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Abstract

Requirements for triggering systems in future generations of High Energy Physics (HEP)
experiments in terms of computing power and communications performance are orders of
magnitude greater than those of existing experiments. Point to point links and switches inter-
connecting microprocessors allow the construction of the required large systems scalable in
terms of both computational and communications performance. There are relatively few
“open” technologies currently available which allow a practical investigation of microproc-
essors interconnected by point to point links and switches. The IEEE 1355 standard includ-
ing DS links is one such technology. This thesis presents the application of this technology
to two HEP experiments: CPLEAR and a future generation experiment the Large Hadron
Collider (ILHC) at CERN. ‘

The CPLEAR application involved the use of the T9000 in an on-line event filtering farm.
The aims were to demonstrate the feasibility of replacing the existing off-line analysis sys-
tem, demonstrate reliable operation of the technology and to obtain information for experi-
ments at the LHC. The application of the technology to the LHC allows extrapolations to
predict the capability of currently available technology to meet the requirements of future
generation experiments. The work also identifies a set of factors which will be crucial in the
performance of future HEP systems. The technology presented within this thesis may not be
the technology to be used at the LHC, however, the conclusions of this thesis should provide
valuable information for the construction and design of the future triggering systems.
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Chapter 1
Introduction

1.1 Motivation

Requirements for triggering systems in future generations of High Energy Physics (HEP)
experiments in terms of computing power and communications performance are orders of
magnitude greater than those of existing experiments [1]. The experiments will increase in
complexity, event rates, event sizes and the amount of computationally intensive analysis
required in real-time. The only way to meet these continually increasing requirements is the
use of large arrays of processors interworking via high speed interconnects. The computa-
tional and communications performance of such systems must scale to meet the dynamic
requirements of the experiment.

Existing experiments largely base their trigger systems on standard (shared) buses such as
CAMAGC, VME and FASTBUS. This approach is being replaced by a migration to micro-
processors communicating via high speed point to point links interconnected by switches.
Point to point links and switches interconnecting microprocessors allow the construction of
the required large systems scalable in terms of both computational and communications per-
formance. Bus based systems are limited in scalability, they suffer from bottlenecks in the
bus bandwidth and the limited interconnectivity available between multiple buses.

Table 1.1 contains a summary of existing HEP experiment requirements compared to the
requirements of future generation experiments. The increases in reduction factors performed
by the trigger are three orders of magnitude. These increases in rejection factors demand
increased computational power available in real-time. : '

There are relatively few “open” technologies currently available which allow a practical
investigation of microprocessors interconnected by point to point links and switches, andno -
clear winner in industry. In particular, few technologies are available to allow an investiga-
tion into their use in triggering and data acquisition in HEP. The IEEE 1355 standard [2]
including DS links, the T9000 Transputer [3] and associated C104 packet switch [4] are
technologies that have already been used to build substantial systems. A Transputer isa
complete microcomputer with four integrated on-chip links allowing multiple processors to
be interconnected. Using these links Transputers are directly connected or connected via
switches.

As part of the ESPRIT project, GPMIMD [5] a 64 node T9000 machine using C104 packet
switches has been constructed. ESPRIT is the European Strategic Programme of Research
and Development in Information Technology. This thesis presents the application of this
technology to two HEP experiments: CPLEAR! and a future generation experiment the

1. CP violation at the Low Energy Anti-proton Ring [6].
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Large Hadron Collider (LHC) at CERN?. For the LHC, I will mvestlgate the application of
the technology to the Atlas detector [7].

TABLE 1.1 Comparison between existing and future generation HEP experiments

A typical LHC
A typical LEP? experiment - to be
CPLEAR experiment constructed in 2005
Raw Event Rate 10°Hz 5x10* 10° Hz
Trigger Reduction 4x 10 ~10* 107
Number of Channels 3x10* <10° >107
Event Size ~2 Kbytes ~ 300 Kbytes ~1 Mbyte
Final Data Rate ~ 1 Mbyte/s ~ 1 Mbyte/s 10-100 Mbyte/s

a.Large Electron Positron collider at CERN.

The CPLEAR application involved the use of the T9000 in an on-line event filtering farm.
The aims were to demonstrate the feasibility of replacing the existing off-line analysis sys-
tem, demonstrate reliable operation of the technology and to obtain information for experi-
ments at the LHC. The T9000s and C104s used for the CPLEAR application were
prototypes, when the work was carried out, little or no experience existed in building large
systems with these components.

The application of the technology to the LHC allows extrapolations to predict the capability
of currently available technology to meet the requirements of future generation experiments.
The work should also identify a set of factors which will be crucial in the performance of
future HEP systems. The technology presented within this thesis may not be the technology
to be used at the LHC, however, the conclusions of this thesis should provide valuable infor-
mation for the construction and design of the future triggering systems.

1.2 Outline of thesis

This introduction chapter gives the general motivation for the thesis, an outline of the thesis
and the background in which the work was carried out. Chapter 2 presents the technology of

mlayuters’ Tinla nnﬂ euritnhag a‘lt\nn “nfh enﬂmﬁ’mg l‘l\nl‘PﬂfQ nnd an ‘lﬂff{\d'l'lﬂ 100 {0 nm'a]-

NS D2 VY ALWELWAD AR 5 A of it
lel processing.

Chapter describes an evaluation of the technology, which identifies a set of critical factors
that dictate the performance of multi-processor systems. Included in the evaluation are com-
munications, interrupt response, context switching and computational performance. In addi-
tion the performance of the T9000 is compared to other platforms.

Chapter 4 contains the application of the T9000 to the CPLEAR experiment operating as an
on-line event filtering farm. Results are presented, problems discussed and projections are
made to demonstrate the feasibility of using the technology to build processor farms in
CPLEAR. Chapter 5 outlines the application of DS link technology to the LHC, a continua-
tion of the CPLEAR application. Results are presented and discussed, the work has resulted
in a set of factors affecting the performance of DS links applied to triggering at the LHC.

2. The European Laboratory for Particle Physics Research.




Context of thesis

The factors are of relevance to any future system based on switching networks and point to
point links. Some of these factors have been investigated, and those which have not are pre-
sented as future work. The final chapter, chaptcr 6, is a summary of the conclusions pre-
sented throughout the thesis.

1.3 Context of thesis

The work presented within this thesis was carried out at CERN within the ESPRIT project
GPMIMD, a collaboration between fourteen European industrial partners. An objective of
the project was the construction of a parallel scalable computer using the T9000 and C104.
The role of CERN within this project included the mounting of HEP applications onto this
machine. These applications are only a small part of the project, however, the successful
operation of the technology in the demanding environment of an HEP experiment and the
availability of substantial demonstration systems was a crucial aspect of the project. This
was recognised as such by our industrial partners and the external project reviewers
appointed by the European Union. Work carried out within this project has lead to the basis
of work for this thesis.

1.3.1 Authors work

The benchmarking and technology evaluation presented within chapter 3 is the authors own
work. This includes the writing of benchmarks to assess communications, interrupt response
and context switch performance. Any results from other sources used for comparison are
clearly referenced at the point they are presented.

Chapter 4 is entirely the authors own work. This includes the design and implementation of
the T9000 system and the integration with the existing CPLEAR data acquisition system.
All extrapolations and conclusions are the authors own work. Clear references are given
where existing systems or software produced by other persons are used.

In chapter 5 all extrapolations, interpretation of results and conclusions are the authors own
work. Some results were produced in collaboration with another member of the group.

Chapter 6 is entirely the work of the author.
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Chapter 2
The T9000 Transputer and DS
links: hardware and software

In this chapter the relevant technologies used are presented, including supporting concepts
and a general introduction to parallel processing using Transputers.

The requirement for processing performance in HEP data acquisition, and more generally
real-time embedded systems, is continuously increasing as systems become more complex.
The only way to satisfy these requirements in the long term is the use of multiple processors
which provide efficient support for multiprocessing. Crucial issues will be the inter-proces-
sor communication performance, efficient support for concurrent communication and com-
putation, fast interrupt response times and context switch times. The T9000 Transputer has
been specifically designed to provide high performance in all of these areas. '

Of equal importance is the software development environment and host system software.
Multiprocessing systems require complex real-time monitoring and fault tolerance control
systems. The T9000 provides dedicated control links for configuration, monitoring and con-
trol.

The Transputer model of concurrent programming is presented, followed by details of
Transputer and switch implementations, i.e. the T9000 and C104. The software development
environment and host system software for the T9000 is presented and a critique given. The
TransAlpha module is presented which combines the T9000 with a DEC Alpha processor to
boost its computational power.

2.1 Transputers

A Transputer is a complete microcomputer on a single VLSI chip. Each Transputer has a
number of communication links, allowing them to be interconnected. These links allow con-
current programming in multi-processor Transputer networks. The Transputer instruction set
contains single instructions to send and receive messages through these links, minimizing
delays in inter-Transputer communication. Transputers can be directly connected, to form
specialised networks, or can be interconnected via switches.

Transputers were explicitly designed for multi-processing, in addition to the specialised
hardware functionality a Transputer model of concurrency has been developed. The pro-
gramming mode] for Transputer systems consists of sequential processes which communi-
cate using message passing, based on Hoare’s Communicating Sequential Processes (CSP)
[8]. Each process can be viewed as a black box with internal state, which can communicate
and synchronise with other processes via point to point communication channels, as shown
in Figure 2.1.
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Communication is synchronous, if one process is not ready, both processes will be sus-
pended. The correct input/output instruction must be executed on both communicating proc-
esses for the communication to take place.

process

process
B

FIGURE 2.1 The Transputer Model Of Concurrency

Each Transputer has an on chip hardware process scheduler which allows it to share its time
between a number of processes. Communication between processes on the same Transputer
is performed using the local memory; communication between processes on different Trans-
puters is performed using a link. Consequently, a program can be executed either by a single
Transputer or by a collection of Transputers in a network. The same communication model
is maintained irrespective of whether processes are located on a single Transputer or a net-
work of Transputers. Figure 2.2 shows two possible mappings based on the processes pre-
sented in Figure 2.1.

ova) O~ /6
',G or Lt o

FIGURE 2.2 Mapping Of Processes to Processors

An application is not dependant upon a particular network configuration, thus a program can
be run on various networks allowing optimisations in cost and performance.

2.2 Occam

Occam [9] is a parallel processing language based on Hoare’s CSP. The Transputer was
developed with the specific intention of providing an efficient platform for the execution of
the occam programming language. Other languages exist for the Transputer (for example C)
but none has such a close relation to the Transputer instruction set, hence other languages
are often less efficient and require larger amounts of code. Occam is a language designed for
parallel processing, C is not. Unless otherwise noted, all coding of Transputer programs
within this thesis has been performed using occam.




Occam

An occam program consists of 1to N concurrent sequential processes, that can communicate
via point to point links, mirroring the Transputer model of concurrency.

All occam programs are built from three primitive operations; assignment, input and output.
The primitives produce processes by specifying their order; sequential or parallel. In addi-
tion to these primitives there is support for repetition and conditional statements. Data
objects and their types may also be defined. Table 2.1 lists the three occam statements which
describe the relation between multiple processes; SEQ (sequential), PAR (parallel) and ALT
(alternate).

TABLE 2.1 Important occam statements

Statement Syntax Description
SEQ SEQ A collection of processes to be executed in
construction <process 1> sequence, where a process is any occam con-
struct.
<process N>
PAR PAR A collection of processes to be executed con-
construction <process I> currently with each process starting execution

at the same time.

<process N>
ALT ALT Select one process from the list of altemative
construction <input 1> processes tobe ?xecuted fiependmg on which
input guard has input available first.

<process 1>

<input N>

<process N>

The five lines of occam in Figure 2.3 demonstrate the ease with which occam can provide
communication of variables between processes. An output on a channel is performed using
‘1> and input is performed using ‘?’.

The channels talkin and talkout are connected to one another in a configuration language,
which will also map the code onto a processor. Details of the configuration process are pre-
sented in Section 2.5, “The T9000 Toolset Development System,”. The code would have the
following effect: two processes would run concurrently, in the first process data would be
sent on the channel talkout from variable a, in the second process data is received on the
channel talkin into the variable b.

The equivalent task written in C is considerably longer and more complex, see Figure 2.3,
therefore immediately less readable. A set of libraries providing the C sub-routine equiva-
lent functions and predefined data types of the occam constructs extend the C language for
concurrent programming. In the example the functions ChanInint and ChanOutInt are used
to send integers on a channel. ProcAlloc is used to reserve memory space and allocate heap
space for processes. The function ProcPar runs multiple processes concurrently and ProcAl-
locClean releases all memory used by a process.
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There are clear problems when constructs for parallel programming are added on to a lan-
guage after its initial design. The occam programming language was designed specifically
for parallel processing.

Familiarity with C or existing C code, which can be directly compiled, are possible advan-
tages of using C. The disadvantages are the increased code complexity and the possibility of
losing performance.

occam required to output an C required to output an integer on
integer on a channel achannel
void out_proc (Process ¥p, Channel ¥c¢)  /* Code to send integer */
CHAN OF INT talkin,talkout: {
INT a,b: int a;
PAR ChanOutlnt (c,a);
talkout! a return;
tatkkin? b } _
void in_proc (Process *p, Channel #c) /* Code to receive integer */
{
int b;
b = ChanInlnt {c);
retum;
}
int main(void)
{
Channel * talkin, * talkout; /* Declare two channels */
Process * in, * out; /* Declare two processes */
in=ProcAlloc (in_proc, 0, 1, tatkin);
/* Allocate memory for processes */
out=ProcAlloc (out_proc, O, 1, talkout);
/* Use procedures in_proc & out_proc */
ProcPar (in,out, NULLY); /* Execute processes ‘in’ and ‘out’ ¥/
ProcAllocClean(in); /* Release memory */
ProcAllocClean(out); /* Release memory */
}

FIGURE 2.3 A comparison between occam and C

2.3 The T9000 Transputer

The T9000 is the latest generation of Transputers from SGS Thomson (see Figure 2.4). It
has a 32-bit pipelined processor with a 64-bit FPU and 16 Kbytes of cache. There are four
bi-directional serial data links and a Virtual Channel Processor (VCP) allowing efficient
T9000-t0-T9000 communications. There are two on chip 32 bit timer clocks with up to 1
microsecond resolution. These components are combined onto a single integrated circuit.

The T9000 has several improvements over previous generations of Transputers in both per-
formance and functionality. Improved performance has been gained through an increase in
design clock speed (50 MHz design), the implementation of an on-chip cache, and a pipe-
lined superscalar architecture. This architecture allows multiple instructions to be executed
every processor cycle.
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Two separate control links allow the T9000 to be controlled (processor initialization and
loading) and monitored for errors, even when there are faults in the normal communications
network. These control links may be daisy chained and/or connected via C104 packet

switches. A full description of the T9000 is given in the following sections.

Processor Pipeline
ALU
Instr. | Decoder/ | Workspace
Buffer | Grouper | Cache FPU
s @;
ystem Virtual Channel
Services Processor
oY [ Linko
Timers N~V
C N Link 1
/A x A
R -
16 Kbyte \]?—2y LN Link2
Instruction /1?-’—2T\ o) \1321/ Link 3
NV -
and Data AN s
32 Event 0-3
Cache N~
OR Internal AN S
Memory 22
N ¥
S I\
32
? A N Scheduler
Programmable
<§0: Memory /13—2'\ R
Interface NV /13—’5’\
7 N~/ Control Links |

FIGURE 2.4 The T9000 Transputer
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2.3.1 T9000 Architecture

The CPU contains three registers (Areg, Breg and Creg) used for expression evaluation
which form a hardware stack. The floating point unit also contains three registers to form an
evaluation stack. The Transputer uses two more registers to execute code: the instruction
pointer to the next instruction to be executed and the workspace pointer (see Figure 2.5).
The workspace is an area of memory where local variables are stored, which also has a ded-
icated cache. The workspace cache can hold up to the first 32 words of the process work-
space, allowing fast access to the variables stored in this memory.

process workspace program space
(local variables) (instructions & data)
Areg N\
Brez /\/
Creg
Workspace /\/
pointer ‘
Instruction -
pointer

FIGURE2.5 T9000 Architecture

23.2 DS Links

Improved communication is provided by the new Data/Strobe (DS) link technology which
currently operates at 100 Mbits/s. I have carried out tests running C104 links successfully at
200 Mbits/s 3, and T9000 links at up to 160 Mbits/s.

The DS link technology is part of the IEEE 1355 standard. The standard covers the physical
connectors, cables, and electrical/logical protocols for implementing point to point serial
interconnects operating at speeds of 100 Mbits/s (DS) and at 1 Gbit/s (HS) over copper and
optical fibres. The DS links run over printed circuit and cable interconnections.

The DS link uses four different levels of protocol:

« Bit level. The DS link uses 4 wires: a data/strobe pair in each direction. The protocol guar-
antees that exactly one of the two wires (for a single direction: data and strobe) will have
an edge in every bit frame. The levels on the data wire are the transmitted bits, see
Figure 2.6.

3. SGS-Thomson plan to produce products using DS links at over 200 Mbits/s
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FIGURE 2.6 Bit Level Protocol on a Data Strobe link
« Tokens. The next level of protocol is the token, there are two types of token: data and con-
trol. Data tokens are simply data bytes, but there are multiple control tokens most of which
are used for flow control and alignment of clocks against skew. Figure 2.7 shows the con-
struction of the tokens.

Token = Parity + Function + Body
10bit Data Token= PObbbbbbbb (8databits + 2 others)

Control Tokens | pogen Symbol Bit Pattern

Flow Control FCT P100
End of Packet EOP P101
End of Message EOM P110
Escape ESC Piil
Disconnect Detec- | NUL ESC+P100

P = parity bit | gon

b = data bit

FIGURE 2.7 Token Level Protocol .

« Packet. A packet is a sequence of tokens with a specific order and format: a header (con-
taining routing information), zero or more data tokens and then an end of packet control
token (see Figure 2.8). The standard does not specify a limit to the number of data tokens
contained in the packet.

« Message. Messages are a sequence of packets. The final data packet sent in the message is
terminated with an end of message token. The message protocol used by the T9000 is pre-
sented in the next section: “Virtual channels and the T9000 virtual channel processor”.

Direction of Travel
-
Header Packet Body
Packet token(s) zero or more data tokens EOP token

FIGURE 28 Packet Level Protocol
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The output side of a DS link is set to run at a particular speed, the input side is clocked
entirely by the incoming data, it does not need to know what speed to expect the incoming
link to run at.

One of the four control tokens is an escape which allows for a number of composite control
tokens made up of short sequences of 4 bit control tokens. DS link modules send a continu-
ous stream of tokens, when there are no other tokens to send the link modules exchange
composite NUL tokens. The link should continuously receive tokens, the absence of tokens
on the link results in a link failure which is detected immediately. The failure is known as a
link disconnect failure.

T9000 processors can be directly connected using their DS links or connected to a network
of C104 packet switching chips, thus allowing the construction of large networks with scala-
ble communication bandwidth between nodes. In the latter case, additional packet headers
are required to route the packet through the switching network.

2.3.3 Virtual Channels and the T9000 Virtual Channel Processor (VCP)

Communication between T9000 processes is performed via virtual channels. A virtual chan-
nel is a single logical communication connection between two processes mapped onto a
physical processor link (see Figure 2.9). A single physical link may carry up to 64,000 vir-
tual channels, the current implementation limit. Processes on any two Transputers may be
directly connected by a channel regardless of their relative positions in the network. The
connection and switching between the two processes can either be performed using C104
packet switches or if they are not available by software virtual channel routing on other
T9000s. Virtual channels allow any application to be mapped onto a network configuration
regardless of the network topology.

Virtual Channel @

Physical Link

FIGURE 2.9 Virtual Channels

The VCP of the T9000 is a hardware communications processor which multiplexes the vir-
tual channels onto a specified physical processor link. Packets from separate virtual channels
are interleaved onto the physical link, allowing separate processes to communicate simulta-
neously. The virtual channel to which the packet is being sent is contained in the packet
header. A virtual link is comprised of two virtual channels, one in each direction.

Messages are divided into a sequence of packets, each of which has the structure shown in
Figure 2.10. All routing information is contained in the packet header. The T9000 imple-
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ments a maximum packet body of 32 bytes. For example, a 48 byte message will be sentasa
32 byte packet followed by a 16 byte packet. Any device receiving a data packet replies to
the sender with an acknowledge packet. No further packets are transmitted by the sender
until the corresponding acknowledge has been received by the sender. The transmission of
the packets on a single virtual channel is synchronous.

Direction of Travel
-

Data Header Packet Body EQP First Packet
Packet data tokens 32 :ial:a tokens = 32 l.)ytes token | Of Message
[ 4
L . .

Data Header Packet Body EOM | Last Packet
Packet data tokens <=32 bytes token | Of Message
Acknowledge End of packet Header | em———p»

packet token

"FIGURE 2.10 Packets on a DS Link

There can be only one message transmitting on a virtual link at any time. A process can only
be communicating on a single virtual link at any time. If a single virtual link is in use, a

~ packet is transmitted, then the virtual link is idle until the acknowledge for that packet is
received. This utilises a small proportion of the available link bandwidth. If multiple virtual
links are used (concurrently) then the first virtual link (waiting for an acknowledge) stays
idle but another virtual link can use the physical link. The virtual links would require sepa-
rate concurrent processes to drive them. If enough virtual links are used concurrently then
the physical link can be saturated.

The VCP enables virtual links to share physical links. To achieve this, it maintains queues
for each physical link. The receipt of an acknowledge packet for a data packet puts the next
packet for that message (if any are remaining) on the back of the transmit queue for the
appropriate link. The VCP alternately sends from the queue of data packets and acknowl-
edge packets from high priority processes until both are empty. It will then send data and
acknowledge packets from low priority processes. Packetisation, acknowledgements and
link queuing are all handled by the VCP.

Each virtual link in a T9000 is represented by a structure called the virtual link control block
(VLCB). The VLCBs are used to store the current status of communications on the virtual
links. It also stores all header and routing information that is required for the packets to
reach their destination virtual link.

13
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2.3.4 The Hardware Scheduler

In most embedded systems there is a need for a real-time response (both to external inter-
rupts and efficient context switching in multi-tasking systems). In all HEP data acquisition
systems investigated within this thesis there are often strict real-time requirements.

The hardware scheduler implements the Transputer model of concurrency, handling of inter-
rupts and process scheduling. The T9000 CPU uses very few registers to store the state of
the current process. The result is that there is little information to be stored when there is an
interrupt or process switch, hence the operations are fast. In addition the operations are per-
formed by a dedicated hardware scheduler, improving performance.

Both internal and external communications performance are affected by the efficiency of
rescheduling and descheduling processes. In general, communications are performed using
the following three steps: deschedule process, perform communication then reschedule
process.

2.3.4.1 The Transputer model of concurrency

The hardware scheduler on the T9000 allows the implementation of the Transputer model of
concurrency, multiple processes executing concurrently on a single processor. A process can
have one of two priorities: high orlow. At any time, a transputer process may be:

ACTIVE or INACTIVE

-Being executed, or -Ready to input, or

, . I -Ready to output, or
-Descheduled by higher priority process, or Waits - . .
-On a list waiting to be executed -gvvzuu'ngng omnmal ;swgg‘;g time, or

The inactive processes do not consume any processor time. The active processes waiting to
be executed are held in a list of process workspaces. This is implemented using two regis-
ters, one of which points to the first process on the list, the other to the last. In Figure 2.11, A
is executing, and B, C and D are active, awaiting execution. A separate queue is maintained
for low and high priority processes, with low priority processes only being given CPU time
when the high priority queue is empty.

Current Process
Next
Instruction
Workspace
Pointer
Active processes on queue

Back ptr |

FIGURE 2.11 T9000 Process Queue
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2.3.4.2 Low priority processes

A low priority process executes until it is unable to proceed, and is descheduled for one of
the following reasons:

« It initiates I/O, i.e. waiting to input or waiting to output
« It is waiting for a value of the timer to be reached

« Any high priority process becomes active. Low priority processes will be pre-empted by
any high priority process that is ready to execute (active).

« It has occupied the CPU for it’s ‘timeslice’ which is approximately 1 millisecond. The
process is descheduled and added to the end of the low priority process queue. When no
high priority processes are active the CPU is shared between all active low priority proc-

esses, each is allowed a timeslice before being descheduled. This process is known as
timeslicing.

