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Robust estimation of the intrinsic
dimension of data sets with
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We propose a new data representation method based on Quantum Cognition Machine Learning and
apply it to manifold learning, specifically to the estimation of intrinsic dimension of data sets. The
idea is to learn a representation of each data point as a quantum state, encoding both local properties
of the point as well as its relation with the entire data. Inspired by ideas from quantum geometry,

we then construct from the quantum states a point cloud equipped with a quantum metric. The
metric exhibits a spectral gap whose location corresponds to the intrinsic dimension of the data. The
proposed estimator is based on the detection of this spectral gap. When tested on synthetic manifold
benchmarks, our estimates are shown to be robust with respect to the introduction of point-wise
Gaussian noise. This is in contrast to current state-of-the-art estimators, which tend to attribute
artificial “shadow dimensions” to noise artifacts, leading to overestimates. This is a significant
advantage when dealing with real data sets, which are inevitably affected by unknown levels of noise.
We show the applicability and robustness of our method on real data, by testing it on the ISOMAP face
database, MNIST, and the Wisconsin Breast Cancer Dataset.

When data is characterized by a large number of features (e.g., zip code, annual income, age, credit card spend,
etc. for borrowers; cholesterol, blood pressure, BMI, etc. for patients; or the latent and dependent variables),
it tends to lie on a surface that has a smaller dimensionality than the full feature space'. Finding this low-
dimensional surface is often referred to as manifold learning. The lower dimensionality reflects the underlying
latent structures in the data, correlations, and a variety of nonlinear relationships*>. Furthermore, data points
whose feature vectors are close together should possess similar properties related to the nature of the data. For
example, in a regression problem, the output/target variables are expected to depend smoothly on the input
variables. These characteristics of real data suggest that any given dataset consisting of D features lies entirely
on a smooth manifold M C RP of dimension d (the manifold hypothesis*), where d is much smaller than the
total number of features D, typically d < 100. The dimension d of the manifold is referred to as the intrinsic
dimension of the data'. This number represents the minimal number of parameters required to characterize the
data. Knowledge of the intrinsic dimension d can be used to effectively choose a target space for dimension-
reduction models (such as PCA, Isomap, t-SNE, etc.) or to compress deep neural networks while maintaining
the performance’®. Intrinsic dimension estimation is also widely used in network analysis®’, complex materials®
and health sciences’.

One of the main challenges for manifold learning is the inevitable presence of noise in real data. A typical
“global” projective approach is to impose a functional form (e.g. PCA where the manifold is assumed to be
linear) and to assume that the error between the manifold approximation and the actual data is noise, which is
then analyzed. Imposing a functional relation immediately gives estimates for the intrinsic dimension, which
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tend to be robust to the introduction of additional noise. However, when the data manifold M has a lot of
curvature, linear methods will fail. The problem can be somewhat alleviated by nearest neighbors methods that
sample locally around each data point, assuming that at a sufficiently small scale all manifolds are close to being
linear'%-12, Indeed, all current state-of-the-art intrinsic dimension estimators (some of which we describe below)
are “local’, producing estimates that are based on a local sampling around each data point*. Such techniques
are designed and benchmarked against highly dimensional and highly curved manifolds. While they perform
reasonably well in this ideal setup, they often tend to fall apart when noise is re-introduced into the data. Indeed,
local methods cannot distinguish shadow dimensions that are transversal to the data manifold, and that are only
artifacts created by the noise, leading to significant overestimates of intrinsic dimension.

In this paper, we propose a new data representation and manifold learning technique based on Quantum
Cognition Machine Learning (QCML)!* and quantum geometry'*-!®. The main idea is to create a (non-
commutative) quantum model for the data manifold itself, from which we can estimate important geometric
features, such as intrinsic dimension. Picking a quantum model is similar to what is done in linear methods,
in the sense that a functional relation is imposed on the data. But in contrast to linear methods, we learn the
model from the data, and we make no assumptions about the underlying distribution. Our method gives local
estimates of the intrinsic dimension at every data point, but also takes into account the global geometry of the
data manifold M. To this end, we are able to develop a manifold approximation method that is both robust to
noise and flexible enough to capture non-linear geometric features of the data manifold.

Current state-of-the-art intrinsic dimension estimators measure statistics related to the density of nearest
neighbors lying within a certain radius r from a data point x, and express these statistics as functions of intrinsic
dimension (CorrInt'’, MLE'$, DANCo", TwoNN?%). These methods do not make any linearity assumption
about the data, but do require the data to be dense in small patches around any given point. As is well-known,
this requirement is fundamentally incompatible with the curse of dimensionality???, which usually occurs
in dimensions when d is greater than the logarithm of the sample size?, and indeed these methods tend to
underestimate the intrinsic dimension when d is large relative to the sample size. The overestimation effect
induced by noise combined with the underestimation effect induced by the curse of dimensionality often results
in unreliable intrinsic dimension estimates.

