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We propose a new data representation method based on Quantum Cognition Machine Learning and 
apply it to manifold learning, specifically to the estimation of intrinsic dimension of data sets. The 
idea is to learn a representation of each data point as a quantum state, encoding both local properties 
of the point as well as its relation with the entire data. Inspired by ideas from quantum geometry, 
we then construct from the quantum states a point cloud equipped with a quantum metric. The 
metric exhibits a spectral gap whose location corresponds to the intrinsic dimension of the data. The 
proposed estimator is based on the detection of this spectral gap. When tested on synthetic manifold 
benchmarks, our estimates are shown to be robust with respect to the introduction of point-wise 
Gaussian noise. This is in contrast to current state-of-the-art estimators, which tend to attribute 
artificial “shadow dimensions” to noise artifacts, leading to overestimates. This is a significant 
advantage when dealing with real data sets, which are inevitably affected by unknown levels of noise. 
We show the applicability and robustness of our method on real data, by testing it on the ISOMAP face 
database, MNIST, and the Wisconsin Breast Cancer Dataset.

When data is characterized by a large number of features (e.g., zip code, annual income, age, credit card spend, 
etc. for borrowers; cholesterol, blood pressure, BMI, etc. for patients; or the latent and dependent variables), 
it tends to lie on a surface that has a smaller dimensionality than the full feature space1. Finding this low-
dimensional surface is often referred to as manifold learning. The lower dimensionality reflects the underlying 
latent structures in the data, correlations, and a variety of nonlinear relationships2,3. Furthermore, data points 
whose feature vectors are close together should possess similar properties related to the nature of the data. For 
example, in a regression problem, the output/target variables are expected to depend smoothly on the input 
variables. These characteristics of real data suggest that any given dataset consisting of D features lies entirely 
on a smooth manifold M ⊆ RD  of dimension d (the manifold hypothesis4), where d is much smaller than the 
total number of features D, typically d < 100. The dimension d of the manifold is referred to as the intrinsic 
dimension of the data1. This number represents the minimal number of parameters required to characterize the 
data. Knowledge of the intrinsic dimension d can be used to effectively choose a target space for dimension-
reduction models (such as PCA, Isomap, t-SNE, etc.) or to compress deep neural networks while maintaining 
the performance5. Intrinsic dimension estimation is also widely used in network analysis6,7, complex materials8 
and health sciences9.

One of the main challenges for manifold learning is the inevitable presence of noise in real data. A typical 
“global” projective approach is to impose a functional form (e.g. PCA where the manifold is assumed to be 
linear) and to assume that the error between the manifold approximation and the actual data is noise, which is 
then analyzed. Imposing a functional relation immediately gives estimates for the intrinsic dimension, which 
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tend to be robust to the introduction of additional noise. However, when the data manifold M has a lot of 
curvature, linear methods will fail. The problem can be somewhat alleviated by nearest neighbors methods that 
sample locally around each data point, assuming that at a sufficiently small scale all manifolds are close to being 
linear10–12. Indeed, all current state-of-the-art intrinsic dimension estimators (some of which we describe below) 
are “local”, producing estimates that are based on a local sampling around each data point4. Such techniques 
are designed and benchmarked against highly dimensional and highly curved manifolds. While they perform 
reasonably well in this ideal setup, they often tend to fall apart when noise is re-introduced into the data. Indeed, 
local methods cannot distinguish shadow dimensions that are transversal to the data manifold, and that are only 
artifacts created by the noise, leading to significant overestimates of intrinsic dimension.

In this paper, we propose a new data representation and manifold learning technique based on Quantum 
Cognition Machine Learning (QCML)13 and quantum geometry14–16. The main idea is to create a (non-
commutative) quantum model for the data manifold itself, from which we can estimate important geometric 
features, such as intrinsic dimension. Picking a quantum model is similar to what is done in linear methods, 
in the sense that a functional relation is imposed on the data. But in contrast to linear methods, we learn the 
model from the data, and we make no assumptions about the underlying distribution. Our method gives local 
estimates of the intrinsic dimension at every data point, but also takes into account the global geometry of the 
data manifold M. To this end, we are able to develop a manifold approximation method that is both robust to 
noise and flexible enough to capture non-linear geometric features of the data manifold.

Current state-of-the-art intrinsic dimension estimators measure statistics related to the density of nearest 
neighbors lying within a certain radius r from a data point x, and express these statistics as functions of intrinsic 
dimension (CorrInt17, MLE18, DANCo19, TwoNN20). These methods do not make any linearity assumption 
about the data, but do require the data to be dense in small patches around any given point. As is well-known, 
this requirement is fundamentally incompatible with the curse of dimensionality21,22, which usually occurs 
in dimensions when d is greater than the logarithm of the sample size23, and indeed these methods tend to 
underestimate the intrinsic dimension when d is large relative to the sample size. The overestimation effect 
induced by noise combined with the underestimation effect induced by the curse of dimensionality often results 
in unreliable intrinsic dimension estimates.

