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1. Introduction

Currently, perturbation theory (PT) provides basic information about both the pro-
cesses studied in experiments and the properties of the physical models themselves. The
matrix elements in the cross-sections of the processes depend on the masses of the in-
teracting particles, and therefore, strictly speaking, require the calculation of Feynman
integrals (FIs) containing massive propagators. However, depending on the kinematics of
the processes under study, the values of some masses can be set to zero, and then the FI
calculation is greatly simplified.

Studying the properties of the physical models themselves, such as critical indices,
anomalous dimensions for particles, and operators, requires the calculations of massless FIs,
whose results contain fairly simple structures. These results can be obtained in PT high orders.

FI calculations are preferably, if possible, analytical methods, since numerical methods
rarely have sufficiently high accuracy. In addition, numerical methods for calculating
diagrams are often inapplicable due to the singularities they contain and (which is especially
important for gauge theories) due to mutual reductions between the contributions of
different integrals and even between different parts of the same integral.

Moreover, accurate results are often needed. For example, when calculating renormal-
izations in theories with high internal symmetry, it is important to know [1] the positions of
critical points in which the found β functions have zero values in the appropriate PT order.

I would like to draw attention to the fact that the main objects of calculations are scalar
diagrams. Therefore, within the framework of dimensional regularization [2–5], where
diagrams are calculated for an arbitrary dimension of space, the FIs found for any model
(or process) can be easily used in the study of other models (and processes). As a result,
the complexity of the analytical FI calculations is compensated by the possibility of their
application in various quantum field models.

We also note that sometimes the result of FI calculations may be of independent interest.
So, for example, when using non-trivial identities such as the “uniqueness” relation [6,7],
the results appear (see [8–13]) for some integrals and/or series that are not available in
the reference literature. For example, the calculation of the same FI performed in [8–12]
and [14] using various calculation methods, led to a previously unknown relation between

3F2-hypergeometric functions with arguments 1 and −1. This ratio was neatly proven only
very recently [15].

Now there are many powerful methods for calculating the Feynman diagrams of a
certain type (in the massless and massive cases (see, in particular, recent reviews in [16,17],
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respectively), which are often inferior in breadth of use to standard methods such as α-
representation and the Feynman parameter method (see, for example, [1,18]); however, this
lead to significant progress in studying specific processes (or quantities).

In this review, we will present methods based on integration by parts (IBP) [7,19],
on functional relations (FRs) [20–22], and on differential equations (DEs) [23–29], which
are conveniently applicable when calculating both massless diagrams and diagrams with
massive propagators. In the massless case, we will consider, in particular, diagrams giving
contributions to the coefficient functions and anomalous dimensions of Wilson operators in
the framework of deep inelastic scattering (DIS) of leptons on hadrons (see Sections 1–4).

Moreover, we will also consider the basic diagrams that contribute to the β function of
the φ4 model, two of which will be five-loop. When calculating [30] a five-loop correction to
the β function of the φ4 model, the results of the four FIs were only numerically calculated.
The analytical results for these diagrams were obtained by Kazakov (see [8–12]); however,
they were published without presenting any intermediate results. Moreover, all calculations
were performed by Kazakov in x-space, which makes them difficult to understand. In
Section 5, we provide an accurate calculation of two of the four diagrams.

Calculations of the massive diagrams are given in Sections 6–8. The rules of their
effective calculation are presented, and examples of calculating two- and three-point
diagrams are given. Recurrent relations for the coefficients of the reverse expansion of the
mass are presented. A brief overview of modern computer technologies is also given.

Section 7 provides calculations of one of the main integrals that contribute to the ratio
between the MS-mass and the pole mass of the Higgs boson in the standard model in the
heavy Higgs limit.

To obtain results for the most complex parts of massless and massive diagrams,
recurrence relations are used for their decomposition coefficients (as can also be seen in
Section 8); (at present, recursive relations (see [31–35]) for diagrams with different space
values are also popular, but their consideration is beyond the scope of this article.).

Solving these recursive dependencies, we obtain accurate results for these most diffi-
cult parts.

We also discuss the popular property of maximum transcendentality. The most popular
introduction to this property was in [36] for the kernel of the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) Equation [37–44] in the case of the N = 4 supersymmetric Yang model-
Mills (SIM) model [45,46]. This property is also applicable to the matrix of anomalous
dimensions of the Wilson operators [47–50] and for the Wilson coefficients [51] of the “deep
inelastic scattering” in this model after their corresponding diagonalization. This property
allows one to obtain results for both anomalous dimensions and coefficient functions
without any direct calculations, but simply using the corresponding values obtained in
QCD [52–54].

In Section 8, we also show the presence of the property of maximum transcenden-
tality (or maximum complexity) in the results of two-loop two- and three-point FIs (see
also [55–59] and a review in [60]).

Indeed, this property manifests itself in the results of computing a large FI class,
mainly for the so-called master integrals (MIs) [61]. For most of the MIs, the results can be
reconstructed without direct calculations, but using the knowledge of several coefficients
in their inverse mass expansion [62] (as can also be seen in [63] and the references and
discussions therein). Note that similar properties are also demonstrated in the calculations
of amplitudes, form factors, and correlation functions (see [64–76] and references to them),
as performed in N = 4 SYM.

2. Basic Formulas

Now, we consider the rules for calculating massless FIs. All calculations are performed
in the momentum Euclidean space.
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Following [14,77], we present the traceless product (TP) qµ1µ2µ3...µn with gµiµj qµ1µ2µ3...µn =
0 (i, j = 1, 2, 3, ...n) of the momenta associated with the standard product qµ1 qµ2 qµ3 ...qµn

as follows

qµ1µ2µ3...µn = Ŝ ∑p≥0
(−1)pn!Γ(n−p+λ)

22p(n−2p)!p!Γ(n+λ)
gµ1µ2 gµ3µ4 ...gµ2p−1µ2p q2p qµ2p+1 qµ2p+2 qµ2p+3 ...qµn ,

qµ1 qµ2 qµ3 ...qµn = Ŝ ∑p≥0
n!Γ(n−2p+1+λ)

22p(n−2p)!p!Γ(n−p+1+λ)
gµ1µ2 gµ3µ4 ...gµ2p−1µ2p q2p qµ2p+1µ2p+2µ2p+3...µn , (1)

where the symbol Ŝ shows the symmetrization over the indices µi (i = 1, 2, 3, ...n).
We also present useful properties of the TP qµ1µ2µ3....µn :

(q1q2)
(n) ≡ q

µ1µ2µ3...µn

1 q
µ1µ2µ3...µn

2 = q
µ1
1 q

µ2
1 q

µ3
2 ...q

µn

1 q
µ1µ2µ3...µn

2 = q
µ1µ2µ3...µn

1 q
µ1
2 q

µ2
2 q

µ3
2 ...q

µn

2 , (2)

which directly follow from its definition given above: gµiµj qµ1µ2µ3...µi ...µj ...µn = 0 (i, j =
1, 2, 3, ..., n).

Graphically, the propagators are presented in the form

1

(q2)α
≡ 1

q2α
=

α→q
,

qµ

q2α
=

µ

α→q
,

qµ1 qµ2 qµ3 ...qµn

q2α
=

n

α→q
,

qµ1µ2µ3...µn

q2α

(n)

α→q
,

(3)

Using the TP qµ1...µn allows one to neglect contributions proportional to gµiµj that occur
during integration: these can be easily restored based on the general TP structure.

Here as well as subsequently, integrations are performed in d = 4 − 2ε-space, accord-
ing to the arguments k, k1, k2, .... So, the labels k, k1, k2... denote internal momenta. The
characters q, q1, q2... and p, p1, p2... denote external momenta with conditions p2 = 0, p2

1 =
0, p2

2 = 0..., respectively.
The following formulas are valid [20–22]. TP also was used to calculate complicated

integrals in another way. One propagator of a complicated integral can be decomposed into
an infinite sum of the products of two other propagators having TPs in their numerators
(see Refs. [14,77–85] and the review [86]).

A. A chain can be represented as:

qµ1 qµ2 qµ3 ...qµn

q2α1

qν1 qν2 qν3 ...qνm

q2α2
=

qµ1 qµ2 qµ3 ...qµn qν1 qν2 qν3 ...qνm

q2(α1+α2)
,

or graphically

n m

α1 α2→q
=

n + m

α1 + α2→q
, (4)

that is, the propagator’s product is equivalent to a new propagator with an index (the index
is the power of the square of the propagator’s momentum) equal to the sum of the indices
of the original propagators. The number of momenta products in the numerator is equal to
the sum of momenta products in the original propagators.

B. The simplest two-point diagram (loop) is integrated as

∫
Dk kµ1 kµ2 kµ3 ...kµn

(q − k)2α1 k2α2
= Nd

qµ1 qµ2 qµ3 ...qµn

q2(α1+α2−d/2)
A0,n(α1, α2) + ... , (5)

where we omit the terms of the order gµiµj . Here

Dk =
ddk

(2π)d
, Nd =

1

(4π)d/2
(6)
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is usual a Euclidean measure and

An,m(α, β) =
an(α)am(β)

an+m(α + β − d/2)
, an(α) =

Γ(α̃ + n)

Γ(α)
, α̃ =

d

2
− α . (7)

It is convenient to present Equation (5) in the graphical form as follows

n

α1

α2

→q
= Nd A0,n(α1, α2)

n

α1+α2−d/2→q
+ ... , (8)

For the loop with the TP kµ1µ2µ3...µn , we have

∫
Dk kµ1µ2µ3...µn

(q − k)2α1 k2α2
= Nd

qµ1µ2µ3...µn

q2(α1+α2−d/2)
A0,n(α1, α2) , (9)

or graphically

(n)

α1

α2

→q
= Nd A0,n(α1, α2)

(n)

α1+α2−D/2→p
, (10)

As noted above, indeed, in Equation (9), we used the TP qµ1...µn , so in fact we only need
the first term of r.h.s. of Equation (5) ∼ qµ1 ...qµn , because the rest of the result in Equation (9)
is exactly recoverable from the TP exact form. This property can be shown in another way:
the results (9) and (10) can also be obtained using an additional light-like momentum
u (i.e., with u2 = 0) and taking into account the property (uk)n = uµ1

...uµn kµ1 ...kµn =
uµ1

...uµn kµ1...µn , because u2 = 0.
So, the result (9) has the following form

∫
Dk (uk)n

(q − k)2α1 k2α2
= Nd

(uq)n

q2(α1+α2−d/2)
A0,n(α1, α2) ,

or graphically

(uµ1
...uµn)

n

α1

α2

→q
= Nd A0,n(α1, α2) (uµ1

...uµn)
n

α1+α2−D/2→q
. (11)

Note that we use all µi belonging to TP, i.e., we consider the case of TP inside the
scalar diagrams. In theories such as QCD, there are still other indices λj that arise from the

propagator’s numerators. In such cases, we cannot neglect the terms gλiλj and gµiλj , and
consequently, the rules for integration become more complicated (they were considered
in [20–22]).

