* universe

Article

Black Hole and Wormhole Solutions in Einstein—-Maxwell

Scalar Theory

Jalio C. Fabris *, Tales Augusto Oliveira Gomes

check for
updates

Citation: Fabris, J.C.; Gomes, T.A.O.;
Rodrigues, D.C. Black Hole and
Wormhole Solutions in Einstein—
Maxwell Scalar Theory. Universe 2022,
8,151. https://doi.org/10.3390/
universe8030151

Academic Editor: Gonzalo J. Olmo

Received: 31 January 2022
Accepted: 22 February 2022
Published: 27 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Denis Campos Rodrigues

Ntcleo Cosmo-Ufes & Departamento de Fisica, Universidade Federal do Espirito Santo (UFES),
Av. Fernando Ferrari, 540, Vitoria 29075-910, Brazil; talesaogomes@hotmail.com (T.A.O.G.);
deniscr@gmail.com (D.C.R.)

* Correspondence: julio.fabris@cosmo-ufes.org

Abstract: We classified and studied the charged black hole and wormhole solutions in the Einstein—
Maxwell system in the presence of a massless, real scalar field. The possible existence of charged
black holes in general scalar-tensor theories was studied in Bronnikov et al., 1999; black holes and
wormbholes exist for a negative kinetic term for the scalar field. Using a conformal transformation, the
static, spherically symmetric possible structures in the minimal coupled system are described. Besides
wormholes and naked singularities, only a restricted class of black hole exists, exhibiting a horizon
with an infinite surface and a timelike central singularity. The black holes and wormholes defined in
the Einstein frame have some specificities with respect to the non-minimal coupling original frame,
which are discussed in the text.

Keywords: black holes; wormholes; scalar-tensor theory; Einstein conformal frame; scalar field;
casual structure

1. Introduction

Black holes (BHs) are objects predicted by the general relativity (GR) theory. Their
main characteristic feature is the existence of an event horizon, a hypersurface separating
two regions, the internal one, which generally contains a singularity, and the external one
with the asymptotic spatial infinity where the observer may be located. Even if physically
and conceptually a BH may be considered an intriguing object, with many subtle properties,
its characterization is very simple. It is conjectured that only three parameters are enough
to describe a BH: its mass, charge, and angular momentum. This is the main content of
the no hair conjecture: just three numbers define the BH. In this sense, the BH may be
considered as a simpler object existing in nature. However, the possibility of existing
BHs with additional parameters, for example a scalar charge [1,2], has been evoked in the
literature, but the stability of the resulting structure is not always assured. Besides BHs,
GRs admit solutions with no horizon and no singularity and containing two asymptotic
spatial regions connected by a throat in spacetime. They have been named wormholes
(WHs) since they exhibit a short path between two distant regions. In general, a WH
requires repulsive effects, at least around the throat. Repulsive gravitational effects may
be a problem for its stability and also for the possibility to be traversable, especially by a
human being. It must be stressed that the stability of a BH is also frequently problematic,
especially when it contains some kind of hair. However, the classical BH configurations
represented by the Schwarzschild solution (which is static and uncharged), the Reissner—
Nordstrom solution (static and charged), and the Kerr solution (rotating and uncharged)
are stable, except perhaps for their corresponding extreme cases. If in some solutions,
the event horizon is absent, the singularity becomes visible to an external observer. This
configuration is called a naked singularity (NS). They are in general unstable, meaning
that they may not exist in nature. The conjecture asserting that a naked singularity may
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not exist in nature is dubbed cosmic censorship. For some extensive descriptions of these
objects and their properties, see [3-5].

BHs have been considered for a long period as hypothetical objects. This situation has
changed drastically in recent times. The detection by the LIGO project [6] of gravitational
waves emitted by the coalescence of two BHs and the first image of a BH revealed by
the Event Horizon Telescope (EHT) [7] have left little doubt about the existence of these
objects. The characteristics of the emissions coming from galaxies with an active nucleus
(AGN) show also clear evidence of the existence of supermassive black holes in their
center. The possibility of the existence of a central supermassive BH has been extended
essentially to almost all galaxies, including our galaxy. The mass of an isolated BH (called
an astrophysical BH, resulting from the collapse of massive stars) is of the order of some
tens of solar masses (M), but the mass of the BHs in the center of galaxies spans from
millions to billions of solar mass. While the BHs have mounted to the status of a legitimate
astrophysical object, WHs remain a mathematical result of the GR theory, with no clear
evidence until now for their existence.

In the literature, there is a plethora of BH solutions found in many different contexts,
most of them extending the content of known classical solutions. Many different fields have
been considered as a source for the BH structure. The classical BH solutions are vacuum
solutions for massive, charged or uncharged, rotating or non-rotating configurations.
In these classical solutions, only the RN solution requires a non-trivial right-hand side of
the GR equations due to the presence of the electromagnetic field. Other possible energy—
momentum tensors, containing gauge fields or scalar fields, may be introduced (see [8]
and references therein), leading generally to new BH or even WH structures. Furthermore,
non-minimal coupling between the fields and/or with the geometry may be considered,
leading to quite rich configurations. Theories with extra dimensions may lead also to quite
special structures. However, the stability of each of these configurations must be tested
carefully. See [9] for a description of some of these structures.

Scalar fields are the simpler source that can be added in a gravitational theory. How-
ever, scalar fields may favor the appearance of NSs instead of BHs, unless this appears as a
phantom field, that is a field with negative kinetic energy, or if it is coupled in a non-trivial
way with gravity and/or other gauge fields. An example is the Einstein-Maxwell dilaton
(EMD) system: they contain BHs that are asymptotically flat, but only in the case that the
scalar field is coupled with the Maxwell field or if the scalar field is phantom [10-13]. Of
course, the presence of self-interaction for the scalar field, represented by a potential term,
V(¢), may change all these considerations. However, it is not always clear how to motivate
the presence of the potential term. In what follows, we ignore this possibility.

BHs and WHs in the Brans-Dicke theory in the presence of an EM field were exten-
sively studied in [14]. In this theory, the EM field is coupled minimally to gravity, but the
scalar field is coupled non-minimally. All possible BH, WH, and NS cases were identified.
The BH solutions belong to the so-called cold BHs: the horizon has an infinite area, and
its corresponding Hawking temperature is zero. They are in general unstable [15], even
if they present some interesting causal structures. Cold black hole are also present when
the EM field is absent in the non-minimal and minimal coupling of the scalar field with
gravity [16-18]. However, in all cases, the scalar field must have a phantom character when
transposed to the Einstein frame.