Our proposed approach relies on the manifold hypothesis but differs from the current projective and
nearest neighbors methods. Our method produces local intrinsic dimension estimates that are not based on
neighborhood sampling of the data but include global information from the entire data set. Indeed, our method
first learns a model for the entire data manifold M, as a semi-classical limit of a quantum matrix configuration
(in the sense of quantum geometry'¥~1¢). In particular, given a data set X containing D features, we train D
quantum observables A = {A1,...,Ap} (i.e. a matrix configuration) as it is done in QCML'*. The whole
matrix configuration A can be used to map each data point € X to a quasi-coherent quantum state o ()
, which is then mapped back into the data space, producing a point cloud approximation X 4 to the actual
data manifold M. Each element of the point cloud represents the expected position in the feature space of its
corresponding data point, and it comes with a “cloud” of uncertainty around its actual position whose shape
is determined by the quantum fluctuations of the matrix configuration. The point x is further equipped with
a quantum metric g(x), which is a D x D real symmetric positive semi-definite matrix. This metric, already
considered by physicists'*!°, encodes much of the local geometry of the data manifold; it can be shown that its
rank in particular is approximately equal to the intrinsic dimension of M, and that its non-zero eigenvalues are
all close to 1. Therefore, intrinsic dimension estimates can be given by detecting the spectral gap of the quantum
metric, separating the zero eigenvalues from the non-zero eigenvalues that are close to 1.

Some of the existing estimators (so-called ‘projective methods, such as PCA) also provide explicit embeddings
of the data into d-dimensional space, where d is the intrinsic dimension. In this sense, our method can be
considered ‘locally’ projective: at each point € X 4 of the point cloud, the eigenvectors of the quantum metric
g(x) with eigenvalues close to one correspond to the directions that are tangent to the data manifold, therefore
providing a set of d local coordinates for the manifold.

We test our intrinsic dimension estimator on both synthetic and real data sets, following the benchmarking
framework proposed in ref.* and implemented in the scikit-dimension Python package?. In addition to
this standard framework, we stress-test our estimates by introducing increasing levels of Gaussian noise into
the data, and compare the results with other state-of-the-art techniques. In all of our testing, higher levels of
noise increasingly degrade the quality of the point cloud approximation X 4, and the spectral gap detection
in the quantum metric becomes increasingly difficult. However, they do not qualitatively alter the intrinsic
dimension estimation. This stands in marked contrast to other intrinsic dimension estimators that we tested,
whose estimates are highly sensitive to even small amounts of noise.

Results

Quantum geometry in data analysis

Consider a t X D data set X containing ¢ data points 1, ..., ¢, where each data point z; consists of a D-
dimensional real-valued vector of data features z; = (a;, . ..,ar’). We do not assume any particular ordering

of the features, so that, for example, a digital image would be encoded as a flattened one-dimensional array of
pixel values. We allow categorical data features, provided an appropriate embedding (e.g. one-hot encoding
or target encoding) has been chosen, although in this article we will only consider numerical features. We
assume that X lies entirely on a smooth manifold M, called the data manifold, of intrinsic dimension d < D.
We further assume that the D features of the data extend to smooth functions a® € C*(M),fork =1,...,D
, giving the coordinates of an embedding (a',...,a”) : M < RP of the data manifold into D-dimensional
Euclidean space. In quantum geometry, the commutative algebra C'°° (M) of smooth functions on a manifold
is replaced by the non-commutative algebra of Hermitian operators on a N-dimensional Hilbert space??. The
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choice of dimension N is arbitrary, and independent of D. Typically, smaller choices of N will result in quantum
geometries exhibiting strong quantum effects, while the limit as N goes to infinity can be considered ‘classical’
(i.e. not quantum)*4,

For the purposes of this work, any set A = {A1,..., Ap} consisting of D Hermitian matrices on a N-
dimensional Hilbert space is called a matrix conﬁgumtzon, and can be viewed as a non-commutative avatar of
the set of D coordinate functions a* on a manifold M < R”. Typically in physics, the matrix configuration A
is given by a quantum theory and the goal i is | to construct a symplectic manifold M — RP, so that A represents
a quantization of the coordinate functions z* giving the embedding; that is, a compatibility between the Poisson
bracket on M and the commutator bracket on A is required, among other conditions.