Our proposed approach relies on the manifold hypothesis but differs from the current projective and 
nearest neighbors methods. Our method produces local intrinsic dimension estimates that are not based on 
neighborhood sampling of the data but include global information from the entire data set. Indeed, our method 
first learns a model for the entire data manifold M, as a semi-classical limit of a quantum matrix configuration 
(in the sense of quantum geometry14–16). In particular, given a data set X containing D features, we train D 
quantum observables A = {A1, . . . , AD} (i.e. a matrix configuration) as it is done in QCML13. The whole 
matrix configuration A can be used to map each data point x ∈ X  to a quasi-coherent quantum state ψ0(x)
, which is then mapped back into the data space, producing a point cloud approximation XA to the actual 
data manifold M. Each element of the point cloud represents the expected position in the feature space of its 
corresponding data point, and it comes with a “cloud” of uncertainty around its actual position whose shape 
is determined by the quantum fluctuations of the matrix configuration. The point x is further equipped with 
a quantum metric g(x), which is a D × D real symmetric positive semi-definite matrix. This metric, already 
considered by physicists14,15, encodes much of the local geometry of the data manifold; it can be shown that its 
rank in particular is approximately equal to the intrinsic dimension of M, and that its non-zero eigenvalues are 
all close to 1. Therefore, intrinsic dimension estimates can be given by detecting the spectral gap of the quantum 
metric, separating the zero eigenvalues from the non-zero eigenvalues that are close to 1.

Some of the existing estimators (so-called ‘projective methods’, such as PCA) also provide explicit embeddings 
of the data into d-dimensional space, where d is the intrinsic dimension. In this sense, our method can be 
considered ‘locally’ projective: at each point x ∈ XA of the point cloud, the eigenvectors of the quantum metric 
g(x) with eigenvalues close to one correspond to the directions that are tangent to the data manifold, therefore 
providing a set of d local coordinates for the manifold.

We test our intrinsic dimension estimator on both synthetic and real data sets, following the benchmarking 
framework proposed in ref.4 and implemented in the scikit-dimension Python package23. In addition to 
this standard framework, we stress-test our estimates by introducing increasing levels of Gaussian noise into 
the data, and compare the results with other state-of-the-art techniques. In all of our testing, higher levels of 
noise increasingly degrade the quality of the point cloud approximation XA, and the spectral gap detection 
in the quantum metric becomes increasingly difficult. However, they do not qualitatively alter the intrinsic 
dimension estimation. This stands in marked contrast to other intrinsic dimension estimators that we tested, 
whose estimates are highly sensitive to even small amounts of noise.

Results
Quantum geometry in data analysis
Consider a t × D data set X containing t data points x1, . . . , xt, where each data point xi consists of a D-
dimensional real-valued vector of data features xi = (a1

i , . . . , aD
i ). We do not assume any particular ordering 

of the features, so that, for example, a digital image would be encoded as a flattened one-dimensional array of 
pixel values. We allow categorical data features, provided an appropriate embedding (e.g. one-hot encoding 
or target encoding) has been chosen, although in this article we will only consider numerical features. We 
assume that X lies entirely on a smooth manifold M, called the data manifold, of intrinsic dimension d < D. 
We further assume that the D features of the data extend to smooth functions ak ∈ C∞(M), for k = 1, . . . , D
, giving the coordinates of an embedding (a1, . . . , aD) : M ↪→ RD  of the data manifold into D-dimensional 
Euclidean space. In quantum geometry, the commutative algebra C∞(M) of smooth functions on a manifold 
is replaced by the non-commutative algebra of Hermitian operators on a N-dimensional Hilbert space24,25. The 
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choice of dimension N is arbitrary, and independent of D. Typically, smaller choices of N will result in quantum 
geometries exhibiting strong quantum effects, while the limit as N goes to infinity can be considered ‘classical’ 
(i.e. not quantum)14.

For the purposes of this work, any set A = {A1, . . . , AD} consisting of D Hermitian matrices on a N-
dimensional Hilbert space is called a matrix configuration, and can be viewed as a non-commutative avatar of 
the set of D coordinate functions ak  on a manifold M ↪→ RD . Typically in physics, the matrix configuration A 
is given by a quantum theory and the goal is to construct a symplectic manifold M ↪→ RD , so that A represents 
a quantization of the coordinate functions xk  giving the embedding; that is, a compatibility between the Poisson 
bracket on M and the commutator bracket on A is required, among other conditions.

