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1. Introduction

The Goldstone theorem, because it makes an exact statement
concerning the excitation spectrum of a physical system, occupies what
is essentially a unique position in quantum field theory. Briefly stated,
the theorem asserts that for systems in which the vacuum is not an
eigenstate of a time-independent operator (in general, the integral of a
local operator over.a given spacelike surface), there must exist massless
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particle excitations. Physically such a statement is eminently plausible
inasmuch as such massless particles (like the vacuum) can have zero
energy and thus provide a mechanism whereby an arbitrarily large
number of null eigenstates of the energy momentum four-vector can be
constructed. Since these new ‘“‘vacuum states’ will not, in general, be
eigenstates of the conserved operator, one can by this heuristic device
produce what is generally referred to as a “broken symmetry.” This
approach is potentially useful since it provides a way in which one can
obtain solutions possessing a lower symmetry than a given Lagrangian
without the necessity of explicitly introducing a symmetry-breaking
interaction. On the other hand, the price one pays for this apparent
simplicity, aside from the problem of accommodating a massless particle
within a given physical scheme, generally consists of a rather com-
plicated set of dynamical constraints on the theory, which must be
carefully handled in'all perturbative calculations.

We initiate this study of broken symmetries in Section II with a
presentation and comparison of a number of the presently known proofs
of the Goldstone theorem. It is furthermore shown how so-called failures
of the theorem can occur in acausal theories. The question of the exist-
ence of integral charge operators is discussed and related to the inequiv-
alent representations which underlie all broken-symmetry theories.

_Section III continues this line of development by a detailed con-
sideration of relativistic theories in which one has the particularly
simple situation in ‘which the relevant conserved current is linear in
one of the canonical variables. Although it is possible to illustrate a
number of interesting aspects of broken symmetries within the frame-
work of such models, unfortunately they invariably consist of generali-
zations of free fields (with a gauge variable) and the broken symmetry
is consequently never observable.

In Section IV the connection between broken symmetries and
gauge invariance is discussed within the context of electrodynamics as
well as the more complicated non-Abelian gauge theories. In such cases
it is demonstrated that for gauges which are not manifestly covariant,
the Goldstone theorem need not apply and, furthermore, that the use
of manifestly covariant formulations allows one only to infer the
presence of unphysical zero-mass gauge modes. In addition, the
problem of counting the number of distinct Goldstone bosons associated
with the breaking of a group symmetry is considered.

The nonrelativistic applications of the Goldstone theorem are
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discussed in Section V in a manner which is intended to emphasize the
correspondence to the relativistic case. The examples considered here
are of particular interest since one has, in the domain of nonrelativistic
quantum mechanics, the important advantage that there exist examples
of physically interesting broken-symmetry theories which are amenable
to calculation.

The corresponding relativistic case (in which the conserved current
is bilinear in the canonical fields) is discussed in Section VI. A soluble
model in two dimensions is considered with its four-dimensional
counterpart. A relativistic analog of superconductivity is considered in
perturbation 'theory, and nontrivial symmetry-breaking effects are
displayed. . - .

Finally, in Section VII, various versions of the scalar theory and
the Lee model are considered with the inclusion of a symmetry-breaking
effect. The high degree of solubility of these models, along with the fact
that the symmetry-breaking effects are nontrivial, makes them particu-
larly interesting. Although they are not fully relativistic, they have more
elementary particle aspects than the usual nonrelativistic models and
consequently ?re quite suggestive.

II. The Goldstone Theorem

It is customary to begin any attempt to describe a physical situation
within the framework of quantum field theory with the construction of
a suitable interaction Lagrangian. In the event that there are several
basic fields involved, this problem may often be simplified by a physical
observation indicating a symmetry among these fields thereby restricting
the choice of possible interaction terms to those particular combina-
tions of fields which respect the symmetry. Frequently, however, the
symmetry in question is not exact and it is consequently necessary to
guess the form of the corrections to the symmetric interaction Lagran-
gian. This procedure is usually carried out under the assumption that
the solutions of a given physical system will display the same degree of
symmetry as the original Lagrangian. However, it has become evident
(particularly in the domain of nonrelativistic quantum field theory) that
the solutions to a set of field equations are often not unique and that
perfectly acceptable solutions. exist which have less symmetry than
that displayed by the Lagrange function. Consequently, it might be
possible to avoid the introduction of a symmetry-breaking interaction
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Lagrangian and proceed instead by attempting to find an appropriate
broken-symmetry solution to the symmetrical Lagrangian.

The reason this possibility even occurs is that, although the field
equations and commutation relations respect the relevant invariance
operation, under dppropriate circumstances the states can be modified
in such a way as to induce a breakdown of the symmetry. This is some-
what reminiscent of an interaction picture where the states are given in
terms of the complete set |a’> of the symmetry-preserving Hamiltonian
modified by exponential factors so as to form the new states

: (exp {i J;: dx Hs,b.(x)}) . fa">

In fact, however, the actual structure of the states involves a number of
rather subtle problems (including, for example, the requirement that
such a modification not affect the usual time independence of this
complete set of states). Although the equations for the Green’s functions
of the broken symmetry case are functionally identical to the fully
symmetric situatioh, nonetheless the possibility exists of asymmetric
solutions as a consequence of the different boundary conditions which
can be imposed on the solutions to the Green’s function equations. In
particular, the usual assumption that the state of lowest energy is an
eigenstate of the group generators can be dropped in order to obtain
asymmetric solutions. Although such an assumption is an external one,
it is also quite natural, and dispensing with it often leads to constraints
on the spectrum and parameters of the problem. The spectrum con-
straint is known as the Goldstone theorem® and requires that, under
fairly general circumstances, the currents associated with the broken
symmetry have zero-mass excitations. Insofar as the theorem is valid
and the massless excitations are identifiable as physical particles, it is
clear that these massless modes make it unlikely that the method of
broken symmetries will be valid in the case of strongly interacting
particles. A considerable amount of energy and ingenuity has been
devoted to various attempts to avoid the consequences of the theorem
for this reason. Indeed, until fairly recently, the apparent failure of the
theorem in the case of certain many-body problems was frequently
invoked to suggest a rather general breakdown of theé theorem (which
would, of course, greatly enhance the possibility of consistently applying
the broken-symmetry approach to strong interactions).

The purpose of this section is to carefully state and prove the
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above-mentioned theorem. Having done this, the reason for any
so-called failures will be clear. It will also follow that the only way to
avoid the consequences of the theorem within the context of causal
theories with conserved currents lies in the possibility that the predicted
zero-mass modes need not be associated with physical particles, but
may refer to decoupled nonphysical excitations. Unfortunately, how-
ever, such a decoupling cannot usually be demonstrated in the absence
of a complete solution.

The next few paragraphs are devoted to what is essentially the
classical proof of the Goldstone theorem with a clear statement con-
cerning its domain of validity. We begin by emphasizing the important
role of the causality condition in guaranteeing that commutators of the
charge operator relevant to the broken symmetry are independent of the
spacelike surface on which this charge is evaluated. This observation is
essential to explain apparent failures of the theorem referred to above.
In the process of developing these arguments, we shall observe that the
integral charge cannot be well defined when the symmetry is broken.
This is a fundamental aspect of the theory and is discussed in some
detail. In particular, the exponentiated generators of the symmetry
group are discussed. It is shown that the mappings they describe are to
be interpreted in a limiting sense and that these operators serve to map
from one representation of the commutation relations to another in-
equivalent representation in a manner consistent with the original field
equations. Our tredatment does not aspire to the degree of rigor which
may be required by the most mathematically inclined. It is, however,
basically correct, and, if desired, one may refine the arguments used
here without encountering any fundamental difficulties. [An informative
early discussion of these problems with greater emphasis on mathe-
matical rigor may be found in a work by Streater.®]

We begin with the assumption that there exists a conserved
current® j4(x), i.e.,.

9uj (x) = 0

Although for convenience we display only one spatial index and sup-
press all internal indices which label the current operator, there is no
essential difficulty introduced by considering more complex operators. If,
for example, Lorentz symmetry were to be broken, one would consider
the operator ‘

%F“""(x) — quvA(x) — vau)\(x)
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which obeys the differential conservation law
3AF‘”)‘(X) = 0

Now let us consider any combination of operators 4 of the field
theory being considered. We emphasize that 4 is not necessarily local
and, indeed, it is sufficient for our purpose that 4 exist only in a formal
sense (provided that certain of its commutators are well defined). We
define the generatort*'

0xl(t) = f x ()

Ix] <

and denote the surface of the sphere |x| = R as o(R). In order to
incorporate the effect of current conservation, we consider the relation

f d2x[0,j4(x), 4] = 0
{X| <R
or

[onn(t), Al + U;(R) de-j, A] =0

If for some sufﬁcierjtly large value of R (say L), we find that
U do-j, A] ~0 @1
o(R>L)

a0[QR>L(I), A] =0

it follows that

or
[QE>L(I), A] = B (22)
with
dBjdt = 0

It might happen, of course, that these equations are only valid in the
limit R — oo, in which case we find

fim [ f da-j, A] =0 2.3)
R-ox .
and thus '
lim [Qx(1), 4] = B 2.4)
with

dBldt = 0
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Note that, if we denote in the usual fashion
leg Or(t) = Q

Equation (2.4) becomes [Q, 4] = B. Strictly speaking, however, though
the commutator exists, we shall see that when the symmetry is broken,
Q does not and thus the limit Eq. (2.4) cannot be evaluated inside the
commutator. ; ‘

It should be pointed out that there are many theories in which
Eq. (2.1) is valid for a large class of operators A. If we deal with a
theory which is locally! causal and A4 is localized in a finite region of
space time, Eq. (2.1) follows at once for sufficiently large R. If A4 is not
localized to a finite volume of space-time but has rapidly decreasing
weights for large values of coordinates, Eq. (2.3) may still be valid in a
causal theory. As we shall see in Section V, Eq. (2.3) is valid for non-
relativistic problems involving rapidly decreasing potentials. How rapid
this decrease must be depends explicitly on the structure of j* as well as
the potential V(r). j

It is clear that the above remarks apply to a wide class of theories
with no particular reference to symmetry breaking. We may now make
the basic broken-symmetry assumption by setting

<0|BI0> # 0 (2.5)

where [0) is a translationally invariant vacuum state. Before we prove
the Goldstone theorem in the classical manner, we will examine some
of the more general aspects of the very strong assumption (2.5). Through
this study it will be much easier to make the connection to other
forms of the proof, In particular, (2.5) implies that |0> cannot be an
eigenstate of Q, and it follows from exp {iAQ}|0> |0 that Q is not a
unitary operator. In fact, as shown by Fabri and Picasso,® the operator
Q does not exist even in the sense of a weak limit. This follows from the
observation that since 10> is translationally invariant, so is 0l0>.
Consequently,

0100y = [ ljom /0>

diverges unless Q annihilates the vacuum. Since this is contrary to
hypothesis, it follows that whenever the symmetry is broken, the
associated generator does not exist. Such a result (which has been
recognized in various forms since the early times of broken symmetries)
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is rarely, if ever, of any concern when doing general calculations with
broken symmetries. This is because Q usually does not occur by itself,
but only in commutators with some other operator. In that case, it is to
be interpreted as the limiting form of (2.4) and no difficulty arises if Q
is sufficiently localizable and causal.

As a slight generalization of these statements, note that in a causal
theory with any sufficiently localized operator L, the operator

Ly = exp {inQu(D}L exp {~ inQn(1)}

=L + i[Qx(t), L] + Ya(in)*[Qr(2), [Qr(2), L]] + - -
considered term by term has no divergences in the limit R — oo because
of the assumed causality condition. We may assume that this power
series expansion exists for sufficiently small 7 and we shall formally
denote limy_, ., Ly ase™@Le-"9 From the exponential structure of the
above transformation, it follows that, for the class of operators

Ly = exp {inQa(t)}L exp {—inQx(1)}

we have for any matrix element

d'|LgLg?... Ly b

= <@’ exp {iQa(r)L'L2. . . L™ exp { —inQu()}|b">
and so, to the extent that lim,._, , I, is well defined, so also is the limit of
this matrix element a$ R — co. This suggests that formally a new set of
states |y, a’> = limg_., exp {—mQx(r)}la’> be introduced.® This is a
useful procedure and we shall outline its consequences here, noting
however that some care must be exercised for this identification to be
meaningful since the separation implied by the above equation is not
mathematically well defined. As has been shown, the operator e~1"@ can
only be given meaning when it appears in combination with ¢!®. Indeed,
in the following chapters it will be shown for several models that

- lim <a'le~"%R®[p"y = 0
' R— o

for all states |a’> and |b'). Consequently, |7, a’> is orthogonal to all
members of the original Hilbert space and, if it were taken to be a
member of the same space, it would necessarily be a null vector. This,
of course, is inadmissible since then it would follow that all matrix
elements of the form of (2.5) vanish. :

We now are prepared to return to the proof of the Goldstone ;
theorem which follows as a direct consequence of (2.4) upon imposition
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of (2.5). Taking the vacuum expectation and inserting a complete set of
states, (2.4) becomes

Jim 5 [<0] Qa(0)ln><n]4]0) — <O|Alm>n| Qa(1)]0] = <O|BJ0) # 0

The operator j°(x) is assumed to be local with the usual translational
behavior ' i
]O(x) = e~ 1P*jo(0)e!P*

and, further, it is assumed that e’ *|0> = |0>. Thus, the preceding
equation becomes

lim 3 | d2x[<015°(0)}n><n| A10e"n* — <Ol Aln><n @)|0re "]
—-® n JR
= 2 (2m)*8(pn)[<0|°(0)|m><n| 4|0)e ~P~*<
i — 0] A[n><n|j°(0)| 03]
= <0|B|0)

Now this equation is valid for all times x° and, since dB/dx® = 0, it
follows that the left-hand $ide of this equation must not depend on x°.
Clearly these conditions are consistent only if the left-hand side vanishes
except for those states where p,°|p, o = 0. Furthermore, there must
exist such states since the right-hand side does not vanish. Thus we have
shown that if a symmetry'is broken (in a “sufficiently” causal theory)
there must be excitation modes in the spectrum of the generator of that
symmetry whose energy vanishes in the limit that the momentum of
these modes vanishes. The corresponding statement in the relativistic
case is the assertion of the existence of zero mass particles. This is the
celebrated Goldstone theorem. Note that the actual proof is quite
trivial and the only real assumption, besides the translational beliavior
of the vacuum and current, has been that dB/dt = 0. It has been
pointed out,®® however, that this assumption could fail to hold in cases
of some physical significance and was, indeed, the basis of some
apparent breakdowns of the Goldstone theorem.

We have repeatedly’ emphasized above that if a symmetry is
broken, the operator ¢*? cannot be unitary. Now, having proved that
the Goldstone theorem is applicable to causal theories, it is easy to
cxploit this result to demonstrate the converse statement, namely, that
if j°(x) does not have a massless particle in its spectrum, the operator

U(n) = lim exp {iv;f d3xjo(x, t)}
R R
=:lim Ug(y, t)
‘R— @
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is unitary. Since the gxponential form guarantees that

UmU*) =1
and

UG U(n) = Ul + 1)

it is only necessary to demonstrate that
lim Us(z, 0[0> = (0>

This, in turn, can be guaranteed if, for all Wightman functions, the
relation ;

ngg 0| Ux(m, t)¢1(x1)¢2(x2) e pa(xn)Ur* (n, D0
‘ = <0|¢y(x1)Pa(x2) - - - Ba(Xa)|O>

is valid. The proof is performed by observing that if, for an operator 4
of the form $(x1)¢(x2) - - - $(x,), it can be shown that

d

& OU@AU @0 =0
for all A, then

OUmAU*@|0> = O|UO)AU*(0){0)
: = €04{0>

which is the required result. Explicitly evaluating the derivative yields

% (O|Untns )AUz* (0, )]0 = iKO|[Qa(t)> Unlr, DAU* (n, D]I0)
| (2.6)

Now, if 4 is localized in a finite volume of space-time as is the case for
d(x1)d(x2) . - .$(x,) which is localized to a region of radius
L < 3, [|x° + |xi]1 it follows by causality that, for R > L + |¢|

Ux(n, )AUR* (0, 1)
is independent of ¢ and R. By the same reasoning,
d
“'1— 0| Ug(n, )AUR* (n, 110>
an R>L+t

is independent of t and R. Consequently, the conditions required for
the application of the Goldstone theorem to the right-hand side of
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Eq. (2.6) are satisfied for sufficiently large R. Since by assumption no
zero mass modes are present, it follows that this commutator vanishes
and

d

= lim <O|Ux(n, )4Ux*(n, )|0> = 0
7 R~

which demonstrates that

OIUMAT*@)]0> = <0]4]0)
Thus, if j°(x) excites no massless modes, the transformation U(y) is
unitarily implementable.

What has been presented so far is the more or less traditional
theoretical formulation of the Goldstone theorem. A reformulation in
the mathematically more rigorous context of axiomatic quantum field
theory has been given by Streater.® Kastler, Robinson, and Swieca®®
have also presented an axiomatic proof, which involves a reversal of the
chain of argument. Without attempting to maintain their level of rigor
we shall now present a version of their argument which displays in
somewhat simpler form the underlying physical ideas. From this it will
be clear that, despite the very different language used, the physical
content of their proof is essentially the same as in the earlier and more
straightforward proofs. It will also be apparent that the arguments can,
with a little effort, be made fully rigorous.

Following their method in outline we shall show (without assuming
the Goldstone theorem itself) that if a causal theory has a smallest mass
different from zero and,a conserved current j*(x) such that 8,j4(x) = 0,
then

lim exp [inQx(0)

is a unitary operator. This statement is equivalent to the Goldstone
theorem for, as shown in the preceding discussion, when the symmetry
is broken (i.e., when {0|[Q, 4]|0)> # 0), the vacuum is not an eigenstate
of Q and hence exp [inQ] is not unitary. Since it is assumed that
d,j* = 0, it follows in that case that the lowest mass of the theory must
vanish. !

As before, let us choose an operator A depending on strictly local
operators “smeared” over a finite region of space-time. We may choose
A to be bounded. We shall only be interested in the part of 4 which has
vanishing vacuum expectation value, so we replace 4 by

A — 0]4|0>
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Now from A we can form yet another operator B which has the
property that ‘

(n|B|0> = (1/E,2Kn|4]0) @7

This is a sensible €quation as, by assumption, E, can never vanish.
Clearly one such operator [namely, B = (1/H?)A] exists, although we
shall need a somewhat more complicated structure for B. Once again
all conclusions will be drawn from the usual Goldstone commutator

Ga = [ X0, 410>

We shall extract the spectral information that lims_ . Gr = 0 if there
are no massless modes in a much more complicated manner than before,
even though no fewer assumptions are made. Straightforward mani-
pulation and the use of Eq. (2.7) show that

e = [sd*xI I HB ~ BN

| aexcollloeo, ), H), 510>

a2 L d5x¢0|[j°Gx), B1|0D

Now we are confronted with the classical Goldstone problem, namely,
under what conditions does the fact that ¢,j“(x) = 0 insure that certain
specific matrix elements of Q = limg... | d3xj°(x, t) are independent
of the time 7. If B were a localized operator, we would immediately have
limg. - Gr = 0. However, assuming A is localizable, (1/H?)4 is not
generally localizable. On the other hand, it is not difficult to construct
from 4 an operator B which obeys Eq. (2.7) and is still sufﬁc1ent1y
local for our purposes.

From the operator A4 we use the unitary generators of time trans-
lation to form A(x°) = e#*°4e~"#*°. In addition, a function g(p°) is
defined so that, if m is the smallest mass of the theory under considera-
tion, g(p°) = 1/po? if |p°| = m and, for |p°| < m, g(p°) is chosen so
as to be infinitely differentiable, even in p° and real. From this, the
Fourier transform

j @ dO 0.0
g = [T e )
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is formed. Using the usual theorems of Fourier analysis, it follows that
g(x°) decreases faster than any power of 1/x° as x° —oc0. Having made
these definitions, we finally make the identification

B= f " dxog(x) A(x°)

This is consistent with the previous assumptions about the behavior of
B since ‘

@|BI0y = [ dxog(en)nl 40>

© ) 0

- f . f B o(pO)e==F2(n] 4]0
2w e 27
1

= ¢ <n|4]0>

Because of current conéervation, in order to demonstrate that

 lim <0[[Qx(), B1|O)

is independent of the time t, it is only necessary to show that
lim <0|Ud3x Vi, 1), B] 0> =0
R—o

It is assumed that A is confined to a space-time region of radius L so
that 4(t) is confined to a region of radius L + |¢}. It is further convenient
to decompose the function g(x°) into two continuous functions
g(x°) = g,”(x°) + g.R(x%) sothat g;(x°) = 0if |x°) > R — L — |¢| and
where g5(x°) has the property that, for each n,

lim (R — L — |r])"|gs"] = 0 2.8)
where |

les"l = [ dxlgs e

Clearly, Eq. (2.8) is consistent with the extremely bounded behavior of
g(x®) for large x°. Now we find that

tim 1<01[ [ @2x 900, [ atge0)a9)] 03

= lim 2]g] [<0] [ V-5 40| @9)
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Since ||A(x°)| = sup |A4|a’>| is finite by assumption while we
know that ‘
lg"| < 1/R" (2.10)

for any n and large R we will have the required result if it can be shown
that [<0| [ d°xV-j|| is bounded by some power of R. It is quite easy
to give an heurxstlc derivation of this. First, note that

Yo
<l f 4% V-§(x, 1) f 4% V-§(x', 1)|0>
R R

<0| f daxA.j\l =
R B

Now, in this examp]e, it is useful to introduce the type of smoothing
function mentioned in reference (4) to make the identification

f 4% V-j(x, 1) f " BV -(x, 1)

We assume that; fo(x) is differentiable and that f(x) =0 for
|x| > R + «(see Fig. 1).

fo@ |
"

FIGURE 1

Using the fact that 9,j*(x) = 0, the usual Lehmann representation
shows that

0 [~ ax Visl
- f f Bx &% o) fo(X) 82VIAN x — x'; k) B()dic®

Y

oo

In turn, we infer from this that

O [@x V-ifx)

Y
‘ (‘:121;3 d3x d3x e = -xWVf(x)- Vf(x") dez (p? + «2)%B(x)
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Since f(x) is nonzero only for large values of x ~ R as R —o0, the
above integral only has contributions for p2 — 0. Thus, we have

€| f & V-ify

- '1 f 2ox(Vf(x)? f 4 B
[2"R f i KB(K)]

Assuming that B(k) is suﬁ‘iciently bounded so the above integral exists
and that € ~ R, we find ||<0| [ d°x V-jfz| ~ R%. Inserting this into
Eq. (2.9) and using Eq. (2.10), it follows that

lim <0|3[ L 4% V-i(x, 1), B] 10> = 0

and, consequently, lim G;e = 0. Thus, we have established that if 4 is
any localized operator and if the spectrum of the operator j° does not
extend to zero, then

<0|[ f d%x jO(x, 1), B]|0> -0 @.11)

in a causal theory. This is equivalent to the Goldstone theorem.
Proceeding in exactly the same manner as before, it can be shown that
the operator limg_, ., exp {inQz} is unitary. Thus, through a somewhat
more complicated (but basically identical) procedure, we have again
established all the rcsults proved with the classxcal formulation of the
theorem.

To this point we have kept our discussion on a relatively abstract
level and have not made direct contact with the local operators used
for the quantitative calculations that have been performed in broken-
symmetry theories. In thdse usually simple cases it is often assumed that
Q! = [d®x j%(x, t) are the generators of a Lie Group and that the
local field operators $i(x, t) form a representation of the group so that
i@, ()] = 3 find"(x, t) The broken-symmetry assumption made is
that

<0/$(0)]0>

| =7 #0

for at least one i. The Goldstone theorem then asserts that there is a
¢' for which {n|¢!|0> # 0 where <n| is an excitation mode such that
limg_o E.(k) = 0. In a relativistic problem E, = (k? + m?% so one

<0l¥i(x, 110>
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concludes that m = 0, that is, that massless particles with the quantum
numbers of ¢! relative to the vacuum are present. In general, one would
further anticipate that the propagator

Gu(x, x7) = i0|($:(x)4(x)) + |0> — iK0|$,(0)[0>*

has a pole in momentum space corresponding to this massless excitation.
A third proof (historically, the second) of the Goldstone theorem, based
on the occurrence of this pole at p? = 0 in the propagator, was given
by Bludman and Klein."? Since its content is essentially the same as
that of our previous proofs and it depends heavily on field theoretic
detail not used there, we shall give it only cursory examination. It
should be noted, however, that the methods used in deriving this
theorem are very similar to those used in self-consistent calculation of
Green’s functions for broken-symmetry field theories. This will become
apparent in Section:VI.

Assume that the set of operators ¢;(x, ¢) transform as an irreducible
representation of the group generated by Q; and satisfy the field equa-
tion ‘

‘ (=2 + po®)i = ji + J;
where J; is an external source. We assume that

‘ <O[d(x, 1)|0>|;20 = m # O
so, for consistency, the above equation must satisfy the condition
3P02<0|¢'i10>|!=0 = <01j10>s=0

In addition, we define
z [)\aQa, qS,-] = Zk )‘afaik‘ﬁk = 895:'

where A, is arbitrary. Applying this to the above field equation, we may
write the vacuum expectation of the transformed equation as

5¢01,,|0)
3€0]¢,10

1f <0|84,10> # 0 for. one index, j’ (in accord with the broken symmetry
assumption), we must have

. 5¢0] 0>
: 8”' - T
e 50[¢,]0>

|2 + wons, - | _coissior =0

2.12)

J=0
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Now, using conventional techniques of quantum field theory, we find
that the propagator of the field ¢, is given by

8¢0¢(x)|0>

D, (X, x') = o] (xr)

J=0

which, in accord with the field equation, satisfies the momentum
space equation

- 80[ji|o
[F’Ozsik:— %} Dy(0) = 3y (2.13)
at p® = 0. Clearly, if D,c,‘(p2 —0) —o00, as is the case if a zero mass
excitation is present, then '

yofsik ~ 5201405 ¢k|0> (2.14)

Thus Egs. (2.12) and (2.14) are very similar and, in examining a parti-
cular problem we need only deduce from Eq. (2.12) when Eq. (2.14) is
valid, to demonstrate the presence of a massless particle. The reader is
referred to Bludman and Klein for examples.

Because the formulations discussed so far are not stated directly in
terms of observable quantities but only vacuum expectations of
operators, Streater’® was led to formulate a corollary® of the
Goldstone theorem in terms of the mass spectrum of the fields which
form an irreducible representation of the group generated by JCu(x).
For simplicity we confine ourselves to one conserved current j*(x) with
time-independent charge operator Q = [ d*x j°(x) and two fields, ¢,
and ¢,, such that i[Q, ¢,] = ¢, and i[Q, ¢,] = —¢,. With these
assumptions it is possible to prove that if ¢, and ¢, excite particles of
different mass m, and m,, then j°(x) has a massless excitation in its
spectrum. This can be dlrectly generalized to show that if the two-point
functions of ¢, and ¢, are not identical, then JO(x) excites a massless
particle and, indeed, the same holds true if the whole excitation spectra
of ¢, and ¢, are not identical. Starting with the proof for the two-point
function, one notes ‘

i[Q, ¢1(x)¢2(315’)] = $a(X)pa(x") — S1(X)hi(x")

from which it follows that -
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Now, if for any valué of x and x’ the right-hand side does not vanish, it
follows at once by the Goldstone theorem that j%(x) excites a massless
particle. Further, it is clear that if the Lehmann spectral weights for the
two Wightman functions on the right- -hand side of the above equation
are different for any value of the Lehmann weight parameter, then for
some value of x and x’ the right-hand side is nonvanishing and Streater’s
corollary follows. Note that the massless particle has the quantum
numbers of ¢¢,. The generalization of this is evident. Take any
polynomial ¢,¢;,. . . ¢y, in the fields ¢, and ¢, and form

[Q’ ¢11¢12 .. ¢l,.] = I,——Izl [Q, ¢l,]¢h¢iz' . ¢l/_1¢tj+ 17" ¢ln
If
- <Ol[Q, $u,dis- - - $1,]10> # O

it follows that jo(x) excites a massless particle and all the nth order
Green’s functions are not identical. Thus this corollary, which is easily
generalized to include more complicated group structures, is clearly a
straightforward application of the theorem as formulated in our
previous discussions.