The goal of the present work is to revisit the problem treated in [14]. The main
difference is that the BH and WH solutions are identified in the Einstein frame. Again, BHs
and WHs will be found only if the scalar field is phantom; otherwise, only NSs appear.
To our knowledge, the BH and WH solutions identified here are new, even if some of
their features are similar to other known solutions, especially those found in [14]. Besides,
to complement the analysis presented in [14], our goal was to stress the properties of the
solutions with their physical content and the role played by the conformal transformation,
and its main consequences, in passing from the Jordan to the Einstein frame. For example,
in contrast to the original Brans-Dicke case, with its different types of BH structures, there
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are only two possible classes of BHs, one with a double horizon and another one with a
single horizon, characteristics similar to the Reissner-Nordstrom BH, non-extreme and
extreme. In both cases, the central singularity is timelike (hence, repulsive), which may
again be related to the presence of the Maxwell field. Both solutions are cold black holes,
which may be related to the presence of a (phantom) scalar field. The WH class of solutions
requires also a phantom scalar field, but it is regular without horizons or singularities.

In the next section, we derive the general solution. All derivations are very similar to
the calculations exhibit in [14]. In Section 3, the different solutions are classified. In Section 4,
the NS, BH, and WH solutions are identified. In Section 5, we present our conclusions.

2. Field Equations and General Solutions

Our starting point is the action of the Einstein-Maxwell theory with a minimally
coupled massless scalar field,

5= /d4x. /=g(R — eV dV D + F,sF*), (1)
where R is the Ricci scalar, ® is a massless, real scalar field, and F*' is Maxwell’s tensor.
Our conventions are the following: the metric signature is (+ — ——); the Ricci tensor is
Ry = apr’;v — Bvl"f,p + l"fwl"ga - l"f,gl"l‘fp. Using the canonical expression for the energy—
momentum tensor,

T 2 0/—gL
RS ST

we obtain the energy—momentum tensor for the scalar field and for the electromagnetic
field, respectively:

2

1

T;I; = € (cp,.ycp;v -5 g,wcb;pcp;p), (3)
1

T, = —2 (Fﬂpr -1 gWFngP‘T). )

The parameter € can assume the values +1, which gives us a positive kinetic energy for
the scalar field, which is called canonical, and —1, which represents the “phantom” scalar
field with negative kinetic energy. This action describes the interaction between gravity
and a massless scalar field in the presence of an electromagnetic field in four dimensions.
The field equations generated by this action are:

1
V. F*% =0, (6)
V| 3¢ E| =0 @)
Vo Vi =0, 8)
where e*PA7 i the Levi-Civita symbol.

Before going on to the specific computations, we provide some words on the choice of
the action (1). Our goal is to explore the black hole and wormbhole structures in minimally
coupled scalar and electromagnetic fields. In doing so, we neglected two interesting cases.
The first is the addition of a self-interaction in the scalar sector that can be represented by
a potential term V(®). The reason was two-fold. First, we intended to keep contact with
the study carried out in [14], where a similar analysis was carried out in the Jordan frame,
in the context of the Brans—Dicke theory, which in its traditional form has no potential for
the scalar field. The Brans—Dicke structure is connected to our action (1) by a conformal
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transformation. Moreover, the presence of a potential, even in its simpler form representing
a massive field, spoils the possibility to have analytical solutions, and a quite sophisticated
numerical treatment is necessary, an approach that lies beyond the scope of the present
work. However, we stress the important possible connections that the case with a potential
V(@) has, for example, with the f(R) theories, which can be reformulated in a Brans—
Dicke-type theory with a suitable potential [19]. Another possibility, in introducing a
self-interaction in the scalar sector, is the inverse problem: the potential is determined
from a given solution, with some specific features. This problem is interesting also, but the
motivation for the potential determined in this way is not always clear.

The second important restriction of the action (1) is the absence of a coupling between
the scalar field and the electromagnetic field. This case was extensively studied in [10-13].
These studies have explored all possible solutions (always in the absence of a potential
term), asymptotically flat and non-flat, in the Einstein frame. In this sense, perhaps it would
be interesting to revert the problem and write the solutions in the original non-minimal
coupling (sometimes also called the string frame). However, this would constitute another
different problem, deserving a separate analysis.

Coming back to the action (1), in deriving the corresponding static, spherically sym-
metric solutions, we followed closely the computation carried out in [14]. We give some
details of this computation in order to be as complete as possible.

We considered a static, spherically symmetric spacetime described by the metric,

ds? = e27d? — 2%du® — e2Pd0)?, ©9)

where 7, a, and B are functions of the radial coordinate u only and d0? = d6? + sin® §d¢p?
is the differential two-sphere. The non-vanishing terms of Ricci tensor for this metric are,

Roo = e 227 [y"" + (o' —a’ +28')7], (10)
Ry = —9" = 28" + (28" + )’ =2(8')* - (v')%, (11)
Ry =1+ e 2*P2P[(a —o/ —2p")p' — B"], (12)

where primes denote the derivative with respect to the radial coordinate u.
For a point charge in a static spherically symmetric spacetime, the only non-null terms
of Maxwell’s tensor are,
Fio = —Fo1 = E(u). (13)

Therefore, Maxwell’s Equation (6) gives us,
E(u) = Qe**7~%, (14)

where Q is a constant of integration and can be interpreted as the electric charge. On the
other hand, since we are working with a static, spherically symmetric spacetime, we can
assume that the scalar field is a function of the radial coordinate only (® = ®(u)). Thus,
we obtain,

@ =Cer 172, (15)

where C is a constant of integration and may be interpreted as a scalar charge.
The resulting equations, using the non-vanishing Ricci tensor components and the
solution for the electric field, are:

7'+ ( -+ 26)y = QP e, (16)
"YN + 2‘3// _ (2,3/ + '7/)06/ +2,B/2 + 7/2 — _eC?2n—27-4p 4 QZ 827—4,3, (17)

ﬁ” o ((xl . 'Y/ o 2‘3/),5, _ eztx—zﬁ o QZ 627_4ﬂ. (18)
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Equation (16) suggests that a suitable choice of the coordinates is the harmonic coordi-
nates, where (1) = y(u) + 2(u). The harmonic coordinates are generally a convenient
choice when scalar fields are present. With this choice, the equations become:

’)’” — QZ eZ'y, (]9)
,BH _ ‘312 _ 2'81 I _ _%ecz, (20)
’Y" +,B” _ e27+2,3_ (21)

This last equation can be integrated, leading to,

(v +p')* = 7% 4 K2signk, (22)
where k is a constant of integration. Making the substitution 7y + f = —In[s(u)], we have:
s =14 k2signk s. (23)

The solution for s(u) will depend on the sign of k; thus, we may write s(u) = s(k, u),
and the solution will be:

k~lsinh(ku), k>0,
s(k,u) =< u, k=0, (24)
k~lsin(ku), k<O.