The next four points detail the requirements that must be satisfied before a low priority proc-
ess can be rescheduled. In addition, the process will always have to wait until there are no
active high priority processes before it can execute:

« If descheduled by /O, the /O must be completed before the process can be rescheduled
« If descheduled waiting for a timer, the required value of the timer must be reached
» If descheduled by a high priority process, that high priority process must become inactive

« If descheduled after executing for a timeslice period, all other active low priority processes
must be allowed to execute before the process can be rescheduled

2.3.4.3 High priority processes

A high priority process executes until it is unable to proceed, and is descheduled for one of
the following reasons:

» It initiates I/O, i.e. waiting to input or waiting to output
« It is waiting for a value of the timer to be reached

When the /O is complete or a timer value is reached the process becomes active. At that

PSSR PR | Ry S PRI, PN Y SISy Y 3 H H AT 3
time it will pre-empt any low priority process executing, or if a high priority process is exe-

AL pLAVLAY

cuting it will be added to the end of the high priority process queue.

2.3.4.4 Full and partial context switch

When any cwrrent process is descheduled and another replaces it a context switch has

occurred. I distinguish two types of context switch: a partial context switch and a full con-
. text switch. :

A partial context switch can only occur when the current process is executing certain
instructions, for example a jump or loop end instruction. The current process has very little
‘state’ or context that needs to be saved when it is executing a jump or loop end. The values
of A, B and C registers are unused for these instructions and therefore do not need to be
saved when the process is descheduled. A timeslice only requires a partial context switch.

A full context switch can occur when the current process is executing any instruction. A full
context switch requires the entire ‘state’ or context of the current process to be stored before
it is descheduled. The full context switch can occur for any instruction so the values of A, B

15




The T9000 Transputer and DS links

and C registers and floating point unit registers will need to be stored. A full context switch
occurs when a high priority process pre-empts an executing low priority process. The high
priority process pre-empts the executing low priority process immediately, regardless of the
instruction the low priority process was executing. Shadow registers in the CPU are used to
store the state or context of the descheduled low priority process, this process will be the first
low priority process to execute when no more high priority processes are active. The
rescheduling of the low priority process will also require a full context switch to allow all
the state of the process stored in shadow registers to be re-loaded.

A partial context switch should be quicker than a full context switch. The difference being
the time required to store the state of a low priority process into the shadow registers.

2.3.4.5 Interrupts

The hardware scheduler also supports the handling of interrupts and timers. Any event that a
process may need to wait for (communication, interrupt or timeout) can be treated as a nor-
mal communication. The event causing the interrupt would be mapped to a communication
channel (seen as a virtual channel). An interrupt handler is a process waiting on an input
from the interrupt ‘channel’, in the same way it would wait on a communication channel.

The T9000 has four event pins or channels which can be used for control and synchronisa-
tion from external events and devices. The event pins can be configured as input or output.
As input they can be used to trigger fast processor response to external signals. As output,
the process outputting will be descheduled until the external device has performed the nec-
essary handshaking on the event pin. If an interrupt occurs the processor immediately stops
executing the current low priority process and begins executing the high priority interrupt
handler (requiring a full context switch).

There are two timers: with 1 microsecond resolution and 64 microsecond resolution. The
value of the processor timer can be read, or a timer input executed which will deschedule a
process until a certain time is reached (interrupt from timer).

2.3.5 Memory system
The TO000 programmable memory interface (PMI) connects the crossbar of the T9000 to
external memory. External memory (addressing up to 4 Gbyte) supports page mode and is
partitioned into four banks which allows mixed memory systems. The timing and width of
these four banks can be altered, with support for 8,16,32 and 64 bit data buses. If the 64 bit
interface is in use then the memory must be cached.

The T9000 has a 16 Kbyte write back cache. Four independent banks each serve one quarter
of the whole memory space. When the T9000 comes out of reset the cache acts as 16 Kbytes
of internal memory. This allows the T9000 to operate with no external memory, for small
amounts of data and code. The only compiler capable of producing code that may run within
16 Kbytes is the oc (occam) compiler. The minimum size of a linked C binary is greater than
16 Kbytes. At configuration time, the cache can have three modes of operation:

« 16 Kbytes internal memory (only on non 64 bit memory interfaces)
« 16 Kbytes cache
» 8 Kbytes internal memory, 8 Kbytes external memory
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All measurements in this thesis use T9000s with 70 nanosecond DRAM (Dynamic Random
Access Memory). Data is addressed using a memory page address (Row address) and an off-
set within that page (Column address). If subsequent memory addresses occur within the
same page then it is only necessary to specify the column address. This is known as page
mode and reduces the processor cycles required to access the memory.

2.3.5.1 Theoretical performance of the PMI

The theoretical performance of the PMI is shown in Table 2.2 for 2 20 MHz T9000, giving a
processor clock cycle time of 50 nanoseconds. The numbers estimate the rate that external
memory can be accessed through the PMI by calculating the number of processor cycles
required to transfer a single cache line. This is not affected by the revision type. A cache line
is 16 bytes or 128 bits, which is also the size of a memory page. The second column shows
the processor cycles required to read 128 bits into the PMI either into or from the external
memory.

TABLE 2.2  Theoretical memory performance

Number of processor clock
Memory type and access cycles required

mode for single cache line (16bytes) Theoretical memory bandwidth
32bit, non page mode 16 20.0 Mbytes/s
32bit, page mode 10 32.0 Mbytes/s
64bit, non page mode 8 40.0 Mbytes/s
64bit, page mode 6 . 53.3 Mbytes/s

2.3.5.2 Memory to memory transfer rates
Table 2.3 shows actual measured performance along with theoretical values based on results
in Table 2.2. The results are for memory to memory transfer rates, i.c. the rate at which data
can be copied from source to destination. The measurements have been made by copying an
array using the T9000 ‘move’ instruction, no page mode. The following points detail the cal-
culation of the theoretical rates:

- Internal to internal, 32 bit interface. To write 32 bits from internal memory to internal
memory will require 1 or 2 processor cycles, depending on whether the write and read can
be performed in parallel over the 32 bit wide T9000 crossbar. This gives 40 to 80
Mbytes/s. There are four ports between internal memory and the central crossbar of the
T9000, see Figure 2.4, each port reads from/writes to one quarter of internal memory. The
relative position of the two 32 bit words dictates whether more than one port can be used
per clock cycle, i.e. 1 or 2 processor cycles required to transfer a single 32 bit word.

- Internal to external, 32 bit interface. The external bandwidth from the PMI has been pre-
sented as 20 Mbytes/s in Table 2.2, requiring 16 processor cycles to transfer a single
cacheline from the PMI into external memory. The extra cycles required are those to read
the data from internal memory into the PMI. This should be at most one processor cycle
for every 32 bits, or 4 per cacheline, which would reduce the bandwidth to 16 Mbytes/s. If
the read from internal memory is overlapped with the writes to external memory the per-
formance would stay at 20 Mbytes/s. This is theoretically possible, there are separate ports
onto the T9000 crossbar for the PMI and internal memory (see Figure 2.4).

« External to internal, 32 bit interface. The same calculation as for internal to external.
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« External to external, 32 bit interface. The bandwidth between two areas of external mem-
ory should be half of the rate data can be read into through the PMI, i.e. 10 Mbytes/s.

« External to internal, 64 hit interface. The external bandwidth into the PMI has been pre-
sented as 40 Mbytes/s. Again the cycles required to get the data into internal memory from
the PMI must be added. At most this would be two processor cycles for every 64 bits,
which reduce the performance to 32 Mbytes/s.

TABLE 2.3  Memory to memory transter rates, Revision D02 T9000s at 20 MHz, non page mode

Measured
memory to Number of processor | Theoretical
Memory | memory transfer clock cycles required | rate

Array location interface | rate for single cache line .| (Mbytes/s)
Source: Internal RAM 32bit 66.4 Mbytes/s 4t08 40.0t0 80.0
Destination: Internal RAM
Source: Intemal RAM 32bit 10.8 Mbytes/s 16t0 20 16.0 to 20.0
Destination: External RAM
Source: External RAM 32bit 10.8 Mbytes/s 16 t0o 20 16.0t0 20.0
Destination: Internal RAM
Source: Extemal RAM 32bit 9.22 Mbytes/s 32 10.0
Destination: External RAM
Source: Extemal RAM 64 bit 16.4 Mbytes/s 8to 10 32010 40.0
Destination: Internal RAM

The three benchmarks which use both internal and external memory result in half the maxi-
mum bandwidth expected. This has been investigated by using a scope to monitor the proc-
essor cycles required to move data between the PMI and internal memory. For a 32 bit
interface I had expected O or 1 processor cycles to move the data from the PMI into internal
memory, corresponding to the range in theoretical values in Table 2.3. Using a scope 3
cycles were observed to move data between the PMI and internal memory. For the 32 bit
interface this reduces performance from 16 Mbytes/s (assuming 1 processor cycle for PMI
to internal memory) to 10.8 Mbytes/s (using 3 processor cycles for PMI to internal mem-

ory).

The extra cycles required to read or write data between the PMI and internal memory also
occur when a link reads/writes from the PMI. These limitations are demonstrated by com- .
munication benchmarks presented in the next chapter, the evaluation of the technology.

The problem has been partly solved on the revision E03 T9000. The external to internal
memory bandwidth for a 32 bit interface is now 15.4 Mbytes/s. Which is still below the the-
oretical range of 16 to 20 Mbytes/s, but is a large improvement over 10.8 Mbytes/s for the
revision D02. The memory performance will also increase linearly for 25 MHz T9000s, ini-
tial tests with 25 MHz revision E03 T9000s show 19 Mbyte/s external to internal transfers
with a 32 bit interface.

The T9000 has 4 bi-directional links running at 100 Mbity/s, corresponding to approxi-
mately 75 Mbyte/s. With the revision D02 T9000 there is a severe bottleneck in the memory
interface when the links must be driven from external memory. This situation is improving
with the new revision EO3 of the T9000.
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The external to external and internal to internal results are as expected. The slight reduction
in performance for external to external is caused by the extra DRAM refresh cycles which
are required, loop overheads and the time for the processor pipeline to start.

2.3.5.3 Memory transfers using the cache

Memory transfers which fit into the cache will be cached by the first memory transfer, subse-
quent transfers will effectively be performed as internal memory transfers. Larger arrays will
not fit into the cache, at which performance will be limited by the external memory inter-
face. The result is that the performance of a memory transfers can vary from the 9.22
Mbytes/s to the 66.4 Mbytes/s in Table 2.3 depending on whether the message will fit into
the cache. The size of the array to be transferred is crucial.

2.3.6 T9000 Known Hardware Bugs and Problems

The experiences and results presented within this thesis are largely based upon the Gamma

D02 revision of the T9000. There are four major problems with this revision affecting work

within this thesis:

- The maximum stable clock speed is 20 MHz, some chips limited to 10 MHz, this com-
pares to the design speed of 50 MHz.

« Double scheduling bug, causing a transmitting process to be rescheduled twice, can crash
entire application

« Cache corruption bug, transmitted data is corrupted, crashes entire application

« The external memory interface is slow, causing up to a 50% degradation in performance
compared to theoretical maximums

Further details of these problems (and other less serious bugs) and how I limited their effect
are given in the relevant sections as they arise. General limitations related to the T9000 and
software support are also presented as they arise.

The Gamma EO3 revision has become available at the time of writing this thesis. The proc-
essor speed is still limited to 20 MHz, however the two main hardware bugs (cache corrup-
tion and double scheduling) have been removed. The external memory interface has also
been significantly improved. For communications to internal memory or cache then the per-
formance has remained identical. My initial tests suggest that the Gamma EO3 can be used to
build stable and reliable T9000 systems for arbitrarily complex traffic patterns and network
configurations. The manufacturer also claims that the Gamma E03 will operate reliably at 25
MHz. I have yet to test this claim.

2.4 The C104 Packet Switch

The C104, see Figure 2.12, developed by SGS Thomson, is an asynchronous 32-way
dynamic packet switch with DS links operating at 100 Mbits/s. It can interconnect up to 32
devices (for instance T9000s), and may be cascaded to form large switching networks. I
have carried out tests running C104 links at 200 Mbits/s, investigations are under way into
the reliability of running links at this speed.
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FIGURE 2.12 The C104 Packet Switch

The technique used to route packets through a C104, to select the required output link, is that
of interval labelling. In this technique each link of a C104 is assigned a range of device
labels (a device interval) which indicates the physical devices that are accessible via that
link. Each physical device has a unique label associated to it. When a packet enters a C104,
the device label contained in the packet header is compared to the device intervals. The out-
put link whose device interval contains the required device label is selected to route the
packet out of the C104.

The C104 uses wormhole routing (see Figure 2.13). A routing decision is made as soon as a
packet header enters the C104. This routing decision leads to the creation of a temporary cir-
cuit through the C104 which vanishes as the packet terminator passes through. As a conse-
quence of wormhole routing a single packet may pass through multiple C104s at any one
time and the header may be received at the destination before the whole packet has been
transmitted, thus minimizing the time required to transmit the packet through the network.

[ Source | C104yh C104y,
B

Source C104y4 C104y,

Source C104y C1045,

Source

FIGURE 2.13 Wormhole Routing
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In switching networks, there will often be many possible routes that a packet may take to
reach a specified destination. Should one of these links be in use or in error then it is desira-
ble that an alternative link be chosen. To fulfil this requircment the C104 supports grouped
adaptive routing. Output links can be grouped so that packets routed to the first link of a
group can be routed to the other links of that group should the first link not be available.

In addition to grouped adaptive routing the C104 supports universal routing. In this tech-
nique packets are first sent by a C104 to a random device (another C104). At this device, the
packets are then routed to their final destination. The initial randomisation spreads the load
across the network, reducing hot spots. Hot spots are localised botflenecks in a network.

2.4.1 Hardware Bugs

There have been two major revisions of the C104 available during the work carried out for
this thesis: revisions alpha and beta. There are no current plans for further revisions.

The alpha revision suffered from errors on the selection of interval separators, regarding
whether the upper limit of the interval range was inclusive or not.The chip behaved differ-
ently from the hardware manual. This problem was solved for the beta revision.

On both alpha and beta revisions the links run at half the speed they are programmed to run
at. This is solved by programming twice the speed required. The core speed of the C104 is
also half the speed programmed, 15 MHz core speed is adequate for 100 Mbits/s link speed,
so 30 MHz is programmed.

A link that is in error and part of a link group will still be selected to be used for output. The
packets sent to this link will be discarded.

2.5 The T9000 Toolset Development System

Programs and applications for T9000 systems are developed on a host system using a T9000

toolset. For the work in this thesis that host was a Sun workstation. The toolset allows the
user to compile code to be used for processes, define the interconnection of these processes
and map these processes onto Transputer hardware.

Creation of executable code for a Transputer or Transputer network requires several stages
involving the use of specific tools at each stage. The stages are:

« Compile and link source code for individual processes, creating a linked unit for each
process.

« Produce a description of the hardware. A network initialisation file is produced from this
description which can initialise the hardware (T9000s and C104s).

« Define the interconnection of processes by virtual channels, and map the processes and
their interconnection onto the hardware.

Figure 2.14 relates these three steps to the Transputer model of concurrency presented in
Section 2.1, “Transputers,”.
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1. Compile to produce linked units, each a separate process
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2. Produce hardware description

Hardware
Description
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3. Configuration: describe interconnection of processes and map processes to hardware

Configuration
File
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of processes

Map processes and
interconnection onto
hardware description

FIGURE 2.14 Overview of toolset

I now describe the stages of development in more detail. Figure 2.15 shows the main phases

in development and Figure 2.16 details the tools that are used to achieve them.

Wiite Source
v
Compile Source
and Libraries
Link Define hardware
1 ]
q_l Generate
Configure Initialisation File
1
Make Executable ]
using Collector
— v
Load onto Network

FIGURE 2.15 Main Toolset Development Stages
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Source can be written in C or occam. Each source file is compiled using the appropriate lan-
guage compiler (oc or icc) to produce one or more compiled object files. Commonly used
object code can be combined into libraries using the librarian tool ilibr. The compiled object
files and libraries are linked together using the linker ilink. This generates a single linked
unit. '

The configuration description is processed by the configuration tool inconf to produce a con-
figuration data file.

The configuration description refers to a description of the hardware on which the code will
run. The hardware description is written in NDL (Network Description Language).

T9000/C104 networks have a system of control links which are separate from the data net-
work. The control network is used to configure the T9000s and C104s and in the case of the
T9000 load the initial bootstrap code. The information required to perform this initialisation
is held in the network initialisation file, which is generated by the initialisation file generator
inif from the hardware description.

Before a program can be run it must be made executable. This involves adding bootstrap and
loading information and is performed using the collector tool icollect. The configuration
binary file generated by the configurer is read by icollect which generates a single executa-
ble file for a TOO0O network, a btl file. A transputer network is initialised using the network
initialisation file and the code is loaded onto the T9000s from the btl file

Source Compiler Librarian
Code iccoroc ilibr

Linker
ilink

Collector
icollect

Initialisation

FIGURE 2.16 Key Programs used in Developing an Application
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2.5.1 Problems with the Toolset

The general problems of the Toolset environment are presented within this section. More
detailed specific problems that apply to a certain areas of work within the thesis will e dis-
cussed later as they arise.

The list of tools that the user is required to use is long and the dependencies are complex.
Figure 2.16 only shows the most important tools that are required to develop a Transputer
application, there are more tools that would further complicate the explanation given. For
example, there are a separate tools for aiding the writing of network description files.

There are many important areas of software that are not covered by the toolset. A hardware
‘spy’ is an important area not covered by the toolset. If the user wishes to confirm that a cer-
tain network exists or list the devices present in a network then a ‘spy’ is used. Unfortu-
nately, this program is not supported as part of the toolset and has been unusable in any work
carried out for this thesis. To discover whether all devices were present in a network the only
method was to write an application that used all the devices and try to configure and load it.

A correctly operating ‘spy"" would provide the following essential functionality:

o Recover if an error occurs in the network (currently the spy does not)
« Validate if a network matches a given network description file (NDL)
« Produce an NDL file for a physical network

« Tests the data links of all devices

The C104 has many attributes which are contained in the network description file (NDL),
including information on intervals and grouped adaptive routing. The toolset was supposed
to provide an automated procedure for producing NDL files, and the attributes it contains.
The bugs in the tools that carried out this process were so severe that I had to write all NDL
files used within the work for this thesis.

2.6 Hosting T9000 Systems

A TR0S Transputer [11] initializes and loads applications onto the T9000 network. The T805
is the previous generation of Transputer to the T9000, which uses four serial bi-directional
OS (over sampled) links running at up to 20 Mbits/s. The T805 is connected to a SUN work-
station via an Ethernet-to-OS link converter (B300). A single link of the T805 is used to con-
figure the T9000 system using the control link via a C100 [3] protocol converter. The C100
is used to interface the DS link to an OS link, since the DS link is based on the exchange of
packets and the OS link on the exchange of bytes. Another link of this T805 is used to load
applications via a T9000 data link (see Figure 2.17). Access to file systems and host system
services by the T9000s is provided by the SUN workstation via the T80S.

-

After a network has been initialised the application must be loaded onto the network. The
software used to perform this has not been presented, there are multiple versions and meth-
ods, which often vary from manufacturer to manufacturer. The main problem with the par-
ticular type used within the scope of this thesis was the complete absence of error recovery

4. A spy with the required functionality is now being produced at CERN as part of the ESPRIT project ARCHES
[10]. :
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and fault tolerance. Any error with the host link would result in the shutdown of the entire
system. The bandwidth between the network and the host was also very low (20 to 30
Kbytes/s), which became a problem when large amounts of code and data were required. All
available host systems lack the following essential functionalitysz

« Report errors in a way such that the user can readily identify the physical device that has
suffered an error. Currently the relation of logical to physical device numbers is very diffi-
cult.

- Attempt to recover the error, instead of immediately exiting

Bandwidths to host should be at least an order of magnitude higher

Ethernet
—F o
AT
Sun Host Data link
| Control link

T805 OS links —
—————————— C100 —-——————-
T9000 DS links

_ Data Control

Datalinks t0 = el Control to

Network —1 T9000 Network

FIGURE 2.17 Hosting T9000 Systems

2.7 The GPMIMD Machine

The GPMIMD machine has been designed as a switching fabric of 1000 DS links intercon-
necting up to 256 T9000 processors. In its present configuration 56 C104s provide full inter-
connectivity between 64 T9000s. The T9000s are mounted on small individual plug-in
boards based on the SGS Thomson HTRAM (High performance TRAnsputer Modules)
standard. A single size 4 HTRAM holding a T9000 and 16 Mbytes of memory is approxi-
mately 10 cm by 10 cm, and plugs into matching connectors on the motherboards.

The present configuration contains a total of 8 motherboards (see Figure 2.18) each carrying
8 T9000s and 5 C104s. In addition, 4 switch cards, each carrying 4 C104s, provide the inter-
motherboard connectivity (see Figure 2.19). Four independent folded Clos networks [12]
have been implemented to efficiently use the four DS links connected to each of the T9000s.

One motherboard C104 is used for connection to external devices and as a control lmk fan-
out. The other 4 C104s provide the 4 networks that connect to all T9000s, there are also
links from each of these 4 C104s to the C104 with external connections.

5. Host systems are now being developed at CERN with the required functionality as part of the ESPRIT project
ARCHES.

25




The T9000 Transputer and DS links

Two links to each
—— =" 104 below

T9 #0 T9#1 o# T9#3 T9#4 o# T9#6 ™

C104 C104

c104 c104
Network 0 Network 1

Network 2 Network 3
l 1 4::3l DS Links t£ f;lr Switch Ca!ds l l
Four Independent Networks

FIGURE 2.18 A GPMIMD Machine Motherboard

T9000's,
Links to C104’s

FIGURE 2.19 The GPMIMD Machine: 8 horizontal motherboards and 4 vertical switch cards
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The topology of the Clos network for a 48 node, 6 motherboard machine with 2 switch cards
is shown in Figure 2.20. This topology has been presented because all communication
benchmarks and other communications measurements presented within this thesis were car-
ried out on this topology. Each C104 on the left and right represent a single C104 on a moth-
erboard and the switch card C104s are those in the centre. The 4 links between each
motherboard and switch card C104 may be grouped into ‘bundles’ of 1 to 4 links. These
links are performing grouped adaptive routing, as presented in Section 2.4, “The C104
Packet Switch,”. A single network may consist of 3 to 12 links between the motherboards
and the switch cards from one half of the machine to the other.

A message between T9000s on the same motherboard passes through one C104, a message
between T9000s on different motherboards passes through three C104s. The layer of C104s
connected to the T900Os is called the terminal stage of the Clos; the other stage is called the
centre stage.

J
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C104 __——C104|: 7 processors

f

!
|
—

C104

~

C104 C104

f

C104

~

| c104 S 0104

|

grouping —— aDS link

FIGURE 2.20 A Singie {of 4) GPMIMD Machins Clos Network

2.8 The TransAlpha Module

The low clock speed of the T9000 (among other factors) has resulted in poor computational
performance compared to its communication abilities. The resulting imbalance is being
addressed by the TransAlpha module. The performance of the T9000 for communications,
context switching and interrupt response is not matched by the low computational perform-
ance of a 20 MHz T9000 processor.

A high performance computing node has been designed using a2 T9000 as a communications
controller for a DEC Alpha 21066A microprocessor [13]. This hybrid node is called the
TransAlpha module, and is designed to combine the complementary strengths of the two
processors. The module is being developed by Parsys in collaboration with my group at
CERN.
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Figure 2.21 shows the layout of the TransAlpha module, which connects the T9000 and
Alpha via a 32-bit PCI standard bus. The module conforms to the SGS Thomson HTRAM
standard and can therefore fit directly into existing T9000 systems. The TransAlpha module
is a size 8 HTRAM, double the size of the current T9000 HTRAMs used in the GPMIMD
machine. All components fit into the single HTRAM with dimensions of approximately 20
cm by 10 cm.

The hardware allows the direct replacement of two GPMIMD machine T9000 HTRAMS
with a single TransAlpha module. The T9000 HTRAMs can be removed, and the TransAlp-
has plugged in to replace them. The result is that a single motherboard which now contains 8
T9000s can have them replaced with 4 TransAlpha modules. The full capacity of the present
machine if all T9000s were replaced would then be 32 TransAlphas.

The module comprises of four parts:

« A 233 MHz 21066A DEC Alpha microprocessor with 512 Kbyte external cache and 32 or
64 Mbyte of 64-bit DRAM connected to its local bus.