In the context of data analysis, the situation is reversed: M is given by the data manifold, and we instead
propose to learn a suitable matrix configuration A, reflecting as much of the geometry of M as possible. We
do so through the formalism of quasi-coherent states'*'>. Recall that in quantum mechanics a stafe is a vector
of unit norm in a Hilbert space, and is represented in bra-ket notation by a ket |1). The inner product of two
states |11), |2) is represented by a bra-ket (11]1)2). The expectation value of a Hermitian operator A on a
state |¢) is denoted by (| A|Y) = (Ay|y) = (| Ar), representing the expected outcome of the measurement
corresponding to A on the state |1)). For any state |1} in N-dimensional Hilbert space and an N x N matrix
configuration A = {Ay, ..., Ap}, define the state’s position vector by

A) = (Y]A1ly), ..., (Y|Ap|y)) € RP

and the state’s variance (or quantum fluctuation) o> (¢) by

ot () = (BIARIY) — (WlAl)?, o () =) oi(v

k=1

Intuitively, the matrix configuration A assigns to each quantum state |1)) a point A(¢)) in Euclidean space R”
, together with a “cloud” around it representing the uncertainty of the measurement of the point’s position in
space. In this context, A(1)) represents the center of the cloud, while o (¢) is a statistical measure of the cloud’s
dispersion.

Now for any data point 2 = (ax) € R, we want to construct a quantum state o () reflecting not only the
absolute position of x within feature space, but also its relation to all the other points in the data set X. To do so,
consider the error Hamiltonian

I\DM—\

D
Z (A = ar - In)?, (1)

where I denotes the N X N identity matrix. Note that the error Hamiltonian is a positive semi-definite
Hermitian operator. We will assume throughout the article non-degeneracy of the Hamiltonian, and we list the
eigenvalues of the Hamiltonian 0 < Ey(z) < --- < En_1() in increasing order. For the present purposes,
degeneracies of H(x) do not play a role. We also let |1, (x)), n =0,..., N — 1, be corresponding choices of
normalized eigenvectors, or eigenstates. By the non- degeneracy assumptlon, all the eigenstates are uniquely
defined up to multiplication by a phase factor €’?, 0 € R. For each x, an eigenstate |1/ (z)) associated to the
lowest eigenvalue of H(x) is called a quasi-coherent state of x. A simple calculation shows that

Bo(w) = 31 4Wo(2)) — all* + 2% (wo(z)), @

so that the lowest eigenvalue (i.e. the ground state energy) of the error Hamiltonian can be broken down into two
contributions: the squared distance between x and the position of its corresponding quasi-coherent state, and the
quantum fluctuation of the quasi-coherent state itself. This is analogous to the bias-variance breakdown of the
mean-squared error loss function. We can now train a matrix configuration A so as to minimize the combined
loss function (2) for all data points « € X. In this way, the matrix configuration captures global features of the
data, which are then reflected into the ground state 1o (), for each x € X.

From the trained matrix configuration A, we may then calculate the point cloud
Xa={A@o(z)): 2z € X} CR", 3)

which can be viewed as an approximate sampling of the data manifold M. The original data points € X may
contain noise, missing features, or otherwise deviate substantially from the idealized underlying data manifold
M. By choosing an appropriate matrix configuration A, capturing enough global information about the data, the
set X 4 turns out to be much closer to M than the original data set X. Key geometric features of the data manifold,
such as the intrinsic dimension d, can be recovered from X 4 in a way that is robust to noise and other artifacts.
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Quantum cognition machine learning
Training a matrix configuration A on a data set X is the optimization problem at the core of Quantum Cognition
Machine Learning (QCML)!%. QCML has been developed independently of quantum geometry, and this is the
first work pointing out the relation between these two areas of study. In the original formulation of QCML, a
matrix configuration A is trained so as to minimize the aggregate energy loss function (2) across all data. In
the present context, minimizing energy sometimes has the undesired effect of training A so that the aggregate
quantum fluctuation ) a?(¥(x)) goes to zero, forcing all the matrices Ai,..., Ap in the matrix
configuration to commute. A commutative matrix configuration is highly undesirable. It produces a point cloud
approximation X 4 consisting of N points, corresponding to the positions of the N common eigenstates of the
matrix configuration, with no point cloud around them. Indeed, it can be shown that X 4 in this case consists of
a N-means clustering of the data set X, and is therefore entirely classical?.

Instead, in this work we train the matrix configuration A = {A1,..., Ap} on the data set X by minimizing
the mean squared distance between the data set X and the point cloud X 4, i.e. by finding

A=argming_ 5, 5oy | Y I1BGo(@) —al* |, (4)

zeX

where the minimum is taken over the space of all D-tuples of N x N Hermitian matrices. The optimization
(4) can be tackled efficiently using gradient descent methods, similar to those employed in state-of-the-art
machine learning models. In our study, we find A by implementing the optimization problem as a custom layer
in PyTorch ?’. To ensure convergence to a meaningful matrix configuration, it is often beneficial to pre-process
the data so that it has a homogeneous scale, for example by standardizing all the features so that they have mean
1 = 0 and standard deviation o = 1.