The solution for v is obtained by integrating Equation (19), which leads to,
72 = Q%e? + A%sign A, (25)

where A is another constant of integration. To solve this equation, we use the substitution
y(u) = —1In[h(u)]. Thus,
n? = Q% + A%sign A 2. (26)

Comparing this equation to Equation (24), we obtain the relation i (1) = Qs(A, 1 + up).
Finally, the general solution for the metric will be,

ds?

QR S (Nu+tug) [ du?
~ s2(A,u+up) s2(k,u) s2(k,u)

The definition of the function s(A, u + ug) is similar to the definition of s(k, ) given above.
From Equation (20), we have the following relation for the integration constant:

+ d02> . (27)

2
kzsign k — /\zsign/\ = % (28)

The scalar and electromagnetic fields are written, respectively, as:

1

®(u)=Cu, and E(u)= IR

(29)
Without losing generality, we can normalize gg9 = 1 atu = 0 by imposing the condition,

SZ(A, up) = (30)

1
@.
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We thus have four integration constants: A, k, Q, and C. Another important constant
is the geometric mass m of the configuration, which we can obtain by comparing the
asymptotic Equation (27) with the Schwarzschild metric,

2m

1
’)/sc(r) = E h’l <1 - }’) . (31)
At the asymptotic u — 0, it behaves as r~!. Hence,

1
Yse(u) = Eln(l —2mu)  —  ..(0) = —m,

and comparing with Equation (27),

s"(A, u+up) L s’ (A, ug)

~s(Au+u) ~s(Aug) (32)

7' (u) =

Now, we can connect all constants using the asymptotic behavior of (26) as u — 0,
the relations (28) and (32), and the condition (30), obtaining,

2P 2aio - 12aion . €C
m- — Q- = Asign A = k“signk > (33)

Finally, we can write the metric in terms of s(k, u) only, as:

2 2 2 2
2 S (Aug)dtt s*(A u+u) du 2
ds” = sZ(A, u+ug)  s2(A,ug)s?(k,u) \ s2(k,u) +d07 ). (34)

From here, the Reissner-Nordstrom solution of GR is recovered by putting C = 0; thus,
A = k. In this sense, we have three possible cases, A =k >0,A =k =0,and A =k <0,
corresponding to the RN non-extreme (m > Q), extreme (m = Q), and naked singularity
(m < Q), respectively. In each case, the familiar form of the RN solution is obtained with

the transformation: (x )
_ s(Au+ug
"7 s ue)s(k,u)” (39)
Another interesting limiting case is for Q = 0, which is the scalar-vacuum solution,
obtained in [20]. The limit Q — 0 must be taken preserving the boundary condition (30).
This leads to:

A>0 and uyp— o0 = s(Au+ug) — M (36)

This solution was studied in detail in [16,17].
Noticing that for u — 0, we have s(k,0) — 0 for all k, we can identify two surfaces of
interest from the metric (34). One surface is at u = —ug, where the metric terms behave as:

e’ 500, and e, e?f -0,

characterizing a central singularity, and the other is At u = 0, where:

e’ 51, and e, e — oo,
that is an asymptotic flat surface (Minkowski) expressed in the harmonic coordinates.
Therefore, the general solution (34) will have at least one singularity and one asymptotic
flat surface. The sign of A and k will determine the combination of functions in the metric,
according to Equation (24). The structure of the spacetime may also have one or more

horizons, or even no horizon at all. In all possible cases, the solutions that we look for are
BHs and WHs.
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3. Classifying the Static, Spherically Symmetric Solutions

The metric (34) has different forms depending on the sign of the constant of integration
A and k. Each combination of signs will provide a relation between the constants. In this
section, we investigate each case representing an independent solution. All possible
relations are listed in Tables 1 and 2. The features of these different cases depend on,
crucially, whether the scalar field is canonical (¢ = 1, Table 1) or if it is phantom (¢ = —1,
Table 2).

Table 1. Possible relations between the constants of integration in the canonical sector, € = +1. The *
indicates the cases that give complex values for the constants, which are not of interest.

€=+ k=0 k>0 k<0
_ — 2 _ 2 2 _ _ ¢C?
A=0 C=0 ke = > *ke = -5
2 2 2
A>0 *)\2:_% kz—)\ZZ% *k2+/\2=—%
2 _ C? 2 2_ 2 2 _ C?
Table 2. Possible relations between the constants for the phantom sector, e = —1. * indicates the

cases that give complex values for the constants, which are not of interest.

€=— k=0 k>0 k<0
A=0 C=0 *k2:f%2 kzz%z
A>0 /\2:%2 Az_kzz%z k2+A2:%2
A<0 *)\2:_%2 *k2+/\2:_c72 K2 Az_%z

Assuming all constants to be real, some of these relations will not be valid since
they provide complex values for some of the constants. Excluding all the cases where the
constants assume complex values, we are left with the independent solutions, which are
listed in Tables 3 (¢ = 1) and 4 (¢ = —1).

Table 3. Possible independent solutions for € = +1.

e =+1
A>0andk >0
A<Oandk >0
A<Oand k=0
A<Oandk <0
A=0andk >0

Table 4. Possible independent solutions for € = —1.

e=-—1
A>0and k>0
A>0and k=0
A>0andk <0
A<Oandk <0
A=0andk <0




Universe 2022, 8, 151

8 of 23

3.1. Independent Solutions in the Canonical Sector

The canonical sector is given by a positive value for the kinetic energy of the scalar
field, ¢ = +1. In this section, we analyze each independent solution of Equation (34)
listed in Table 3, knowing that all solutions have the singular surface at u = —ug and are
asymptotically flat at # = 0. Thus, we have:

1. k> A > 0: In this case, the metric takes the form,

2 12 2 2 12 24,2
FE A 51;1h (Aug)dt” sm;h [A(u—i—ug)] k czlu La?), @)
sinh”[A(u +ug)]  AZsinh”(Aug) sinh”(ku) \ sinh”(ku)

and the constants are related by:

