10th Int. Partile Accelerator Conf.
5 ISBN: 978-3-95450-208-0

Abstract

The accurate and performant graphical representation of
Raccelerator- or beam-based parameters is crucial for commis-
sioning and operation in any modern accelerator. Based on
earlier GSI and CERN designs a new JavaFX based ChartFx
cientific charting library has been developed [1] that pre-
erves the feature-rich and extensible functionality of estab-
lished earlier Swing-based libraries [2,3] while addressing
the performance bottlenecks and API issues. The library has
een optimized for real-time data visualization at 25 Hz for
ata sets with a few 10 thousand up to 5 million data points
ommon in digital signal processing applications.

Relying on modular open interface abstractions, the lib-
s rary allows the exchange of the underlying technology if
£ necessary, while easing its use by casual developers as well
f-, as allowing more-inclined developers to modify, add or ex-
Etend missing functionalities. This contribution provides a
;5: performance and functionality comparison with other exist-
° ing Java-based charting libraries.

S
S

o o

t maintain attrlbutlon to the author(s) title of the work, publisher, and D
(@]

u

INTRODUCTION

Charts are one of the most visible but at the same time of-
Z'ten underappreciated accelerator control system components
_.even though these are crucial for easing and improving a
% quick intuitive understanding of complex or large quantities
N of data. In turn the understanding gathered through charts
- is used to efficiently control, troubleshoot or improve the
% accelerator performance.

= Javahas been adopted for FAIR’s accelerator settings sup-
< ply and other control subsystems [4—6]. The possibility of
% reusing server code on the client sides initially made the use
v of Java’s Swing Ul framework a favourable choice. Albeit
Elacking native support for charting, a number of comple-
= — mentary third party libraries have been developed, some
2 with mixed quality and a very limited scope.

The JDataViewer is one of the more notable free, open-
ource and powerful exceptions to the rule and being extens-
ively used at CERN and GSI [2, 3]. Unfortunately, its API is
ound to the — by today’s standard aging — Swing-based API
that is to be phased-out from the JDK latest by 2026 [7].

While its successor JavaFX provides a basic chart imple-
© mentation, it presently still lacks significant functionalities
g and performance for real-world scientific control room ap-
= plications, typically requiring real-time update of large data
= sets with 10k or more data points, visualisation of error-bars
'é and -surfaces, and user-interaction such as zooming and data-
£ set editing. While third-party extensions address some of
< the shortcomings [8,9], the rendering performance and other

=

distribution

o= @

e used under the term

ay

* R.Steinhagen @GSI.de
THPRB028
3868

e Conten

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-THPRBO28

REDESIGN OF THE JAVAFX CHARTS LIBRARY IN VIEW OF
REAL-TIME VISUALISATION OF SCIENTIFIC DATA

Ralph J. Steinhagen®, Harald Briuning, Alexander Krimm, Timo Milosic
GSI Helmholtzzentrum, Darmstadt, Germany

missing features issues remain. Many of the needed enhance-
ments require workarounds around the original JavaFX API,
were impeded by method override restrictions (ie. final’
keyword), lack of abstract interfaces, or the low-level tech-
nology choice of rendering inefficient Scene’ graphs of
large and complex 'Node’ elements rather than, for example,
using native ’double’-based data point arrays.

ARCHITECTURE

Based on earlier designs and analysis of missing function-
alities, performance bottlenecks, and long-term maintenance
risks for the necessary workarounds, we decided that it was
worth to re-engineer a new scientific charting library that
preserves the functionality of established libraries, while
being conforming to JavaFX standards, and while address-
ing performance bottlenecks and API issues of the JavaFX
implementation. Visual examples illustrating some of its
functionalities are given in Figures 1 and 2.

Sid€: | RIGHT. - V)

1000.00
samples

Figure 1: ChartFx example showing error-bar and
error-surface representations, display of mock meta-data,
ChartPlugin interactors and data parameter measurement
indicators (here: *20%-80% rise-time’ between *Marker#0’
and ’Marker#1’. More examples are available at [1].

