas but it was shown later by
Haldane that one can have quantum Hall effect even in the absence of TRS.

Several of the earlier topological phases were observed in two-dimensional (2D) materials. The
field of 2D materials received a great boost by the discovery of graphene; a single sheet of graphite.
Graphene at half filling is a semimetal with low energy excitations that exhibit relativistic disper-
sion. These excitations are known as massless Dirac fermions. After the discovery of graphene,
Topological Insulators (TI), a new class of materials with topological phases were discovered. TIs
are insulating in the bulk and have conducting boundary modes[9, 10]. They are stable to defor-
mations due to bulk energy gap which is characterized by a topological invariant[10, 11, 12] similar
to Chern number. Both 2D (HgTe/CdTe) and 3D (Bi1−xSbx, Bi2Se3, Bi2Te3 and Sb2Te3) TIs
have been studied extensively[13, 14, 15, 16, 17].

Unlike TI, Dirac semimetals have no bulk gap and are characterized by topological invariants
as well. These materials are known as topological semimetals[18, 19, 20, 21, 22]. They are time
reversal and spatial inversion symmetric. When either symmetry is broken four fold degeneracy
shifts to double degenerate points known as Weyl nodes and such point nodal materials are called
Weyl semimetals.

The Dirac-like dispersion puts all these materials into a single class known as Dirac materials,
which are of special interest because they are known to host response that is of topological origin.
The low energy effective Hamiltonian of Dirac materials is Dirac-like [20, 21, 22, 23, 24]. They
include topological insulators, graphene, topological semimetals and topological superconductors.
These apparaently different materials share common features [25]. Many features and aspects
of Dirac materials have been studied extensively like magnetotransport[26], Floquet response[27],
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Strain effects[28], valleytronics[29] and quantum transport[30].

Our aim, in this thesis is to study the following two main problems: one is to study the near
equilibrium response of Dirac materials when TRS is broken. This is done within the linear re-
sponse theory. Whether a system breaks TRS or not has profound effect on its properties. In a
classical context, time reversal operation t → −t can be treated as reversal of motion. In quan-
tum mechanics it is implemented by the time reversal operator which is an antiunitary operator
T = UK where U is a unitary operator and K is complex conjugate operator.

In this thesis, work presented in Chapter 2 and 3 was carried out in the presence of an applied
magnetic field which explicitly breaks TRS. In Chapter 4, TRS plays a more subtle role. A careful
study of non-equilibrium dynamics in the presence and absence of TRS breaking terms is presented
in this chapter.

1.1 Thesis overview

The response that we study is encoded in terms of Berry curvature, magnetic moment, Hall con-
ductivities (spin and valley) and magnetic susceptibility. Explicit breaking of TRS is carried out
by an applied magnetic field. To examplify this, the first material we choose is silicene and we
investigate the spin and valley transport in this material. This is presented in Chapter 2. As
compared to graphene, silicene is a better potential candidate to study spin as well as valley re-
lated features due to relatively stronger SOC. Silicene is a monolayer of silicon atoms that forms
a two dimensional honeycomb lattice. Due to its unique properties, silicene has attracted much
attention both theoretically and experimentally [31, 32, 33, 34, 35]. Though fabrication and syn-
thesis of silicene was a challenge because of issues related to its stability in air but researchers
fabricated it using a growth transfer process and made transistors that work at room temperature.
This approach is proposed to be effective for other two dimensional materials like germanene and
phosphorene[36]. Recently surface studies of silicene have been carried out using low temperature
atomic force microscopy[37]. Like graphene there is Dirac like electron dispersion at K points
of the Brillouin zone in silicene as well. This and many other similarities are observed because
their constituents are atoms that belong to the same column in the periodic table. But silicene
possesses stronger SOC than graphene, which can be increased under strain. Silicene is thus a bet-
ter system for studying the spin and valley physics not prominent in graphene due to its smaller
SOC. Further, the band gap in silicene is tunable with external electric field. The sites on the
sub-lattices are in different vertical planes with separation causing silicene to be buckled. When
electric field perpendicular to the plane is applied, then on site potential difference arises[38, 39].
Valley-spin locking, non-zero Berry curvature and quantum phase transition from Hall insulator to
band insulator is observed in silicene when both TRS and inversion symmetries are broken. Valley
contrasting feature appears due to breaking of TRS[40]. Silicene has been extensively studied
using DFT and first principle calculations. DFT studies of adsorption of toxic gases on silicene
and its possible use as a gas sensor[41], in anticancer drugs[42], uric acid adsorption[43], DNA
sequencing[44] and quantum dots of silicene in nanomedical diagnostics[45] have been performed.

Next we study the magnetic response of Weyl semimetals. This is presented in Chapter 3.
Weyl semimetals from the class of topological semimetals are chosen to study the magnetic sus-
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ceptibility in the presence of an external tilted magnetic field. Weyl semimetals are anisotropic
in nature and they have all three types of magnetic susceptibilities: orbital, spin and spin-orbital
susceptibility, when placed in a tilted magnetic field. The three types of susceptibilities are dis-
tinguished by the orientation of the applied magnetic field[46]. Weyl semimetals are topological
materials which hosts Weyl fermions. They have gapless bulk and non degenerate valence and
conduction bands touching at certain points and are known as nodal Weyl semimetals. They
are considered as three dimensional analogue of graphene. They were initially theoretically pro-
posed in pyrochlore iridates [47], HgCr2Se4 [48] and multilayer of topological insulator and normal
insulator[49]. There are other types of semimetals in which degeneracy occurs on a reciprocal space
line and such materials are called line node semimetals. By taking thin films of alternating layers
of TI and normal insulator (NI) in the presence of magnetic impurities both types of semimetals
can be realized[49, 50] depending on the direction of magnetic moments. A minimal model for
these topological semimetals, that is employed in this thesis, is a topological insulator multilayer
that was proposed by Burkov and Balents[51]. It consists of alternating thin layers of Topological
Insulators (TI) and Normal Insulators (NI) in the presence of magnetic impurities. These thin
layers are coupled by tunneling across the NI and between top and bottom of TI, Fig. 3.1. The
quasi particles in this system are Dirac fermions and their mass is tuned by the thickness of the
thin films. Existence of nodal semmetals has been verified in a number of experiments on different
materials[47, 49, 50, 52, 53, 54, 55, 56].
The second problem we address is to investigate aspects of far from equilibrium dynamics in Dirac
materials presented in chapter 4. To access this non-equilibrium dynamics, we consider quenching
the system. This requires preparing a quantum mechanical system in the initial eigen state of a
given Hamiltonian; At a later time we abruptly change a parameter in the Hamiltonian driving the
system into a non-equilibrium phase. We then allow the system to evolve to study its dynamical
response. These properties have no equilibrium analog and to study these far from equlilibrium
properties quenching a parameter is a useful tool[57, 58, 59]. This technique has been used to
study response of fermions to local quenches[60], investigation of Berry curvature and topological
invariants in one and two dimensional systems [61], bulk and edge currents in frustrated bosonic
and normal fermionic systems[62] and Bose-Einstein condensates [63]. Photoinduced far from
equilibrium effects have been studied in graphene and[64] topological insulators[65] using quan-
tum quenching. Floquet Hamiltonian and systems are discussed using quenching of parameters in
Chern insulators[66] and topological insulators [67, 68]. We specifically discuss far from equilib-
rium physics in semi-Dirac materials which is accessed through quantum quenching the system.
Physically this is achieved by exposing the material to linearly polarized light. Non equilibrium
response is manifested in persistant Hall current that survives for long times even when instanta-
neous TRS is not broken; this has no equilibrium counterpart[69].

The final chapter 5 is summary of the thesis.
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Chapter 2

Response of Silicene to Broken Time
Reversal Symmetry

2.1 Introduction

The topological response of materials is studied in terms of topological invariants. These topo-
logical invariants can be related to Berry curvature, magnetic moment and Hall conductivity. In
this chapter, we study the topological response of silicene. Over the past few years, it has been
found that the Berry curvature has a major role in the physical properties of materials. It is an
intrinsic property of bands as it depends on the wave function. It is nonzero in crystals with broken
inversion or time-reversal symmetry[70].

In materials with valleys in the band structure, a valley degree of freedom similar to but dif-
ferent from spin can appear. This has given birth to the field of valleytronics [71, 72]. A seminal
work in this regard was the study of valley contrasting peoperties of graphene. In graphene, valley
polarization has been proposed to be detected when inversion symmetry is broken. Each valley is
characterized by opposite Hall transport i.e. the carriers flow to different transverse edges when
electric field is applied perpendicular to the system[71]. In silicene it has been discussed with elec-
tric field applied to the system[73] and in the presence of magnetic field[74]. It was observed that
graphene[71] and Transition Metal Dichalcogenides (TMD)[75] show valley contrasting behavior
in the presence of substrate potential. For TMD there is an extra contribution from spin splitting
and that leads to asymmetric Landau levels[76]. Valley degree of freedom can be controlled using
circularly polarized light which allows the possibility of the use of valley excitons for applications
in quantum information and ultrafast devices. Valleytronics is an emergent field which deals with
valley based electronic applications and it needs valley degree of freedom to be treated separately to
manipulate the contrasting physics of two valleys effectively[77, 78, 79, 80, 81]. With optical light,
it opens up the possibility of coherent manipulation of the valley polarization in TMD[82, 83, 84].
For graphene valley-dependent physics, generation and experimental control of valley polarization,
have been explored[85, 86, 87, 88]. Creating valley polarization is rather less straightforward but
has been shown for AlAs, Bismuth, graphene and MoS2[89].