CZ
mz—QZ:AZ:kZ—? (38)
Therefore, we can see that for u — co, we have e7 — 0. Thus, there may be a horizon
at this surface. However, analyzing the angular term of the metric, for large values of
u, it can be approximated to:

o2B ~ @2(A—K)u

7

and since k > A, we have,
lim %®) =0. (39)

Uu—o0
Hence, we have another singular surface. This case can only describe a naked singu-

larity with an asymptotic flat spacetime;
2. k> 0> A: Using the appropriate functions for this case, the metric is written as,

.2 2 2 qia2 2du?
g2 — ST (Aug)dt” Kk sin®[Au + uo)] ( =~ +d02>f (40)

sin?[A(u+up)]  sin®(Aug) sinh?(ku) \ sinh? (ku)
where: )
m?— Q> = -\ =k*— % (41)

Because the sine function has a finite range and it is a periodic function, there is
no surface where e? — 0; thus, it has no horizon, but it has many singular points.
The singular points of the first term of the metric are at,

n

Upy = 17 —uy, n=0,1,23.. (42)

Other interesting surfaces are at u — +co, where we have:

lim 2 =, (43)

u—r+oo

which describes another singular surface. This case has only naked singularities;
3. A < k = 0: The metric in this case takes the form,

2 2 2 2
ds? = S (Auo)dl - sin |Mu + uo)] (d”z + d02>. (44)
sin“[A(u + ug)] sin”(Aug)u? u
The constants of integration are related by,
2
QP —m? =A% = % (45)

This case is exactly the same as the previous one, where there is no horizon, and we
also have the same singular points and local minimumes;



Universe 2022, 8, 151 9 of 23
4. A <k < 0: Writing the metric for this case, we find,
.2 2 2 qin2 27,2
gs? .51;1 (Aug)dt” k im [/\(u.—|—2u0)] ( .kZdu —|—d02>, (46)
sin“[A(u 4 ug)]  sin“(Aug) sin”(ku) \ sin”(ku)
with the relation,
2
QZ—m2:A2:k2+%. (47)

Again, the first term of the metric e? is the same as the last cases, but the angular
term now has another sine function. Therefore, we still have the singular points 5,
but now, we have different local minimums. Another interesting surface in this case is,

Uy = i%, n=0,1,2,3. (48)
where,
lim % — oo, (49)
U—rUp

indicating an asymptotic surface. Since, |k| < |A|, we have that the interval between
the singular points u; , is smaller than the interval between the asymptotic regions
uy . Hence,

< |uk,n+l — Ukn |r (50)

and there is always a singular surface between the asymptotic surfaces. Thus, this can
only be a naked singularity.
5. k> A = 0: Here, the metric is written as,

) uidt? K2(u+up)? [ k*du® ’
ds? = e 02, (51)
(u+uo)*  u2sinh®(ku) \ sinh®(ku)

|u/\,n+1 —Urn

with the relation,

C2
m2—Q2:k2—7:0. (52)
Here, we can identify that e — 0 in the surface u# = oo, but one can verify

that at this surface, the third criterion for BH selection is not satisfied. Moreover,
e? — 0 for those points. Thus, this is not a horizon. This solution describes also a
naked singularity.

3.2. Independent Solutions in the Phantom Sector

In this section, we analyze the phantom sector, where the kinetic energy of the scalar
field has negative energy, using the possible solutions listed in Table 4:

1. A > k > 0: In this case, we have the metric as,

12 2 2 2 24,2
PR s1n£1 (Aug)dt>  k s;nh [A(u —0—2140)] k Zu La?), 3
sinh”[A(u +ug)]  sinh“(Aug) sinh”(ku) \ sinh”(ku)

with the relation:

CZ
7 .
We can see that for u — Fo0, we have e?” — 0, which is one condition for having a
horizon. Analyzing the angular term for large values of 1, we can approximate it as:

m*—Q*> =2\ =k*+ (54)

o2 o @2(A—k)u
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Since we have that A > k, the surface 1 — —oco implies e — 0. Therefore, it is
a singular surface rather than a horizon. On the other hand, for u — oo, we have
eP — oo, which characterizes a horizon with an infinite surface area. Then, working
in the range —up < u < oo, this solution indeed represents a BH. This solution can be
mapped to one of the charged Brans-Dicke BH (Case [1-] of [14]) through a conformal
transformation. This is expected since the conformal transformation that maps the
Einstein frame in the Jordan frame is given by an exponential of the scalar field &,
being regular. However, the overall structure and features of the solution are affected
by this conformal transformation.

In fact, the conformal transformation connects the metric in the Einstein frame (used
here) and the metric in the Jordan frame, used in [14], according to the relation,

ds? = ¢ lds%, (55)

where the subscripts E and | indicate the Einstein and Jordan frames, respectively,
and ¢ is the original Brans-Dicke field, which is related to the gravitational coupling.
The scalar field used here and the original Brans-Dicke field obey the following relation:

CD:\/|g+w|ln(p. (56)

In this way, the metric in the original frame that corresponds to the metric (53) in the
Einstein frame takes the form,

sinh?[A(u + ug)] - sinh?(Aug) sinh? (ku) \ sinh? (ku

{ sinh?(Aug)d? k2 sinh®[A(u + up)] ( k2du? +d Qz> } &)
)

The overall conformal factor introduces, with respect to the metric in the Einstein

frame, the constant C, implying new conditions to have a black hole, that is to obtain

oo — 0 with g2 # 0. Moreover, the conditions to have an analytical extension of the

metric beyond the horizon are affected by the presence of the parameter C, leading

to a large spectrum of possibilities, with different structures. This remark applies to

other black hole and wormhole solutions discussed above;

A>k=0:

The metric in this case is written as,

i — sinh? (Aug)dt? _ sinh? (A (1 + up)] (d”2

— + d02>, 58
sinh?[A(u + ug)] sinh?(Aug)u?  \ u? ©8)

where we have the relation:

CZ
m? —Q* =A% = - (59)
In the limit # — oo, this case has €27 — 0 and e*® — oo. Therefore, for the
appropriate coordinate range, this solution represents a BH and is connected, by a
conformal transformation, to the other charged Brans—-Dicke BH in the Jordan frame
(Case [2-] of [14]). Again, the conformal transformation maps the solution in one
frame into the solution in the other frame;

A > 0 > k: For this case, the metric takes the form,

42— sinh®(Aug)dt?  k? sinh®[A(u + ug)] ( k2du?