Finally, we wish to analyze in very direct terms the conditions
under which the theorem need not apply. As stated previously, a
manifestly Lorentz-invariant theory is locally causal, and there can be
no failure of the theorem per se if the currents used to form the genera-
tors are actually conserved. We emphasize that this does not mean that
the massless modes are physically observable. Thus, to see a failure we
must examine theories which are not manifestly covariant. To indicate
that the time component of a vector is now allowed to appear independ-
ently of whether or not the corresponding spatial components do, we
introduce the vector n* = (0, 1). Then a straightforward analysis®® with

0, j*(x) = 0 shows that the Fourier transform of <0|[j*(x), $#(0)]|0> has
the form

(4 + Be(k°)]k"8(k2) + Cn*8(k)8(n-k)
+ [k*(n-k) — n*k?1D + En*8(n-k)

where 4 and B are functions of n-k, E of k2, and D of both variables.
If the term proportional to k*8(k?) were the only one present, as in the
case of manifestlyf covariant theories, the Goldstone theorem would
hold and there would be no difficulties. Historically, the term propor-
tional to C was first held responsible for the nonrelativistic “failures”
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of the Goldstone theorem.® However, this is not the case, inasmuch
as such a term represents an isolated state that might be interpreted as a
transition between the various possible vacuum states which are implied
by the broken symmetry. The fact that such a state is not a limit of a
branch of the excitation spectrum as k tends to zero rules out this term
as indicated by Eq. (2.4). That it is not relevant can be seen in a rather
direct fashion by noting that, in general, the equation

O0J17°(x), $(xN]|0)] 20 00" ~ 8(x — x)

must be valid, but
f dkc €<= CrPB(K)S(n- k)| o o o = C

Thus the term proportional to C does not have the correct structure
and no escape from the Goldstone theorem can occur in this manner.
The terfn proportional to E has an unconventional spectral behavior
but cannot be ruled out on general principles. Its presence, however,
provides no contradiction to the assumptions of the theorem. The term
proportional to D is the important one inasmuch as it appears by
explicit calculation in radiation gauge electrodynamics. It must be
realized, however, that in no sense should it be related to the spurions
of the type implied by C. Structures of the form D ~ §(k°) are unable
to contribute, so they cannot be responsible for the nonvanishing of the
Goldstone commutator. Consequently, if D is to contribute and have a
normal, well-defined spectral structure, we have

Dk —0) ~ f . dm o(m?)(ks® — m?)
m°>0
From this it follows at once that

dﬁtwl U d®x jo(x, 1), ¢(x')] 0> # 0

Thus the theory is not sufficiently causal to allow the term

tim <O [ do o, 9, 865 l0>
Voo alyVy -,

to vanish and the assumptions used to prove the theorem are not valid.
We will discuss this behavior in depth through several examples in the
following sections.
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III. Naturally Occurring Broken Symmetries

In recent years a considerable insight into some of the more
tractable problems associated with broken symmetries has been
acquired through the study of theories which possess a rather remark-
able set of gauge properties. Characteristic of such theories is their
invariance under a class of c-number gauge transformations, the
existence of which allows one to demonstrate the occurrence of a zero
mass particle without any reference to a broken symmetry or the
- precise details of the dynamics. These massless quanta will generally be
referred to in this work as naturally occurring®®17 to distinguish them
from their counterparts in theories which display a spontaneous break-
down of symmetry. Although the existence of zero mass particles in
both types of theories may be inferred from a broken-symmetry
condition, it can be shown that in the former case this approach invari-
ably turns out to be merely another way of imposing a particular
invariance property on the relevant Lagrangian. Since the usual
procedure employed in broken-symmetry calculations appears to some-
what obscure the relative simplicity of systems whose massless boson
excitation follows purely from gauge invariance arguments, it is our
intention in the subsequent discussion of various field theoretical
models to emphasize this crucial role of gauge invariance by displaying
first the zero mass particle implied by the relevant Lagrangian and only
then proceeding to demonstrate the possibility of constructing an
associated broken symmetry. This procedure contrasts, of course, with
that which has customarily been employed in the more conjectural
domain of spontaneous symmetry breaking where one generally postu-
lates at the outset a broken symmetry condition and subsequently
deduces the associated zero mass particle implied by the Goldstone
theorem. Since there is neither any a priori reason for assuming the
internal consistency of these constraints expressing the spontaneous
breaking of the symmetry (a point to be discussed more fully in Sect.
VII) nor a dynamical mechanism for the massless boson, it is appro-
priate that this study of possible applications of the Goldstone theorem
should begin with a consideration of massless particles of the naturally
occurring variety. Despite the somewhat trivial nature of this type
of broken symmetry, there is a considerable amount of contact
with the features characteristic of the more general problem, while
at the same time one has the advantage of being able to avoid some of
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the difficult consistency . questions peculiar to spontaneous symmetry
breaking. ‘

In order to fix ideas more firmly, we consider as the simplest
example of a naturally occurring massless particle a free spin-zero
Hermitian field. We make use of the well-known result that a second-
order differential equation can always be reduced to two first-order
equations and thus describe this field by the vector ¢(x) with the scalar
#(x). This leads to the Lagrangian density

L =408 + Vid'b, — Vouo24? (3.1)

which for the case p2 = 0 is readily seen to be invariant under the
constant gauge transformation

$—>¢ + 9 (3.2
This invariance is, of course, equivalent to the local conservation law
O =

a result which formally leads to the conclusion that the operator
0= [0 an

is conserved and the generator of the transformation (3.2). Tt is indeed
true that (3.2) is unitarily implementable in any finite volume Q and
that the operator

0a = [ 400 ax
: a
by virtue of the commutation relation
[$°x), $)]3(x° — x0) = —id(x — x') (3.3)
is the generator of Eq. 3.2)in Q, ie.,
Ua(x)Ua* (1) = $(x) + 7

Ual) = exp {inQa)

The unitarity of the opérator Ua(n) clearly implies the equivalence
of the Hilbert spaces constructed on the two states <0| and 0| Un(n).
To state this somewhat differently, since #°(x) and ¢(x) are a complete
set of operators, any state constructed from these operators and the

where
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state (0| Uq(n) can be expanded in terms of the complete set of states
generated by the same set of operators acting on the vacuum <0|. Thus
the set of states constructed on {0|Uq(n) may be said to provide a
representation of the canonical commutation relations which is fully
equivalent to that constructed on <0|. However, as has already been
observed in the preceding chapter, in the limit Q — oo such a result no
longer obtains. This may be seen by a review of the simple calculation®®
performed in Section II of the norm of the state

|@> = Al_{rolo 0al0>

Since limg,_, », Qg ié translationally invariant, so also is |@>. Thus,
<Ql> = <@l [ ¢ a°xi0)
= [axcoipoo

so that <Q|Q) is elther zero or infinite. However, the first alternative
implies

f 25xg°()[0) = 0

in contradiction with the canonical commutation relation (3.3), whereas
the second implies: that limg . Qq cannot be defined on the vacuum.
The net result of this discussion is that Up.«(n) does not exist and
consequently the set of states constructed on <{0|U(y) provides a
representation of the canonical commutation relations which is in-
equivalent to that constructed on <0|.

The inequivalence of these representations can be made somewhat
more transparent by using the usual decomposition into creation and
annihilation operators. Thus we write

809 = [y s 000 &% + @*() &)
‘ Bk fo\% 349
#0) = =i [53 (3) e - a*@ e
where a(k) and a*(Kk) satisfy the usual commutation relations
[a®), a*(k)] = 8k — k) 55)

[a(k), a(k’)] = [a*(k), a*(K)] = 0
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and we choose that representation of the commutation relations for
which

ak)|0> = 0 (3.6)

Since the field ¢(x) has only a zero mass particle in its spectrum, the
state formally defined by <0|U.,(5) can conveniently be viewed as a
coherent superposition of states containing various numbers of zero-
momentum, zero-energy quanta. In terms of the operators a(k) and
a*(k) these states can be written as

<@'| = <0] exp {a*a(0) ~ a*(O)a’}
thereby implying the broken-symmetry conditions

(@la®)|a’> = a'8(K)
(@|a*K)|a’> = a'*3(k)

One can see more precisely the necessary inequivalence of the Hilbert
spaces based on ¢0| and <a'| in the limit Q — oo upon performing the
quantization of ¢(x) in a box of volume Q rather than the infinite
volume implied by Egs. (3.4) and (3.5). Using the identity

(e4+B — oA pB o~ Y%lA.B]

for [4, B] a c-number, it then follows that
~ _ 1a'a* 3
Ol = exp [ -3 575 [ @]

which clearly displays the orthogonality of the states <0| and <a'| in the
limit Q — co. Since it requires only a trivial generalization to show that
any state in the Hilbert Space constructed on <0 is orthogonal to La'|,
one has the result that the Hilbert spaces corresponding to different
values of @’ are all mutually orthogonal.

Having now displayed some of the mathematical complications
associated with the implementation of the gauge group of the massless
scalar field, it is well to emphasize here that the importance of the
inequivalent representations of the canonical commutation relations is
by no means confined to this particular example but is an essential
ingredient of any broken symmetry, independent of whether it is of the
naturally occurring or spontaneous variety. Since the basic characteristic
of a broken symmetry is the noninvariance of the vacuum under the
operations of the group, it follows in complete analogy to the massless
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scalar field that the generators of the group acting on the vacuum must
lead to a state of infinite norm, i.e., they take one out of the original
Hilbert space. Provided that these important features are kept in mind,
it is instructive to formally construct, from the original vacuum, the
new vacuum states

J<’7| = 0| Ux(n)

for which one deriveis the broken symmetry condition

léxX)|n> =7 3.7

The relation (3.7) may, of course, be viewed without any reference to
an operator construction as a statement of the existence of other
vacuum states (5| (i.e., null eigenstates of P*) for which Eq. (3.6) fails
to hold. Thus the general characteristic of naturally occurring broken
symmetries arises from the possibility of replacing Eq. (3.6) by

a(®)|7> = n|n>8(k)2m)"(Yrw)* (3.8)
which by Eq. (3.4) insures that
Cnld@)|m> = 7

Although the existence of such a representation is obviously in no way
dependent upon the specific dynamics, the states |7 can be identified
with the physical vacuum only for a special class of theories. Thus for
the case of a free field whose equation of motion is of the form

(=0 + po’)é(x) = 0

the consistency condition

po*nld(x)|n> = 0

is clearly compatible with Eq. (3.7) only for the case of vanishing bare
mass.

It may be somewhat instructive to consider at this point some
general properties of the vacuum expectation values associated with
this massless scalar field. Upon application of the field equations one
is readily led to the conclusion that this theory is undefined only to the
extent that it does not contain any prescription for the calculation of
the expectation value of the field operator. Although the equations of
motion and the canonical commutation relations enable one to express
the time-ordered product of an arbitrary number of such operators in



BROKEN SYMMETRIES AND GOLDSTONE THEOREM 591

terms of the vacuum expecfation value of ¢(x), this latter number must
remain completely undetermined. However, one can consistently
choose it to be any real number merely by recognizing the fact that
Eq. (3.8) defines an infinite number of inequivalent representations of
the commutation relations, each of which corresponds to a different
numerical value of (0|#(x)|0>. Although the class (3.8) by no means
includes all possible representations,*? it is sufficiently general to allow
a complete discussion of the naturally occurring type of broken
symmetry.

Thus far the only explicit example of a broken-symmetry theory
which has been discussed in this section has consisted of a free field.
However, it is not to be concluded from the considerable emphasis
which it has received here that the free field is the only mathematically
well-defined, broken-symmetry theory. In fact, of the two field equations

O,4" = (3.9)

= -4 (3.10)

implied by Eq. (3.1) only the first is relevant to the construction of the
broken symmetry.@” That 'this is indeed a sufficient condition becomes
apparent upon recalling that the application of the Goldstone theorem
requires only the existence  of a conserved current such that the equal-
time commutator of the fourth component with some other operator
of the theory has a nonvanishing expectation value. Thus the conserva-
tion law [Eq. (3.9)] along with the commutation relation [Eq. (3.3)]

immediately leads to the existence of a massless particle for any
Lagrangian of the form

L = $1 0 + Yid'b, + L) (3.11)

where £ ’(¢*) does not contain ¢(x). To carry out the explicit construc-
tion one computes

<0|[¢*(x), $(0)]|0>

which is readily found from Egs. (3.3) and (3.9) to have the form
oA, 0)

where

8s, 1) = 2n [ s e p)8(p* + )
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A Goldstone theorem of this type is thus based on the elements ¢°, &,
and 1 of the canonical group. The essential point here which distin-
guishes this case from theories which display a spontaneous symmetry
breakdown is that the commutator is proportional to unity (which
necessarily has a nonvanishing expectation value) and therefore the
consistency of requiring the nonvanishing of the equal time commutator
is assured. ‘

As an example of one of the simpler Lagrangians of the form of
(3.11), we consider the system™ described by

L = ¢ 0, + Yo b, + ¢ 0 + Vad¥ ') + Youo®$'® + A,

In addition to the conservation law 9,¢* = 0 implied by the invariance
under ‘

| >+
one has the equations of motion
B = 0 — 2
au‘l’u’ = _l"oz*ﬁl
P = o — M

These can be readily shown to yield for the Green’s functions

G(x) = KO|($(x)$(0))+ 0>
- G'(x) = i0|(¢'(x)$'(0))+ 10>

the momentum space representation

‘ 1 — a2 A2
; G —_ +

(p) p2 p2 + .u'Oz (3 12)
- . }
R

thus explicitly confirming the existence of the massless particle implied
by the invariance of the theory under c-number translation of ¢(x).

It is clear from the form of Eq. (3.12) that the restriction A2 < 1 is
essential to preserve:the positive definite metric of the Hilbert space and
that the limiting value A2 = 1 (corresponding to Z = 0) corresponds to
the disappearance of the massless particle from the spectrum of ¢(x).
However, this latter limit is a rather delicate one, as is shown by a
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calculation of the two-point function of the field #*(x). One finds that
the residue at the zero-mass pole of this latter function diverges as
(I = A%)7%, a result which is in fact essential to the consistency of the
canonical commutation relations. The fact that the massless particle
appears in the spectrum of ¢*(x) rather than ¢(x) in the limit is of
some importance in itself if one considers the possibility of including
less trivial interactions consistent with (3.11). If, for example, such
couplings allow the Z =0 limit, it is nonetheless true that ¢*, in accord
with the Goldstone theorem, will create massless quanta. Since it is ¢*
rather than ¢ which appears in the coupling terms, these quanta will
therefore be physical particles rather than mere gauge excitations. This
result could be of some: significance inasmuch as it suggests that one
can anticipate considerable difficulty in attempting to decouple the
unwanted massless particles which invariably occur in broken-
symmetry models of elementary particles.

Because of the appreciable extent to which a number of soluble
field theoretical examples of symmetry breaking have recently been
investigated, we shall for the moment defer a discussion of some of the
less trivial applications of naturally occurring zero mass particles in
order to direct attention to these various models. It is our intent to
show that, regardless of the context in which they have been considered,
these models are all basically of the naturally occurring type. Although
this may not be particularly obvious from an inspection of the relevant
Lagrangian, it is useful to carry out this demonstration in order to
sharpen the distinction between the two fundamental types of broken-
symmetry theories.

One manner in which the relation of a broken-symmetry theory to
the c-number translation group has been somewhat obscured is due to
a frequently used, though basically irrelevant, increase in the number
of degrees of freedom of the canonical fields. Thus, while it has been
emphasized here that the existence of such a gauge group implies a
Goldstone theorem based on the elements of the canonical group, this
may be considerably less apparent if one constructs the argument
using the conserved current operator implied by the introduction of
additional degree of freedom. If, for example, one generalizes (3.1)
with ue® = 0 to the case of a free field described by ¢:(x) (i = 1, 2), the
Lagrangian is invariant under

qé(x) — (1 + igdN)é(x) (3.13)
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the matrix ¢ in the two-dimensional charge space being given by
_ [0 —i]
=1l o

st =id'eb
is a conserved current. However, despite the fact that a consistent

Goldstone theorem can be constructed using the equal-time com-
mutator ;

so that the operator °

al[ [ 106 a2, #9)|In> = aalél>
p. (3.14)

it is somewhat misleading to assert that the symmetry generated by
0 = [/ dx

has been broken. Thdugh formally true, such a statement is merely a
trivial consequence of the existence (in a finite volume) of a generator
of the transformation’

p—>¢+ 9

This can be clarified (at the expense of some mathematical rigor) by
using the ill-defined operators U (n) relating the different vacuums to
write Eq. (3.14) in the form ‘

OIULIQ, $NU*@)I0> = <0]1Q, #0610
+ 0| [exg0)qm, $09)l0>
= g + 4<0I410>

a result which emphasizes the fact that the broken symmetry is sup-
ported by the generators ¢°, ¢, and 1 of the canonical group rather than
the corresponding elements of the gauge group of (3.13).

Another point which frequently leads to some confusion concerning
broken-symmetry solutions in soluble models arises from the possibility
that the invariances of a given Lagrangian under field translation may
be considerably less than obvious. However, as has already been
emphasized, this in no way alters the basic fact that the broken sym-



BROKEN SYMMETRIES AND GOLDSTONE THEOREM 595

metry supported by such a system is of the naturally occurring variety.
Perhaps the simplest example of a theory of this type (in which the
invariance is only thinly disguised) is a slight variation of a model
considered by Hellman and Roman.®® It is described by the Lagrangian

L = ¢ 0up + Vo'bu — Vo™ — V2899'$ (.15)

where ¢(x) is again a two-component Hermitian field and

| ,_[01
‘-’“10]

Although this theory clearly does not possess an invariance under
é — ¢ + , the field equation

(=0 + po® + g¢')p = 0 (3.16)
shows that

<0|4(x)|0> # 0
Is consistent provided that
ot = g2 (3.17)

This, of course, allows the two choices + p,? for g, the significance of
these roots being best displayed by a diagonalization of ¢’. Defining

$H = )%y + o)
$) = (2)~H($s — o)

the equation of motion [Eq. (3.16)] becomes
(=% + po® £ g} =0

a result which shows that the two values pu,? and —uy2? correspond
respectively to the vanishing of the bare mass of the fields ¢¢~? and ¢‘*>.
Thus for the case g = p,? the Lagrangian is invariant under

¢ > ¢ 4 g
and for g = —pu,e? one has the corresponding invariance under
f¢<+> — ' + n

This conclusion can, of course, be reached in a somewhat different
manner by directly considering the change induced in the Lagrangian by

951,2 - <}51.2 + Mg
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Thus one finds
8L = — po®(mds + nabe + Vo + Vamo?) — g(h1ma + damy + m1ma)

which clearly vanishes for

Nikko® = —gng
Moo = —gmy
whence
ro* = g*
7)12 = 7722

in agreement with Eq. (3.17).

It is, of course, possible to introduce some additional complexities
into the two-field system described by (3.15) without in any way
altering our general results. In particular one can consider a more
general mass matrix and thus replace Eq. (3.15) by

L = ¢ 0 + Vb — Yegdd'd — Ve h® — Yaus$s? (3.18)

In this case the field equations

(=2 + 1A = —gés
(_\62 + p?)ps = —goy

imply that the condition
<0]g(x)|0> # 0
is consistent only for
| pa?ps® = g2 (3.19)

Although one could once again diagonalize the mass term in the
Lagrangian, it is:'somewhat simpler in the present case to calculate the
lowest order Green’s function. For the field ¢,(x) one finds the
momentum space representation

G =P’ - e s

which has zeros at
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Upon inclusion of the constraint (3.19) one finds that the propagator has
a pole at zero as well as p;* + po?. Since the ¢(x) are still free fields,
however, it clearly must be possible to rewrite (3.18) as the sum of
two free-particle Lagrangians of masses zero and p,2 + p,? and to thus
determine a conservation law corresponding to the zero mass particle.
Choosing the root g = + ui/ts of Eq. (3.19) and using the equations

auqﬁlu = —p 2 — gb2
Oupo” = —pa’ds — 861

one readily deduces that

au(f‘z‘ﬁlu + F'1¢2“) =0

thereby establishing the existence of the c-number translation group

pob1 ?Fvl‘ﬁz — oty F mds + 1

associated with the massless free field part of (3.18).

Although there is, in principle, no limit to the number of additional
complexities one can introdiice into the study of the broken symmetries
associated with a finite number of coupled free fields, it is easy to
convince oneself that there are no real conceptual advances to be
derived from any of these generalizations. On the other hand, the case
in which the number of such fields is allowed to become infinite, while
not requiring any substantially new techniques, has been the subject of
such considerable interest in this application as to merit a somewhat
detailed discussion. We refer, of course, to the well-known Zachariasen
model@V which, despite ‘its relatively simple structure, has in recent
years proved to be an invaluable tool of the theoretical physicist in the
testing of some of the new techniques employed in particle physics.
Although this model was first discovered in the context of dispersion
theory, it was subsequently shown by Thirring®® that there is an
alternative formulation within the framework of Lagrangian field theory,
and it is, of course, this latter approach which provides the basis for a
broken-symmetry applicétion. It is to be emphasized at the outset that
the Lagrangian of this theory includes only bilinear coupling terms and
as such consists only of free fields. The fact that a nontrivial S-matrix
can be defined for the Zachariasen model is a direct consequence of the
introduction of a continuum of fields into the Lagrangian and therefore
should not be taken to imply any deep physical content in the theory.
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Although many authors have considered the model to provide a
“reasonable” approximation to Yukawa and quartic boson interactions,
this is a highly conjectural view and completely irrelevant to its applica-
tion as a broken-symmetry theory. We shall therefore be content to
show that the Zachariasen model can support a naturally occurring
type of broken symmetry®® at the same time completely avoiding any
reference to its possible value as an approximation to a less trivial
theory. |

The Zachariasen model can be conveniently described as a theory
in which the interaction of a B particle with 44 pairs is restricted by the
important condition that the 4 and A particles only be created in pairs.
Because of this latter feature (i.e., the absence of an asymptotic condi-
tion for the A particles), a Lagrangian formulation of the theory
requires that A4 pairs be described by a single field operator with a
continuous mass parameter. This result is made more transparent upon
observing that if one restricts a more conventional type of field theory
which contains an A particle in the manner described here, then the
free Green’s function Go(x) never appears alone but always in the
combination Gy2(x). One thus need only refer to the identity

-

Gox, M,) = J; | dsf)Gax, ) (3.20)
where | ’
759 = g ()
and

Go(P s S) = ﬁ_}
to show the equivalence to a theory in which the interaction is mediated
by a continuous mass field. It must be remarked that since f?(s)
asymptotically approaches a constant, the integral in Eq. (3.20) does
not really exist. However, this fact merely reflects the well-known,
self-energy divergence and is completely irrelevant within the context
of the present application. All the essential features of the model are
retained upon replacing f(s) by a function which vanishes sufficiently
rapidly at infinity; we therefore freely assume such a regularization in
the subsequent discussion.



BROKEN SYMMETRIES AND GOLDSTONE THEOREM 599

One can now proceed to write the Lagrangian describing the inter-
action between the B particle and the 41 pairs [associated, respectively,
with the fields ¢(x) and ¢(x, s)] in the form

L= 0d+ Vb~ Va8 + [ d0.90) + b (o)
= V# ) + gt [ dsf(o)ge) (3.21)

The equations of motion implied by (3.21),

(=0 + 100 = g0 [ def(o)g(r, o
(=2 + 5)4(x, 5) = gof()$(x)

together with the only nonvanishing equal-time commutation relations
[Fo(x), (x)] = —id(x — x')
[P0f(x, 5), $(x', )] = ~i8(x — x)8(s — s
yield a set of coupled integral equations for the Green’s functions

G(x) = KO|($(x)$(0)). |05
Glx; s, 5) = KO[($(x, s)p(x’, 5)) , |0
These integral equations can be solved by elementary techniques to
yield the momentum space representation

! 3 f2(s) ] -1
= 2 2 __ 5,2
G(p) [p + 1o® — g - ds o (3.22)

55y < 36=5) . SO )
005 5) = Qg + 86 G5 60 s

Since it is usual to reqixire the existence of a stable particle of mass
¢ in the theory, we set

. L] 2
pro? = Fz + g2 .t dssf_—(“‘zz (3.23)

which, upon insertion in Eq. (3.22), yields the once-subtracted form of
the propagator

G(p) = (p* + 3 [1 ver | ds&}*
M2 (P2 + S)(S - #2)
In addition to this formal mass renormalization procedure one can
carry out the corresponding coupling constant renormalization by
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introducing the definitions
' @ 2
L0

Z;7 =1+ go° 2 (s = R
and
‘ g* = Z:8o°
by means of whijcli one writes the convenient alternative form for
G(p; s, 5),
o _Ms—5) & fs
G(p;s,8) = 7 Es +p2 - #2p2f(+)s

1 )
PR ORI
‘ e (PP 8)s — pf)
Since the field ¢ (x, s) creates A4 pairs, the A4 scattering amplitude is
readily extracted from G(p; s, s) by straightforward techniques, thereby
yielding the result -

X

Z; + g°

. 2 -] 2 ds -1
e sin § = g 2(—p? [Z + g? ——f ) ]
" m/ TP % e a2 (P + s)s — %)

gzl 2 1 (nza ez [ A__-]
”p2+H2f( P)[l (P*+up2g J;MAZ ds(s_#z)z(pz_i_s)]

which we note contains no reference whatever to unrenormalized
quantities. i

“With this brief summary of the solution as obtained by direct
application of the equations of motion, one can now proceed to
examine the possibility of a broken symmetry approach to the model
by imposing on the solution the constraint

OI$)[0y = 7 # 0

It follows immediately that the equations of motion require the
consistency conditions

pPOHI0 = g0 [ dfOQICE I (324
s<0}¢(x, $)|0> = g0 f(s)<0|$(x)|0> (3.25)

the first of which may be eliminated in favor of the equation

© 2
wot =gt [ asTD s (3.26)
aM,
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Thus the broken symmetry implies a relation [Eq. (3.25)] between
<0|4(x)|0> and <0|4(x, 5)|0> as well as a condition [Eq. (3.26)] on the
parameters of the theory. It is furthermore obvious upon comparison
with Eq. (3.23) that the broken-symmetry solution of the model is
merely a particular solution which is derivable from Eq. (3.22) by
choosing the bare mass u,? in accord with Eq. (3.26). The broken-
symmetry condition serves only to ensure the existence of the required
zero-mass particle and, as is invariably the case for a naturally occurring
broken symmetry, the Green’s functions [Eq. (3.22)] contain no refer-
ence to the broken-symmetry parameter ». The crucial point to be
emphasized is that once the condition (3.26) is incorporated into the
Lagrangian (by suitable choice of #o® and/or g,?) there is no further
physical content in the broken-symmetry condition. This situation is in
sharp contrast to the case 'of spontaneous symmetry breaking where the
constraints cannot merely be incorporated into the Lagrangian and
subsequently ignored in all higher order calculations.