The user-side API was kept compatible to JavaFX’s Chart
API in order to preserve a low entry-level learning curve,
easy interaction with other JavaFX UI code, and to keep
the required boilerplate code to a minimum. The internal
interfaces follow a more modular separation-of-concerns
paradigm and split the library into functional sub-modules:
DataSet containing the measurements data itself as well as
relevant meta information; a math sub-library that allows
performing common signal processing using the DataSet
interface; Chart with a Canvas pane as back-end for draw-
ing the data; Axis responsible for the scaling, data sanitiza-

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

10th Int. Partile Accelerator Conf.
ISBN: 978-3-95450-208-0

time [tums]
Scalogram

frequency ffs]
%4 Wavelet magnitude <5 Fourier magnitude

Figure 2: ChartFx example showing a heatmap represent-
ation of 2D wavelet transform betratron oscillation (N.B.
chirp-type excitation), corresponding FFT and projected
wavelet magnitude spectrum that have been all computed
using the built-in math sub-library and DataSet.

tion, and transformation between real-world data and screen
pixel coordinates; Renderer responsible for the specific
data point drawing process; and ChartPlugins to provide
methods for interacting with the chart or data.

The modules adhere to Java 1.8 compliant abstract observ-
able interfaces, rather than using specific class implementa-
tions as used in JavaFX’s Chart class. A common abstract
and one or more example implementations thereof derived
are provided for each interface. This abstraction establishes a
more stable API and at the same time allows to reimplement,
override, extend or modify existing functionality at the level
of detail and experience of the individual developer. This
also simplifies long-term maintenance or exchange of techno-
logies in the underlying code without breaking dependencies
to other modules or existing user-level applications.

The use of the Canvas pane is the key to the perform-
ance and provides substantially better hardware graphics
acceleration!. This facilitates also further performance im-
provements for very large datasets by efficiently reducing
data points prior to rendering that are drawn on top of
each other or in such a close proximity that the user can-
not visually discern their difference (e.g. less than three
pixels on a HD screen). The ReducingLineRenderer
and ErrorDataSetRenderer provide example implement-
ations. The first performing a straight-forward data reduc-
tion in x, while the latter also considers reductions in y and
accounts for propagation of measurement uncertainties.

! While this was not known to the authors at the time of the initial ChartFx
implementation, this shortcoming of JavaFX was also noted in [10, 11]

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-THPRBO28

Chart Functionalities and Features

The library offers a wide variety of plot types common in
the scientific signal processing field, a flexible plugin system
as well as online parameter measurements commonly found
in lab instrumentation. Some of its features include:

e DataSet: basic XY-type datasets, extendable by
DataSetError to account for measurement un-
certainties, DataSetMetaData, EditableDataSet,
Histogram, or DataSet3D interfaces;

» math sub-library: FFTs, Wavelet and other spectral and
linear algebra routines, numerically robust integration
and differentiation, IIR- & FIR-type filtering, linear
regression and non-linear y?-type function fitting;

e Chart: providing euclidean, polar, or 2D projections
of 3D data sets, and a configurable legend;

* Axis: one or multiple axes that are linear, logarithmic,
time-series, inverted, dynamic auto-(grow)-ranging,
automatic range-based SI and time unit conversion;

* Renderer: scatter-plot, poly-line, area-plot, error-bar
and error-surfaces, vertical bar-plots, Bezier-curve,
stair-case, 1D/2D histograms, mountain-range display,
true contour plots, heatmaps, fading DataSet history, la-
belled chart range and indicator marker, hexagon-map,
meta data (i.e. for indicating common measurement
errors, warnings or infosz);

e ChartPlugin: data zoomer with history, zoom-to-
origin, and option to limit this to X and/or Y coordin-
ates, panner, data value and range indicators, cross-hair
indicator, data point tool-tip, DataSet editing, table
view, export to CSV and system clipboard, online axis
editing, data set parameter measurement such as rise-
time, min, max, rms, etc.

In order to provide some of the scenegraph-level functional-
ity while using a Canvas as graphics backend, the function-
ality of each module was extended to be readily customized
through direct API methods as well as through external CSS-
type style sheets.

Chart Performance

Besides the extended functionality outlined above, the
ChartFx optimisation goal also included achieving real-time
update rates of up to 25 Hz for data sets with a few 10k up
to 5 million data points. In order to optimise and compare
the performance with other charting libraries, especially
those with only reduced functionality, a reduced simple
oscilloscope-style test case has been chosen that displays
two curves with independent auto-ranging y-axes, common
sliding time-series axis, and without further ChartPlugins
as visualised in Figure 3(a).