B sin? (ku)

2
sinh?[A(u 4 ug)]  sinh®(Aug) sin? (ki) a0 )I (€0)
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with:
CZ
m*—Q* =A% = —k2+7. (61)
The radial function, e2*, connects two spatial infinities, which is a characteristic of
WHs. Thus, for an appropriate range, excluding the singularity at u = —u,, this can
be a wormhole;
4. k<A<

For this case we have,

sin?(Aug)dt> k% sin?[A(u + up)] ( K2du?

ds? = ) ) ) )
sin“[A(u +ug)]  sin”(Aug) sin”(ku) \ sin” (ku)

; d@2>, )
with,

CZ
7 .
The radial term of the metric function e?f diverges at u = %, with 7 any integer,

while the first term, €7, is singular at u = %% — ug. Since |k| > |A|, €?f oscillates

faster than e??, thus we can always choose a coordinate range where we have two
spatial infinities and avoid the singularity at u = T — 1, therefore a WH solution;

5.k < A = 0: The last independent solution is,

Q—m* =\ =k - (63)

2142 k2 2 K2du?
ds? = 0 _ (Lft”0> ( - +d02), (64)
(u+uo)*  ufsin®(ku) \ sin®(ku)
with,
CZ
Qz—mZ:kZ—T:O. (65)
As in the previous cases where we have a sine function in €%, there are Minkowski
asymptotics at u = % and horizons only at u = +co. Thus, in the appropriate
coordinate range, excluding the singularity at u = —u, this is a WH solution.

4. Black Hole and Wormhole Solutions

In this section, we discuss the solutions that indeed have a black hole and wormhole
structure. The BH solutions have event horizons with an infinite area, i.e., gop — oo as
u — uy, which corresponds to a zero Hawking temperature, and a finite proper time for
infalling particles to attain the horizon (classified as type B1 BHs in [14], where the type B2
BHs were also defined, for which the horizon is at an infinite geodesic distance). In general,
the form of these solutions is not familiar because these solutions are found in the harmonic
gauge, while the form of the most well-known solutions are in the quasi-global gauge.
To study the geometry, it is helpful to introduce a new radial coordinate, which is in the
quasi-global coordinate. Before that, we revise the conditions required for a given solution
to represent a BH or a WH.

4.1. Criteria for Black Hole and Wormhole Selection

BH solutions are spacetimes with a singular surface bounded by an event horizon, u;,.
For a static, spherically symmetric spacetime, as Equation (9), we have the following criteria
to select the event horizon; see the discussion in [14]. At this surface, u = uy, we have:
1. The timelike Killing vector becomes null, which means €7 — 0;
2. The surface area of the horizon is always positive non-null, so e2f > 0;
3.  For an observer at rest, the horizon is invisible; thus, the integral

t* = / " Tdu — o0 as u — uy;
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4.  The Hawking temperature Ty is finite. One may use the following expression for the
Hawking temperature of a surface u = u;, in natural units,

T K(u) def  y—uy. 1.
Ty = ulgrulh o k)= ey (66)

5. The Kretschmann scalar K is finite. We discuss more about this scalar in Appendix A;
6.  The metric must admit an analytical extension beyond the horizon.

Wormbholes are a spacetime containing two Minkowskian asymptotic regions con-
nected by a throat, which is characterized by a minimum of the areal function e?. The space-
time must be geodesically complete and regular. This means that the Kretschmann scalar
does not diverge anywhere. Moreover, this spacetime does not contain horizons, implying
that it can be traversed from one asymptotic to the other, and vice versa.

4.2. First Black Hole Solution

In Section 3.2, we verified that there are two possible BH solutions. The first black hole
solution is Equation (53). The appropriate transformation for this solution is given by,

e 2K P(p), (67)
P
which allows us to write the metric in a more familiar form,
dp*>  P(p)
ds? = f(o)d? — 2 P) 2g0p2, (68)
FO =567~ Flo)?
where:
4A?P(p)" 2 222,
— , = — d — == )\ - k A - 69
0= ey = - ey "k M8 7 @

The geometric mass is defined as m = Acoth(Aup), and since it must be always
positive, we have that ug > 0. The geometric mass defined previously coincides, following
the usual definitions [21], with the ADM mass, as can be explicitly verified. The coordinate
transformation used here changes the exponential character of the metric functions to a
power law one. This transformation allows describing the interior region of the black hole.
However, this implies fractional powers of negative numbers, which violates the analyticity
of the solution as the horizon is crossed. In order to avoid the lost of analyticity, the allowed
values for a are:

a=1,2,3,4,5,.. (70)

The case a = 1 corresponds to the non-extreme RN solution, since it leads to C = 0.
This “quantization condition” leads to a discrete parametrization of the BH solutions
and is also present, similarly, in the Jordan frame [14]. Using the solutions for the scalar
and electric field Equation (29) in the harmonic gauge and the coordinate transformation,
Equation (67), we have:

P(p) = —5-n[P(p)| and E(p) = Qf(p). 1)

Now, with the metric in the quasi-global coordinate, one can directly identify one
horizon at p = 2k and an asymptotic region at p — co. We can also verify that f(p) — 0 as
p — 0, giving us another horizon.

The singularities in this coordinate system are given by the points where f(ps) — oo,
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The right hand-side of the above equation is always positive, since by definition,
m > A. However, P(ps) can admit negative and positive roots or only positive roots
depending on the value of a. Hence, depending on g, if it is even or odd, the singularity
will have different positions, splitting the possible solutions into two cases. For both cases,
the singularity f(ps) — +oo is timelike, which is frequently a characteristic of charged BHs.

4.2.1. Case of a Odd

If 2 assumes an odd value in the first solution of BHs, then we can directly take the ath
root of Equation (72) to obtain:

2k m+A\"1 2k
_:(m/\> 7= Ta’ (73)
> 1= ()

and since m > A, the singularity is located at p = ps; < 0. Therefore, in this case, the singu-
larity is bounded by two event horizons, one at p = 0 and another one at p = 2k, where
both surfaces have an infinite area, e2? — oo, and it is Minkowski at p — oo. Hence,
we have three regions, called III, II, and I, respectively: ps < p < 0,0 < p < 2k, and
2k < p < co. The signature is (+ — ——) for Regions I and III, while it is (— + ——) for
Region II. The causal structure is similar to a non-extreme RN solution. In Figure 1, we plot
the effective potential of the geodesics equation and the Carter—Penrose diagram (CPD) for
this case.