Before leaving the Zachariasen model in favor of more complex
theories, it is well to display here the conservation law and associated
gauge group which supports the broken symmetry. The conserved
operator must clearly be cj>f the form

# e[ duin s
I am 2
where «(s) is to be determincd. Using the equations of motion one finds
ot + o0 [ dsatodpec, 9 =2 [, 16 - ssx,
aM, ; aM,

— é(x) [1402 — go* J;: sf(S)a(S) ds]
which by Eq. (3.26) vanish%:s for
als) = (1/5)f(s)

It is now easy to show that the Lagrangian is invariant under the
c-number gauge group :

() > 4() + 7
#05, 5) = $(x. 5) + go(1/5)f(5)n

a result which could have bpen anticipated from Eq. (3.25).
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For the sake ‘of completeness it should perhaps be remarked that
although we have ‘considered here only one particular limit of the more
general model discussed in Zachariasen’s paper, 1o essentially new
features emerge upon introduction of a direct coupling of the field
#(x, s) to itself. It has been pointed out that with this additional inter-
action one can decrease po” to Z€ro (thereby requiring also the vanishing
of go?) and consequently effect the decoupling of the massless boson
even though the spéttering amplitude fails to vanish.®® Since, however,
the massless particle in the limit refers to a free field, this is entirely
equivalent to the statement that it is always possible to introduce
extraneous massless free fields into any field theory. It does not provide
any insight into the more interesting question of the possible decoupling
of the massless quanta of a field with a nontrivial interaction. The
results for the complete Zachariasen model therefore seem not to be of
sufficient interest to warrant inclusion here.

Thus far the examples considered in this chapter have dealt
exclusively with ‘instructive, but essentially trivial, cases of broken-
symmetry theories. In an effort to avoid leaving the reader with the
impression that this exhausts the class of naturally occurring broken
symmetries, we briefly discuss a somewhat more complex theory of the
type suggested by (3.11).07:2% The model consists of a pseudoscalar
field #(x) coupled to the pseudovector current of a Hermitian spinor
field ¢(x) and is described by the Lagrangian

£ = (i/2yB ¥ ?u‘/’ — (m[2YBY + ¢ dup + Vad by
j + Vogo¥B vs vubld* + Y,8o¥B vs 0'¥] (327

where the term quadratic in g, has been included in order to preserve
equivalence with the well-known derivative coupling theory. Because
of the translational invariance of (3.27) under

: $(x) = $(x) + 7
it follows that one has the local conservation law
0,4* =0 (3.28)
The remaining ﬁeld equations implied by (3.27) are
yM(1fi) 8 — 8ovs Bugl-§ + mb =0
1 ¢y = — Oup — GoJou
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where a dot notation has been introduced to denote a symmetrical
operator product and

Js* = VB ys v
It is now easy to verify that the condition
<0]4(x)|0> # 0

is consistent with the equations of motion without the introduction of
any constraints upon the parameters of the system. From Eq. (3.28)
one readily shows that the two-point function

G“({C) = i{0|(4*(x)$(0))+ |0>
has the form 5

d_p ipx 1

GO == ey P&

thereby demonstrating the existence of the zero-mass particle required
by the Goldstone theorem which is based on the elements of the
canonical group. It is to be noted that although the theory is soluble
for the case m = 0 this point is entirely irrelevant to the present dis-
cussion. Indeed the interest of the model stems largely from the
independence of the broken-symmetry aspects from the detailed
dynamics.

The above discussion of the derivative coupling model has served
to illustrate in a more concrete example our assertion concerning the
occurrence of a zero-mass particle in theories of the type described by
(3.11). The significance of this result becomes all the more remark-
able when one realizes that upon leaving the rather limited domain of
soluble field theories there exists no further class of field theories (other
than the higher spin generalizations of the field translation group)
which is known to admit such a precise statement concerning the
physical mass spectrum. In this context it must be recalled that
although it was long thought that the usual type of gauge invariance
associated with electrodynamics implied the vanishing of the photon
mass, this view has relatively recently been discredited.®5-27 It should,
however, be noted that.the objections raised against the massless
photon do not apply to at least one type of electromagnetic coupling.*?
We refer to the spin 1 generalization of the field translation group which
‘rigorously allows the conclusion of a vanishing photon mass. Such a
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theory is characterized by the fact that the coupling is mediated through
the electromagnetic field tensor rather than the vector potential, so that
one requires a Lagrangian of the form

¥ = _%Fuv(auAv - avAu) + 1/4F”Fuv + gI(F”)

Since #’(F**) does not contain the vector potential A*, one clearly has
the local conservation law-.

| a,F* =0 (3.29)
associated with the invariance of the Lagrangian under

() > AH) + P (3.30)
for »* being arbitrary constants. As in the usual radiation gauge
formulation one can take 4,(x) to be transverse

; OpAr =0
so that using Eq. (3.29) leads to the result
<O|[F*(x), 41(0)](0>

: OV __ gV Al

= afgro - g o - EEGET T 2 (mo) aA] AGx; 0)
where n* = (0, 1). From the commutation relation

Ok [ vy ; ak al I
[Fr(x), 4] = i( 8 — St)8(x — X))
for the transverse of F°(x), one readily finds
a=1

thereby establishing the existence of a massless photon solely from the
invariance of % under the gauge transformation Eq. (3.30). It is clear
from the brief discussion given here of electromagnetic couplings which

are mediated entirely through the field tensor that theories of this type
support a naturally occurring broken-symmetry condition of the form

0]4%(x)|0> # 0

One further notes jthat this does not require a nonvanishing £'(F*")
so that it applies equally well to the free field case (¢’ = 0) and to a
Pauli moment interaction (&' = Y4AF**M,,).
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Although the electfomagnetic field in the context of broken sym-
metries merits a much more detailed consideration than that which has
been given here, this properly belongs to a study of the usual gauge
properties of electrodynamics and we consequently defer such a dis-
cussion to the following section.

'IV. Gauge Theories

As we have seen in. Section II, any manifestly covariant broken-
symmetry theory must exhibit massless particles in the spectrum of
states associated with the corresponding current. There is, however,
one class of relativistic theory which lacks manifest covariance and
which may therefore escape the conclusions of the Goldstone theorem,
namely gauge theories such as electrodynamics in the radiation gauge.
This section is devoted to a discussion of a variety of broken-symmetry
theories involving vector gauge fields.

If we wish to attribute any of the observed approximate symmetries
of relativistic particle physics to spontaneous symmetry breaking, and
at the same time avoid the appearance in the theory of unobserved
massless particles, then there are really only two choices available.
Either we couple in gauge fields, as described in this section, or we have
to suppose that the massless particles required by the Goldstone
theorem are in fact completely uncoupled, and therefore unobservable.
In the latter case, however, the Hilbert space of the system may always
be written as the direct product of a physical Hilbert space, free of
massless particles, and a free-particle Fock space describing the Gold-
stone particles. The broken symmetry appears only in the latter, and no
trace of it remains in the physical predictions of the theory, which must
in fact exhibit complete symmetry.

There is another reason for considering the possible introduction
of gauge fields. The success of the “gauge principle” in electro-
dynamics,?® whereby the electromagnetic field is introduced in the
course of extending the symmetry group from global to local trans-
formations, and of its analog in gravitation,® led to the idea that other
interactions might perhaps be understood in a similar fashion,®® A
major obstacle in the way of this hypothesis was the fact that the vector
particles associated with the gauge fields are apparently required by the
theory to be massless, like the photon and the graviton.
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However, it was suggested some time ago by Anderson®? that the
two problems posed by the vanishing of the masses of the “Goldstone
bosons” and the “Yang-Mills bosons” might in certain circumstances
“cancel out.” In fact, as we shall see explicitly below, in a theory with
both gauge fields and symmetry breaking the two polarization states of
the massless vector particles and the single state of the massless scalar
may combine to yield the three states appropriate to a massive vector
boson. This idea provides what is, at least at first sight, an extremely
attractive escape from the problem of predicted but unobserved mass-
less bosons. It has been discussed by Higgs,®2-*® Brout and Englert,*
Guralnik, Hagen, and Kibble,®® and Kibble.®

At least in the case of the electromagnetic field it is always possible
to maintain manifest covariance, by using the Lorentz gauge and, for
example, the Gupta-Bleuler formalism.®” Then the Goldstone theorem
certainly applies, and requires the existence of massless states. However,
it says nothing about whether these states are physical, and indeed we
shall see explicitly in cases discussed below that the corresponding
massless fields are generally pure gauge parts whose matrix elements
between physical states vanish identically. In the case of non-Abelian
gauges, the Gupta-Bleuler formalism in inapplicable, but one can work
in terms of Schwinger’s extended-operator formalism,®® with similar
results. :

Let us begin by examining the simplest possible model of a broken
symmetry theory—a free massless scalar field described by the Lagran-
gian density

‘ L= ¢ 0 + Yat's @)
This Lagrangian is invariant under the field translations
$(x) — $(x) + gA 4.2)

where g is a positive coupling constant introduced for later convenience,
and A is a real parameter. Obviously, {¢> = <0|¢(x)|0> cannot be invariant
under (4.2), so this symmetry is always broken. As discussed in Section
111, the various degenerate vacuums distinguished by different values of
{$> belong to unitarily inequivalent (but physically indistinguishable)
representations ‘of the canonical commutation relations.
Now let us couple the conserved current g¢* to a gauge vector
field. We obtain®®
L=- _%Fuv (auAv _avAu)‘I" 1/4F‘”Fuv + ¢u au¢‘ + %¢u¢u + g‘l’uAu
4.3)
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which is invariant not only under Eq. (4.2), but also under the gauge
transformations of the second kind,

$(x) — $(x) + gA(x)

A,(x) > 4,(x) + 9,A(x) (4.4)

Although this is an essentially trivial model, it will be helpful to
analyze it in some detail in order to bring out a number of points of
more general applicability, particularly in view of the fact that many
other models reduce to this one in an appropriate linear approximation.
In particular, we wish to discuss the relationship between the Lorentz
gauge and Coulomb gauge methods.

In the Coulomb gauge we remove the arbitrariness corresponding
to the transformations (4.4) by imposing on A, the condition 9, 4% = 0.
This may be achieved, for .example, by adding to the Lagrangian a
Lagrange multiplier term

_Cou (4.5)

The field equations are then
Fup=0,4, - 0,4, (4.6)
O F™ = —gg¥ 4 8,Y OC 4.7
Opd* =0 (4.8)
b= ~0,4 — gd, Y
bt = (4.10)

The independent dynamical variables are ¢ and ¢°, and the two trans-
verse components of each of 4, and F°¢. The dependent variables are
determined in terms of these by constraint equations. In particular,
from Egs. (4.6) and (4.7) one finds for 4, and the longitudinal part of
F° the equations |

~V24° = 9,Fok = ggo @.11)

Eliminating these variables, : one finds the dynamical equations of
motion

0od)" = F§, OoF kT = — V24,T | g2 gkT (4.12)
Bod = ~do + g%V} "¢, 0o = V24 (4.13)




608 G. S. GURALNIK, C. R. HAGEN, AND T. W. B. KIBBLE

1t follows that 4,7, FZ., and ¢° satisfy the Klein~-Gordon equation for
mass g. In fact, combining Egs. (4.12) and (4.13), and introducing the
new variables V, = 4, + g~* 8,4, we recover the standard equations
describing a vector field of mass g. Note, however, that for ¢ we can
only derive the equation

(-2 + ¢%) 0,6 =0

One can verify these conclusions directly from the Lagrangian
(4.3). Let us introduce in place of 4, the new variables

V,=A, +g 10,4 (4.14)
Then Eq. (4.9) becomes an explicit solution for ¢,,
| $u = —gV, (4.15)

which may be usedi to eliminate ¢, from the Lagrangian, yielding

L =—1F (8,V, — 8,V,) + YuF»F,, — Y4g*V*V,
| — CoV* — g 1 9) (4.16)

The independent dynamical variables are now V) and all three com-
ponents of F°. In this form it is clear that ¥, describes particles of
spin one and mass g.

The Lagrangian (4.16) is still invariant under the transformations
(4.2), though not of course under (4.4), but in a completely trivial
way. In fact, from Eqgs. (4.10) and (4.14) we see that ¢ is determined
in terms of V by the equation

Vig = g 8, V" @.17)

and (4.2) represenfs merely the arbitrariness in the solution of this
equation. (Explicit dependence on x is ruled out by the requirement of
translational invariance.) Note that the equation obtained by variation
of ¢, namely

ViC =0
shows similarly that C is at most a constant.

Tt is useful to reexamine the proof of the Goldstone theorem, in the
context of this particular model, to see explicitly why it fails. The
conserved current, whose integrated time component is the formal
generator of the transformations (4.2) is simply g¢*. Thus the expecta-
tion value we have to consider in examining the proof of the theorem is

fi(x) = —ig<[¢*(x), O (4.18)
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By the canonical commutation relations, we have
[dexocx,0) =

If this equation were true not only for ¢+ = 0, but for all times, then the
Goldstone theorem would follow. However, reexpressing f* in terms
of the vector field V“, using Egs. (4.15) and (4.17), we have

F4) = +ig V), (7)1 a0
But the commutator function of a free vector field has the form
iV, Vi(»)] = (8% — g72 2" 8,)A(x ~ y; %)
Hence we find that f° has a causal structure,
Jo(x) = g 8oA(x; g7)
but that /¥ has not:
Silx) = g(l - g“/Vz) aA(x; g%

It is this nonlocal structure‘which makes the proof of the Goldstone
theorem fail. We note that by explicit calculation one finds the time
dependence

f daxf°(x, £) = g cos gt (4.19)

In any broken symmetry theory, the integral over all space of the
current operator,

0 = [ex°w)

fails to exist. However, if we evaluate the commutator of J° with any
* local operator before doing the spatial integration, the result is always
well defined. Formally, if the theory is manifestly covariant, the
“operator” @ is time independent, in the sense that all its commutators
evaluated in this manner are time independent. However, in the same
sense for our model it satisfies the equation

@ +890 =0

in agreement with Eq. (4.19). This was noted by Guralnik, Hagen, and
Kibble.®® j



610 G. S. GURALNIK, C. R. HAGEN, AND T. W. B. KIBBLE

Now let us turn to the Lorentz gauge. We shall find it convenient
to impose the Lorentz gauge condition by adding to the Lagrangian
Eq. (4.3) a Lagrange multiplier term analogous to Eq. (4.5), namely,

—G 9,4" + Y4uGG (4.20)

where « is an arbitrary constant introduced to allow direct comparison
both with Schwingei’s formalism®® (« = 0), and with the more con-
ventional Fermi Lagrangian®” (¢ = 1). Note that in a second-order
form Eq. (4.20) would correspond to a term

—(1/2)(@,4")

The advantage of the first-order form lies precisely in the possibility of
taking « = 0. !

With this addition to the Lagrangian, the only equations of motion
which are changed are Egs. (4.7) and (4.8) which are now replaced by

9,F» = —g¢* + &G 4.21)
and
0,4" = G 4.22)

Note that from Eqs. (4.10) and (4.21), it follows that G is a massless
field, i
G =0 4.23)

The important difference between the Lorentz gauge and the
Coulomb gauge derives from the fact that (4.20), unlike (4.5), contains
a time derivative, so that G, unlike C, is formally a dynamical variable.
The equations are no longer automatically equivalent to the gauge-
invariant equations with G = 0, but have additional solutions with
nonvanishing G which must be eliminated by imposing some sub-
sidiary condition on the physical states.

We note that the generator of the gauge transformations 4.4
is

GO\ = j 49x[G(x) FA(x) — N¥) 86G()]
j = J‘d"x[G doh — M@ FF — g4%)] (4.24)

There are two alternative procedures at this point. We can adopt
either the Gupta-Bleuler formalism, or the extended-operator formalism
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of Schwinger. In the Gupta-Bleuler formalism, the fields are represented
by operators in a Hilbert space with indefinjte metric, and the subspace
of physical states is selected by imposing on them the subsidiary
condition

G(+)(x)|> = 0 (akFOk(+) — g¢0(+))'> =0 (425)

where the superscript plus; denotes the positive-frequency part. Equa-
tion (4.23) is essential here in allowing us to draw an invariant distinction
between positive and negative frequencies.

On the other hand, in $chwinger’s formalism the field variables are

GY¥ =0
' or equivalently i
G¥ =0  (3F% — ggoyy — (4.26)

We shall consider both these formalisms in the following.

The canonically conjugate pairs of field variables are now (Fo%, 4,),
(G, 4°, and (g, $°). As before it is convenient to make a change of
variables. We introduce a: canonical transformation to the pairs
(F°, V), (G, x°), and (¢, #°), where

Vi = Alcj+ g7 od — &720,G
X" = A+ g-2p For 4.27)
. #° — g 1 9, Fox

To exhibit the Lagrangian in inanifestly covariant form, it is convenient
to introduce also the dependent variables Vo, x*, 7*, so that we may
write |

L=- %Fuv (aqu _avVu) + %F‘”Fuv - 1/2g2V"Vu
+x*0,G + o o + 1/2.77"7714 + g7, + %aGG

Here we clearly have a vector field V, describing particles of mass g, and
two scalar fields. No coupling remains between the vector and scalar
fields. ‘

Let us first consider Schwinger’s formalism, which in this case is
somewhat simpler. To do this, we may adopt a representation in which
states are labelled by the eigenvalues of, for example, 4, y°, and V., all
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at a given time # On the space of functionals of these variables, the
canonically conjugate fields are represented by functional differential
operators, namely

5 5 5
o _ ;.92 _ Ok — ;_°
7wt = l8¢' G ISXO, F lSVk.
The gauge-invariance requirements (4.26) become
. GY=0 2% = 0
or
8 8
—¥=0 =¥=0 4.28
10 5 (429

They show that the physical states are in fact independent of the scalar
fields x,’ and ¢’, and may be represented by functionals of the vector
field V.’ alone. These states form a Hilbert space under the scalar
product defined by functional integration over all functionals of V,'.
No massless particles remain among the physical states, in complete
agreement with the results of the Coulomb gauge treatment.

In the formalism of Gupta and Bleuler, on the other hand, the
fields are supposed to be represented in a Hilbert space with indefinite
metric. The subspace of physical states is selected by imposing the
subsidiary conditions

GHY =0 a0 O =0 4.29)

Here the scalar fields do not annihilate the physical states, but their
matrix elements between pairs of physical states are nevertheless zero
in virtue of Eq. (4.29). The large Hilbert space with indefinite metric
may be written, because of the absence of coupling between the vector
and scalar fields, as a direct product of a physical Hilbert space with
positive definite metric (which is in fact the Fock space for the vector
particles), and an unphysical Hilbert space describing the scalar
particles. In this; latter space, the subspace selected by the conditions
(4.29) consists exclusively of states with zero norm with the sole
exception of the vacuum state.

It is interesting to examine more closely the unphysical fields ¢ and
G. The corresponding field equations are

?uG = —8my Oup = —m, — gXu

o = oG omn =0 (4.30)
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It follows that
G =0 ¢ = agG 4.31)

The massless particles required by the Goldstone theorem are described
by the field G. In the special case « = 0 there are two independent
massless fields, corresponding to the fact that in that case the Lagrangian
is also invariant (up to a divergence) under the transformation
G(x) - G(x) + A, which is generated formally by the spatial integral
of A4, or y,. In general, however, there is only one invariance, whose
formal generator is the spatial integral of g4° or gn°. Note that it is not
the canonical conjugate ¢ of this density which describes the Goldstone
bosons, but rather the field G whose time derivative is g7°. In fact the
verification of the Goldstone theorem for this case rests on an examina-
tion of the commutator function —iglm,, 4] = i[0,G, 4], which must
be nonzero and have a time-independent spatial integral.

The covariant commutation relations of the scalar fields are easy
to derive from the equations of motion [Egs. (4.30)] and the canonical
commutation relations. We find that the mutual consistency of the
subsidiary conditions [Eq. (4.28) or (4.29)] for different times is assured
by the commutator 1

G, G)] = 0 (4.32)

The commutator function ‘which is important for the discussion of the
Goldstone theorem is !

), GO = £Dx — ) = £ c(x — yoysix - 3] (@33)
It is easily seen to have the rjequisite locality property, which ensures that
i f dX[0,6(x), $(0)] = ¢ 4.34)
Finally we note also that
1809, 40 = Dx = ) — e[ a6~ yimd)] |

3 4 = YU — ]+ Yiog®O[— (e — 7 (439)

These covariant commutation relations are valid for both
Schwinger’s formalism and for that of Gupta and Bleuler. However, it
is important to recall that they play significantly different roles in the

Il
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two cases. In Schwinger’s formalism they express the effect of reversing
the order of a pair of functional differential operators. In that context
their form is neither sarprising nor troublesome. In the formalism of
Gupta and Bleuler, however, they describe the commutation properties
of Hilbert-space operators and are therefore required to satisfy rather
more stringent requirements. In particular, let us take the vacuum
expectation value of Eq. (4.35) and insert a complete set of states in the
usual way. (Note that this operation has no meaning in Schwinger’s
formalism.) Denoting by p, the diagonal element, + 1, of the metric
operator, we find

ZPnl<n|¢(o)‘0>|2(277)48(1’n -5k

= (kO)2m3(K?) — og [ _{0k0)2m8 (k2 + m?)}

- -nzln( ) 8(k)] (4.36)
20

where M is an arbitrary constant mass associated with the arbitrary
constant in the field ¢. It is evident that unless « = O the matrix elements
of ¢ must be extremely singular. The type of structure which appears
on the right-hand side of Eq. (4.36) can in fact be produced only by a
cancellation between infinite positive and negative terms on the left-hand
side. The root of this problem may be traced to Eq. (4.31). In momen-
tum space, it is clear that the field G is proportional to 8(k?). Thus, in
order to satisfy the second of this pair of equations, it is necessary that
¢ should be proportional to the derivative of the 8 function, 8'(k?).
Now, the quantity which appears in the commutator function, namely
the derivative with respect to m? of the odd function £(k®)8(k* + m?),
evaluated at m? = 0, is a perfectly well-defined Lorentz-invariant
distribution; however, the derivative of the even function 8(k? + m?)
is not, 49 but it is arbitrary to the extent of an additive multiple of the
four-dimensional 8 function. [This is represented in Eq. (4.36) by the
arbitrariness in M;]

These difficulties may be avoided either by using Schwinger’s
extended-operator formalism, in which Eq. (4.35) makes perfect sense
but Eq. (4.36) cannot be written down, or alternatively by making the
particular choice « = 0, for which no problems arise. It is worth
recalling that this is precisely the case for which the second-order form
of the Lagrangian cannot be used.



BROKEN SYMMETRIES AND GOLDSTONE THEOREM 615

Finally, before leaving this model we wish to point out that in the
Gupta-Bleuler formalism it provides an example of the decoupling of
the massless modes, leaving no trace of broken symmetry among the
physical states. Here, the physical states are described by the vector
field ¥,, which is completely invariant under the symmetry trans-
formations (4.2). In a sense, therefore, we have not so much broken the
symmetry as eliminated it completely from the theory. As in the case
of “naturally occurring” broken symmetries, the symmetry-breaking
parameter is physically irrelevant.

As a rather less trivial example let us now consider the model of a
self-interacting two-component scalar field

4= [5]

described by the Lagrangian v

L=¢"04 + Vap b — V(gs) (4.37)
It is clearly invariant under the rotations
¢ — &g (4.38)

where g is the antisymmetric 2 x 2 matrix defined in Section III.
If V has a maximum at ¢¢ = 0 and a minimum at some other
value, e.g., if ;

V= ~Yiarhh 4 Yy (4.39)

then we may expect that in the ground state the expectation value of ¢
will not be zero, but rather will approximate to the value at which ¥ has
a minimum. Clearly, because of the invariance, there must be an
infinitely degenerate set of ground states, with expectation values
corresponding to all the points round the circle in the ¢; — ¢, space on
which ¥ has its minimum value. From the equations of motion, and the
requirement of translational invariance of the ground state, one easily
derives the consistency requirement

8V\_ 1/ h2 44 _ o\
<a—¢ D = @b — ) = 0 (4.40)

which serves to fix the magnitude of @). The various degenerate
ground states are labeled by a phase angle «, and characterized by the
expectation values

($> =19 = e“a, (4.41)
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where 5, may be chosen to be, say,
0 .
o= ] (4.42)
|]

with || determined by Eq. (4.40). (By translational invariance,  is of
course independent of x.) In lowest order,

In|* = 2a%/b®
The current corresponding to the invariance (4.38) is
J* = ig*qd (4.43)
It satisfies
0,j* = (4.44)

Formally, the transformation between one member of the set of
degenerate ground . states and another is performed by the unitary
operator ‘

U(Y) = exp {m f d"xj“(x)} (4.45)

In fact, however, this integral does not converge to a well-defined
operator in the limit of infinite volume, and the various degenerate
ground states belong to unitarily inequivalent representations of the
commutation relations (compare Section III).

The equations of motion obtained from the Lagrangian Eq. (4.37),
with V given by Eq; (4.39), are

2 = — 4, (4.46)
2,4 = —oV]o$
= $(@® — Yb*49) @47)

To analyze the structure of the theory, it is useful to begin by making a
linear approximation. We write ¢ = + ¢, and retain only terms
linear in ¢’ in the equations of motion. Then Egs. (4.46) and (4.47)
yield the equation

8%’ = by(ng") (4.48)

It is clear from the structure of the mass matrix b%yy that this theory
describes two particles, one with mass zero, and the other with mass m
given by ‘

m? = by = 24*
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In higher approximations, there are, naturally, interactions between
the two scalar fields, which will have the effect, among others, of
renormalizing the mass of the massive mesons. However, we are assured
by the Goldstone theorem that no such renormalization occurs for the
massless mesons. These are the Goldstone particles, and their mass
must remain zero. It should be noted that the value of » must change
in higher orders to take account more precisely of the consistency
condition (4.40).

Now let us consider the effect of coupling the current [Eq. (4.43)]
to the electromagnetic field. (We are now interpreting the two com-
ponents of ¢ as the real components of a charged field.) The Lagrangian
then takes the form

L =—-%F" (0,4, — 0,4, + YViF*F,, + ¢#(0, — ieqA,)¢
+ Ve - V(¢4) (4.49)

As in our previous discussion of the simple free-field model, we could
use either the Lorentz gauge or the Coulomb gauge to discuss this
theory. However, since no new points of principle emerge from the use
of the Lorentz gauge in this problem, we shall be content with the
Coulomb gauge. Moreover, we shall not write exphcltly the Langrange
multiplier term analogous to Eq. (4.5).

The field equations derived from the Lagrangian Eq. (4.49) are

E,, = 8,4, — 0,4, (4.50)
9, F* = ied*qd 4.51)
! ¢, = —0,¢ + ied,qd (4.52)

(0, — ied,q)$* = —2V]op |
: = ¢(a® — /ab%¢4) (4.53)

If we now make the same lmearlzmg approximation as before, the last
two equations become

b, = —0,¢" + ileqnA, (4.54)
- 0up* = bP(nd") (4.55)

The components of thest equations in the direction of 1 are independent
of A,, and yield

(-2 + m)(n¢) =0 (4.56)
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with m? = b%|q|? és before. Thus the massive scalar particles are
unaffected by the coupling in of the electromagnetic field. To simplify
the remaining equations, it is convenient to introduce the new variables

: i b
V,, =4, + o™ o, = aﬁﬂq‘ﬁu 4.57)

Then Egs. (4.50) ahd {4.51) become
‘ F,, =20,V,— &V,

I

8,F" = M2YY (4.58)

with M2 = e2|n|2 These are of course the standard equations describing
a massive vector field. Thus we see that the massless Goldstone bosons
have combined with the electromagnetic field to produce a massive
vector field. No massless particles remain in the theory.