In the context of data analysis, the situation is reversed: M is given by the data manifold, and we instead 
propose to learn a suitable matrix configuration A, reflecting as much of the geometry of M as possible. We 
do so through the formalism of quasi-coherent states14,15. Recall that in quantum mechanics a state is a vector 
of unit norm in a Hilbert space, and is represented in bra-ket notation by a ket |ψ⟩. The inner product of two 
states |ψ1⟩, |ψ2⟩ is represented by a bra-ket ⟨ψ1|ψ2⟩. The expectation value of a Hermitian operator A on a 
state |ψ⟩ is denoted by ⟨ψ|A|ψ⟩ = ⟨Aψ|ψ⟩ = ⟨ψ|Aψ⟩, representing the expected outcome of the measurement 
corresponding to A on the state |ψ⟩. For any state |ψ⟩ in N-dimensional Hilbert space and an N × N  matrix 
configuration A = {A1, . . . , AD}, define the state’s position vector by

	 A(ψ) = (⟨ψ|A1|ψ⟩, . . . , ⟨ψ|AD|ψ⟩) ∈ RD

and the state’s variance (or quantum fluctuation) σ2(ψ) by

	
σ2

k(ψ) = ⟨ψ|A2
k|ψ⟩ − ⟨ψ|Ak|ψ⟩2, σ2(ψ) =

D∑
k=1

σ2
k(ψ) ∈ R.

Intuitively, the matrix configuration A assigns to each quantum state |ψ⟩ a point A(ψ) in Euclidean space RD

, together with a “cloud” around it representing the uncertainty of the measurement of the point’s position in 
space. In this context, A(ψ) represents the center of the cloud, while σ(ψ) is a statistical measure of the cloud’s 
dispersion.

Now for any data point x = (ak) ∈ RD , we want to construct a quantum state ψ0(x) reflecting not only the 
absolute position of x within feature space, but also its relation to all the other points in the data set X. To do so, 
consider the error Hamiltonian

	
H(x) = 1

2

D∑
k=1

(Ak − ak · IN )2,� (1)

where IN  denotes the N × N  identity matrix. Note that the error Hamiltonian is a positive semi-definite 
Hermitian operator. We will assume throughout the article non-degeneracy of the Hamiltonian, and we list the 
eigenvalues of the Hamiltonian 0 ≤ E0(x) < · · · < EN−1(x) in increasing order. For the present purposes, 
degeneracies of H(x) do not play a role. We also let |ψn(x)⟩, n = 0, . . . , N − 1, be corresponding choices of 
normalized eigenvectors, or eigenstates. By the non-degeneracy assumption, all the eigenstates are uniquely 
defined up to multiplication by a phase factor eiθ, θ ∈ R. For each x, an eigenstate |ψ0(x)⟩ associated to the 
lowest eigenvalue of H(x) is called a quasi-coherent state of x. A simple calculation shows that

	
E0(x) = 1

2∥A(ψ0(x)) − x∥2 + 1
2σ2(ψ0(x)),� (2)

so that the lowest eigenvalue (i.e. the ground state energy) of the error Hamiltonian can be broken down into two 
contributions: the squared distance between x and the position of its corresponding quasi-coherent state, and the 
quantum fluctuation of the quasi-coherent state itself. This is analogous to the bias-variance breakdown of the 
mean-squared error loss function. We can now train a matrix configuration A so as to minimize the combined 
loss function (2) for all data points x ∈ X . In this way, the matrix configuration captures global features of the 
data, which are then reflected into the ground state ψ0(x), for each x ∈ X .

From the trained matrix configuration A, we may then calculate the point cloud

	 XA = {A(ψ0(x)) : x ∈ X} ⊆ RD,� (3)

which can be viewed as an approximate sampling of the data manifold M. The original data points x ∈ X  may 
contain noise, missing features, or otherwise deviate substantially from the idealized underlying data manifold 
M. By choosing an appropriate matrix configuration A, capturing enough global information about the data, the 
set XA turns out to be much closer to M than the original data set X. Key geometric features of the data manifold, 
such as the intrinsic dimension d, can be recovered from XA in a way that is robust to noise and other artifacts.
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Quantum cognition machine learning
Training a matrix configuration A on a data set X is the optimization problem at the core of Quantum Cognition 
Machine Learning (QCML)13. QCML has been developed independently of quantum geometry, and this is the 
first work pointing out the relation between these two areas of study. In the original formulation of QCML, a 
matrix configuration A is trained so as to minimize the aggregate energy loss function (2) across all data. In 
the present context, minimizing energy sometimes has the undesired effect of training A so that the aggregate 
quantum fluctuation 

∑
x∈X

σ2(ψ(x)) goes to zero, forcing all the matrices A1, . . . , AD  in the matrix 
configuration to commute. A commutative matrix configuration is highly undesirable. It produces a point cloud 
approximation XA consisting of N points, corresponding to the positions of the N common eigenstates of the 
matrix configuration, with no point cloud around them. Indeed, it can be shown that XA in this case consists of 
a N-means clustering of the data set X, and is therefore entirely classical26.

Instead, in this work we train the matrix configuration A = {A1, . . . , AD} on the data set X by minimizing 
the mean squared distance between the data set X and the point cloud XA, i.e. by finding

	
A = argminB={B1,...,BD}

(∑
x∈X

∥B(ψ0(x)) − x∥2

)
,� (4)

where the minimum is taken over the space of all D-tuples of N × N  Hermitian matrices. The optimization 
(4) can be tackled efficiently using gradient descent methods, similar to those employed in state-of-the-art 
machine learning models. In our study, we find A by implementing the optimization problem as a custom layer 
in PyTorch 27. To ensure convergence to a meaningful matrix configuration, it is often beneficial to pre-process 
the data so that it has a homogeneous scale, for example by standardizing all the features so that they have mean 
µ = 0 and standard deviation σ = 1.