Thus, diagrams that can be represented as combinations of loops and chains can be
immediately calculated by applying the Equations (4) and (10) discussed above. However,
starting from the two-loop level, diagrams appear that are not expressed as combinations
of loops and chains (the simplest example is shown below in Figure 1). For such cases,
there are additional rules that are shown below only graphically to increase their visibility.
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C. When ∑ αi = d, there is a so-called uniqueness relation [6–12] for the triangle with
indices αi (i = 1, 2, 3)

n

α2

α1+n

α3

→
q2−q1

→
q1−q3

→q3−q2

∑ αi=d
= Nd

n

∑
m=0

Cm
n An−m,m(α2, α3)

m n−m

α̃3+m α̃2+n−m

α̃1

→
q2−q1

→
q1−q3

→q3−q2

, (12)

where

Cm
n =

n!

m!(n − m)!
. (13)

Results (12) can be precisely obtained as follows: perform the inversion qi → 1/qi

(i = 1, 2, 3), k → 1/k in the integrand and in the integral measure. Inversion preserves
the angles between momenta. After the inversion, one propagator disappears, because

∑ αi = d, and the considered triangle turns into a loop. Calculating the loop using (8) and
returning it to the original momenta, we obtain the rule (12). Its extension to the case of
two TPs can be found in [22].

D. For any triangle with indices αi (i = 1, 2, 3), there is the following relation based on
the IBP procedure [7,19,87] (for non-zero n, m, and k values, Equation (14) was obtained in
Refs. [20–22].)

(d − 2α1 − α2 − α3 + n + m + k)
n

m k
α2

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

= α2

[
n

m k
α2+1

α1−1

α3

→
q2−q1

→
q1−q3

→
q3−q2

− (q2 − q1)
2 ×

n

m k
α2+1

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

+m(q2 − q1)
µm ×

n

m−1 k
α2+1

α1−1

α3

→
q2−q1

→
q1−q3

→
q3−q2

]
+ α3

[
α2 ↔ α3, m ↔ k

]
.

(14)

The result (14) can been obtained by introducing the factor (∂/∂kµ) (k − q1)
µ = d to

the integrand of the triangle, shown below as [...], and using the IBP procedure as follows:

d
∫

Dk
[
...
]
=
∫

Dk

(
∂

∂kµ
(k − q1)

µ

) [
...
]
=
∫

Dk
∂

∂kµ

(
(k − q1)

µ
[
...
])

−
∫

Dk (k − q1)
µ ∂

∂kµ

([
...
])

(15)

The first term in the r.h.s. is zero, because it can be represented as a surface integral on
an infinite surface. By calculating the second term in the r.h.s., we reproduce Equation (14).

As can be seen from Equations (14) and (15), the line with the index α1 is distinguished.
The dependence on the indexes of the other line is the same. So, we will call the line
with the index α1 as the “distinguished line”. It is clear that the different selection of the
distinguished line in the triangles of a diagram leads to different types of IBP relations.
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Using the IBP relation (14) allows someone to change FI indexes by an integer. FI
indexes can also be changed using a transformation group [7,88,89] with the elements:

(a) Transition to a coordinate representation;

(b) Conformal inversion transformation p → p′ = p/p2;
(c) A special series of transformations that allows someone to make one of the vertices

unique, and then apply the relation (12) to it.

The extension of the transformation group for diagrams with a TP can be found in
Ref. [22].

n1 n2

n4 n3

n5

α1 α2

α4 α3

α5→
p

Figure 1. FI which cannot be expressed as a combination of loops and chains.

3. Basic Massless Two-Loop FIs

The general topology of the two-loop two-point FI, which cannot be expressed as a
combinations of loops and chains, is shown in Figure 1.

Below, we will mainly focus on two special cases of the FI shown in Figure 1, for
α3 + n3 = α, n3 = n, αj(j ̸= 3) = 1, nj(j ̸= 3) = 0 (denote by I1(α, n)) and for α5 + n5 = α,
n5 = n, αj(j ̸= 5) = 1, nj(j ̸= 5) = 0 (denote by I2(α, n))

I1(α, n) =
n

α

→q
, I2(α, n) = n α→q

(16)

We will calculate the diagrams I1(α, n) and I2(α, n) using FRs similar to those ob-
tained [13,90]. (such FRs were obtained in [13,90] by applying IBP relations to various
highlighted lines.) This greatly reduces the amount of calculations.

Repeating the analysis performed in [13], we obtain the following FRs:

I1(α, n) =
1

q2
I1(α − 1, n)− 1

2ε

(
2I1,1(α, n) + I2,1(α, n)

)
(17)

I2(α, n) =
2

n + d − 2 − 2α
I2,1(α, n)− n + 2d − 4 − 2α

n + d − 2 − 2α

1

q2
I2(α − 1, n) , (18)

where the inhomogeneous terms are
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I11(α, n) =
n

α2

→q
− 1

q2
n

α − 1

2→q
(19)

I21(α, n) =
1

q2
n

α−1

2→q
−

n

α

2

→q
(20)

It can be seen that the inhomogeneous terms in the FRs (17) and (18), i.e., I11(α, n) and
I21(α, n), are combinations of loops and chains, and thus, they are calculated according to
the rules (4) and (8).

We note that, for massless two-point FIs, the subject of the study is the so-called coeffi-
cient functions, i.e., Ci(α, n) and Ci,1(α, n) (i = 1, 2) for the diagrams under consideration
Ii(α, n) and Ii,1(α, n) can be represented as follows

Ii(α, n) = Nd Ci(α, n)
qµ1µ2µ3...µn

q2(α+2ε)
, Ii,1(α, n) = Nd Ci,1(α, n)

qµ1µ2µ3...µn

q2(α+2ε)
. (21)

The result (21) corresponds to the fact that we are considering two-loop FIs. In general,
the L-loop FI IL(α1, α2, α3, ..., αN , n) containing propagators with indices αi (i = 1, 2, 3, ..., N)
and one TP of momenta, can be represented as

IL(α1, α2, α3, ..., αN , n) = Nd CL(α1, α2, α3, ..., αN , n)
qµ1µ2µ3...µn

q2(α−d/2∗(Lε))
. (22)

where α = ∑
N
1 αi.

The coefficient functions Ci(α, n) and Ci,1(α, n) can be directly found from the rules
(4) and (8). They have the form:

C1,1(α, n) = A(2, 1)
(

A0,n(1, α)− A0,n(1, α + ε)
)

, (23)

C2,1(α, n) = A0,n(2, α − 1)A0,n(1, α + ε)− A0,n(1, α)A0,n(2, α + ε) , (24)

where
A(α1, α2) = A0,0(α1, α2) . (25)

and the result for An,m(α1, α2) is shown in Equation (7). Thus, the coefficient functions
Ci,1(α, n) and Ci,1(α, n) (i = 1, 2) are represented as combinations of Γ-functions.

3.1. I1(0, n) and I2(0, n)

The FIs I1(0, n) and I2(0, n) can be considered boundary conditions for the
FRs (17) and (18). Moreover, in a sense, they can be obtained using Equations (4) and (8)
but with the additional resummation.
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Indeed, expanding in the cases of I1(0, n) and I2(0, n), the corresponding momentum
products as follows:

n

∏
i=1

(q − k2)
µi =

n

∑
k=0

Ck
n (−1)k

k

∏
i=1

k
µi
2

n−k

∏
j=1

qµj for I1(0, n) , (26)

n

∏
i=1

(k1 − k2)
µi =

n

∑
k=0

Ck
n(−1)k

k

∏
i=1

k
µi
2

n−k

∏
j=1

k
µj

1 for I2(0, n) , (27)

we found the results of I1(0, n) and I2(0, n) which can be represented as

I1(0, n) =
n

∑
k=0

Ck
n (−1)k

n−k

∏
j=1

qµj I1(0, k) (28)

I2(0, n) =
n

∑
k=0

Ck
n (−1)k I2(n − k, k) (29)

where

I1(0, k) =
k

→q
, I2(n − k, k) =

kn−k
→q

. (30)

Thus, the FIs I1(0, n) and I2(0, n) are combinations of loops and chains, and thus their
coefficient functions can be found using the rules (4) and (8). So, we have for C1(0, n) and
C2(0, n):

C1(0, n) =
n

∑
k=0

Ck
n (−1)k A0,k(1, 1) A0,k(1, 1 + ε) , (31)

C2(0, n) =
n

∑
k=0

Ck
n (−1)k A0,k(1, 1) A0,n−k(1, 1) . (32)

As noted at the beginning of Section 3.1, the results for Ci(0, n) (i = 1, 2) are very im-
portant for obtaining the results of Ci(m, n) for any m values using Equations (17) and (18)
for α = m. However, to calculate Ci(0, n), the additional summation must be performed
(see Equations (31) and (32)), the exact calculation of which can be found in [63]. Here, we
only present the final results for Ci(0, n) (i = 1, 2):

2nC1(0, n − 1) = N̂2

[
1

ε2
S1(n) +

1

2ε

(
3S2

1(n) + 7S2(n)
)

+
7

6
S3

1(n) +
19

2
S1(n)S2(n) +

37

3
S3(n)− 4S2,1(n)

]
, (33)

n(n + 1)C2(0, n − 1) = (1 − (−1)n) N̂1

[
1

ε2
+

2

ε

(
S1(n) +

1

n + 1

)

+2 S2
1(n) + 4 S2(n) + 2S−2(n) + 8

S1(n)

n + 1
+

16

(n + 1)2

]
. (34)

where

S±i(n) =
n

∑
m=1

(±1)m

mi
, S±i,j(n) =

n

∑
m=1

(±1)m

mi
S±j(m), (35)
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ζ(n) = Sn(∞)—Euler zeta-function and N1 and N2 are normalization factors.
The factor N2 is

N̂2 = Γ2(1 + ε)K1K2, K1 =
Γ2(1 − ε)

Γ(1 − 2ε)
, K2 =

Γ(1 − ε)Γ(1 − 2ε)Γ(1 + 2ε)

Γ2(1 + ε)Γ(1 − 3ε)
(36)

Since K2/K1 ∼ O(ε3), it can be replaced by the factor N̂1

N̂1 = Γ2(1 + ε)K2
1 . (37)

It is possible to add the factor N̂1 to the definition of µ2
g-scale of g-scheme [91], which

is related with the usual MS one as µ2
g = K1µ2

MS
(see discussions in Ref. [92]).