The direct performance comparison between the ChartFx
and JavaFX charting library for update rates at 25 Hz and

2 such as over- or under-ranging, device or configuration errors etc.

THPRB028
3869

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

10th Int. Partile Accelerator Conf.
5 ISBN: 978-3-95450-208-0

IPAC2019, Melbourne, Australia

time
7 beam intensity [ppp] 5

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-THPRBO28

dipole current [A]

cess-CPU (avg)

n 0.0 (7.7) %
9): 0.0 (0.0) FPS, System -CPU (avg)

i 9.9 (29.4) %

1k points | T@26Hz | Series@25Hz

50k points | T@1Hz | Series@2Hz

Al|B|C |act

W,

CPUload [%]

1082 1063 1084
number of samples

35 JavaFX Chart 4% new Chart (ErorDataSetRenderer) == new Chart (ReducingLineRenderer)

(a) Performance test scenario with two independent graphs, independent auto-ranging y-axes, and common scrolling time-series axis.

60.9) FPS, Process-CRU (avg)

0.0 (7.5) %
: 0.0 (0.0) FPS, System -CPU (avg): 10.0 (20.6) %

1kpoints | T@25Hz | Series@25Hz

50k points | T@1Hz | Series@2Hz

AlB | c lActual (a

CPU oad [%]

1063 1,084 1.085
number of samples

7% JavaFX Chart 43¢ new Chart (EmorDataSetRenderer) “ new Chart (ReducingLineRenderer)

(b) Test results at 25 Hz update rate.

n of this work must maintain attribution to the author(s), title of the work, publisher, and D

(c) Test results at 2 Hz update rate.

Flgure 3: Comparison between the JavaFX and ChartFx performance for a test cases with update rates at 25 Hz and 2 Hz.
= Note the logarithmic horizontal axis. Test system: Intel(R) Core(TM) i7 CPU 860 2.80GHz and GeForce GTX 670 GPU.

2 2 Hz is shown in Figures 3(b) and 3(c). While the ChartFx
>\1mplementatlon already achieved a better functionality and a
< by two orders of magnitude improved performance for very
& large datasets, the basic test scenario has also been checked
§ against popular existing Java-Swing and non-Java based UI
© charting frameworks. Figure 4 provides a summary of the
§ evaluated chart libraries for update rates at 25 Hz and 1k
& samples.

saiieigi PoSEqIO

S51IIqi| PESEq-BUMG BABT

GUISSEYGEN SA SATEN $8[dUEs 00T 50

ChartFx I

5 Figure 4: Chart performance comparison for popular
@ JavaFX, Java-Swing, C++/Qt and WebAssembly-based im-
3 plementations [1,2,8,9, 11-16]. The last Qt Charts’ entries
show results for 100k data points being updated at 25 Hz.

der the terms of the CC BY 3.0 lice

>

The HanSolo-Chart [11] provides only static linear grids,
S axes and no data sanitization. The starred ChartFx result
= is for a reduced grid functionality without anti-aliasing and
= CSS- -styling. The two JDataViewer reference results show
£ the default (Polyline) and improved data-reducing ErrorData-
2 SetRenderer It is visible that the Swing use of the Java2D
S 2 interface is at least a factor two better than the functionally

© THPRB028
of
3870

wo ork may b

equivalent JavaFX use of the OpenGL interface. The native
C++-based use of OpenGL is about an order of magnitude
more performant than its Java counterpart.

CONCLUSION

While starting out to improve the JDK’s JavaFX Chart
functionality and performance through initially extending,
then gradually replacing bottle-necks, and eventually re-
designing and replacing the original implementations, the
resulting ChartFx library provides a substantially larger func-
tionality and achieved an about two orders of magnitude
performance improvement. Nevertheless, improved func-
tionality aside, a direct performance comparison even for
the best-case JavaFX scenario (static axes) with other non-
JavaFX libraries demonstrated the raw JavaFX graphics per-
formance — despite the redesign — being still behind the
existing Java Swing-based JDataViewer and most noticeable
the Qt Charts implementations. The library will be further
maintained at GitHub and further used for existing and fu-
ture JavaFX-based control room Uls at GSI. The gained
experience and interfaces will provide a starting point for a
planned C++-based counter-part implementation using Qt
or another suitable low-level charting library.