Note that the choice of loss function in (4) corresponds to the “squared-bias” term in the bias-variance 
decomposition of the energy functional E0(x) in (2). We do not minimize the quantum fluctuation, or “variance” 
term. Indeed, while the bias term is in general unbounded, the quantum fluctuation σ2(x) has a simple bound in 
terms of the matrix configuration A only (i.e. independent of x), given by

	
σ2(x) ≤

D∑
k=1

(µk − mk)2 ≤ D

4 (µ − m)2,

where µk  (resp. mk) is the highest (resp. lowest) eigenvalue of Ak  and µ = maxk µk  (resp. m = mink mk). 
This bound has an elementary proof similar to Popoviciu’s inequality28 on variances. Note that the eigenvalues of 
Ak  correspond to possible measurement outcomes of the k-th coordinate of the position of a point x. Therefore, 
if we train A so that the positions XA are close to a compact data set X, we expect the quantum fluctuation to be 
commensurate with the average noise level in the data X. This is indeed what we observe in practice.

It is also possible to modify the loss function in (4) by adding back the quantum fluctuation term with a weight 
w ∈ R≥0, a tunable hyperparameter,

	
A = argminB={B1,...,BD}

(∑
x∈X

∥B(ψ0(x)) − x∥2 + w · σ2(x)

)
.� (5)

In this way, the choice w = 0 recovers the bias-only loss function (4) while w = 1 corresponds to the original 
energy loss (2). In applications, small non-zero values of w may lead to more robust point cloud approximations 
XA, especially in the presence of significant amounts of noise.

It is also possible in principle to replace the error Hamiltonian (1) with the Dirac operator defined in ref.15. 
The advantage of using the Dirac operator is that the energy loss is allowed to reach zero without the matrix 
configuration A being necessarily commutative. Equivalently, the quasi-coherent states in this case are zero 
modes. However, the Hilbert space dimension required by the Dirac operator scales exponentially in the number 
of features D, and this is not practical when dealing with data sets containing a large number of features.

Intrinsic dimension estimation
Suppose now that a matrix configuration A has been trained from a data set X as in (4), so that the data manifold 
M, by construction, lies within a region of RD  where the energy functional E0(x) is near-minimal and it has 
minimal variation (assuming that the quantum fluctuation term in (2) is not too large). We may then apply the 
technique described in ref.15 to calculate the intrinsic dimension of M. In particular, from formula (2), we see 
that as x moves away from the manifold M then the energy E0(x) increases like the squared distance from x to 
M, while in the directions tangent to M the energy is approximately constant. This means that the Hessian matrix 
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of the energy functional at x should exhibit a clear spectral gap between the lowest d = dim M  eigenvalues, 
corresponding to the directions tangent to M and near zero, and the highest D − d eigenvalues, of order one 
and corresponding to the directions that point away from M. Detecting the exact location of the spectral gap is, 
therefore, equivalent to estimating the intrinsic dimension of M.

This observation can be turned into an algorithm to estimate the intrinsic dimension. First, the Hessian 
matrix of the energy functional can be computed in terms of the matrix configuration A, using perturbation 
theory. Its entries are given by the formula

	

∂2E0

∂xµ∂xν
= δµν − 2

N−1∑
n=1

Re
⟨ψ0(x)|Aµ|ψn(x)⟩⟨ψn(x)|Aν |ψ0(x)⟩

En(x) − E0(x) , µ, ν = 1, . . . , D� (6)

where, as before, we write ψn(x) and En(x) for the eigenstates and energies of the error Hamiltonian H(x) given 
by (1). Notice that (6) is exact, despite being derived using perturbation theory. In detecting the spectral gap, it 
is more convenient to consider the second term of (6) only, a real symmetric D × D matrix g(x) whose entries 
are given by

	
gµν(x) = 2

N−1∑
n=1

Re
⟨ψ0(x)|Aµ|ψn(x)⟩⟨ψn(x)|Aν |ψ0(x)⟩

En(x) − E0(x) , µ, ν = 1, . . . , D.� (7)

It can be easily shown that the matrix g(x) is positive semi-definite, and in the context of matrix geometry it 
is called the quantum metric15,16,25. Indeed, in our context it can be viewed as an approximate Riemannian 
metric on the data manifold M. For a point x belonging to the point cloud XA, the eigenvalues of g(x) tend 
to be either close to one or close to zero, with a spectral gap occurring between the highest d and the lowest 
D − d eigenvalues. The eigenvectors corresponding to the the highest d eigenvalues will point in the directions 
tangential to the data manifold M, with the remaining eigenvectors being transversal to the data manifold. In this 
way, an examination of the spectral gap at g(x) provides an estimate of the intrinsic dimension d = dimx M . We 
could, in principle, apply this procedure to estimate the intrinsic dimension at points x ∈ X  directly, bypassing 
the point cloud. However, as noted in ref.15, much clearer spectral gaps emerge in practice when calculating the 
quantum metric on the point cloud XA. This is because XA, as noted earlier, is much more robust to noise and 
to small perturbations of the data manifold.