Note that the choice of loss function in (4) corresponds to the “squared-bias” term in the bias-variance
decomposition of the energy functional E(x) in (2). We do not minimize the quantum fluctuation, or “variance”
term. Indeed, while the bias term is in general unbounded, the quantum fluctuation o (z) has a simple bound in
terms of the matrix configuration A only (i.e. independent of x), given by

D
o) £ 3 (e = m)? < T u—m)?,

where pui, (resp. my) is the highest (resp. lowest) eigenvalue of Ay and p = maxy, px (resp. m = ming myg).
This bound has an elementary proof similar to Popoviciu's inequality?® on variances. Note that the eigenvalues of
Ay, correspond to possible measurement outcomes of the k-th coordinate of the position of a point x. Therefore,
if we train A so that the positions X 4 are close to a compact data set X, we expect the quantum fluctuation to be
commensurate with the average noise level in the data X. This is indeed what we observe in practice.

It is also possible to modify the loss function in (4) by adding back the quantum fluctuation term with a weight
w € R>o, a tunable hyperparameter,

A:argminB:{Bl’wBD} Z|\B(d)g(x))_$“2+w.g2(m) . (5)

reEX

In this way, the choice w = 0 recovers the bias-only loss function (4) while w = 1 corresponds to the original
energy loss (2). In applications, small non-zero values of w may lead to more robust point cloud approximations
X 4, especially in the presence of significant amounts of noise.

It is also possible in principle to replace the error Hamiltonian (1) with the Dirac operator defined in ref.!>.
The advantage of using the Dirac operator is that the energy loss is allowed to reach zero without the matrix
configuration A being necessarily commutative. Equivalently, the quasi-coherent states in this case are zero
modes. However, the Hilbert space dimension required by the Dirac operator scales exponentially in the number
of features D, and this is not practical when dealing with data sets containing a large number of features.

Intrinsic dimension estimation

Suppose now that a matrix configuration A has been trained from a data set X as in (4), so that the data manifold
M, by construction, lies within a region of R” where the energy functional Fo(x) is near-minimal and it has
minimal variation (assuming that the quantum fluctuation term in (2) is not too large). We may then apply the
technique described in ref.!” to calculate the intrinsic dimension of M. In particular, from formula (2), we see
that as x moves away from the manifold M then the energy Fo(z) increases like the squared distance from x to
M, while in the directions tangent to M the energy is approximately constant. This means that the Hessian matrix
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of the energy functional at x should exhibit a clear spectral gap between the lowest d = dim M eigenvalues,
corresponding to the directions tangent to M and near zero, and the highest D — d eigenvalues, of order one
and corresponding to the directions that point away from M. Detecting the exact location of the spectral gap is,
therefore, equivalent to estimating the intrinsic dimension of M.

This observation can be turned into an algorithm to estimate the intrinsic dimension. First, the Hessian
matrix of the energy functional can be computed in terms of the matrix configuration A, using perturbation
theory. Its entries are given by the formula

PBo g 72NZ‘IRe<wo<m>|Au|wn<x>><wn<x>\AV|wo<x>>7 v —1..D ©
n=1

0z, 0z, En(z) — Eo(z)

where, as before, we write ¢, (z) and F,, () for the eigenstates and energies of the error Hamiltonian H(x) given
by (1). Notice that (6) is exact, despite being derived using perturbation theory. In detecting the spectral gap, it
is more convenient to consider the second term of (6) only, a real symmetric D x D matrix g(x) whose entries
are given by

o) =2 3" Rl DAN NGO Aclin@) g -

En(x) — Eo(x) ’
n=1
It can be easily shown that the matrix g(x) is positive semi-definite, and in the context of matrix geometry it
is called the quantum metric'>'%?>, Indeed, in our context it can be viewed as an approximate Riemannian
metric on the data manifold M. For a point x belonging to the point cloud X4, the eigenvalues of g(x) tend
to be either close to one or close to zero, with a spectral gap occurring between the highest d and the lowest
D — d eigenvalues. The eigenvectors corresponding to the the highest d eigenvalues will point in the directions
tangential to the data manifold M, with the remaining eigenvectors being transversal to the data manifold. In this
way, an examination of the spectral gap at g(x) provides an estimate of the intrinsic dimension d = dim, M. We
could, in principle, apply this procedure to estimate the intrinsic dimension at points x € X directly, bypassing
the point cloud. However, as noted in ref.!>, much clearer spectral gaps emerge in practice when calculating the
quantum metric on the point cloud X 4. This is because X 4, as noted earlier, is much more robust to noise and
to small perturbations of the data manifold.

The estimation of intrinsic dimension from the point cloud X4 is based on the assumption that the matrix
configuration has been trained well enough so that the point cloud forms a good approximate model for the
data manifold M, in particular so that the intrinsic dimensions of the data set X and X 4 are equal. Since the
matrix configuration A is trained in such a way as to minimize the squared distance between X and X 4, it is
reasonable to assume that this is the case. However, the quality of this approximation will depend on many
factors, mainly the choice of quantum fluctuation control w in the loss function (5) and the choice of the Hilbert
space dimension N. The effect of these choices on X 4 is discussed in more detail in the supplementary material
for this article (see Figures 1 and 2 of the Supplementary Material).
The algorithm for estimating intrinsic dimension can be summarized as follows.