It is interesting to examine an alternative approach to this theory.
This approach has 'the advantage of not being restricted to a perturba-
tion treatment based on the linearized approximation, but corres-
pondingly it has' the defect of involving complicated algebraic
transformations of the dynamical variables which are not obviously
well-defined for operator fields.

We introduce the polar decomposition*?

et I

where the field p has a nonvanishing expectation value, {p(x)> = |y|.
Then, ignoring problems of operator ordering (which may in fact be
rather severe), we find that the Lagrangian Eq. (4.49) takes the form

L = — 3F* (9,4, - 0yA, + VoF"Fyy + p* 0up
+ po*(0,0 — ed,) + Y2p'pu + Yaoto, — V(p?)
(4.60)
where we have wrftten

p* = ¢t sin 6 + $5* cos 6
o* = ¢," cos § — ¢,* sin 8 (4'61)

We then introduce the new variables

V,=A, — (1/e) 8,0 (4.62)
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to which Eq. (4.57) is a linear approximation, and eliminate ¢* using
the relation
ot = epV* (4.63)
This yields our final Lagrangian
L =—3Fw @V, — 8V, + YuF"F,, — Yae?p*V*V,
+ p* Oup + Yap'pu — V(6°) (4.64)

This Lagrangian evidently describes a scalar field p and a vector
field ¥* whose squared masses are determined in lowest approximation
by the second derivative of ¥(p?) and by e*(p*> = €*|n|?, respectively.
Once again, we see that no massless particles remain in the theory—nor,
of course, does any obvious trace of the broken symmetry.

That the Lagrangian (4.49) is really equivalent, in the quantized
field theory, to (4.64) has been verified in low orders of perturbation
theory by Higgs.®® We conclude, therefore, that there is every indication
that the exact theory, like its linearized approximation, is free of mass-
less particles. Thus the coupling of the electromagnetic field to the
current associated with the broken symmetry suffices to eliminate the
massless Goldstone bosons.

We now turn to a very different class of theories, which involve
only vector fields. It is instructive to examine the electromagnetic field
itself from the point of view of broken symmetry, particularly in view
of the relationship which has often been assumed between gauge
invariance and the vanishing of the photon mass.®3:4%

Let us first recall that the Lagrangian (4.1) for thc massless
scalar field is invariant under the transformations (4.2), generated by the
integrated time component of the conserved current ¢*. The corres-
ponding conserved quantity in the case of the free electromagnetic field
is simply F*" itself. In view of Maxwell’s equations, it satisfies the
conservation law (for any constant )

0,(F**xn,) =0 - (4.65)
From the canonical commutation relations
0
(Frove, 1), A, 0 = (85 = T3 ox —y) (466)
(where the superscript T denotes the transverse part of a vector), we find

~i [ dFnI, 0, A = = e [ do* = Yim
(4.67)
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Thus the integrated time component of (4.65) generates the constant
field translations (or “constant gauge transformations”)

Ai(x) — A(x) + Yk (4.68)

which are the analog of (4.1).

In this free-field case, the integrated commutator (4.67) is
actually independent of time, and there is no difficulty in applying the
Goldstone theorem to deduce the existence of massless particles in the
theory. However, it is clear that this result reflects only our choice of
a free field and is essentially trivial.

A physically much more interesting model is interacting electro-
dynamics. We easily find that the continuity equation (4.65) may be
generalized to“* ’

A, [(F* + ex®j*ym,] = 0 (4.69)

Using the general form of the two-point function for the electromagnetic
field in the Coulomb gauge,

KOLA)AO)0) = gy BB S0

Y S R -
(g - T T gy~ BT [ oo )

we may verify the{t
O][j°(x), 44(0)]|0> = 0

for all values of x°. This remarkable result, together with the canonical
commutation relations (which of course remain valid in the interacting
theory) enable us to derive the equal-time commutation relation

— i [ + extyo)x, Ome AO) = Yo 470

Thus we see that the continuity equation (4.69) is still associated with
the constant gauge transformations (4.68).

However, it is no longer true in general that the integral in Eq.
(4.70) is independent of the time. Indeed, if we evaluate it explicitly for
an arbitrary time difference ¢, we obtain the result

2o, j dmp(m?) cos (mt)



BROKEN SYMMETRIES AND GOLDSTONE THEOREM 621

Thus the Goldstone theorem cannot be applied to deduce the existence
of massless particles in the theory. Indeed, there is no contradiction in
assuming that p(m?) vanishes for values of m? less than some finite
threshold mass. ‘

In the Lorentz gauge, of course, the Goldstone theorem must
apply. In that case, the analogous continuity equation to Eq. (4.69) is

0,[(8* 4% + ex’j*)m,] =0 4.71)
In this case, the two-point function of the theory takes the form

10| A4(x) 4°(0)]0) = (g‘” - aaf) [ZaA‘”(x; 0)

<] au 3\'
+ f dm?p(m3)A ) (x; mz)] + 5 A (x; 0)
0

in which we have explicitly separated out the contribution of the mass-
less particles to the spectral function. It follows that

—i f d3xCO|[@°A" + exjO)()m, A4,O0> =7, (4.72)

independent of time. Thus the Goldstone theorem applies and there are
massless particles in the theory. However, it is clear that (4.72) is
independent of the value of Z; and, in particular, is perfectly consistent
with the assumption that Z; = 0. The only term in the two-point
function which is actually' relevant is the longitudinal term which
represents a pure gauge part. This again emphasizes the fact that the
massless particles required to exist by the Goldstone theorem need have
no connection with physical massless particles. They are pure gauge
parts. :

It is interesting to examine the special case of electrodynamics in
two dimensions, when the electron mass is taken to be zero. As has
been shown by Schwinger,® this theory is exactly soluble.

The field equations for the electromagnetic field in this model are

,F* = gj»
Fu = 8,4, — 8,4,

However, these are not really equations of motion for dynamical degrees
of freedom of the system, for in two dimensions there are no independent
degrees of freedom associated with the electromagnetic field. Indeed, if

(4.73)
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we choose the Coulomb gauge, then 4; = 0, and A4, is purely a constraint
variable, given as an explicit function of the current by the equation

— V24° = ¢j° 4.74)
The electromagnetic field itself has only a single component
Fop = —0140 = —Fy,

It can be shown By careful evaluation of the relevant commutators®“®
that in addition to these equations the current satisfies the condition

: P e €
; ol dv]u = - For = _'2_Tr€quuv

where &V is the ahtisymmetric tensor with %! = 1. It follows that
(=2 + e2/mj* =0 (4.75)

Thus the excitations of vector type in the theory are massive. (It should
be remarked in passing that there is no physical distinction between
scalar and vector particles in two dimensions.)

This theory is interesting from the point of view of broken sym-
metries, because there exists a symmetry, namely, that under the chiral
(ys) gauge transfofmations of the massless fermion field, such that the
corresponding current &4, is not conserved. It follows, of course, that
it caninot support a Goldstone theorem. We also note that although the
expression F*! + ex'j* does indeed obey a continuity equation, as in
Eq. (4.69), its spatial integral

f dXH(FO + exj0) (4.76)

does not generate a transformation analogous to Eq. (4.70).

In all these models, we see that the Goldstone theorem is essentially
irrelevant to the question of whether or not the photon mass is zero.
That is a dynamical question which cannot be answered on grounds of
symmetry alone. ‘Any attempt to apply the Goldstone theorem is
defeated by the long-range character of the interaction, which ensures
that the spatial integral of the time component of the appropriate
current is not in fact time independent or, in the Lorentz gauge, by the
fact that the resulting Goldstone bosons need have no connection with
physical photons.’
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We now wish to return to models of the Goldstone type and
consider the generalization to non-Abelian symmetry groups. Our aim
will be to show that the earlier discussion of the Goldstone model may
be extended to this case with essentially no change.

Let us consider an n-component real scalar field ¢ which trans-
forms according to a given representation of a compact g-parameter
Lie group G, |

¢ — eTd “.77
where
AT = MT,
Here the A are g real parameters, and the T, are g real antisymmetric
n x n matrices obeying the commutation relations of the Lie algebra
of G, :
[Ty, Ts] = Totgs

These relations are satisfied in particular by the matrices
() = 145

of the adjoint representation.
We take as our Lagrangian an obvious generalization of (4.37),

L = ¢ 0,4 + Yad'bs — V($) (4.78)

in which, of course, V() 1s assumed to be invariant under the trans-
formations (4.77). However, we shall not in this case assume a particular
form like Eq. (4.39). -
From the invariance of the Lagrangian we may infer the existence
of currents
ja“ = —ig" T, (4.79)
satisfying the continuity equations
o =0 (4.80)

Formally, the transformations (4.77) are generated by the integrated
time components of these currents. However, as in Eq. (4.45), these
operators do not in fact exist in the limit of infinite volume, except in the
case where the symmetry is unbroken and the vacuum is invariant.

From the assumed translational invariance of the vacuum state,
with the equations of motlon

u¢ = ‘"‘f’u
8,4 = —ov]ap (48D



624  G. S. GURALNIK, C. R. HAGEN, AND T. W. B. KIBBLE

we obtain the consistency condition

)4
<§$ =0 | (4.82)

analogous to Eq. (4.40).

If {¢> = 75 is a consistent broken-symmetry solution of Eq. (4.82),
then so also is (¢) = e!*Ty for any A. Thus, although {¢> has n com-
ponents, and there are n Eqgs. (4.82), {¢> is not completely determined,
and these equations cannot all be independent. In fact, the number of
algebraically independent equations is just the number of group
invariants which can be constructed from the left-hand side of Egq.
(4.82). Since these equations transform according to the same -
dimensional repfesentation of G as does (¢, this number is equal to
the number of group invariants constructible from {¢>. It has been
called the canonical number v by Bludman and Klein“” and is com-
pletely determined by the representation to which ¢ belongs. We see,
therefore, that there are just enough independent equations in (4.82)
to fix the invariants formed from (¢). Conceivably, there might be
several distinct solutions for these invariants. However, for simplicity we
shall assume that the solution is unique.

Let us now choose a particular canonical value of 7, so that all
other physically equivalent solutions of Eq. (4.82) may be written in the
form {(¢)> = €*Ty. In general, not all values of the parameters A will
yield distinct values of {(¢). For there may be a nontrivial subgroup G”
of elements of G which leave the canonical » invariant,

euc~T.') =7

This is the stability subgroup of G at 7. Let its dimension be g — r.
Then every element of G may be written in the form

eNT = T gt T

where ¢*7 is an element of G", and the r remaining parameters u
parameterize the factor space G/G". (This is the space of cosets of G,
and is not in general a group.) Then

<¢> — eiu-Teilc-T,’7 — eiu-T.,’

so that these same parameters u serve to label the various degenerate
ground states distinguished by different values of {(¢>. Moreover,
distinct values of u correspond to distinct values of (¢, since otherwise
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the relevant group element should belong to G. (At any rate, this is
true in the neighborhood of the identity. There could in fact be a
discrete set of different values of u corresponding to the same {(¢).
However, this is irrelevant for our purposes.) The ground states there-
fore form an r-dimensional manifold. Since we have already seen that
the » components of {#> are restricted by » conditions, we have the
equality r = n — v,

To clarify the meaning of these numbers, it may be helpful to
consider some simple examples. Let us take the group G to be SU(3).
If ¢ belongs to the adjoint representation, then n = g = 8. By appro-
priate choice of axes, we ‘can arrange that the only nonvanishing
components of 7 are n; and 7, in the usual notation. Thus v = 2,
corresponding to the fact that just two invariants can be formed from
{$)>. Here the dimensionality of the manifold of equivalent values of
{#> is r = 6. Moreover, 7 is left invariant by a two-dimensional sub-
group U(1) x U(1) of G, so that g — r = 2, as it should be.

As a second example, suppose that ¢ belongs to the fundamental
three-dimensional representation of G. Since this representation is
necessarily complex, while n denotes the number of real components,
we have n = 6. By appropriate choice of axes, » may be brought to a
form in which only one of its three components is nonzero, and this one
is real. Thus v = 1, corresponding to the fact that only one group
invariant can be formed from (¢>. It follows that r = 5. Moreover, 7 is
left invariant by a three-dimensional subgroup SU(2) of SU (3), so that
g—r=3.

It should be noted that when {¢> = 7, the subgroup G" of trans-
formations which leave 7 unchanged is the subgroup of unbroken
symmetry transformations. We have, therefore, r broken components
of the symmetry, and g — r unbroken components. It will be convenient
in the following discussion to distinguish these components by different
types of indices. We shall use labels ,J, ... = 1,..., rforthe parameters
u of the coset space G/G", and P, Q,...=r+1,..., g for the para-
meters « of the subgroup G” of unbroken symmetry transformations.
By definition, we have ‘ -

T =0 (4.83)

for these latter components. Thus T,m is nonzero only when A is one of
the first r indices. Moreover, we can show that the n x r matrix

(T (4.84)
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has its maximal rank r. For if not, it has an eigenvector ¢’ with eigen-
value zero, so that we can find a linear combination of the generators
such that

CIT17} = 0

But then this linear combination ¢'7; would have to belong to the
subalgebra corresponding to G, which by definition it does not.

Now, to obtain a first approximation to the solution of the field
equations [Eqs. (4.81)] we may, as in the Abelian case, make the
substitution

$=n+4¢ (4.85)
and retain only linear terms in ¢'. Defining the mass matrix
0%V
M%)y = (——) 4.86
( ) b 3¢a 645" ben ( )
we then have
(=2*+m?$' =0 (4.87)

On grounds of stability it is reasonable to assume that m? has no
negative eigenvalues. Moreover, since ¥ is an invariant, it is a function
of the v invariants which can be constructed from $. Therefore the rank
of the matrix m? is at most equal to ». It could happen in special cases
that the rank was in fact less than », for example if V' were actually
independent of certain of the invariants. However, we shall assume that
this is not the case, and that m? has its maximal rank v. Thus we have v
massive fields, and r = n — v massless ones, as one might expect from
the fact that there are r broken-symmetry components.

As in the case of the group parameters, it is now convenient to
distinguish two sets of indices among the components of ¢2. By an
orthogonal transformation, we can arrange that m? consists of a non-
singular v x v matrix surrounded by zeros. To match the decomposition
of the indices labeling the group parameters, we shall use by Jyovoo=
1,..., r for the indices corresponding to the subspace annihilated by
m?, and p, q,...=r + 1,..., n for the indices of the orthogonal
v-dimensional subspace on which m? is nonsingular.

Now, the invariance of V¥ requires that

24

53 Tub =0
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Hence, diﬁ'erentiating‘with respect to ¢ and setting ¢ = 7 we obtain
m?Tym =0

Using the coordinates ]we have chosen this equation may be written as
(Tmy =0 (4.88)

Thus only the first r cdmponents of Tym are different from zero. But, we
showed earlier that the matrix (4.84) has rank r. Thus it follows that
the » x r matrix ! '

X7 = Tmy (4.89)

is nonsingular. MoreoVer, from the antisymmetry of the matrices 7, it
follows that

7Tm =X/ =0
whence
;=0 (4.90)

Thus the only nonvanishing components of 7 are the v components »?
in the subspace on which m? is nonsingular.

Let us now examine the effect of coupling the conserved currents
Ja* to a set of g gauge vector fields 4,4. We take in place of Eq. (4.78)
the Lagrangian i

L = 42 @,4,4 — 8,4,% — itheAd,PA°) + YuF o Fh,
@ — AT + Vadhh, — V($) (491)

We now make the same linearizing approximation as before, writing
¢ = n + ¢ and retaining only linear terms in the equations of motion,
which thus reduce to

Fl, = 0,44 — 8,4,
8. FE = id'Ty
b= —0 + ATy
ot = —m?¢’
with m? given as before by Eq. (4.86).

Using the fact that the only nonvanishing components of the
matrix (7,n)° are those: of the nonsingular submatrix X/, given by Eq.
(4.89), we find that these equations separate into three distinct sets.
For the vector fields 4,” corresponding to the g — r unbroken com-
ponents of the symmetry, we have simply the equations for free massless
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vector fields. Similarly, for the scalar fields ¢? corresponding to the
subspace on which m? is nonsingular, we recover the corresponding
members of the set of equations (4.87). Finally, for the first  indices, it
is convenient to introduce in place of 4’ and ¢' the new fields

Vul = AuI + i(X_l)jI aud’j
Then ¢,/ = X/V,, and so the equations reduce to

Fl,=3,V,) — oV}
OuF = (M?), V7

where the vector-particle mass matrix

M? =- XX

(4.92)

is positive definite because of the nonsingularity of X. More explicitly,
it is given by

(M 2)u =- (Tl"))f(T J"l)j ' (4-93)

We conclude therefore that at least in this linear approximation
the effect of introducing vector gauge fields is to eliminate all the
massless scalar particles from the theory. The r massless scalar fields
originally present combine with r of the vector gauge fields to produce
r massive vector fields, with masses given in terms of the symmetry-
breaking parameters n by the eigenvalues of the mass matrix [Eq.
(4.93)]. There remain in the theory g — r massless vector fields, corres-
ponding to the unbroken components of the symmetry group.

Finally, let us consider briefly the problem of going beyond the
linear approximation. To do this, it is convenient, as in the Abelian
gauge case, to adopt a polar decomposition of ¢, analogous to Eq.
(4.59). We write

$ = eTp (4.94)

where p has only v independent components p?, while the r variables
0 = (69 correspond to the parameters . of the coset space G/G".
We also introduce new fields related to 4,4 and F,*" by an operator

gauge transformation determined by the variables 6, namely

. 1 — e-10~t

R e R e
and

G4 = F4'(e'*%),?
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Then, using the gauge invariance of the Lagrangian (4.91), we may write
it as
L = =Y%4GR(@V* — V4 — it V,PV)°)
+ YAGyGh, + pH(0u — iV Ta)p
— *VATup + Yop*pu + V20w — V(p)
where we have written

bt = (§*e),

o = (¢*€"7)

We may then eliminate the fields o*. Writing p = 7 + p’, we finally
obtain ‘

L = —Y4,G2(@,V,A — 8,V A — ithcV,BV\°)
FYAGRGA, + p* 0, + Yaptpu — V0 + P)
— i Tap' Vit + YIVAT s + o) V2T + p)Y (495
Note that although the term
— ip*TmV,*

vanishes identically in virtue of Egs. (4.83) and (4.88), it is not generally
true that the corresponding term involving p’, which we have included
in Eq. (4.95), is necessarily zero.

The Lagrangian Eq. (4.95) clearly exhibits the same structure as its
linearized approximation. There are » massive scalar fields p’, with
masses given in lowest order by the mass matrix (4.86). Of the vector
fields, r have a bare mass term in the Lagrangian, given by Eq. (4.93),
while the remaining g — r have only cubic or quartic interaction terms.
There is, however, no giarantee in this case that the masses will remain
unrenormalized, and it is quite conceivable that the physical particles
corresponding to even these fields could be massive (just as there is
no known requirement which forces the photon to have zero mass).

We see, therefore, that whether the broken symmetry group is
Abelian or non-Abelian; the introduction of gauge vector fields serves
to remove all the unwanted massless scalar particles from the theory.
There remain v massive scalar and r massive vector fields, and also a
number g — r of massless vector fields, equal to the dimensionality of
the subgroup of unbrokéen symmetry transformations. In particular, no
such particles are left if all the components of the symmetry group
are broken. |
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" V. Nonrelativistic Broken Symmetries

Broken symmetry theories (though not always recognized as such)
have played a major role in our understanding of many phenomena in
nonrelativistic physics, particularly ferromagnetism, superconductivity,
and superfluidity. These theories can often be studied with much greater
mathematical rigor than relativistic ones and, moreover, the physical
significance of the mathematical formalism is often much clearer. It is
therefore particularly valuable to study nonrelativistic broken-symmetry
theories.

It will be useful to begin with some general remarks applicable to
all broken-symmetry theories and later to concentrate on particular
cases. We are in each case concerned with a theory whose basic equa-
tions of motioh and commutation relations are invariant under some
given group of transformations of the fundamental dynamical variables.
So long as the total volume Q of the system is finite, these transforma-
tions are induced by unitary operators of the form

Ua(n) = exp (i1Qa)
where the generator O may be expressed either as an integral

0a = [ @', 6.1)
0
or a sum over lattice sites
Qq = anx"(t) 52

where j° is an appropriately defined density. In either case it satisfies a
conservation law

d
Z QOa=0 (5.3)
or, provided that Qg is not explicitly time dependent,
[Qa, Hpl =0 (5-4)

where Hj, is the Hamiltonian in volume Q. The only case we shall be
concerned with in which Eq. (5.4) does not hold is that of Galilean
transformations. For the moment, however, we assume that Eq. (5.4
is satisfied.

We say that the symmetry is broken if, in the limit of infinite
volume, the ground state is not itself invariant under these trans-
formations. We may distinguish two classes of broken-symmetry
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theories. In the simpler case, of which the isotropic ferromagnet is a
good example, the ground state |0)q in a finite volume Q is already
nonsymmetric. Then there must exist a set of states

l"))n = Un+(”})|0>n (5.5)
which, because of Eq. (5.4), are degenerate in energy with the ground
state. However it may also happen that the ground state is completely
symmetric in any finite volume, but that in the limit of infinite volume
there is a degenerate set of ground states. We defer consideration of
this case for the moment. -

To show that the ground state |0)q is not invariant it is sufficient
to find some operator A whose ground-state expectation value is not
invariant, j

a{0|Ua(mAUq™* ()[0>q # o<0]4(|0>q
or, in infinitesimal form,

—ia{0[[4, QalI0>q = 7 # 0 (5.6)
In the ground state of a ferromagnet, for example, all the spins are
aligned parallel to some given direction. The degenerate ground states,
obtained by spin rotations, are characterized by different orientations
of the overall magnetization vector. Here the operator A may be
chosen, for example, to be a component of the spin operator at a
particular lattice site. | :

In any finite volume Q the degenerate ground states |0) are
related by unitary transformations; however, it is easy to see that in the
limit of infinite volume this can no longer be true. Suppose that there
exist limiting states |7, related by unitary transformations,

' [n> = €7°|0>
with

0= f d3xj%(x, f)

and that these states belong to the domain of definition of the operator
Q. Then the scalar product {0|7)> must be a continuous, differentiable
function of ». But

dinn<0!nj>n = —in<0|Qn|77>n

‘ —iQa<0]°0, 1)|1>q
by translational invariance.:In the limit Q — co this expression in either
zero (in which case all the states are identical) or infinite, which is
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impossible. What happens, in fact, is that the scalar products o<0|ma
tend to zero as Q — oo. (We shall verify this statement in detail for
specific examples later.) The limiting states |n) therefore constitute an
uncountably infinite set of orthonormal states, which evidently cannot
all belong to a single separable Hilbert space. Each of them actually
belongs to a :distinct unitarily inequivalent representation of the
canonical commutation relations.

Let us now turn to the second class of broken-symmetry theories.
These have the property that in any finite volume the degeneracy of the
ground state is only approximate. That is to say, there is a unique
nondegenerate ground state, but there are other states with only slightly
larger energy which become degenerate with it in the limit of infinite
volume. For example, the state of a crystal whose center of mass is
localized to within some distance R of the origin has slightly greater
energy than the true ground state, but in the limit of infinite volume
keeping the density fixed this energy difference tends to zero. Thus an
infinite crystal has translationally noninvariant states degenerate with
the ground state. Another example is provided by the condensed Bose
gas. In any finite volume there is a unique nondegenerate ground state
for any given particle number N. However in the limit of infinite volume
keeping the density fixed, we find a degenerate set of ground states
which may be labeled by the phase of the wave function. These states
may be obtained as limits of finite volume states in which the total
particle number is somewhat uncertain. However in the limit of
infinite volume the particle density tends to a definite limit.

A very convenient way to treat such problems [see Bogoliubov*®]
is to add a small symmetry-breaking perturbation vH, to the Hamil-
tonian. [A recent discussion from a point of view similar to that adopted
here has been given by Wagner.#®] This is useful even in the first class
of broken-symmetry theories if we want to discuss the effects of finite
temperature. In a ferromagnet, for example, at finite temperature we
should normally find a uniform population of all the degenerate ground
states. It is, however, much more convenient for many purposes to deal
with a state in which there is a definite magnetization direction. To
achieve this we add a small external magnetic field. We then compute
expectation values in an appropriate ensemble for volume £,

trnAe“’(”*""x)
il £ i

{Ava = trge PH¥VHD 5.7
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where trg, denotes the trace over the Hilbert space of states of the system
in volume Q. Then we take the limit of infinite volume, and finally let
v — 0, obtaining |

<A> = lim lim {4, (5.8)

v=0 Q=

It is characteristic of broken symmetry theories that the order of
these limits is not reversible. Indeed from the present point of view this
may be taken as the definition of a broken symmetry. If we set » = 0
first we obtain for any Q an ensemble in which all the degenerate
ground states are equally populated. Thus the expectation values are
fully symmetric under the transformations induced by the unitary
operators Ug(n). This symmetry is naturally preserved in the infinite-
volume limit. On the other hand, if we retain the symmetry-breaking
interaction we find that for large Q the energy differences it produces
between the otherwise degenerate (or nearly degenerate) states are
roughly proportional to Q. Thus for large Q one particular member of
the degenerate set will be much more heavily populated than any other.
In the limit Q — co we select a single state. Thus the resulting expecta-
tion values will not be invariant under the transformations, and this
noninvariance will persist even when we finally set v = 0.

This method can, of course, be used even at zero temperature. We
introduce the interaction vH, which breaks the degeneracy of the
ground states, or which artificially depresses the energy of the state we
wish to select below that of the true ground state. Then in the limit of
infinite volume a single member of the set of degenerate states is
selected.

A very important question is the following. Are these various
degenerate ground states in the infinite-volume limit physically equiva-
lent or not? In other words, can we make a physical measurement
which will distinguish between them? The answer to this question is
closely bound up with measurement theory, and in fact depends on our
choice of operators to represent observables. If we require that all
observables should themselves be invariant under the group, then the
answer must be that they are indistinguishable. But if we allow inter-
actions with measuring apparatus which break the symmetry, then of
course we can distinguish them. For example, it is usual to admit as
observables operators which are not translationally invariant, but
localized in some region of space. Naturally, the interaction with a
measuring apparatus designed to measure such a quantity breaks the
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translational symmetry of the system, although viewed by an observer
external to both system and apparatus there is complete translational
symmetry. What we are measuring is of course position relative to the
apparatus. In such a case, states distinguished only by the position of
the center of mass are distinguishable. Similar remarks apply to the
measurement of the magnetization direction of a ferromagnet and, less
obviously perhaps, to" the phase of a superfluid or superconductor.
None of these quantities has any absolute significance, but all can be
measured relative to an externally defined standard, provided that we
allow interactions which break the appropriate symmetry. (The Joseph-
son effect provides a possible realization of such a measuring device
for a superconductor.)

It should be noted that if we allow symmetry-breaking interactions
with external systems then these same interactions may be identified
with the vH, above. An interaction which permits an observable
distinction to be drawn between the degencrate ground states also
provides a mechanism which can physically determine which ground
state is selected by the system. Thus, for example, an external magnetic
field can be used to measure the magnetization direction in a ferro-
magnet, and also to determine in advance along which direction the
spins will align themselves. If such interactions are allowed, then the
addition of a small symmetry-breaking interaction vH, is more than a
mathematical device. It is a correct description of physical reality.

Now let us examine the application of the Goldstone theorem to
nonrelativistic broken-symmetry theories. The theorem states that if
there are no long-range interactions, then such a theory must possess
excitation modes whose frequency tends to zero as k — 0. We shall
follow in outline the method of Lange.®® [See also Kibble.®]

We consider a particular “ground state” |0)>q, which need not in
fact be the state of lowest energy, except in the infinite-volume limit. A
similar discussion applies if we replace the expectation value in this
state by an ensemble average of appropriate type.