3.2. I1(1, n) and I2(1, n)

Now, we calculate the cases I1(1, n) and I2(1, n), which are very important for future
studies. Indeed, we see that the FIs are finite and the corresponding Cj,1(1, n) (j = 1, 2)
have very compact form. Indeed,

C1,1(1, n) = − 1

2ε2

[
2N̂1

B(n + 1,−1,−2)

n + 1 − 2ε
− N̂2

B(n + 1,−2,−3)

n + 1 − 3ε

]
, (38)

C2,1(1, n) = − N̂2

2ε2

B(n + 1,−1,−3)

n + 1 − 2ε
, (39)

where

B(n + 1, a1, a2) =
Γ(n + 1 + a1ε)Γ(1 + a2ε)

Γ(1 + a1ε)Γ(n + 1 + a2ε)
. (40)

Expanding Γ-functions as

Γ(n + 1 + aε)

n!Γ(1 + aε)
= exp

[
−

∞

∑
m=1

(−aε)m

m
Sm(n)

]
, (41)

Γ(1 + aε) = exp

[
−γaε +

∞

∑
m=1

(−aε)m

m
ζm

]
, (42)

with the Euler’s constant γ, we obtain (a± = a1 ± a2))

B(n + 1, a1, a2) = exp

[
−

∞

∑
m=1

(−ε)m

m

[
am

1 − am
2

]
Sm(n)

]
= 1 + a−ε S1(n) +

ε2

2

[
a2
−S2

1(n)− a−a+S2(n)
]

+
ε3

3!

[
a3
−S3

1(n)− 3a2
−a+S1(n)S2(n) + 2(a3

1 − a3
2)S3(n)

]
+ O(ε4) .

(43)

With the evaluation of the results (38) and (39), we see that all singularities are canceled
and the final results are (δm

n for the Kronecker symbol: δn
n = 1 and δm

n = 0 for n ̸= m)

(n + 1)C1(1, n) = S3(n) + S1(n)S2(n)− S2,1(n) + 6ζ3 + O(ε), (44)

(n + 1)C2(1, n) = (1 + (−1)n)

(
3δ0

nζ3 − (1 − δ0
n)

2S−2(n)

n

)
+ O(ε) , (45)

where we use the condition C1(1, n = 0) = 6ζ3, since C2(1, n = 0) = C1(1, n = 0). (The
result C1(1, n = 0) = 6ζ3 can be directly obtained from Equation (45) using an analytic
continuation of S−2(n) (see Appendix A)).

The results (44) and (45) are the real example of the coefficient functions in DIS
structure functions (see, e.g., Refs. [78,79,93]).
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4. Examples of the Calculation of Four-Point Massless FIs

In the previous Section 3, we considered the basic FIs I1(α, n) and I1(α, n) with α = 0
and α = 1.

Here, we study the expansion coefficients of scalar FIs (which we call the FI “mo-
ments”), arising in the investigations of forward elastic scattering. These moments are
extracted from the initial FIs with the help of the method of “projectors” [94–97], the basic
properties of which are considered in Appendix B.

4.1. FIs I1(n + 1, n) and I2(n + 1, n)

Firstly, we consider the two simplest FIs: J1(α = 1, q, p) and J2(α = 1, q, p), shown in
Figure 2. As already discussed above, using the “projectors” method (see Appendix B),
it is possible to introduce the so-called moments Ji(α = 1, n) (i = 1, 2). The moments of
the FIs shown in Figure 2 are represented by the FIs in Equation (16) for α = n + 1, i.e.,
Ji(α = 1, n) = Ii(n + 1, n).

→q →q

→
p

→
p

,
→q →q

→p

→
p

Figure 2. The simplest four-point FIs: J1(α = 1, q, p) and J2(α = 1, q, p).

To calculate the FIs, it is convenient to apply the Fourier transforms [16]

∫
dd p eipx 1

p2α
= 22α̃ πd/2 a0(α)

1

x2α̃
, (α̃ =

d

2
− α, see Equation (7)) , (46)

∫
dd p eipx pµ1 pµ2 pµ3 ...pµn

p2(α+n)
= (−i)n 22α̃ πd/2 an(α + n)

xµ1 xµ2 xµ3 ...xµn

x2α̃
+ ... , (47)

where the symbol “...” marks the neglected terms of the order gµiµj .
The Fourier transform (46) is the usual one (see, e.g., the recent review [16] and

discussion therein) but the Fourier transform (47) can be obtained from Equation (46) using
the projector ∂µ1 /(∂x)µ1 ...∂µn /(∂x)µn .

To show its effectiveness, it is possible to study more complex FIs Ii(α + n, n) (i = 1, 2)
which have coefficient functions Ci(α + n, n)

Ii(α + n, n) = Nd Ci(α + n, n)
qµ1µ2µ3...µn

q2(α+n+2ε)
, (48)

which are similar to Equation (21).
Applying the above Fourier transforms to the l.h.s., we obtain the following FIs in the

x-space:

n

α̃

1−ε

1−ε

1−ε

1−ε
0 x

, n

1−ε

1−ε

1−ε

1−ε

α̃

0 x
.

If we replace x and all internal coordinates with the momentum q and the correspond-
ing internal momenta, we obtain equivalent diagrams in momentum space. We call them
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Ii(α̃, n). We call such a replacement a “dual transformation” (see discussion in [16]) and

denote as
d
=. So, we obtain

n

α̃

1−ε

1−ε

1−ε

1−ε
0 x

d
=

n

α̃

1−ε

1−ε

1−ε

1−ε→q
, n

1−ε

1−ε

1−ε

1−ε

α̃

0 x

d
= n

1−ε

1−ε

1−ε

1−ε

α̃→q
.

We denote the coefficient functions of the last FIs as Ci(α̃, n), i.e.,

Ii(α̃, n) = Nd Ci(α̃, n)
qµ1µ2µ3...µn

q2(α̃−2ε)
. (49)

Performing Fourier transforms for both parts of Equation (48) (see Ref. [16]), we
obtain the relations between the coefficient functions Ci(α + n, n) and Ci(α̃, n) in the fol-
lowing form:

Ci(α + n, n) = K(α + n, n)Ci(α̃, n) , (50)

where

K(α + n, n) =
a4

0(1)an(α + n)

an(α + n + 2ε)
=

Γ4(1 − ε)Γ(α̃)Γ(α + n + 2ε)

Γ(α + n)Γ(α̃ − 2ε)
. (51)

Now, we return to the case α = 1, then

Ci(1 − ε, n) = Ci(1, n) + 0(ε0), K(n + 1, n) =
Γ5(1 − ε)Γ(n + 1 + 2ε)

n!Γ(1 − 3ε)
= 1 + 0(ε0) . (52)

So, we see from Equation (50) that

Ci(n + 1, n) = Ci(1, n) + O(ε) . (53)

i.e.,

(n + 1)C1(n + 1, n) = S3(n) + S1(n)S2(n)− S2,1(n) + 6ζ3 + O(ε), (54)

(n + 1)C2(n + 1, n) = (1 + (−1)n)

(
3δ0

nζ3 − (1 − δ0
n)

2S−2(n)

n
+ O(ε)

)
. (55)

4.2. FIs I1(n + 2, n) and I2(n + 2, n)

Now, we consider the more complicated FIs J1(α = 1, q, p) and J2(α = 1, q, p) shown
in Figure 3.

→q →q

→
p

→p

,
→q →q

→p

→p

Figure 3. The FIs J1(α = 1, q, p) and J2(α = 1, q, p).

Their moments Ji(α = 1, n) (i = 1, 2) are equal to the FIs in Equation (16) with
α = n + 2, i.e., to Ii(n + 2, n). Their coefficient functions Ci(n + 2, n) (i = 1, 2) can be
expressed in terms of the Ci(n + 1, n) given in Equations (54) and (55) and Ci1(n + 2, n)
given in Equations (23) and (24) with α = n + 2.

Performing calculations, we obtain C11(1, n) and C21(1, n) in the following form
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C11(n + 2, n)

1/(2ε2)
= 2N̂1

B(n + 1, 1, 0)

n + 1
− N̂2

B(n + 1, 2, 1)

n + 1 + ε
= 2N̂1

B(n + 2, 1, 0)

n + 1 + ε
− N̂2

B(n + 2, 2, 1)

n + 1 + 2ε
, (56)

C2,1(n + 2, n)

N̂2/(2ε2)
=

B(n + 1, 1, 0)

n + 1 + ε
B(n + 1, 2, 1)− 3

B(n + 1, 1, 0)

n + 1
B(n + 2, 2, 1) , (57)

where the normalizations N̂1 and N̂2 and the factors K1 and K2 are given in
Equations (37) and (36), respectively.

Evaluating the r.h.s. of Equations (56) and (57), after some algebra, we have obtain the
final results as

n
C1(n + 1, n − 1)

N̂2
=

1

2ε2
S1(n) +

1

4ε

[
3S2

1(n)− 5S2(n)
]
+

7

12
S3

1(n)

−5

4
S1(n)S2(n) +

19

6
S3(n)− 2S2,1(n)−

S1(n)

n2
, (58)

n(n + 1)
C2(n + 1, n − 1)

N̂2
= (1 − (−1)n)

(
1

ε2
+

2

ε

[
S1(n)−

1

n + 1

]

+2S2
1(n)− 2S2(n)− 4

S1(n)

n + 1
+

1

(n + 1)2

)
, (59)

where we added the extra factor (1 − (−1)n)/2 to the coefficient function C2(n + 1, n − 1).
The demonstration of even more complicated examples can be seen in Refs. [20–22].

We note that, for FIs containing several propagators depending on the momentum
p (see, e.g., Ĵ1(α, β, q, p) in Appendix B), their moments contain the sum of two-point FIs
(see, for example, the moment Ĵ1(α, β, n) in Appendix B). Calculating the moments of such
a type is a much more difficult task than Ii(n + 1, n) and Ii(n + 2, n) with the (i = 1, 2)
considered above. However, as it was shown in Ref. [22], it is almost always possible
to split in the contributions the complicated integrals and complicated series. Moreover,
ε-singularities are only contained in the simplest parts, which can usually be summed up
in all orders in ε.

5. kR′-Operation

The calculation of massless FIs is the most important procedure for calculating the
critical parameters of models and theories, such as the anomalous dimensions of fields
and operators, as well as β-functions. One of the most convenient calculation recipes is
that of the Bogolyubov–Parasyuk–Hepp–Zimmerman (BPHZ) R-operation [98–100], which
sequentially extracts all FI singularities. Formally, it has the following form

R[FI] = FI − kR′[FI], (60)

where kR′ is the operation that takes into account all the singularities of the FI subgraphs,
with the exception of the singularities of the FI itself. The very important property of
the kR′-operation is the independence of the results of its application from the external
momenta and masses. The independence is the basis of the so-called infra-red rearrange-
ment approach [101] (as can also be seen in Ref. [102–104]), which gives a possibility to
only study FIs with the minimum possible set of masses and external momenta. We note
that such neglecting masses and momenta should not lead to an appearance of infrared
singularities. The possibility to delete and modify external momenta is widely used (see,
e.g., [105] and the discussions therein). We will try to show this in our examples below,
where we take a detailed look at the computation of singular structures up to five-loop FIs
that contribute to the β-function of the φ4 model.