« A 20 MHz T9000 with 512Kbyte of 32-bit SRAM and 128Kbyte of flash ROM.
« Bus bridge between T9000 local bus and PCI bus

« FPGA logic attached to the T9000 local bus used to adapt the T9000 bus to the PCI 9060
and to initialise and control the Alpha processor and the PCI 9060.

The occam programming environment is not available on these boards. The only option is
the C programming environment, using extensions to allow the Alpha access to the point to
point communication channels. The CSP model on which occam relies is still implemented,
with some restrictions.

The communications performance of the TransAlpha relies heavily on the performance of
the T9000 external memory interface. Results produced using the revision D02 T9000 have
suffered from the limitations of the external memory interface. Work is currently ongoing to
produce TransAlphas with revision E03 T9000s that will improve performance.

29 Conclusions

The technology used within the thesis have been presented. The T9000 and C104 have been
shown to support functionality which is crucial to performance in multi-processor systems:
concurrent communication and computation, fast interrupt response and context switching
times. This performance is quantified in the following chapter.
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FIGURE 2.21 The TransAlpha Board Layout
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Chapter 3
Evaluation of technology

In this chapter I present an evaluation of the technologies used within this thesis. Communi-
cation and computation benchmarks are presented along with context switching and inter-
rupt response performance.

A comparison is then made to other platforms, including the PowerPC. I will show that in
the areas crucial to multiprocessing the T9000 compares favourable to other less integrated
technologies.

I have identified a set of critical factors which affect the performance of multi-processor sys-
tems, I evaluate these parameters for the T9000 and C104 within this chapter. These param-
eters are summarised at the end of the chapter in Table 3.6, along with their general
relevance to multi-processing. In chapter 5, I use the performance of the T9000 and C104
compared to the requirements of the LHC to quantify the importance of each parameter.

General communication performance and networking results use a 48 node revision D02
T9000 machine using alpha C104s. Context switching performance and interrupt response
related benchmarks only requiring small numbers of T9000s use revision E03 T9000s and
beta C104s.

3.1 Communication Benchmarks

3.1.1 Single Link Results

The time between the sending of a short packet (one word) and the reception of an acknowl-
edge packet between two directly connected 20 MHz revision D02 T9000s was measured to
be 7.5 usecs. The additional delay incurred by connecting two T9000s via a C104 was meas-
ured to be 1 psec (Figure 3.1 shows the difference in elapsed time for a message between
two directly connected T9000s and T9000s connected via a C104). The curve intercepts the
y-axis at 2 psec which represents the extra delay in transmitting two packets: an acknowl-
edge and data packet. For a single message the data packet itself will suffer a delay at the
C104 and also its corresponding acknowledge packet, hence the intercept is at 2 psec, not 1
usec. Therefore the C104 requires 1 pisec to switch a packet.

In Figure 3.2 the dependency of the bandwidth between two directly connected 20 MHz
revision D02 T9000s on the number of virtual links used is presented. The figure shows the
bandwidth as a function of message size for one to five virtual links mapped onto a single
physical link. The bandwidth represents the usable amount of data exchanged between two
T9000s running at 20 MHz. The discontinuity in bandwidth at each 32 byte boundary is due
to the packetisation performed by the VCP. A 32 byte message requires a single packet to be
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sent and acknowledged, whereas a 33 byte message requires two packets to be sent and
acknowledged.

30 T 4 T 1 T 13 T
25 The T9000 imposes A maximum packet .
length of 32 bytes. Hence the steps at each
32 Byte Boundary
20r .

Delay (usecs)
o
]

2 ps step for each extra packet required

10 to send a message. 1 ps delay on the
data packet, 1 ps delay on the
acknowledge packet, therefore C104
5 requires 1 s to switch a packet -
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1
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Message Length (Bytes)

FIGURE 3.1 Latency due to C104. 20 MHz D02 T9000s, 100 Mbits/s links, 16 K internal memory
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FIGURE 3.2 Single link bandwidth, uni-directional. 20 MHz D02 T9000s, 100 Mbits/s links, 64 bit
interface, 8K cache 8K internal memory, directly connected links
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In Figure 3.2 the increase in bandwidth for more virtual links can be accounted for by the
increased packet inter-leaving performed by the VCP and more efficient use of its pipelined
architecture. When multiple virtual links are used, packets for different virtual links may be
transmitted independently of the reception of acknowledge packets on other virtual links. If
a single virtual link is in use, a packet is sent, then the virtual link (and physical link) is idle
until the acknowledge is received, which reduces the bandwidth. If another virtual link is in
use, the first virtual link (waiting for an acknowledge) stays idle but the second can use the
link. If enough virtual links are used then the bandwidth limit will be that of the VCP, or the
limit of the memory to supply the VCP with data. A constant message start up time accounts
for the reduced bandwidths for smaller packets.

The results give a maximum for the achievable performance of a 20 MHz T9000 processor.
Conditions have been chosen such that all data is read from the cache memory and therefore
the external memory interface of the T9000 does not have to be used.

The theoretical maximum of a DS link running at 100 Mbits/s using single byte headers is
9.55 Mbytes/s [14]. The measured limit is only 7.0 Mbytes/s, this is not a problem of mem-
ory bandwidth, all data resides in the cache. The problem is the limit of the VCP at 20 MHz,
it is the only possible bottleneck other than the memory interface. The problem can be
removed by increasing the clock speed of the T9000, and hence the speed at which the VCP
operates. The VCP could fully saturate the links if the T9000 was running at 30 MHz. The
T9000 was designed to run at 50 MHz, with the VCP able to saturate the links at 30 MHz.

3.1.2 Dependence on memory bandwidth

If Figure 3.3 is compared to Figure 3.4 the effect of reading data from external memory (as
compared to internal memory) can be seen. The two figures show the achieved bandwidth
out of the T9000 onto 1 to 4 physical links. In Figure 3.3 external memory is used, in
Figure 3.4 data is always read from internal memory.

In Figure 3.3 when longer messages and more than two physical links are used data is
accessed from external memory, only 8K of cache is available. At this point there is a clear
reduction in performance. The limitation is due to problems in the external memory inter-
face, the PMI, the external memory interface can only write data to all four links at 16.4
Mbytes/s. This figure agrees with the value in Table 2.3 on page 18 for external to internal
RAM using a 64 bit interface. This agreement confirms the limitations presented in
Section 2.3.5.2, “Memory to memory transfer rates,”, i.e. 3 processor cycles required to
transfer data between the PMI and the link or internal memory. This results in the limit of
16.4 Mbytes/s and not the expected performance of 32 to 40 Mbytes/s (also presented in
Table 2.3).

In Figure 3.4 data is written to the links from internal memory, the limit is 28 Mbytes/s. The
bottleneck is the VCP which can only drive the four links at 28 Mbytes/s. The limit cannot
be internal memory transfers, which have been benchmarked at 66.4 Mbytes/s, see
Table 2.3.
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FIGURE 3.3 Multiple links bandwidth, 20 MHz D02 T9000s, 64 bit interface, 8K cache 8K internal
memory, 100 Mbits/s links. Connections via C104s. Performance limit is the PMI.

3.1.3 One to four physical links
Figure 3.4 demonstrates that the achieved bandwidth scales linearly with the number of
physical links used for uni-directional traffic. The rate at which the VCP can drive the links
scales linearly, however, the performance (28 Mbytes/s) is still well below the theoretical
limit of four DS links: 38.2 Mbytes/s (4 * 9.55). These results use 16 K internal memory,
there is no access to the external memory.

50 v ¥ T Y
— 4 Links, uni—directional, 20 v. links
— 3 Links, uni—directional, 15 v. links
40} | — 2 Links, uni—directional, 10 v. links -
w1 Link, uni—directional, 5 v. links
(723
©
D
30 _
&
=
=
B
B ool
om
104
O 1 L '}
10° 10’ 102 10°

Message length, Bytes

FIGURE 3.4 Multiple links, 20 MHz D02 T9000s, all data in internal memory, 100 Mbits/s links.
Connections via C104s. Performance limit is the VCP.
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3.1.4 Dependence on clock speed

The measured bandwidths as a function of message size when using 20 and 25 MHz proces-
sors are shown in Figure 3.4 (20 MHz) and Figure 3.5 (25 MHz). These two plots are taken
from Low Level Benchmarking of the T9000 Transputer [15]. In these measurements the
links are routed through different C104s, i.e. the curve for four links uses four independent
C104s. This configuration is dictated by the architecture of the GPMIMD motherboards.
This was the only architecture where 25 MHz T9000s were available®. The theoretical limit
for the single link bandwidth is now 9.26 Mbytes/s [14] on each physical link. This is lower
than the previous 9.55 Mbytes/s due to the extra packet headers required to route through the
C104s. Two byte headers are now required instead of one. The bandwidths measured at 20
and 25 MHz fall short of the 9.26 Mbytes/s, but there is a clear improvement from the 20
MHz to 25 MHz processors. This demonstrates the improvement of increasing the speed of
the VCP, however, it is still unable to fully exploit the capacity of the links. If the T9000
were running at 30 MHz the VCP should be able to reach the theoretical limits for the link
bandwidth, currently reliable 25 Mhz T9000s are not available in quantity.
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FIGURE 3.5 Multiple links, 25 MHz D02 T9000s, all data from internal memory, 100 Mbits/s links.
Connections via C104s.
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3.1.5 Single Network GPMIMD Machine Results

The results presented are based on a 48 revision D02 T9000 machine with 6 motherboards
and two switch cards, i.e. the Clos presented in Figure 2.20 on page 27. This was not a com-
plete configuration as there were only two instead of four switch cards available. The result
is a maximum of 12 links between the terminal and centre stages of the Clos between one

6. The T9000s (REV D) could run communication benchmarks at 25 Mhz but were unstable running many other
test codes. The floating point unit is likely to fail at 25 MHz.
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half of the machine and the other for a single network. The 6 slot 0 T9000s have been omit-
ted, they are not directly part of the Clos (see Figure 2.18 on page 26) and would make the
interpretation of results very difficult.

The T9000s were divided into 21 sources and 21 destinations and the average uni-direc-
tional cross-sectional bandwidth of a single Clos network (out of the possible four) was
measured for two different traffic patterns. These two traffic patterns give information on the
general communications performance. The T9000s were only used as data producers and
consumers. A source communicates a message to a destination using 5 virtual links.

In the first of these traffic patterns, sources and destinations are formed into fixed pairs; no
two sources send data to the same destination. In this situation, the maximum uni-directional
bandwidth allowed by the technology, network and routing algorithm is measured. The
achieved uni-directional bandwidth as a function of message size and the extent of grouped
adaptive routing (3,6,9 or 12 links between the terminal and centre stages of the Clos net-
work) is shown in Figure 3.6a. The theoretical maximum for 12 DS Links is 111 Mbytes/s
(12 * 9,26 Mbytes/s). The measured value is in good agreement with this theoretical value to
within 3%. The switch card links are the bottleneck (2 switch cards available instead of 4),
there is a funnelling effect that allows the 20 MHz T9000s to saturate the links.

In addition, the achieved uni-directional bandwidth scales linearly with the amount of
grouped adaptive routing in use (3,6,9 or 12 links). This shows there are negligible over-
heads due to its implementation. These results show that with no contention on the destina-
tion links and the maximum amount of grouped adaptive routing, each network has a uni-
directional bandwidth of 108 Mbytes/s. This is an important measurement for future com-
parison, it provides the maximum possible throughput of a single network uni-directional.

In the second traffic pattern, messages are sent from each of the 21 sources to the 21 destina-
tions randomly. The measured uni-directional bandwidth as a function of message size and
grouped adaptive routing is shown in Figure 3.6b. A significant degradation in the uni-direc-
tional bandwidth compared to the paired traffic pattern can be seen. For 6 and 12 grouped
links only 61% and 38% of the uni-directional theoretical bandwidth is achieved. Although
the bandwidth achieved with 12 links is greater than with 6 links, there is a lower utilisation
of the available bandwidth. This indicates that under this traffic pattern, contention on the

final destination links limits the performance. It also suggests that there would have been lit-

tle improvement in bandwidth if all four of the switch cards had been available, the switch
cards were not the bottleneck.
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3.1.6 Multiple Network Results

To obtain the maximum cross-scctional bandwidth of the whole machine measurements
were made using all four Clos networks in parallel. Under these conditions the 20 MHz revi-
sion D T9000s were not stable, however, sufficient running time was achieved to allow
measurements of the fixed pair traffic patterns. The measurements were made for both uni-
directional and bi-directional traffic.

3.1.6.1 Figure 3.7: Four networks, uni-directional fixed pairs

There are 21 sources and 21 destinations which corresponds to 84 source and 84 destination
links. Figure 3.7 shows the results for uni-directional bandwidth for fixed pairing of 84
sources and destinations. There is a clear bottleneck at 379 Mbytes/s. This bottleneck is due
to the switch cards. For each network I have shown that a maximum of 12 links are available
to the switch cards, this is multiplied by 4 when 4 networks are in use. Unfortunately, at the
time these benchmarks were carried out there were 6 links removed in error. The result was
that 42 links were available to the switch cards. The theoretical maximum of a DS link under
these conditions is 9.26 Mbytes/s, so 42 links gives a maximum of 389 Mbytes/s. The meas-
ured saturation value (379 MBytes/s) is very close to the theoretical switch card maximum
(389 Mbytes/s). Figure 3.4 shows that a single 20 MHz T9000 can provide 28 Mbytes/s uni-
directional, therefore, if there were no other bottlenecks 21 T9000s would provide 588
Mbytes/s, as opposed to the observed limit of 379 Mbytes/s.

3.1.6.2 Figure 3.8: Four networks, bi-directional fixed pairs

Figure 3.8 shows the equivalent result but using bi-directional traffic. Again there are 42
links to the switch cards. Under these conditions a DS link has a bi-directional theoretical
maximum of 16.54 Mbytes/s [14], 42 links would allow 695 Mbytes/s. Clearly the limit of
the switch cards is not reached. Driving the links bi-directionally has caused the VCP of the
T9000 to become the bottleneck. In addition, when the message size becomes large enough
to force the T9000 to read from external memory, the external memory interface becomes a
second bottleneck. This second bottleneck is seen as a sharp fall off at approximately 600

* byte messages for 2 virtual links per physical link and approximately 250 byte messages for
3 virtual links per physical link. The message size required to see this performance reduction
reduces when more virtual links are in use. Distinct data is sent on each virtual link, hence
more memory is required for larger numbers of virtual links. The switch cards are not the
bottleneck, hence using four instead of two switch cards would not have increased the bi-
directional performance.

The achieved bi-directional bandwidths correspond to 32 Mbytes/s for each T9000. This fig-
ure is in good agreement with ‘Low Level Benchmarking of the T9000 Transputer’ which
measures a limit of 33 Mbytes/s for 4096 byte messages.
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3.2 Interrupt Response and Context Switch Results

The results in Table 3.1 use a revision E03 T9000 with a 64 bit memory interface, 8 Kbytes
cache and 8 Kbytes internal memory. The measurements are made by performing the opera-
tion to be timed over many iterations, then dividing the total elapsed time by the number of
iterations. The total time is calculated using the Transputer’s 1 microsecond clock, the accu-
racy is improved further by using a large number of iterations.

3.2.1 Timeslice operation

The timeslice operation is measured by timing the RESCHEDULE occam function. This
function reproduces a timeslice operation, by sending the current process to the back of the
active process queue. As expected the timeslice operation (requiring a partial context
switch) is faster than the timer generated interrupt response time (requiring a full context
switch). Details of the different types of context switch are presented in Section 2.3.4.4,
“Full and partial context switch,” on page 15. The difference of 0.5 microseconds is the time
required to store the process state.

3.2.2 Timer generated interrupts

The timer generated interrupt originates from the internal Transputer clock. A high priority
process is waiting for a certain processor time. When that time is reached, it becomes active
and immediately pre-empts the current low priority process, requiring a full context switch,
after which the high priority process will start executing. The interrupt response time is the
time between the high priority process becoming active and actually starting to execute, i.c.
the time required for a full context switch. The time required to return from this high priority
process to the low priority is also measured. The time for the interrupt response and the
return from the interrupt are very similar since the operations are essentially the same.

3.2.3 Interprocess communications

The interprocess communication time is the time for one process to write a single 32 bit
word to another process on the same T9000. Communication between processes on the same
T9000s are handled by the CPU, the VCP is not used. To communicate a single word from
one process to another requires two context switches, one for the sender to be scheduled, and
another for the receiver to be scheduled. Therefore the time for an inter-process communica-
tion should be composed of the time for two context switches and any additional time
required to transfer the data. For each benchmark Table 3.1 details the component actions
required for a single iteration of the benchmark.

The type of context switch required will depend on the priority of the two processes. An I/O
instruction does not require any state to be stored, therefore only partial context switches
should be required. However, when one high priority process and one low priority process
are used the low priority process will always be pre-empted by the high priority process, i.e.
a full context switch will always be required. This is because the low priority process is the
only low priority process present, therefore it will not be descheduled when it initiates I/0, it
will wait until the high priority process becomes active and pre-empts it.

When the priorities of the two processes are the same neither process will be able to pre-
empt the other, i.e. no full context switch will occur. The communication instructions only
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require partial context switches. The result is that inter-process communication is faster
between processes of the same priority than between mixed high and low priorities.

TABLE 3.1 Interrupt and Context Switch Results.

Time Breakdown of
Benchmark (microseconds) component actions
Timeslice operation. 1.4 single partial context
high to high or low to low priority switch ) ‘
Timer generated interrupt (interrupt 1.9 single full context switch
response time)
Return from interrupt operation 1.9 single full context switch
Inter-process communication 32 two partial context
high to high priority switches and data transfer
Inter-process communication 4.0 two full context switches

high to low or low to high priority and data transfer

Inter-process communication 32 two partial context
switches and data transfer

low to low priority

3.3 Supervisor/Control processor benchmarks

In multiprocessor systems there will be requirements for centralised supervisor/control proc-
essors. In particular, I will present requirements for centralised supervisor/control processors
in all HEP data acquisition systems presented within this thesis. The general requirements of
this processor will be the control and monitoring of a large number of distributed processors
at high rates. The traffic will generally consist of short control or status messages. Two
benchmarks have been created to assess crucial performance aspects for these supervisor/
control processors:

« Short message sends, i.e. the ability to send short messages at high rates.

» The CPU load of link communications, i.e. the ability to perform computation (make
supervisor/coniroi decisions) whiie communication is taking piace.

The risk of low supervisor/control rates is that the entire network (communications network
and processors) performance will be limited by the supervisor/controller. In distributed sys-
tems, bottlenecks will occur at centralised intelligences or communication points that must
communicate with all or most of the components in a system. In these cases the supervisor/
controller may have to be replaced by an alternative technology: a dedicated controller in
hardware and independent links, adding cost and complexity.

The benchmarks depend heavily on the performance of the VCP, interrupt response time and
context switching. This allows the benchmarks to be used as a comparison to other plat-
forms. Both run on two 20 MHz REV E T9000s on the same GPMIMD machine mother-
board, i.e. a single C104 switch between them. Small messages and occam code are used
which stay within the cache, and all links run at 100 Mbits/s.
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3.3.1 Short Message Sends

The benchmark is a measure of the number of short messages that a single T9000 can pro-
duce per second. Between one and ten high priority processes run concurrently on a single
source and a single destination, each process using a different virtual link. The source sends
in parallel on all virtual links, continually switching between the processes, sending as many
short messages as possible. On the destination there are one to ten processes all waiting for
input. When a packet arrives at the destination the corresponding process for that virtual link
will be rescheduled. The following parameters will be varied: message length, number of
virtual links and number of physical links. The source and destination processes were run at
both low and high priorities, it made no difference to the results. This benchmark is of inter-
est for two reasons:

« It allows comparison between different platforms for efficient context switching during
communications. When short messages are used the latencies of context switching are
more dominant than when larger messages are in use. Ten processes continuously context
switching on a single processor every time they send a single packet (message).

« It measures the capability of the processor to perform as a centralised supervisor or control
processor, where many short messages must be sent to large numbers of possible destina-
tions.

Figure 3.9 shows the number of messages sent per second for variable message lengths
using a single physical link.
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Message Length, Bytes

FIGURE3.9 Short message sends, vary number of virtual links, between two 20 MHz E03
T9000s connected by C104s, 64 bit interface 8 K cache 8 K internal memory. 100
Mbits/s links. Single physical link in use.
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There are four lines which represent the number of virtual links in use. The maximum per-
formance is reached for § virtual links. Again the increase in performance is due to the
increased interleaving of packets hy the VCP. In addition, the packet boundaries (every 32
bytes) cause sudden drops in performance, the reduction is more severe when less virtual
links are in use. The causes are identical to the effects presented in section Section 3.1.1,
“Single Link Results,” on page 31. For 4 byte messages the maximum rate is 415 KHz
which corresponds to 1.66 Mbytes/s. For 64 byte messages the maximum rate is 106 KHz
which corresponds to 6.8 Mbytes/s. These numbers are in agreement with results from
Section 3.1.1, “Single Link Results,” which show a maximum bandwidth of a single link to
be 7.0 Mbytes/s, achieved for larger messages.

Figure 3.10 shows the performance gained when using up to four physical links. The maxi-
mum rate at which messages can be sent only increases to 430 KHz. The bottleneck is not in
the links, there is a limit at 430 KHz for 4 to 32 byte messages, adding links or shortening
the messages will not increase performance. This limit is not proportional to the message
length. There are a constant 10 virtual links in use on each physical link.
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FIGURE 3.10 Short message sends, vary number of physical links, between two 20 MHz E03
T9000s connected by C104s, 64 bit interface'8 K cache 8 K internal memory. 100
Mbits/s links. 10 virtual links in use per physical link.

At 430 KHz the total CPU time required to produce each message is 2.33 microseconds. All
processes are the same priority (high) so no process is ever pre-empted, i.e. a full context
switch is not required. The I/O instructions only require partial context switches, because the
/O instructions do not require the entire state of the process to be stored. For each message
the following steps will be carried out on the source:

e Current process pefforms output instruction

43




Evaluation of technology

« I/O causes process to be descheduled and added to back of process queue, next process
rescheduled in (a partial context switch)

» 1/O performed by VCP

All these steps are carried out in a total CPU time of 2.33 microseconds. 1.4 microseconds is
required for a partial context switch, and the remainder to perform the I/O. The results show
that the measured performance is very close to the limits of the underlying hardware.

3.3.2 Combined Communication and Computation

An important aspect of parallel computing in general is the load which communications
place on the CPU. There are two important times to consider for a communication: the
actual time of the communication and the time the CPU is utilised.

A benchmark has been produced to measure the ability of a processor to perform communi-
cation and computation concurrently. I will calculate the percentage of the CPU’s perform-
ance that is consumed for communication. This is not only a measure of the communications
performance, but depends heavily on the interrupt and context switch performance.

A single low priority process performs computation and a high priority process repeatedly
outputs short messages to another T9000 on a single virtual link. Figure 3.11 shows the four
entities that are of interest in this benchmark (all processes on the source): the two processes,
the scheduler and the I/O controller. This benchmark is of interest for two reasons:

e It measures the capability of the processor to perform communications and computation
concurrently. It is important that a control/supervisor processor can send control messages
at high rates and at the same time make decisions to perform the monitoring and control of
the network.

o It allows a comparison between different platforms evaluating this behaviour.
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FIGURE 3.11 Overlap of communication and computation

The number of communications performed per second is the same whether the low priority
computation process is present or not. The high priority process queue is always serviced
before the low priority queue, the presence of a low priority process cannot affect the com-
munications performance of a high priority process. This has been confirmed by measure-
ment and is 104 KHz (for 4 to 32 byte messages). This result is an identical measurement to
the one virtual link curve in Figure 3.9. In one second of running the benchmark the commu-
nication time is the full second, the communication is continuous (messages sent back to
back).

The number of floating point operations performed by the low priority process was meas-
ured for two situations: with and without the presence of the high priority process communi-
cation. Dividing the with communication result by the without communication result gives
the fraction of communication time (= total time) that can be used for computation.

The rate of floating point operations that the low priority process can perform is 1.43 MHz 7,
If the high priority process sends 4 byte messages the rate of floating point operations per-
formed by the low priority process is 0.74 MHz, hence 52% of the communication time can
also be used to perform computation. Using 4 byte messages a single message takes 9.6
microseconds (corresponds to 104KHz), 5 microseconds of this can be used for computa-
tion. Table 3.2 represents similar information for different message sizes.