Silicene in the presence of electric and magnetic fields has been shown to exhibit Hall effect[90].
In the presence of exchange field with intrinsic and extrinsic Rashba coupling, Chern insulating
states with non zero Chern numbers have been shown to appear in silicene[91]. It has been shown
that the combination of electric and magnetic fields with intrinsic SOC lead to topological phase
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transition, without taking pseudospin degree of freedom into account[74]. It has been seen that
a phase transition occurs from a topologically trivial to a band insulating state and further to
a semi metallic state in an inhomogeneous electric field applied perpendicular to silicene[73, 92].
Topological response of silicene in terms of Berry curvature and magnetic moments is discussed in
Sec.2.3.1 and Sec.2.3.2 when silicene is placed in electric and magnetic fields in proximity with a
magnetic material. For the valleytronics, valley polarization is important; in the context of silicene
this is discussed in Sec.2.3.3. We show that an interplay of uniform electric field and SOC can be
used to tune silicene from a semimetallic state to a topological insulating state which is discussed
in Sec.2.3.4.

2.2 Formulation

In this part of the chapter silicene and its topological response will be discussed in detail. Silicene
is taken to lie in the xy-plane in proximity with a magnetic material, h being the exchange field
due to this proximity effect. The sheet is exposed to external electric and magnetic fields. The
effective Hamiltonian is given[93, 94, 95] as

Hα
σz = ~v(αkxτx + kyτy)−∆soασzτz + ∆zτz + hσz (2.1)

The first term is graphene like for Dirac fermions in buckled silicene with v = 5×105m/s , σz is the
spin index and α = ±1 is a symbol used to indicate valley K and K ′, the second term is SOC term
as described by Kane and Mele[11], where ∆so is the spin orbit coupling gap induced by this term;
taken to be 7.9meV [96]. From density functional theory calculations ∆so = 1.55meV [97],[98],[99]
and tight binding calculations ∆so = 7.9meV [99]. The next term is associated with electric field
with ∆z = a0Ez, where Ez is an electric field which is applied perpendicular to the silicene sheet
and a0 = 0.23A0. h is an exchange field in the last term due to proximity effect, h = 1.1meV ,
h = 9meV [95]. In this chapter, τi are the Pauli matrices acting in the sublattice space which dif-
ferentiate A and B sub-lattices. Valley physics arises because of the inversion symmetry breaking
and here electric field plays the role of the symmetry breaking field. In the presence of perpendic-
ular magnetic field B, the vector potential A is taken to be (0, Bx, 0) and this term alongwith last
term in Eq.(2.1) explicitly breaks TRS of the system

The Hamiltonian defined in Eq.(2.1) after Peierls substitution becomes:

Hα
σz =

(
hσz −∆soασz + ∆z vf [α(px + eAx)− i(py + eAy)

vf [α(px + eAx) + i(py + eAy) hσz + ∆soασz −∆z

)
. (2.2)

Taking π = p+ eA. Let ∆Ba = πx − iπy, ∆Ba
† = πx + iπy be the annihilation and creation

operators respectively, where ∆B =
√

2~eB

The energy spectrum after diagonalizing the Hamiltonian in Eq.(2.2) is:

Eα
σz(n, s) = hσz + s

√
n∆2

B + (∆soσz −∆zα)2 (2.3)

where s = ± are the electron/hole bands and n is an integer indexing the Landau levels.

The zero mode energy is:

Eα
σz(0, s) = hσz + s(∆soσz −∆zα). (2.4)
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The interplay between ∆so and ∆z play a major role in tuning the energy. The zero modes show a
phase transition from TI to BI for zero exchange field due to band inversion[96] but with non-zero
exchange field degeneracy points are shifted .

The corresponding wave functions are calculated to be:

Ψα
σz(n) =

(
t1Φn−1

t2Φn

)
(2.5)

Ψα
σz(n

′) =

(
t1Φn′

t2Φn′−1

)
(2.6)

where Φn is Hermite polynomial, t1 = sin( θn
2

), t2 = cos( θn
2

) with θn = tan−1(
√
n∆B

∆soσz−∆zα
).
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Figure 2.1: Energy dispersion for K valley, varying with perpendicular electric field. ∆so =
7.9meV , B = 4.1T , a0 = 0.23A0.

With exchange field of 9meV dispersion relation exhibits shift in Dirac point from 0eV to
0.01eV as depicted in Figs.2.1(a), 2.2(a) and with exchange field of 1.1meV dispersion relation
exhibits shift in Dirac point from 0eV to 0.01eV as depicted in Figs.2.1(b), 2.2(b). Interestingly
Dirac point for spin up of both valleys is shifted to the conduction band and spin down to the va-
lence band. Thus polarization of spins is possible, which is an important step towards spintronics.
Exchange field is coupled to spin that is the reason of its role in spin dependent devices. In the
following sections we study the response of silicene to perpendicular magnetic field.

2.3 Response of Silicene to magnetic field

Some topological responses of silicene are discussed below.
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Figure 2.2: Energy dispersion for K ′ valley, varying with perpendicular electric field. ∆so =
7.9meV , B = 4.1T , a0 = 0.23A0.

2.3.1 Berry Curvature

Similar to gauge field tensor in electrodynamics, Berry curvature is a gauge-field tensor. It is gauge
invariant and thus observable. In addition to electron dynamics, Berry curvature plays a major
role in transport properties and thermodynamic behavior of materials.

Generally Berry curvature can be calculated from the Kubo formula of conductivity (based on
the linear response theory)[70].

Ωn
µ1µ2

=
i
∑

n6=n′〈n|
∂H
∂Rµ1
|n′〉〈n′| ∂H

∂Rµ2
|n〉 − (µ2 ↔ µ1)

(En − En′)2
. (2.7)

Physically, Berry curvature is similar to magnetic field in momentum space. Therefore, even with
no external magnetic field, the Berry curvature can induce transverse motion of the electrons.
Hence the Hall response can appear for each single electron state.

For Landau levels greater than zero, the orthogonality of Hermite polynomials leads to:

Ωα
σz =

α~2v2 sin2(θn)

2

(
1√

n∆2
B + (∆soσz −∆zα)2 +

√
(n+ 1)∆2

B + (∆soσz −∆zα)2

)2

. (2.8)

The appearance of α in the above expression is very important because it makes the Berry curvature
strictly valley dependent. It is clear from Fig.(2.3) that

ΩK
↑ = −ΩK′

↓ ,Ω
K
↓ = −ΩK′

↑ . (2.9)

As Berry curvature appears to be independent of exchange field, changing its value does not affect
the magnitude and behavior of Berry curvature as shown in Figs. 2.3(a). Berry curvature can be
tuned with externally applied electric field. Therefore, physical quantities related to Berry curva-
ture are tunable. Valley Berry curvature can be calculated with the wave functions is calculated
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Figure 2.4: Valley Berry curvature (orange) and spin Berry curvature (green), in the units of ~2v2,
with varying electric field. Taking ∆so = 7.9meV .

by subtracting Berry curvatures of the two valleys as shown in Fig.(2.4) (orange). It is seen that
the lower Landau levels contribute major part when electric field is varied, higher Landau levels
have a constant background contribution and do not show sharp tuning with electric field. Both
spin (green) and valley (orange) Berry curvatures can be controlled by an applied electric field. As
shown, spin Berry curvature can be flipped by changing the direction of the applied electric field.

2.3.2 Magnetic Moment

Magnetic moments can be expressed in terms of Berry curvature as [70].

mα
σz =

e

~
(Eα

σzΩ
α
σz). (2.10)
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Using this relation we have calculated the magnetic moment to be:

mα
σz = α

e

~
~2v2 sin2 θn

2

(
(hσz + s

√
n∆2

B + (∆soσz −∆zα)2)(√
n∆2

B + (∆soσz −∆zα)2 +
√

(n+ 1)∆2
B + (∆soσz −∆zα)2

)2

)
(2.11)

As required by time-reversal symmetry orbital magnetic moments in both valleys have opposite
signs. Non-zero magnetic moments show the magnetic behavior of silicene. The magnetic mo-
ment depends on SOC, electric field interaction, exchange field and valley degree of freedom. For
a gapped system, there can be a magnetic moment that depend strictly on the valley degree of
freedom, similar to a magnetic moment associated with real spin. This behaves similar to real spin
and can give a Zeeman like contribution to energy. Hence, this magnetic moment contribution is
related to valley orbit locking.
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Figure 2.5: Magnetic moment as a multiple of v2e/~ with varying Ez.

Magnetic moments for both valleys, keeping SOC constant can be seen in Fig. 2.5. Two
important and interesting implications are there. Firstly, the magnetic moment associated with
the orbital motion of Bloch bands can be adjusted externally. Here external electric field is the
tuning parameter which can tune the magnetic moment from zero to a maximum value. These
valley dependent magnetic moments are proposed to be used in valleytronics. Secondly, Fig. 2.5
shows that exchange field favors up spin for both valleys and shift the peak of K valley to zero
electric field. Thus the exchange field of 9meV has influence not only on the spin, but on the valley
too, leading to valley spin locking. Therefore, tuning the proximity exchange field and electric field
gives control of both degrees of freedom.

Figs. 2.6 (a) and (b) show the dependence of net magnetic moment on exchange field. Net valley
magnetic moment is obtained by subtracting the moments of both valleys. This effective valley
magnetic moment is maximum with zero electric field, i.e. it is caused by SOC only. Net valley
and spin magnetic moments both can be tuned with external electric field. The spin magnetic
moment graph shows strong dependence on electric field. The amount by which up spin is favored
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Figure 2.6: Valley magnetic moment (orange) and spin magnetic moment (green), in the units of
v2e/~, with varying Ez.

gets balanced by the amount, the down spin is suppressed. Interplay between SOC and electric
field give rise to spin magnetic moment which can be used to reverse its direction. The magnetic
moment can be experimentally observed if we apply time varying magnetic field B′ to couple with
magnetic moment. This will cause energy to shift by the amount m.B′, a Zeeman like term.