The estimation of intrinsic dimension from the point cloud XA is based on the assumption that the matrix 
configuration has been trained well enough so that the point cloud forms a good approximate model for the 
data manifold M, in particular so that the intrinsic dimensions of the data set X and XA are equal. Since the 
matrix configuration A is trained in such a way as to minimize the squared distance between X and XA, it is 
reasonable to assume that this is the case. However, the quality of this approximation will depend on many 
factors, mainly the choice of quantum fluctuation control w in the loss function (5) and the choice of the Hilbert 
space dimension N. The effect of these choices on XA is discussed in more detail in the supplementary material 
for this article (see Figures 1 and 2 of the Supplementary Material).

The algorithm for estimating intrinsic dimension can be summarized as follows.

Algorithm 1.  Quantum Cognition Machine Learning intrinsic dimension estimator.

The Algorithm 1 returns a list of intrinsic dimension estimates for every point x ∈ X . To extract a global 
estimate, a variety of techniques can be employed, such as taking the mode, median, or geometric mean to 
more refined k-nearest neighbor techniques. A global estimate can also be easily adapted to the case where 
multiple connected components of M are detected, each of possibly different dimensions. Note that in steps 7-8 
of Algorithm 1, we calculate the largest spectral gap by comparing successive ratios of eigenvalues. With this 
approach, the results d = 0, D cannot be detected. We are indeed assuming through the article that the data 
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manifold does not have zero-dimensional or codimesion zero connected components. In practice, if the data 
set is zero-dimensional (i.e. a sparse set of points) then the eigenvalues of the quantum metric will all be zero at 
every point, which can be easily checked. Similarly, if the data set is D-dimensional then the eigenvalues will all 
be close to 1 at every point, which is also easy to check.

It is possible to replace these crude spectral gap estimates with more advanced methods. For example, 
if D is large and d ≪ D, as is typical in real data sets, methods based on random matrix theory29 are likely 
to give more robust estimates. Phase transitions in random matrix theory (RMT) refer to abrupt changes in 
the behavior of eigenvalues of large random matrices as certain parameters are varied. These transitions are 
particularly interesting because they often separate different regimes of matrix behavior. The eigenvalues of 
large random matrices follow well-defined distributions (like the Marchenko-Pastur distribution30) and as the 
matrix size grows, eigenvalue behavior exhibits certain regularities, with interesting gaps between signal and 
noise eigenvalues. There is often a critical threshold phase transition at which the behavior of the eigenvalues 
changes sharply. The presence of spectral gaps between eigenvalues can signal the existence of a significant phase 
transition and in high-dimensional problems, RMT can predict the existence of these gaps. Furthermore, the 
eigenvectors associated with eigenvalues that exhibit an eigen-gap will be informative and uninformative when 
the eigen-gap vanishes31.

One approach to recover the true signal matrix is to threshold the singular values of the quantum metric g(y) 
and keep the singular values that are likely to correspond to the signal and discard those that are likely to be 
noise29. This leads to a singular value thresholding rule, where a threshold τ  is applied to the singular values of 
the observable matrix, and only the singular values larger than τ  are retained. It was shown that in the asymptotic 
limit as t, D → ∞ with t/D → γ, the optimal threshold is τopt = 4√

3 · σ where σ is the standard deviation of 
an underlying Gaussian noise matrix29. The noise parameter σ can be estimated by σ̂ using the Marchenko-
Pastur bulk singular values. This estimate can then be used to adaptively set the threshold for singular value 
thresholding. Specifically, the rule τ̂opt = 4√

3 · σ̂ can be applied to the singular values of the quantum metric 
g(y) for hard thresholding to find the spectral gap. In the following, we will refer to this thresholding method as 
the “RMT-based” estimate.

The choice of dimension N of the Hilbert space underlying the matrix configuration A is a hyperparameter 
of the algorithm. As shown in15,25, we have the rank bound

	 rank g ≤ 2(N − 1),� (8)

so that N should be chosen large enough to ensure 2(N − 1) > d. Since a priori we only know that d < D, a 
sensible choice would be to set N ≥ D/2 + 1. However, for datasets with a large number of features (i.e. D large), 
this choice might be impractical, since the number of parameters of a QCML estimator scales quadratically in 
N. Instead, a simple strategy for choosing N that we employ in large real data sets is to first pick N small and 
gradually increase it until a clear spectral gap emerges and is consistent across different choices of dimensions. 
In general, larger Hilbert space dimension N will result in point clouds XA that are closer to the original data 
X (low bias) but may also model noise artifacts (high variance). A smaller N will result in approximations that 
may have higher loss/higher energy (high bias) but that may be more robust with respect to noise (low variance).