To demonstrate the opportunities of the kR′-operation, it is useful to start with one-
loop and two-loop FIs.
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One loop. Putting α1 = α2 = 1 in Equation (8), we obtain

→q
= Nd A(1, 1)

µ2ε

q2ε
= Nd

Γ2(1 − ε)

εΓ(2 − 2ε)

µ2ε

q2ε
, (61)

where Nd is given in Equation (6) and µ is the renormalization scale in the MS-scheme,
defined as

µ2ε = µ2ε (4π)ε Γ(1 + ε) . (62)

By definition, kR′ is an operation, which is equal to k-operation in the one-loop case,
since there are no subgraphs, i.e.,

k

[

→q

]
= N4

1

ε
, N4 = Nd=4 =

1

(4π)2
, (63)

which, of course, does not depend on q2.
Two loops. Now, we consider the following FI

→q
= N2

d A(1, 1) A(1, 1 + ε)
µ4ε

q4ε
=

N2
d

2ε2(1 − 2ε)

Γ3(1 − ε)Γ(1 + 2ε)

Γ(2 − 3ε)Γ2(1 + ε)

µ2ε

q2ε
. (64)

As already mentioned, the R′-operation extracts the singularities of subgraphs. In the
case under consideration, we have a singular inner loop, the singularity of which is shown
above in Equation (63). Thus, the R′-operation of the considered two-loop FI has the form

R′
[

→q

]
= →q

− N4
1

ε →q
. (65)

Evaluating diagrams in the r.h.s. and taking their singular parts (by the k-operation),
we obtain

kR′
[

→q

]
= k

[

→q
− N4

1
ε →q

]

= N2
4

[
1

2ε2

(
1 +

(
5 + 2L

)
ε
)
− 1

ε2

(
1 +

(
2 + L

)
ε
)]

= N2
4

[
− 1

2ε2 +
1
2ε

]
,

(66)

where

L = ln

(
µ2

q2

)
. (67)

As we can see, the result is q2-independent, which is due to the local renormaliza-
tion properties.
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Three and four loops. To find three- and four-loop corrections to the β-function of the
φ4 model, it is necessary, in particular, to calculate the singular parts of the following
vertex FIs:

,
(68)

For the first diagram, we have

k

[ ]
=

N4

3ε
Finite

[ ]
=

2N3
4

ε
ζ3 , (69)

where we used the result C2(n + 1, n) in Equation (55) for n = 0.
We note that, for αi = 1 + aiε, there is the following result (beyond O(ε2), the coeffi-

cients of the expansion can be found in [15,90].).

α1 α2

α4 α3

α5

→q
=

N̂2
d

(q2)1+(a+2)ε

1

1 − 2ε

[
6ζ3 + 9ζ4ε +

(
42 +

2

∑
i=1

A2,i)ζ5ε2 + O(ε3)
]

, (70)

where

N̂d = Nd Γ(1 + ε), a = ∑
5
i=1 ai, A2,1 = 30A1 + 45a5, An = ∑

4
i=1 an

i ,

A2,2 = 10A2 + 45a2
5 + 15A1a5 + 10

(
a1a2 + a3a4 + a1a4 + a2a3

)
+ 5
(
a1a3 + a2a4

)
.

(71)

The result (70) was obtained using the IBP relation (14) and transformation rules (see,
e.g., [15] and the references therein). Indeed, for the case α2 = α4 = α5 = 1, we have from
Equation (14)

α1

α4

→q
(d − 2 − α1 − α4) = α1

[

→q

α1 + 1

α4

−→q
α1+1

α4

]

+α4

[
α1 ↔ α4

]
=
(

α1 A(α1 + 1, α4) + α4 A(α1, α4 + 1)
)

×
[

A(1, 1)− A(α1 + α4 − 1 + ε, 1)
]

N2
d

(q2)α1+α4−1+2ε .

(72)

For the second diagram in (68), we have
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k
[

B

A

]
= k

[

BA

]
, (73)

since the singularity does not depend on the external momenta. So, we have

k
[

B

A

]
=

N4

4ε
Finite

[ ]
=

5N4
4

ε
ζ5 , (74)

because

→q
=
[
20ζ5 + O(ε)

] N̂3
d

(q2)1+3ε
. (75)

The result (75) can be obtained as follows. Using the IBP relation for an interior triangle
with the distinguished line between the top interior points, we have

→q
(
d − 4

)
= 2

[
2

→
q

− 2
→q

]

= 2Nd A(2, 1)

[
1+ε →q

−
1+ε

→q

]
.

(76)

Using other IBP relations and transformation rules (see, e.g., [15] and references
therein), a more accurate result can be obtained for αi = 1 + ai (i = 1, 2, 3, ..., 7)

α1

α5

α6

α2

α3

α4

α7 →q
=

N̂3
d

(q2)1+a+3ε

1

1 − 2ε

[
20ζ5 +

(
50ζ6 +

(
44 − a4567

)
ζ2

3

)
ε + O(ε2)

]
, (77)

where a4567 = ∑
7
i=4 ai and a = ∑

7
i=1 ai.

Five Loop Corrections in the φ4 Model

We apply the method described above to the calculation of five-loop singularities
in the φ4 model. In this regard, let us recall that the five-loop corrections to anomalous
dimensions and the β-function in this model in the scheme MS were calculated a long time
ago in [30]. For a complete calculation, it was necessary to calculate about 120 diagrams.
The results for all but four were analytically found using the IBP procedure. For the four
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most complex diagrams, the application of the decomposition of one of the propagators
into Gegenbauer polynomials led to results in the form of a triple infinite convergent
series. The computer summation of the series allowed the authors to achieve good accuracy.
However, it was desirable to obtain an analytic assessment of these contributions, which
was performed by Kazakov (see Refs. [13,90]). To show the possibilities of the methods
discussed above, we present the calculation of two of these complex FIs, which have the
following form

, .
(78)

First FI. Calculating the first FI with an accuracy of O(ε−1) is equal to calculating
the diagram

(79)

with an accuracy of O(ε). Using the IBP procedure to the left triangle with the vertical
distinguished line, we have the following relation:

(d − 4) = 2

[

2

−
2

]
. (80)

The first diagram in the r.h.s. is the product of one-loop and two-lop FIs that are
already considered above. To evaluate the second diagram, the IBP procedure is applied to
the left triangle with the upper distinguished line to the diagram in Equation (75). We have

→q
(
d − 4

)
= 2 2

→q
− 2

→
q

−q2

2 →q
. (81)

Taking this equation together with Equation (76), we obtain the following

q2

2 →q
= 4 2

→q
− 3 2

→
q

. (82)
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Then, plugging this result into the r.h.s. of Equation (80) and calculating the one-loop
diagram, we have for the r.h.s.:

2Nd

q2
A(2, 1)

[

→q
q2ε + 3 1+ε →q

− 4
1+ε

→q

]
. (83)

Evaluating these two-loop master integrals using the result provided by Equation (70),
we obtain the results of the FI in Equation (79) with the accuracy O(ε2):

=
N3

d

(q2)2+3ε

1

1 − 2ε

[
20ζ5 +

(
50ζ6 + 44ζ2

3

)
ε +

(
317ζ7 + 132ζ4ζ3

)
ε2 + O(ε3)

]
. (84)

Taking into account the two additional loops, we have the additional factor:

A(1, 2 + 3ε)A(1, 1 + 4ε) = − N2
d

20ε2

1

(1 + 3ε)(1 − 6ε)

Γ2(1 − ε)Γ(1 − 4ε)Γ(1 + 6ε)

Γ(1 + 3ε)Γ(1 − 6ε)
. (85)

So, the final result for the first FI in Equation (78) has the form:

= − N̂5
d

(q2)5ε

1

20(1 − 2ε)(1 + 3ε)(1 − 6ε)

×
[

20

ε2
ζ5 +

(
50ζ6 + 44ζ2

3

)1

ε
+ 317ζ7 + 132ζ4ζ3 + O(ε)

]
. (86)

Second FI. Now, consider the second FI in Equation (78). The kR′-operation of the
diagram has the following form

kR′
[

A B

→q

]
= k

[

A B

→q
− N4

1

ε A

B

→q

]
, (87)

which contains the FI itself and its counter-term containing the inner-loop singularity.
Since the r.h.s. should be q2-independent, the external momenta can be canceled and

inserted into points A and B:

kR′
[

A B

→q

]
= k

[

A B

→q
− N4

1

ε A

B

→q

]
. (88)

The r.h.s. now looks like this
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I4

A B

→q
− N4

ε
I3

A B

→q
= Nd C4 A(1, 1 + 4ε)

(
µ2

q2

)5ε

− NdN4
C3

ε
A(1, 1 + 3ε)

(
µ2

q2

)4ε

, (89)

where integrals I4 and I3 are internal blocks forming the FIs in r.h.s. of Equation (88) after
integrating these blocks with the propagator connecting points A and B. Due to dimensional
properties, integrals I4 and I3 should have the form

I4

A B

→q
= N4

d C4
(µ2)4ε

(q2)1+4ε
, I3

A B

→q
= N3

d C3
(µ2)3ε

(q2)1+3ε
, (90)

where C4 and C3 are the coefficient functions of the I4 and I3 integrals.
So, we have that

kR′
[

A B

→q

]
= N4 Sing

[
C4 A(1, 1 + 4ε) − C3

ε
A(1, 1 + 3ε)

]
, (91)

where all q2-dependence is canceled in the r.h.s. singularities.
For FIs similar to the diagrams in r.h.s. of Equation (88), but with the index 1 − ε on

the line between A and B, we have the following

kR′
[

A B

C

1−ε

→q

]
= N4 Sing

[
C4 A(1 − ε, 1 + 4ε) − C3

ε
A(1 − ε, 1 + 3ε)

]
. (92)

We would like to note that, in the l.h.s., we can extract the line between points A and
C, as an external line; then, we have

kR′
[

A B

C

1−ε

→q

]
= k

[

A B

C

1−ε→q

− 1

ε A

B

C

1−ε

→q

]
(93)

and, thus,

kR′
[

A B
1−ε

→q

C ]
= N4 Sing

[
C4,1 A(1, 1 + 3ε) − C3,1

ε
A(1, 1 + 2ε)

]
, (94)

where C4,1 and C3,1 are the coefficient functions of the integrals I4,1 and I3,1, which are
internal blocks that create FIs in the r.h.s. of Equation (93) after integrating these blocks
with the propagator between points A and C. Due to the dimension properties, the I4,1 and
I3,1 integrals can be represented in the form
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I4,1

A C

→q
= N4

d C4,1
(µ2)4ε

(q2)1+3ε
, I3,1

A C

→q
= N3

d C3,1
(µ2)3ε

(q2)1+2ε
, (95)

because both I4,1 and I3,1 contain one line with the index 1 − ε.
Now, consider an FI similar to the original one, but with lines between points A and B

and points A and C having indexes 1 − ε. Taking, as stated above, the line between points
A and C as the outer one, we obtain the results

kR′
[

A B

D E

1−ε

1−ε

→q

C ]
= N4 Sing

[
C4,1 A(1 − ε, 1 + 3ε) − C3,1

ε
A(1 − ε, 1 + 2ε)

]
. (96)