2.3.3 Valley polarization

In transition metals dichalcogenides valley polarization is proposed to be controlled due to val-
ley contrasting orbital magnetic moment, which is generated using circularly polarized light in
TMD[76] and through elliptical pumping[100]. Here strong SOC and electric field plays a vital
role in tuning the valley polarization. Valley polarization is calculated in a similar way as spin
polarization:

Pv =
ρ+ − ρ−

ρ
(2.12)

ρ+ is an electron density in the K valley and ρ− in K ′ and ρ is the total carrier density of electrons.

The electron density is obtained by integrating the density of states modified by Berry curva-
ture; as in semi classical theory[76, 101]

ρ(ζ, α, σz) =

∫ ζ d2k

(2π)2

(
1 +

B.Ω

~

)
f(k, α, σz). (2.13)

Here f(k, α, σz) is the Fermi Dirac distribution function. ζ is the chemical potential. Valley
polarization is non-zero due to orbital contribution of the magnetic moment and difference in
the electron density of the two valleys. Fig. 2.7 demonstrates the non-zero valley polarization
when chemical potential is below 0.1eV . This shows that for higher chemical potential there
was no net accumulation of electrons in one valley, but below 0.1eV there is a jump towards
constant polarization of electrons. For energy greater than 0.1eV the drop of polarization in
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Figure 2.7: Variation of valley polarization as a function of chemical potential (eV). Taking ∆so =
7.9meV , h = 1.1meV and B = 1T .

valleys is due to non availability of higher states as magnetic field is fixed at 1T . It can be seen
in Fig. 2.7 that application of electric field is important for non-zero valley polarization. An
important feature is non dependence of valley polarization on proximity exchange field. This net
polarization of electrons in one valley relative to the other is the cause of appearance of valley Hall
conductivity. This contribution is proposed to be detected experimentally in valley half metals[82],
thus validating the contribution and role of valley degree of freedom for possible use in valleytronics.

2.3.4 Valley and spin Hall conductivities

Another possible way to observe the phase transitions and valley dependent behavior of silicene is
to measure the Hall conductivity. Using Kubo formalism, Hall Conductivity is

σxy =
i~e2

LxLy

∑
n 6=n′

[f(En)(1− f(En′))]
∗
〈
n

∣∣∣∣vx∣∣∣∣n′〉〈n′∣∣∣∣vy∣∣∣∣n〉1− exp
(
En−En′
kBT

)
(En − En′)2

(2.14)

which can be simplified as

σxy = A2

[
1

1 + exp(
b+
√
n∆2

B+(∆soσz−∆zα)2−ζ
kBT

)
− 1

1 + exp(
b+
√

(n+1)∆2
B+(∆soσz−∆zα)2−ζ
kBT

)

+
1

1 + exp(
b−
√
n∆2

B+(∆soσz−∆zα)2−ζ
kBT

)
− 1

1 + exp(
b−
√

(n+1)∆2
B+(∆soσz−∆zα)2−ζ
kBT

)

]
(2.15)

where A2 = αe2 sin2 θn
~

[
n+ 1

2
+
(

∆soσz−∆zα
∆B

)2]
.
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Figure 2.10: Hall conductivity in K ′ valley (for spin down) as a multiple of e2/~.
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Figure 2.11: Spin Hall conductivity for K ′ valley as a multiple of lBe
2/~ with B = 4.1T , h =

1.1meV and T = 2K.

Hall conductivity for K valley (spin up) is equal to negative of the Hall conductivity for K ′ val-
ley (spin down) and vice versa. Hall conductivity at charge neutrality point is zero for topological
insulator and has a finite value (red) for the semimetallic phase, due to band inversion, as shown
in Fig. 2.8. The transition is mainly due to the contribution and vital role of zeroth Landau level.

When silicene is not in proximity with a magnetic material, changing the electric field causes
the appearance of phase transition for ∆z = ∆so. Experimentally Hall conductivity is measured as
a function of the gate voltage and it tunes the chemical potential. For silicene net Hall conductivity
appears to be zero showing exactly opposite behavior of electrons for both valleys. At high tem-
perature the phase transition disappears as shown in Fig. 2.10(b). An additional feature of higher
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Figure 2.12: Spin Hall conductivity for Kvalley as a multiple of lBe
2/~ with B = 4.1T , h = 1.1meV

and T = 2K.

temperature is that Hall conductivity does not remain quantized as shown in Fig. 2.10(b). So to
observe the quantization in Hall conductivity and the phase transition, low temperature is required.

Spin Hall conductivity is calculated by subtracting Hall conductivity due to one spin from
the Hall conductivity due to opposite spin, keeping track of valley contributions. As chemical
potential goes beyond 0.03eV non-zero spin Hall conductivity appears with sharp peaks for each
Landau level. When ∆so = 7.9meV , spin Hall conductivity for K(K ′) shows opposite behavior for
∆z < ∆so and ∆z > ∆so for positive (negative) chemical potential, showing the contribution from
conduction (valence) electrons as shown in Fig.2.11(a) and Fig. 2.12(a). By decreasing the SOC
to ∆so = 4meV Fig. 2.11and Fig. 2.12(b) show opposite behavior for K and K ′ valley and the
corresponding phase transition.

Spin Hall conductivity is non zero even with net zero Hall conductivity. Spin Hall conductivity
shows oscillatory behavior but close examination shows that for particular values of Landau levels
there are peaks. The overall change in spin conductivity caused by exchange field of one valley
cancels the change in spin conductivity of other valley, thus making total spin conductivity inde-
pendent of exchange field. Valley Hall conductivity is calculated by subtracting Hall conductivity
due to one valley from the Hall conductivity due to the other valley, keeping track of both spin
contributions. The non-zero valley Hall conductivity appear as steps, which is an indication of
Landau levels or quantization of valley Hall Conductivity. It is a trivial insulating phase. So it can
be concluded that net valley Hall conductivity appeasr to be non-zero in silicene. Non-zero valley
and spin Hall conductivities show the accumulation of charges not only at the edges of opposite
valleys but of opposite spins too.
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2.4 Results

Magnetic and transport properties of silicene in the presence of perpendicular electric and magnetic
fields as well as proximity to ferromagnetic material are studied. It is shown that for small exchange
field, the magnetic moment associated with each valley is opposite and it gives a shift in band
energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley-orbit coupling.
Magnetic proximity effect is shown to influence the spin state of each valley. Valley polarization
can be modified and measured. Its contribution in Hall conductivity is illustrated. Quantum phase
transitions are observed in silicene, providing a tool to control the topological state experimentally.
The strong dependence of the physical properties on valley degree of freedom is an important step
towards valleytronics.

15



Chapter 3

Response of Weyl semimetals to Broken
Time Reversal Symmetry

3.1 Introduction

The study of topological properties of materials has gained momentum after the discovery of topo-
logical insulators due to their non trivial band structure. They have gapless edge states with
gapped bulk and their response can be expressed in terms of topological invariants[9]. Topological
insulators have been studied extensively but a new class of materials which are of great interest
are topological semimetals; whose response is also characterized by topological invariants. They
have gapless bulk and non degenerate valence and conduction bands touching at certain points
or on a line in the Brillouin zone. They include materials with four energy bands having single
point degeneracy in momentum space known as Dirac semimetals[20, 21, 22]. Dirac semimetals
are time reversal and spatial inversion symmetric. When either symmetry is broken four fold de-
generacy shifts to double degenerate points known as Weyl nodes and such point nodal materials
are called Weyl semimetals. They are realized in pyrochlore iridates and were predicted based
on calculations involving electron correlations and spin orbit coupling effects. TaAs was the first
Weyl semimetal discovered [56] and the predicted Fermi arcs were detected using photoemission
spectrosopy and confirmed by first principles calculations[102]. Weyl semimetals and are classified
into two types on the basis of respecting Lorentz symmtery (type I) [9, 52, 56] and not respecting
Lorentz symmtery (typeII)[19]. TaAs[102, 103], MoTe2[19], transition-metal monophosphides[52]
are examples of topological semimetals.

Weyl semimetals have been proposed to appear in a multilayer model with alternating layers
of ordinary insulator and TI. Normal insulator acts as a spacer between TI layers [51, 18]. Finite
tunneling is allowed between top and bottom layers of TI layer and between two adjacent TI layers
as shown in Fig. 3.1. As Dirac nodes must occur in pairs, this system has minimum number of
two Dirac nodes. If the TI layers doped with magnetic atoms it give rises to semimetallic phase.
This phase can have nodal or along the line degeneracy depending on the direction of the spin
of dopant. In addition to Weyl semimetals these types of semimetals in which degeneracy occurs
along a line are called line node semimetals. This multilayer model is employed in this chapter to
discuss the magnetic response of Weyl semimetals.

Interesting effects are observed when topological semimetals are placed in an external mag-
netic field. One must keep in mind that magnetic field couples with both orbital (through minimal
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coupling) and spin degree of freedom (Zeeman coupling) of electrons. In the case of out of plane
magnetic field, Landau levels appear whereas for in-plane magnetic field Dirac cones of the two
surfaces shift in momentum space. Pyrochlore iridates are used as a reference Weyl semimetals to
study the properties like anisotropy in longitudinal conductivity and dependence of velocity on the
direction of applied magnetic field[104]. Many other anisotropic properties depending on magnetic
field and chiral anomaly related phenomenon have been investigated[105, 106, ?, 107, 108, 109].
Recently superconducting behavior of Weyl semimetals have been discussed with reference to the
tilt angle[110, 111].