ACKNOWLEDGEMENTS

We express our thanks and gratitude to Greg Krug and
Vito Baggiolini at CERN for their valuable insights, discus-
sions and feedback on this topic.

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

10th Int. Partile Accelerator Conf.

ISBN: 978-3-95450-208-0

(1]

[2]

(3]

(4]

[3]

[6]

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

REFERENCES

H. Briuning and R. J. Steinhagen, “Chart-Fx Project at
GitHub” GSI Helmholtzzentrum, Darmstadt, Germany.
[Online] https://github.com/GSI-CS-CO/chart-£fx

G. Kruk and M. Peryt, “JDataViewer - Java-based
Charting Library,” in Proc. 12th Int. Conf. on Accelerator
and Large Experimental Control Systems (ICALEPCS’09),
Kobe, Japan, Oct. 2009, pp. 856-858. [Online] https:
//cds.cern.ch/record/1215878

Z. Makonnen, “JDataViewer 3D Extension: Design,
Development and Usability Test,” Master’s thesis, Uni-
versité de Geneéve, Geneva, Switzerland, Mar 2012. [On-
line] http://cui.unige.ch/isi/icle-wiki/_media/
papers:thesis:master_thesis_makonnen.pdf

S. Deghaye, M. Lamont, L. Mestre, M. Misiowiec, W. Sli-
winski, and G. Kruk, “LHC Software Architecture (LSA) —
Evolution toward LHC Beam Commissioning,” in Proc. 11th
Int. Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS’07), Oak Ridge, TN, USA, Oct. 2007,
pp- 307-309.

R. Miiller, J. Fitzek, and D. Ondreka, “Evaluating the LHC
Software Architecture for Data Supply and Setting Man-
agement within the FAIR Control System,” in Proc. 12th
Int. Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS’09), Kobe, Japan, Oct. 2009, paper
THPO12, pp. 697-699.

D. Ondreka, J. Fitzek, H. Liebermann, and R. Miiller, “Set-
tings Generation for FAIR,” in Proc. of International Particle
Accelerator Conference (IPAC’12), New Orleans, LA, USA,
May 2012, paper THPPROO1, pp. 3963-3965.

T33 Online Modeling and Software Tools

IPAC2019, Melbourne, Australia

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-THPRBO28

Oracle Inc. Java Client Roadmap Update. [Online] https:
//www.oracle.com/technetwork/java/javase/
javaclientroadmapupdate2018mar-4414431.pdf

G. Kruk, O. D. S. Alves, and L. Molinari, “JavaFX
Charts: Implementation of Missing Features,” in
Proc. 16th International Conference on Accelerator and
Large Experimental Control Systems (ICALEPCS’17), Bar-
celona, Spain, Oct 2017, pp. 866-868, doi:10.18429/
JACoW-ICALEPCS2017-TUPHA186

G. Kruk, “ExtJFX,” CERN. [Online] https://github.
com/extjfx/extjfx

D. Lemmermann, “JavaFX Tip 20: A lot to show?
Use Canvas!” [Online] https://dlsc.com/2015/06/16/
javafx-tip-20-a-lot-to-show-use-canvas/

G. Grundwald, “HanSolo Charts,” [Online] https://
github.com/HanSolo/charts

Object Refinery Limited, “JFreeChart,” 2005-2017. [Online]
http://www.jfree.org/jfreechart/

E. Eichhammer, “QCustomPlot,” 2018. [Online] https:
//www.qcustomplot.com/

Qt Company Ltd., “Qt Charts,” 2019. [Online] https:
//doc.qt.io/qt-5/qtcharts-index.html

WebAssembly Community Group, “Webassembly spe-
cification,” Tech. Rep., May 2019. [Online] https:
//webassembly.org/

Qt Company Ltd., Ot documentation - qt for WebAssembly,
2019. [Online] https://doc.qt.io/qt-5/wasm.html

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

THPRB028
3871 @

@