Now, we can represent the l.h.s. FI as blocks containing two lines with the index 1 − ε
and some additional lines between D and E:

kR′
[

A B

C
D E

1−ε

1−ε

→q

]
= k

[

A B

C
D E

→q
1−ε

1−ε
− 1

ε A

B

C
D E

1−ε

1−ε
→q

]

= Nd Sing

[
C4,2 A(1, 1 + 2ε) − C3,2

ε
A(1, 1 + ε)

]
, (97)

where C4,2 and C3,2 are the coefficient functions of integrals I4,2 and I3,2, which can be
obtained from r.h.s. FIs by removing the line between D and E. Since I4,2 and I3,2 have two
lines with index 1 − ε, from the dimension properties, they can be represented as

I4,2

D E

→q
= N4

d C4,2
(µ2)4ε

(q2)1+2ε
, I3,2

D E

→q
= N3

d C3,2
(µ2)3ε

(q2)1+ε
, (98)

Now, consider the FI I4.2. Integrating the inner loop, we obtain the following

A B

C
D E

→q
1−ε

1−ε
= Nd A(1, 1)

A B

C
D E

→q
ε 1−ε

1−ε
. (99)

The DAC vertex in the r.h.s. FI is a unique vertex and therefore can be replaced by the
corresponding triangle, as shown in Equation (12). So, we see that

Nd A(1, 1)

A B

C
D E

→q
ε 1−ε

1−ε
=

D

B

C
D E2−2ε

→q
(100)

Now, the triangle CBE in the r.h.s. FI is uniquetriangle and therefore can be replaced
by the corresponding vertex according to the rule (12):
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D

B

C
D E2−2ε

→q
= Nd A(1, 1)

D

B

C
D Eε

1−ε

1−ε
→q

(101)

So, finally we obtain

A B

C
D E

→q
1−ε

1−ε
= Nd A(1, 1)

D

B

C
D Eε

1−ε

1−ε
→q

= Nd A(1, 1) J
(1)
1

1

q2ε
, (102)

where the integral J
(1)
1 is table one (see Ref. [16]) (note that the results obtained in [16] are a

simple recalculation of the previously obtained x-space results [8–13]. It is convenient to
use the concept of so-called dual diagrams for recalculation (see, for example, Refs. [20–22]
and the discussion in Section 4.1), which were obtained from the original FIs by replacing
all momenta with coordinates. With such a replacement, the results themselves remain
unchanged, only their graphical representation changes. As a rule, dual diagrams are used
in the massless case (as can be seen in [20–22]), but sometimes they are also used for FIs

with massive propagators (see, for example, [28,29,106])): J
(1)
1 = J1(1, 1, 1, 1, 1, 1 − ε, 1 − ε).

Here,

J1(a1, a2, a3, a4, a5, a6, a7)(q
2) =

a1

a3

a2

a6

a7

a5

→q
a6

= N3
4 C1(a1, a2, a3, a4, a5, a6, a7)

(µ2)3ε

(q2)a−3d/2
, (103)

where a = ∑
7
k=1 ai, a4567 = ∑

7
k=4 ai and

C1(a1, a2, a3, a4, a5, a6, a7) =
1

1 − 2ε

[
20ζ5 +

(
50ζ6 +

(
20 + a4567

)
ζ3

3

)
ε + O(ε2)

]
. (104)

By entering short notations C
(1)
1 = C1(1, 1, 1, 1, 1, 1 − ε, 1 − ε) and C

(0)
1 = C1(1, 1, 1,

1, 1, 1, 1), it is convenient to write the following:

C
(1)
1 = C

(0)
1

(
1 +

3ζ2
3

10ζ5
ε

)
, (105)

where

C
(0)
1 =

10

1 − 2ε

[
2ζ5 +

(
5ζ6 + 2ζ3

3

)
ε + O(ε2)

]
(106)

The counter-terms I3(q
2), I3,1(q

2) and I3,2(q
2) can also be expressed through

J1(a1, a2, a3, a4, a5, a6, a7) in the form:

I3,2(q
2) = J1(1, 1 − ε, 1 − ε, 1, 1, 1, 1), I3,1(q

2) = J1(1 − ε, 1, 1, 1, 1, 1, 1), I3(q
2) = J1(1, 1, 1, 1, 1, 1, 1) . (107)

So, within the accuracy O(ε2), their coefficient functions exactly coincide:

C3 = C3,1 + O(ε2) = C3,2 + O(ε2) = C
(0)
1 + O(ε2) . (108)



Symmetry 2024, 16, 52 21 of 41

Taking into account the above relations and the one-loop results A(α, β), it can be
shown that with an accuracy of O(ε2), the results for the four-loop coefficient functions are
also the same. Indeed, we obtain

C4,1 = C4,2
A(1, 1 + 2ε)

A(1 − ε, 1 + 3ε)
− C3,1

ε

e(−Lε)

A(1 − ε, 1 + 3ε)

[
A(1, 1 + ε)− A(1 − ε, 1 + 2ε)

]
+ O(ε2),

C4 = C4,1
A(1, 1 + 3ε)

A(1 − ε, 1 + 4ε)
− C3

ε

e(−Lε)

A(1 − ε, 1 + 4ε)

[
A(1, 1 + 2ε)− A(1 − ε, 1 + 3ε)

]
+ O(ε2) .

The terms ∼ C3,1 and ∼ C3 are suppressed and we obtain the following

C4 = C4,1 + O(ε2) = C4,2 + O(ε2) (109)

and, thus,

C4 = C
(1)
1 + O(ε2) = C

(0)
1

(
1 +

3ζ2
3

10ζ5
ε

)
+ O(ε2) . (110)

So, the results for initial diagrams, as shown in the r.h.s. of Equation (87), using the
r.h.s. of Equation (91), can be represented as

→q
= N5

4

C
(1)
1

5ε2(1 − 2ε)(1 − 6ε)

(
µ2

q2

)5ε

(111)

and

→q
= N4

4

C
(0)
1

4ε2(1 − 5ε)

(
µ2

q2

)4ε

. (112)

So, for the second diagram in Equation (78), we have

kR′
[

A B

→q

]
= N5

4 Sing

[
C
(1)
1 e5Lε

5ε2(1 − 2ε)(1 − 6ε)
− C

(0)
1 e4Lε

4ε2(1 − 5ε)

]
, (113)

where the definition of L is presented in Equation (67). Taking into account the results for

C
(1)
1 and C

(0)
1 , given in Equations (105) and (106), respectively, we obtain the final following

result:

kR′
[

→q

]
= −N5

4

[
ζ5

ε2
+

1

ε

(
5

2
ζ6 +

17

5
ζ2

3 − 5ζ5

)]
. (114)

The reception of this result came a long way; however, all steps are absolutely trans-
parent. Moreover, a similar approach can be used to evaluate other FIs.
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6. Calculation of Massive FIs

FIs with massive propagators are significantly more complicated objects compared to
massless FIs. The basic rules for FI calculating, as already discussed in Section 2, should be
supplemented with new rules containing directly massive propagators. These additional
rules will be introduced now.

A propagator with the index α and mass M is graphically represented as

1

(q2 + M2)α
=

M

α→q
, (115)

The following useful formulas exist.
A. The product of propagators with indices α1 and α2 and with the same mass M

(i.e., the chain of two massive propagators with the same mass) is equivalent to a new
propagator with index α = α1 + α2 and mass M:

1

(q2 + M2)α1

1

(q2 + M2)α2
=

1

(q2 + M2)(α1+α2)
,

or graphically

M M

α1 α2→q
=

M

α1 + α2→q
. (116)

B. Massive tadpole is exactly integrated:

∫
Dk

k2α1(k2 + M2)α2
= Nd

R(α1, α2)

M2(α1+α2−d/2)

where

R(α, β) =
Γ(d/2 − α1)Γ(α1 + α2 − d/2)

Γ(d/2)Γ(α2)
. (117)

C. The result of calculating the FI containing two massive propagators (i.e., a loop)
with masses M1 and M2 and indices α1 and α2 can be represented as a 2F1-hypergeometric
function that can be obtained in various ways, for example, by the Feynman-parameter
method. However, using this approach, it is very useful to represent the loop as a one-fold
integral of the new propagator with an ‘effective mass’ µ [23–27,62,107–110]:

×
∫

Dk

[(q − k)2 + M2
1]

α1 [k2 + M2
2]

α2

= Nd
Γ(α1 + α2 − d/2)

Γ(α1)Γ(α2)

∫ 1

0

ds sα1−1 (1 − s)α2−1

[s(1 − s)q2 + M2
1s + M2

2(1 − s)]α1+α2−d/2

= Nd
Γ(α1 + α2 − d/2)

Γ(α1)Γ(α2)

∫ 1

0

ds

s1−α̃2 (1 − s)1−α̃1

1

[q2 + µ2]α1+α2−d/2
,

(
µ2 =

M2
1

1 − s
+

M2
2

s

)
.

It is convenient to also rewrite the equation graphically:

M2

M1

α1

α2

→q
= Nd

Γ(α1 + α2 − d/2)

Γ(α1)Γ(α2)

∫ 1

0

ds

s1−α̃2 (1 − s)1−α̃1

µ

α1+α2−d/2→q
. (118)
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D. For any triangle with masses Mi (i = 1, 2, 3) and indices αi, the following relation is
obtained using the IBP procedure [7,19,23–27,87]

(d − 2α1 − α2 − α3)
M1

M2 M3

α2

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

= α2

[ M1

M2 M3

α2+1

α1−1

α3

→
q2−q1

→
q1−q3

→
q3−q2

−
[
(q2 − q1)

2 + M2
1 + M2

2

]
×

M1

M2 M3

α2+1

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

]

+α3

[
α2 ↔ α3, M2 ↔ M3

]
− 2M2

1α1 ×
M1

M2 M3

α2

α1+1

α3

→
q2−q1

→
q1−q3

→
q3−q2

. (119)

By analogy with the massless case (see Equation (14)), Equation (119) can be obtained
by introducing the coefficient d = (∂/∂kµ) (k − q1)

µ to the subintegral expression of the
triangle and using integration by parts as in Equation (15).

Also, similarly to the massless case, the line with the index α1 enters asymmetrically,
and as a result, it is distinguished. Therefore, we will call the line with the index α1 as the
“distinguished line”. It is clear that there are different relationship options with different
distinguished lines leading to different types of IBP relations.

7. Two-Loop On-Shall MI

Here, we consider the two-loop on-shall MI (in this section, we use the condition
q2 = −m2, since Euclidean space is used)

I(m2, M2) =

m

m

M

M

→q
. (120)

It contributes the αs-correction to the ratio between the MS and the pole masses of the
Higgs boson in the standard model.

Except in special cases, below we will not specify the masses of m and M, but rather
thin and thick lines for the propagators with m and M, respectively.