In this chapter we present magnetic response of topological semimetals in a tilted magnetic
field, Zeeman coupling and orbital contribution taken into account. Our focus will be the study
of magnetic susceptibility for different orientations of external magnetic field, with the focus on
anisotropic magnetic response of Weyl semimetals. The magnetic susceptibility has three contribu-
tions arising from spin, spin-orbital and orbital motion. We show that (i) spin susceptibility scales
linearly with the Fermi energy and can vanish for large deviation of the magnetic field from the
perpendicular, (ii) spin-orbit susceptibility is an even function of Fermi energy and deviation angle
of magnetic field. It strongly depends on the position of Fermi energy and can be paramagnetic
or diamagnetic depending on it, (iii) orbital susceptibility is strongly diamagnetic and diverges
if the Fermi level is at the charge neutrality point. This behavior has some similarity with that
observed in nodal semimetals[112] and graphene[113]. We show that magnetic response can be
distinguished by varying the magnetic field orientation. The study is divided into two parts with
reference to the magnetic field orientation. One is the case of Landau Levels (LLs) formation (out
of plane magnetic field), presented in sec.(3.2) and the second when energy spectrum is momentum
dependent (in-plane magnetic field), presented in sec.(3.4).

3.2 Model for Weyl semimetals in a tilted magnetic field

We consider a heterostructure of alternating thin films of topological insulators (TI) and normal
insulators (NI) lying in the xy-plane, in a magnetic field which is tilted at an angle θ with respect
to the perpendicular axis which we take to be the z-axis, as shown in Fig. 3.1. Magnetic field
has both inplane and out of plane components and is taken to be B = (Bsinθ√

2
, Bsinθ√

2
, Bcosθ). As

mentioned in the introduction that breaking TRS leads to appearance of Weyl semimetal phase
and application of magnetic field fulfills the requirement. The effective low energy Hamiltonian[51]
for our system is

H = vτz (ẑ × σ) ·
(
−i~
−→
∇ + e

−→
A
)

+
gµBB · σ

2
+ ∆̂D(kz) (3.1)

where
−→
A = (−yBcosθ

2
+ zBsinθ√

2
, xBcosθ

2
− zBsinθ√

2
, 0) is the vector potential for the tilted magnetic

field[114]. σ and τ are Pauli matrices for spin and surface pseudospin, v is Fermi velocity of elec-
trons, g is the gyromagnetic ratio, µB is the Bohr magneton, ∆̂D(kz) = ∆tτx+

1
2
∆N(τ+ expikzd +τ− exp−ikzd),

where τ± = τx ± iτy. The first term in Eq.3.1 is the kinetic energy contribution, second is the
Zeeman term and the last term arises due to tunneling of electrons between the different layers.
∆t is the tunneling amplitude between the top and bottom of TI film and ∆N is the tunneling
amplitude arising due to tunneling across the NI layer.
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Figure 3.1: Schematic diagram of the system showing alternate monolayers of topological insulator
and normal insulator in magnetic field B tilted at angle θ.

The inplane magnetic field acts to shift Dirac cones of the two surfaces of topological insulator
along the y-axis[115, 116]. To incorporate this effect and to determine the energy spectrum we
define creation and annihilation operators for the two surfaces:
πyi − iπxi = − i

√
2~
lB
a†i and πyi + iπxi = i

√
2~
lB
ai, where

πx1 = v(px + e(zb1 − yb2) + cb1
v

),

πy1 = v(py + e(−zb1 + xb2) + cb1
v

),

πx2 = v(px + e(zb1 − yb2)− cb1
v

),

πy1 = v(py + e(−zb1 + xb2)− cb1
v

),
c = gµB

2
, b = cB, b1 = Bsinθ√

2
, b2 = Bcosθ

2
.

The Hamiltonian in Eq. 3.1 can be conveniently re-expressed as

H =


bcosθ −i∆Ba1 ∆ 0

i∆Ba
†
1 −bcosθ 0 ∆

∆∗ 0 bcosθ i∆Ba2

0 ∆∗ −i∆Ba
†
2 −bcosθ

 (3.2)

where ∆ = ∆t + ∆Nexp
ikzd, ∆∗ = ∆t + ∆Nexp

−ikzd, ∆B =
√

2~
lB

and lB =
√

~
eBcosθ

is the magnetic

length. For n ≥ 1, the eigenfunctions can be written as

C1Φn|T ↑〉+C2Φn−1|T ↓〉+C3Φn|B ↑〉+C4Φn−1|B ↓〉. The corresponding energy spectrum is
then given by

Es,µ(n) = s
√

∆2
Bn+ (b cos θ + µ∆D)2, (3.3)

where ∆D(kz) =
√

∆2
N + ∆2

t + 2∆t∆N cos(kzd). s = +1 for conduction and −1 for valence band,
n is the Landau level index and µ = ± determining the sub-splitting of LLs.
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It is evident from Eq. 3.3 that crossing points of n = 0 Landau level appear due to interplay
of ∆D, b and tilt angle θ. The n = 0 LL does not split into four sublevels like n 6= 0 levels
due to ”zero-mode anomaly”[117]. Thus out of four two energy levels exist and two do not exist.
Former are called existing LLs and later are called non existing LLs. When b cos θ < ∆D the two
corresponding energy levels are particle-hole symmetric

E+1,−1 = |b cos θ −∆D|, E−1,+1 = −|b cos θ + ∆D| (3.4)

whereas for b cos θ > ∆D, the energy levels are both hole-like

E−1,−1 = −|b cos θ −∆D|, E−1,+1 = −|b cos θ + ∆D| (3.5)

which means that n = 0 and µ = −1 energy level shifts from electron like to hole like energy
level resulting in an extra filled LL and nonzero Hall conductance. It can be seen from Fig. 3.2
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Figure 3.2: Energy spectrum with magnetic field at (a) θ = 00 and (b) θ = 450. Here b =
1.73BmeV , ∆D = 1.8meV forkz = 0, ∆t = 1meV and ∆N = 0.8meV.

that the results for θ = 0 matches with the results obtained previously[18]. Fig. 3.2 shows the
energy spectrum as a function of applied magnetic field for different tilt angles. In Fig. 3.3, we
show the evolution of n = 0 LLs as a function of the strength (magnitude) and orientation of
the applied magnetic field. By tuning the magnetic field and its orientation, the n = 0 LLs shift
from electron-like to hole-like. It can be seen in Fig. 3.4 that for different magnetic field strength
appearance of nodes depend on the condition | ∆t−∆N |< b cos θ < ∆t + ∆N . By keeping in mind
the appearance of existing and nonexisting energy levels for n = 0, we can write Eq.(3.6) for the
case when b cos θ > ∆D as

Es,µ(0) = λs,µEµ (3.6)

where Eµ = −(b cos θ − µ∆D) λs,µ = +1 for existing energy levels and λs,µ = −1 for nonexisting
energy levels whereas for b cos θ < ∆D Eq.(3.4) can be written as

Es,µ(0) = λs,µEs (3.7)

whereEs = sb cos θ −∆D.

In the next section magnetic susceptibility for our system is calculated.
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Figure 3.3: Variation of energy for n = 0 LL with the tilt angle θ of the applied magnetic field
(a) B = 0.5T and (b) B = 2T . Here b = 1.73BmeV , ∆D = 1.8meV for kz = 0, ∆t = 1meV
and ∆N = 0.8meV. Dotted curve represents E+,−, thick curve represents E−,−, dot-dashed curve
represents E+,+ and dashed curve represents E−,+.

3.3 Magnetic susceptibility for tilted magnetic field

Magnetic susceptibility is a fundamental quantity that is needed to determine the magnetic re-
sponse of a material. An applied Magnetic field couples with both orbital and spin motion and we
treat both of them separately as Bo and Bs respectively. Mathematically magnetic susceptibility
is obtained by differentiating the thermodynamical potential twice with respect to magnetic field.
To keep things generic we have taken magnetic field to be oriented at some angle θ with respect
to z-axis.

We have three susceptibility contributions: spin susceptibility (χs), spin-orbit susceptibility
(χso) and orbital susceptibility (χo)[114]. They are obtained from the thermodynamical potential
F defined as terms of partition function Z as,

F = −kBT lnZ

Z =
∑
i

[1 + e−β(Ei−ζ)]

where β = 1
kBT

, T is the temperature, kB is the Boltzmann constant, Ei is the energy eigenvalue

of the ith state and ζ is the chemical potential. Magnetization M , can be written as a derivative
of F, for Bs = Bo = B as

M = −(
∂F

∂Bs

+
∂F

∂Bo

).

As χ is defined as the derivative of magnetization, we can write the above equation as

χ = −(
∂2F

∂B2
s

+ 2
∂2F

∂Bs∂B0

+
∂2F

∂B2
0

)

≡ χs + χso + χo.
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Figure 3.4: Variation of energy for n = 0 Landau level with kz for different magnetic fields. Here
b = 1.73BmeV , ∆t = 1meV and ∆N = 0.8meV. Colors used are red for θ = 00, green for θ = 450

and purple for θ = 800.

For Landau level energy spectrum given in Eq.(3.3) thermodynamical potential is written as

F = − 1

β

1

2πl2B

∑
i

∞∑
n=n′

ln[1 + e−β[Ei(xn)−ζ]] (3.8)

where n′ = 0 for existing and n′ = 1 for nonexisting energy levels, n is the Landau level index,

xn = n∆x, ∆x = 2(~v)2

l2B
and lB is the magnetic length.