7. The floating point operations are executed inside an occam SEQ loop. More efficient constructs are possible but
for the benchmarks the relative performance of the computation with and without communication are all that is of
interest.
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TABLE 3.2 /O load on CPU results, between 20 MHz E03 T9000s connected by a C104, 64 bit
interface 8 K cache 8 K internal memory, 100 Mbits/s links
Floating point
operations Time left for
performed by percentage of Rate of high Time for computation
Message | low priority CPU used for VO | priority single in a single
length process or communications | message message
({bytes) (MH2) VO load on CPU (KHz) (microsecs) | (microsecs)
4 0.74 48% 104 9.6° 5.0
32 0.68 52% 104 9.6 4.6
64 0.80 44% 61 164 9.18
128 0.87 39% 34 294 179
256 0.92 36% 175 57.1 36.5
512 0.94 34% 9.0 1110 733
1024 0.96 33% 4.6 2170 145.0
10240 1.02 29% 0.47 2120 1510

a. The time for a single word message between two directly connected T9000s has been presented as
7.5 microseconds in Section 3.1.1, “Single Link Resuits,”. The value for a short message between
two T9000s connected via a C104 (two GPMIMD machine T9000s on the same motherboard) is 9.6
microseconds. This is due to the switching latency of the C104, the message is delayed for 1 micro-
second and the acknowledge is delayed for 1 microsecond when they are switched through the C104.
There is also a small increase due to the extra header required when packets are switched through a
C104.

In all cases the I/O load on the CPU (I/O loading) is less than 100%. The percentage of com-
munication time made available for computation generally increases as the message size
increases, except for the 4 to 32 byte measurements. The T9000 is able to overlap communi-
cation and computation because of the onchip hardware support of the VCP. For larger mes-
sages, 71% of the communication time can also be used for computation, corresponding to
29% 1/O loading. This demonstrates two important aspects of the Transputers performance:

« High rates of I/O should not saturate or heavily load the CPU
+ /O and computation should be performed concurrently

From the first entry in Table 3.2 for 4 byte messages it can be seen that 5 microseconds are
allowed for computation, therefore 4.6 microseconds are required for the communication.
The steps that require 4.6 microseconds can be identified. For each communication 2 context
switches will be required. One context switch to reschedule the sending process and another
to reschedule the computing process. These context switches will always be full context
switches, the high priority process will always pre-empt the low priority process. The 4.6
microseconds is therefore made up of 2 full context switches (3.8 microseconds) and the
extra time required to transfer data to the link.
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3.4 Computation Benchmarks

The computational performance of the T9000 and Alpha processor have been measured for
a number of standard benchmarks. The results are summarised in Table 3.3. The highest
speed T9000 currently available has been used. It can be seen that the computational per-
formance of the TransAlpha module is about a factor 7 higher than a 25 MHz T9000.
Clearly the T9000 does not compare favourably, and a boost to the computational power (in
the form of the TransAlpha module) was required.

TABLE 3.3  Computational Benchmarks
T9000, 25 MHz, revision E03, 64

Benchmark bit interface, 16K cache TransAlpha Module, 233 MHz
Linpackd 100x100 22(1.0) 16.7 (71.5)
(Equation solving performance) '
Livermore Loops 201.0) 19.1(9.6)
(Fortran loop performance)
Rinf 1 1501.90) 14.5(9.7)
(Vector arithmetic)
Poly 1 5.1(1.0) 37.0(7.3)
(Cache performance)
Poly 2 5.1(1.0) 26.6 (5.2)
(Memory performance)
CERN benchmarks 22(1.0) 200 (9.1)
(12 Fortran HEP codes)

3.5 Comparison to other platforms

3.5.1 VMEbus PowerPC systems running LynxOS

Results for the PowerPC boards are taken from ‘An evaluation of VMEbus PowerPC based
processor boards running the LynxOS operating system’ [16]. The boards evaluated vary
from PowerPC 603 ‘CES 8067EA’ (64 MHz, no second level cache) to PowerPC 604 ‘CES
8067NA’ (96 MHz, with 512 Kbyte second level cache). These two boards are used for com-

parison to the T9000.

3.5.1.1 CPU performance

The standard Dhrystone and Whetstone [17] benchmarks are used to compare the micro-
processor and memory systems performance of the two systems. The results are shown in

Table 3.4.
TABLE 3.4  CPU performance
PowerPC 604 (96
PowerPC 603 (64 | MHz, 512 Kbyte 2nd TS000 (20 MHz revision D02, 32bit
MHz2) level cache) memory interface, 8K cache)
Dhrystone 109,900 212,800 29,411
‘Whetstone 9.8 16.4 7.14
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The T9000 clearly suffers on CPU performance. Fundamental problems are the low clock
speed, slow memory interface, extra NOP 8 operations and inefficient implementation of
floating point operations. It is clear that if an application is compute intensive the TransAl-
pha module is required. All three systems used optimisation on compilers.

3.5.1.2 Interrupt response and process scheduling performance
A basic measure of scheduling performance is the time for a context switch. The time is 1.9
microseconds for the T9000. Two values are measured for the PowerPC boards: a process
switching between its self (noswitch) and a context switch between two different processes
(switch).

In addition the time required for a process to send a signal to another process can be meas-
ured. In the T9000 case, the measurements were for 4 byte messages and required between
3.2 and 4 microseconds (see Table 3.1 on page 41) depending on the priorities of the sender
and receiver. The equivalent measurements have been made for the PowerPC boards and are
referred to as sigs_sent_switch. The measurement for the PowerPC board is a bi-directional
signal, i.e. a ping-pong, so the time is divided by two.

The only interrupt response time presented for the PowerPC boards is the VMEbus interrupt
response. The interrupt is handled by part of the VMEDbus driver, and does not reach the user
application. The interrupt response time for a timer generated interrupt on the T9000 (into a
user application) was measured at 2.0 microseconds.

Table 3.5 summarises the results.

TABLE 3.5 Process scheduling benchmarks

PowerPC 603 PowerPC 604 TS000 (20MH2 rev E03)
(microsecs) (microsecs) (microsecs)

noswitch 13.4 5.46 14

switch (true context 575 172 1.9

switch)

sigs_seni_swiich 373.0 7%.4 32w 40

(signal between 2 proc-

esses)

interrupt response 108 8.2 1.9
VMEDbus interrupt | VMEDbus interrupt | intemal clock interrupt to
to VMEbus driver | to VMEbus driver | actual user application

There is a clear improvement between the PowerPC 603 and the PowerPC 604. The T9000
benefits from a dedicated hardware scheduler and has lower context switch time by an order
of magnitude. When the signal between processes has to be handled (sigs_sent_switch) then
the gains are even greater. The comparison for interrupt handling is difficult, further meas-
urements have to be made, revealing the time for a user application to respond to the inter-
rupt for the PowerPC boards.

8. The revision D02 versions of the T9000 required extra null operations (NOPS) to avoid hardware bugs.
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3.5.1.3 Supervisor/control processor benchmarks

No results corresponding to the short message sends and communication/computation over-
lap benchmarks are available for the PowerPC boards. The results would require multiple
boards inter-communicating.

3.6 Conclusions

In this chapter I have presented and critiqued concepts and technologies used within the
work of the thesis. Benchmarks have been presented and results understood and explained. I
have identified a set of critical factors which affect the performance of multi-processor sys-
tems. In Table 3.6 and Table 3.7 I summarise the factors which have been evaluated, along
with their relevance to performance in multi-processor systems. The factors are split into
two groups: factors vital to network performance and factors vital for nodes driving the net-
work (see Table 3.6 and Table 3.7). The text following summarises the performance of the
T9000 and C 104 for each factor. I introduce the following definitions for message overheads

and latencies:

« The message passing overhead: The elapsed time to transfer a zero length message from

an application program in a source to an application program in a destination. It can be
divided into two components, the network latency and the node message latency.

« The network latency: the time to propagate a single byte through the switching network
« The node message latency: the I/O initiation time in a source or destination.

A single message passing overhead value will be composed of three parts: a node message
latency in the source, a network latency and finally a node message latency in the destina-

tion.

TABLE 3.6 Critical factors affecting network performance

Factor

General relevance or importance to performance

C104 adaptive routing

Adaptive routing allows the efficient use of all links available between the
terminal and centre stages of a Clos network. A possible altemative of
grouped adaptive routing is to have nodes pre-determine the route which a
packet would take before it entered the network, adding load and complexity
to the nodes. Another alternative would be a fixed route through the network
for all packets which would increase contention.

Scalability

Performance must scale to large networks

Network latency

The time to switch packets through the network is a component of the mes-
sage passing overhead. Therefore it should be minimised, the C104 switches
packets in one microsecond.

Link bandwidth

To provide high throughput the network will require high speed component
links. However, this is a necessary but not sufficient condition for high
throughput, the performance of the node interfacing to the network will also
be crucial.
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TABLE 3.7

Critical factors affecting nodes driving the network

Factor

General relevance or importance to performance

Node message latency

Low node message latencies are important to allow low message pass-
ing overheads.

Link interface bandwidths

High link interface bandwidths between the raw link and the application
program are crucial to exploit high bandwidth links.

The VCP and virtual channels
(facilitating low node message
latency and high link interface
bandwidths)

Low T/O loading due to the VCP is crucial for high message rates, effi-
cient support for concurrent computation/communication and low mes-
sage latencies.

The VCP facilitates low node message latency and high link interface

bandwidths. The VCP is essentially an efficient tightly coupled on-chip
communications controller for the T9000.

Fast context switch times Fast context switch times are important for multi-processing and
exploiting low IO loading of the CPU to provide efficient support for
concurrency of communications and computation. A process must be
scheduled quickly and efficiently to exploit the CPU time made availa-
ble by the low J/O load. Interrupt times are crucial in any system with

real-time constraints.

Multiple physical links Additional performance, fault tolerance and communications priorities

can be provided by multiple networks.

There are a number of compute intensive applications where multiple
processors with high computational performance are required. A possi-
ble solution to the shortfall in T9000 computational power are hybrid
nodes, e.g. the TransAlpha, an high performance RISC processor using
a dedicated communications controller.

Computational performance

The programming interface and environment are crucial to allow the
user to exploit the performance of the hardware. Occam provides an
example of the advantages of a language designed for parallel process-
ing, see comparison in Section 2.2, “Occam,” on page 6.

Language support for paraliel
processing

The communications results are very promising. Single link results show low overheads and
low latencies. The C104 has been shown to switch packets in a single microsecond.

I have demonstrated the ability of the T9000 using the VCP to concurrently perform com-
munications and computation due to low I/O loading on the CPU. Low I/O loading allows
concurrent computation and communication, with the communication performed concur-
rently over many virtual links on multiple physical links. The control/supervisor bench-
marks show high message rates from a single T9000 node (greater than 400,000 per second).

The C104 performs the grouping of links with no measurable overhead, and the achieved
bandwidth has scaled linearly with the number of links grouped. A large network has been
built and benchmarked: cross-sectional bandwidths of over 600 Mbytes/s have been meas-
ured for the GPMIMD machine.

The uni-directional communication results for the T9000 scale linearly for one to four phys-
ical links. The bug fixes in the revision E03 T9000 allow all four of its links to be used in
parallel.
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The T9000 revision D02 suffered from serious external memory problems, the 64 bit inter-
face T9000 could only write data at 16.4 Mbytes/s to the links from external memory,
whereas data could be written to the four links at 28 Mbytes/s from internal memory.

Context switching performance and interrupt response have been measured and compared to
other platforms. Context switch times are better by orders of magnitude.

The late delivery of the T9000 has meant that in the meantime many vendors have passed
the 50 MHz full specification of the T9000. The T9000s that finally became available are
only 20 MHz, in the near future perhaps 30 MHz, which has created a situation where the
T9000 has a fundamental shortfall in computational power. This has been demonstrated in
comparisons to the PowerPC and DEC Alpha. The solution to this particular shortfall has
been the development of the TransAlpha board.

The Gamma EO3 T9000 is now commercially available. At the time of writing the
GPMIMD machine has been upgraded to 64 Gamma E03 T9000s and 58 beta C104s. The
main improvement over the D02 is the increased stability due to the removal of hardware
bugs. The external memory interface has also been improved. The external memory inter-
face is crucial for the efficient operation of the TransAlpha board.

The T9000 is still interesting due to its specialised design for use in multiprocessing, in par-
~ ticular the communications performance through on chip hardware and software develop-
ment environment.
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Chapter 4
The application of the T9000 to
the CPLEAR experiment

In this chapter I present a system of T9000s and C104 switches operating as an on-line event
filtering farm in the CPLEAR experiment [18]. The work has been carried out within the
framework of the ESPRIT project GPMIMD. An objective of the GPMIMD project was to
build a parallel scalable computer using the T9000 and C104, the GPMIMD machine. The
role of CERN within this project included the mounting of an HEP application onto a 64
node machine: a processor farm in the CPLEAR experiment.

~ An introduction to the CPLEAR experiment is given in Section 4.2, “The CPLEAR Experi-
ment,”. Section 4.3, “T9000 Processor Farm System Overview,” presents an overview of the
system used, details on the components are given in the following sections.

Results presented are based on the three week experiment run in September/October 1994.
The problems encountered are discussed and projections are made to investigate the feasibil-
ity of the T9000 and C104 for use in building processor farms in CPLEAR. Work involving
the use of TransAlpha modules to boost the computational power of the T9000 is also pre-
sented. ‘

4.1 Motivation

4.1.1 Value to CPLEAR

In 1994 the CPLEAR off-line event reconstruction involved the recording of approximately
15,000 tape cartridges every year. This corresponded to an event rate of 350 Hz, producing 1
Mbyte of data per second. When this data was processed off-line 80% of it was rejected and
then discarded, it was not of interest for physics analysis, therefore it need not have been
recorded. Four fifths of the tapes recorded were not required. The turnaround time for off-
line processing, i.e. the time between an event being recorded and the final reconstructed and
selected events are produced, was measured in months. Histograms were only available for a
small subset of the data on-line.

An on-line processor farm which could reconstruct and filter the full event rate would have
removed all of these problems. There would have been an 80% reduction in the amount of
data that needs to be stored. The turnaround time for reconstructed events would have been
measured in seconds and histograms available on the full event rate, allowing better moni-
toring of the experiment. The aim of the application of the T9000 to CPLEAR was to dem-
onstrate the feasibility of using a processor farm to reconstruct and filter the full event rate
on-line.
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4.1.2 Proof of existence and successful operation of the T9000 and C104

The T9000s used in the CPLEAR experiment were revision D02 prototypes.The C104s used
wete revision alpha. Litde or no experience existed in building large systems with these or
any other T9000 revisions. The networks assembled at CERN were larger than any others in
existence at that time. This resulted in the discovery of many problems before they were
seen by the manufacturer of the chips or the companies building the Transputer systems.

The hardware and software had multiple flaws and bugs, the details have been presented in
chapter 2. Any one of the revision D02 T9000 hardware bugs could have completely disa-
bled the T9000 systems, or have made them completely unreliable.

Despite these problems I believed that the T9000 was unique in the way it approached the
requirements of multiprocessing. It was very important to show that large T9000 and C104
systems could be constructed and operated reliably in an experimental environment. At the
time of implementation, there was no other application using the T9000 and C104 on a sim-
ilar scale.

A reliable T9000 and C104 platform operating in an experimental environment was also
important for the GPMIMD project and our industrial partners within that project. Within
the project a technology demonstrator was required to prove the feasibility of using these
technologies to build stable systems outside of the manufacturers test environment.

4.1.3 Use of the T9000 for future generations of HEP experiments

The final aim was to investigate the use of the T9000 and C104 in data acquisition studies at
the LHC. The data acquisition systems for the LHC will require large scale switching net-
works, and few technologies were (and still are) available to investigate the performance and
behaviour of switching networks. The T9000 and C104 were technologies that offered such
switching networks, and the application of the T9000 to CPLEAR produced valuable infor-
mation for the LHC.

4.2 The CPLEAR Experiment

4.2.1 Physics Background

The aim of the CPLEAR experiment is to study CP (Charge-Parity), T (Time) and CPT -vio-
lation phenomena on the neutral kaon system. The work is intended to give insight into the
abundance of matter present in the universe today. The violation can be seen in asymmetries
between decays of K° and RP to their respective final states f and T (f is the CP conjugate
state of f) as a function of decay time. Where f may be any of the following decay products:
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In the experiment anti-protons are accelerated in the LEAR ring at CERN and collide witha
fixed target. This target is located in the centre of the detector, see Figure 4.1, it is filled with
hydrogen at 16 bats. The proton anti-proton pair annihilates via the following reactions, pro-
ducing K° and K

pp=>K'T K’ Q1)
pp => Kn'K° (EQ2)

Subsequently, the K° and K? decay into one of the six possible decay products shown above.

CPLEAR Detector

FIGURE 41 The CPLEAR Detector Schematic

4.2.2 Event Detection

The K° and E° are neutral, hence they do not give a visible track. Using EQ1 and EQ2 (pro-
ton anti-proton reactions) the K° and &° can be differentiated by identifying the charged
kaon and the sign of the charge. Charged particle identification is performed by a Cerenkov
counter sandwiched between two scintillators. Tracking is performed in a cylindrical decay
volume with two layers of proportional chambers, six layers of drift chambers and two lay-
ers of streamer tubes. A calorimeter allows the identification of neutral pions through their
decay photons. The whole apparatus is located inside a solenoidal magnet which allows
momentum and charge determination.
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A multi-level trigger system is used to select the decay channels of interest. The aim is to
record the charged Kn pair produced in the annihilation. This requires a two or four track
event and at least one of these tracks should be a kaon candidate. A typical CPLEAR event
is shown in Figure 4.2.

1P

FIGURE 4.2 A Typical CPLEAR Event

4.2.3 Data Acquisition

The CPLEAR data acquisition system is shown in Figure 4.3. It is a distributed VME system
collecting data together from the 7 sub-detectors. Each of the sub-detectors corresponds to a
Root Read Out (RRO) which transfer data concurrently to a corresponding area of memory
located in the Event Builder (EB) via point to point links. The Event Builder collects these
event components into standard Zebra blocks of approximately 10 events where one event is
approximately 2 Kilobytes. The VIC bus (VME interconnect) is then used to transfer the
data to a VME crate (Tape) where blocks are recorded to tape cartridges, for off-line filtering
and reconstruction. CPREAD is the standard off-line reconstruction and event selection pro-
gram. In addition, the monitoring crate receives a sample of Zebra blocks and sends them to
a Vax cluster via Ethernet, where detector monitoring and data checks are performed. The
Transputer network was added to the VIC bus by a Transputer to VME interface board.
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FIGURE 4.3 The CPLEAR Data Acquisition System

4.3 T9000 Processor Farm System Overview

Transputer Link

The T9000 processor farm was interfaced to the experiment via an existing T805 data acqui-
sition system [19], see Figure 4.4. The T805 is a previous generation of the Transputer using

20 Mbits/s over sampled (OS) links.

The T805 system was required as standard I/O devices were not available at the time for the
T9000. For example, a SCSI interface was not available® which was required to write the

reconstructed data to Exabyte tape, and a T9000 to VME interface was in development'®.

9. At the time of writing a SCSI interface is available.

10.At the time of writing a T9000 to VME interface is available [20].
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FIGURE 4.4 System Overview

The T805 network provided the following services:

» access to the raw experiment data
« access to Exabyte tapes.
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The T9000 ran the standard off-line version of CPREAD on-line. CPREAD produces a set
of standard histograms displaying statistics on reconstructed events. In addition to raw data
and access to Exabyte tapes CPREAD required the following services:

« Access to the latest version of the calibration files. A calibration server process ran on a
T9000, and read a single copy of the calibration files from the host. It then serviced
requests from the farm workers for calibration files.

« Access to an histogram collector, which summed together all histograms from all farm
workers. A histogram collector process ran on a T9000, this process then sent the histo-
grams to the host.

« Access to the host to transmit status and performance information. The host software only
allowed a single process to be connected to the host. All farm workers required host
access, so a host /O multiplexer was implemented on a T9000. This process multiplexed
all /O requests onto the single connection to the host. :

A monitoring and control program was written, T9ff (T9 Farm Frontend), which displayed
the status and performance of all workers. The user also used TOff to start and stop the oper-
ation of the T9000 network. TOff interfaced to PAW and provided access to all the standard
CPREAD histograms.

Tn contrast to the T9000 the T805 had no VCP and there was no dynamic packet switch for
OS links. On the T80S, virtual links were implemented in through-routing software. If a
channel was not connected between processes on directly connected T805s, then the mes-
sage would have to travel through some number of intermediate T805s between the source
and destination T805. This reduced the performance of the communication and the interme-
diate nodes, the intermediate nodes having to run software to service messages destined for
other T805s. The software through-routed virtual links on the T805 were not designed to
connect to the virtual links of the T9000.

The T805 network was connected to the T9000 network via a C100 DS to OS link converter.
The interface is presented in detail in Section 4.7, “T805 to T9000 Interface,”. For any T805
to communicate with a T9000, DS link communication protocols had to be implemented in
software on the T805 to allow it to interface to the virtual links of the T9000 system. The
T805s direcily connecied to the C100 links ran this scftware, the TA000s could only commu-
nicate to these so called gateway T805s, see Figure 4.4. The gateway T80S5s serviced
requests from the T9000s: to supply raw data or write back reconstructed data to the Exabyte
drives. A full description of the T805 network can be found in ‘A Transputer based Scalable
Data Acquisition System’ [19].

4.4 Play-back mode

The T805 system provided raw data to the T9000s from one of two sources: either previ-
ously recorded raw data stored on Exabyte or data acquired from the experiment in real time.
This option was controlled via the T805 user interface. The use and configuration of the
T9000 system was independent of the source of raw data. The T805 network was used to
write these raw data tapes during normal data taking from the experiment.

This option was crucial for the testing of the system and CPREAD code before the experi-
ment runs. It was the only way to test CPREAD on large amounts (Gbytes) of events, host
disk systems were limited in size (Mbytes) and provided data at low rates. The bandwidths
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over the host links were the bottleneck. Some problems with the port of the CPREAD code
only occurred for one in 100,000 events (or more). Testing with limited numbers of events
would leave many problems uncovered. Play-back mode also meant that the T9000 network
could be used as an off-line analysis tool, to re-analyse data, a very important and necessary
feature.

4.5 Event types

Each reconstructed event had a certain physics type. Six different types were identified and .
each was assigned to a different Exabyte drive. The different event types corresponding to
six different Exabyte drives were: 2m,3%, mev, others, sample and two track events. The
CPREAD code was changed so that it sent different event types out on different virtual
links. The event type could then identified by the gateway T805 using the virtual link on
which the event was transmitted. The gateway T805 then sent the event data to a T805
which wrote the data to the correct Exabyte. The events were sorted into different physics
groups and the load was spread over the different Exabyte drives.

The overall use and configuration of the Exabyte tape drives is shown in Figure 4.5.

Running from experiment Play back mode

@ Raw data sample @ Raw data

_____>- All accepted _>® All accepted

=]
e =
: 00 : 00>
Y Tev ﬁ Tev
{ -0 ;00

00 -0
[0 ZTreck | | [0 2Treck

FIGURE 4.5 Exabyte configuration

Figure 4.6 summarises all the connections that were made to the CPREAD workers. Each
connection was represented by a separate virtual link. An interface was written in C to trans-
late the Fortran I/O statements used by CPREAD into the Transputer toolset channel /'O
functions. The interface also performed the transmission of histogram information and con-
structed events on the correct virtual link. The interface was written in C and not occam
because all the CPREAD code was in C (produced by f2c).

A simple protocol was used between the gateway T805s and T9000s to identify messages. A
single positive integer was transmitted from a T9000 to a gateway T805 to signal that a
Zebra block of raw data was required (using the function ChanOutlnt). The destination T805
would then send a Zebra block of raw data. A single negative integer was sent from the
T9000 before it sent a reconstructed Zebra block. The block would not be sent until the T805
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had received the integer, confirming it was ready to service the request. The gateway T805s
would continually wait until they received an integer, at which point they would act accord-
ingly depending on the sign of the integer. The protocol was not striclly required as the vir-
tual link that a communication was made on was sufficient to identify its type. However, the
protocol added security and the additional overhead was insignificant.

o — -~
T9000 processor { Raw data source
I or Raw data sample - |
/ one virtual link I
Interiace 144 Connections
CPREAD [ to channel Reconstructed data - s gateway T805s
o) I B six virtual links | -
B )
\ - _
o~ = — - S e— e m—— emn
Calibration server-
{ Host I/O multiplexer - i i
| one virtual Iinlg one virtual link Connections to other
v | T9000s
| Histogram collector - |
\ one virtual link y;

FIGURE 4.6 Virtual links to CPREAD workers

4.6 Porting of CPREAD

The CPLEAR event reconstruction code (CPREAD) has been ported onto the T9000. The
whole package contains 230,000 lines of Fortran’77 code. The AT&T Fortran-to-C (f2¢)
compiler was used to translate all Fortran into C due to the present lack of a Fortran com-
piler for the T9000. No optimization of CPREAD was performed during this step and only
minor changes were imposed due to the use of f2c.