Benchmarks
The fuzzy sphere
We first evaluate Algorithm 1 in the case when the data X is a sample of T = 2500 uniformly distributed points 
on the unit sphere M = S2, embedded in D = 3 dimensions. We allow the data to be “noisy”, that is, any given 
data point x ∈ X  might not necessarily lie on M but it could be drawn from a Gaussian distribution whose 
mean is on M and whose standard deviation is a noise parameter. By the rank bound in (8) on the quantum 
metric, the minimum possible choice of Hilbert space dimension is N = 3. Plots of the point cloud XA and the 
spectra of the quantum metric g(x) at different points x ∈ XA are shown in Figure 1. With zero noise (Figure 1 
a-b) the point cloud approximation XA is very close to the original unit sphere and a clear spectral gap emerges 
at every point between the top two eigenvalues of the quantum metric and the lowest eigenvalue. The intrinsic 
dimension estimate is thus d = 2 at all points. As the noise level increases, up to noise = 0.2 (Figure 1 c-d) the 
point cloud starts picking up some noise artifacts and the variance of the metric spectrum increases. However, 
even for noise = 0.2, the intrinsic dimension estimate is d = 2 for all 2500 points.

For comparison, we selected some of the best-performing state-of-the-art algorithms for intrinsic dimension 
estimation (DANCo, MLE, CorrInt, TwoNN, as implemented in ref.23 ) and tested them at different levels of 
noise, and for three different data set sizes T = 250, 2500, 25000 (Figure 2). In Figure 2, the slope of the intrinsic 
dimension estimate for the QCML model is zero, so that the estimate is unaffected by noise in the range noise 
∈ [0, 0.2]. The dimension estimate is also consistent across different number of samples T = 250, 2500, 25000
, indicating additional robustness with respect to data distribution and density. By comparison, the estimates 
of all other baseline algorithms quickly converge to d = 3, creating a “shadow” dimension out of the noise. 
Increasing the size of the sample does not seem to aid the state-of-the-art algorithms in detecting the correct 
intrinsic dimension. In fact, the slopes of the “shadow dimension” graphs in Figure 2 get noticeably steeper 
for T = 25000 samples, indicating an even faster degradation of the intrinsic dimension estimate as the data 
density increases.
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Fig. 2.  Intrinsic dimension estimates for the unit sphere S2 as a function of noise level. Varying data set 
sizes of (a) T = 250, (b) T = 2500, (c) T = 25000 points are tested. For the QCML estimator, the average 
estimate across all T points is plotted. The QCML estimate is robust to noise when compared to other methods.

 

Fig. 1.  Two configurations are shown for a data set X consisting of T = 2500 points uniformly distributed 
on the unit sphere with different levels of noise. (a,c) Scatter plot of the point cloud XA for (a) noise = 0, 
and (c) noise = 0.2, for two corresponding matrix configurations A trained with Hilbert space dimension 
N = 3. The original dataset is overlayed in red. Darker points correspond to lower relative error energy E0
. (b,d) Spectral gaps for (b) noise = 0 and (d) noise = 0.2. The x-axis corresponds to points x ∈ XA 
and on the y-axis the eigenvalues of the quantum metric g(x) are plotted.
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It is worth noting that the optimal matrix configurations A = {A1, A2, A3} obtained by the QCML estimator 
in this case are well-known to physicists as “fuzzy spheres”14–16. Up to a change of basis and a re-scaling factor, 
the elements of A are given by the angular momentum operators in quantum mechanics.

Higher-dimensional synthetic manifolds
Next, we test the QCML intrinsic dimension estimator on three higher-dimensional manifolds included in the 
benchmarking framework of ref.4. The first is the 17-dimensional standard hypercube embedded into D = 18 
dimensions (Figure 3 (a), (d) ), and labeled M10b in the scikit-dimension Python package. The second is 
the 10-dimensional manifold Mβ  (Figure 3 (b), (e) ), embedded in D = 40 dimensions, and the third is the 
18-dimensional manifold MN1 (Figure 3 (c), (f) ) embedded into D = 72 dimensions. These benchmarks are 
considered among the most difficult for intrinsic dimension estimation, due to both the non-uniform density 
of the data (for M10b and Mβ) and the non-linearity of the embedding (for Mβ  and MN1). In our testing, we 
trained the QCML estimator with Hilbert space dimension N = 16 on each of these manifolds, and plotted 
the distribution of the eigenvalues of the quantum metric g(x) across all data points x ∈ X  (Figure 3 (a-c) ). In 
all cases, a clear spectral gap emerges between the top d eigenvalues that are near 1, and the remaining D − d 
bottom eigenvalues that are near 0, where d is the correct intrinsic dimension.

These higher-dimensional manifolds can also be used as a testing ground for the random matrix theory 
(RMT) estimate of the spectral gap. Recall that this technique can be applied whenever the quantum metric is of 
low rank and of high dimension, and is therefore not suitable for the S2 or M10b examples. For Mβ , the RMT 
estimate returns the correct dimension d = 10. For MN1, the artificial rank bound of 30 imposed by our choice 
of N = 16 implies that the metric is not actually of low rank, and therefore the RMT estimate cannot be applied 
with this choice of N. We re-tested this example with a higher value N = 37, the smallest dimension for which 
the rank bound is equal to the embedding dimension D = 72, and obtained an estimate of d = 15.