The summation over n in Eq. 3.8 can be executed by employing the Euler-Maclaurin formula
for the function defined above. It must be noted here that existing and nonexisting branches lead
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to sign reversal of second term, determined by λ :
∞∑

n=n′

y(xn) =
1

∆x
[

∫ ∞
0

y(x)dx+ λy(0)
∆x

2

− y′(0)
∆x2

12
+O(∆x3)]. (3.9)

Eq. 3.8 together with Eq. 3.9 yields

F = −
∑
i

1

4π~2v2β

∫ ∞
0

φ[Ei(x)] dx

+ λiφ[Ei(0)]
e

4π~β
Bo

− φ′[Ei(0)]
e2v2

12πβ
B2
o +O(∆x2) (3.10)

where φ[Ei(x)] = ln[1 + e−β[Ei(xn)−ζ]]. From the above equation we can define the following param-
eters that will be needed in the calculation of susceptibility that follows:

ν0 = − 1

β

∑
i

1

4π~2v2

∫ ∞
0

φ[Ei(x)] dx,

ν1 = − 1

β

∑
i

λiφ[Ei(0)]
e

4π~
,

ν2 =
1

β

∑
i

φ′[Ei(0)]
e2v2

12π
.

It is evident that thermodynamic potential can be expanded in terms of orbital magnetic field
component Bo

F = ν0 + ν1Bo + ν2B
2
o +O(B3

o) (3.11)

Using Eq. 3.11 we can calculate susceptibility by differentiating F

χs = −(
gµB

2
)2∂

2ν0

∂b2
, (3.12)

χso = −2
gµB

2

∂ν1

∂b
, (3.13)

χo = −2ν2. (3.14)

where ∂
∂Bs

= (gµB
2

) ∂
∂b

.
The different contributions to susceptibility are discussed in the following sections.

3.3.1 Spin susceptibility

Spin susceptibility is non-zero because of contribution from both Fermi surface states and occupied
states. Thus we have Pauli and Van-vleck paramagnetic contributions in our expression from Eq.
3.12, written as

χs = −A1

∑
s,µ,kz

∫ ∞
0

(b cos θ + µ∆D)2

E2
s,µ(x)

f ′[Es,µ(x)] dx

+

∫ ∞
0

(
1

Es,µ(x)
− (b cos θ + µ∆D)2

E3
s,µ(x)

)f [Es,µ(x)] dx (3.15)
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where A1 = 1
4π~2v2 (gµB

2
)2, f [Es,µ(x)] = 1

[1+expβ(Es,µ(x)−ζ)]
is the Fermi-Dirac distribution function.

For T → 0 Fermi function becomes a step function and its derivative a Dirac delta function:

f [Es,µ(x)]→ Θ(Ef − Es,µ(x))∑
s

f [Es,µ(0)]

[Es,µ(0)
=

Θ(Ef − Eµ(0))

Eµ(0)

∂f [Es,µ(x)]

∂Es,µ(x)
→ −δ(Ef − Es,µ(x)).

Thus for T → 0 the expression for χs from Eq. 3.15 after integration and using the above
expressions become

χs = −
∑
kz

Ef
2π

(
gµB cos θ

2~v

)2

.

Using ∑
kz

=
1

2π

∫ ∞
−∞

dkz,

Carrying out the summation on kz around the nodes yields

χs = − Ef
2π2

(
gµB cos θ

2~v
)2k0, (3.16)

where k0 = 1
d

cos−1[1 − (b cos θ)2−(∆t−∆N )2

2∆t∆N
]. It is clear that the expression for spin susceptibility

depends linearly on Fermi energy Ef , on the orientation of magnetic field and on the condition
that | ∆t−∆N |< b cos θ < ∆t+∆N for semimetals. In addition to this, spin susceptibility depends
on the presence of nodes, which appear as k0 in Eq. 3.16.

Fig. 3.5 shows that spin susceptibility is linearly proportional to the Fermi energy. As Fermi
energy goes away from zero, spin magnetism decreases linearly due to negative sign in Eq. 3.16.
Spin susceptibility vanishes for insulating phase which appears when B = 0.5T and θ = 800 shown
in Fig. 3.5(a) and (b). From the results in Eq. 3.16, we find that spin susceptibility is an oscilla-
tory function of θ. It is seen in Fig. 3.2(d) that nodes disappear in the range θ = 780 to θ = 1020

where the system becomes insulating and χs vanishes in the insulating phase. This allows spin
susceptibility to be tunable by both Fermi energy and tilt angle of the magnetic field.

In the next section spin-orbit contribution of susceptibility is discussed.

3.3.2 Spin-orbit susceptibility

Spin-orbit susceptibility (χso) appears due to spin-orbital contribution as given in Eq. 3.13, which
on solving for finite temperature gives

χso =
1

β

egµB cos θ

4π~
∂

∂b

∑
s,µ,kz

λs,µφ[Es,µ(0)] (3.17)

which can be expressed as

χso =
egµB cos2 θ

4π~
∑
s,µ,kz

f [Es,µ(0)− ζ],
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Figure 3.5: Spin susceptibility with (a) Fermi energy in meV and (c) for different orientations of

the magnetic field, (b) and (d) show n = 0 LLs. Here χ∗s = (102gµB cos θ
2~v )2, B = 0.5T , ∆t = 1meV

and ∆N = 0.8meV . Colors used in (d) are green for θ = 780, red for θ = 900 and dotted purple
for θ = 1020.

which for T → 0 becomes

χso =
egµB cos2 θ

8π2~
∑
s,µ

∫ ∞
−∞

dkzΘ[Ef − Es,µ(0)]. (3.18)

Above expression shows that χso is dependent on n = 0 energy level branches, both existing and
nonexisting, below the Fermi energy. The extra filled LL gives rise to non zero χso. It is shown in
the Fig.3.6 that for semimetallic regime i.e. ∆t−∆N < bcosθ < ∆t + ∆N , χso is an even function
of Fermi energy. In addition to this, there is a change in the behavior of susceptibility when Fermi
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level moves from one LL to the next. To see this, let us first define zeroth LLs as

E1(0) = (bcosθ −∆D), E2(0) = −(bcosθ −∆D)

E3(0) = (bcosθ + ∆D), E4(0) = −(bcosθ + ∆D)

Fig. 3.7 shows χso and the energy spectrum for n = 0, when magnetic field is aligned perpendicular
to the system. It can be seen that when Ef is below E4(0), χso is positive and constant due to the
bulk contribution of LLs. As E4(0) is approached susceptibility shifts from being negative to pos-
itive when Ef is above E4(0). In band gap either between E4(0) and E1(0) or between E2(0) and
E3(0), χso is negative and constant. E1(0) and E2(0) gives negative contribution to susceptibility
whereas combined effect of E1(0) and E2(0) about Ef = 0 is positive and constant. It can be seen
that around the Dirac points χso is constant, positive and even function of Fermi energy which
is also a characteristic of Dirac semimetals[118]. E3(0) contribution to spin orbit susceptibility is
from positive to negative. This phase transition also appears when Hall conductivity is measured
in topological insulator thin film[117] and graphene[114].

3.3.3 Orbital susceptibility

In this section, we derive the expresson of orbital susceptibility. It is given by Eq. 3.14 which,
after some calculation, yields

χo = −e
2v2 cos2 θ

6πβ

∑
s,µ,kz

[φ′[Es,µ(0)]. (3.19)

Taking derivative of φ and executing summation on n we get the expression in terms of Fermi
energy f [Es,µ(0)] :

χo = −e
2v2 cos2 θ

12π

∑
s,µ,kz

f [Es,µ(0)]

Es,µ(0)
. (3.20)
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Figure 3.7: (a) Spin-orbit susceptibility with Fermi energy and (b) n = 0 LLs. Here χ∗so = egµB
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For T → 0

χo = −e
2v2 cos2 θ

6πβ

∑
µ

∫ ∞
−∞

dkz
Θ(Ef − Eµ(0))

Eµ(0)
. (3.21)

Orbital susceptibility as shown in Fig.(3.8) varies due to the position of Fermi energy with respect
to position of zeroth LLs. It can be seen in Fig.(3.8b)that when Fermi energy is such that E4(0)
is below it the contribution to χo is zero; which remains zero till Fermi energy reaches E1(0)
where χo becomes diamagnetic. As Fermi level moves towards E2(0) the magnitude of orbital
susceptibility is changed but is still diamagnetic till it crosses E1(0). At point node positions χo
diverges diamagnetically like graphene [112]. From the pure E2(0) LL the contribution to χo is
positive thus this point appears as phase transition point. When E3(0) comes into play orbital
susceptibility starts decreasing but is still positive till it becomes zero when E3(0) is crossed.
Orbital susceptibility with angle depicts same contributions of LLs as can be seen in Fig.(3.8d).
χo is positive due to E2(0) and negative due to E1(0). Due to contribution of E3(0) and E4(0),
χo starts decreasing till the point comes when at 157.70 , χo shifts because for Ef = −1meV E1(0)
is below the Fermi level and E4(0) is above it and vice versa for Ef = 1meV.

3.4 Model for inplane magnetic field

In the previous section, we have presented results for topological semimetals with the magnetic
field tilted from 0 ≤ θ < 900 but when magnetic field is oriented at θ = 900 Dirac points shift in
momentum space. This leads to a new topological phase known as line node semimetal (LNS).
For completion we have added magnetic susceptibility for in-plane magnetic field θ = 900 which
matches the result for single TI thin film[115] when ∆N = 0. Hamiltonian for the system with the

vector potential ~A = −zBŷ in Landau gauge takes the form
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Figure 3.8: Plot of Real component of orbital susceptibility with (a) & (b) Fermi energy in meV
and (c) & (d) tilt angle of magnetic field.