Applying the IBP relation for the inner loop of the FI I(m2, M2), we obtain

(d − 3) I(m2, M2) =

2

− 2 − (4M2 − m2)

2

, (121)

where the last integral in the r.h.s. can be represented as

−1

2

∂

∂M2
I(m2, M2) . (122)
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Thus, Equation (121) can be represented as the DE

(4M2 − m2)
1

2

∂

∂M2
I(m2, M2) = (d − 3) I(m2, M2) + J(m2, M2) , (123)

with the inhomogeneous term (IT)

J(m2, M2) = 2 −
2

, (124)

which contains only substantially simpler FIs. The DE solution with the boundary condition

J(m2, M2 → ∞) = 0 has the following form

I(M2, m2) = N2
d I(x)

(µ2)2ε

(m2)2ε
, J(M2, m2) = N2

d J(x)
µ2

(m2)2ε
, (125)

I(x) = −(4x − 1)1/2−ε
∫ ∞

x

2I1(x1)dx1

(4x1 − 1)3/2−ε
= − (4 − z)1/2−ε

z1/2−ε

∫ z

0

2J(z1)dz1

z1/2+ε
1 (4 − z1)(3/2−ε)

, (126)

where

x =
M2

m2
, z =

M2

m2
=

1

x
. (127)

Applying the IBP procedure for each FI included in J(M2, m2), we obtain similar DEs
for them. Solving these DEs, we obtain the following result for J(x)

J(z) =

[
− 1

2ε2
+

(
a1 −

3

2

)
1

ε
+ a2 + 2a1 −

9

2
+ a1 ln z +

1 − z

z
Li2(z) +

1

2
ln2 z

]
, (128)

where

a1 = − π√
3

, a2 =
4√
3

Cl2

(π

3

)
− π√

3
ln 3, Li2(z) = Li2(z) + ln z ln(1 − z) (129)

and Li2(z) is the dilogarithm [111] (for more complicated functions, see Ref. [112]).

I(x)

To calculate the FI I(x), we need to calculate several integrals. The first integral, which
contains the x-independent part of J(x), is simple:

I1(x) = (4x − 1)1/2−ε
∫ ∞

x

dx1

(4x1 − 1)3/2−ε
=

1

2(1 − 2ε)
. (130)

The remaining integrals will be calculated up to ε = 0.
The integral ∼ ln z in J(x) is convenient to calculate using the IBP procedure (the IBP

procedure was used in a similar way for integral representations in a recent paper [113],
where FIs containing elliptic structures were considered). how

I2(x) = (4x − 1)1/2
∫ ∞

x

dx1

(4x1 − 1)3/2
ln

(
1

x1

)
=

1

2

[
ln

(
1

x

)
− Ĩ(x)

]
, (131)

where (see Appendix C)

Ĩ(x) = (4x − 1)1/2
∫ ∞

x

dx1

x1(4x1 − 1)1/2
=

(4 − z)1/2

z1/2

∫ z

0

dz1

z1/2
1 (4 − x1)1/2

=
2

t

∫ t

0

dt1

1 + t2
1

= −1 + y

1 − y
ln y (132)
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and, thus,

I2(x) =
1

2

[
ln z +

1 + y

1 − y
ln y

]
. (133)

Similarly, the integral ∼ ln2 z in J(x) is calculated as

I3(x) = (4x − 1)1/2
∫ ∞

x

dx1

(4x1 − 1)3/2
ln2

(
1

x1

)
=

1

2

[
ln2

(
1

x

)
+ 2 Ĩ1(x)

]
, (134)

where (see Appendix C)

Ĩ1(x) = (4x − 1)1/2
∫ ∞

x

dx1

x1(4x1 − 1)1/2
ln x1 = − (4 − z)1/2

z1/2

∫ z

0

dz1

z1/2
1 (4 − x1)1/2

ln z1

= −2

t

∫ t

0

dt1

1 + t2
1

ln[z1(t1)] = −1 + y

1 − y

∫ 1

y

dy1

y1
ln[z1(y1)] . (135)

The integral in r.h.s. is also calculated using the IBP procedure:

−
∫ 1

y

dy1

y1
ln[z1(y1)] = ln y ln z −

∫ 1

y

dy1(1 + y1)

y1(1 − y1)
ln y1 = ln y ln z +

1

2
ln2 y + 2Li2(1 − y) ≡ T1(y) , (136)

and thus,

Ĩ1(x) =
1 + y

1 − y
T1(y) and I3(x) =

1

2
ln2 z +

1 + y

1 − y
T1(y) . (137)

Similarly, we can calculate the term ∼ Li2(z) in J(x). Indeed, we have

I4(x) = (4x − 1)1/2
∫ ∞

x

dx1 (x1 − 1)

(4x1 − 1)3/2
Li2(1/x1) =

1

2

[
−2 + z

2z
Li2(z) + Ĩ2(x)

]
, (138)

where

Ĩ2(x) = −(4x − 1)1/2
∫ ∞

x

dx1 (x1 + 1/2)

x1(4x1 − 1)1/2

∂

∂x1
Li2(1/x1)

=
(4 − z)1/2

z1/2

∫ z

0

dz1 (2 + z1)

2z1/2
1 (4 − z1)1/2

∂

∂z1
Li2(z1) (139)

Since
∂

∂z
Li2(z) = − ln z

1 − z
(140)

we obtain

Ĩ2(x) = − (4 − z)1/2

z1/2

∫ z

0

dz1 (2 + z1)

2z1/2
1 (4 − z1)1/2

ln z1

1 − z1
= −2

t

∫ t

0

dt1 (1 + 3t2
1)

(1 + t2
1)(1 − 3t2

1)
ln[z1(t1)]

=
1

t

∫ t

0
dt1

[
1

1 + t2
1

− 3

1 − 3t2
1

]
ln[z1(t1)] = −1

2

1 + y

1 − y
T1(y)− 3 Ĩ21(x) . (141)

Now, we evaluate the term Ĩ21(x). Considering a simpler integral at the beginning

∫ t

0
dt1

1

1 − 3t2
1

= − 1

2
√

3
ln

(
1 −

√
3t

1 +
√

3t

)
, (142)

we see the appearance of the new useful variable

ξ =
1 −

√
3t

1 +
√

3t
(143)
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Using this new variable ξ, we have for Ĩ21(x) (see also Appendix C):

Ĩ21(x) =
1

2
√

3t

∫ 1

ξ

dξ1

ξ1
ln

(
(1 − ξ1)

2

(1 + ξ1 + ξ2
1)

)
(144)

Since
(1 − ξ1)

2

(1 + ξ1 + ξ2
1)

=
(1 − ξ1)

3

(1 − ξ3
1)

and
1√
3t

=
1 + ξ

1 − ξ
, (145)

we can represent the integral Ĩ21(x) as (the structure (1 + ξ1 + ξ2
1), appearing in the inte-

grand in Equation (144), leads to the appearance of the polylogarithms with the argument
ξ3 (see also [62,114–119]). In general, this structure leads to the appearance of the cyclotron
polylogarithms [120–122].)

Ĩ21(x) =
1 + ξ

2(1 − ξ)

[
3Li2(ξ)−

1

3
Li2(ξ

3)− 8

3
ζ2

]
≡ 1 + ξ

2(1 − ξ)
T2(ξ) (146)

and thus,

Ĩ2(x) = − 1 + y

2(1 − y)
T1(y)−

3(1 + ξ)

2(1 − ξ)
T2(ξ) ,

I4(x) = −2 + z

4z
Li2(z)−

1 + y

4(1 − y)
T1(y)−

3(1 + ξ)

4(1 − ξ)
T2(ξ) (147)

So, the initial FI I(x) is expressed as

I(x) =
1

2

(
1

ε2
+

5 − 2a1

ε
+ 19 − 8a1 − 2a2

)
− a1

[
ln z +

1 + y

1 − y
ln y

]
− 1

2
ln2 z

+
2 + z

2z
Li2(z)−

1 + y

2(1 − y)
T1(y) +

3(1 + ξ)

2(1 − ξ)
T2(ξ) . (148)

8. Basic Massive Two-Loop FIs

The general topology of the two-loop two-point FI, which is not expressed as a combi-
nation of loops and chains, is shown in Figure 4.

M1 M3

M2 M4

M5→
p

,

M1

M3

M2
M4

M5M6→

→

→

q

q1

q2

Figure 4. Two-loop two-point FI I(M1, M2, M3, M4, M5) and three-point FI P(M1, M2, M3, M4,

M5, M6) with q2
1 = q2

2 = 0.

Below, we study the two-loop two-point and three-point FIs, which are special cases
of the FIs shown in Figure 4. We call these:
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Ij = I(Mj = M ̸= 0, Mp = 0, p ̸= j), Iij = I(Mi = Mj = M ̸= 0, Mp = 0, p ̸= i ̸= j),

Iijs = I(Mi = Mj = Ms = M ̸= 0, Mp = 0, p ̸= i ̸= j ̸= s),

Iijst = I(Mi = Mj = Ms = Mt = M ̸= 0, Mp = 0, p ̸= i ̸= j ̸= s ̸= t), (149)

Pj = P(Mj = M ̸= 0, Mp = 0, p ̸= j), Pij = P(Mi = Mj = M ̸= 0, Mp = 0, p ̸= i ̸= j),

Pijs = P(Mi = Mj = Ms = M ̸= 0, Mp = 0, p ̸= i ̸= j ̸= s),

Pijst = P(Mi = Mj = Ms = Mt = M ̸= 0, Mp = 0, p ̸= i ̸= j ̸= s ̸= t), (150)

Let us repeat here once again the importance of using the IBP procedure [19,87].
First of all, its use leads to relations between various FIs and, consequently, to the need

to calculate only some of them, which in some sense are independent. These independent
FIs (which, of course, can be chosen completely arbitrarily) are called master integrals [61].

Using the IBP relation [19,87] for the master integrals themselves leads to DEs for
them with ITs containing simpler diagrams (see [23–29]). The term ‘simpler diagrams’
is applicable to diagrams that usually contain fewer propagators, and sometimes they
can be represented as FIs with fewer loops and with some ’effective masses’ (see, for
example, [62,107–110,123] and references therein). Using the IBP relation for IT diagrams
leads to new DEs for them with new ITs containing even simpler FIs (≡simpler2 FIs). After
repeating the procedure several times, in the last step, we obtain ITs containing mainly
tadpoles, which can be easily calculated (see rule B in Section 6).

By solving the DEs in this last step, it is possible to reproduce FIs for the ITs of DEs in
the previous step and so on. By repeating the procedure several times, one can obtain the
results for the original FI.

8.1. Results Are in the Form of Series

Consider the integral Px126 (massless and massive propagators are shown by thin and
thick lines, respectively)

P126 = →q

→
q1

→
q2

as a first example. It was calculated in Ref. [124] (see also [62,114]) and it has the series
form (hereafter in Section 8 x = q2/m2):

P125 = − N2
d µ2ε

(q2)2+2ε ∑
n=1

(−x)n

2n

(n!)2

(2n)!