Data: Data set X C R” lying on a data manifold M C RP

Result: A list d11ist of local intrinsic dimension estimates d, ~ dim, M
1 Train a matrix configuration A = {A},...,Ap} on X as in (4) or (5);

2 dlist <0,

3 forxe X do

4 calculate the ground state |yp(x)) of the error Hamiltonian H (x) ;

5 calculate the position y = A(yp(x)) € X4 ;

6 calculate the spectrum ¢p < ... < ep_ of the quantum metric g(y) ;
7 Calculate Y = argmax;_; _p, €;/e;_1, the largest spectral gap ;

8 Appendd =D —7ytodlist

9 end

Return dlist

—
=

Algorithm 1. Quantum Cognition Machine Learning intrinsic dimension estimator.

The Algorithm 1 returns a list of intrinsic dimension estimates for every point € X. To extract a global
estimate, a variety of techniques can be employed, such as taking the mode, median, or geometric mean to
more refined k-nearest neighbor techniques. A global estimate can also be easily adapted to the case where
multiple connected components of M are detected, each of possibly different dimensions. Note that in steps 7-8
of Algorithm 1, we calculate the largest spectral gap by comparing successive ratios of eigenvalues. With this
approach, the results d = 0, D cannot be detected. We are indeed assuming through the article that the data
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manifold does not have zero-dimensional or codimesion zero connected components. In practice, if the data
set is zero-dimensional (i.e. a sparse set of points) then the eigenvalues of the quantum metric will all be zero at
every point, which can be easily checked. Similarly, if the data set is D-dimensional then the eigenvalues will all
be close to 1 at every point, which is also easy to check.

It is possible to replace these crude spectral gap estimates with more advanced methods. For example,
if D is large and d < D, as is typical in real data sets, methods based on random matrix theory? are likely
to give more robust estimates. Phase transitions in random matrix theory (RMT) refer to abrupt changes in
the behavior of eigenvalues of large random matrices as certain parameters are varied. These transitions are
particularly interesting because they often separate different regimes of matrix behavior. The eigenvalues of
large random matrices follow well-defined distributions (like the Marchenko-Pastur distribution®’) and as the
matrix size grows, eigenvalue behavior exhibits certain regularities, with interesting gaps between signal and
noise eigenvalues. There is often a critical threshold phase transition at which the behavior of the eigenvalues
changes sharply. The presence of spectral gaps between eigenvalues can signal the existence of a significant phase
transition and in high-dimensional problems, RMT can predict the existence of these gaps. Furthermore, the
eigenvectors associated with eigenvalues that exhibit an eigen-gap will be informative and uninformative when
the eigen-gap vanishes’!.

One approach to recover the true signal matrix is to threshold the singular values of the quantum metric g(y)
and keep the singular values that are likely to correspond to the signal and discard those that are likely to be
noise?. This leads to a singular value thresholding rule, where a threshold 7 is applied to the singular values of
the observable matrix, and only the singular values larger than 7 are retained. It was shown that in the asymptotic

limit as ¢, D — oo with ¢/ D — -, the optimal threshold is Top¢ = % - 0 where o is the standard deviation of

an underlying Gaussian noise matrix*. The noise parameter o can be estimated by & using the Marchenko-
Pastur bulk singular values. This estimate can then be used to adaptively set the threshold for singular value
thresholding. Specifically, the rule 7o, = % - & can be applied to the singular values of the quantum metric

g(y) for hard thresholding to find the spectral gap. In the following, we will refer to this thresholding method as
the “RMT-based” estimate.

The choice of dimension N of the Hilbert space underlying the matrix configuration A is a hyperparameter
of the algorithm. As shown in'>?>, we have the rank bound

rank g < 2(N — 1), (8)

so that N should be chosen large enough to ensure 2(IN — 1) > d. Since a priori we only know that d < D, a
sensible choice would be to set N > D /2 + 1. However, for datasets with a large number of features (i.e. D large),
this choice might be impractical, since the number of parameters of a QCML estimator scales quadratically in
N. Instead, a simple strategy for choosing N that we employ in large real data sets is to first pick N small and
gradually increase it until a clear spectral gap emerges and is consistent across different choices of dimensions.
In general, larger Hilbert space dimension N will result in point clouds X 4 that are closer to the original data
X (low bias) but may also model noise artifacts (high variance). A smaller N will result in approximations that
may have higher loss/higher energy (high bias) but that may be more robust with respect to noise (low variance).