H‖ =
∑
k

[vτz(ẑ × σ̂).(~~k − ezBτzŷ) + bσx + ∆̂D(kz)] (3.22)

where H‖ is the Hamiltonian for in-plane magnetic field. bσx is the term arising from Zeeman
coupling. To simplify Eq. 3.22 we define b′ = b − vezB and the Hamiltonian with corresponding
energy become

H‖ =
∑
k

[vτz(−~kxσy + ~kyσx) + b′σx + ∆̂D(kz)]
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H‖ can be diagnolized to get energy eigen values as

Ek,± =

√
v2~2k2

x + (b′ ±
√
v2~2k2

y + ∆2
D(kz))2.(3.23)

Here Ek,± is the energy spectrum of the system and ∆D(kz) was defined in Sec. 3.2.
It can be seen in Fig. 3.9 that for b′ < ∆t −∆N we get insulating state, for b′ = ∆t −∆N point
node appears, when ∆t − ∆N < b′ < ∆t + ∆N line node appears whereas line node extends to
whole BZ when b′ > ∆t + ∆N .

3.5 Magnetic susceptibility for in plane magnetic field, θ =

900

Magnetic susceptibility is given as

χ = −∂
2F

∂B2
(3.24)

F = −kBT ln[1 + e−β[Ei(xn)−ζ]]

When magnetic field lies in the plane of the material, energy eigenvalue becomes momentum
dependent i.e. Ek. The free energy is

F = −kBT
∑
k

[ln(1 + exp
−
Ek,±−ζ
kBT ) + ln(1 + exp

Ek,±+ζ

kBT )]. (3.25)

Taking Fermi level at zero energy, i.e. ζ = 0 we get

∂F

∂B
= −

∑
k

exp
Ek,+
kBT

1 + exp
Ek,+
kBT

(
∂Ek,+
∂B

) +
exp

Ek,+
kBT

1 + exp−
Ek,+
kBT

(−∂Ek,+
∂B

)

+
exp

Ek,−
kBT

1 + exp
Ek,−
kBT

(
∂Ek,−
∂B

) +
exp

Ek,−
kBT

1 + exp−
Ek,−
kBT

(−∂Ek,−
∂B

).

To proceed further let us define Ẽk,± = βEk,±,where β = 1
kBT

.

∂F

∂B
= − 1

β

∑
k

(
expẼk,+

1 + expẼk,+
− exp−Ẽk,+

1 + exp−Ẽk,+
)
∂Ẽk,+
∂B

+ (
expẼk,−

1 + expẼk,−
− exp−Ẽk,−

1 + exp−Ẽk,−
)
∂Ẽk,−
∂B

∂F

∂B
= − 1

β

∑
k

sinh(Ẽk,+)

1 + cosh(Ẽk,+)

∂Ẽk,+
∂B

+
sinh(Ẽk,−)

1 + cosh(Ẽk,−)

∂Ẽk,−
∂B

(3.26)
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Figure 3.9: Energy dispersion of line node semimetals for different values of b′, ∆t = 1meV and
∆N = 0.8meV.

For T → 0,
sinh(Ẽk,+)

1+cosh(Ẽk,+)
→ 1, therefore Eq. 3.26 on taking second derivative becomes

∂2F

∂B2
= − 1

β

∑
k

(
∂2Ẽk,+
∂B2

+
∂2Ẽk,−
∂B2

).
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From Eq. 3.26, we can write

χ =
1

β

∑
k

(
∂2Ẽk,+
∂B2

+
∂2Ẽk,−
∂B2

). (3.27)

For line nodal semimetals we want to calculate magnetic susceptibility χ. In terms of free energy
F, the susceptibility χ is given as

χ = −∂
2F

∂B2

To proceed further let us define Ẽk,± = βEk,± and taking Fermi level at zero energy, i.e. ζ = 0 we
get

∂F

∂B
= −

∑
k

sinh(Ẽk,+)

1 + cosh(Ẽk,+)

∂Ek,+
∂B

+
sinh(Ẽk,−)

1 + cosh(Ẽk,−)

∂Ek,−
∂B

In low temperature regime, T → 0,
sinh(Ẽk,+)

1+cosh(Ẽk,+)
→ 1, therefore

∂2F

∂B2
= −(

db′

dB
)2

∫
d3k

8π3
v2~2k2

x[
1

E3
k,+

+
1

E3
k,−

] (3.28)

the expression for χ using Eq. 3.28 and the approximation ∆D(kz) ≈ (∆t + ∆N)2 − ∆t∆Nk
2
z ,

becomes

χ = −(
gµB

2
− vez)2 (∆t + ∆N)2 − b′2

4πv2
√

∆t∆N

(3.29)

which is the required expression for susceptibility. It must be noted that in the insulating phase
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Figure 3.10: Magnetic susceptibility of line node semimetals with b′, ∆t = 1meV and ∆N =
0.8meV.

(b′ < ∆t − ∆N) when the gap is opened by strong hybridization, we get diamagnetic response
which vanishes when b′ = ∆t + ∆N . Thus for LNS we have diamagnetic response but for the case
when nodal line extends to entire BZ, there is a shift in the susceptibility from paramagnetic to
diamagnetic as shown in Fig.3.10.
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3.6 Results

In this chapter, magnetic susceptibility of Weyl semimetals, placed in a tilted magnetic field, was
studied. We find three contributions to susceptibility: spin, orbital and spin-orbital; all three
contributions are investigated for a tilted magnetic field. We find that spin susceptibility at low
temperature varies linearly with Fermi energy and is oscillatory function of tilt angle; orbital
contribution shows diamagnetic divergence at zero Fermi energy similar to graphene and spin
orbital contribution is an even function of Fermi energy and tilt angle. Due to anisotropic nature
of magnetic response, we propose that spin, orbital and spin-orbital magnetic response can be
distinguished by changing the orientation of the applied magnetic field. It can be seen from the
discussion of tilted magnetic field and in plane magnetic field that application of tilted magnetic
field helps us to identify all the contributions of susceptibility whereas it is not possible for the
application of in plane magnetic field.
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Chapter 4

Far from equilibrium Response of
Semi-Dirac Materials to Broken Time
Reversal Symmetry

4.1 Introduction

In this chapter, we study far from equilibrium response with emphasis on TRS. Dirac materials as
previously discussed are materials with low energy excitations which behave like Dirac fermions
with relativistic dispersion. They can be bulk gapped or semimetallic. A class of Dirac mate-
rials are those which show linear dispersion along one direction and quadratic dispersion along
the perpendicular direction, they are known as semi-Dirac materials. They have been studied
theoretically in three unit cell TiO2/V2O3 [119, 120], using group theory[121] and have been found
exerimentally in α − (BEDTTF )213 salt[122]. They have also been proposed in graphene like
models with tunable hopping parameters which gives rise to semi-Dirac phase[123, 124]. They
can also be created in cold atoms and merging of Dirac points have been experimentally seen in
fermionic cold atoms [125]. The unique hybrid dispersion makes them anisotropic with interesting
properties [126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 135, 138]

A quench protocol is implemented to study the far from equilibrium response. A system is
prepared in the ground state of the Hamiltonian that depends on a parameter that is changed
abruptly. This is known as quenching the system. The quenched state is allowed to evolve and
its response is studied. This procedure creates far equilibrium states whose response is studied here.

In this chapter we investigate the far from equilibrium response of semi-Dirac materials which
are exposed to light. A unique result is found which is different from its equilibrium analog. We
show that there is Hall current in the system even with TRS whereas in the equilibrium case
Hall current exists only when TRS is broken. This postquench effect is unique in many aspects
and it can be understood while considering precession of the spinor on Bloch sphere which shifts
the center of rotation on the application of pulse[139]. Ultracold atoms are found to be potential
candidates for the observation of interacting condensed systems and their topological properties
give insight to out of equilibrium behaviors for bosonic and fermionic systems[140, 141, 142, 143].
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4.2 Model for semi-Dirac materials

We consider semi-Dirac materials as our model system with nonrelativistic dispersion along the x-
axis and relativistic dispersion along the y-axis. Two dimensional low energy semi-Dirac materials
are described by the Hamiltonian[144]

H0(k) = (
k2
x

m∗
−∆0)τx + vkyτy (4.1)

where m∗ is quasiparticle mass, τi are the Pauli matrices in pseudospin space, ∆0 is the tunable
band gap in the energy spectrum, kx, ky are the momentum along x and y-axis respectively and v
is Dirac velocity. It can be seen that the Hamiltonian in Eq. (4.1) is invariant under time reversal.
Diagonalizing the Hamiltonian gives the energy spectrum

E0(k) = s

√
(
k2
x

m∗
−∆0)2 + (vky)2

where s = ± for conduction and valence bands.

As shown in Fig. 4.1 when ∆0 < 0 we have an insulating phase, for ∆0 = 0 we have linear
spectrum and for ∆0 > 0 we have two Dirac points.

To start with we photoinduce the system with monochromatic light field strength A0, fre-
quency ω and polarization angle φ. Here we have considered only time dependence and ne-
glected the spatial dependence of electromagnetic field by considering the fact that sample size
is small as compared to the wavelength. The light couples to the system and make the defin-
ing Hamiltonian given in Eq. (4.1) time dependent. In the presence of light Eq. (4.1) becomes
H0(k, t) = H0(k) +H1(k, t)σx +H2(k, t)σy. This time dependent Hamiltonian is solved using Flo-
quet formalism. Floquet Hamiltonian is expressed up to first order HF (k,mef ) ≈ HF (k)0+HF (k)1.