{
1

ε2
− 1

ε

(
S1 + ln x) + 4S1S1 −

3

2

(
5S2

1 + S2

)
− ζ2

+
2

n
S1 − S1 ln x +

1

2
ln2 x

}
. (151)

where Si(n) is defined in Equation (35) and

Si = Si(n − 1), Si = Si(n − 1) (152)

and µ = 4πe−γE µ is the MS-scale and γE is the Euler constant.

8.2. Properties of Series

Series representations (as in Equation (151)) are convenient for calculating two-loop
two-point FIs [23–29,123] and three-point FIs [62,107,108,124] with one non-zero mass. The
calculation procedure using IBP relations and the construction of DEs based on it (see
above) is very powerful, but rather complicated. However, there are some properties of
series that either simplify calculations or sometimes allow a result to be obtained without
direct calculations.
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Indeed, the inverse mass decomposition of the two-loop two-point and three-point FIs
with one non-zero mass can be represented as

FI =
N2

d µ2ε

(q2)2α+2ε ∑
n=1

Cn (ηx)n
{

F0(n) +

[
ln x F1,1(n) +

1

ε
F1,2(n)

]
(153)

+

[
ln2 x F2,1(n) +

1

ε
ln x F2,2(n) +

1

ε2
F2,3(n) + ζ(2) F2,4(n)

]
+ ...

}
,

where η = 1 or −1 and α = 1 and 2 for two-point and three-point FIs, respectively.
We consider two-loop FIs without the cuts of three massive particles. Thus, the results

of the considered FIs should be expressed as combinations of polylogarithms. Note that
the three-point FIs are only considered with independent momenta q1 and q2 and the
conditions q2

1 = q2
2 = 0 and (q1 + q2)

2 ≡ q2 → 0. Moreover,

Cn =
(n!)2

(2n)!
≡ Ĉn (154)

for FIs having two-massive-particle-cuts (2m-cuts). For the FIs having only one-massive-
particle-cuts (m-cuts), Cn = 1.

For the m-cut case, the coefficients FN,k(n) should have the following form

FN,k(n) ∼ S±a,±b,±c,...

nd
,

ζ(±a ± b,±c, ...)

nd
, (155)

where S±a,±b,±c,... ≡ S±a,±b,±c,...(j − 1) are harmonic sums and ζ(±a,±b,±c, ...) are the
Euler–Zagier constants (also see Equation (35))

S±a(j) =
j

∑
m=1

(±1)m

ma
, S±a,±b,±c,...(j) =

j

∑
m=1

(±1)m

ma
S±b,±c,...(m),

ζ(±a) =
∞

∑
m=1

(±1)m

ma
, ζ(±a,±b,±c, ...) =

∞

∑
m=1

(±1)m

ma
S±b,±c,...(m − 1) . (156)

For the 2m-cut case, the coefficients FN,k(n) are more complicated

FN,k(n) ∼ S±a,±b,±c,...

nd
,

Va,b,c,...

nd
,

Wa,b,c,...

nd
, (157)

where Wa,b,c,... ≡ Wa,b,c,...(j − 1) and Va,b,c,... ≡ Va,b,c,...(j − 1) with

Va(j) =
j

∑
m=1

Ĉm

ma
, Va,b,c,...(j) =

j

∑
m=1

Ĉm

ma
Sb,c,...(m), (158)

Wa(j) =
j

∑
m=1

Ĉ−1
m

ma
, Wa,b,c,...(j) =

j

∑
m=1

Ĉ−1
m

ma
Sb,c,...(m), (159)

The sums ∼ Va,b,c,... and ∼ Wa,b,c,... can only appear in the 2m-cut case. The source
of their appearance is the product of two series with coefficients Cn = 1 and Cn = Ĉn,
respectively

8.3. Additional Examples

Consider here the two-loop two-point FIs I1 and I12 calculated in [62] as additional
examples



Symmetry 2024, 16, 52 29 of 41

I1 = →q
, I12 = →q

(160)

Their series expansions are

I1 = − N2
d µ2ε

(q2)1+2ε ∑
n=1

(−x)n

n

{
1

2
ln2 x − 2

n
ln x + ζ(2) + 2S2 − 2

S1

n
+

3

n2

}
, (161)

I12 = − N2
d µ2ε

(q2)1+2ε ∑
n=1

(−x)n

n2

{
1

n
+

(n!)2

(2n)!

(
−2 ln x − 3W1 +

2

n

)}
. (162)

Equation (161) shows that, for the case where the functions FN,k(n) in Equation (153)
have the form

FN,k(n) ∼ 1

n3−N
, (N ≥ 2), (163)

if we introduce the following complexity level of the used sums (Φ = (S, V, W))

Φ±a ∼ Φ±a1,±a2 ∼ Φ±a1,±a2,±a3,...,±am ∼ ζa ∼
1

na
, (

m

∑
i=1

ai = a) . (164)

The number 3 − N determines the level of transcendentality (or complexity) or the
weight of the coefficients FN,k(n) in Equation (153). This property significantly reduces the
number of possible elements in FN,k(n). Moreover, the level of transcendentality decreases if
we consider the FI singular parts and/or coefficients in the front of ζ-functions or logarithm
powers. Thus, having found the simplest parts, we can predict the rest using the results
already obtained as ansatz, but using them with a higher level of transcendentality.

Other two-loop two-point FIs in [62] have similar representations. They were exactly
calculated by the DE method [23–29].

Now, we consider two-loop three-point FIs, P5 and P12:

P5 = →q

→
q1

→
q2

, P12 = →q

→
q1

→
q2

Their series expansions are (see [62]):

P5 =
N2

d µ2ε

(q2)2+2ε ∑
n=1

xn

n

{
−6ζ3 + 2S1ζ2 + 6S3 − 2S1S2 + 4

S2

n
− S2

1

n
+ 2

S1

n2

+

(
−4S2 + S2

1 − 2
S1

n

)
ln x + S1 ln2 x

}
, (165)

P12 =
N2

d µ2ε

(q2)2+2ε ∑
n=1

(−x)n

n2

(n!)2

(2n)!

{
2

ε2
+

2

ε

(
S1 − 3W1 +

1

n
− ln x

)
− 6W2 − 18W1,1

−13S2 + S2
1 − 6S1W1 + 2

S1

n
+

2

n2
− 2

(
S1 +

1

n

)
ln x + ln2 x

}
,
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In the last case, the coefficients FN,k(n) have the following form

FN,k(n) ∼ 1

n4−N
, (N ≥ 3), (166)

The FI P5 (as well as FIs P1, P3, and P6 in [62]) was calculated exactly by the DE
method [23–29]. To calculate P12 (as well as for all other FIs in [62]), we used the known
results of several first terms in its inverse-mass expansion in Equation (153) and the
following arguments:

• When a two-loop two-point FI with a ‘similar topology’ (for example, I12 and P12) has
already been calculated, we consider a similar set of basic terms for the corresponding
two-loop three-point FIs with a higher level of complexity.

• Let the considered FI contain the singularities and/or powers of logarithms.
Since the coefficients in the front; the coefficients in the leading singularity; the co-
efficients in the front of the largest degree of the logarithm; or the coefficients in the
largest ζ-function are very simple, they can often be predicted directly from the first
few coefficients of the considered expansion. Then, we can try to use them (with
a corresponding increase in the level of complexity) to predict the rest of the dia-
gram. If we need to find ε-suppressed terms, we must further increase the level of
transcendentality of the corresponding basic elements.

Furthermore, using the obtained results for FN,k(n) and several terms (usually less
than 100) that were accurately calculated, we prepare a system of algebraic equations for
the parameters of the ansatz. By solving the system, we can obtain analytic results for
FIs without exact calculations. In this way, the results for many complicated two-loop
three-point diagrams were obtained without direct calculations (see [62,107,108,124–128]).

We would like to note that similar properties have recently been observed [73–76] in
the so-called double operator–product–expansion limit of some four-point diagrams.

In N = 4 SYM, the corresponding ansatz based on the properties of maximal tran-
scendentality turns out to be stronger than in (155): the index b in (155) should be zero.
This imposes very strong restrictions on the structure of the results [47–51], including the
Yang–Baxter Q-function [129,130]. These constraints allow us to obtain the anomalous
dimensions [49,50] in N = 4 SYM from the QCD results [52–54] up to three loops, as well as
from the Bethe ansatz [131,132] up to seven loops [133–137]. In addition, there are other
results (see Refs. [138–145]) related to the principle of maximum transcendentality [47–51].

8.4. Modern Method of Massive FIs

The coefficients of the inverse-mass expansions have the properties (163) and (166)
in accordance with the rule (164). Note that this rule leads to a significant decrease in the
possible coefficients. This limitation is due to the DE specific form for the FIs studied in
this section. These DEs can be formally represented in the following form [55–59]

(
(x + a)

d

dx
− kε

)
FI = simpler FIs(≡ FI1), (167)

with some number a and some function k(x). We exactly show that the IT in the DE (167)
contains only simpler diagrams. Note that the DE form is generated by the IBP relations for
an internal n-leg single-loop subgraph, which in turn contains the product kµ1 kµ2 kµ3 ...kµm

of the internal momentum k at m = n − 3.
Indeed, for the usual values αi = 1 + aiε of the degrees of propagators of a subgraph

with arbitrary ai, the IBP relation (14) gives a coefficient d − 2α1 − ∑
p
i=2 αi + m sin ε for the

FI itself with m = n − 3. Important examples of applying this rule are FIs I1, I12 and P5,
P12, P126 (for the cases of n = 2 and n = 3), as well as FIs in [67] (for the cases n = 3 and
n = 4). However, we note that the results for non-planar FIs (see Figure 3 in [62]) obey the
property (166), but their subgraphs do not correspond to the obtained rule, which may be
due to the on-shall vertex of the subgraph. However, this requires additional research.
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Taking a set of simpler FIs, such as FI1 (collected in IT of the DE (167)), we obtain their
structure like in Equation (166), but with a lower level of transcendentality.

So, the FIs FI1 must obey the following DE in the formal form

(
(x + a1)

d

dx
− k1ε

)
FI1 = simpler2 FIs(≡ FI2). (168)

Thus, we have the DE set for all FIs FIn as

(
(x + an)

d

dx
− knε

)
FIn = simplern+1 FIs(≡ FIn+1), (169)

with the last FI FIn+1 mainly containing tadpoles.
Following [146,147], we can replace the above system of inhomogeneous DEs as a

homogeneous matrix DE (for complicated diagrams, see [148]; also see [149–151]. for
methods to obtain homogeneous matrix DEs)

d

dx
F̂I − εK̂F̂I = 0, (170)

for the vector

F̂I =




FI
FI1/”
...
FIn/εn


 ,

where the matrix K̂ contains kj/(x + aj) as the it elements. The form was called the “canonic
basic” (see (170)) and it is very popular now (see, for example, the review [152]).