We define the quantity

fulk, ) = —i [ dox [dremx o QlA 0 D0n  (59)
and its infinite-volume limit,

£ @) = lim fok, )
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where A is the operator in Eq. (5.6) whose ground-state expectation
value is noninvariant. We'-assume that this operator is a quasi-local
function of the dynamical variables at time ¢ = 0. Let us suppose first
that it is a completely local function, localized at the origin. Then Eq.
(5.6) with the locality of the commutation relations would imply that

—ia<0|[4, j°(x, 0)]|0>, = 78(x) (5.10)
whence we obtain a sum rule
ird

|52 o, @) = 5 (5.11)

valid for all values of k.

If 4 is only approximately local, but depends on the field operators
within some finite volume V,, then the commutator in Eq. (5.10) is not
proportional to a delta function. Nevertheless we still have

~1 || dxa0114,j7x, 0311050 = 7 (5.12)

for any volume V containihg Vo. In this case the integral in Eq. (5.11)
is no longer independent of k. However in the limit Q —co it is a
continuous (indeed, entire) function of k satisfying the limiting condition
_(d

lim 2‘; Fk, w) = 7 (5.13)

k-0

which is in fact all we require. This is equivalent to the condition

Voo Qoo

lim lim —ifv d3x0<0|[4, jO(x, 0)]|0>q = 7 (5.14)

This is the broken-symmetry condition in its weakest form and is
sufficient to prove Eq. (5.13).

Equation (5.13), obtained by integrating over a large volume ¥ and
taking the limit ¥ — co, should be carefully distinguished from the
condition which results from integrating over the entire volume Q.
Because of Eq. (5.3) this yields a time-independent result

—i [ d%xaCOll4, 7205, D100 = 7
It follows that
d
2_‘:_ e—tmyﬂ(os w) =17
whence f
fa(0, @) = 2mijd(w) (5.15)
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It is clear from the definition [Eq. (5.9)] that whenever falk,w) #0
there must be intermediate states of energy w and momentum k (relative
to the ground-state energy and momentum) which couple to the ground
state via the operator A4, and also via j°. Thus from Eq. (5.15) we can
conclude that for k = 0 there are such states with w = 0. These are,
however, simply the degenerate ground states |n>q, and the fact that
the energy of these “excitations” vanishes is simply a restatement of the
broken-symmetry condition.

For example, for a ferromagnet the condition (5.15) tells us that
no energy is required to rotate all the spins together. Clearly the rotated
ground states may be regarded-as formed from the original ground

state by adding a number of k = 0 spin waves. However the fact that
w = 0 for these modes in fact tells us nothing about the physically
interesting question of the frequency spectrum of long-wavelength spin
waves. ‘

These degenerate ground states may be eliminated from the
problem by considering the limit of infinite total volume, £ — 0. For
it is easy to see that they contribute to the sum over intermediate states
in Eq. (5.9) only for the isolated value k = 0. (This argument assumes
translational invariance and requires modification when it is the trans-
lational symmetry itself that is being broken.) This contribution is
proportional to a Kronecker delta 8,, rather than to a Dirac delta
function. Thus in Eq. (5.10) or Eq. (5.12) their contribution falls off like
Q-1 and vanishes in the limit Q — oo [see Lange®®].

In fact, in the infinite volume limit the degenerate ground states
cannot be coupled to each other by any operator 4, since they belong
to quite distinct Hilbert spaces. Physically, in a ferromagnet for example,
this is an expression of the fact that to go from one ground state to
another in the case of infinite volume requires the flipping of an infinite
number of spins. This cannot be achieved by operating with any finite
operator. .

Thus if we let Q — oo then the condition (5.13) gives us genuine
information about the frequency spectrum of long-wavelength excita-
tions. The degenerate ground states are irrelevant. Let us then consider
the expression (5.14). If we could show that it was time independent,

then we could prove not only Eq. (5.15), but also the much more
interesting result

lim f(k, @) = 2m75(e) (5.16)

k-0
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This is the Goldstone theorem. It shows that there are excitations for
which w -0 as k — 0.
To do this [see Lange®®] it is sufficient to show that for all n

lim [ 2 wrf(k, @) = 78 (5.17)
k-0 27

For n = 0 we already have the required result in Eq. (5.13). In many
cases one can prove that f (or some closely related function) must be
positive. Then it is sufficient to prove Eq. (5.17) for one other value of n.
For n > 0 it is equivalent to .

! ni0

i"*1 lim | d®x<0| [A, d—j,,— (x, 0)] 0> =0 (5.18)
Voo v dt

Now corresponding to tHe global conservation law [Eq. (5.3)] there

must be a microscopic conservation law expressible in the form

-j—t fv A3xj%(x, £) = — Sy(t) (5.19)

where Sy is a surface integral over the bounding surface of ¥, or at any
rate has contributions only from a small region close to this surface.
Thus it is sufficient to show that

Vlim <0|[4, Sy(0)]|0> = 0

7 (5.20)
lim <0|[4, [H, Sy(O)]1[0> = 0
and so on. Often (as noted above) it is enough to prove one or two of
these relations. The rest follow by positivity of the spectral function.
Since A is assumed localized at or near the origin, and Sy is
localized on or near the boundary of V, the locality of the equal-time
commutation relations will normally ensure that the first of these
equations [Eqgs. (5.20)} is satisfied. Whether thé remaining equations are
satisfied or not depends on the range of the interactions. If the inter-
actions are of any given finite range R, then the commutator of H with
any given local function will depend on field operators only within a
distance R of the original point of localization. In that case it is clear
that for every value of n we can choose a volume large enough to make
the multiple commutator vanish. In that case we have therefore estab-
lished Eq. (5.16). An only slightly more complex argument serves to
prove the same result for interactions which fall off exponentially with
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distance. However for those which fall off as an inverse power one
must look at the magnitudes of the quantities involved in more detail.
For this case a general discussion is rather difficult since as we shall see
later the limiting power of r is not the same in all cases but depends on
the type of system being considered.

Let us then recapitulate the theorem briefly. In any broken sym-
metry theory with only short-range interactions there must be Goldstone
excitations, whose frequency vanishes continuously (w —0) in the
long-wavelength ‘limit (k — 0). These may be pictured as space-
dependent oscillations in the parameter which distinguishes the various
degenerate ground states. (Recall that for finite volume the k = 0 modes
correspond to a constant change in this parameter.) However, when
long-range interactions are present, the theorem does not follow, and
indeed in practice, the introduction of long-range forces often serves
to eliminate these zero-energy-gap modes. What precisely is meant by
“long-range” and “short-range” is a question which can only be
answered in the context of more specific theories.

Before turning to the discussion of the various examples of physical
interest it may be helpful to consider a simple soluble model which
serves to illustrate some of these ideas [see Kibble®?]. This is, in
essence, a nonrelativistic form of the Boulware-Gilbert model discussed
in the preceding section, in which the electromagnetic field has been
replaced by an instantaneous interaction. The model is described by the
Hamiltonian

H = s [asalot + (W) + Yo [ [doym(V(x = y)m() (2D

along with the canonical commutation relation

‘ [p(x, 1), m(y, 1)] = i8(x — ) (5.22)
It is invariant upder the field translations
$(x) = $(x) + 7 (5.23)

which are generated in any volume Q by the unitary operators

exp [—inf d”x-:r(x)] (5.24)
Q
However, it is clear that the expectation value

(8> = <0|$(x, 00> (5.25)
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cannot be invariant under (5.23). We therefore have a broken symmetry
of what we termed the ““naturally occurring” type. There is a degenerate
set of ground states labeled by different values of {¢).

For this model j° = —w, and there is a microscopic conservation
law of the form

—i + V- (V) =0 (5.26)
so that the surface contribution defined in Eq. (5.15) is
Sy = | do-vs (5.27
a(V) .

integrated over the boundary o V)of V.

Equation (5.8) is, in this case, obtained simply by taking the
expectation value of the canonical commutation relation (5.22). It is
easy starting from this equation to follow through the discussion of the
Goldstone theorem in detail. Instead of doing this, however, we shall
simply solve the model and verify its conclusions.

Since we are interested in the limit of infinite volume, Q — co, it
will be convenient always to define Fourier components by

¢kf - L Aoxd(x) e~ (5.28)
so that ‘

_— 1 ik-x dak ilk-x
89 = T b > [ e
Our Hamiltonian is then
1
H = 35 2 b + [1 + Vilmemg (5.29)

The transformations (5.235 affect only the k = 0 component:
b —> b + 1QBy o
From the equations of motion

7y = — K3y
Sbk = [1 + Vk]”'k

it is clear that the excitation spectrum is

w? = K1 + V] (5.30)
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If Q is finite then V, Is finite. (We assume that the singularity at
x = 0, if any, is integrable.) Thus it follows that there is always a mode
with @ = 0 at k = 0, in agreement with our earlier conclusion. In this
mode 7, = 0, so that the mode consists merely of a constant change
in ¢, which is of course a transformation from one degenerate ground
state to another..

What is really interesting, however, is not this single mode but the
behavior of the modes near k = 0 in the infinite volume limit. The
condition that w'— 0 as k — 0 is clearly

| lim k2Vy = 0 (5.31)
i k-0
which is satisfied if the potential falls off at large distances faster than
1/r. For a Coulomb potential, however,

V(x) = g*/4m|x|

we have
Vi = g%/k?
and therefore
Lin: w?(k) = g* (5.32)

Thus we have verified the general conclusions reached in the
discussion of the Goldstone theorem. When only short-range inter-
actions are admitted, the frequency spectrum tends to zero in the limit
of zero wave number. However in the presence of long-range inter-
actions (meaning in this case a 1/r potential) there is a finite energy gap-

1t is also worth noting that for stability the potential must satisfy
the inequality

1+ V=0 (5.33)

for all values of k. This means, in effect, that the potential must be
repulsive or at least not too strongly attractive. For example, if we
choose a Yukawa potential

V(x) = ye *x/4n|x|
then condition (5.33) becomes
‘ y > —p? (5.34)

Itis interestingfto note that in the limiting case y = —u? we no longer
have w ~ k near k = 0 but rather w ~ k2. This is an illustration of the
fact that although the Goldstone theorem can guarantee for us the
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existence of modes whose frequency tends to zero, it is not in itself
sufficient to tell us the details of the frequency spectrum.

Now let us turn to What is in many ways the simplest of the non-
relativistic broken-symmetry theories—the isotropic ferromagnet. This
is the system which was chosen by Lange®®® to exemplify his discussion
of the nonrelativistic Goldstone theorem. We shall use subscripts to
label the lattice sites, and superscripts to denote vector components.
In total volume Q the Hamiltonian is

H = _1/2 z Jx—ny'Sy (5~35)

X,Ye2

The commutation relatioﬂs are
[Sx'(2), SY()] = 18 ye ™S (1) (5.36)
This model is invariant undér the spin rotations generated by the
unitary operators ‘
Ua(8) = exp (i8-)
where S is the total spin
. 8=3s, (5.37)

However the ground state is clearly not invariant under these trans-
formations. The broken—symmetry condition is expressed by the fact
that there is a nonvanishing total magnetization, so that

(8 = aC0lSy(D]0a =5 # 0 (5.38)

(The antiferromagnet requires a different treatment.) The other ground
states degenerate with |0 are obtained by spin rotations,

3|e>n = Un(°)|0>n (5-39)

They are characterized by dlfferent orientations of s (whose length is of
course fixed). ‘
If we choose the direction of s to be the z axis then the ground state
is the one in which every spin has its maximum z component, so that
Sxt0q =0 (5.40)
where

St = S + iSY (5.41)
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The corresponding ground-state energy is
E = Q<OIHIO>Q = —1/252 z Jx_y
X,y
= — 14 Ns%J, (5.42)

where N is the tdtal number of lattice sites and J is the Fourier trans-
form of J, ’
Je= D Jeeikx (5.43)
. XeQ
Now let us consider the limit of infinite volume Q — co. We wish
to show that in this limit the degenerate ground states are no longer
related by unitary operators and in fact belong to distinct Hilbert
spaces. To this end we evaluate the scalar product

aC0[8>a = a0] 5|05 (5.44)

We.have here thé same factor for each lattice site. If we use the Euler-
angle representation (¢, 6, ¢) for 8, this factor is

D3, 0, 4) = € cos Y4 &
Hence
aO0|gbg>n = [€5¢+Y cos* A (5.45)

which tends to zero as N — oo, unless § = 0. It follows immediately
that in this limit the various ground states belong to different (orthogo-
nal) Hilbert spaces, since they form an uncountably infinite set of
orthonormal states and therefore cannot belong to a single separable
Hilbert space.

From the Hamiltonian (5.35) and the commutation relations (5.36)
we obtain the equations of motion ,

Sy = > Jx-ySx X Sy (5.46)
: yen

In this particular case the densities corresponding to the group genera-
tors are in fact identical with the basic dynamical variables. Thus Eq.
(5.46) plays a dual role. It is at the same time the fundamental equation
of motion and also the microscopic conservation law. That it has the
appropriate structure may be seen by summing over a finite volume V.
We then obtain:

Z38c= 2 > JxySx xSy (5.47)

dt XeV xeV yeQ -V
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The right-hand side of this equation is the surface term. Clearly if the
interactions have a finite range R, which means that

Jey =0 if Ix —y| > R (5.48)

then it has contributions only from points within a distance R of the
boundary of V. :

To discuss the application of the Goldstone theorem to this
particular case we may deﬁne as in Eq. (5.9), the expression

Fal(k, w) = ~i j di e x=191,(0|[S¢(0), S()][0ba
| xen

The equal-time commutation relations (5.36), with the broken-

symmetry condition (5.38), then yield the sum rule

2 o foll(k, w) = eFsk (5.49)

as the analog of Eq. (5. 11) Moreover the conservation of total spin
yields

[0, w) = 2meF s 8(w) (5.50)

Like Eq. (5.15) this relation refers to transitions between different
degenerate ground states. However if the forces are short-range then
we can also prove that

lim (K, w) = 2mes*5(w) (5.51)
k=0

which shows that the frequency of the spin waves tends to zero as
k — 0. [This follows rlgorously from the positivity of if ¥~ with Eq.
(5.52) below.]

It is interesting to venfy this (well-known) conclusion directly, and
also to investigate precisely what “short-range” means in this context.
Let us for convenience take the z axis in the direction of 5. Using Eq.
(5.41), we obtain from Eq. 3(5.46) the equation of motion

iSe*t = 2 o yo(Sx* Sy — 5SSy +) (5.52)

yeQ
Now to determine the spm-wave frequency spectrum let us linearize
this equation by replacing S* by s. (Actually this linearization is
unnecessary if we confine our attention to the states with single spin
waves, which are in fact exact eigenstates of the Hamiltonian; however,
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it will simplify the discussion.) Then taking the Fourier transform we
find for the frequency spectrum of S+* the equation

w=3s Z Jx(l — e~ 1x)
xe@r (5.53)
: = s[Jo — Jil ‘
When Q is' finite, it is immediately obvious that w = 0 for the
isolated mode at k = 0 which corresponds to a transition between one
degenerate ground state and another. In the limit Q — co it is necessary

to restrict J, by the condition that J, be finite, which means that J,
must decrease at infinity at least like 1/r®*<. (Conventionally, of course,
one considers only nearest-neighbor interactions, so that J, is of strictly
finite range.) Provided this condition is satisfied, it immediately follows
that @ — 0 in the limit k — 0. Thus the frequency of the spin waves
indeed tends to zero as the wave number tends to zero.

In the context of this model, therefore, the interaction is ‘“‘short-
range” if J, behaves better than 1/r° at large distances. In contrast to
the previously considered example, the limiting case in which J, behaves
like 1/® does not lead to a finite frequency limit as k — 0, but rather
to a more pathological theory in which w is infinite for all values of k.
One could achieve a finite, but directionally dependent, limiting value
of w by allowing a directional dependence in J,. For example, if J
behaves at large distances like Pj(cos 6)/r®, then near k = 0, w is
proportional to Py(cos ). However, in all such cases the limiting value
of w is negative in some directions, which means that the ground state
is not truly the state of lowest energy.

The stability criteria are also somewhat different in this model.
From Eq. (5.40) it is clear that S * is the annihilation operator for spin
waves. It should therefore have positive frequency, and indeed if it does
not then there rhust exist states to which it can couple with energy
lower than the ground state. Thus the stability condition is that

Jo—Jx=0 (5.54)
for all k. This is satisfied in particular if
Jx =0

for all x. (Note, however, that this latter condition is not necessary.)
In this model, violation of the stability condition (5.47) does not
lead to w becoming complex as it did in our previous model. If, for some
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specific value of k, J,, > J,, then the addition of spin waves with this
wave number will lower the energy. Hence the true ground state will be
obtained essentially by adding in as many such spin waves as possible.
The most important case is: that of antiferromagnetism. Here, for a
simple cubic lattice of lattice constant a the relevant vector is the one
with all three components equal to #/a. Addition of as many spin waves
as possible with this wave number is equivalent to flipping over every
alternate spin.

Now we turn to what is in many ways the most interesting of all
nonrelativistic broken-symmetry theories—the Bose gas.

This system is described by the Hamiltonian

H=5 f XV Vg + U f o
| + Y j °x fn PR GIV(X ~ YIOWE)  (5.55)

where U is a constant external potential introduced mainly to allow us
to treat the case of Coulomb interactions, with U representing a uniform
distribution of opposite charge. The canonical commutation relation
is ‘

[(x, 1), *(y, )] = 8(x — y) (5.56)

This model is invariant under several different groups of trans-
formations. Those we shall Ee concerned with are the following:

a. Phase transformations
$(x) > (x) e Py — i € (5.57)
These are induced by the unitary operators eV with

N= ds%«p*(x)sb(x) - &3t (5.58)

b. Space translation )
P(x) —~ ¢'(X + a) i —> P €2 (5.59)

These are induced by the unitary operators e*¥, where
P = — Y4l [ d% (V) — (VW]
. 1
= [ @x0 = 5 Tkt (5.60)
Q : k
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¢. Galilean transformations

For a system with a finite volume ( the Galilean invariance group
is, of course, discrete, because of the quantization of momentum. If Q
is a cube of edge a, then the allowable velocity vectors are those each
of whose components is a multiple of 2=/am. The transformations are

lp(x) — ¢(x _ Vt) eimv-x—il/gmvzt

‘l’k — 'l’k—mv ei%mvzt—ikvt

(5.61)

They are induced By unitary operators Ug(v) which may be written in a
purely formal sense as
Ug(y) = €v© (5.62)
with
G=m f doxy*xy — Pt (5.63)
Q

However, it should be noted that Eq. (5.62) does not define Uy(v) for
all values of v; for in a system with periodic boundary conditions x is
only really defined modulo a translation of amount a in any of the three
coordinate directions. If we make a change z—z + @ then Uy(v)
changes by the amount e**:"™, which is equal to unity for the allowable
values of v, (since the eigenvalues of N are integers).

The operator G can of course be defined by making a specific
choice of the range of x (say —a/2 to a/2 for each coordinate). But it is
not time independent and does not represent a symmetry of the system.
In fact, explicit calculation shows that, for example,

G _ _ma f dxdy j* (5.64)
i dt z2=a/2

Now let us examine the possibility of constructing a representation
in which the expectation value <y is nonzero. In one important respect
the situation here is different from that in the relativistic models we
have examined, for we have generally considered assigning a non-
vanishing expectation value to an operator which transforms as a scalar
under the Lorentz group. But ¢ does not transform according to a true
representation of the Galilei group, but according to a projective
representation. It would be natural to impose the requirement that the
vacuum or ground state of our representation should be translationally
invariant, so that (¢> would necessarily be independent of x and ¢.
However, if we can indeed construct such a representation then we can
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apply a Galilean transformation to it and obtain another representation
in which <y:> depends on x and ¢ via factors of the type that appear in
Eq. (5.61). At first sight it would appear the ground state in such a
representation could not be translationally invariant. In fact, however,
it is essentially so in the limit of infinite volume, as we shall see.

The equation of motion obtained from the Hamiltonian (5.55) is

5400 = 5 V00 + UG [ @rrommve - v
3 (5.65)

We now take the expectétion value of this equation and make the
approximation of replacing {y*y> by P*><y><¢>. Then, assuming the
form ‘

(X, 1)) = o gipx-tae (5.66)

or equivalently ‘
1)) = aQBy et (5-67)

we obtain
E = p?2m + E, (5.68)

with :
Ey = U + a*aV, (5.69)

We note that to the same approximation we have used, the number
density is ‘

ny = ANIQ = P*HWPD = o*a (5.70)

Hence E, is the potential energy due to the external potential and due
to the uniform distribution of particles with density o*e.

Thus if we can break the symmetry in this way, we find as usual a
number of different “ground states” which are transformed into each
other under the operations of the group. Since the Galilean trans-
formations are explicitly time dependent, and do not commute with
time translations, it is no longer true, however, that all our ground
states are degenerate in energy.

The ground states are labeled by two parameters, the complex
number o and the momentum vector P (which must form one of the
allowed set of momentum vectors). It is interesting to see how these
states are transformed under the various transformations we have
considered. The magnitude of « is invariant under all of them. Galilean
transformations, of course, change the value of p but leave « unaltered,
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whereas under the other two classes of transformations (and also under
time translations) p does not change but the phase of « does. Under
phase transformations (4) we have

o« — ae' .71
Under space transiations
| o —> qe'?® (5.72)
and finally under the time translation t —¢ + =
| « —> ae™ B (5.73)

Thus for o # 0 the phase symmetry and the Galilean symmetry are
always broken. So is the space translation symmetry except in the case
p = 0. The time translation symmetry is broken unless E = 0.

Of course we have not yet established that representations with
these properties exist at all. Let us consider first the case of the non-
interacting Bose gas, for which ¥(x) = 0. For convenience we shall
also set U = 0. [This system has been studied in considerable detail by
Araki and Woods.®?] This noninteracting system has a further invari-
ance, not shared by the interacting gas, under the constant field
translations

P(x) = P(x) + o (5.74)

or
P —> Y + aQy o (5.75)

(We could also consider translations of any other Fourier component,
but these other cases can be obtained by applying a Galilean trans-
formation.) These transformations are generated by the unitary
operators

Uale) = exp L d2x[oaf*(x) — a*$(x)] = exp [oahe* — a*e]  (5.76)

Now the vacuum state of the conventional Fock representation
|04, is defined by

1 $(x)|0a = 0 577
Applying the operators (5.76) to this state we obtain a set of states
la>n = Un(“)|0>n (5.78)
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characterized by the eigenvalue equations

P(x)|ad>q = |edqa
or (5.79)
¢k|“>n = |a>na§23k_.,

Using the operator identity
Ua(@) = exp (aths*) exp (— a*iy) exp (— Y,Qa*a)
we can write these states in terms of more familiar ones. In fact,
|ada = 2 [NDa(N))~#(Q%a)" exp (- YsQa*e) (5.80)
where |N)q is the N-particle ground state in volume Q,
IN>a = (%) [03a(V 1)

Since these states contain only particles of zero momentum and energy,
they are of course all degenerate with the vacuum state. The states
|>q constitute the set of degenerate ground states associated with the
broken symmetry under the transformations (5.74).

We note that the scalar product of two such states is

aCBloda = exp [Q(B*a — YuB*B — Ysu*a)] (5.81)

For B # « this tends to zero as Q — co. Hence we see that in the limit
of infinite volume the states o> go over into the ground states of a set
of unitarily inequivalent representations. It is easy to characterize these
representations, for they are clearly obtained from the Fock representa-
tion simply by a constant field translation. They may be realized in the
Hilbert space of the infinite-volume Fock representation by operators
of the form ‘

$(X) = ¢e(X) + @ (5.82)

where ¢(x) is the field operator in the Fock representation. However,
the transformation from iy 'to ¥ is not implementable by a unitary
transformation. |

The states |«), are of course invariant under space translations.
However under the phase transformations generated by the number
operator they transform according to

My, = |ae™dq (5.83)

Thus the phase transformations cannot be unitarily implemented in
any of these representations except the Fock representation.
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By applying a Galilean transformation to the states |a>g we obtain
a set of states

le; voq = Ug(W)|edg (5.84)
characterized by the relations

l/’(x)'(l; V>Q = |a’ v>QaeimV-x—il/zmy2t

! ) 5.85
Wyla; Voo = o V>n°‘98x,mve_%mv2t ( )

Evidently, the state |a; v), contains only particles of momentum mv
and energy Y,mv?. However since it is not an eigenstate of the number
operator it does not have definite total momentum or energy. Under
space translations, for example, it transforms according to

ePla; VDo = |xe™ 3 vy, (5.86)

Hence in the infinite volume limit space translations are not unitarily
implementable in these representations. Nor of course are time
translations. ‘

We note that the expectation value of the particle density n = N/Q
in one of the states |«)q is

ny = ola|Nlopa/Q = a*a (5.87)
and that
{n? — )2 = a*a/Q

Hence in the limit Q — co the number density takes on the definite
value e*«. So too in the states |«; v do the momentum density and
energy density. |

So far this discussion has been mainly mathematical. A clearer
idea of the physical significance of these representations may be gained
from considering the problem of how we should describe an infinite
Bose gas of finite density, whose states evidently do not belong to the
Fock representation since the total particle number is infinite. To specify
the representation completely it is sufficient to give the ground state
expectation values of all quasi-local operators A (those which can be
written as limits of sequences of operators Aq, with each A a function
only of the field operators within Q). It is natural to start with the
N-particle ground-state in volume Q, with N = nQ and take the limit
Q — co0. Thus we define®?

(ADy = Tim a(nQ|AalnDq (5.88)
Q-0
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This formula defines a representation of the commutation relations
(5.56). 1t is, however, a reducible representation; that is to say there
exist operators other than multiples of the identity which commute
with every operator in the representation. To see this, we note that in
the limit of infinite volume the addition or removal of any finite number
of particles in the ground state makes no difference. Thus for example
we arrive at the same value of (4>, if we replace the states |nQd), in
Eq. (5.88) by

InQ — 1> = (ho/n*Q)|nQ)q
Hence if we define an opefator ¢ by

$ = lim (ho/nQ) (5.89)

then we must have
($FAB = (M, (5.90)

It follows that the operator ¢ must be unitary, and must commute with
every other operator. Hence the representation (4, is reducible, and
can be decomposed into irreducible representations in each of which ¢
is represented by a number of modulus unity.

The explicit reduction may be accomplished by first noting that
we can write instead of Eq. (5.88) the equation

(A = ;Lw > (" -'m,,<N|AQ|N>Q (5.91)
for, when Q is large, the Poisson distribution here yields contributions
significantly different from zero only for values of N in the neighborhood
of nQ (within a range of order (nQ)"). By the preceding argument, each
of these gives in the limit the same contribution. Now we can reexpress
the right-hand side of Eq. (5 91) in terms of the states |e), using the
identity

fz (|a>OQ<O‘|)a n*e'g = Z IN>Q nO) —an<NI (592)

(which is easy to verify by taking matrix elements). This yields the
decomposition

<4>n = [Z i (593)
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where
(4>, = él_{g Q<°‘|An|°‘>n : (5-94)

Note that in these representations ¢ is represented simply by e*.

It should be noted that in the representation defined by {4),, the
phase transformations are unitarily implementable. In fact they are
represented by rotations of #; however, this does not contradict our
earlier discussion, since in the present case the degenerate ground states
with definite values of 6 are not normalizable states.

The representation described by the expectation value {4}, is of
course that given by the operators (5.82). It is irreducible since the Fock
representation is. Thus we have completed the reduction of the
representation {4, into irreducible components.