Here HF (k)0 = H0(k) +
e2A2

0

2m∗
τx and gap opening term HF (k)1 = m0 + βk2

x + γkx + ηkxky is mo-
mentum dependent. Eq. 4.1 can be expreseed as[144]

HF (k,mef ) = h(k).τ (4.2)

where HF is the Floquet Hamiltonian, h(k) = ( k
2
x

m∗
+ ∆1, vky,mef ), ∆1 =

e2A2
0

2m∗
−∆0,

mef = m0 + βk2
x + γkx + ηkxky, m0 = veA0cosφ

~ω (
e2A2

0

m∗
− 2∆0), β = 2veA0cosφ

~ωm∗ , γ =
2ve2A2

0sinφ

~ωm∗ and
η = −4veA0

~ωm∗ . We can see that the mef term in the Hamiltonian breaks TRS.

The energy spectrum of the Floquet Hamiltonian is given by

EF (k,mef ) = s

√
(
k2
x

m∗
+ ∆1)2 + (vky)2 +m2

ef . (4.3)

To simplify the calculation and focus on Hall response we restrict our study to circularly polarized
light (φ = ±π/2). We obtain results that depend on the value of ∆0. As shown in Fig.(2), when

∆0 <
e2A2

0

2m∗
there is the trivial insulating phase, for ∆0 =

e2A2
0

2m∗
spectrum becomes gapless and for

∆0 >
e2A2

0

2m∗
Dirac nodes shift their position relative to the case when no light was shining on the

system and the system is described by Eq.(4.1).
We proceed to determine the Hall response in the next section.
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Figure 4.1: Energy spectrum of semi-Dirac materials obtained from the Hamiltonian in Eq.(4.1).
Spectrum (a) is a typical insulating phase, (b) is linear along ky and (c) has two Dirac points.
Here v = 0.65eV Å, 1

m∗
= 0.75eV Å2.
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Figure 4.2: Energy spectrum of photoinduced (circularly polarized) semi-Dirac materials obtained
from the Hamiltonian in Eq.(4.2) (a) for insulating phase, (b) gapless state and (c) shifted Dirac
cones. Here v = 0.65eV Å, 1

m∗
= 0.75eV Å2, φ = π/2, eA0 = 0.1Å−1.
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4.3 Hall Response of semi-Dirac materials

To study the Hall response of far equilibrium states in semi-Dirac materials, we proceed with the
following protocol:
A. We begin with the system in an initial eigen state |Ψ0〉 of the Floquet Hamiltonian HF (k,mef ).
B. At time t = 0, quenching of HF (k,mef ) is done by taking mef = 0.
C. The state |Ψ0〉 is time evolved to t1 using time evolution operator e−it1HF,0(k,0) such that the
time evolved state at t1 is |Ψ1〉.
D. The state |Ψ1〉 is pulsed at time t1.
E. At t = t2, the pulsed state |Ψ1〉 is then time evolved using time evolution operator e−i(t2−t1)H′F (k,0)

to state |Ψ2〉.
F. Hall response is studied for the state |Ψ2〉 at time t2.

Let us formally go through the steps mentioned above:

4.3.1 Preparation of initial state

The spinor state of our semi-Dirac system which has been exposed to light, under high frequency

expansion[144] of Floquet Hamiltonian Eq.4.2, can be written in terms of up spin | ↑〉 ≡
(

1
0

)
and

down spin | ↓〉 ≡
(

0
1

)
states as

|Ψ0〉 = cos(θ/2)| ↑〉 − eiΦsin(θ/2)| ↓〉 (4.4)

which can be conveniently written as

|Ψ0〉 =

(
cos(θ/2)

eiΦsin(θ/2)

)
where eiΦ =

(
k2
x

m∗+∆1)+i(vky)√
E2
F (k,mef )−m2

ef

, cosθ =
mef

EF (k,mef )
, sinθ =

√
E2
F (k,mef )−m2

ef

EF (k,mef )
and

EF (k,mef ) = s
√

( k
2
x

m∗
+ ∆1)2 + (vky)2 +m2

ef .

To proceed further, we quench the mass parameter mef in Hamiltonian, HF (k,mef ) given in
Eq.(4.2). By removing the term in the Hamiltonian which explicitly breaks TRS, the Hamiltonian
becomes invariant under time-reversal.

4.3.2 Parameter Quenching

At time t = 0, we quench HF,0(k,mef ) → HF,0(k, 0) . For this we switch off the incident light,
given as A0 in the expression of mef , which will make the coefficients β, γ and η and m0 vanish.
Therefore HF,0(k, 0) can be written as

HF,0(k, 0) = h0(k).σ (4.5)

where h0(k) = ( k
2
x

m∗
+ ∆1, vky, 0).

The explicit form of the Hamiltonian is

HF,0(k, 0) =

(
0 k2

x

m∗
+ ∆1 − ivky

k2
x

m∗
+ ∆1 + ivky 0

)
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This is the quenched Hamiltonian obtained by switching off the incident light falling on the system.
The time evolution of the quenched state will be discussed next.

4.3.3 Time evolution of quenched state

The quenched state is time evolved by applying the time evolution operator on the state. The
time evolution operator can be expressed as a 2x2 matrix. The 2x2 time evolution operator is

e−it1HF,0(k,0) ≡ e−it1h0(k).σ

= cos(h0t1)− isin(h0t1)(
h0.σ

|h0|
) (4.6)

where

|h0| = s

√
(
k2
x

m∗
+ ∆1)2 + (vky)2

= s
√
E2
F (k,mef )−m2

ef .

The time evolution operator can be expressed as

e−it1HF,0(k,0) =

(
cos(h0t1) 0

0 cos(h0t1)

)
− i sin(h0t1)

|h0|

(
0 k2

x

m∗
+ ∆1 − ivky

k2
x

m∗
+ ∆1 + ivky 0

)

=

(
cos(h0t1) −isin(h0t1)e−iΦ

−isin(h0t1)eiΦ cos(h0t1)

)
.

Now we apply the time evolution operator to the initial state to get the state |Ψ1〉 at later time t1:

|Ψ1〉 = e−it1HF,0(k,0)|Ψ0〉

=

(
cos(h0t1) −isin(h0t1)e−iΦ

−isin(h0t1)eiΦ cos(h0t1))

)(
cos(θ/2)

−eiΦsin(θ/2)

)
=

(
cos(h0t1)cos(θ/2) + isin(h0t1)sin(θ/2)

(−isin(h0t1)cos(θ/2)− cos(h0t1)sin(θ/2))eiΦ

)
which in terms of {|↑〉, |↓〉} can be written as

|Ψ1〉 = a(t1)|↑〉 − eiΦb(t1)|↓〉 (4.7)

where a(t1) = cos(h0t1)cos(θ/2) + isin(h0t1)sin(θ/2)
and b(t1) = isin(h0t1)cos(θ/2) + cos(h0t1)sin(θ/2).

The time evolved state will be pulsed now, this is discussed in the next section.

4.3.4 Pulsing the state

To pulse the state |Ψ1〉, we use minimal coupling, i.e substituting k→ k− eA. In order to simplify

calculations we assume that e|A|
h0(k)

<< 1. Following this assumption higher order terms O(A2) can
be neglected.
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We can see that the phase angle Φ is now shifted to ΦA and let us call this shift ∆Φ = ΦA−Φ.
Then we can write |h′|

|h′| =

√
(
(kx − eAx)(kx − eAx)

m∗
+ ∆1)2 + (vky)2

=

√
(
(k2
x − e(Axkx + kxAx)

m∗
+ ∆1)2 + (vky)2

=

√
(
k2
x

m∗
+ ∆1)2 + (vky)2 − 2

e(Axkx + kxAx)(
(k2
x

m∗
+ ∆1)

m∗

=

√
(|h0|)2 − 2e|h0|cosΦ

(Axkx + kxAx)

m∗

= |h0| − ecosΦ
(Axkx + kxAx)

m∗
. (4.8)

We will need ei∆Φ in subsequent calculations, therefore we simplify its expression

ei∆Φ =
eiΦA

eiΦ

=
(k2
x−e(Axkx+kxAx)

m∗
+ ∆1 + ivky

k2
x

m∗
+ ∆1 + ivky

= 1− e|h0|cosΦ
m∗

Axkx + kxAx
|h0|2

+ i
e|h0|sinΦ

m∗
Axkx + kxAx
|h0|2

=
|h′|
|h0|

+ i
esinΦ

m∗
Axkx + kxAx
|h0|

ei∆Φ = 1 + i
esinΦ

m∗
Axkx + kxAx
|h0|

(4.9)

After pulsing the state we time evolve the state |Ψ1〉 which is presented next.

4.3.5 Time evolution of pulsed state.

The state |Ψ1〉 pulsed at t = t1 is now time evolved to later time t = t2 using time evolution
operator e−i(t2−t1)H′F (k,0) as defined in Eq.(4.6). Explicitly it is

e−iδtH
′
F (k,0) =

(
cos[h′δt] −isin[h′δt]e

−iΦA

−isin[h′δt]e
iΦA cos[h′δt]

)
where eiΦA = k2

x−e(Axkx+kxAx)
m∗

+ ∆1 + ivky, δt = t2 − t1 and h′ is defined in Eq. 4.8.