0.00010
0.00008

0.00006

Veff(p)

0.00004

0.00002

0.00000
0

1 x1078
8 x1079

6 x1079

Veff(p)

4 x1079

2 x1079

0

o

Figure 1. Plot of the Effective potential for massless particles for the first solution, in the case where
a assumes odd values (left-top figure), and a zoom of the potential after the horizon (left-bottom
figure). The vertical lines in the left figure indicate the two event horizons of the solution. Moreover,
the right figure is the Carter-Penrose diagram drawing for this case. The red lines are the singularities;
the double lines are the horizons; the blue lines are the possible geodesic curves. The value of the
parameters used were: A =27,k =9, m = 30, and L = 100.
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4.2.2. Case of a Even

Now if 4 is even in the first solution, then the ath root of Equation (72) gives us:

1/a
1_%::& L—M %Psi:Lr (74)
0 m—A ’ 1/a

s 14 (24)

where the =+ sign is due to the fact that P(ps) can be positive or negative. In this sense,
there are two singular surfaces, where one is the same as in the previous case with a
odd, ps = ps—, while the other singular surface is located between the two horizons,
0 < ps,+ < 2k. Analyzing the surface p = ps 4, we find that the geodesics ends at this
surface; thus, this solution consists of two regions, ps + < p < 2k and 2k < p < oo, instead
of three. In this case, there is no change of signature from one region to the other. It has a
causal structure similar to the extreme RN solution. A plot of the effective potential and the
CPD for this case is shown in Figure 2.

0.00010 T T T T

0.00008

T

0.00006

Veff(p)

T

0.00004

0.00002

0.00000 ! ! ! !

b
My
(e

Figure 2. Plot of the effective potential for massless particles (left figure) and the Carter—Penrose
diagram (right figure) for the first solution with a even. The vertical line indicates the event horizons.
In the CPD, the red lines are the singularities, the double lines are the horizons, and the blue lines are
the possible geodesic curves. Here, we used the following values for the parameters: A = 6,k = 3,
m =10, L = 100.

4.3. Second Black Hole Solution

The second black hole solution in the phantom sector is Equation (58), and the appro-
priate coordinate transformation for this case is:

1

As a consequence, the metric becomes,

dx? x?
2 _ 2 _ 2
ds® = h(x)dt W) ) aqs, (76)
with: R
4\2 e 2%
h(x) = x . (77)

[(m+A)— (m—A)e 252
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The geometric mass m has the same definition as in the first BH solution, and the
constants are now related by:
C2
>

The solution in this case has one parameter less than the first solution, since we fixed
k = 0O; thus, the parameter a, which is a relation between A and k, is not defined here.
We can also see that the transformation used to obtain Equation (76), giving an extension
beyond the horizon, keeps the exponential nature of the functions in the metric; hence,
there is no need for a “quantization condition” to extend the solution to the interior region.
The scalar and electric fields here are given by:

m?—Q*=\%= (78)

@(x):% and E(x) = Qh(x). (79)

In this coordinate system, we can notice that this solution is Minkowski as x — oo,
while a horizon is present at x = 0. The singularity is located at x = x;, where x; satisfies
the equation:

oA A —2A
e S 0
" In(44)
We can use the definition of the geometric mass, m = A coth(Auy), to write:
1
= —— 1
Xs uo/ (8 )

and since ug > 0, we have that x; < 0. As for the previous case, the singularity here
is timelike. Therefore, this solution, similar as in the first solution with a even, has two
regions, xs < x < 0and 0 < x < co, connected by one event horizon at x = 0. Figure 3
shows a plot of the effective potential and the CPD of this solution.

Figure 3. Plot of the effective potential for massless particles for the second solution (left figure).
The vertical line indicates the event horizon of the solution. Furthermore, the right figure is the CPD
for this solution, where the red lines are the singularities, the double lines are the horizons, and the
blue lines are the possible geodesic curves. For this plot, the values for the parameters were: A = 1.5,
ug = 0.3, and L = 10.
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4.4. Wormbhole Solutions

In the phantom sector (Section 3.2), we verified that there are three possible wormhole
solutions. The metric for these WHs can be written formally in a unified way by using
the transformation,

u= %arccot |ky|, (82)
leading to,
ds? = An(y)df? — dy ra(y)?dQ?  with 1y (y)* = yz—H, (83)
An(y) An(y)

where the index 1 corresponds to each wormhole solution. The scalar and electric fields
here are,

P(y) = %arccot ky, and E(y) = QA,(y). (84)

The metric (83) admits an analytical extension, so the range for the radial coordinate is
—o0 < i < 0o, where y — Foo corresponds to the two flat spatial infinities and the throat
is at y = 0, with a radius of ,(0). For each of the three possible cases, the function A,
assumes a different form.

e  First wormhole (60): In this case, we have the function:

4)2 e—2% arccotky

() — ) 85
1(y) [()&—FTH)-F(/\_m) efz%arccotky}z (85)

where:

CZ
2
Since A is a real constant, the above relation gives us A > m, for a non-null electric
charge. The radius of the throat in this case is:

m?>—Q*>=A?= = — % (86)

(A+m)+ (A —m)e 25

7’1 (0) = At
2Ae” 2k

(87)

The effective potential of the geodesic motion for massless particles, has a local mini-
mum at the throat and a maximum around it, where it is possible to have a photon
sphere. In Figure 4, there is a plot of Aj, the radius r1, and the effective potential.
In the limit Q — 0, which corresponds to A — m, the metric (85) takes the form of:

ds? = e 2Midpr — e2™idy? — &2 (y2 1 1)d0)2. (88)

The above metric is known as the wormhole of the anti-Fisher solution [20], and for
m = 0, it becomes the Ellis wormhole [22]. A more detailed discussion about these
solutions can be found in [15,23];

e Second wormhole (62): The function for this case has the form:

AZsin(a arccot ky) 2

Ax(y) = [m + A cot(a arccot ky)]2’ ®9)
where: )
szmzzAZ:sz% and a:%. (90)

Here, we have the condition that |k| > |A|, which gives us that a < 1. The radius of
the throat is: o .
r2(0) = msin (%) —)l\—)\cos(j). o)
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The plot of the effective potential for geodesic motion for massless particles (Figure 5)
shows that there is the possibility for photons to orbit the throat;
Third wormbhole (64): Here, we have the function in the form:

k2
= 92
As(y) [k 4+ m arccot ky]?’ ©2)
where:
CZ
Q—m? =k - — =0 (93)
At the throat, y = 0, the radius is:
mr
r3(0) =1+ ETR (94)

The effective potential in this case also allows photon spheres, as we can see in Figure 6.
The metric in this case also becomes the Ellis wormhole [22] for m = 0.