If we were to consider as observables only operators invariant
under the constant field-translations (5.74) then we should obtain
exactly the same expectation values (4>, for any different values of «.
This is, however, too strong a restriction, for we clearly want to be
able to regard the particle density as an observable. If we allow as
observables operators which are not symmetric under these trans-
formations but are nevertheless symmetric under the phase trans-
formations (5.57), then we would still obtain the same expectation
values by using the representation {4),, or (4>, for any value of «
satisfying «*« = n. To this extent these representations are physically
equivalent.

Is there then any physical sense in which we can distinguish
between the various {A4), differing only in the phase of «? For a ferro-
magnet, the analogous quantity is the magnetization direction, and it
seems physically obvious that this is an observable, and that we should
normally represent a ferromagnet by a state with definite magnetization
direction, rather than by an ensemble with all possible magnetization
directions. The particular direction is in this case selected by interaction
with any small residual magnetic field. At first sight, it is much less
clear that the phase of a condensed Bose gas should be treated as an
observable. However, the difference between the two situations is more
apparent than real. For any real Bose gas, there undoubtedly are inter-
actions capable of changing the total particle number of our system by
absorption, emission, or interchange with the surroundings. (Indeed,
for a photon gas this is obvious, and there is surely no doubt thai the
phase of an electromagnetic wave has an observational significance.)
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It is therefore perfectly reasonable to include a small external inter-
action term which breaks the number symmetry. As we shall see below,
such a term can lead to a preferential selection of a state ledg with a
particular phase. Of course, the absolute phase of our system has no
physical significance. We can measure it only relative to some externally
defined standard. But the same is equally true of magnetization
direction.

In summary, if we do not accept the phase as an observable, we
can choose it arbitrarily; if we do accept it, and allow symmetry-
breaking interactions, then ithe phase will be determined by them. In
either case, we can adequately describe the system by a state with
well-defined phase.

Let us then examine the effect of including a small symmetry-
breaking interaction of the form

vHy = = [ R0 + 45001 = —vGh + 40 (599

One may regard the choice of real phase factor here analogous to the
choice of the z axis for the direction of the external magnetic field.

Since the interaction breaks the number symmetry, it is most
convenient to discuss this problem using the grand canonical ensemble,
in which the expectation value of any observable A is given by

| (A = tr (pd) (5.96)
where p is the density operator
p = exp—E(H‘+le—uN)/tr [e—B(H+vH1 —uN)] (5.97)

Here 8 = 1/kT, T is the temperature, and p is the chemical potential.
Because of the independencel of the modes described by different values
of k we can write

P P= Mypy
For any mode with k # 0 the distribution is completely unaffected by
the interaction term vH,, and is given by

b= [1 — ehemm] -1 gy [é (v - 2"—m)¢¢] (5.98)

(Recall that with our normalization the number operator for the mode
k is ¢ *y, /Q.) On the other hand, for the mode k = 0 the only term in
the energy is that arising from the interaction vH,. Thus,

po = c exp BIG /D™ + ¥(he* + )]
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where ¢ is a normalization constant. Recognizing that the effect of the
term in v is to translate the field operator, we can therefore write

o= 11— eexp 2 (v + ) (1o +2)] 699

Thus the only effect of the interaction vH, is to translate i,. All
expectation values are obtainable from those in the ensemble with
v = 0 by this translation. In particular we find

_ $hod = <he*> = —vQfu (5.100)
or equivalently
‘ P(x)y = P = —v/u (5.101)
and also ‘
3 Cho*dey = v2Q2[u? + Qe+ — 1) (5.102)

Note that the mean value of the number density of particles in the
ground state is

ny = (NoD[Q = (ho*ihe >/Q (5.103)

The chemical potential must of course be negative in order that the
expectation value of the number of particles in each mode be positive.
It is determined in terms of the mean value of the total number density
by the implicit equation

n=vu*+ 1/ — 1) + n(B, u) (5.104)

where n(B, p) is | the number density of particles in the excited states,
given by

d%k 1
(2m)? exp [B(k*/2m — p)] —

We note that for @ < 0 each term on the right-hand side of Eq. (5.104)
isa monotomcally increasing function of . Since the value of the right-
hand side ranges from 0 at 4 = —o0 to +00 at u = 0, there is therefore
always a unique root for u.

Let us examine the limit Q — co. Here we find very different
behavior forv = 0 and v #% 0. If v = 0 and

n > n/B) = n(B, 0) (5.106)

n(ﬁ n =

(5.105)
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then x — 0 and, in fact, fbr large Q,
=~[pQ(n — n)]-* (5.107)

[Of course, if the inequality (5.106) is not satisfied the gas is not
condensed and no problem arises. |

On the other hand, if » 0, then it is clear that y remains finite as
Q — oo; for otherwise the first term in Eq. (5.104) becomes infinite,
hence the second term is negligible and so in the limit

= ~v[n — n(B, W)* (5.108)
or, for small », |

v R —v[n — n)% (5.109)
Thus from Eq. (5.87) we find the expectation value

WX = (n — n)% (5.110)

It is important to note that this expression is independent of v for smail
v, and remains finite even in the limit v — 0.

It is apparent that the limits » — 0 and Q —» oo do not commute.
By taking the limit Q — oo!first we have obtained a distribution which
is just the usual one for the condensed Bose gas, but with the particles
in the macroscopically occupied condensate being represented by the
ground state |« with ¢ = (n — n)%. We have, in fact, constructed an
ensemble of states in the Hilbert space built on this particular ground
state. ; '

Let us now return tof the problem of an interacting Bose gas
described by the Hamiltonjan (5.55).

From the Goldstone theorem we learn that if the potential is of
sufficiently short range there must be a branch of the excitation spec-
trum which has zero energy gap. That the necessary short-range condi-
tion is satisfied, for potentials which fall off at infinity faster than
Coulomb potential, has been proved by Swieca® on the basis of
certain plausible assumptions about the behavior of the Green’s
functions. It is easy to verify the conclusion in the Bogoliubov
approximation, ¢¥ g -

In view of our discussion of the noninteracting Bose gas, it is
reasonable to suppose that in the Interacting case the condensed Bose
gas should also be described (in the infinite volume limit) by an ensemble
in a Hilbert space corresponding to a representation with (> # 0, and
to treat ¢ — <{¢> as small in comparison to {y>.
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From Eq. (5.66) we learn that the time dependence of ¢ is given

by
Py = aetEot (5.111)
1t is convenient td absorb this phase factor by writing
P(x, 1) = [« + $'(x, 1)] ™ot (5.112)

We now linearize the equation of motion [Eq. (5.65)] by sub-
stituting Eq. (5.112) and keeping only terms linear in ¢’. This yields in
momentum space: the equation

d 56} P = (&%2m) do + oVile*dy' + by (5.113)
It follows that the excitation spectrum is given by
k? (k2
2 — o — *
W = (2m + 2 aVk) (5.114)
We note that w — 0 as k — 0 provided that
‘ lim k2V;, = 0 (5.115)
k-0

the same condition as in the case of the soluble model we discussed
earlier [see Eq. (5.31)]. This is in conformity with the Goldstone
theorem. There are modes with zero energy gap provided that the forces
are of short range; specifically, provided that the potential falls off
faster than 1/r at large distances. Note that the behavior of @ near
k = 0 is given by

] w = c|k| (5.116)

where ¢, the velocity of sound, is determined by the integral of the
potential,

2 = (c*a)Volm (5.117)

(It can be showﬁ that this agrees with the classical formula.)
On the other hand, for a repulsive Coulomb potential,

V(x) = €*/4n|x|
Vk = ez/l(2

we find that as k' — 0 the frequency tends to a finite plasma frequency,

lim w? = (%) efm = w,? (5.118)
k-0
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For long-range interactions we find an energy gap whose magnitude is
determined by the strength of the potential and by the density.

An interesting fact which emerges from this model is that it is
possible to have a number of distinct broken symmetries, all yielding
the same Goldstone excitations. We recall that the Goldstone modes
may be regarded as long-wavelength oscillations in the parameter which
distinguishes the various degenerate ground states. In our case, the
effects of both phase transformations and spatial translations as
described by Eq. (5.83) and (5.86) are to change the phase of «. It is
therefore not surprising that the corresponding Goldstone modes are
identical. On the other hand, the Galilean transformations change the
value of the other symmetry-breaking parameter, v. However, from
Eq. (5.85) one sees that mv, may be identified with the spatial gradient
of the phase of <(y. In fact, this is the conventional definition of the
superfluid velocity. Thus an oscillation in v is actually no different from
an oscillation in the phase of «. Both, of course, represent phonons.

There is another situation in which translational symmetry is
broken, namely, that of a crystal. In a finite volume the ground state
[0> of a crystal is translationally invariant, and, despite the periodic
structure the particle density, for example, is completely uniform.
However, it is obviously convenient for many purposes to consider a
different type of state in which the particle density has the periodicity
of the lattice. A state in which the atoms of the crystal are localized
near a specific set of lattice points necessarily has some uncertainty in
momentum, and therefore a higher energy than the ground state.
However, we have seen in the previous example that it is possible in the
infinite-volume limit to obtain a state which has definite values of both
phase and number density, and in exactly the same way one can
construct states with a definite center-of-mass and simultaneously
definite momentum and energy density. Here too the Goldstone modes
are phonons. |

Finally we wish to consider a fermion gas. The system is described
by a two-component field

o)

satisfying the canonical antiéommutation relation
{h(x, 1), $,*(y, 1)} = 8,,8(x — y) (5.120)

Y(x) = [ (5.119)



658  G. S. GURALNIK, C. R. HAGEN, AND T. W. B. KIBBLE

For simplicity we choose a spin-independent interaction, described by
the Hamiltonian

g3 [ @x0pevs + U [ g,
+ 3 [ dox [ dmreonr Ve - e 6.121)

The corresponding equation of motion is
i 2 ) = =5 V40 + Upta)
+ [EonmIre - e (5.122)

This system bossesses essentially the same symmetries as the boson
gas. In particular, it is symmetric under the phase transformations
generated by the total number operator

N= fn A *(0h(x) (5.123)

In addition it is symmetric under spin rotations, generated by the total
spin operators

S =1, fﬂ doxg*(X)op(x) (5.124)

We shall consider the possibility of breaking the phase symmetry
corresponding to the conserved particle number, while maintaining the
symmetry under spin rotations, as is done in the Bardeen-Cooper-
Schrieffer model of superconductivity.®® [This model has been dis-
cussed from the point of view of broken symmetry by Haag,®®
Ezawa,®” and Emch and Guenin.®®] To do this we look for a ground
state in which the expectation value (ynb> is nonvanishing. If this state
is assumed translationally invariant, then

WY = fi(x — y)

If, in addition, we impose the requirement of invariance under spin
rotations, we must have

BB = e,f(x — y) (5.125)
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S L
T [1 0]
Of course, f(x) must be a function only of |x|.

As before, if we can find one such state then we can find a whole
family of them. In particular, by applying Galilean transformations,
we would obtain translationally noninvariant states characterized by an
overall velocity. However, for our purposes it will be sufficient to
consider only one such state which for convenience we choose to be
at rest. :

In addition to Eq. (5.125) we shall also need

W) = Sug(x = ¥) (5.126)

2g(0) = n

where

Note that

the particle density. |

If V(x) is assumed to be of short range, then we know from the
Goldstone theorem that there must be a branch of the excitation
spectrum for which  — 0 as k — 0. However, unlike the situation in
the case of the boson gas which we considered earlier these modes are
not the elementary quasi-particle excitations. Indeed if we make the
linearizing approximation in Eq. (5.122) replacing

@)
28(0)(x) — gy — X)) — £y — Xep*(y)

then we obtain an energy spectrum with a gap of the form
w? = 2 + A2 (5.127)

[see, for example, Valatin®®].

In fact, the zero-energy-gap modes in this system are phononlike
as before, and we must expect them to be excited only by bosonlike
operators, constructed from pairs of fermi field operators, for example
Jop or Y*Y. The Goldstone theorem which establishes the existence of
such modes rests on an examination of commutators of the form

(™, ]

It therefore follows that these modes can be excited by the operators
Y*J or Yep. However, a direct verification of this conclusion by solving

by
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the equations of motion in an appropriate approximation would be too
lengthy to include here. [In this connection see Gorkov®® and
Anderson.€V]

VI.; Goldstone Bosons and Composite Fields

Until now our considerations have essentially been confined to
examples of broken-symmetry theories in which the Goldstone bosons
are directly associated with an elementary field operator obeying
canonical commutation relations, rather than with the more complicated
situation in which the field operator associated with the Goldstone
particle is composite. However, the discussion in Section 1I demon-
strated that in general we should anticipate that the Goldstone particle
may be identifiable with a composite field and that this is particularly
likely to be the case when the symmetry breaking is related to a physical
attribute such as particle mass. However, it turns out as a practical
matter that, as a consequence of divergences and fairly involved
constraints, composite particle broken-symmetry theories are very
difficult to handle in a consistent manner, even in the lowest orders of
perturbation theory.

Because of these difficulties we choose to defer to a later point the
examination of more realistic theories and shall begin this discussion
by investigating the Thirring model (a soluble two-dimensional field
theory), under the assumption that the vacuum expectation of the
vector current j* associated with this model has a nonvanishing value.
This problem has been considered previously®® but, because of the
imposition of certain arbitrary assumptions, only specialized and
somewhat misleading solutions were obtained. Since the basic problem
here is to maintain consistency with Lorentz invariance, it must be
borne in mind that if a field ¢ carried intrinsic spin, it transforms under
the generators of the Lorentz group J*' according to

—i[J*, $(x)] = (x* & — x* #)$(x) + o**$(x)

where o* is a matrix associated with the spin of the field ¢. Thus in this
case the requirement <0]¢|0> # 0 becomes <0|{J*", $]|0> # 0 which, in
turn, means that in general Loremtz invariance is broken. [Note that
in the case ¢* = j* we have (¢**)** = gMg* — g"'g*°.] This procedure
is thus obviously more likely to give nonsensical results than in the case
of spinless fields. However, because of the special structure of the
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Thirring model,®® one is able to obtain meaningful and interesting
results with this procedure, as we shall now demonstrate.
We take the Lagrangian to be

< = (i2)pe 0 + (M2)j%, + j*A, 6.1

where ¥(x) is a Hermitian field and the Dirac algebra has the two-
dimensional representation

@=a=lo ]

The current j* is defined so fhat

T = b

where we have introduced the usual matrix q= [? Ol
the internal charge space of the field 4. It is to be emphasized that this
implies j*(x) = Yob(x)e qp(x) only if such a quantity is well defined.
Since this is not the case (as has frequently been observed in the litera-
ture), we note that the most general definition of j*“(x) in the presence of
the external source 4,(x) is®®

] which acts in

769 = lim Yherg exp { —ig [ s TeA ") — nyadsh(x)
My — Mysjs“(x”)]}l/'(x') 62)

ys being the pseudoscalar matrix o®«! while 45* and j;* are defined by
As(x) = 4,(x)
J(x) = e, (x)
where € = —¢" and €®* = +1. It is understood that the limit is to be
taken with x° = x subject to the condition €4 7 =1 which is

necessary for Lorentz invariance. % Returning to (6.1) and using the
action principle, we find the field equation

1 1 ,
(7 0 - 9, - /\Wu)'/’ =0 6.3)
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and the equal;time commutation relation
| {0, $(x)) = 3(x — x)

In the 11m1t of vanishing source, it follows as a consequence of the
solution of the detailed dynamics®® that 9%* = 0. This result would
also follow from gauge invariance if the naive single-point description
of the current operator were correct. Thus j* satisfies a massless free
field equation invariant under the transformation

7)) = JH(x) + 7* 6.4

If j*(x) were an elementary field we could proceed directly as in the
naturally occurring cases considered earlier. For example, Eq. (6.3)
would appear to be invariant under the transformation (6.4) combined
with the transformation

$(x) — exp {iAgn“x,}¢(x) (6.5)

and, if this were the case, it would be trivial to establish the consistency
of the broken symmetry. In fact, however, the situation is far more
complicated because of the composite field nature of j“(x). Thus a
transformation of type (6.5), when fed into the definition of the current,
as given by Eq. (6.2), will induce additional broken symmetry effects
since j*(x) is not, in general, invariant under the transformation (6.5).
Thus the consistency of the broken symmetry is not immediately
evident.

We now consider this theory using a Green’s function approach
much like that used for more complicated problems. This discussion
will rely heavily on techniques previously used to solve the model and
the reader is consequently referred to these earlier works on the Thirring
model for many of the details not supplied here.®3-® We begin by
considering the case A = 0. Then, defining

<O x)(x)) + |04
<0[0>4

we find from Eq (6.3) and the commutation relations that

a“(-l.- 9, — qA,,)G(x, X'y = 8(x — %)

G(x, x") = ie(x, x")

1
It follows that
G(x, x') = Go(x — x') exp {ig[F(x) — F(x)}} (6.6)
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ot zl 9,Go(x — x') = 8(x — x')
and ‘
o 3,F(x) = a*A,(x)

The solutions to these equétions are not unique and, indeed, if
Go(x — x') satisfies the above equations, so does Gy(x — x') + constant.
We thus write

Golx — x') = Go(x — X') + 3
v being a constant matrix with Go(x) defined by
Go(¥) = i(9p — o* 8,)D(x)
where D(x) satisfies the equation
—82D(x) = 8(x)
subject to the usual causal boundary conditions. These same boundary
conditions imply, however, a ‘unique structure for F(x), i.e.,

F(x) = —i f dx'Go(x — x')otA,(x')

The extra terms in Go(x — x’) which are proportional to q are associated
with the broken symmetry and would normally be ruled out by require-
ments of Lorentz invariance. This can be seen explicitly by using the
definition Eq. (6.2) of j“(x) and the result

o 1

Go(x — x') = ;_271 g~ x0 = x°
from which one infers |
OO — 5 lim Tegar Gl x) exp [~ [ (62 — myse)
<0|0>A X~ X’ : x’
13

where

7" =Tr % gety
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and

<0|Ju(x)‘0>A_ ! nyuv — ’
e _fdxp (x — X)4,(x)

The current correlation function D*'(x — x') has the structure
D¥(x — x') = =1 [geroe™ + ngg™] 8, 8,D(x — X)

It is noteworthy that the simplicity of this model, rather than any
general principle, accounts for the fact that this function is independent
of the external source.

Having determined the vacuum expectation value of j*(x) in the
presence of a source, we may explicitly evaluate the function <0|0), by
using

l

= (0[O}, [nu + f dx' D"(x — x')Av(x')]
which upon inteération yields
(005, = exp {’5 f dxdx’ A, () DP(x — X)AX) + i f PAX) xS (68)

In writing Eq. (6.8) we have included »* within the integral since it will
be convenient for subsequent calculations to give »* a space—time
behavior which allows one to freely carry out integration by parts.
Such a procedure is admissible, provided that one ultimately proceeds
to the limit n* = constant in the calculation of all matrix elements.

We are now equipped to consider broken symmetries in the fully
interacting theory. To do this we observe that any matrix element
a'|b'> 4,5 in consequence of the action principle satisfies the relation

8 i i 8 8
n (aj |6Dan = —3 fdxm Y Tey) @' |b">an

or

e ix 5 8 Y.L
a'|bDan = exp {—5 J'dva(x) m}@ 16" 4,0
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Thus, knowing the source dependence for A = 0 makes it possible to
find the matrix elements for ‘the fully interacting theory. Referring to
Eq. (6.8) we obtain

~ i\ 5 5 i e ,
QO)0> 40 = exp{——z— fdx S EA—“(;)} exp {2 fA,,D A, dxdx
‘ +i f‘t)"Au dx}
Using the commutation relation
8 , ,
[W,A (x)] = 3,75(x — x')
the above expression is direcfly evaluated to yield
{0|0> 4., = Cexp {i f-q“A,, dx} exp {% f(A,, + A ) D4 (A4, + )\'qv)} (6.9)

where the constant C is independent of A* and »* and so will not appear
in any of the appropriately defined matrix elements of the theory. The
current correlation function, mcludmg the effects of the interaction, is
found to be'¢®

¢

v —_ ___l o_VT
DK(X)— W(EI‘E W+g“g l—_l\_/)a aD(x)
From Eq. (6.9) we find dlrectly
O @00, _ f
7 A A | D¥¥(x) dxn, 6.1
<0l0>0,)\ ! ot r (X) 7 ( 0

Upon making the decomposiition

7 ="+ 9t

where
| u"h =0
eu\,@”ng =0

one can readily evaluate the integral (6.10) to find in the limit
7n* = constant

<01/410>0.n _

u 1 u 1
W00, T ags T ™ T .11y
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which clearly illustrates the renormalization of the symmetry-breaking
parameters 7, and 7* induced by the interaction. Before discussing
Eq. (6.11) any further, we calculate the remaining Green’s functions in
the presence of interaction. It is easily established that

1 i\ 82
Gaalxy, xg, .. '?6271) = —<OIO>A,A exp {—5 fdx EBA“(x)SA,,(x)

X €0]0>,G 4 (xy, X3, . . . X3q)

where

: 2n
Ga(xy, X35 ... xq,) = Go(x1, X3, - . . X5,) €Xp < i 121 q.F (x,)}

G~0(x1, Xgy oo xz;,) being the free field Green’s function which satisfies
the equation

2n

(a“ ll au)l Go(xl,i Xgy oo Xgp) = iz (—1'8(x; — x)

=2

X Go(xg, - - Xy_1, Xigs, -« - Xgp)

and, as before,
F(x) = —i f dx'Golx, — x')ar A, (x')
After a straightfbrward calculation it is found that

Garess - x) = exp {13 g0 [N — 2o — ) 4 ax'}

X GO.)‘(xl, x2, PP xz,,) (6.12)

where

| ~ A
Goa(x1, X, . .. X3n) = Go(xy, X3, . .. X34) €XP {l 3 izj 99;D(x, — x;)

p——
I —Jyfr 1+ X/m
and

, | 1 1 :
Ny(x' — x) = (m Oy — TF agm s 3“)D(x - x)
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From the form of Eq. (6.12) it is immediately evident that the broken
symmetry does not affect the commutation relations of the current j*
with the field ¢ and we have the usual results®®

L, $06)] = = T HB(x = )
U0, 96 = —4 g 780k — x)

Having displayed the Fermi Green’s functions, it is necessary to
check the consistency of definition (6.2) with the result (6.11) through
the use of Eq. (6.12). A straightforward calculation shows that the
combination of Eq. (6.12) ‘with Eq. (6.2) yields Eq. (6.10) so that no
constraint whatever is placed on the theory for consistency of the
broken symmetry. This is essentially the same situation as in naturally
occurring broken symmetries and, indeed, it is clear that, because the
dependence of the theory on the symmetry-breaking parameter [as
exemplified by the Green’s function (6.12)] is relatively simple, this
theory is a natural although intrinsically more complex extension of the
models discussed in Section III to composite particle field theories. We
may now make contact in the case of the Thirring model with com-
posite particle theories which do not support a broken symmetry in the
free field limit by letting 5* — 0 in such a way that <0} j*{0>,_, does not
vanish.®® We then get a constraint on the coupling constant since this
can only occur if :

A =7y
or
A=—n/¢

These, however, are not very satisfactory solutions since pathological
singularities are introduced into the Green’s functions by such a choice.

In concluding this discussion of the Thirring model, it is amusing
to make one further observation about the structure of this theory
which will be of use in the consideration of the current—current model
in four dimensions. In particular, we note that the equation for the
Green’s function G(x — x') in the presence of the interaction and the
source 4, has the structure

au[ll 9, — q(Au +A fg'ofiuol?) - AqIIT %]G = 5(x — )



668 G. S. GURALNIK, C. R. HAGEN, AND T. W. B. KIBBLE
which, in turn, may be written as
o [11 9, — qdu(x)] GOx, ) + i f A, D(x — £) dEG(x, x7)

X D", x5 ©)G(x™, X') dx” dx™ = 8(x — x') (6.13)

where we have made the identifications

() = 4,00) + A SN0

<0[0>
Do(x, x) = g_j "(S‘g = g"8(x — x') + ADD(x, X')
and :
‘ )
ql(x', x'; £) = _W G (x, x")

Equation (6.13) corresponds formally to the Green’s function equation
for electrodynamics in the presence of an external source. However, in
this two-dimensional case, the analogy is purely formal since the
singularities of *D**(x, x") correspond to those of Di¥(x, x") and occur
at zero mass while the boson in two-dimensional electrodynamics is
massive. It is, of course, straightforward to check the consistency of
Eq. (6.13) with previous forms displayed for this propagation function.

As the obvious generalization of the preceding discussion, we now
consider broken-symmetry solutions of the current—current interaction
in four dimensions. The natural procedure at this point would be to
extend the Lagrangian (6.1) to four dimensions and to calculate
the effect of the broken-symmetry condition on its solutions. This
problem has been discussed in the literature®-¢® and solutions con-
sistent with current conservation®® have been presented. However,
these solutions have been obtained in a fairly formal way without
detailed reference to the definition of the current as the limit of field
operators as was done for the Thirring model and as is also necessary
here if [j°, j*¥] # O is to be consistent with the definition of Jj*(x). Such
considerations are extremely difficult to handle in four dimensions since
we anticipate that

J09 = Tim Yig(x + 9 exp {iAq [ dx/j"(x”)}q Y — )

and
lijlg Plx + P(x — ¢
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is cubically divergent as e -0, as opposed to the linear divergence in
the case of one spatial dimension. Since it is probably desirable at this
point to avoid detailed consideration of these problems, we shall first
discuss the boson current—current interaction in four dimensions. One
can readily show in this case that at equal times [;°, j*¥] # 0 even with
a strictly local definition of the current. Consequently, for the level of
rigor used here, it is not necessary to worry about the problems of
Lorentz invariance, redefinition of the energy operator, etc., which
occur when one is forced to define the current as a nonlocal limit. The
Lagrangian is assumed to be

& = ¢" 0 + Vap'dy — Vam?$® — agolidgd*llidgd.] + JVigad, (6.14)

Here J is an external source and the two component fields ¢ and ¢* are
Hermitian and obey the usual equal-time commutation relation

[4°Gx), $(x)] = —id(x — x)
Introducing the new opérator '
D) = 0% + igogj* — igl®
(6.14) results in the field equations

D = (615
D*(j*)pu + m?$ =0 (6.16)
It follows from these equatiéns that the current j*(x) = ip(x)gé*(x) is
conserved in the case of vanishing source or if the source current is con-

served. Combining Eqgs. (6.15) and (6.16), we arrive at the familiar
second-order field equation |

[=D*(*)D,/G*) + m*l$ = 0

In order to insure current conservation we tacitly assume here that
J#(x) is confined to transverse sources. This actually entails no loss of
generality in the final answer, but simplifies some calculations.

It is convenient to study, the two boson propagators

n = 0l@x)$(x))+ 0>
G(x, x") — i 2005

and

e o 0[(BH0B(x)) . [0
Gx,x) =i 0[5
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which in consequence of the field equations, commutation relations, and
action principle satisfy the equations

G*(x, x) = D (1 8)G(x,x) 6.17)

b (1 aj) Gu(x, x') = §(x — x') = m*G(x, x') (6.18)

These may be combined to yield the second-order form
, 1 8 1 8 2 '
[ D“( 3J)D (3 SJ)+m]G(x,x) 5(x — ')

Following the technique outlined in our discussion of the Thirring
model, we define a new conserved quantity

= gon*(x) — J4(%)

and the corresponding propagator function

D*(x, x') = g J( 59
= —g"8(x — X') + goG*"(x, X')
where
3*(x)
Bl iV, O|=—%10>
G(x, x) = <0|‘(] (2)]'(5; D10 _ pueypixy + ——8<J(“)(l’(;>)

Then using the chain rule

5 () 8,
8,(x) ) S (x) Sﬂ"(x)
= fD‘”(x, x") —8 ) dx’

one obtains

N “ . uv ” " 8 ’
G, ) =~ [0 + last + gug [ 22, 5 s 6 2
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and

- " ” 8 ’
[+ igar + 800 [ Do,y a 57 G )
| = §(x — x') — m*G(x, x')

Writing the Green’s functions in this way serves to emphasize that upon
replacement of go.by € they become formally identical to the corres-
ponding functions in electrodynamics.