In addition, the CERN programming libraries, used by CPREAD, have also been ported to
the T9000. These inciude 170,000 lines of Fortran and additional C code. These libraries
include data structure, histogram and mathematics packages. This work demonstrates that
other large physics Fortran applications may be ported onto the T9000. A native Fortran
compiler would improve the performance of the T9000 for applications written in Fortran.

4.7 T805 to T9000 Interface

4.7.1 Overview

All T9000 farm workers required access to the T805 network. The T805 provided raw data
from the experiment or Exabyte tape and wrote back all reconstructed data to Exabyte tapes.
For any T805 to communicate with 2 T9000 virtual link it had to emulate the T9000 DS link
communication protocols.
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The protocol used by T9000 DS links to implement virtual links is based on the exchange of
acknowledged packets of up to 32 bytes, whilst the OS link protocol of the T805 is based on
the exchange of acknowledged bytes. The two protocols are not compatible,

There was minimal support available for the integration of T805 and T9000 systems, in the
form of the low-level OS to DS link protocol conversion offered by the C100. The T805 sys-
tem was connected to the T9000 via the C100. A C100 connects 4 DS links to 4 OS links.
The C100 converts a sequence of bytes on the OS link into a DS link packet, or vice versa.
In Figure 4.7 a user process on a gateway T805 outputs a message, which is an array of
bytes. This array is passed to an interface process which implements all communication pro-
tocols used by the T9000 above the token level in software on the T805. This is splitting the
message into packets or packetisation (T9000s uses packets of up to 32 bytes), headers
(required for routing through C104s and identifying destination virtual links) and packet
acknowledgements. For a full description of the protocol layers see Section2.3.2, “DS
Links,” and Section 2.3.3, “Virtual Channels and the T9000 Virtual Channel Processor

(VCP),”.

Once the interface process has formed the first packet of the message (added the required
headers and data bytes) it sends the packet out onto the OS link as a sequence of bytes. The
first byte contains two pieces of information, whether the packet is the last packet of a mes-
sage (EOM/EOP) and the total length of the packet. The C100 then knows how many bytes
will be sent on the OS link to make up the packet and whether it should end the packet with
an EOM/EOP token. The interface process will send the data bytes for the packet which
includes any headers that are required for the DS packet. The C100 has no knowledge of
headers, it simply forms a packet from all the bytes sent from the interface process. When
the C100 has received the correct number of bytes it transmits a single DS packet containing
the header and data bytes collected from the OS side and appends a EOM or EOP token.

The gateway T805s implemented this interface software (which I had to provide) and were
the only T805s that communicated with the T9000s.

/_\ gateway T805
user .
process
message (array of bytes) C104 network
(transfers packet
software to perform: interface to destination T9000)
l.packetisation process
2.acknowledgements
3.add headers to packets, © C100
OS Link

Series of bytes sent on OS linkeemsmes—p | L—p Single DS packet produced

cket| EOM EO header
header and data bytes forpacke(i gfze ’Eoi’l Eop| daabytes |

FIGURE 4.7 A T805 to T9000 interface, example shows T805 communicating to T2000
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The T9000s declared the T805 link as an edge, the T9000 uses an edge to connect to an
unsupported unknown device, i.e. one which is not part of the DS link control chain. The
edge is specified in the hardware description file, software processes can then place virtual
links onto this edge if they wish to communicate with it. The T9000 and the toolset has no
information about the device that will be connected to this edge, they still expect the full
T9000 DS link protocols to be adhered to for communications across this edge.

Each of the T9000 farm workers had seven virtual links to the T805 system, all of which had
to be connected to gateway T805s. Figure 4.8 shows the mapping of virtual links onto the
gateway T805s for two T9000s. One virtual link corresponded to the raw data source and six
to the individual Exabyte drives for writing back reconstructed events. All 4 gateway T805s
could supply a T9000 worker with raw data, the T9000 workers were spread evenly over the
4 gateway T805s. One quarter of T9000s requested data from gateway T805 1, one quarter
from T805 gateway 2, etc. All events of a certain type had to be sent to the same gateway
T805. For example, all 2Track events from all workers had to be sent to gateway T80S 3.

Each gateway T805 was connected to two other T805s, a feeder and a tape driver. The
feeder provides raw data from the B016, the Transputer to VME interface which connects to
CPLEAR. The tape driver writes the reconstructed events to the Exabyte drives. The soft-
ware running on the gateway T805s was able to identify the virtual link on which a message
was received, allowing it to identify the message and send it to the appropriate Exabyte.

Exabyte drives
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FIGURE 4.8 Mapping of virtual links from the T9000s onto the gateway T805s
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4.7.2 An example T805 to T9000 interface

This section presents the information required by the T805 and T9000 to communicate with
each other. Figure 4.9 shows a simplified example of connecting T9000 virtual links into a
gateway T805. For each T9000, three virtual links map across to the gateway T805. This is
less than in the actual implementation, but demonstrates the principles involved. The tables
for each T9000, in Figure 4.9, show two pieces of information: the virtual link number (VL
#), and the description of the use of that link. In this example virtual link O of each T9000
will be used to request raw data from the gateway T805, and two other virtual links (1 and 2)
will be used to send back reconstructed event data to the T80S. The virtual links ‘Send A’
and ‘Send B’ would correspond to the two different destination Exabytes. The table for the
gateway T80S shows all the virtual links mapped onto the T805 link.

Each table entry on the gateway T805 corresponds to one table entry on a T9000: the two
end points of a virtual link. Each table entry connects to a single virtual link, even though it
may have different virtual link numbers on the T805 and T9000. T9000 2 virtual link
number 2 and gateway T80S virtual link number 5 are the two end points of a single virtual
link. A virtual link is bi-directional, T9000 2 virtual link number 2 can send to T805 virtual
link number S and T803 virtual link number 5 can send to T9000 2 virtual link number 2. A
virtual link is made up from a single virtual channel in each direction.

For the gateway T805 to send or receive on any virtual link to the T9000 it must comply
with the T9000 DS link protocol. It must produce 2 headers, one to route the packet through
the C104 switch and one to identify the destination virtual link. It must split (packetise) data
into 32 byte packets, and it must acknowledge all packets that arrive on a virtual link. These
acknowledge packets must also have the appropriate 2 return headers.

When a T805 link receives a packet the header allows the identification of the virtual link on
which the packet was received. This number is shown as T805 VL# in the T805 virtual links
table. This virtual link uniquely identifies which T9000 has sent the packet and which one of
the three T9000 virtual links the packet was sent from. The receiving gateway T805 can then
acknowledge and provide raw data to the correct virtual link on the appropriate T9000.
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FIGURE 49 Mapping of virtual links between gateway T805 and T9000s
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The C104 uses a device interval on each link to choose an output link for a packet, see
Section 2.4, “The C104 Packet Switch,”. The intervals for the output links of the C104 are
shown in Figure 4.10. A packet with a header between 5 and 10 will exit via the link to
TO000 1. A packet with a header between 11 and 20 will exit via the link to T9000 2. A
packet with a header between 21 and 30 will exit via the link to the C100 and then gateway
T805.

Figure 4.10 is a more detailed representation of Figure 4.9, it includes the header values that
must be used for each virtual link. The four packets shown in Figure 4.10 represent a single
data packet (and its corresponding acknowledge packet) sent from T9000 1 virtual link 2 to
the gateway T805 virtual link 5. The packet is typically part of a message sent on the send B
virtual link. The following points detail each of the four packet states shown in Figure 4.10.

« Packet state 1. T9000 1 sends a single packet on virtual link 2. The other end of this link is
gateway T805 virtual link 5. The packet is sent with two headers: 25 and 5. The 25 routes
the packet through the C104.

« Packet state 2. The C104 has routed the packet towards the gateway T80S. The first header
has been deleted, it is no longer required. The final header (5) is still present to allow the
T805 to identify that the packet is destined for virtual link number 5.

o Packet state 3. The gateway T805 has identified and received the packet on virtual link 5.
It then acknowledges the packet. The acknowledge requires two headers: 15 and 2, which
are taken from the shaded row of the table. The 15 is used to route the acknowledge to the
correct T9000.

« Packet state 4. The C104 has routed the packet to T9000 2. The first header has been
deleted, it is no longer required. The T9000 reads in this acknowledge and recognises it is
for virtual link 2. Subsequent packets can now be sent on virtual link 2.

Connection T805 Virtual Link headers
T awewayTsos|[| ™ T805 | head | head
VL# | #1 #2
0 7 0
E Eﬂ l 1 7 1
o] | * R
2 Ii LW ‘ 3 0
(¥
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21t0 30 |l
5t010 C104 and device intervals 11t0 20 :
packet is sent on virtual
link connecting these .1
two shaded rows :
3
T9000 1 Virtual Link headers T9000 2 Virtual Link headers .
VL# | head#1 | head#2 VL# | head#1 | head#2 | :
) 25 0 0 25 3 :
1 25 1 1 25 4 '
2 25 2 ]

FIGURE 4.10 Virtual link header values
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4.7.3 Extracting packet headers for the gateway T805

I have presented the process by which a T9000 can communicate to a T805 and I have pre-
sented the information required by the T805 and T9000. Both the T805 and the T9000
require a table, containing virtual link numbers and all headers which these virtual links will
require.

The packet headers and virtual link numbers used by the T9000 are produced by the config-
uration tool, inconf, and are loaded into the T9000 memory at boot time. Inside the T9000
packet headers are stored in a table, which contains the headers for packets sent on each vir-
tual link. The configuration tool will not produce the equivalent headers for the gateway
T805. I had to provide all the information in the table for the gateway T805 in Figure 4.10
explicitly.

The headers for the TS05 can be constructed from the following two pieces of information:

. Thc'contents of the T9000 virtual link header tables shown in Figure 4.10.
« Device intervals for C104 links, also shown in Figure 4.10.

The T9000 virtual link headers for a link to send/receive messages and acknowledges are
produced by inconf at the configuration stage, refer to Section 2.5, “The T9000 Toolset
Development System,” for details of the T9000 tools. The configuration tool produces a
binary file, the internal format of this file was not known. The configuration tool did not
have options to output the headers. The binary file produced by inconf is used by icollect, the
code collector. An unsupported undocumented feature of icollect was found that printed all
the virtual link headers. The problem was that it did not match each table (set of headers for
a processor) to a particular T9000 processor.

Another method had to be devised to relate these tables to the T9000 they represented. An
occam program was written to read and output to the host the memory locations of the
T9000 that contained the virtual link headers. The output of this program would provide a
list of headers used by each T9000, which allowed the matching of tables to processors in
the output of icollect. This program needed to have exactly the same virtual link configura-
tion as the CPREAD workers, histogram coiiector, host muitipiexer and calibration server
that it was temporarily replacing.

These steps allowed us to obtain a table of virtual link headers for each of the T9000s. The
device intervals for the C104 are contained in the hardware description file, the ndl file,
which is a human readable source file. In the case of networks used in CPLEAR I had
already produced the device intervals when I had written the ndL

This provides the two pieces of information required to produce the table of virtual link
headers for the T805: the virtual link headers for each T9000 and the device intervals for
each C104 link. This information was stored in a file on a host system accessible by the
T805 system. The T805 virtual link headers were read from the file by the gateway T805
software which performed packetisation, addition of headers and production of acknowl-
edges.
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4.7.4 Remaining problems

Four main problems remain;

« The process of interfacing the T805s and T9000s has not been automated. The user must
still perform the various steps presented within this section.

« This procedure must be re-performed if the virtual link configuration is changed, any
T9000 nodes are added or removed, or any of the C104 interval labelling scheme is
changed. The addition of a single T9000 (that may not even communicate with the T805s)
would be almost guaranteed to change all virtual link numbers in the DS link network.

» I require access to all interval labels used in the C104 network. A look-up table needs to be
produced which gives the destination processor of any header injected into the network. In
addition, I must also know the required header to reach a given processor.

« There are two ‘spy’ programs available, one for OS link networks and one for DS link net-
works. There is no combined spy for spying mixed OS/DS link networks and testing the
connection between the two. There was no software that can verify that links over the
C100 are actually connected correctly. A test program had to be developed to verify con-
nections between the OS and DS links.

4.8 On-line Monitoring

The event reconstruction code (CPREAD) produces a standard set of histograms for moni-
toring purposes. A process on a T9000, the histogram collector, was used to collect these
histograms from each worker and communicate them to the workstation host, where the
PAW (Physics Analysis Workstation) package was used to view them. A schematic of the
overall monitoring system is shown in Figure 4.11.

A PAW session connects to a PAW server to access histograms. The PAW server must use
TCP/IP sockets to read histograms from the histogram collector. The software interface
between the workstation and the Transputer system does not support Unix sockets. A socket
Server program was written to allow communication between the PAW server and the Histo-
gram collector.

As a method of checking the behaviour of the T9000 farm, the acceptance of CPREAD as
seen by each processing node was monitored. This acceptance was defined as the fraction of
events which passed the selection criteria of CPREAD. The acceptance as a function of the
Worker Identifier is shown in Figure 4.12. This approach provided information on the state
of an individual worker and an indication of the quality of the data. More detailed monitor-
ing was performed by using the standard set of histograms produced by each worker.
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User control and monitoring for the T9000 system was carried out via a graphical front-end
called TOff which is shown in Figure 4.13.

Tining;N/A

Status:Stopp

Fara #38
Blocks:0
Tining:N/A
Status: Stapped

H : H : H Tining:N/A H :
Status:Stopped § H : H o Status: Stapped : Status:Stopp

Tiwing:N/A
Status: Stopp

FIGURE 4.13 The Graphical Front End for User Control and Monitoring - Toff

TOff ran on the host workstation. T9ff automatically created and killed the PAW and socket
server processes at start-up and end of runs respectively. The farm can be loaded, started and
PAW sessions started and controlled via TOff. Due to the use of multiple systems (T805,
T9000 and monitoring on workstations) a complex start up system was required. The T805
network was hosted separately using a separate control interface, which was not connected
to TOff. There were three major steps to start the processor farm:

« Configure and load T805 system, then wait until T805 network has received data from
experiment and all Exabytes initialised (approximately 3 minutes). This step is performed
first to allow gateway T80Ss to initialise and start waiting for communication from the
T9000s.

« Configure and load T9000 system via T9ff, approximately 5 minutes, the delay is due to
loading the CPREAD binary (2 Mbytes) and calibration files (4 Mbytes) over the slow
host connection. T9ff automatically starts socket servers. -

» Run PAW via T9ff, this step must be performed last to ensure that socket servers have
started, if a PAW server starts and tries to communicate when the socket server is not
present an error will occur.

An end of run or shutdown was performed when Exabyte tapes were full or I wished to stop
the system to perform further development work. The shutdown was performed on the T805
first, to leave Exabytes and all external I/O devices in a correct state. Then a T9000 shut-
down was performed via TOff. The TOff program stopped the T9000 workers via the host
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interface and then killed all PAW server and socket server processes, to ensure a clean start-
up for the next run.

4.9 History of Installations and associated problems

4.9.1 CPLEAR run June 1994

The pre-production prototypes of the T9000 (gamma DO2 versions) capable of running large
programs were available in small quantities at the start of 1994. A member of the group vis-
ited the chip manufacturer to select chips that were able to run CPREAD. A small Parsys
SN9400 system, consisting of six T9000s and one C104 packet routing chip, was installed
and successfully run in the CPLEAR experiment in June 1994, see Figure 4.14. Due to the
low number of available processors the calibration server, histogram collector and host /0
multiplexer all ran on a single T9000. The June run was used to test the various system com-
ponents, and prepare as stable a system as possible for the next experiment run.

T805 system
Parsys SN9400 [ 100 ‘nterface
=\
| C104 | DS Links
//
Host Links: Eo
control T900-Cﬂ"'T9000 “I=|" [T9000
reset : .
data twel_ unused DS link
TQOOE-- TO000[ - -~ T900ﬂ"' connections

FIGURE 4.14 1994 June run - a single Parsys SN9400

The interface between the T9000 system and the T805 sysicm was in development during
the run. Continuous changes were required to both systems. The major limitation when
hardware was installed in the CPLEAR experiment was that there was only room for a sin-
gle workstation. Machines for two persons were required, so work had to be carried out
remotely where more workstations were available. Some problems with the T9000 systems
required a power cycle (required the power to be turned off and then on again), which could
not be performed remotely. Work stopped while someone went to CPLEAR and power
cycled the equipment. Development work during experiment running was unavoidable due
to the late arrival of T9000s.

The main source of problems was the CPREAD program and errors that had been intro-
duced in porting to the T9000. By the end of the run all CPREAD porting related problems
had been solved, and I had a version of the code that was stable for the next experiment run.

The CERN computer service provides software via the ASIS server. Initially in the June run
I used this server to obtain all our software for the host workstation, including PAW. During
the June run ASIS was updated and PAW was changed to a version that did not work. 1
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obtained the old version and made a local private copy of all software that the workstation
used. The system was thereby isolated from any changes made by ASIS and controlled
directly the update of software versions,

The June run allowed us to confirm that all components would scale to 64 T9000s at 20
MHz. I analysed the I/O requirements of the CPREAD workers and the rates the gateway
T805s could provide. A single 20 MHz T9000 analysed events at 1.67 Hz, and for every ten
events read approximately 2 events were accepted and written out. The reconstructed
accepted events were a factor two greater in size (the raw event and the reconstructed event
were both recorded). The result was that a worker writes out data at half the rate it read in. I
knew the event sizes and was therefore able to calculate the bandwidth requirement between
a 20 Mhz T9000 worker and a gateway T805. The requirement was 5.8 Kbytes/s.

A single link to a gateway T805 was benchmarked at 79.5 Kbytes/s, uni-directional®’,
equivalent to 3.4 Zebra blocks or 36 to 37 events per second. Each gateway T805 link can
service 13 T9000s at 20 MHz. If required 12 links could have been connected to the T805
network, corresponding to 156 T9000s, confirming that rates would have scaled past 64
T9000s.

In particular, it was important to measure the ability of the histogram collector to access all
of the CPREAD histograms. The histogram collector was a single concentrated communica-
tion point for all workers, hence it may have been necessary to collect a subset of the full
histogram set. The analysed event rates scaled linearly for one to five workers and the bottle-
neck was computation in the farm workers.

4.9.2 CPLEAR run September/October 1994

In September 1994, four more SN9400 systems were added to the original CPLEAR set-up
making a total of 30 T9000 Transputers. The network is shown in Figure 4.15.

During the summer of 1994, components of the GPMIMD machine became available. A
subset of the machine comprising 24 pre-production prototypes of the T9000 nodes (gamma
D02 versions) was installed, independently of the SN9400 systems, in October of 1994. The
resulting system contained 5S4 T9000 Transputers (all gamma DO2 silicon) and 20 C104

switches (all revision alpha).

The two systems remained separate to maximise the possibility of at least one stable net-
work, i.e. provide fault tolerance such that one network could remain running after the other
had failed. Each system used two links to two gateway T805s. Each system had a separate
histogram collector, calibration server, TOff and host I/O multiplexer. A single PAW session
collected histograms from a separate PAW server for each network, shown in Figure 4.16.
PAW scripts were written to optionally combine the histograms from the two networks, for
histogram viewing the two networks appeared to be one.

Figure 4.17 is a photograph of the T9000 system and Figure 4.18 is a key describing the var-
ious components of the photograph.

11.The gateway T805 links could only be used uni-directional, and communicate on a single virtual link at any one
time. This was an implementation limit on the gateway T805 software.
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FIGURE 4.17 The T9000 system in CPLEAR, see Figure 4.18 for description of components )
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4.9.3 Practical problems and solutions

The T9000 REV D silicon suffered from multiple serious hardware bugs. The two which
most affected the work are the double scheduling bug and the cache corruption bug. Both of
these bugs occurred during communication. The problems caused by these two bugs, and the
general problems encountered during the run are presented in the following sections.

4.9.3.1 Problems arising from the double scheduling bug
The bug was triggered when the final acknowledge packet was received before the last
packet of the message had completely left the T9000. If this occurred, the communicating
process was re-scheduled twice, once by the incoming final acknowledge and then again
when the final packet left the T9000. This can cause a CPU error. All methods suggested to
avoid the bug were based on increasing the probability that the final message packet left the
T9000 before the acknowledge for it had arrived.
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The bug is was most likely to occur for directly connected T9000s, where there was no C104
to add latency before the destination could produce the acknowledge. The simplest and most
effective method was to ensure that the last packet of a message was very short, This
ensured that the last packet was sent out quickly, and before the acknowledge could arrive.

None of these methods could guarantee total reliability for the CPLEAR application, as host
/O libraries did not allow the user to control the length of messages sent to the host.

Despite these limitations, all precautions possible were taken to try to avoid the bug. No
direct links were used on any T9000 systems, in particular the Parsys SN9400 systems did
not use any of their direct links, always communicating via the C104. In addition, where
ever possible, restrictions were imposed on the message lengths that could be used. All mes-
sages had to be an exact multiple of 32 bytes plus an extra single byte. For example, the
CPREAD workers read events in Zebra blocks, which are normally 23,040 bytes. For the
CPREAD workers on the T9000s the Zebra blocks were extended to 23,041 bytes. Similar
alterations were made in all software where it was possible. However, the host I/O libraries
allowed no control on the message sizes of packets to the host, therefore this remained a pos-
sible source of instability.

4.9.3.2 Problems arising from the cache corruption bug

The cache corruption bug only occurs when the T9000 is performing inputs on two or more
physical links in parallel, and the data is written to cacheable memory. The corruption usu-
ally occurs in the part of the cache line that follows the message, but words within a message
can also be corrupted.

The bug will ndt occur if the cache is disabled. However, there were two major problems in
not using the cache:

« The 64 bit memory interface on the 30 SN9400 T9000 HTRAMS would not allow the
cache to be disabled. Altering the HTRAMS to 32 bit memory interfaces would have
required hardware modifications. The 24 T9000s in the GPMIMD machine had 32 bit
interfaces.

« The loss of the cache would have reduced the performance of the T9000 by a factor 4.

Other solutions were generally based on the use of checksums or sending multiple copies of
the data. A1l methods of this type reduce communication performance and do not guarantee
to make the T9000 stable when multiple links are in use with cached memory.

The result was that the hardware was completely unstable if more than one physical link of a
T9000 was in use at any one time. The solution for the application to CPLEAR was where
ever possible to only use one physical link of the T9000. This was possible for 53 of the 54
T9000s, the exception was the root T9000 12 n the Parsys SN9400 system. This T9000 was
swapped with a 32 bit memory interface T9000 from the GPMIMD machine, allowing the
cache to be disabled. This node operated as a host I/O multiplexer and as such did not suffer
from the reduced performance due to disabling the cache.

12.The root T9O00 (connected to the host) of the SN9400 system must use at least two links: one to the host and a
second into the C104 to connect to the other T9000s. The host link on the GPMIMD machine enters via a C104, so
all T9000s can use a single link.
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The communication performance of a single DS link was sufficient to provide raw data to,
and read back reconstructed data from a T9000 running at 20 MHz. This approach com-
pletely eliminated the cache corruption bug.

4.9.3.3 Reset problems due to multiple networks
The Parsys SN9400 systems and the GPMIMD machine were independent, which meant
there were two separate host systems. The result was that there was a separate reset for the
two systems. The reset to a DS link system must be a common reset for all devices in that
system. The C100 motherboard originally only had a single reset, so it had to be rewired to
allow separate resets of each of the C100s for each system (SN9400s or GPMIMD
machine), see Figure 4.19.
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FIGURE 4.19 Reset System

4.3.3.4 Late delivery of GPMIMD machine
Due to late delivery, the GPMIMD machine was placed into the experiment during the Sep-
tember run, and the alterations to the C100 motherboard were also made during the run. This
meant that the SN9400 systems were not actually tested with the GPMIMD machine in par-
allel until during the experiment run. The T805 to T9000 interface also needed to be tested
during the experiment run.

4.9.3.5 GPMIMD machine problems
Before I could use the GPMIMD machine in the experiment there were various problems

that needed to be solved. This was unfortunate considering that the late arrival of the
machine meant that the experiment run had already started.