Benchmarks

The fuzzy sphere

We first evaluate Algorithm 1 in the case when the data X is a sample of T = 2500 uniformly distributed points
on the unit sphere M = S?, embedded in D = 3 dimensions. We allow the data to be “noisy’, that is, any given
data point € X might not necessarily lie on M but it could be drawn from a Gaussian distribution whose
mean is on M and whose standard deviation is a noise parameter. By the rank bound in (8) on the quantum
metric, the minimum possible choice of Hilbert space dimension is N = 3. Plots of the point cloud X 4 and the
spectra of the quantum metric g(x) at different points x € X 4 are shown in Figure 1. With zero noise (Figure 1
a-b) the point cloud approximation X 4 is very close to the original unit sphere and a clear spectral gap emerges
at every point between the top two eigenvalues of the quantum metric and the lowest eigenvalue. The intrinsic
dimension estimate is thus d = 2 at all points. As the noise level increases, up to noise = 0.2 (Figure 1 c-d) the
point cloud starts picking up some noise artifacts and the variance of the metric spectrum increases. However,
even for noise = 0.2, the intrinsic dimension estimate is d = 2 for all 2500 points.

For comparison, we selected some of the best-performing state-of-the-art algorithms for intrinsic dimension
estimation (DANCo, MLE, CorrInt, TwoNN, as implemented in ref.?® ) and tested them at different levels of
noise, and for three different data set sizes 7' = 250, 2500, 25000 (Figure 2). In Figure 2, the slope of the intrinsic
dimension estimate for the QCML model is zero, so that the estimate is unaffected by noise in the range noise
€ [0, 0.2]. The dimension estimate is also consistent across different number of samples 7" = 250, 2500, 25000
, indicating additional robustness with respect to data distribution and density. By comparison, the estimates
of all other baseline algorithms quickly converge to d = 3, creating a “shadow” dimension out of the noise.
Increasing the size of the sample does not seem to aid the state-of-the-art algorithms in detecting the correct
intrinsic dimension. In fact, the slopes of the “shadow dimension” graphs in Figure 2 get noticeably steeper
for T' = 25000 samples, indicating an even faster degradation of the intrinsic dimension estimate as the data
density increases.
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Fig. 1. Two configurations are shown for a data set X consisting of 7" = 2500 points uniformly distributed

on the unit sphere with different levels of noise. (a,c) Scatter plot of the point cloud X 4 for (a) noise = 0,
and (c) noise = 0.2, for two corresponding matrix configurations A trained with Hilbert space dimension
N = 3. The original dataset is overlayed in red. Darker points correspond to lower relative error energy Eo

. (b,d) Spectral gaps for (b) noise = 0and(d) noise = 0.2.The x-axis corresponds to points € X 4
and on the y-axis the eigenvalues of the quantum metric g(x) are plotted.
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Fig. 2. Intrinsic dimension estimates for the unit sphere S as a function of noi se level. Varying data set
sizes of (a) T' = 250, (b) T" = 2500, (c) T' = 25000 points are tested. For the QCML estimator, the average
estimate across all T points is plotted. The QCML estimate is robust to noise when compared to other methods.
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It is worth noting that the optimal matrix configurations A = {A1, A2, A3} obtained by the QCML estimator
in this case are well-known to physicists as “fuzzy spheres”!4-1¢. Up to a change of basis and a re-scaling factor,
the elements of A are given by the angular momentum operators in quantum mechanics.

Higher-dimensional synthetic manifolds

Next, we test the QCML intrinsic dimension estimator on three higher-dimensional manifolds included in the
benchmarking framework of ref.*. The first is the 17-dimensional standard hypercube embedded into D = 18
dimensions (Figure 3 (a), (d) ), and labeled Mo in the scikit-dimension Python package. The second is
the 10-dimensional manifold M3 (Figure 3 (b), (e) ), embedded in D = 40 dimensions, and the third is the
18-dimensional manifold M N1 (Figure 3 (c), (f) ) embedded into D = 72 dimensions. These benchmarks are
considered among the most difficult for intrinsic dimension estimation, due to both the non-uniform density
of the data (for M0, and Mp) and the non-linearity of the embedding (for Mg and M Ny). In our testing, we
trained the QCML estimator with Hilbert space dimension N = 16 on each of these manifolds, and plotted
the distribution of the eigenvalues of the quantum metric g(x) across all data points x € X (Figure 3 (a-c) ). In
all cases, a clear spectral gap emerges between the top d eigenvalues that are near 1, and the remaining D — d
bottom eigenvalues that are near 0, where d is the correct intrinsic dimension.

These higher-dimensional manifolds can also be used as a testing ground for the random matrix theory
(RMT) estimate of the spectral gap. Recall that this technique can be applied whenever the quantum metric is of
low rank and of high dimension, and is therefore not suitable for the S® or M1¢, examples. For Mg, the RMT
estimate returns the correct dimension d = 10. For M N, the artificial rank bound of 30 imposed by our choice
of N = 16 implies that the metric is not actually of low rank, and therefore the RMT estimate cannot be applied
with this choice of N. We re-tested this example with a higher value N' = 37, the smallest dimension for which
the rank bound is equal to the embedding dimension D = 72, and obtained an estimate of d = 15.