Of course, to actually establish the equivalence of this theory to
electrodynamics, we must demonstrate that the structure of D*'
corresponds exactly to the photon propagator in electrodynamics with
an appropriate identification of the renormalized charge and some
choice of gauge. It is possibl¢ to establish this identification in general
with D describing a massless particle if the broken symmetry condition
(X)|s=0 = 7* # O is satisfied. We shall, for the sake of simplicity,
examine only the lowest-order approximation in which 8G/8s77 is
neglected in the above equations. In this case we have

G*(x, x') = = D*X)G(x, X))
D*(X)G(x, x') + m*G(x, x') = &(x — x')
which may be solved to yield
G = 1/(—D*D, + m?) (6.19)
and
G* = —D'[1/(= D*D. + m?)] (6.20)
where we have introduced the operator
D = 9% — igJ*(x) + igogn*(X)
It is now possible to determine the structure of D**(x, x'). To this
end, note that since j* = iggé*, it follows that

o = SOF@IO
<0[0>
Using this result one obtains
13
i 8J,(x")
so that differentiation of Eq. (6.19) yields
18 ‘

12 Gl =—=D"[G4G, + G.4G] (6.21)
i SJV J=0

= Tr qG*(x, X)

DH(x) = gD (x, x")
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while differentiation of Eq. (6.20) now results in

134

=57 Gu| =~ D"{8uugG — DilG4Ge + GugGl  (622)
v J

=0

Since

3 G(x,x) =Trgq ﬁs(—x'_) G*(x, x)

Eq. (6.22) shows that
G,* = —iD"[g,, Tr G — Tr D(GG, + G,G)]
which, when insetted into the equation
g (D" +g") = G*
with J* = 0 yields
fD”"‘(x - x") dx’;{ga,,S(x’ — x") + igo[guud(x" — x”) Tr G(x", x")

-+ Tr G,(x' - xNG(x" — x") — fTr [D.(x — x")dx"
L G(x” = x")G(x" — X))} = —8,78(x — x') (6.23)

If we introduce Fourier transforms so that
| —_ ) = dp ip(x — x')
6x = ) = [ e 00

and, similarly for, D", we find from Eq. (6.23) that
[D(k)]~* = —g= + TI'a(k) (6.24)

where

() = ~ g, [ 35 6% Tr G) + TGP + K
- DG PGP + B} (629

Up to this point, we have not specified that the symmetry be
broken. We now: make this requirement explicit by setting

<01%10>

0005 =7 #0 (6.26)

J=0

We then find thajt
G(p) =0 = [(P® + 8oq7*)(Pe + &oqna) + M?]7? 6.27)
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which has the alternative explfession

P2+ m? + go1® — 2goqnp
G(p) = 6.28
) = 7+ me ¥ g — 4o 29
The consistency of relation (6.26) with the Green’s functions as given
by Egs. (6.27) and (6.28) requlres that »* = Tr ¢G*(0) which is given
explicitly by

UV( 12 2 2.2y __ 7}
= —2igon, dp g”(p® + m® + go*n®) — 2p*p (6.29)

@m)* [P + m* + go™n*)* — 4go*(p)?
Since the right-hand side of this equation is quadratically divergent, we

must introduce a cutoff. Using a Euclidean cutoff, we find for large A
that Eq. (6.29) reduces to

7 = goAX(1/167%) (630)
or : '

1 = g,2A%/ 1672 (6.31)

Thus in this case, unlike the Thirring model, the consistency of the
theory hinges upon placing a constraint on the parameters of the theory.
That this constraint arises is due to the nonvanishing boson bare mass
which makes it impossible for the free current to have massless excita-
tions and, hence, a broken symmetry.

With this information we may carry out the inversion of Eq. (6.24).
It is easily found by direct calculation that

M'as(0) = % Tr 4G*(0) (6.32)

It turns out that this equation is valid for all orders of perturbation
theory and assures that D®*(k) always has a pole at k* = 0. From the

right-hand side of Eq. (6. 30) with the use of Eq. (6.31), Eq. (6.32)
becomes

['**(0) = g
so that i
[D™(k)] 1 = [II"*(k) — T1"**(0)]
Direct evaluation shows that

Ie#(k) — H'““(O) [g*k? — k*k*}['(k?)
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where I'(k?) when evaluated, using a Euclidean cutoff, is given as

, 1 [go, A &wa a—mww]
2___ iy 2§—
I = 55 [Bm D + 2 e BT —

From this we ﬁnd that

Dy it

_1_ [ w _ KK
kzl";(kz) g k2

Thus we may conclude that massless electrodynamics of a scalar field
in the presence of a constant external field 4* is reproduced if the
identification o = (2472)/In (A/m) is made. Consequently, the broken
symmetry has no physically measurable effect and, although Lorentz
symmetry is broken, the result has not been catastrophic for giving this
theory physical meaning.

If one considers broken Lorentz symmetries of interactions with
fewer invariance properties, the situation is very different. For example,
in the case of a self-interacting vector meson field, B* with mass u,? and
an interaction of the form &o(B“B,)? or a self-interacting Fermi field”
¢ with broken' symmetry conditions <0|B*|0> # 0, <O|¢|0> # O one
finds, using the same techniques as in the Goldstone model,®® that the
masses of the particles depend upon the Lorentz frame of the observa-
tion. Since this is not the basis for an acceptable theory within the scope
of our present knowledge, one cannot take the broken symmetry
seriously in these cases.

Since we have already verified that J*(x) excites a massless particle,
we must verify lthat this particle contributes with the proper weight to
the consistency' of the Goldstone commutator, using our approxima-
tions in the current-current model. We start with the usual relation

—I ] = (0 — x* 9)M(x) + g(x) — gH(x) (6.33)

where, in terms of the energy momentum tensor 7' “v(x),
T = f X[ TOx) — x"To(x)] (6.34)

Upon taking the vacuum expectation of Eq. (6.33), we find that
= KOJI, )0 = gy — gy (6.35)

which serves to emphasize that the Goldstone theorem guarantees,
independently of perturbation theory, the presence of a massless
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particle in the spectrum of j"(x) and, hence, that the photon of this
theory is massless. To ascertain that Eq. (6.35) is consistent with our
solutions for this theory, we observe that because of Eq. (6.34) we need
only to evaluate the quantity .

CoNx' — x) = iO|[T*(x"), FA0110>
C# being related in the usual manner to the function
o = B QUTIO
n TS 010> -0

To evaluate T#" explicitly, the energy-momentum tensor is observed
to be

T = g — oty + T+ T Vag”

: x (%6 — 8o + 2Ju + M*$?]
Then, to the same order of ‘approximation as in the Green’s function
calculations, we find

<0|—I<w:)vlgx>)l0> = —ig, Tr qG*(x, x) TrgG*(x, x) + iJ* Tr gG*(x, )

+ iJ? Tr qG*(x, x) + /28"
x [—igo Tr;qG"‘(x, x) Tt gGao(x, X) + 2iJ% Tt gGo(%, X)]
+ irrelevant terms
It is straightforward but tedious to justify the neglect of the terms not
explicitly displayed here and, indeed, the consistency of our result will
indirectly confirm the validity of this procedure. From the above it
follows that ;
TE(k) = YD (k) (=2 [T (k) — I1.40)]
| 3 + g2k — TP + ()}
Using the forms previously derived for these functions and converting
from the time-ordered product to the commutator form, we find

Crity = — 2o — EL I ewrae)

Using Eq. (6.34), it is finally verified that the approximations of this
model are consistent with Eq. (6.35) with no further constraint on the
theory. ‘

Now we will use the same Green’s function techniques®® to
consider a theory in which the symmetry-breaking parameter is a mass
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and, hence, apf)ears in the solutions in a nontrivial physically significant
way. We consider the Lagrangian of the Nambu-Jona-Lasinio theory"®

&L =iy 0 + gol(B)? — (Fystah)?] + As'ibystp + S (6.36)

where A¢' and S are c-number sources. When the sources are turned off,
we find from the usual invariance arguments that the axial current
Jjl = ¥ y*ysm is conserved. We shall not concern ourselves here with
the technically correct definition of the current obtained by separating
points of the two fields involved in defining j%.

In the source-free limit it is usually argued that as a consequence
of the chiral invariance associated with the vanishing of the bare mass
term in Eq. (6.36), the physical mass of the particle excited by i
vanishes. However, such a statement can only be valid if the vacuum is »
required to be an eigenstate of the pseudoscalar charge operator

0ui = [ j20)
To see this, we examine the Goldstone commutator

[Qs', ibysT] = —2i8'

from which it follows that

0|[Qs", iysTdhli0> = —2Tr G (6.37)

where

G, x') = ie (x, X) <°'(¢(x<)gl(g>'»+ 10>

! A=2gt=0
i According to the Lehmann representation

4l ‘ A

o — ¥y = ip(x — x’) (K)
G == | )*e f o+

SO

TrG(x, x) = 8 f A J‘ deKl:fK:)c

Since A(x) generally has the structure
| A(k) = Z8(k — m) + A'(¥)
one can obtain Tr G = 0 if the renormalized mass vanishes and

A'(k) = A'(— x) On the other hand, we see that if G is dominated by a
single massive ‘excitation such that

A(x) = 8(x — m)
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then
: d m
TrG=8f(sz)4m;é0 (6.38)

and the vacuum is not an eigenstate of the chiral current Q'. Of course,
in practice Eq. (6.38) must be given meaning by the introduction of a
cutoff and, therefore, we shall choose a simple Euclidean cutoff when
this expression is to be explicitly evaluated. The condition described by
Eq. (6.38) will be of prime concern in our analysis of the Lagrangian
(6.36). Applying the Goldstone theorem to Eq. (6.37) combined with
Eq. (6.38) illustrates that massless pseudoscalar bosons are excited by
the “composite field operator” ifysr .

Returning to more explicit considerations resulting from Eq. (6.36),
we note that the field equations are

% 9 + S+ ’\5£i75+£]‘/’ + 280[(';‘/’)‘/‘ - (‘/;')'sTi‘/J)'}’s"“ﬁ] =0
and ;
=iy + S + fivsmAs + 2go[f() — dysr'PysTh)] = 0
from which we find that G in the presence of the sources satisfies the
equation ‘
{i‘yu all + zlgo[Tr G - ')’51"‘ Tr ')/5T¢G] + S + )\5‘1')/51"
186 . 8 , ,
+ 2go[l-. —S—S‘ + lwn-r']}G(x, x) =3x —x") (6.39)

For the first approximation to G, we neglect the variational derivatives
and make the identification

m = —zigo[Tr G- '}’57" Tr ysTgG] (6.40)
to find that !

‘ -1
G= ['y“ llja,‘ +m— 8~ A;iysf,] (6.41)

We now make the simplifying (but unnecessary) assumption that m is
pure scalar so that to this order A(x) = 8(x — m). Equation (6.40) with
the sources off becomes, through the use of Eq. (6.41),

m= —2ig, Tr G
g dp 1
= —16igom f (——-—2”)4 p—2 e
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and, since we assume m to be nonvanishing, these lead to the constraint
equation

, dp i

1 = —16ig, J.(2")4 g

8 e _ 2 ( ix_z
j-—wzlA mln1+m2
with A as the usual Euclidean cutoff.
Now let us make a miore careful analysis of Eq. (6.39) in order to

see the role played by the Goldstone particle. We make the convenient
definitions ‘

(6.42)

Asi = Asi - 2go Tr ‘)/5TiG
and
A=S+2igTrG

From these and the action principle it is possible to construct Green’s
functions involving four field operators. Those which are useful here are
the meson propagators

DH(x, x) = iS—X:—()_c_) As(x") (6.43)
and
—iD(x, X) = :— 358(—;) A(X) (6.44)

It is easily established that

. 8

T ) ) =

1 8 if v =—

i 885(x) Asx) = 0

With these new functions and the chain rule for functional derivatives,
Eq. (6.39) becomes

{yu%au 4 m = Adiygm — S+ 2ig0[75-r‘D5”:7 8—;5-, - D; -;Z]}G ~1
This equation formally has the same structure as the propagator for a
fermion of bare mass m interacting with a pseudoscalar isovector
meson and a scalar meson. To establish equivalence to this order we
must, of course, confirm that DY and D have the correct structure. The
calculation is handled most easily by introducing the function

Gi(x, x"; £) = } —87587(?) G(x, x")
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so that ‘
Di(, ¢) = 8U8(¢ — &) — 280i TrysTGHE, €58 (645)
since |
Gi(x, %3 &) = — j G(x, %" [% E&f‘) G-i(x", x’”)] Gx", x') dx” dx”
We find from the approximation (6.41) with the use of Eq. (6.40) that
—GU(E, £ 8 = G&, &ysGlE, €) — IG(E', §") dé’

x {—2igo Tr G'(¢", £"; €)
+ 2igo Tr (Ys'faG‘(§ £"; O)ysT}G(E", €) (6.46)

Taking the trace of Eq. (6.46) on ys7; and inserting the results into Eq.
(6.45), we find that, to this order

[Ds(¢, €)1 = 8,8(¢ — &) + 2igo Tr G(E, £)ysm,G(E, Ehysmi (6.4T)

1t is of interest to note (as is easily shown) that to all orders we may
write

1
[Ds(¢, €017 = 31;3(6 —§) + 28757 i(f) s 1T vsmiG(€ €)
With the sources off, Eq.: (6.47) in momentum space becomes
. P dj
DS = 8 + 2igo [ 3o Tr GlohysrsGlp + ks

Using the consistency condition (6.42) to handle the most divergent
part of the above integral, it follows that

1 st
Ds¥i(k) = %2L L kgo J-oo d_K"f T - am )%
L2272 Jym2 2 k% + «*
where
I = 8go dp_ 1

1 g A
@t (> +m? T m

This form clearly dlsplays the massless excitation. Further, we see that
if we use an elementary particle interaction between a massless meson
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and a massive nucleon, the results are identical if one makes the
identification

G _ &
‘ 272 2m°L
where G is the renormalized meson-nucleon coupling constant.

Using essentially- identical techniques, we find that for the scalar
boson the propagator to this order is

D(§, €)™ = 8( — §) — 2igo Tr G(4, £)G(€', §) (6.48)

and, to all orders; is given as

DG, £) = 3¢ — £) — 2ol 5475 61 )

Explicit evaluation of Eq. (6.48) results in the momentum space
representation

1 1
L(k2 A [ B[ de (L dm )
TR e & KR+ P

D(k) =

so that the scalar ‘particle of this theory has a mass 2m.

It is to be noted that, in the case in which the symmetry is not
broken, it is required that the pseudoscalar meson and scalar meson
have the same mass. Indeed, the proof of this statement provides an
interesting example of the “bad” behavior of the generator Qg'. If |7
is a state of a pseudoscalar meson such that H|») = E|=) (H being the
Hamiltonian) and Qs is assumed to be well defined and time inde-
pendent, we see that the scalar particle state Qs|=) has the same mass
since

HQsl") = Q5H|">
= EQ5|">

That this does nét follow here just confirms that the operator
= [ e ao
\ 4

does not exist in the limit ¥ — co. For finite volume, of course, we
expect the matrix element of this operator to depend on x° and, hence,
[QSV’ H] # O'
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It is of some interest to examine the other two-point*unctions of
this theory. In particular, it is found that the matrix element

Gi(x, x') = iK0| (j&j3;) + 10>

has the Fourier transform

1 1
Uy - 7 - —_—
Gij(k) = i Cr )4T 7Y5Ttyp+m)"}’5 "y(p+k)+m
2 kukv
28" - In m—kT

which again exhibits the massless boson. Similarly, a straightforward
calculation shows that

O] [(x) Y57 (), i¢(x')y5+j¢(x'>1 0

_ f o e ()23, T Gl )
which is consistent with Eq; (6.37).

It is remarkable to note that in this model we have performed
operations on a nonrenormalizable theory that have demonstrated its
equivalence to a renormalizable theory. This peculiar result corresponds
to the fact that different rearrangements of a power series expansion of
such a divergent theory can lead to different answers. The broken-
symmetry condition and the associated Green’s function technique of
solutions used here have 'served to pick out a particular familiar
solution. As is well known, there may be other solutions.

It is of some interest to consider what happens to this model*® in
the presence of the electronﬁagnetic interaction

Lt = ef y[(1 — 73)[21A,

A simple calculation shows that

Oujéi = ‘—’EauA“‘/-‘ YuYsTA

so only j¥; is now conserved. Using the Goldstone theorem it is seen
that the =° meson alone is required to remain massless if the fermion
mass m # 0. The mass of the charged mesons may be calculated to
second order in e using the propagation functions derived as above as
the e = O limit of the theory. These calculations are very tedious, but
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it is amusing to note the type of graphs that contribute. Using Eq. (6.47)
we may give the pion propagator the pictorial representation

D) =1+ <>

where the solid lines are nucleon propagators G. This clearly points out
the composite nature of the pion and shows that the electromagnetic
mass splitting will be given as corrections to the nucleon bubble The
contributing terms are of the form

S

Here 68 o\ represents the photon propagator while H++ is the
propagator of the pseudoscalar meson. The structure of the corrections
serves to emphasize the composite nature of the pion in this theory.

There are, of course, many other theories which have been con-
sidered in the context of nonsoluble relativistic broken symmetries but,
for the most part, these theories are either modifications of the above
theories or are much more complicated. In the latter category are the
electrodynamics of Johnson, Baker, and Willey,"”® and the fundamental
four-Fermi interactions of Heisenberg et al.”V Within the framework
of broken symmetries as discussed here, both of these theories appear
to have serious faults. However, until such time as more complete
solutions are presented, it is perhaps desirable to defer final judgment on
the possible inconsistency of the broken-symmetry aspect of these
theories. }

VII. Symmetry Breaking Effects in Some Noncovariant Field Theories
Despite the appreciable number of examples of relativistic theories

displaying various forms of symmetry breakdown which have been
presented in the preceding sections, none of the models considered can
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be described as being entirely satisfactory as a physically meaningful
broken-symmetry theory of elementary particles. In particular, it has
been noted that although the discussion of naturally occurring broken
symmetries demonstrated how it may be possible in certain theories to
solve the problem of how to consistently induce a nonvanishing
expectation value for a certain field operator, one was nonetheless led
to the conclusion that a symmetry breaking of tH type is purely formal.
Thus the fact that one can in such cases generate a nonvanishing
vacuum expectation value for a field #(x) has been seen to arise entirely
from the cyclic (or 1gnorable) property of #(x) and the consequent
feature that $(x) is undefined to within an additive constant. Since this
ambiguity does not have any effect upon the (appropriately truncated)
Green’s functions, there can never be any observable consequence of
choosing <0|¢(x)|0> # O regardless of how complex the interactions
may be. This criticism, of course, does not apply to what we have called
spontancous symmetry breaking where the breakdown of symmetry
will generally manifest itself in all measurement processes. On the other
hand, theories of this latter type have a considerably less certain mathe-
matical foundation, there being little basis for judging the consistency
of constraints of the form (2.5).

This then naturally leads one to ask whether there is not a class of
theories in which the desired features of mathematical tractability and
physical nontriviality may be simultaneously realized. It has in fact
recently been shown® " that in the domain of nonrelativistic field
theories there are a number of models which combine both of these
attributes and we shall consequently devote the entirety of this chapter
to a discussion of these rather remarkable theories.

In order to clarify the connection to our previous discussion as
much as possible, we recall that the momentum space representation
of the Hamiltonian for a simple scalar field has the form

H= f Ak K)a(k) (7.1)
where | '
w, = (k2 + p2)%
It was shown in Section III that for such a system one can formally
construct from the vacuum <0| the state

(a'| =<0|U
= 0| exp {a’*a(0) — a*(0)a’}
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such that
(a'\ak)|a’y = a'd(k)

thus providing an inequivalent representation of the commutation
relations by means of the improper unitary operator U. Now although
it is readily shown in'the case u? = 0 that it is consistent to take <a'| to
be a zero-energy eigenstate of the Hamiltonian (7.1), it is precisely
the difficulty in generalizing this result to the interacting case which is
responsible for the highly conjectural nature of most broken-symmetry
theories. This problem can be avoided in the case of naturally occurring
broken symmetries by virtue of the cyclic nature of the field ¢(x) but
only at the expense of accepting what is essentially a trivial type of
symmetry breaking. It is easy to convince oneself that the problem is
basically related to the fact that upon introducing a coupling of the
field ¢(x) of the form

J(x)(x)

[where J(x) is generally bilinear in the elementary field operators of the
theory], it is not possible to solve the eigenvalue problem for those
states containing an arbitrary number of massless bosons, and conse-
quently one cannot retain the state {a’| as a zero-energy eigenstate of H.
Since this circumstance is a consequence of the fact that in a Lorentz-
invariant theory J will generally be capable of creating an arbitrarily
large number of particles, it is clear that only when one gives up the
requirement of relativistic covariance (and thereby the antiparticle
concept) does it become possible to identify (a’| with the state of lowest
energy and at the same time produce a physically nontrivial effect.

The simplest example of a theory which is capable of displaying
nontrivial symmetry-breaking effects is the well-known neutral scalar
theory. In view of its unusually simple structure a detailed study of this
model is quite feasible and at the same time can be expected to provide
considerable insight into some aspects of broken symmetries. The
relevant Hamiltonian is

H = mN*N + f A%k, 0¥ (K)0(k) — N*N f dka(JK|)OK) + 6*(K)]

where

(L)
«(|k]) = go (2‘”)% (2w)V=
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u(|k|) being the usual form factor inserted to guarantee the convergence
of the theory. The commutation relations are taken to be of the form

(N,N*} = 1 (1.2)
[6(k), 6*(k)] = 8k — k) (7.3)

It is customary to choose that particular representation of the com-
mutation relations defined by the requirement that the vacuum be
annihilated by the operators N and 6(k), i.e.,

N|0> =0 (7.4
6(K)|0> = 0 (1.5)

Because of the fact that th¢ fermion field refers to only a single degree
of freedom, it will turn out that there are no representations of Eq. (7.2)
which are not unitarily equivalent to Eq. (7.4), and we shall consequently
focus our attention entirely on the construction of representations of
Eq. (7.3) other than that described by Eq. (7.5).

Let us assume for the moment the existence of a state {#'| which is
degenerate with the vacuum in the sense that (¢'|H = 0 and such that
it satisfies the condition

<0'16(K)|6"> # O - (16)
It follows from the equations of motion
i 22050 _ (o), H) = w,000 - «(RDN*N

iaj\a’t(’) = [N,H]=mN - N f d*ke(|k)[6(K) + 6*(K)]

that Eq. (7.6) is consistent only if
@ (0']0(K)] 6" = O &)

i.e.,, p =0 and <0'|0(k)|0’:> ~ 8(K). Since § can be defined to be the
constant of proportionality in this relation, it follows that in the limit
of vanishing 6 mass one can take

O'|0K)| 6> = 0"3(k) (7.8)

It is well to emphasize at this point that the theory we consider
here is indeed intermediate in complexity between the naturally occur-
ring and the spontaneous types of symmetry breaking. Thus by
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requiring «(0) # 0 (which condition we shall impose throughout this
section) the zero-momentum mode of the 8(k) field is not decoupled
and (k) — 6(k) + §'5(k) is consequently not an invariance property
of H. On the other hand, despite the nontrivial coupling of the zero-
momentum mode, the constraint (7.8) is clearly consistent at the
kinematical level and, in marked contrast to the cases considered in the
preceding section, does not require any further constraints on the higher
order vacuum expectation values. It is, of course, this latter circum-
stance which is responsible for the somewhat uncertain foundations of
the usual theories of spontaneous symmetry breaking.

Here again it is; possible to carry out the formal construction of
#'| in terms of the psual improper transformation on {8}, i.e.,

() = Q|UE)
= (0| exp {6*6(0) — 6*(0)0'}

Despite the frequedtly mentioned fact that the operator U(#’) is not
really well defined, one finds that in the calculation of all quantities of
any possible physicél interest one may conveniently ignore this slight
subtlety. Thus for the present U(8") will be freely employed as if it were
an ordinary unitarj operator with the implicit understanding that we
shall subsequently return to reformulate the solution entirely in terms
of the vacuum expectation values of the theory. Thus this discussion
will consider U(8") to be essentially only a heuristic tool which, though
quite invaluable for purposes of displaying the physical content of the
theory, can be entirely eliminated in the event that mathematical rigor
may be preferred to simplicity of formulation.

In order to be able to discuss the effect of Eq. (7.8) on the solution
it is necessary to bfieﬂy comment on the usual approach to the theory.
The most direct tréatment consists in defining the operator

U= e;cp {—N*N f dak‘i(l—uk—k‘) [6(k) — 0*(k)]}
which clearly genezrates the transformation.
B = (j]@(k)U* ~ 0K) — “%‘iﬁ N*N (1.9)
7= bNU* — exp { J' &k ﬁl%'l [6k) — 0*(k)]}N
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In terms of the set (7.9) the Hamiltonian assumes the form
f 2
H= (m - f d% %“Q)N*N + f A%k, B O(K)

a result which immediately displays the well-known equivalence of the
model to a theory describing uncoupled bosons and fermions of masses
- p and

m— [ao a*(|k])
Wy

respectively.

Although the above transformatlon appears at first sight to exhaust
the entire physical content of the theory, there is one singular case which
requires particular attention. This special circumstance occurs when
o(0) is finite and w(k = 0) = 0, i.e., in the case of a massless & particle
in the theory with a nonvanishing coupling of the zero-momentum
mode of the field (k). In; this case the transformation (7.9) clearly
becomes singular and there arises the possibility of constructing addi-
tional solutions based on the inequivalent representations of the
commutation relations.

Since our discussion of these additional representatlons has already
remarked upon the consistency of the condition

@160010> = #'50) (7.10)

there remains only the task of demonstrating whether this constraint
has a nontrivial effect upon the eigenvalue spectrum of the theory. To
this end it is again convenient to refer to the operator U(#') which, since
it formally generates c-number translations on 6(k), can be used to
provide a realization of Eq. (7.10). This result is made most transparent
upon considering the vacuum expectation value

EINONHE)| 0

Now although one can (formally) show that the operator U(#') in the
case of a naturally occurring broken symmetry is time independent, it
follows from the nontrivial coupling of 6(0) in this model that U(¢)
cannot be assumed to be a constant of the motion. Thus we use the
more explicit notation U(¢', ¢ = 0) to denote the fact that we have
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chosen to construct the state (6’| in terms of the operators 6(k, t = 0)
and 6*(k, ¢ = 0). One thus has

CHINON*(E) > = O[U(E, t = 0) eHN(0) e~ ¢~
| x N*(0) e~ U*(6', t = 0)|0)
— <0‘N(0) e—tH(N,9+8’6(l())(t—t’)N*(O)l0>

where we have used the notation H[N, 6 + 6'8(k)] to indicate that in
the expression for H the operator 6(k) is to be replaced by 8(k) + 6" 3(k).
The above establishes the equivalence of the neutral scalar theory with
the broken-symmetry condition (7.8) to a theory in which one chooses
the usual representation

6®)|05 = 0

of the commutation relation and incorporates the symmetry-breaking
effect directly into the Hamiltonian. It is perhaps unnecessary to remark
that the same calculations can be performed for the case of a naturally
occurring broken symmetry with, however, the important modification
that because of the cyclic nature of the zero mass field the Hamiltonian
(and consequently all the Green’s functions) of the model are invariant
under this transformation.