The version of the GPMIMD machine installed in the experiment is shown in Figure 4.20.
There were no switch cards, all inter-board communications had to be performed via exter-
nal cables between the motherboards.
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This figure should be compared to Figure 2.19 on page 27, which shows the topology of the
machine I had expected!®. All hardware description files had to be re-written to accommo-
date this change. Two external links were connected to the T805 system. The backplane was
used to connect the control chain between the motherboards.

Link to gateway T805

Control passed
along backplane

even though no
switch cards
present

FIGURE 4.20 3 motherboard GPMIMD machine for CPLEAR run September/October 1994

Multiple external links were not working, through a process of trial and error I uncovered all
the operating links. A spy program to discover the topology of a network and tests all con-
nections existed, but would not run on the GPMIMD machine. The spy program was pro-
duced by the chip manufacturer, it was unsupported and appeared untested.

T9000s in the GPMIMD machine would not run for greater than a few minutes at 20 MHz. 1
was reluctant to reduce the speed since all the processors ran at 20 MHz in SN9400 systems,
there was finally no choice, and all T9000s in the GPMIMD machine ran at 10 MHz.

A 4th motherboard was unusable, and efforts to repair this poard were abandoned in favour
of getting the other 3 motherboards installed into the experiment.

13.At the time of writing the full machine topology, including four switch cards, 64 revision E03 T9000s and 58
beta C104s has been delivered to CERN.
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The GPMIMD machine required multiple resets to avoid an approximate 10% failure rate
that would occur when only a single reset was applied to the machine before loading. The
problem still exists on the current GPMIMD machine installed at CERN. The latest revision
of the machine includes hardware to perform multiple resets after a power up. There were
also occasions (approximately every 48 hours) when the machine needed a full power cycle
before loading could be successful.

4.9.3.6 Limited access to the C100 status

The host software did not support the C100 as part of the DS link control chain, the C100
could not be included in the hardware description file, even though the C100 has two control
links (the same as the T9000). The result was that there was no access to the status of the
C100s and errors on the C100 could not be reported on a control chain. If an error occurred
on a C104 link connected to a C100, the error was only reported from the C104. If commu-
nication over the C100 failed, and there was no etror from the T9000/C104 connected to it,
the user had no information to diagnose the problem and no way to interrogate the status of
the C100. '

The C100 motherboard could hold 4 daughter boards, each daughter board with a single
C100, giving a total of 16 OS links converted to 16 DS links. After continual failure to use 4
of these 16 links the board was returned to the lab for tests. A design fault was found, C100
link 3 was not working on all of the daughter boards. The result was that a maximum of 12
links were available between the T805 and T9000 systems.

4.9.3.7 Electromagnetic noise problems

Many of the T9000/C104 systems that I have used suffered from succeptability to electro-
magnetic noise. At the start of the September 1994 run I had hoped that these problems had
been solved. I had placed copper foil between the casing of the GPMIMD machine and the
external cable shields, and used copper foil to try to close off open VME boards. These
actions were to provide a short return path to ground for any noise coupled onto the cable
shields, and reduce the amount of electromagnetic noise entering the equipment. Despite
these efforts the C100 motherboard proved to be a strong source of unreliability during this
experiment run.

On repeated occasions (see Table 4.1) during the experiment run there were link errors
reported from C104 links connected to the C100 motherboard. On at least one occasion I
noticed that these failures occurred when the air-conditioning had automatically powered
on. During the experiment run a new version of the C100 motherboard became available that
connected the shields of the DS link cables to signal ground. Again this is to provide a short
return path to ground for noise induced onto the cable shields. Previously the connection to
ground from the cable shields was over a single printed circuit board track. After the new
board was installed in place of the old, there were no further failures related to noise.

4.9.3.8 Summary of shift log from september/october run 1994

Table 4.1 is an outline of the experiment shift log during the CPLEAR running during the
months of September/October 1994. Each end of run is detailed, and if problems caused the
end of run then the final column details the problem. Additional errors occurred due to the
T805 system and/or the actual CPLEAR experiment, these errors have been omitted.
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There are two lengths given for each run, the first is the total run time, which is the time
elapsed between problems on the T9000 system. A new run number is started after a failure
on the TO0NN system or Exabyte tapes need changing. The second length is the time which
the T9000 system was actually running and taking data during this run. In each run there
were T805 failures and time during which the experiment did not produce data, this accounts
for the difference in the two times. 285 hours out of a possible 415.5 hours were available

for data taking.
TABLE 4.1 Summary of September/October run 1994
Run Time of
Number T9000 Reason For End of Run and
and Length operation Start Time End Time network description
1 25hrs. 24 hrs. 11:00 22/9 | 12:00 23/9 | C100 board noise succeptability
30 node SN9400s network
2 168 hrs. 65 hrs. 13:00 23/9 | 12200 30/9 | stopped by user- change tapes
4 T805 Failures during run allow-
ing tape changes.
30 node SN9400s network
3 2.5hm. 2.5 hrs. 12:00 30/9 | 1430 30/9 | C100 boamd noise succeptability
30 node SN9400s network
4 13hrs. 13 hrs. 18:00 30/9 | 07:24 1/10 | T9000 Host failure
SN9400s network
5 9.5hrs. 9.5 hrs. 08:00 I/10 | 17:30 1/10 | C100 board noise succeptability
' 30 node SN9400s network
6 14hrs. 14 brs. 18:00 1/10 ] 08:00 2/10 | T9000 Host failure
. 30 node SN9400s network
7 29hrs. 29 hrs. 09:00 2/10 | 14:00 3/10 | stopped by user - change hard-
ware
2 T805 failures during run
allowed tape changes
NEW C100 Motherboard intro-
duced after nmn
30 node SN9400s network
8 40.5hrs. | 405 hrs. 18:00 3/10 | 10:30 5/10 | stopped by user - change tapes
RUN USED 24 node GPMIMD
MACHINE ONLY
9 49hrs. 38.5 hrs. 15:00 5/10 | 16:00 7/10 | stopped by user - change tapes
1 T805 failure during rum allowed
tape changes
Combined 54 node SN9400s and
GPMIMD network




Results

Run Time of

Number TS000 Reason For End of Run and

and Length operation Start Time End Time network description

10 48 hrs. 325 hrs. 16:00 7/10 | 16:00 9/10 | stopped by user - change tapes
1'T805 failure during run allowed
tape changes
Combined 54 node SN9400s and
GPMIMD network

11 17 hrs. 17 hrs. 16:00 9/10 | 09:00 10/10 | stopped by user-end of CPLEAR
Tunning
Combined 54 node SN9400s and
GPMIMD network

4.10 Results

The results reported are based on a three-week run in September/October 1994. By the end
of this period two T9000 processor farms had been combined into a 50-node processing
farm which processed events at a rate of 65 Hz. Table 4.2 summarises the performance of
the two networks, the results are consistent with a single event reconstruction time of 0.6
seconds on a 20 MHz T9000. The I/O requirement between a single 20 MHz worker and the
T805 system, presented previously, is 5.8 Kbytes/s. A 10 MHz worker analyses data at half
the rate, so requires 2.8 Kbytes/s. For both networks two links to the gateway T805s were
adequate. If more than 28 workers at 20 MHz were in the SN94000 networks more links to
the T805 network would have been required

The ability of the network to provide raw data, read back reconstructed data, connect to host,
connect to calibration server and histogram server has not introduced a bottleneck. All VO
requirements have scaled with the addition of processors. The analysis rates have scaled lin-
early with the number of processors used, the computation bottleneck remaining.

TABLE 4.2 Event Rates

VO requirement | Time for
Network to T805 single event
description Eventrate | network on each TS0
SN9400s 28 T9000s at 46 Hz 162 Kbytes/s 0.6 seconds
20MHz
GPMIMD | 22T9000s at 10 19Hz 61 Kbytes/s 1.2 seconds
MHz

Figure 4.21 shows the number of events analysed as a function of the number of hours on
run. The time is the actual time the T9000 farm was operating. The points correspond to the
end of runs shown in Table 4.1. The increase in reliability after the C100 motherboard
change can be clearly seen in the spacing of the graph points. The reliability was improved
despite the increased complexity of the system (combined GPMIMD and SN9400s). The
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increased gradient corresponds to both the GPMIMD machine and SN9400 network used in
parallel.
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FIGURE 4.21 Number of events analysed and failures throughout experiment run

For the last 128 hours of the run a stable platform was maintained and no failures of the net-
work were observed. During a total running time of 285 hours, 26 million events were proc-
essed. The experiment run lasted for 415.5 hours, 70% of run time was active data taking.
The initial and main source of problems was the susceptibility of the DS links to noise,
which were resolved with suitable hardware modifications.

Samples of the histograms produced by CPREAD were recorded (see Figure 4.22) and all
output from the farm was written to Exabyte. The results have been verified against the
standard CPLEAR off-line program. The first plot of Figure 4.22 ‘NBRE DE evts’ shows
the number of evenis passing each stage of the rejection and filtering process, known as the
number of events plot. A different criteria is applied for each entry and results in more
events being rejected. The event acceptance plot presented in the monitoring section can
also be seen in Figure 4.22 with the title ‘Acceptance factor’. The acceptance factor can be
derived from the number of events plot, it is the last entry as a fraction of the first entry,

approximately 20%.

The feasibility of a T9000 farm processing the full CPLEAR event rate (approx. several
hundred Hz) was based on measurements made on the T805 system implemented in 1993.
The 50 MHz T9000 was expected to be at least a factor of ten more performative than a 20
MHz T805 and a 64-node 50 MHz T9000 farm should have processed events at about 400
Hz. However, the current prototype T9000 performance falls short of its design goals and
only a factor of four improvement over the T805 instead of the expected factor of ten has
been measured.

82




Boosting computational power using TransAlpha modules

04/09/13% 17.08
x 102
1
3000 1179864
el 1200
2500 3
.1180E407 1000
2000 800
1500 600
1000 400
500 200
O Lt 1 O
8 10 10 20 30
NBRE DE evts kaon pid
20000 ¢ : » "B oa0s E = —
o : ntries . - Entrk 28
17500 E e e E vy 8075
F 0. 0.2 UOFD o
15000 E - bowaceron: 0.175 v
12500 E 0.15
10000 E-- 0.125
7500 £ . O
s000 E 0.975
3 0.05
0 2 0
0 200 400 600 800 1000 0 10 20
SCBARS momentum Acceptance Factor

FIGURE 4.22 Example CPREAD histograms

4.11 Boosting computational power using TransAlpha modules

To analyse the current CPLEAR rate of 450 Hz it would require 274 T9000s running at 20
MHz. This is simply beyond the capacity of the GPMIMD machine. The bottleneck is the
computational power of the T9000. In particular:

« The clock speed is 20 MHz and not 50 MHz (in some cases only 10 MHz)

- Many floating point operations take three cycles instead of two

« Some trigonometric functions run three times slower than expected

« The lack of a native Fortran compiler necessitates the use of f2¢, which on a T805 and a
SUN Sparc station gives a performance penalty equal to a factor of 1.5.

A system using the TransAlpha modules would restore the balance of communication and
computation. For this reason a Particle Physics and Astronomy Research Council (PPARC)
project was created to continue the work within CPLEAR. Replacing T9000 nodes with

83




The application of the T9000 to the CPLEAR experiment

TransAlpha nodes provided higher processing power and better cost versus price perform-
ance. _

Initially the aim of the project was to implement a test system based on two T9000 Transput-
ers and two TransAlpha modules running CPREAD. To simulate the CPLEAR environment,
two T9000s provided raw event data to the two TransAlphas. The T9000s read raw event
data from the host file system, which had been recorded by the T805 system during a previ-
ous CPLEAR run. The on-line histograms facilities via PAW were also implemented. The
same method of porting CPREAD (via f2¢) was employed.

A host I/O multiplexer allowed all the workers to output status information to the host work-
station. The TransAlpha modules employed the same protocol to request raw event data
from the T9000s as a T9000 worker used to request data from ‘the T80Ss in the on-line
experiment version. The TransAlphas also communicated with the histogram collector in the
same way that CPREAD workers communicated with the histogram collector in the on-line
experiment version. The result is that both the software and hardware (both use the HTRAM
format) would allow us to unplug a T9000 and replace it with a TransAlpha module.

The two node TransAlpha system reconstructed events at a rate of 36 Hz. This is more than
a factor 10 improvement in processor performance over the T9000 farm. The communica-
tions bandwidths required were well within the performance of a DS link, the requirement
for each TransAlpha worker was only 36 Kilobytes/s. The system was tested for 48 hours
with no failures, and processed over two million events.

With this performance it would be possible to construct a complete on-line event processing
farm using 25 TransAlpha nodes mounted directly into the GPMIMD machine. The maxi-
mum capacity of the GPMIMD machine would be 64 TransAlpha nodes.

4.12 Summary

The aims of the work were detailed in Section 4.1, “Motivation,”. There were three main

aims:

« Show feasibility of reconstructing full CPLEAR cvent rate on-line.

« Proof of existence and successful operation of the T9000 and C104 in an experimental
environment. '

« To obtain information for data acquisition at the LHC.

The limited computational power of the T9000 means that a 64 node 20 MHz T9000 system
can only analyse a fraction of the full event rate. I have shown that networks of TransAlpha
modules could be used to reconstruct the full event rate on-line. -

Despite the prototype nature of the revision D02 T9000 and the known hardware bugs, some
of them severe, I have been able to install and operate a network of 54 T9000s and 20
C104s. The system has been operated reliably at the CPLEAR experiment, running a very
large event reconstruction program in real-time. Proof of existence, successful and reliable
operation of large T9000 and C104 systems has been achieved. The construction of a sub-
stantial array of processors operating in an experimental environment uncovered problems
that would have never been found for ‘small’ laboratory test systems. The problems that
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have been presented will be typical for future experiments at the LHC, for example, interfac-
ing different link technologies, the succeptability of high speed links to electromagnetic
noise and monitoring large distributed systems.

The work into the application of the T9000 and C104 to future generation HEP experiments
is now being carried out as a continuation of this work. The work and its results form the
next chapter of the thesis.

All three aims of the work in CPLEAR have thus been achieved.

The reliability of the DO2 T9000 in the CPLEAR experiment has given a worst case result.
The Gamma E03 T9000 and revision beta C104 are now commercially available and will
improve reliability and more importantly remove the restrictions imposed by the D02 bugs.
It is very important that application developers in general do not now have to implement the
extreme workarounds I have made to avoid the T9000 hardware bugs. Initial tests with the
GPMIMD machine upgraded to Gamma E03 and C104 revision beta suggest the problems
of stability and reliability have been solved by the availability of the Gamma EO3.

The L3 experiment [21] at CERN has installed a network of two C104 routers (initially revi-
sion alpha) interconnecting 48 T9000s (initially revision D02) which is operating reliably as
a second level trigger. The L3 system has now been upgraded to beta C104s and revision
E03 T9000s. Our work in CPLEAR and general experience with the T9000 and C104 was
also of considerable use to L3 in the development of this system [22].

The new communication system using DS links and C104 switches shows considerable
promise. The C104 in particular offers high density cost-effective commodity communica-
tions, which can be used to build very large switching networks. The full CPLEAR rate of
approximately 1 Mbyte/s is a small fraction of the capacity of a single DS link.
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Chapter 5
DS link technology applied to
the LHC

In this chapter I investigate the extent to which DS link technology can satisfy the require-
ments of the Atlas experiment trigger levels 2 and 3. In Section 5.2, “Atlas,” an introduction
to the Aflas experiment is given and the data acquisition system and requirements are pre-
sented. All information and requirements presented within the Atlas section are based on the
Atlas technical proposal [7], and as such are not the work of the author. I am essentially
investigating the extent to which DS link technology can satisfy the requirements of the
Atlas experiment as presented within the Atlas technical proposal.

In Section 5.3, “GPMIMD machine applied to level 2 and level 3,” results are presented
from mapping the Atlas level 2 and 3 triggers onto the GPMIMD machine. The extent to
which DS link technology can meet the requirements presented in the Atlas technical pro-
posal are assessed by extrapolating results to an Atlas subdetector.

A set of standard and Atlas specific communication benchmarks have been defined [23], in
Section 5.4, “Comparison with other parallel platforms,” results are presented for the
GPMIMD machine and compared to results on other platforms.

1 have also identified a set of factors that will have a crucial effect on the performance of any
future triggering systems using arrays of processors interconnected by point to point links
and switches. These factors and conclusions are presented within Section 5.5, “Conclu-
sions,”. Factors which I believe are important but have not yet been investigated are pre-
sented in Section 5.6, “Future Work,”.

5.1 Introduction

The bandwidth and connectivity requirements of trigger and data-acquisition systems for
future HEP experiments at the CERN Large Hadron Collider (LHC), highlight the limita-
tions in scaling multi-processor bus-based systems. The prominently featured alternative in
the proposed systems is large switching networks using point to point links.

The performance of large switching fabrics has been studied within the context of message
passing multi-processor computers [24]. However, these studies were based on telecommu-
nications traffic patterns which differ from those expected in the triggering systems of HEP
experiments. The modelling of switching networks under HEP traffic patterns is being per-
formed by several groups [25]. The results presented in this chapter are actual performance
measurements using the C104 and T9000. The motivation for the work was:

« Discover the extent to which currently available technology can meet the requirements of
future generation experiments
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« Define and investigate the crucial factors effecting the performance of multi-processor
systems using point to point links and switches

« Compare DS links and thc GPMIMD machine to alternative technologies and platforms

5.2 Atlas

All information and requirements for the Atlas detector presented within this section are
based on the Atlas technical proposal.

5.2.1 Overview

Atlas is one of the approved experiments at the LHC. The construction work on the LHC
machine will start in 1998, At present, the first experiments are scheduled for 2005. Studies
are already investigating the structure and feasibility of experiments at the extremely high
energies attained in LHC.

The detector consists of a number of subdetectors situated in concentric layers around the
collision area. Each subdetector measures certain aspects or certain types of particles. The
Atlas trigger system is organized into three levels. At each level, events can be rejected or
accepted and passed on to the next level, triggering is the rejection/acceptance of events at
these various points.

The level one trigger consists of purpose-built hardware which must reduce the event fre-
quency from ~40 MHz to ~100 KHz. The level two trigger should reduce the event fre-
quency further to ~1 KHz. The level three trigger should reduce the event frequency to 10-
100 Hz, which can then be recorded by the data storage system. I have investigated the
application of the T9000 and C104 to the second and third level triggers (level 2 and level
3). '

An event selected by level 1 consists of multiple regions of interest (Rols). An Rol corre-
sponds to a physical area of the detector containing useful data generated by a particle. A
single event will have variable numbers of Rols, with an average of ~5 Rols per event. The
level 1 trigger passes information identifying the Rols to the level 2 trigger. If the event is
accepted by the level 2 trigger then all data from the event is passed to the level 3 trigger.




Atlas

An Rol is defined as a cone starting from the collision area. For each Rol, data is present in
several subdetectors. This is shown in Figure 5.1. The selection of subdetectors which con-
tain data for an Rol depend on the particle type producing the Rol.

subdetector 2

Rol 1

collision area 4
subdetector-Rol data

FIGURE 5.1 Two Rols for a single event spanning several sub-detectors

5.2.2 The level 2 trigger

The level 2 trigger system only processes Rol data which is a small sub-set of the total data
contained in an event. During this process the whole event (across all sub-detectors) is
stored in Read Out Buffers (ROBs). It is expected that there will be order 1000 ROBs. ROBs
must store this data throughout the decision latency for the event. The decision latency for
the event is the time between the arrival of the event from level 1 trigger and the accept/
reject decision from the level 2 trigger. If an event is accepted then all the event data is
passed from the ROBs to the processors of the level 3 trigger system. If an event is rejected
then all data contained in the ROBs is discarded.

At any point in time, each ROB holds event data corresponding to a fixed region of a subde-
tector (an event fragment), but for many events. The number of regions (buffers per sub-
detector) depends on the segmentation of the electronics connected to the subdetector. The
number of buffered event fragments depends on the event frequency from the level 1 trigger
and the level 2 decision latency.

The event rate into level 2 will be up to 100 KHz, which should be reduced to 1 KHz. The
time between two events (~10 microseconds) is much smaller than the decision latency,
therefore parallel processing is required. Multiple events must be analysed concurrently. The
throughput of the level 2 trigger is expected to be approximately 10 Gbytes/s, assuming 10%
of the total data for an event is analysed. A possible approach (local-global) is shown in
Figure 5.2. In the local processing phase, physical quantities and geometric information
called features are computed for each subdetector-Rol. A subdetector Rol is all the data
from a single Rol originating from one subdetector, the total data for an Rol may span sev-
eral subdetectors. The subdetector Rol data is collected together into a single feature
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extractor (FEX) processor. Different feature extraction algorithms are used for different sub-
detectors.

All FEX computations are farmed on a set of general-purpose microprocessors. After feature
extraction, data is passed through a network to a set of processors which perform the “global
processing”, In the global processing phase, all features from one event are combined to
make an accept/reject decision for the event.

level 2 Local Processing

Switching Nefwork level 2 Global Processing

Global processors

FIGURE 5.2 A local-global level 2 trigger architecture

A supervisor controls the operation of the level 2 trigger. It receives the Rol information
from level 1, sends Rol information and accept/reject signals to ROBs. The supervisor must
also assign processors to events. In general these functions have to be performed for an
event input rate of 100 KHz. Information contained in the Atlas technical proposal suggests
that 100 ROBs and 20 FEX processors will be active for each event. This requires messages
at a rate of 10 MHz spread across to the ROBs just to inform them which FEX processors to
use. Messages from the supervisor will also have to inform ROBs to discard data from
rejected events. In addition, the supervisor will have to perform computation concurrently
with communication to produce the format of the messages, for example, assigning proces-
sors. There will be a limit to the overall latency of a level 2 decision of approximately 10
milliseconds, all required communication and computation for a single event will have to
completed within this limit.

The general requirements of the level 2 system can be summarised as:

« High message rates (MHz)
« Low latency limit on level 2 decision requires low latency communications and high
processing power.

« High bandwidth links, with a level 2 throughput of 10 Gbytes/s
« Efficient support for concurrency of computation and communication

» The system performance must be scalable with the addition of processors, links and
switches. It should be possible to build initial systems and upgrade in stages.
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5.2.3 The level 3 trigger

All events that are accepted by level 2 are sent to a level 3 processor farm via an event
builder. To achieve a further efficient cut in the event rate, level 3 should have access to the
entire event for global processing. This requires a level 3 processor to be able to communi-
cate with all ROBs, so the whole data for a single event can be collected into a single level 3
processor.

The rejection factor of the level 3 system is expected to be ~10, with an input rate of 1 KHz.
This would correspond to a total throughput of up to 10 Gbytes/s for the level 3 system. Data
must be recorded at a rate of 10 to 100 Mbytes/s, with the required reduction in event rate or
event size performed by level 3.

A single Data Flow Manager (DFM) will be responsible for assigning destinations to event
fragments from ROBs. It will also maintain information on the status of level 3 processors
(free or busy), and balance load between the level 3 processors. The performance of the
DFM will be crucial to the success of the level 3 system. The requirements are many short
control messages at very high frequencies, between the ROBs and the DFM and between the
level 3 processors and the DFM. The exact number of ROBs active for each event is not
known, and would be variable from event to event. In the worse case all 1000 ROBs would
need to be informed of which level 3 processor to send their data to. At a rate of 1 KHz this
corresponds to a message rate of 1 MHz. The DFM would also need to perform computation
concurrently with communication, for example, assign a level 3 processor to each event. The
requirements for level 3 can be summarised as:

« High message rates (MHz)
« High bandwidth links, the throughput of the event builder is expected to be up to 10
Gbytes/s

« High computational power, level 3 processor farm will require 105 MIPS
« Efficient support for concurrency of computation and communication

« The system performance must be scalable with the addition of processors, links and
switches. It should be possible to build initial systems and upgrade in stages.

5.3 GPMIMD machine applied to level 2 and level 3

Results for level 2 and level 3 are taken from a paper I co-authored entitled ‘Triggering and
Event Building Results Using the C104 Packet Routing Chip’ [26]. A

The maximum amount of grouped adaptive routing was enabled (12 links) between the cen-
tre and terminal stages of the Clos. The machine is identical to the machine used to produce
the results in Figure 3.6 on page 37, where the bandwidth for fixed pairs and random traffic
patterns are presented. The results in Figure 3.6 can be used to calculate the fraction of the
maximum achievable bandwidth obtained under level 2 and level 3 traffic patterns.