Next, we plotted the intrinsic dimension estimate returned by Algorithm 1 as a function of Gaussian noise
(Figure 3 (d-f) ) and compared the estimate to other standard intrinsic dimension estimators. A common theme
among the standard estimators is to first under-estimate the intrinsic dimension, in the presence of zero or low
noise. As explained in the introduction, this is a well-known effect due to the “curse of dimensionality”, whereby
neighboring points in high dimension tend to be very far apart. As the noise is increased, however, the “shadow
dimension” effect overcomes the underestimating effects due to sparsity and the standard algorithms begin to
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Fig. 3. Intrinsic dimension estimates for 7" = 2500 points on three higher-dimensional benchmark
manifolds*: the 17-dimensional hypercube Mo, the 10-dimensional Mg manifold embedded into D = 40
dimensions, and the 18-dimensional manifold M N; embedded non-linearly into D = 72 dimensions. In the
boxplots (a-c) the i-th box plot represents the distribution of the eigenvalue e; across all 7' = 2500 points. The
outliers have been omitted from the plot for clarity. The plots (d-f) show the intrinsic dimension estimates for
each manifold as functions of the noise parameter. In these examples a global estimate of dimension for the
QCML estimator was obtained by taking the median of the local dimension estimates.
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overestimate intrinsic dimension. This is particularly evident in the plots for M and M N:. In contrast, the
spectral gap estimate of the QCML estimator is robust with respect to both these effects.

Image recognition data sets

We next test the QCML estimator on two of the real data sets suggested in the benchmarking framework of ref.%,
the ISOMAP face database and the MNIST handwritten digits database. The ISOMAP face database consists of
698 grayscale images of size 64 x 64 representing the face of a sculpture (Figure 4 (a)). Each image is represented
as a vector in D = 64% = 4096 dimensions and it corresponds to a different rotation with respect to two axes
and a different lighting direction, so that the intrinsic dimension of the data manifold in this case is expected
to be d = 3%, In Figure 4 (b) a well-defined spectral gap indeed emerges between the top 3 eigenvalues of the
quantum metric and the remaining 4093. This result was obtained by training with Hilbert space dimension
N = 32. The value of N = 32 was chosen after experimenting with different Hilbert space dimensions until a
clear spectral gap emerged. The RMT-based intrinsic dimension estimate for ISOMAP faces is d = 3.

The MNIST database consists of 70000 pictures of handwritten digits, each stored as a 28 x 28 grayscale
picture. This data set is usually divided into a 60000 training images and 10000 testing images. The overall
intrinsic dimension is unknown, but it is expected that each digit has its own intrinsic dimension. For example,
in ref.?? estimates for the dimension of each digit are in the range d € [8, 14]. For our testing, we selected all the
1135 testing samples of the digit “1” (Figure 4 (c) ) and trained with Hilbert space dimension N = 32. In Figure
4 (d), a spectral gap can be identified either atd = 9 or d = 10. The QCML estimator in this case returns d = 10
at all points. This estimate however is not very stable with respect to changing N. For example, for N = 24 the
estimate is d = 12 and for N = 16 we obtained d = 9. Similarly, the RMT-based intrinsic dimension estimates
for varying N ranges from d = 9 to d = 13. This instability is to be expected on real data, where a range of
intrinsic dimension estimates for the data manifold is perhaps more appropriate.

Wisconsin Breast Cancer data set

We also test our intrinsic dimension estimator on the Diagnostic Wisconsin Breast Cancer Database®®. This
database consists of 569 data points representing images of fine needle aspirates (FNA) of a breast tumor. For
each image, 30 features are extracted that describe characteristics of the cell nuclei present in the image. Therefore
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Fig. 4. (a) Examples of images from the ISOMAP face database, (b) Spectral gap for ISOMAP, showing an
intrinsic dimension estimate of d = 3 at all points. (¢) Examples of digit “1” in the MNIST data set, (d) spectral
gap for MNIST digit “1” with N = 32. The intrinsic dimension estimate is d = 10 at all points.
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in this case we have T' = 569 points from a manifold sitting inside D = 30 dimensional Euclidean space. The
intrinsic dimension d of this data set has been estimated to be in the range d € [3.5, 6]

The thirty data features all have significantly different scales, with standard deviations in the range 2.65 x 10>
to 5.69 x 102. For this reason we chose to normalize the data by a standard scaling so that every feature has
mean zero and standard deviation one. Since the data consists of D = 30 features, we choose N = 16 for the
Hilbert space dimension, according to the rank bound (8). For the loss function, this time we chose to introduce
a quantum fluctuation term with weight factor w = 0.75, as in (5). During testing, this choice led to sharper and
more consistent spectral gaps (Figure 5), indicating a gap corresponding to d = 2. In general, the effects of the
quantum fluctuation term on the loss function are analyzed more thoroughly in the supplementary material for
this article (see Figure 1 of supplementary material).

To test the robustness of our estimate, we add synthetic Gaussian noise with increasing standard deviation.
The goal is to provide an intrinsic dimension estimate that is constant across different levels of noise, just like
we did for the synthetic manifold examples. The results are shown in Figure 5 (b), where we tested on 21 equally
spaced noise levels from noise = 0 to noise = 0.5 in increments of 0.05.