Next, we plotted the intrinsic dimension estimate returned by Algorithm 1 as a function of Gaussian noise 
(Figure 3 (d-f) ) and compared the estimate to other standard intrinsic dimension estimators. A common theme 
among the standard estimators is to first under-estimate the intrinsic dimension, in the presence of zero or low 
noise. As explained in the introduction, this is a well-known effect due to the “curse of dimensionality”, whereby 
neighboring points in high dimension tend to be very far apart. As the noise is increased, however, the “shadow 
dimension” effect overcomes the underestimating effects due to sparsity and the standard algorithms begin to 

Fig. 3.  Intrinsic dimension estimates for T = 2500 points on three higher-dimensional benchmark 
manifolds4: the 17-dimensional hypercube M10b, the 10-dimensional Mβ  manifold embedded into D = 40 
dimensions, and the 18-dimensional manifold MN1 embedded non-linearly into D = 72 dimensions. In the 
boxplots (a-c) the i-th box plot represents the distribution of the eigenvalue ei across all T = 2500 points. The 
outliers have been omitted from the plot for clarity. The plots (d-f) show the intrinsic dimension estimates for 
each manifold as functions of the noise parameter. In these examples a global estimate of dimension for the 
QCML estimator was obtained by taking the median of the local dimension estimates.
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overestimate intrinsic dimension. This is particularly evident in the plots for Mβ  and MN1. In contrast, the 
spectral gap estimate of the QCML estimator is robust with respect to both these effects.

Image recognition data sets
We next test the QCML estimator on two of the real data sets suggested in the benchmarking framework of ref.4, 
the ISOMAP face database and the MNIST handwritten digits database. The ISOMAP face database consists of 
698 grayscale images of size 64 × 64 representing the face of a sculpture (Figure 4 (a)). Each image is represented 
as a vector in D = 642 = 4096 dimensions and it corresponds to a different rotation with respect to two axes 
and a different lighting direction, so that the intrinsic dimension of the data manifold in this case is expected 
to be d = 34,20. In Figure 4 (b) a well-defined spectral gap indeed emerges between the top 3 eigenvalues of the 
quantum metric and the remaining 4093. This result was obtained by training with Hilbert space dimension 
N = 32. The value of N = 32 was chosen after experimenting with different Hilbert space dimensions until a 
clear spectral gap emerged. The RMT-based intrinsic dimension estimate for ISOMAP faces is d = 3.

The MNIST database consists of 70000 pictures of handwritten digits, each stored as a 28 × 28 grayscale 
picture. This data set is usually divided into a 60000 training images and 10000 testing images. The overall 
intrinsic dimension is unknown, but it is expected that each digit has its own intrinsic dimension. For example, 
in ref.32 estimates for the dimension of each digit are in the range d ∈ [8, 14]. For our testing, we selected all the 
1135 testing samples of the digit “1” (Figure 4 (c) ) and trained with Hilbert space dimension N = 32. In Figure 
4 (d), a spectral gap can be identified either at d = 9 or d = 10. The QCML estimator in this case returns d = 10 
at all points. This estimate however is not very stable with respect to changing N. For example, for N = 24 the 
estimate is d = 12 and for N = 16 we obtained d = 9. Similarly, the RMT-based intrinsic dimension estimates 
for varying N ranges from d = 9 to d = 13. This instability is to be expected on real data, where a range of 
intrinsic dimension estimates for the data manifold is perhaps more appropriate.

Wisconsin Breast Cancer data set
We also test our intrinsic dimension estimator on the Diagnostic Wisconsin Breast Cancer Database33. This 
database consists of 569 data points representing images of fine needle aspirates (FNA) of a breast tumor. For 
each image, 30 features are extracted that describe characteristics of the cell nuclei present in the image. Therefore 

Fig. 4.  (a) Examples of images from the ISOMAP face database, (b) Spectral gap for ISOMAP, showing an 
intrinsic dimension estimate of d = 3 at all points. (c) Examples of digit “1” in the MNIST data set, (d) spectral 
gap for MNIST digit “1” with N = 32. The intrinsic dimension estimate is d = 10 at all points.
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in this case we have T = 569 points from a manifold sitting inside D = 30 dimensional Euclidean space. The 
intrinsic dimension d of this data set has been estimated to be in the range d ∈ [3.5, 6]34.

The thirty data features all have significantly different scales, with standard deviations in the range 2.65 × 10−3 
to 5.69 × 102. For this reason we chose to normalize the data by a standard scaling so that every feature has 
mean zero and standard deviation one. Since the data consists of D = 30 features, we choose N = 16 for the 
Hilbert space dimension, according to the rank bound (8). For the loss function, this time we chose to introduce 
a quantum fluctuation term with weight factor w = 0.75, as in (5). During testing, this choice led to sharper and 
more consistent spectral gaps (Figure 5), indicating a gap corresponding to d = 2. In general, the effects of the 
quantum fluctuation term on the loss function are analyzed more thoroughly in the supplementary material for 
this article (see Figure 1 of supplementary material).