5.3.1 level 2 results

A level 2 system was mapped onto a 48 node GPMIMD machine, using 20 MHz revision
D02 T9000s, containing six motherboards and two switch cards. The slot zero T9000s were
not used to allow better interpretation of results: the slot zero T9000s are not part of the
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folded Clos network. In addition, a further six T9000s were excluded from the measure-
ments, some D02 T9000s were a source of un-reliability, even when a single GPMIMD net-
work was in use, The result was a maximum of 36 processors. All sources were on a
separate motherboard to all destinations so a maximum of 18 sources and destinations was
used. The measurements presented use only one of the four GPMIMD networks to avoid the
D02 T9000 cache corruption bug.

The traffic patterns corresponding to the local processing of a single subdetector were
mapped onto the 18 sources and destinations. Essentially one of the upper left or right com-
ponents of Figure 5.2 is being implemented. This is the local processing phase of subdetec-
tor Rols by feature extraction processors (FEX processors). The sources in the GPMIMD
machine correspond to ROBs and the destinations correspond to features extractors.

The level 2 global processing has not been implemented. A level 2 supervisor has not been
implemented, all ROBs are loaded with pre-calculated look-up tables that contain the event
sequences. A ROB uses it’s look-up file to discover whether it must send data for a certain
event. It also uses it’s look-up file to decide which feature extractor processor to send an
event fragment. The T9000s only acted as sources and destination of event data. No compu-
tation was performed by the T9000s replacing feature extractors. The result is that the limit
of the network communications performance is being investigated, not the limit of the
T9000 computational power or a centralised supervisor.

;Ie‘helgrafﬁc patterns inside a single subdetector are defined by the following variable parame-
IS

« Number of features for each event (1 to 5)

« Feature size (0.2 to.1.2 Kbytes)

« Number of ROBs per feature (1 to 5)

» Selection of ROBs to participate in each event (clusters at random or round robin)

« Total number of ROBs and feature extractors in system (3 to 18)

Figure 5.3 shows the traffic pattern for two example events. The messages are those required
for the event within a single subdetector for the local processing phase. Each Rol may con-
tain more features to be collected from different subdetectors. For event O, at time t=100,
_subdetector A has to compute features for two Rols. The FEX processors are allocated round
robin, so these two computations are performed by the first two FEX processors (0 and 1).
FEX processors 2, 3 and 4 compute the features for event 1. After FEX processor 5 has been
used, FEX processor 0 will be used.

The possible traffic patterns for consecutive events must fit within the parameters presented
above, i.e. 1 to 5 features per event, 0.2 to 1.2 Kbyte feature size and 1 to S features for each
feature. Despite the large number of possibilities that this allows I will show that a network
of a given size has a constant maximum achieved throughput regardless of any of these
parameters.

The performance of a single GPMIMD machine network in terms of achieved event fre-
quencies and bandwidths has been measured under level 2 traffic patterns.

14.The numbers were based on the latest information available during the summer of 1995.
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ROBs for a single subdetector
ez L2 |
event O, time = 100
event 1, time = 200
FEX processors| o | | 7 lr; | [ s || < |

FIGURE 5.3 A level 2 traffic pattern

An important factor is the use of virtual links. A buffer can use different virtual links to send
messages to different FEX processors at the same time. If the participating buffers in each
event are chosen at random, then a buffer may participate in a number of consecutive events.
If a buffer has not completed the send of event n'when the time for the send of event n+1 is
reached, the two events can be sent in parallel. An extra parameter is defined: the number of
virtual links that a buffer can use in parallel. A destination FEX processor (T9000) has a sep-
arate process (and virtual link) to communicate with each buffer, this allows the destinations
to read from all buffers in parallel. '

The relevance of all level 2 results are presented with each plot and are also summarised at
the end of the section in Table 5.2. In Figure 5.4 the achieved frequency and bandwidth as a
function of the attempted event rate is shown. The plots show results for three different fea-
ture sizes: 0.2, 0.6 and 1.2 Kbytes per feature. Each event contains three features and each
feature is spread over a single buffer. A total of three sources is active for each event. A ran-
dom selection of buffers participate in each event. At the maximum achievable event fre-
quencies a total of approximately 70 Mbytes/s out of a possible 111 Mbytes/s (see Figure 3.6
on page 37) is obtained. The result shows that performance scaies with feature size and that
performance is limited by an asymptotic bandwidth, regardless of the feature size.
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FIGURE 5.4 Achieved event frequency and bandwidth for a level 2 traffic pattern. Participating
buffers chosen at random.
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achioved event frequency in KHz

The loss of bandwidth (70 Mbytes/s compared to a theoretical maximum of 111 Mbytes/s) is
due to the random selection of which sources participate in each event. Sources may have to
participate in a number of consecutive events, causing some events to be delayed as the tem-
porarily required bandwidth at a buffer exceeds that available. The queuing of events in the
sources results in network under utilisation: messages are queued on a busy source while
other sources may be idle. This effect is demonstrated by selecting buffers for each event on
a round robin criteria, thus removing the queuing of consecutive events in the sources. For
example, if 5 ROBs are active for each event, then event 1 will use buffers 1 to 5, event 2
will use buffers 6 to 10, continuing until the buffers wrap around. The results in Figure 5.5
for this round robin selection criteria show a 97% bandwidth utilisation and a corresponding
increase in event rate, confirming event queuing in the sources.

Achleved frequency in KHz
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FIGURE 5.5 Achieved event frequency and bandwidth for a level 2 traffic pattern. Participating
buffers chosen on round robin criteria

In Figure 5.6 the achieved event frequency and bandwidth as a function of the number of
features for an event is shown. The three lines use a fixed feature size of 1 Kbyte but show
different numbers of buffer for each feature. There is only a small dependence of the
achieved bandwidth across the network on any of these parameters. When a feature is dis-
tributed across 5 buffers and not 1, there are 5 smaller messages of 0.2 Kbyte instead of a
single message of 1 Kbyte. The range of values from 63 to 77 Mbytes/s can be attributed to
lower effective bandwidths for smaller messages. This result shows that the number of
ROBs that a feature is distributed over has a small effect on performance and the asymptotic
bandwidth remains constant for different numbers of features.
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FIGURE 5.6 The achieved frequency and bandwidth as a function of the number of features per
event for a level 2 traffic pattern
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The performance of the network as a function of the number of sources and destinations
using the network is shown in Figure 5.7. The achieved event frequency is shown as a func-
tion of the number of active buffers (<FEX processors) for feature sizes of 0.2 and 1.2
Kbytes. In all measurements there are 3 features per event and each feature is spread across
2 buffers. The performance scales linearly from 3 to 18 buffers. Event rates of 100 and 20
KHz are achieved for data block sizes of 0.2 and 1.2 Kbytes respectively. These results only
use one of the four GPMIMD networks, hence the performance if all networks were used
would therefore be 400 and 80 KHz respectively.
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FIGURE 5.7 The achieved event rate and bandwidth as a function of connected sources
=destinations)

In Figure 5.8 the effect of allowing the buffers to communicate on more virtual links in par-
allel is investigated. It can be seen that the achieved event frequency depends on the number
of virtual links used in parallel but the performance does not increase for more than 5 virtual
links per physical link. This agrees with the general communications benchmarks presented
in chapter 3, which show performance saturating for 5 virtual links.
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FIGURE 5.8 Effect of virtual links on achieved frequency and bandwidth for level 2 traffic
patterns

The limit with a single virtual link is similar to other measurements presented throughout the
thesis. A source must wait for acknowledges from a destination. The limitations of this
effect are reduced by using multiple virtual links in parallel, while waiting for a packet
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acknowledge on one virtual link, a source may send a packet on another virtual link to
another destination. All other results presented on level 2 traffic allowed 5 virtual links to be
used in parallel on each buffer.

5.3.2 level 3 results

The relevance of all level 3 results are summarised at the end of the section in Table 5.2. A
level 3 system was mapped onto the same machine configuration. However, only the slot
zero T9000s had to be excluded, the six T9000s causing reliability problems for the level 2
traffic patterns did not cause problems for the level 3 measurements. This allowed a maxi-
mum of 21 sources and destinations. 21 of the T9000s correspond to ROBs and the other 21
to the level 3 processors.

For each event accepted by level 2 a subset of the ROBs have data which should be collected
into a single destination level 3 processor. Figure 5.9 shows the traffic pattern for two exam-
ple events. The selection of ROBs that have data for a single event have been chosen ran-
domly. The level 3 processor for event 1(2) has data from 4(3) ROBs.

Sources (ROBs)

event O

event 1

Destinations (level 3 processors)

' FIGURES5.9 A level 3 traffic pattern

The data flow manager has not been implemented, all ROBs load pre-calculated look-up
tables that contain the event sequences. A ROB uses it’s look-up file to discover whether it
must send data for a certain event. It also uses it’s look-up file to decide which level 3 proc-
essor to send event data to. As for the level 2 results, the T9000s only acted as sources and
destination of event data. No computation was performed by the T9000s replacing level 3
processors. The result is that the limit of the network communications performance is being
investigated, not the limit of the T9000 computational power or a centralised supervisor.

The traffic patterns are defined by the following variable parameters, which were the best
available estimates during the summer of 1995:

« Total event size within subdetector (10 to 50 Kbytes), obtained by scaling the Atlas
- requirements to the fraction of the system being implemented.

» Number of ROBs participating in each event (5 to 21)

« Selection of the ROBs to participate in each event (random or round robin)
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« Additional latencies in communications libraries (0 to 400 microseconds)
« Total number of ROBs and level 3 processors in system (5 to 21)

The performance, in terms of achievable event rates and bandwidths, of a single GPMIMD
machine network has been measured.

Figure 5.10 shows the achieved event frequency for three different event sizes, whilst the
number of active sources (ROBs) for each event is varied between 5 and 21. There are a con-
stant number of 14 destinations (level 3 global processors). The total event data is divided
equally amongst the active sources. .

For each event size there are two lines: solid and dashed. The solid line uses a random selec-
tion of ROBS to be active in each event, the dash line corresponds to a round robin selection
of ROBs for each event. For example, the round robin selection, if 5 ROBs are active for
each event, then event 1 will use buffers 1 to 5, event 2 will use buffers 6 to 10, continuing
until the buffers wrap around. When 21 sources are active, all sources are active, so the
selection of sources is identical for the round robin or random selection criteria. This
explains why the dotted and dashed lines on Figure 5.10 coincide for 21 sources per event.

There is a clear reduction in performance when the buffers are chosen at random for each
event. This effect was also seen in the level 2 results. Buffers may have to participate in a
number of consecutive events, causing some events to be delayed as the temporarily
required bandwidth at the buffer exceeds that available. This queuing of events in the buffers
results in network under utilisation: messages are queued on a busy buffer while idle buffers
may exist. The effect is demonstrated by selecting buffers round robin, which ensures that
buffers are not active in consecutive events whenever possible. For the three event sizes con-
sidered, all buffers active, approximately SO Mbytes/s out of a theoretical limit of 111
Mbytes/s is achieved. A bandwidth of approximately 50 Mbytes/s is achieved regardless of
the event size. The results demonstrate reduction in performance due to quening in sources
and show that performance is limited by a maximum achieved bandwidth for all event sizes.
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FIGURE 5.10 Achieved event frequency versus number of buffers per event. The solid line
shows random source selection and the dashed round robin selection of buffers

participating in each event.
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In Figure 5.11 the event latency per source (elapsed time to output the data for an event from
a source) as a function of event number is shown for three sources in the system used to pro-
duce Figure 5.10. The results are for 21 active buffers per event and a total event size of 20
Kbytes. For the first event, all buffers are competing for the first destination link (the level 3
processor to analyse the first event) resulting in a high latency for the first event. The 3 mil-
liseconds corresponds to the time to read 20 Kbytes/s on a single destination T9000 link run-
ning at 7 Mbytes/s since that is the limit of a 20 MHz revision D02 T9000. The latency then
decreases with event number, settling down to a steady state, as different sources are sending
different events to different destinations. The steady state of ~400 microseconds source
latency corresponds to the achieved frequency for 20 Kbytes of ~2.5 KHz shown in
Figure 5.10.

The total throughput of the system is ~50 Mbytes/s, and the maximum rate a destination link
can transfer is 7 Mbytes/s. I assume therefore that multiple destination links are in use in
parallel. The throughput of the system is initially 7 Mbytes/s (one destination link active)
and then increases to S0 Mbytes/s (whole system with congestion) as multiple destination
links are used in parallel. The results demonstrate the reduced event latency per source as
gradually more destination links are used concurrently.
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FIGURE 5.11 Source event latency versus event number for 3 of the 21 buffers active per event

A destination T9000 has a separate process (and virtual link) to communicate with each
buffer, this allows the destinations to read from all buffers in parallel. A buffer cannot trans-
mit an event until the previous event has been completely transmitted, a single process is
used on the buffer.

In order to investigate the effect of communications overhead on overall communications
performance the node message latency (/O initiation time) in the buffers was artificially
increased. The results are shown in Figure 5.12 for 21 sources and 14 destinations. The total
event size is varied and the achieved event frequency measured. There is a very strong deg-
radation in performance for small increases in latency. An efficient node to network inter-
face, together with low node message latencies is vital to efficiently utilise the available
network bandwidth.
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FIGURE 5.12 The achieved frequency versus the additional source {node) message latency

5.3.3 Extrapolation for level 2 to the Silicon Tracker (SCT) subdetector

All extrapolation (for both level 2 and level 3) is based on results contained in the CHEP 95’
paper [26]. The limitation is that these results were produced with a GPMIMD machine
which had limited interconnection between the centre and terminal stages, presented in
Figure 2.20 on page 27. A fully balanced Clos would have twice as many links between the
centre and terminal stages. In all extrapolations I assume this limited interconnectivity,
which is half of the complete system. The result is that the extrapolations produce a lower
limit. The effect of increasing the number of links ‘inside’ the Clos will be investigated in
future work, presented at the end of the chapter.

Figure 5.4 and Figure 5.6 can be used to produce a relation between the number and size of
features per event and the rate of events through the network. The plots show that there is an
achieved bandwidth of ~75 Mbytes/s regardless of the number or size of features. Reducing
the feature size by a factor 3 increases the achieved event rate by a factor 3. In addition,
Figure 5.6 shows that the number of ROBs the features are spread over does not have a large
effect on the achieved frequency (the spread of results is less than 10%). The variance is due
to a larger message passing overhead for multiple small messages compared to a single large
message. The conclusion is that the maximum achieved frequency can be calculated from
the size and number of features per event to within a 10% error,

eventrate = AchfevedBandmdth where AchievedBandwidth is constant
Sfeaturesize X numberfeatures

The three stage Clos network that has been used within the GPMIMD machine will connect
a maximum of 512 nodes. The performance of the 36 node Clos can be extrapolated to the
performance of a 512 node Clos using C104s and T9000s to drive the links. Figure 5.7
shows that for 5 to 18 sources and destinations the performance scales linearly, ie. the per-
centage of the achieved bandwidth compared to the theoretical maximum bandwidth
remains constant at 68%. The theoretical bandwidth is taken from Figure 3.6 on page 37,
and is equal to 111 Mbytes/s, sources and destinations are paired and there is no contention
on destination links. This measurement is the only experimental evidence that I can provide
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to show scalability to 512 nodes. 512 node physical networks are currently being produced
within the MACRAME project (ESPRIT project 8603) and will assess whether the extrapo-
lation presented in this section is valid. The project will also shortly produce network simu-
lators which will allow the performance of larger networks to be predicted.

Results from analytical models combined with simulation are available [24] for Clos net-
works using random traffic and show approximate scaling for 64 to 512 nodes. However, in
these cases all nodes send to all others, as opposed to the level 2 and level 3 traffic patterns
which divide the available nodes in two and one half sends to the other. These simulation
and analysis results are discussed later in Section 5.4.3, “Benchmark 1.3 (all to all),” which
is a benchmark where all nodes send to all others. The conclusion is that to ensure the
extrapolation is correct the results must be verified with realistic sized systems within MAC-
RAME.

The SCT subdetector is expected to have 256 ROBs, and if a similar number of FEX proces-
sors is assumed, a 512 node Clos will provide all the level 2 local processing interconnectiv-
ity required for the SCT subdetector. All information on the SCT requirements are taken
from [27].

To extrapolate the performance to a 512 node Clos the theoretical maximum is calculated
under the same conditions. I assume that the proportion of links ‘inside’ the Clos to the
number of external links remains the same, the theoretical maximum bandwidth of a Clos
scales linearly and the achieved bandwidth is constant at 68% of the theoretical maximum.
The theoretical uni-directional maximum of the 512 node Clos is 1.2 Gbytes/s (128 * 9.26),
128 DS links available between the terminal and central stage of the Clos. The new
AchievedBandwidth value for the above equation is then 816 Mbytes/s (68% of 1.2 Gbytes/
s). I can then use the equation to predict the performance of a 512 node C104 Clos applied to
the SCT.

For each feature within the SCT there will be 1.85 Kbytes in each endcap, and 2.31 Kbytes

in the barrel, producing an average feature size of 2.0 Kbytes. This allows us to produce a
table relating the number of features per event to the achieved event frequency, see Table 5.1

TABLE 5.1.  Projected event rates for a 512 node Clos applied to the level 2 SCT

Number of features in SCT per event
(=Rols per event) Projected achieved event frequency
1 408 KHz
2 204 KHz
3 135KHz
4 102KHz
5 81 KHz

The number of features clearly determines the extent to which the network can achieve the
required event rate of 100 KHz. The Atlas technical proposal states the number of Rols per
event as ~5. If 4 Rols per event is assumed, a single Clos network could achieve the required
rate for level 2, if there are 5 Rols per event the network can almost achieve the required
rate. However, there are three possible ways that performance may be improved:
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« The T9000 could be used to drive four independent Clos networks.

« The link speed may be increased by up to a factor 2, my initial tests suggest this will be
possible

« Increase by a factor 2 the number of links ‘inside’ the Clos network

It should be noted that I have not included the supervisor or the global level 2 processing in
the extrapolation.

5.3.4 Extrapolation for level 3 to the SCT subdetector

The same method is used to extrapolate the level 3 performance as was used for level 2.1
assume that the number of level 3 processors is the same as the number of ROBs, this is the
ratio of level 3 processor to ROBs for the whole Atlas trigger system (taken from the Atlas

 technical proposal). In the extrapolation it is assumed that all ROBs send data to the level 3
processor. The result is that there are 14 ROBs and 14 level 3 processors, the number of
level 3 processors remained constant at 14 for all measurements. A relation can be produced
between the event rate and event size from Figure 5.10, there is an achieved bandwidth of 40
Mbytes/s regardless of the event size. This produces a similar equation to the level 2 extrap-
olation:

AchievedBandwidth

eventrate = -
EvenitSize

The 14 to 14 network gives a theoretical maximum of 74 Mbytes/s (8 DS links to the central
stage), under level 3 traffic patterns 54% of the theoretical maximum is obtained. This figure
is lower than the 68% exploitation under level 2 traffic, but the level 3 implementation does
not allow a source to use multiple virtual links in paraliel.

The bandwidth achieved for a 512 node Clos will be 54% of 1.2 Gbytes/s, which is 643
Mbytes/s. The event size for the SCT can be calculated from [27], which is 256 ROBs each
containing 0.5 Kbytes, giving a total of 128 Kbytes per event. The above equation then gives
us an achieved level 3 event rate of 5.1 KHz for the SCT sub-detector, a factor 5 greater than
ihe irigger requiremenis.

5.3.5 Conclusions

In Table 5.2 the relevance of each plot for all level 2 and level 3 results are presented, the
contents of the table are a summary of the various explanations given with the plots.

TABLES5.2. Summary of relevance of each plot for level 2 and level 3

Piot _Relevance
figure 5.4 Shows that performance scales with feature size and that performance is limited by an
level 2 asymptotic bandwidth, this result is used for the level 2 extrapolation

figure 5.5 Shows the congestion effect of queuing in the sources and the reduction of effective band-
level 2 width that this causes

figure 5.6 | Shows the number of ROBs thata feature is distributed over does not have a major effect on
level 2 performance and that the asymptotic bandwidth is obtained for different numbers of features.
The result is used for the level 2 extrapolation
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TABLE 5.2. Summary of relevance of each plot for ievel 2 and level 3

Plot Relevance

figure 5.7 Shows the network performance scales for 3 to 18 connected sources and destinations
level 2

figure 5.8 Shows the number of virtual links driving the network in the sources improves performance
level 2

figure 5.10 | Shows congestion effect of queuing in sources and the reduction of effective bandwidth that
level 3 this causes. Also shows the performance is limited by maximum achieved bandwidth regard-
less of the event size, this result is used in the extrapolation for level 3

figure 5.11 Shows the reduced source latency with increasing event number, due to more destination
level 3 links being used concurrently

figure 5.12 Shows the effect of increased node message latency on performance

level 3

Measurements have been presented on a 42 node Clos switching fabric using the C104 and
T9000. Under the currently expected traffic patterns of subdetectors in the level 2 and level 3
triggers of the Atlas experiment bandwidths of 50 to 75 Mbytes/s have been achieved, corre-
sponding to ~50 to 70% utilisation of the theoretical bandwidth. The performance relied
upon the concurrent use of multiple virtual links, in particular, destinations reading from
multiple sources in parallel.

I have shown for level 2 and level 3 traffic patterns the limit of performance is queuing in the
sources. This is demonstrated by 97% bandwidth utilisation for round-robin choice of
sources in the level 2 traffic pattern. In the actual experiment it will be difficult to have any
control of the selection of sources for each event.

For level 3 traffic patterns I have shown very large initial latencies when all sources try to
send to a single destination. Performance quickly reaches a steady state after a few hundred
events. I have shown the effect of increased message latency on network performance,
showing that low message overheads are crucial.

Results have been extrapolated for a full size SCT subdetector. I have shown that a single
Clos network of C104s should provide the required level 2 event rate for 4 Rols per event. If
five Rols must be analysed per event then a small improvement must be found. The
improvement could come from increased link speeds, multiple networks and adding a factor
two more links between the centre and terminal stages of the Clos. More importantly there is
uncertainty of a factor 5 in requirements (1 to 5 Rols per event) depending on the final Atlas
processing strategy for events. Results extrapolated to the level 3 system show that a 512
node Clos should perform five times the required event rate for the SCT.

5.4 Comparison with other parallel platforms

The Aflas communication benchmarks have been defined to allow the comparison of per-
formance of parallel computing platforms applied to triggering in HEP experiments. The
benchmarks are divided into two parts: a set of general benchmarks which may be relevant
for other applications and an application specific part which is closer to the expected traffic
patterns in HEP trigger systems. The Atlas communication benchmarks have been run on
the GPMIMD machine, a selection are presented to allow comparison to other platforms.
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The only available platforms with numbers of nodes comparable to the GPMIMD machine
are commercial parallel computing systems. The Atlas benchmarks have been run on the
GPMIMD machine, the SGI challenge [28], the IBM SP-2 [29] and the Meiko CS-2 [30].
The interconnects on the SGI, SP-2 and Meiko are proprietary. Interconnect standards such
as SCI, ATM and Fibre Channel are of considerable interest to Atlas but:

« There are only results for very small systems
« The Atlas benchmarks have not been reported

To allow a direct comparison the results are reported in identical form to those already avail-
able for other platforms. The following sections give a brief outline of the benchmarks, full
details are available in [23]. Each section gives details of the quantity measured and some
notes specific to the implementation on the GPMIMD machine. All T9000s are 20 MHz
GAMMA revision E03 T9000s using 8Kbyte internal memory and 8Kbyte cache. All C104s
are revision beta, all links run at 100 Mbits/s. All results use only a single network of the
GPMIMD machine.

The results are compared with MPI [31] versions for the other machines for two reasons: it
is the only version for which results are available for all three platforms and it uses the mes-
sage passing concept at the same level of abstraction as the T9000 toolset. For the Meiko
platform programming at a lower level of abstraction is possible, using the Elan widget
library [30], however, the functionality of the T9000 toolset is not provided by these librar-
ies. For many of the benchmarks there are limited results available for comparison, results
that are not available are shown as a *-’.

5.4.1 Benchmark 1.1 (one-way)

One receiver and one sender. A single message is sent from the sender and then once it is
received a single message is sent back from the receiver (ping-pong). The time reported is
the time for the ping-pong divided by 2. This benchmark measures the basic uni-directional
performance, and is identical to an international standard benchmark: Parkbench COMM 1
[32].

On the GPMIMD implementation two T9000s on a single motherboard communicated via a
separate virtual link in each direction. A single C104 connected the two T9000s. Results are
presented in Table 5.3.