The QCML estimator consistently returns an intrinsic dimension estimate of d = 2 across all levels of noise
tested. We also plot in Figure 5 (b) the results for other estimators. The estimates of these other models tend to
slope upwards as the noise level increases, precisely as in the synthetic manifold examples. If we assume that the
dataset carries a natural level of noise, then Figure 5 suggests that the estimates of all the other methods should
be revised downwards, and thus be closer to d = 2.

Discussion

In this article we introduce a new data representation paradigm based on Quantum Cognition Machine Learning,
with an application towards intrinsic dimension estimation. The idea is to learn a non-commutative quantum
model'*1¢ for the data manifold itself. This quantum model has the ability to abstract out the fundamental
features of the geometry of the data manifold. In particular, we demonstrate how the intrinsic dimension of
the data can be estimated from the point cloud produced by the quantum model. Because the point cloud
reflects global properties of the data, our method is fundamentally robust to noise, as demonstrated on synthetic
benchmarks. This is in contrast to other state-of-the-art techniques, which tend to overestimate intrinsic
dimension by including “shadow” dimensionality from noise artifacts. In light of our results, we suggest a new
paradigm for testing intrinsic dimension estimators: instead of focusing on noise-free synthetic benchmarks
of increasing non-linearity and dimensionality, it is perhaps more relevant to focus on the development of
estimators that are robust to noise. For practical applications, no real data is immune to noise, and not much
meaning can be attached to an intrinsic dimension estimate that is highly dependent on noise levels.

While not a quantum algorithm in itself, it is possible in principle to implement part of the QCML intrinsic
dimension estimator on a quantum computer, which could prove advantageous for very large Hilbert space
dimension N. Developing robust algorithms that extract reliable quantum estimates is an important topic in
quantum machine learning®>-%, and it would be interesting to apply QCML further in this direction.

Methods

All the results and figures for this article have been obtained on a 32-core 13th Gen Intel Core i9-13950HX
CPU with 64GB of memory, supplemented by a NVIDIA RTX 5000 Ada Generation Laptop GPU. Training the
QCML models involves iterative updates to the quasi-coherent states |10 (z)) and the matrix configuration A to
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Fig. 5. Intrinsic dimension estimates for the Wisconsin Breast Cancer Dataset using a QCML estimator of
dimension N = 16 and quantum fluctuation weight w = 0.75 in the loss function. (a) Spectral gap with zero
noise. Outliers omitted for clarity. (b) Intrinsic dimension estimates for different estimators as function of
noise. For the QCML estimator, a global estimate of dimension is obtained by taking the mode of the local
estimates.
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Dataset D= no. features | T= no.samples | N= Hilbert space dimension | Running time
Sphere 3 2500 3 2.9s

Mios 18 2500 16 3.5s

Mg 40 2500 16 5.4s

M Ny 72 2500 16 7.28

ISOMAP faces | 4096 698 32 142s

MNIST - digit 1 | 784 1135 32 28.2s

Breast Cancer 30 569 16 1.9s

Table 1. QCML estimator running times for the data sets analyzed.

lower the loss function until desired convergence is obtained. The specifics of each optimization step depend on
the particular loss function used and the choice of initialization of the matrix configuration A. A typical training
loop would consist, for each epoch, of:

(1) Calculate the quasi-coherent states |10 (x)) for all data points z € X (or batch of data).
(2) Compute the loss function (4) or (5) and its gradients with respect to A.
(3) Update the matrix configuration A with gradient descent.

The above training loop was implemented in PyTorch?’ to obtain all the matrix configurations shown in this
article. All other intrinsic dimension estimators (DANCo, MLE, CorrInt, TwoNN) were tested through their
implementation in the scikit-dimension Python package?. A summary of running times for the examples
tested in this article are given in Table 1.

The running times represent the total of both times required for 1) training the matrix configuration A and
2) calculate the eigenvalues of the quantum metric g(x), at each point © € X 4. The main bottleneck for the first
step is the calculation of the ground states at each train iteration. In the current implementation this is calculated
in PyTorch by diagonalizing the error Hamiltonian, which will be slow for large Hilbert space dimensions
N > 100. Note however that in practice it is desirable to keep N as small as possible to control variance, as
discussed in the supplementary material (see Figure 2 of the supplementary material). For the second step, the
running time is mostly driven by the number of features D, since finding the eigenvalues of the quantum metric
involves diagonalizing a D x D matrix. For the ISOMAP dataset, it was necessary for example to batch the
calculation of the eigenvalues because of GPU memory constraints. In both steps, the timing with respect to the
number of samples T can be greatly accelerated by using a GPU, and by doing so the algorithm is suitable for
scaling to large data sets.

Data availability

The datasets analysed in this article are all publicly available and are listed in the References section.
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