To test the robustness of our estimate, we add synthetic Gaussian noise with increasing standard deviation. 
The goal is to provide an intrinsic dimension estimate that is constant across different levels of noise, just like 
we did for the synthetic manifold examples. The results are shown in Figure 5 (b), where we tested on 21 equally 
spaced noise levels from noise = 0 to noise = 0.5 in increments of 0.05.

The QCML estimator consistently returns an intrinsic dimension estimate of d = 2 across all levels of noise 
tested. We also plot in Figure 5 (b) the results for other estimators. The estimates of these other models tend to 
slope upwards as the noise level increases, precisely as in the synthetic manifold examples. If we assume that the 
dataset carries a natural level of noise, then Figure 5 suggests that the estimates of all the other methods should 
be revised downwards, and thus be closer to d = 2.

Discussion
In this article we introduce a new data representation paradigm based on Quantum Cognition Machine Learning, 
with an application towards intrinsic dimension estimation. The idea is to learn a non-commutative quantum 
model14–16 for the data manifold itself. This quantum model has the ability to abstract out the fundamental 
features of the geometry of the data manifold. In particular, we demonstrate how the intrinsic dimension of 
the data can be estimated from the point cloud produced by the quantum model. Because the point cloud 
reflects global properties of the data, our method is fundamentally robust to noise, as demonstrated on synthetic 
benchmarks. This is in contrast to other state-of-the-art techniques, which tend to overestimate intrinsic 
dimension by including “shadow” dimensionality from noise artifacts. In light of our results, we suggest a new 
paradigm for testing intrinsic dimension estimators: instead of focusing on noise-free synthetic benchmarks 
of increasing non-linearity and dimensionality, it is perhaps more relevant to focus on the development of 
estimators that are robust to noise. For practical applications, no real data is immune to noise, and not much 
meaning can be attached to an intrinsic dimension estimate that is highly dependent on noise levels.

While not a quantum algorithm in itself, it is possible in principle to implement part of the QCML intrinsic 
dimension estimator on a quantum computer, which could prove advantageous for very large Hilbert space 
dimension N. Developing robust algorithms that extract reliable quantum estimates is an important topic in 
quantum machine learning35–37, and it would be interesting to apply QCML further in this direction.

Methods
All the results and figures for this article have been obtained on a 32-core 13th Gen Intel Core i9-13950HX 
CPU with 64GB of memory, supplemented by a NVIDIA RTX 5000 Ada Generation Laptop GPU. Training the 
QCML models involves iterative updates to the quasi-coherent states |ψ0(x)⟩ and the matrix configuration A to 

Fig. 5.  Intrinsic dimension estimates for the Wisconsin Breast Cancer Dataset using a QCML estimator of 
dimension N = 16 and quantum fluctuation weight w = 0.75 in the loss function. (a) Spectral gap with zero 
noise. Outliers omitted for clarity. (b) Intrinsic dimension estimates for different estimators as function of 
noise. For the QCML estimator, a global estimate of dimension is obtained by taking the mode of the local 
estimates.
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lower the loss function until desired convergence is obtained. The specifics of each optimization step depend on 
the particular loss function used and the choice of initialization of the matrix configuration A. A typical training 
loop would consist, for each epoch, of: 

	(1)	� Calculate the quasi-coherent states |ψ0(x)⟩ for all data points x ∈ X  (or batch of data).
	(2)	� Compute the loss function (4) or (5) and its gradients with respect to A.
	(3)	� Update the matrix configuration A with gradient descent.

The above training loop was implemented in PyTorch27 to obtain all the matrix configurations shown in this 
article. All other intrinsic dimension estimators (DANCo, MLE, CorrInt, TwoNN) were tested through their 
implementation in the scikit-dimension Python package23. A summary of running times for the examples 
tested in this article are given in Table 1.

The running times represent the total of both times required for 1) training the matrix configuration A and 
2) calculate the eigenvalues of the quantum metric g(x), at each point x ∈ XA. The main bottleneck for the first 
step is the calculation of the ground states at each train iteration. In the current implementation this is calculated 
in PyTorch by diagonalizing the error Hamiltonian, which will be slow for large Hilbert space dimensions 
N ≫ 100. Note however that in practice it is desirable to keep N as small as possible to control variance, as 
discussed in the supplementary material (see Figure 2 of the supplementary material). For the second step, the 
running time is mostly driven by the number of features D, since finding the eigenvalues of the quantum metric 
involves diagonalizing a D × D matrix. For the ISOMAP dataset, it was necessary for example to batch the 
calculation of the eigenvalues because of GPU memory constraints. In both steps, the timing with respect to the 
number of samples T can be greatly accelerated by using a GPU, and by doing so the algorithm is suitable for 
scaling to large data sets.

Data availability
The datasets analysed in this article are all publicly available and are listed in the References section.
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