TABLE5.3. Benchmark 1.1 (one way) Resuits are: message time (effective bandwidth)
Message GPMIMD SGEMPI SP2-MPI Meiko-MPI
Size (bytes)® | ps (Mbytes/s) ps (Mbytes/s) pis (Mbytes/s) js (Mbytes/s)
1 6.6(0.15) 132.2(0.008) 164.10(0.006) 2575(0.004)
64 16.9(3.79) 145.9(0.44) 168.8(0.38) 262(0.244)
256 56.9(4.5) 150.4(1.71) 214.1(1.2) 286(0.9)
1024 216.9(4.72) 239.6(4.28) 326.2(3.14) 392(2.61)

a. All 1 byte messages are actually sent as four bytes messages for the GPMIMD implementa-
tion of ail benchmarks

b. For the Elan widget library the value is 40 microseconds
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The benchmark assumes that the elapsed time for a message is composed of two parts: a
fixed message passing overhead (T,) and the time to transfer the message, which is the mes-
sage length (I.) divided by the effective transfer rate (Reffective), The relation can be
expressed as -

ElapsedTime = T+ W

The message passing overhead is defined as the elapsed time to transfer a zero length (1
byte) message from an application program in the source node to an application program in
the destination node. This value is the benchmark 1.1 result for a 1 byte message, for the
"T9000 implementation this value is 6.6 microseconds. The results from benchmark 1.1 pro-
duce a value for the affective transfer rate by fitting results to the above equation. The
asymptotic bandwidth achieved is calculated using the benchmark 1.1 result for very large
messages.

The message passing overhead can be divided into two further components: the network
latency and the node message latency. The network latency is defined as the time to propa-
gate a single byte through the switching network. The node message latency is defined as the
I/O initiation time in a source or destination.

The equation allows the calculation of two very important parameters for quantifying the
performance of parallel computers: the message passing overhead and the achieved asymp-
totic bandwidth. '

The message passing overhead for the T9000 is considerably lower than the SGI, SP2 and
Meiko. This is due to a combination of the low network latency provided by the C104 and
low node message latency of the T9000. It should be noted that the link bandwidth of the
other platforms is higher than the T9000 links. The links on the Meiko platform can transmit
data at 50 Mbytes/s, and the links on the SP2 at 40 Mbytes/s. For longer messages a high
message passing overhead can be compensated for with higher link speeds, although the raw
link performance is not approached.

For ideal performance the Reffective in the above equation should be the raw transmission
speed of the interconnection medium. In Figure 5.13 the benchmark 1.1 results for the
GPMIMD implementation are plotted against message length. In addition, the ideal per-
formance is shown where Reffective is the raw transmission speed of the link. The raw
transmission rate of a 100 Mbits/s link is approximately 10 Mbytes/s (one byte sent as a 10
bit token over link, see Figure 2.7).
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150¢

100+ Message passing overhead
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FIGURE 5.13 Measured and theoretical results for the T9000 implementation of benchmark 1.1

It is clear that for all benchmark 1.1 results the achieved Reffective is not equal to the raw
transmission rate of the link. Reasons for this are:

« Node interface to the raw link, i.e. the rate at which data can be transferred into the appli-
cation program from the link

« Protocol implementation overheads, e.g. packetisation of messages and production of
acknowledges

5.4.2 Benchmark 1.2 (two-way)

Identical to benchmark 1.1 but with the communications performed in parallel. The time
reported is the time for a transmit in both directions divided by 2. The benchmark measures
basic bi-directional performance. i.e. the extent to which a link can be used in both direc-
tions. This benchmark is identical to Parkbench COMM?2 [32].

On the GPMIMD implementation two T9000s on a single motherboard communicated via a
separate virtual link, both virtual links used in paralle]. A single C104 connected the two
T9000s. Results are presented in Table 5.4. This benchmark measures the extent to which

TABLE54. Benchmark 1.2 (two way). Results are: time for message (effective bandwidth)

Message GPMIMD SGI-MPI SP2-MPi Meiko-MPI
Size (bytes) ps (Mbytes/s) ps (Mbytes/s) Hs Mbytes/s) ps (Mbytes/s)
1 4.9 (0.2) 81.4(0.012) 103.7(0.01) 137(0.007)
64 10.1(6.34) 85.4(0.75) 101.5(0.63) 146(0.44)
256 33.6(7.62) 109.4(2.34) 121.2(2.12) 171(1.5)
1024 127.2(8.05) 183.7(5.57) 202.6(5.05) 286(3.58)
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links can be used bi-directional. A simple comparison would be the fraction bi = COMM2/
COMM1, with bi = 0.5 the ideal result where both directions are used in parallel without
affecting cach other, and bi = 1 the worst case where there is no bi-directional use of the link
at all. For the GPMIMD implementation and 1024 byte message size bi = 0.59, for SGI bi =
0.77, for SP2 bi = 0.62 and for Meiko bi = 0.73. The GPMIMD implementation is the most
efficient at using the link bi-directional.

5.4.3 Benchmark 1.3 (all to all)

All processors are simultaneously senders and receivers. All processors send to all other
processors. The benchmarks investigates the scalability of the switching network when there
is contention on destination links. The time reported is the time for all processors to send a
message to all other processors. This benchmark corresponds to Parkbench COMM3 [32].

For the GPMIMD implementation every T9000 has a separate virtual link to every other
processor. Every T9000 also has a separate process for each virtual link, to allow it to drive
all virtual links in parallel. The slot 0 T9000s were not included. To interpret these values
the system wide bandwidth is required, which allows an investigation of scalability with the
number of processors. The amount of data passing through the entire network is:

(message length) x number of processors x (number of processors -1)

The system wide bandwidth is then this amount divided by the elapsed time. Figure 5.14
presents the system wide bandwidth for the GPMIMD machine and SP2.

a0 141
60 T T T T T T T T 40,

~—- 1024 byte messages
| |—2s6 byte messages
—— 64 byte messages
100} |~ 1 byte messages

| |~ 1024 byte messages
— 256 byte messages
—— 64 byte messages
o {1 byte messages

System wide bandwidth (Mbytes/s)
g
Syslem wide bandwidth (Mbytes/s)

0 L e L * o

. i 1 ) L
0 2 4 6 8 10 12 14 16 18 [ 5 10 15 20 25 30 *
Number of processors Number of processors

FIGURE 5.14 System wide bandwidth for benchmark 1.3: left plot is 'SP2, right is GPMIMD

The system wide bandwidth does not scale linearly with the number of processors for the
SP-2 or GPMIMD machine. The performance increase from 4 to 16 nodes is close to linear
for both implementations. The overall performance is again better for the GPMIMD imple-
mentation especially for short messages, where the low message passing overhead is domi-
nant.

The degradation of performaﬁce with increasing numbers of processors agrees with analyti-
cal models presented within [24]. The work predicts the performance of Clos networks
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under sustained random traffic, where all nodes randomly send to another node picked from
all possible destinations. Results cannot be compared quantitatively as the analysis starts
with networks of at least 64 processors. The analysis predicts a 25% degradation (compared
to linear scalability) from 64 to 512 nodes.

It should be noted that this is a different traffic pattern to the level 2 traffic pattern, which I
have shown scales from 3 to 18 sources and destinations, and extrapolated to a 512 node
Clos for that traffic pattern. For the level 2 and level 3 traffic pattern the nodes are split into
two groups and one half sends to the other, i.. all links are used uni-directional and there is
no communication between processors on the same motherboard. In contrast, the all to all
benchmark requires processors on the same motherboard to communicate with each other
and uses all links to the nodes bi-directional. '

5.4.4 Benchmark 2.1 (push farm with supervisor)

This benchmark is a more detailed implementation of the level 2 system already used to pro-
duce results earlier in this chapter. Figure 5.15 shows the configuration of senders and
receivers. A supervisor processor communicates to all sources a receiver (destination)
address. The destinations are selected using a round robin criteria. The source processors
then send data to the indicated destination processor. When the destination processor has
collected data from all sources it informs the supervisor of a decision. All messages
exchanged with the supervisor are 16 bytes. The benchmark measures basic push-farming
performance assuming processor control is from the supervisor through the switching net-
work. The time reported is the time on the supervisor between the sending of the messages
to the sources and the reception of a decision from a receiver. The sources correspond to
" ROBs and the receivers to FEX processors.

Senders S S S S
information from
event M T T F SUpervisor to
Sources
Supervisor _
B _decisions
4 4 4 W from receivers
Receivers | R R R R

FIGURE 5.15 Benchmark 2.1 {push farm with supervisor)

For the GPMIMD implementation, all messages between all processors were 16 bytes. This
is because all measurements available for comparison used 16 byte messages between send-
ers and receivers. The supervisor is always on a separate motherboard to all senders and
receivers, and no sender is on the same motherboard as a receiver. Results are shown in
Table 5.5. The results for the GPMIMD implementation show far lower times than for the
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other platforms (where results are available). This is due to the lower message passing over-
heads on the GPMIMD implementation.

TABLE 6.5. Baenchmark 2.1 (push farm with supervisor). Reeulte are time for event (event rate).

Total no. of | Number of GPMIMD SGI-MPI SP2-MPI Meiko-MP1
Senders receivers ps (KHz) ps (KHz) s (Ktz) ps (KEiz)
2 4 41.2(24.4) - 271(3.69) 217(4.61)
4 4 50.5(19.8) - - 286(3.5)
6 4 60.8(16.4) - - -
8 4 70.4(14.2) - - 453(2.21)

The performance of a pull farm was also measured, the supervisor communicates to a
receiver and the receiver fetches data from all sources. The difference is due to one extra
message between the supervisor and the receivers. This accounts for an approximate differ-
ence of 10 microseconds between a push farm and pull farm. -

5.4.5 Summary of comparisons to other platforms

Despite the lower link bandwidth of the T9000 the results have been generally better than
the alternative platforms. The performance difference is particularly wide for smaller mes-
sages. This is due to the dominance of message passing overhead for sending short mes-
sages, the T9000 has an extremely low message passing overhead of 6.6 microseconds. In
addition the T9000 exploits the VCP, virtual channels and efficient context switching to pro-
vide efficient support for concurrent communication/computation and high message rates.
The high message rates are particularly important for the supervisor in benchmark 2.1. It
should also be noted that the GPMIMD results used only one of the four available networks.

5.5 Conclusions

Measurements have been presented on a 42 node Clos switching fabric using the C104 and
T9000. Under the currently expected traffic patterns of subdetectors in the level 2 and level 3
triggers of the Atlas experiment, bandwidths of 50 to 75 Mbytes/s have been achieved, cor-
responding to ~50 to 70% utilisation of the theoretical bandwidth. Results have been extrap-
olated for a full size SCT subdetector. These extrapolations will be further investigated in
future work, presented in the next section.

The results from the Atlas communication benchmarks have shown the advantages of low
message passing overheads, especially for short messages. For example, the 2.1 Atlas
benchmark shows far better performance for the GPMIMD implementation because lots of
small messages are required from the supervisor or destinations. The latency for these small
messages has been more infiuential on the results than the raw link bandwidth, which is
lower for the GPMIMD implementation than all other platforms used for comparison.

At the end of chapter 3 I had identified critical factors which effect the performance of multi-
processor systems (Table 3.6 and Table 3.7) using point to point links and switches. After
analysing the requirements of the Atlas trigger system I am able to quantify the importance
of each factor to Atlas. The requirements of level 2 and level 3 can be summarised as fol-
lows:
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» High message rates for messages of ~1 Kbyte (implies low /O loading on CPU)

« Efficient support for concurrent communication and computation (implies fast context
switch and low I/O loading on CPU)

» Low latency communications

« Scalability to large systems

« High bandwidth and computational power

The factors presented in Table 3.6 and Table 3.7 are also in Table 5.6 and Table 5.7, but the
relevance is now applied to Atlas and the support they provide for the above requirements.
The factors are split into two groups: factors vital to network performance and factors vital
for nodes driving the network (see Table 5.6 and Table 5.7). Other additional factors which I
believe are important, but I have not yet investigated will be presented in the future work
section at the end of the chapter.

TABLE 5.6. Critical factors affecting network performance and their relevance to Atlas

Factor General relevance or importance to Atlas data acquisition

C104 adaptive routing High bandwidth requirements of level 2 and level 3 rely on the efficient use
of available network links. Adaptive routing allows the efficient use of all
links available between the terminal and centre stages of a Clos network. A
possible alternative of grouped adaptive routing is to have nodes pre-deter-
mine the route which a packet will take before it entered the network, adding
load and complexity to the nodes. Another altemative would be a fixed route
through the network for all packets which would increase contention.

Scalability to large net- The perfonmance of level 2 and level 3 must scale to meet the increasing

works requirements of the experiment. Scalability must allow initial systems to be
upgraded in stages.

Network latency The time to switch packets through the network is a component of the mes-

sage passing overhead. Therefore it should be minimised, the C104 switches
packets in one microsecond.

Link bandwidth To provide high throughput the network will require high speed component
links. However, this is a necessary but not sufficient condition for high

throughput, the performance of the node interfacing to ihe neiwork will aiso
be crucial.

TABLE5.7. Critical factors affecting nodes driving the network and their relevance to Atlas

Factor General relevance or importance to Atlas data acquisition

Node message latency Low node message latencies are important to allow low message pass-
ing overheads. level 3 results with increased node message latency
demonstrate the affect on performance. Atlas benchmark results show
better performance of GPMIMD machine even though link bandwidths
are lower than the other platforms.

Link interface bandwidths High link interface bandwidths between the raw link and the application

program are crucial to achieve the high bandwidth requirements of level
2 and level 3.
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TABLE 5.7. Critical factors affecting nodes driving the network and their relevance to Atlas

Factor General relevance or importance to Atlas data acquisition

A separate communications Low J/O loading due to the VCP is crucial for high message rates, effi-
controller, e.g. cient support for concurrent computation/communication and low mes-
The VCP and virtual channels sage latencies. Virtual channels and the VCP allow:

(facilitating low node message Better exploitation of link bandwidth in C104 networks by multiplexing
latency and high link interface multiple virtual channels onto a single physical link.

bandwidths) Multiplexing/demultiplexing in hardware (of up to 64,000 charmels)

’ avoids requirement of software (and the CPU) to handle communica-
tions received on a physical link to muitiple possible processes. The
VCP uses multiple concurrent DMAs to transfer data from messages
directly to the required location when they arrive, no further memory
copies-are required. This reduces latency and IO load on the CPU.

The result is that the VCP facilitates low node message latency and high
link interface bandwidths. The VCP is essentially an efficient tightly
coupled on-chip communications controller for the T9000.

Fast context switch times Fast context switch times are important for multi-processing and
exploiting low ¥/O loading of the CPU to provide efficient support for
concurrency of communications and computation. A process must be
scheduled quickly and efficiently to exploit the CPU time made availa-
ble by the low I/O load on the CPU. In addition, interrupt times are cru-
cial in any system with real-time constraints.

Multiple physical links The supervisor processor may use a separate network to control system
components. Additional performance may be gained from using multi-
-ple networks.

Computational performance level 3 computational requirements are 10° MIPS. This performance

requires multiple high performance processors. A possible solution is
hybrid nodes, e.g. the TransAlpha, a high performance RISC processor
using a T9000 as a dedicated communications controller.

Language support for parallel The programming interface and environment are crucial to allow the
processing : user to exploit the performance of the hardware. Occam provides an
example of the advantages of a language designed for parallel process-
ing, see comparison in Section 2.2, “Occam,”.

The following points summarise the conclusions corresponding to each of the three goals set
out at the start of this chapter:

« I have presented the projected performance of DS link technology using the T9000 and
C104 applied to the SCT detector for level 2 and level 3.

« ] have listed the factors which I believe are crucial for high performance in trigger sys-
tems, related to the nodes driving the network and the network performance. Not all of the
factors have been investigated, those which have not are presented in the future work sec-
tion below.

o A comparison to other parallel platforms has been presented. When more results are avail-
able using other technologies further comparisons will be allowed.
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5.6 Future Work

I expect the future work to be carried out on three platforms: the GPMIMD machine,
ARCHES and the MACRAME testbeds. The MACRAME project is building a 1000 node
variable topology and packet length switching network. ARCHES will build a network of
HS links using the Rcube [33] router. Network simulators will also be available to model HS
and DS link networks. Table 5.8 shows the factors which will be investigated (along with the
existing factors that have been presented in Section 5.5, “Conclusions,”), and the platform to

be used.

TABLE 5.8. Cruclal factors to be investigated in future work

Factor Affects node or network performance | Platform to be investigated on
Universal routing Network MACRAME
Multiple networks Network GPMIMD/MACRAME
Higher link speeds Network ARCHES/MACRAME
Network topology Network MACRAME

Packet size Network MACRAME
Cost Network and Node ARCHES/MACRAME
Node interfaces to Node ARCHES/MACRAME
network
Noise, errors and Network and Node GPMIMD/MACRAME/ARCHES
fauit tolerance

Both platforms will also be used to investigate the extrapolations made within this thesis to a
512 node Clos, both with modelling and by direct measurement. When results for other par-
allel platforms and interconnect technologies become available a more detailed comparison
to DS link technology can be made.
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Chapter 6
Concluding remarks

6.1 Original goals

This thesis has presented work in three parts: a general technology evaluation of IEEE 1355,
DS links and the T9000, on-line event reconstruction in CPLEAR and the application of DS
links to future generation experiments.

The goal of the technology evaluation presented in chapter 3 was to compare the T9000 and
C104 to other technologies and identify a set of factors crucial to performance.

The goals of the CPLEAR work presented in chapter 4 were:

» Demonstrate the feasibility of reconstructing and filtering the full CPLEAR event rate on-
line.

« Proof of existence and successful operation of the T9000 and C104 in a demanding exper-
imental environment.

The appiication of DS link technology to the Atlas detector at the LHC presented in chapter
5 had the following goals:

« Discover the extent to which currently available technology, i.e. DS link technology, can
meet the requirements of future generation experiments.

« Identify and investigate the crucial factors affecting the performance of point to point links
and switches applied to future generation experiments.

« Compare the performance of DS links to other relevant platforms

6.2 Summary of results

The communication results are very promising and can be summarised as follows:
« Single link results show low message passing overheads and low message latencies. The
C104 has been shown to switch packets in a single microsecond.

« 1 have demonstrated the ability of the T9000 using the VCP to concurrently perform com-
munications and computation due to low /O loading on the CPU.

« The control/supervisor benchmarks show high message rates from a single T9000 node
(greater than 400,000 per second).

« The C104 performs grouped adaptive routing with no measurable overhead, and the
achieved bandwidth has scaled linearly with the number of links grouped.

« The uni-directional communication results for the T9000 scale linearly for one to four
physical links.
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« The T9000 revision D02 suffered from serious external memory problems, the 64 bit inter-
face T9000 could only write data at 16.4 Mbytes/s to the links from external memory. The
situation is improving with the availability of the revision E03.

« Context switching performance and interrupt response have been measured and compared
to other platforms. Context switch times are better by orders of magnitude.

« The 20 MHz T9000 suffers from a fundamental shortfall in computational power, which
can be remedied by the use of the TransAlpha module

« The prototype revision D02 T9000 suffers from multiple serious hardware bugs which
have fortunately been fixed with the production revision E03.

After analysing the requirements of the CPLEAR experiment I have shown that a 25 node
TransAlpha farm could analyse the full event rate produced by CPLEAR. A network of 54
T9000s and 20 C104s has been installed in the experiment and a stable platform was
obtained which ran without failures for the last 128 hours of the experiment run.

Measurements have been presented on Atlas level 2 and level 3 traffic patterns using a 42
node Clos switching fabric. Bandwidths of 50 to 75 Mbytes/s have been achieved, corre-
sponding to ~50 to 70% utilisation of the theoretical bandwidth. Results have been extrapo-
lated for a full size SCT subdetector. Results for a set of standard and Aflas specific
benchmarks have been presented and compared to other parallel platforms. The performance
of the T9000 and C104 was generally better than the alternative platforms.

6.3 Achievements

An evaluation of the technology has been presented and results understood and explained. I
have identified and evaluated a set of critical factors which affect the performance of multi-
processor systems. Thus the goals of the technology evaluation have been achieved.

I have demonstrated the feasibility of analysing the full CPLEAR event rate on-line. Despite
the prototype nature of the revision D02 T9000 and the known hardware bugs, some of them
severe, we have been able to construct a network of 54 T9000s and 20 C104s. The system
has been installed and operated reliably in the CPLEAR experiment at CERN, running a
very large eveni reconsiruction program in real-time. Proof of existence, successful and reli-
able operation of large T9000 and C104 systems has been achieved. The construction of a
substantial array of processors operating in an experimental environment uncovered prob-
Iems that would have never been found for ‘small’ laboratory test systems. The problems
that have been presented will be typical for future experiments at the LHC, for example,
interfacing different link technologies, the succeptability of high speed links to electromag-
netic noise and monitoring large distributed systems. Thus the goals for the application of
the technology to the CPLEAR experiment have been achieved.

The reliability of the revision D02 T9000 in the CPLEAR experiment has given a worst case
result. The Gamma E03 T9000 and revision beta C104 are now commercially available and
will improve reliability and more importantly remove the restrictions imposed by the D02
bugs. Initial tests with the GPMIMD machine upgraded to Gamma E03 and C104 revision
beta have shown that the problems of stability and reliability have been solved.
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The L3 experiment at CERN has installed a network of two C104 routers (initially revision
alpha) interconnecting 48 T9000s (initially revision D02) which is operating reliably as a
second level trigger. The L3 system has now been upgraded to beta C104s and rcvision E03
T9000s. Our work in CPLEAR and general experience with the T9000 and C104 was of
considerable use to L3 in the development of this system [22].

To address applicability of DS links to LHC and in particular Atlas, I have extrapolated
results to the SCT subdetector of Atlas. The conclusion is that DS link technology can sat-
isfy a significant proportion of the requirements of future generation experiments at the
LHC. These extrapolations will be further investigated in future work.

The results from the Atlas communication benchmarks have shown the advantages of low
node message passing overheads and network latencies of the T9000 and C104. A compari-
son to other parallel platforms has been presented. When more results are available using
other technologies further comparisons will be allowed.

After analysing the requirements of the Atlas trigger system I have been able to identify a
list of all factors crucial to the performance of point to point links and switches in future
experiments. This list quantifies and presents the relevance to Atlas for each of the factors
given at end of chapter 3: the technology evaluation. '

The factors are split into two groups: those vital to network performance and those vital for
nodes driving the network.

Factors vital for network performance:

» C104 adaptive routing

« Scalability to large networks
» Network latency

« Link bandwidth

Factors vital for nodes driving the network:

« Node message latency

« Link interface bandwidths

« A communications controller, ie. the Virtual Channel Processor and Virtual channels
« Fast context switch times

« Multiple physical links

« Computational performance

« Language support for parallel processing

The extrapolation to the SCT subdetector, the comparison to other parallel platforms and the
list of crucial factors have satisfied the goals for the application of DS links to future genera-
tion experiments.
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6.4 Future work

Other additional factors which I believe are important and effect both network and node per-
formance, but have not yet been investigated are:

« Universal routing

» Multiple networks '

» Link speed

« Network topology

« Packet size

» Cost

« Noise, errors and fault tolerance

I expect future work investigating these factors to be carried out on the existing GPMIMD
machine, and the testbeds for DS and HS links developed in the MACRAME and ARCHES
ESPRIT projects.

6.5 Final remarks

The late delivery of the T9000 has meant that in the meantime many vendors have passed
the 50 MHz full specification computational performance of the T9000. The T9000s that
finally became available are only 20 MHz, in the near future perbaps 30 MHz, which has
created a situation where the T9000 has a fundamental shortfall in computational power.
This has been demonstrated in comparisons to the PowerPC and DEC Alpha. The solution to
this particular shortfall has been the development of the TransAlpha board, a combination of
T9000 communications performance and DEC Alpha computation.

The Gamma EO03 T9000 is now commercially available. At the time of writing the
GPMIMD machine has been upgraded to 64 Gamma E03 T9000s and 58 beta C104s. The
main improvement over the D02 is the increased stability due to the removal of hardware
bugs. The external memory interface has also been improved.

The T9000 is still interesting as a communications controller due to its specialised design for
use in multiprocessing, in particular the communications performance through on chip hard-
ware and software development environment. It is being considered for such a role in sev-
eral major research and development projects, and is already being shipped in existing
products.

The T9000 Transputer was brilliantly conceived yet poorly implemented and marketed. Its
legacy is in the field of high speed communications, IEEE 1355 may yet succeed.
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