A3(y)

] 7 030
] 6 025
] 5 020
] = S

1 34 £ 0.15
1 >

3 0.10
5 0.05
. 1 0.00

-10 -5 0 5 10 ) = P 2 p -10 -5 0 5 10
y y y

Figure 4. Plot of the function A1 (y), the radius 71 (y), and the effective potential, respectively, for the
first wormhole solution, Equation (85). The values used for the parameters in this plot were: A =1,
k=3 m=2and L =1.

A2(y)

] 6 0.40
] 5 0.35
] 4 030
1 s s
f | S 2 025 /—\/\
L ;] < >
2 0.20
f 1 0.15
. o 0.10
10 -05 0.0 05 1.0 o o5 00 0 70 -1.0 ~05 00 05 1.0
y y y

Figure 5. Plot of the function A;(y), the radius 7, (y), and the effective potential, respectively, for the
second WH solution, Equation (89). The values used for the parameters in this plot were: A = 1,
k=3 m=2andL=1.
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Figure 6. Plot of the function A3(y), the radius r3(y), and the effective potential, respectively, for the
third WH solution, Equation (92). The values used for the parameters in this plot were: k =3, m =1,
and L = 1.
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5. Final Comments and Conclusions

We analyzed, in this work, the black hole and wormhole configurations of the Einstein—
Maxwell system with a massless scalar field. Such a structure can be obtained from the
Brans—Dicke theory in the presence of the Maxwell field by a conformal transformation.
Wormbholes’ and black holes’ charged solutions in the Brans-Dicke theory were studied in
detail in [14]. In the Brans—-Dicke theory (Jordan frame) as in the Einstein-Maxwell-scalar
system (Einstein frame) studied here, black holes and wormholes can be obtained only
when the scalar field is phantom, that is, it has negative kinetic energy.

The conformal transformation maps the seven main classes of solutions obtained
in [14] (each of them containing sub-cases according to the conditions on the parameters)
to all solutions obtained here. In the present case, in the Einstein frame, we have ten
possible solutions, listed in Tables 3 and 4. In all cases, there is a map directly to their
counterparts in the Jordan frame. In [14], for a canonical scalar field, in both frames, only
naked singularities are present. In the phantom sector, the possibilities are much richer,
with BH and WH configurations. The possibilities are richer in the Jordan frame due to
the presence of the conformal factor. For example, for A > k > 0, in the Jordan frame,
there are four possible cases, while in the Einstein frame, just two cases. Moreover, in the
Brans—Dicke original frame, the central singularity can be timelike or spacelike, while in
the Einstein frame, both BH cases exhibit a timelike central singularity. The WH solutions
in one case are mapped into WH solutions in the other frame.

Although we can map all solutions obtained here to the ones obtained in the Jordan
frame, these frames are not completely equivalent. The presence of a conformal factor
in the metric changes the geodesics followed by particles depending on the choice of the
frames: a geodesic in the Jordan frame is not necessarily a geodesic in the Einstein frame
and vice versa. Even though, the type of geodesic curves obtained here for the two BH
solution, as shown in Figures 1-3, are also present in the Jordan frame, which, however,
contains in general more different types of curves than those found in the Einstein frame.

The main properties of the black hole and wormhole solutions described here do not
depend on the choice of the coordinate system, for example the fact that the black hole
horizons have an infinite area. However, we must keep in mind that some coordinate
systems may cover only a portion of the complete manifold, as happens if we fix the areal
function as in the traditional Schwarzschild coordinates for which e/ = r2.

The different parameters of the model obey a “quantization condition”, mainly due to
the analytical extension beyond the horizon. These quantization conditions are different
in the Jordan and Einstein frame due to the conformal factor. In the Einstein frame,
the “quantization condition” is given by Equation (70), which leads to a different causal
structure: one that is similar to the non-extreme Reissner-Nordstrom solution, the case of a
odd, while the other is similar to the extreme Reissner—Nordstrom solution, the case of a
even. In both cases, the central singularity is timelike, which seems to be a consequence of
the presence of the electric field, as in the Reissner-Nordstrom case. However, the horizons,
in one case and in the other, have an infinite area, being an example of the so-called
cold black holes. This may be considered as a consequence of the presence of a phantom
scalar field.

The studies of the stability problem for the solutions found here are a necessary new
step. For an appropriate analysis of the problem, the use of the gauge-invariant quantities
is required, as well as determining the stability of the model. From the previous results
obtained in the literature for similar configurations [15,23,24], we may expect that the
solutions are unstable. We remark that the BHs found here have some similarities with the
RN black holes for which previous studies have revealed the presence of instabilities [25,26]
mainly in the Cauchy horizon. However, the stability of objects such as black holes and
wormbholes must be studied case by case. We remark that the stability analysis implies
writing a Schrodinger-type equation with an effective potential. This effective potential is
generally singular at the minimum of the areal function ¢?f. This implies that a numerical
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analysis is necessary in order to complete the stability study. We hope to present such a
numerical analysis in future work.

Finally, it is important to give some words about the thermodynamics of the black
hole solutions found here. They belong to the class of the so-called cold black holes because,
in principle, their Hawking temperature is zero. It is more appropriate to say that maybe
it is not possible to attribute thermodynamics properties to such black holes, in a sense
similar to what happens with the extreme RN black holes; see [27] and the references
therein. Strictly speaking, we can only state that cold black holes have zero surface gravity
x, as it can be verified by computing,

!
800

1/ 800811 uh.

It is quite direct to verify that « is, for the cases considered here, equal to zero. However,
a proper semiclassical evaluation of quantum fields in the spacetime of cold black holes
reveals that all the computation is ill defined. Hence, it is not clear that it is possible to
define the thermodynamic quantities as for the usual black holes. Especially, the entropy of
a black hole with zero temperature and/or an infinite surface horizon is not unambiguously
defined; see [28,29]. To our knowledge, the thermodynamics of such objects remains an
open problem.

x = % (95)
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Appendix A. Kretschmann Scalar

When studying any spacetime, it is above all important to know whether it is regular,
which means that all curvature invariants are finite at all its points, or it contains curvature
singularities at which at least one such invariant is infinite. In many cases, it is most helpful
to check the finiteness of the Kretschmann scalar, defined as:

K = RMAR 0. (A1)

For a spherically symmetric metric, the Kretschmann scalar is the sum of squares of
all nonzero components of the Riemann tensor [9],

K = 4(K1)? 4 8(K2)? + 8(K3)? 4 4(Ky)?, (A2)
where:

Ky =R% = —e (/&) (A3)

K» = R%p = R%p3 = —e 289/, (A4)

Kz=RY?,=RB;=—e*F ([5’ eﬁ*“)/, (A5)

Ky = R®By; = o 26 _ e721x[3/2’, (A6)

It is significant that all K; are invariant under the reparametrizations of the coordinate;
in other words, they behave as scalars at such transformations. Since the scalar K is a
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K3

Ky

Kipel

BA® [4A(A2 = ) P(0)*" — (m + M)2(k = p + A)P(p)" + (m — A2k — p = A)P(0)™|

sum of squares, for its finiteness, it is necessary and sufficient that all its components K;
are finite.