In real calculations, we replace FIn by

FIn = F̃InFIn, (171)

where the term FIn obeys the homogeneous Eq

(
(x + an)

d

dx
− knε

)
FIn = 0, (172)

The replacement (171) simplifies the above DE (169) as

(x + an)
d

dx
F̃In = F̃In+1

FIn+1

FIn
, (173)

having the it solution as

F̃In(x) =
∫ x

0

dx1

x1 + an
F̃In+1(x1)

FIn+1(x1)

FIn(x1)
(174)

There are often some abbreviations for FIn+1/FIn, so it is equal to 1. In this case,
Equation (174) matches with the definition of Goncharov polylogarithms [153–155].

The results (161), (162), and (165) can be expressed in the form of Nilson [112] and
Remiddi–Vermaseren [156] polylogarithms with the weigh 4 − N (see [62,124]). A consid-
eration of more complicated cases can be found in Ref. [157].

9. Conclusions

In this review, we reviewed effective methods for calculating FIs, as well as examples
of the application of these methods. In the massless case, we studied the scalar two-point
FIs with a TP in the numerator of one of the propagators, as well as FIs depending on the
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two momenta q and p when p2 = 0. We also looked at FIs up to and including five loops
that contribute to the β-function of the φ4 model. The FI results were analytically obtained
in [8,13]; however, they were published without intermediate calculations. Our calculations
are performed in detail.

In the case of massive propagators, we calculated of one of the complicated FIs that
contribute to the ratio of the MS mass to the pole mass of the Higgs boson in the standard
model in the limit of the heavy Higgs boson. The results for this FI were obtained by the
DE method. They contain logarithms and dilogarithms with unusual arguments.

In addition, in the massive case, we studied the inverse-mass expansion for some
two-loop two- and three-point FIs . For the massive FIs under consideration, we have
introduced a definition of the level of transcendentality (or complexity), or weight, which is
stored for any order of ε. Moreover, it decreases in the front of logarithms or ζ-values. We
called this property transcendentality principle. Its usage leads to the possibility of obtaining
results for most FIs without direct calculations.

The transcendentality principle is violated in physical models such as QCD, where the
corresponding propagators (for both quarks and gluons) have momenta in their numera-
tors, leading to the mixing of complexity levels. However, this property is restored after
diagonalization for the corresponding anomalous dimensions and coefficient functions in
N = 4 SYM, which is an excellent, but so far little-studied property.
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Appendix A. Analytic Continuation

In Appendix A, we show the direct evaluation of the special case C2(1, n = 0) from
the general result C2(1, n) shown in Equation (45) using the analytic continuation (from
even n values) of the following sum

S−2(n) =
n

∑
m=1

(−1)m

m2
. (A1)

Indeed, considering S−2(n as an example, it is useful to show the main stages of the
analytical continuation (see Ref. [158,159] and the references and discussions therein). For
more general nested sums S±a,±b,...(n), the results are more complicated, which may make
it difficult to understand the analytical continuation.

The main idea of analytical continuation is simple: remove the argument n from the
sum upper limit. After performing this procedure, we have the opportunity to expand and
to differentiate with respect to n.

Firstly, the sum S−2(n) in Equation (A1) is represented as

S−2(n) =
( ∞

∑
m=1

−
∞

∑
m=n+1

) (−1)m

m2
= S−2(∞)− (−1)n

∞

∑
m=1

(−1)m

(m + n)2
. (A2)

and the unpleasant multiplier (−1)n comes in the front of the last term in the r.h.s.
In the new sum (−1)nS−2(n)

(−1)nS−2(n) = (−1)nS−2(∞)−
∞

∑
m=1

(−1)m

(m + n)2
, (A3)

the factor (−1)n is moved to the first term.
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Now, we consider the new sum S−2(n) in the form

S−2(n) = (−1)nS−2(n) + (1 − (−1)n)S−2(∞) , (A4)

which is equal to the original S−2(n) for even n values and has no the factor (−1)n:

S−2(n) = S−2(∞)−
∞

∑
m=1

(−1)m

(m + n)2
. (A5)

Thus, the sum S−2(n) can be taken as an analytic continuation (from even n values) of
the initial sum S−2(n).

Now, we can consider the limit C2(1, n) for small n for S−2(n):

S−2(n = δ → 0) = S−2(∞)−
∞

∑
m=1

(−1)m

m2

[
1 − 2

δ

m
+ O(δ2)

]

= 2δ
∞

∑
m=1

(−1)m

m3
+ O(δ2) = 2δ S−3(∞) + O(δ2) . (A6)

In the r.h.s., the function S−3(∞) is equal to the Euler number ζ3:

ζa =
∞

∑
m=1

(−1)m

ma
=

(
1

2a
− 1

)
ζa = −3

4
ζ3 for a = 3 . (A7)

So, in the small n limit, we have for S−2(n):

S−2(n = δ → 0) = −3

4
ζ3δ + O(δ2) (A8)

and for the coefficient C2(1, n = 0) in Equation (45)

C2(1, n = 0) = − 4

δ(1 + δ)
S−2(n = δ → 0) = 6ζ3 + O(δ) , (A9)

which is exactly the same as C1(1, n = 0).
The analytical continuation is applicable in many important cases, such as, for example,

studying the Q2-evolutions of parton densities and deep-inelastic structure functions.
The [160] approach is popular, based on the Jacobi polynomials, which, in turn, are related
to the Mellin moments of parton distributions. Usually, only even or odd Mellin moments
can be accurately calculated. Using the Q2-evolution for the moments, defined by the
simple DGLAP DEs [161–165], in the last step, parton densities and/or structure functions
are recovered by summing (up to some value NMAX) Jacobi polynomials.

In such an analysis, the Q2-evolution must be carried out for both even and odd
moments, so the analytic continuation is necessary. A large number of QCD analyses of
experimental data were performed using it (see the review in [166]).

Another important use of the analytical continuation is the study [167] (see also the
references and discussions therein) of parton densities and structure functions in the region
of small values of the Bjorken variable x, which is directly related to the aforementioned
studies of nested sums in the limit n → 0. The approach includes the extraction of gluon
distribution and the longitudinal structure function FL from the data for the structural
function F2, the Q2-evolution of parton densities at a small x in the nucleon and in nuclei,
and the asymptotics of the cross-section at ultrahigh energies for the interaction of neutrinos
with hadrons. Some overview of these studies is given in Ref. [168].
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Appendix B. The Method of “Projectors”

In Refs. [20–22], we applied a special case of the “projectors” method [94–97]—the
“differentiation” method, which makes it possible to calculate a FI, which depended on two
momenta p and q, when p2 = 0, i.e., obtain the coefficients at the [2(pq)]/q2 powers. These
coefficients are called “moments” of the considered FI.

As a first example, we consider the FI J1(α, q, p):

J1(α, q, p) =

α

→q →q

→
p

→
p

=
p2=0

∑
k

J(α, k)
2k pλ1

pλ2
pλ3

...pλk
qλ1 qλ2 qλ3 ...qλk

q2(k+α+2ε)
, (A10)

Now, we differentiate Equation (A10) on both sides n times with respect to p and set
p = 0. In the l.h.s., we obtain

d

dpµ1

d

dpµ2

d

dpµ3

...
d

dpµn

{

α

→q →q

→
p

→
p

}∣∣∣∣∣
p=0

= Ŝ
2nΓ(n + α)

Γ(α)
n

α+n

→q
,

where Ŝ is a symmetrization factor on indices: λi, µj (i = 1, 2, 3, ..., m, j = 1, 2, 3, ..., n).
In the r.h.s., we have

∑
k

J1(α, k)
2kqν1 qν2 qν3 ...qνk

q2(k+α+2ε)

d

dpµ1

d

dpµ2

d

dpµ3

...
d

dpµn

(
pν1 pν2 pν3 ...pνk

)∣∣∣∣
p=0

= Ŝ n! J1(α, n)
2nqν1 qν2 qν3 ...qνn

q2(n+α+2ε)
.

So, for the moments J1(α, n), we have the following expression:

J1(α, n)
qν1 qν2 qν3 ...qνn

q2(n+α+2ε)
= Ŝ

Γ(n + α)

n!Γ(α)
n

α+n

→q
α=1
= Ŝ

n

n+1

→q
.

In what follows, we neglect the symmetrizer Ŝ.
We would like to draw attention to the fact that this transformation from the FI at its

moment remains correct for arbitrary indices of the FI lines, as well as in the presence of
additional momenta in the FI propagators (if the latter are located on a differentiable line,
then small changes will be required).

As a second example, we consider

J1(α, q, p) =
α→q →q

→
p

→p

By full analogy with the previous FI, for its moments, we obtain:
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J1(α, n)
qν1 qν2 qν3 ...qνn

q2(n+α+2ε)
= Ŝ

Γ(n + α)

n!Γ(α)
n

α+n+1

→q
α=1
= Ŝ

n

n+2

→q

Rather similar conclusions can be also drawn for the FI

Ĵ1(α, β, q, p) =

α
β

→q →q

→
p

→
p

Its moment has the form

Ĵ1(α, β, n)
qν1 qν2 qν3 ...qνn

q2(n+α+2ε)
=

n

∑
k=0

Γ(k + β)Γ(n − k + α)

(n − k)!k!Γ(α)Γ(β)
k n−k

α+n−kβ+k+1

→q

α=β=1
=

n

∑
k=0 k n−m−k

n−k+1k+2

→q

We would like to note that there is another method for calculating the FIs in question:
the method of “gluing” [169]. Using the TP orthogonality, it is possible to obtain the
moment of the FI in question by further integrating the original FI along the momentum
q with a propagator that has some special index δ and the additional TP in its numerator.
This additional integration produces very complex three-loop FIs. So, for the FIs under
consideration J1(α, q, p), J1(α, q, p), Ĵ1(α, β, q, p), these “glued” three-loop FIs have the
following view

(n)

α

δ

→p
,

(n)

α

δ

→p
,

(n)

αβ

δ

→p

The calculation of these complex FIs is above the slope of the paper. Some examples of the
usage of the “gluing” method can be found in Ref. [15].

As a conclusion of Appendix B, we would like to note that, when using the method of
‘projectors’ [94–97], expressions obtained for the nth moment of the original FI always look
much simpler than when using the “gluing” method [169].

Appendix C. Useful Variables for Integrations

Here, we give sets of new integration variables that are useful in the case of on-shall
massive FIs.
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t2 =
z

4 − z
, z =

4t2

1 + t2
, 4 − z =

4

1 + t2
, (dz) =

8t(dt)

(1 + t2)2
;

y =
1 − it

1 + it
, t =

1 − y

i(1 + y)
, 1 + t2 =

4y

(1 + y)2
, (dt) = −2

i

(dy)

(1 + y)2
,

(dt)

1 + t2
= − 1

2i

(dy)

y
;

ξ =
1 −

√
3t

1 +
√

3t
, t =

1√
3

1 − ξ

1 + ξ
, z =

4t2

1 + t2
=

(1 − ξ)2

1 + ξ + ξ2
=

(1 − ξ)3

1 − ξ3
,

(dt) = − 2(dy)√
3(1 + y)2

,
(dt)

1 − 3t2
= − 1

2
√

3

(dξ)

ξ
. (A11)
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