To obtain state |Ψ2〉 at t = t2,we have

|Ψ2〉 = e−iδtH
′
F (k,0)|Ψ1〉

=

(
cos[h′δt] −isin[h′δt]e

−iΦA

−isin[h′δt]e
iΦA cos[h′δt]

)(
a(t1)
−eiΦb(t1)

)
=

(
cos[h′δt]a(t1) + isin[h′δt]e

−i(ΦA−Φ)

−isin[h′δt]e
iΦA − cos[h′δt]eiΦ

)
.

Lastly, we want to determine the Hall response. Since the pulse is applied in the x-direction, the
current in the y-direction is the Hall current that we determine next.
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4.3.6 Hall response

To determine Hall response along y-direction we need to calculate average of σy in state |Ψ2〉. To
obtain the answer we use the following mathematical identity:

〈Ψi|σy|Ψi〉 =
1

i
(σ+ − σ−)

= 2Im(〈σ+〉). (4.10)

We also note that

σy =
1

i
(σ+ − σ−)

Since

σy(t) = U †(t)σyU(t)

= σy(t) =
1

i
(σ+(t)− σ−(t))

Therefore we can write Jy as

−e〈Ψ2|σy|Ψ2〉 = −2eIm(〈Ψ1|(e−iδtH
′
F (k,0))†σ+e−iδtH

′
F (k,0)|Ψ1〉).

As

(e−iδtH
′
F (k,0))†σ+e−iδtH

′
F (k,0)

=

 cos[h′δt] isin[h′δt]e
−iΦA

isin[h′δt]e
iΦA cos[h′δt]

 (
−isin[h′δt]e

−iΦA cos[h′δt]
0 0

)

=

(
− i

2
sin[h′δt]e

iΦA cos2[h′δt]
sin2[h′δt]e

2iΦA i
2
sin[h′δt]e

iΦA

)
.

Therefore using Eq. 4.7 we have

Jy = −2eIm[
(
a∗(t1) −e−iΦb∗(t1)

)
∗
(
− i

2
sin[2h′δt]e

iΦA cos2[h′δt]

sin2[h′δt]e
2iΦA i

2
sin[2h′δt]e

iΦA

)(
a(t1)
−eiΦb(t1)

)
]

= −2eIm[
(
a∗(t1) −e−iΦb∗(t1)

)
∗

(
− ia(t1)

2
sin[2h′δt]e

iΦA − 1+cos[2h′δt]
2

e−iΦb∗(t1)
1+cos[2h′δt]

2
e2iΦAa(t1)− ie−iΦb∗(t1)

2
sin[2h′δt]e

iΦA

)
]

which can be written as

Jy = −eIm[eiΦ{−i (|a|2 − |b|2)ei∆Φsin[2h′δt]

− ab∗e2i∆Φ(1− cos[2h′δt]) −a∗b(1 + cos[2h′δt])}] (4.11)

where

|a|2 − |b|2 = cosθcos[2h0t1]

ab∗ =
1

2
(−icosθsin[2h0t1] + sinθ)

a∗b =
1

2
(icosθsin[2h0t1] + sinθ)
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Figure 4.3: Current response of a single state when Φ = 0, eA = 0.3Å−1.

and h′ is defined in Eq. 4.8.

This shows that a non zero Hall response for our system is found even when the Hamiltonian
does not break instantaneous TRS. The condition required to get this response is to break TRS
or mirror symmetry either before quenching or after it. In Fig. 4.3, we have plotted Jy − Jy|A→0

for a single state to compare it with the non-pulsed current at Φ = 0.

We find that remnant Hall current appears in semi-Dirac materials when the system is in the
insulating or nodal phase. Hall current is oscillatory and beating phenomenon having a specific
frquency is seen for the insulating phase and also when Dirac cones appear as shown in Figs. 4.3(a)
and (c). The oscillations appear for the other two cases but they donot have a specific frequency
for a semi-Dirac state. We can see that the center of oscillation gets shifted when momentum and
pulse are perpendicular as shown in Fig. 4.4. Beating pattern arises because of the interference
of the pulsed and non-pulsed current. When the pulse is in phase Φ = 0 and it goes away for
Φ = Π/2, (out of phase) and moementum are in the same direction. There is same behavior for
insulating and Dirac phase for both directions of pulse.

Previously we calculated the Hall response for a single state, to obtain the contribution from
all the states we determine the current for states around a ring of fixed momentum:

JHall = −e
∫ 2π

0

1

2π
〈Ψ2|σy|Ψ2〉dφ.

On carrying out the integration we get

JHall = −ecosθ
h0

[J1[X]{sin2h0t2
(t1 − t2)

− cos2h0t2} −
Akx
m∗

sin2h0t1]. (4.12)
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Figure 4.4: Current response of single state when Φ = Π/2, eA = 0.3Å−1.

Here X = 4Akx(t1−t2)
2m∗

. Since the Bessel function J1 in Eq. 4.12 depends on kx, JHall exhibits
oscillation in kx. And J1 dies off for longer times i.e. when t2 →∞.Eq. 4.12 has been plotted in
Fig.4.5 and 4.6. It can be seen in Fig. 4.5 that in the phases which corresponds to different values
of ∆0, JHall is oscillatory, though it decays but survives for long times and saturates to a value at
long times. The Hall response survives for infinitly long times. Similarly, Fig. 4.6 shows the Hall
current in different phases has different magnitudes for fixed momentum but overall behavior is
same. The inset in Fig.4.6 shows that Hall current survives for long times.
Now we want to calculate current due to the whole valence band, which is

JTotal =

∫ ∞
0

JHallkdk

2π
.

In order to facilitate numerical calculation, we have obtained results which are valid in the long
time limit by replacing the Bessel function J1[X] by Cos[π/4 + X]. The numerical results are
plotted in Fig. 4.7. This shows that current is decaying but is non zero for long times (inset of
Fig.4.7).

4.4 Results

We find that Hall current is oscillatory when the system is either in the insulating or the nodal
phase and has a beating pattern when plotted for different times. For t2 →∞ we are left with the
last term in Eq.4.12 which is function of t1. This term when numerically integrated shows Hall
current which is purely dependent on time t1, as seen in Fig.4.8. This figure also shows that if the
time t1 at which the pulse acts is very long then the reminant Hall current dies off.
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Figure 4.5: Current response of a ring of states taking eA = 0.3Å−1, eA0 = 0.01Å−1.
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and ∆0 = 0 case for very long times.
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Chapter 5

Summary

We have shown in Ch.(2) that Berry curvature is non-zero and opposite for both valleys in sil-
icene when placed in proximity with ferromagnetic material and exposed to perpendicular electric
and magnetic fields. The contrasting orbital magnetic moment for both valleys couple the val-
ley degree of freedom with the magnetic field. This gives the energy splitting in the presence of
a magnetic field. Proximity effect shifts the maxima of magnetic moment. It is interesting to
notice that magnetic moment rely strictly on the valley degree of freedom, which is similar to
the properties of spin and a Zeeman like interaction appears. This behavior leads to valley-spin
locking. Moreover, this magnetic moment can be tuned by an external electric field and exchange
term. Valley polarization of electrons and Hall conductivities that are experimentally detectable
quantities were also discussed in Ch.(2). We find signatures of a quantum phase transition from
a topological insulator to a band insulator phase in both the valley and spin Hall conductivities.
Our work shows that the role of pseudospin is very important for silicene as both valleys have
opposite behaviors in the applied fields. When an external magnetic field is switched off but
breaking the TRS through proximity effect, the system allows single spin and valley to transport,
thus a perfect spin and valley half metal can be constructed which can be useful in real devices[96].

A study of magnetic susceptibility of Weyl semimetals in a tilted magnetic field was presented
in Ch.(3). We have shown that all the three components of susceptibility for topological semimet-
als are non-zero and exhibit unique characteristics that depend on Fermi energy, orientation and
strength of magnetic field. As the susceptibility depends on the magnetic field orientation, this
shows that Weyl semimetals have anisotropic magnetic response[145]. Spin susceptibility is shown
to depend linearly on Fermi energy. For T → 0, spin-orbit susceptibility is an even function of
Fermi energy and orbital susceptibility has singular and strongly diamagnetic behavior when the
Fermi level is at the charge neutrality point. The total magnetic susceptibility shows that the
spin susceptibility is a weaker phenomenon as compared to orbital and spin-orbit susceptibility
because of the smaller magnitude of Zeeman term. It can be seen that around the nodes, the strong
diverging behavior of orbital susceptibility dominates. We also show that the orbital and the spin-
orbit contribution to susceptibility arises entirely from the n = 0 LLs. Interestingly, we find that
both spin-orbit and orbital contribution to susceptibility can be tuned by the orientation of the
magnetic field; they can be made to vanish from a finite value by changing the orientation of the
magnetic field. Spin-orbit susceptibility goes from finite value to zero with change in orientation
of magnetic field. Whereas orbital susceptibility goes from zero to finite value when conduction
band is approached. This dependence of susceptibilities on orientation of magnetic field helps us
to separate the magnetic response arising from spin and orbital coupling with magnetic field. In
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order to separately observe the spin and orbital response predicted in this study, x-ray magnetic
circular dichroism technique can possibly be employed[146].

In Ch.(4) of the thesis, non equilibrium Hall response of semi-Dirac materials was studied. This
required preparing the system in non equilibrium states through a quantum quench protocol. We
show that in the non equilibrium setting, there is non-zero Hall response even when instantaneous
TRS is present and the Hall current persists for long times. This is in contrast to the equilibrium
case where the system is required to break TRS for a Hall response.

This is worth mentioning here that for future study classifications and making of periodic
tables of topological insulators and topological semimetals is an open area of study. Response of
the materials to external fields can make classification easy.
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