It must be mentioned here that curvature singularities are not the only type of sin-
gularities that can appear in physically relevant spacetimes. In the most general form,
a singularity is defined as a point or a set of points where geodesics terminate at a finite
value of their affine parameter, characterizing geodesic incompleteness.

Appendix A.1. Kretschmann for the First Black Hole Solution
Using the first solution (Equation (53)), one can find the scalars (A3)—(A6) as:

, (A7)

AN [2A(A2 — m2)P()* — (m+ )2k — p + A)P(p)" + (m — A)2(k — p — A)P(p)]

p*P(p)* [(m + A) — (m — A)P(p)"]*

, (A8)

472[2(A% = m2) (k2 = 2A2)P(p)*" + (m + A)2((k = p)A + k)P

p*P(p)* [(m + A) — (m — A)P(p)"]*

)
(0)" + (m = 2Y2((p = )A +2)P(0)™|
. (A9)

402 [ (2A2(2 + w2 = 2%) = 2k ) P ()" + (m+ A)2((A + k)2 = 240)P(p)" + (m — )((A = k)% +2Ap)P(p)™]

p*P(p)* [(m + A) — (m — A)P(p)"]*

(A10)

4P(0)?[(m + A) — (m — A)P(p)"]*

10

Kipl

I I I ol h h I I

K =

20 30 40 50 0 5 10 15 20
P P

Figure A1. Plot of the Kretschmann scalar for the first solution (Equation (68)) with a odd (left figure)
and with a even (right figure). The vertical lines in the left figure indicate the horizons, while in the
right figure, the left and right vertical lines are the horizons and the one in the middle is the second
singularity of the case of a even, showing that the solution ends there, excluding the inner horizon.
The values of the parameter used here are the same as in the plots of Figures 1 and 2.

Appendix A.2. Kretschmann for the Second Black Hole Solution
For the second solution (Equation (58)), the scalars K; take the form:

—8A3eX {(m+ A2 (x—A)e¥ — [4A(m+A)e¥ + (x+A)(m—A)|(m—A) }

- . ) (A11)
x4 [(m +A)ex —(m— A)}

IPERS [(m+A) e¥ + (m—A)] [(x—A)(mM)e% — (x4 A)(m —A)}
Ky = ; . (A12)

x4{(m+)\)e% —(m —/\)}
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Ky =

8)\36%{(771—)\)2(36—0—%) e ¥+ (m—i—)\)[(m—/\)/\e_T - (m—l—/\)(x— %)}}

—4)%e% {4A(m2 —A2) e  + [(m —A)? e % — (m + /\)2] x}

K3 = , (A13)

e[+ ) — (m—2)]°

2)

. , (Al14)

x4[(m—|—/\) e¥ — (m—)\)}

T —— ——
0.04} ]
0.03f ]
0.02f

0.01F

0.00!

Figure A2. Plot of the Kretschmann scalar for the second solution Equation (76), where the vertical
lines indicate the horizons. The value of the parameters are the same as in Figure 3.

Appendix A.3. Kretschmann for Wormhole Solutions

The Kretschmann scalar for the WH solutions has several terms, which are not suitable
to write here. However, we plot this scalar for each WH solution. The plot shows us that
the Kretschmann scalar, for all cases, is finite everywhere.

10— 0.05
8 0.04}

6 0.03}

>
<

Kyl

4 0.02}

5 10 0 05 00 05 10 -10 -5 0 5 10

y y

Figure A3. Plot of the Kretschmann scalar for the first, second, and third WH solution (Equations (85),
(89) and (92), respectively). The value of the parameters for each case is the same as in the plots of
Figures 4-6, respectively.

Appendix B. General Form of Geodesic Equations

In this Appendix, we discuss the geodesic equations, using the Lagrangian formalism.
The Lagrangian of any spacetime can be written as:

1 1
= — VV X % = —
L 2g XXy 25, (A15)
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where:
+ 1 for timelike geodesics,

E= 0 for null geodesics, . (A16)
— 1 for spacelike geodesics.
For a static, spherically symmetric spacetime (Equation (9)), the Lagrangian takes

the form:
212 2uu) 2 G2B(w) [9’2 + sin? 94}2} =& (A17)

The symmetries of the system allow us to define the following conserved conjugate
momentum,
_9L _
=% =

where E and L are the constants of integration. Substituting these expressions back into
Equation (A17),

Py —e?Psin’0p =L, (A19)

. 2p—2p
E2e727 — o202 _ o2BG2 “72 -y (A20)
sin“ 0
For simplicity, and in connection with the symmetry of the problem, we assumed that
the geodesic is located in the equatorial plane (6 = 7), leading to,

20272 — F2 _ £027 _ 2027728 (A21)

Geodesic Equation for the General Solution
Now, for the general solution (Equation (27)), the geodesic equation becomes:
u? 2 s(A, ug)? 55(A, ug) s (k, u)?

=E"-¢& —L , A22
s(k, u)4 s(Au+ u0)2 s(Au+ u0)4 (A22)

where we can use the following transformation,

" du .
p= / s(k,u)2 =P= s(k,u)zl (A29)

to obtain the geodesic equation in the form of an energy conservation law for a particle
moving in a potential field,

p? = E? = Vegs(u), (A24)
with: 5 ) )
Vs () = —St0)” (g4 jasuo)sku)7) (A25)
s(A, u+up) s(A, u+up)

playing the same role for geodesic motion as the potential in classical mechanics for a
one-dimensional motion of a point particle: the motion is only possible in a region where
E2 >V, ¢(u), while the values of the coordinate at which E? = off(u) correspond to
turning points.

Remembering that s(k,0) = 0, independent of the chosen sign of k, this describes
two surfaces, u = 0 and u = —up, the asymptotic flat one and the singularity. In the
asymptotic region, the effective potential is a constant, while at the singularity, it diverges,
Vers(—uo) — oo, which agrees with the expected behavior at these surfaces.
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