Before going on to the next higher stage of complexity in theories
which possess a nontrivial symmetry breaking, we shall provide a more
rigorous derivation of the above results, thereby demonstrating the
existence of the alternative approach alluded to earlier in this chapter.
Thus we seek to verify for this model the statement that the operator
U, t)is indeed inessential for purposes of establishing the equiva-
lence of the broken-symmetry condition to the c-number translation of
f(k) in the Hamiltonian. Since the net result of the replacement of 6(k)
by 6(k) + 0'8(k) in the neutral scalar theory is the addition of the term

—24(0) N*NRe ¢

it is to be shown directly from the equations for the Green’s functions
that the only nontrivial symmetry-breaking effect consists of a mass
renormalization. Although it is also possible in some of the other
soluble models which we shall discuss here to carry out the proof of
equivalence by direct calculation, we shall only provide the alternative
derivation in the neutral scalar case and refer the reader elsewhere for a
discussion of additional examples.””® However, it is well to emphasize
at the outset the obvious impossibility of giving a completely general
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proof of this result, a circumstance which follows from the fact that
there is no guarantee that the transformed Hamiltonian describes a
meaningful theory except in the relatively few cases where an exact
solution can be obtained for a wide class of inequivalent representa-
tions of the canonical commutation relations.

To carry out the proof for the neutral scalar theory we shall focus
attention on the two-point function

G(r) = KO|(N()N*(0)). 10>

the extension of this discussion to the most general vacuum expectation
value being fairly straightforward. It is convenient to introduce a source
function J(k) by adding to the Hamiltonian the term

- f [OK) + WV E)

thereby enabling one to write the equation for G(¢) in terms of functional
derivatives with respect to J(k). We shall consider this source to be
essentially an arbitrary function in the interval (¢, ;) subject only to
the condition that it vanishes at 7, and ¢, (¢, > f2). One then anticipates
from our previous discussion that the physical vacuum |6't,> at time £,
is to be defined by

8k, 1,)|0't,> = 0'5(K)|0'ts) (7.11)

with the corresponding result
Ot 6%(k, 1) = 6'*8(K)KO'L | (7.12)

used to define the vacuum {#'t,|, after the source has been turned off.
In fact Eqs. (7.11) and (7.12) need not be imposed as eigenvalue equa-
tions, since it is sufficient to merely impose the broken-symmetry
condition in the weakér form

010k, 12)]0't) = 68K O|0'1> (7.13)
8ty 0*(k, fl)|0't2> = 9'*3(k)<0'1,|0't5)> (7.14)

In the presence of the source J(k) the appropriate Green’s function
G(t)is |

KO (N@ON*(0) 4|0t
6. 1) =1 0|0t
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which, in terms of jthe amplitude
R AR

satisfies the equati(j)n

. .0 1 8 '
—iw(J) g . 3 il will) —
e [m % i fd ka(|k|)l. BJ(k)] e?'IG(t) = 8(¢)
In order to evaluate w(J) we note that

8 H
s7q) <000 = KOn|6) + 0*()|6'5) (7.15)

Upon using the equation of motion

i 260 = @ b(K) ~ o(kDN*N — J®K)

one easily deduces}that

(O'1,16(k, )|t
W— = 6'8(k) +f Y.k, t —t)J(k,t)drt'

where

g(kz —t) Zf TR P 2 —

| i0,.(t — 1) e~ it -t

and we have used Eq. (7.14). From the corresponding result for the

matrix element of ‘0*(k) one has the result

01,6k, 1) + 0*(k D8ty
0'1,16't5)

— 2Re 0’8(k)+f Gk, 1 — 1)k, 1) di’

(7.16)
where

__ _d_E—(Et 1 1
g(k’t)_‘f € [wk—E—ie+wk+E—ie]

One can thus mtegrate Eq. (7.15) to obtain the explicit expression for
w(J)
W) = Y, f % f f dt dtI(k, D9k, 1 — 1), 1')
+2ReJ(k =0,E=0)
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where ‘
J(, E) = f BTk, 1) dt

To facilitate the solution of the integro-differential equation for
G(t, J) we introduce at this point the operator™®

I(t) = exp {f d*k dEJ(k, E)e™ — 1); 37(5—‘5:)}

where the semicolon indicates that in the expansion of /() all varia-
tional derivatives appear to the right of all J’s. One can readily deduce
from this definition the property

5 s
£/ R RV

which leads to the alternative representation of I(t)

| 5
— 1T 3 ———
1) = exp{ it f &k dE EJ(k, B) 575 E)}
Defining I(t)G(t) = G(¢) and taking the Fourier transform of
equation for G(t), there follows
, 3
B 55w, )
+ fdak' dE’ “(‘:‘ |) 8 ] eiw(J)G(E) =1

e—iw(!)[m —_E+ sz k' dE'J(K',

8J(k', E')
from which one can immédiately deduce the formal solution

b)

E — - ® _tx(m_E) _- ? 3 ' ’ ! ’
G(E) zJ'O dx e exp{ zxfE &k dEIK, E') 570 s

eiw(l )

+ix f d%k' dE'o(|K’ (7.17)

1 )
)} 7w B

where we have observed that G(E; J = 0) = G(E; J = 0). One can now
make use of the operator identity”’® :

JF=0

: — p-A
e4tB = eBexp (A L )‘e )

A being a c-number deﬁned by the commutator condition
[4,B] = —AA4
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to rewrite Eq. (7. 1‘7) as
GE) = i f dx =D exp { f a%k dE' L=

eiE’x

El

x OC(Ik I) SJ(k’ 5 )} eiw(.l)

Using Eq. (7. 16) one readily obtains the complete Green’s function

j dxe—tx(m E-2a(0) Re 8) gx P{ fdak'dE I—Z‘Cf:Ex

« a2(|k'|)( E,_. + = +E,_ )} (7.18)

: e lox
= j dx e‘~1x(m -E) exp{ Jdak “2(“‘[) }

where we have deﬁned

J=0

G(E)

ll

2
m' =m - 2a(0) Re §' — f 4% I(II:I‘D
It is now relatlvely straightforward to verify that the solution given
by Eq. (7.18) has a simple pole at E = m’, a result which is in complete
agreement with the somewhat more heuristic derivation of the sym-
metry-breaking effect quoted earlier in this chapter. Thus, in conse-
quence of the fact that the quantity 8’ appears only in the expression
for m’ it follows that the symmetry-breaking effect consists entirely of a
mass renormalization, thereby verifying the results of the more direct
approach utilizing U(#’, ). It is also possible to extract from Eq. (7.18)
some of the familiar properties of the neutral scalar theory which are
customarily obtained by the somewhat less elegant approach in which
one specifies the; representation (7.5) at the outset and subsequently
carries out the explicit construction of the single fermion state. In
particular, the wave function renormalization constant Z is found by
inspection to be given by

—exp[ f %k 2(“")] (7.19)

It may be of interest to remark that this result can also be obtained
directly by using the canonical variables defined by Eq. (7.9). Thus the
definition :

= [<O|N|N>|?

= [CO|NN*|0)
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with the identity

eA+B = g4 @B o~ alAB]
for [4,B] a c-number, immediately implies

zZ

ot exp { — [a% “(I',:‘l') (60 ~ C*QNHOP  (7:20
oxp [ - fdaka(lkn

in agreement with Eq. (7.19).

Before leaving this interesting model it would be well to comment
in a more precise fashion upon the meaning we attach to the phrase
“nontrivial symmetry breaking’ within the context of this section. Thus
we attempt to anticipate the possible objection that since the sole effect
of the condition

<0]6(k)[0> = 65(k) (7.21)

is to induce a mass renormalization term (which, of course, is not
strictly speaking an observable quantity), the symmetry-breaking effect
is in fact a trivial one. Without going into great detail on this point it is
sufficient to note that a simple generalization of the neutral scalar
theory shows that such an objection may be easily discounted. This can
be accomplished by simply doubling the number of degrees of freedom
of the N field and replacing the interaction term in the Hamiltonian by

_N*RN f d3ko([k)IOK) + 6*(K)] (1.22)

where 7; is any one of the three Pauli spin matrices. Thus the fermion
field in this variant of the model is described by two distinct operators
N, and N, which for p # 0 are easily shown to possess identical
excitation spectra. For vanishing 6 mass it immediately follows in
complete analogy to our prevnous discussion that one can consistently
require

:<0|9(k)\0> # 0

In this case, however, one sees that the single fermion states are asso-
ciated with the two eigenvalues

m + 2(0) Re 8’ — f sk UKD |(||(l|(l)
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a result which clearly shows that for nonvanishing symmetry breaking
one has an observable mass difference 4¢(0) Re 0’ between the two
single fermion states.

It is also interesting to note that this simple extension of the
neutral scalar theory is particularly useful inasmuch as it actually
requires one to break an invariance of the Hamiltonian in order to
guarantee the consistency of Eq. (7.21). We refer to the fact that in the
strict sense it is not entirely accurate in the case of the neutral scalar
theory to refer to Eq. (7.21) as a broken-symmetry condition inasmuch
as there is no invariance property which requires the vanishing of the
expectation value of 6(k). On the other hand, it is clear that with the
interaction term (7.22) the Hamiltonian is invariant under

6(k) — — 6(k)

N—o—inN j#i (7.23)

a transformatidn which is effected by the operator
U = exp {zg N*o,N + im f *(k)0(K) dak}

Since the requifement that the set of physical states in this extension of
the neutral scalar theory fail to respect the invariance (7.23) may be
imposed in the form (7.21), it is by no means inappropriate to designate
this a broken-symmetry theory. It should be remarked that although

‘the invariance property described by (7.23) represents a discrete

symmetry of the Hamiltonian rather than the usual case of a continuous
symmetry group, one can easily construct theories in which the sym-
metry breaking occurs in this latter type of invariance group by
replacing (7.22) with an SU,-invariant term describing the inter-
action of two fermions with a triplet of massless mesons. By requiring
that one of the fields 6;(k) satisfy a condition of the type (7.21) one can
consistently break the SU; symmetry, but unfortunately the model is
no longer exactly soluble for nonvanishing symmetry breaking. Thus,
the fact that the preceding discussion has dealt with the breakdown of a
discrete invariance group has not been motivated by any indication that
the techniques described here cannot be applied to continuous groups
but is rather a consequence of the fact that we lack sufficiently powerful
mathematical tools to deal with these more complex theories.

There does exist, however, at least one well-known model with a
continuous invariance group in which the solubility of the theory is not
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destroyed by imposing a condition of the type (7.21). This theory
describes the interaction of a fixed fermion with a 8 meson as described
by the Hamiltonian

H = mN*N + J' A%k, 6*(K)6(K)
— 2 f dka((k])0*®) f KoK )OE)N*N  (7.24)

where «(|k|) has the form

u(|k[)

D = Gayren

and the commutation relations are given by Egs. (7.2) and (7.3).
It immediately follows from Eq. (7.24) that the operators

QN = N*N
0, = [akerom)

are separately conserved so that in the usual representation [Eq. (7.5)]
of the commutation relations the set of physical states will be the eigen-
vectors of these two operators. However, we note that as in the neutral
scalar theory there arises the possibility of having physically meaningful
inequivalent representations in the event that g = 0. This is seen to be
an immediate consequence of the fact that the condition which breaks
the conservation law for the number of 6 particles

@'low)e> = 05%) (7.25)

is consistent with the equation of motion
(a) - ia%)ﬂ(k) — AN*Na(|K]) f a3k (K )O(K)

if and only if the boson has vanishing mass. We again require that
«(0) # 0 so that the zero-momentum component of the field will have
a nonvanishing coupling, thereby providing the basis for a nontrivial
symmetry breaking. As in the neutral scalar theory we anticipate that
the broken-symmetry condition may be eliminated by the replacement
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of 6(k) by 0(k) +:0'8(k) in the Hamiltonian. One thus obtains the
equivalent description of this theory in terms of

H(®) = Im — W*OIN*N + J.dakwﬂ*(k)e(k)
A j d3ka([K])0*(K) J' Ak (kDO
— 2a(0) jd"ka(\k\)[ﬂ’*@(k) + B*R)EIN*N

and the usual representation Eq. (7.5) of the commutation relations.
Itis to be noted that the condition (7.25) leads to a mass renormalization
of the N field and has the further effect of introducing a Yukawa type
coupling into the theory.

The physical content of the model can be conveniently displayed
as in the neutral scalar theory by a canonical transformation

Bx) = 6) — AGN*N
§ = exp {jd"k[A*(k)G(k) _A@E®IIN  (1.26)
where A(k) is to be determined by the requirement that the Hamiltonian,

when expressed in terms of the new variables (7.26), should have no
terms linear in the meson field operators. This leads to the form

Ak) = 2a(0)0 o[k |}/
1 - 2 [akteDIN
and the Hamiltbnian
, | 2(0)|61° e
H@) = |m— A ————— e — N*N
( 1o d%[aﬁ(\k\)/\kn)

+ jdskwﬁ*(k)é(k) - J-d3ka(|k\)9*(k) '[dak""ﬂk'\)g(k)

Although the symmetry breaking once again has only a mass renormali-
zation effect on the physical spectrum, one can further anticipate that
in this model the wave function renormalization constant also should
depend upon 1612 In particular, one readily infers from Egs. (7.20) and
(7.26) the result

Z = exp [— A2a2(0)\0’\2(1 — Jdak“‘_z%ﬁ—‘))—z dek "‘_2\%‘2—‘)-]
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which differs from unity if, and only if, the symmetry-breaking para-
meter |&'] # 0.

In contrast to the case of the neutral scalar theory, the condition
(7.25) in this model allows an immediate application of the Goldstone
theorem. Thus we note that the commutator condition

O |[Qe, O] |6 = =<0 6|67

; = —68(Kk)
shows directly the existence of a physical excitation with the quantum
numbers of the 8 particle which has zero energy and momentum. Since
we have noted in detail some of the arguments which show the “non-
existence” of the operator 0, in the event that it fails to annihilate the
vacuum, it is interesting to note that this result, while entirely correct, is
quite harmless in the case under consideration. To see this we note that
it is more convenient to discuss the operator Qg in terms of the usual
representation (7.5). This, of course, requires that one transform Q, to
the form

0, = f dok6*(k)0(k) + [0*6(0) + 6*(0)8'] + 6*6'5(0)

which makes quite clear the nonexistence of Q, as a well-defined
operator. Despite the fact that the models under consideration here are
somewhat too simple to expect an exact analogy with the relativistic
theories discussed in the preceding section, the above explanation of the
divergences known to occur in the definition of the charge operator in a
broken-symmetry theory is sufficiently model-independent to suggest
that the nonexistence of such operators will cause no difficulty in a
proper formulation of the theory. Not only do these infinities fail to
represent any possible objection to the breaking of a symmetry, but
they have been further seen to follow as an entirely natural consequence
of the requirement that a given operator have a nonvanishing expecta-
tion value. :

Although the preceding discussion of the direct interaction model
has not proved the equivalence of the broken-symmetry condition to
the replacement of 6(k) by 6(k) + 6"8(k), this can (by virtue of the
solubility of the theory for all 6') be carried out by straightforward
though laborious techniques.® If, however, we are to succeed in
extending our results in the direction of more physically significant
theories, it is necessary to allow the discussion of models whose mathe-
matical structure is not quite so simple. Both the neutral scalar theory
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and the direct interaction model are mathematically tractable by virtue
of the fact that the physical effect of the symmetry breaking consists
entirely of a mass renormalization. In the more general case one finds
that as soon as allowance is made for more complicated symmetry-
breaking effects, the solubility of the theory is destroyed.

An outstanding example of such a theory which is soluble only for
the usual representation of the canonical commutation relations is the
Lee model."® The relevant Hamiltonian is

H = myV*V + myN*N + f Ak, 0*(K)0(K)

- f d%ka((K[V*NOK) + N*VE*K)]

where the only nonvanishing canonical commutation relations are

v, V¥ =1
{N,N*} =1
[0(k), 6*(k)] = 3(k — k')

It is well known that there exist in this theory two conserved generators
of gauge transformations

O, = V*V + N*N
0, = f kO E)O(K) — N*N

corresponding, respectively, to the conservation of fermion number and
the difference between the number of 6 and N particles. It is, of course,
the existence of these two conservation laws which, in the usual repre-
sentation of the commutation relations, is ultimately responsible for the
solubility of the theory. Since in the customary approach to the Lee
model one attempts to solve the eigenvalue problem sector by sector,
the choice of representation must be specified at the outset, thereby
requiring the adoption of a procedure which automatically dismisses the
possibility of finding additional solutions of the theory. We shall,
however, show that there can exist additional solutions for which the 8
field has a nonvanishing vacuum expectation value.

It is clear that as in the direct interaction model a condition of the
type

E'18)| 6> = '(Kk) (7.27)
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corresponds to the breaking of the 6-N conservation law inasmuch as
the consistency requirement

O|[6), Q116> = O'(K)
implies that the vacuum <6'| no longer is an eigenstate of the operator
Q. Furthermore the time independence of Q, (which is, of course,
unaltered by the broken symmetry) requires by the Goldstone theorem
that 8(k) excite a zero-mass particle. Although allowance has been made
in Eq. (7.27) for a result which is somewhat more general than Eq. (7.6),
it is readily shown from the equation of motion

i 2 00, ) = [0, H)
= w8 — «([KDN*N

I

and the condition
V|gy = N6 =0
that :
0
(<12 + w)co16001> = 0

which is consistent with the required time independence of ¢'(k) only if
w8’ (k) = 0. This clearly demands that p vanish and ¢'(k) be of the
form 6'8(k), in complete analogy to the results obtained in the case of
the somewhat simpler models which have been discussed. The fact
that the consistency requirements on the symmetry-breaking condition
can be satisfied entirely at the kinematical level without placing any
further constraints on the theory thus allows one to infer immediately
the internal consistency of Eq. (7.27). Strictly speaking the extension of
our preceding results to the Lee model cannot be accomplished with the
degree of rigor which characterized the discussion of the neutral scalar
and direct interaction theories. This is a consequence of the fact that
the Lee model is not soluble except in the usual representation of the
commutation relations so that one cannot prove the existence of a
well-defined solution in the case of a broken symmetry. On the other
hand, the replacement of 8(k) by 6(k) + 6'8(k) can be formally shown
to be equivalent to the broken-symmetry condition, and the Hamiltonian
thereby generated ‘

H(0) = H — «(0)(V*NO' + N*VE'*) (7.28)
furthermore fails to suggest the occurrence of any pathological features

in the theory. We shall therefore be content to assume that there is no
essential difficulty in passing to the infinite volume limit in the com-
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mutators of the charge operator [which is, of course, essential in order
to demonstrate the equivalence of the broken-symmetry condition to
the replacement of 6(k) by 6(k) + 6'8(k)]. Stated somewhat differently,
the implementation of the transformation generated by the operator Q,
in a finite volume can now be extended [in direct analogy to the dis-
cussion following Eq. (7.10)] to infinite volume by virtue of our assump-
tion concerning the existence of meaningful solutions to the theory
described by Eq. (7.28).

The breakdown of Q, conservation and the increased structural
complexity of the model can be illustrated more forcefully by diagonali-
zing all the terms in H(6') which are bilinear in the canonical fields.
Thus we define the new operators ¥’ and N’ by the unitary trans-

formation :
[V] _ [ cos y e siny][V]
N'|  |—e®siny cosy N

which leads to a diagonal form of the mass matrix

[ my —a(O)G’*]

. —a(0)6 my
if one sets
o = |0 et
tan 2y = ———2a(0)|9 l
mN - mV

The eigenvalues are readily found to be

, _myt+tmy  my — Ny |e(0)6" |2 )‘/2
ml =Ty T2 (14 4 Gy

. _ My + my my — My |°‘(0)0’|2 )l/’
my = s T3 (14’4(’%—"1‘/)2

in terms of whichione has

H() = mV’V*’V’ + my'N¥N' + fdskwka*(k)()(k)
— cos?y Jdaka(lkl)[V*’N'G(k) + N*’V’B*(k)] (7.29)
+ sin? yfdska({kl)[V*'N’O*(k) e?8 + N*V'0(k) e 2]

- siny;:OSy f ha((KD[V* V' — N*N'le~50(k) + e#6*(k)]
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for the Hamiltonian of the broken-symmetry theory. It is to be noted
that as a consequence of the breakdown of Q, conservation the addi-
tional processes N—V + 6, N—>N+ 6§, and V-V + 6 are all
allowed by Eq. (7.29) in addition to the usual transition V' — N+ 6
of the Lee model. Although the resultant theory is not soluble, it is
clear that the broken-symmetry condition must imply a dependence of
the N and V masses on the parameter &', as can be readily verified in
perturbation theory. ‘

Although the only way in which one can generate nontrivial
symmetry-breaking effects in the Lee model is accomplished by treating
the 6 meson as a Goldstone particle, it is instructive to carry out the
analogous procedure for the fermions of the theory in order to illustrate
the failure of such an approach for systems containing only a finite
number of degrees of freedom. In order to carry out the construction it
is essential to find a state which has the quantum numbers of the N
particle and is degenerate in energy with the vacuum. From the equation
of motion |

d

iz N =[N, H]

~ myN — f dSka(|k|)6* )V

one trivially calculates the two-point function
G(r) = ie(O)O| (N(ON*(0))+ 10>
in the usual representationjof N, V, and 8(k) to have the form
G(t) = 6.(t) e~ imat (7.30)

It is clear from Eq. (7.30) that the state N*(¢)|0) is time independent if,
and only if, my = 0, for which case one is led to attempt a construction
of a set of broken-symmetry states by defining

(N'| = <0] exp {N'*N — N*N'}

The parameters N’ and N'* are c-numbers which commute with boson
field operators and anticommute with fermion operators, the only
nonvanishing commutator containing N’ or N'* required by consistency
to be nonzero being

{N',N™*} = ¢
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where ¢ is a real c-number. It is easy t0 show that (N'| is a zero-energy
eigenstate of H (thereby allowing its identification as a vacuum state)
and has the further property that

fk)| Ny = VIN> =0
On the other hand, the fact that the N field is associated with only a
single degree of freedom means that, unlike the cases previously dis-
cussed, the operator | :

U=exp{N"*N - N*N'}
is unitary. :
By introduction of the parameter ) one can calculate the operator

NQ) = UQNU*(%)
where 3
UQX) = exp {MN'*N — N*N g}

One readily verifies that N(}) satisfies the differential equation

N 2 17
e = &N
so that N = N(x = 1) has the form
" N = Ncos £ + N'(sin ¢/ (7.31)

This result immediately leads to the broken-symmetry condition
(N'|N|N"> = N'(sin £/§)

which clearly displays the noninvariance of the new set of vacuum
states (N'| under gauge transformations on the fermion fields N and V.
It is to be noted that in consequence of the Fermi statistics the operator
U does not merely affect a c-number translation of the field and that
the result [Eq. (7.31)] is entirely in accord with the canonical com-
mutation relation

{(N,N*} =1

Using the same technique as before, one can express the state {N'|
as a linear combination of the vacuum <0| and the single N particle
state (O|N. Thus one readily derives the result™®

(N'| = 0| cos £ + <0|N’N’*1—:—§°;ﬂ + <0|N'*Nﬂ’;—§ (1.32)
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Since each term on the right-hand side of Eq. (7.32) represents a zero-
energy eigenstate of H, it is clear that any state <N 'l may be chosen as
the physical vacuum. Thus in the usual way one can build up a complete
Hilbert space constructed from this chosen vacuum state. The relation
between the Hilbert spaces constructed from the different vacuums can
be readily found in direct analogy to our earlier results. In particular
one deduces that the effect of the broken-symmetry states can be entirely
simulated by the replacement of H by

UHU* = H(Ncos £+ N -s%f v, o)

— H(N, V, 0) + 2sin® £2 f dka(|K|)(V*NOK) + N*6*&)V)
_ %f- f Aka([K)(V*N'O(K) + N*0*®)V)

where we have denoted the usual Hamiltonian of the Lee model by
H(N, V, 6). It must be strongly emphasized, however, that because U is
a unitary operator this transformation must leave the eigenvalue
spectrum of H unaltered, a result which can be readily verified by direct
calculation in the lowest sectors. Thus the sole effect of U is to mix
states of different fermion number, a circumstance which is in marked
contrast with the case in which the Goldstone particle is the 8 meson
and the c-number translation of the 6 field is effected by a nonunitary
operator which generates inequivalent theories. In the latter case the
symmetry breaking effected by the § meson can change the basic
physics of the model (even to the point of rendering the theory insoluble)
whereas the symmetry breaking induced by a massless N particle is
entirely formal. This distinction is, of course, a consequence of the
well-known fact that the inequivalent representations of the commuta-
tion relations can only occur in theories which possess an infinite
number of degrees of freedom.

Since the models which we have considered here cannot be readily
generalized to the relativistic case, it is well to conclude this section by
briefly commenting upon the utility of the results which have been
obtained. Certainly they must serve to dispel much of the pessimism
which may have been generated in our discussion of physically trivial
- broken-symmetry theories with regard to the possibility of inducing
real effects by means of a symmetry-breaking condition. On the other
hand, a crucial ingredient in this consideration of static theories has
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been the exact solubility of the states containing no fermions but an
arbitrary number of 6 particles. Since it was precisely this feature which
made possible the demonstration of the existence of additional vacuum
states in the theory (corresponding to the inequivalent representations),
it is clear that the attribute of partial solubility has been an indispensable
tool throughout the present section. The fact that there is no Lorentz-
invariant theory in which such a circumstance occurs appears, at first
sight, to exclude the possibility of finding a correspondingly simple
example in the relativistic domain. On the other hand, it is interesting
to note that even in a covariant theory with a scalar zero-mass excitation
(assuming one can establish the existence of such a particle) it might
well be possible to proceed in a fashion somewhat analogous to that
followed here. In particular the “in” and “out” field operators which
create the zero-mass quanta can be used to assert the existence of
additional zero-energy eigenstates of P* which are related to the vacuum
by the usual improper operator transformation. Such a device enables
one to anticipate the precise fashion in which a nontrivial broken-
symmetry effect may arise from the noninvariance of a Lagrangian
under translation of the boson field operator. By this heuristic argument
the results of the present section are seen to imply the possibility of
carrying out the construction of theories such as those proposed in
Section VI with considerably greater confidence. At present, however,

a more rigorous argument does not appear to lie within the realm of
feasibility.

VIII. Conclusion

In the preceding discussions we have attempted to outline in detail
some of the most relevant and interesting aspects of the theory of
broken symmetries. In so doing, it has been found that, under condi-
tions met by manifestly covariant theories or nonrelativistic theories
with sufficiently damped potentials, the Goldstone theorem is a rigorous
result and the broken symmetry consequently requires the presence of
a massless boson. On the other hand, we have also been able to supply
interesting examples of acausal systems in which the “Goldstone
bosons” become massive. Such theories might even be of physical
relevance in the event that vector gauge fields of the type discussed in
Section IV are found to have application to the real world. In addition,
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these examples serve to emphasize the fact that, in problems involving
causal theories, there exists the possibility that the Goldstone bosons
might completely decouple so as not to appear in any physically
measurable amplitude.

In the case of nonrelativistic problems, we have been able to
consider Hamiltonians which are physically significant and in which the
broken symmetry plays a fundamental and understandable role. On the
other hand, in the case of the corresponding relativistic problems, our
success in practical terms has been rather limited even though it has
been possible to demonstrate that broken symmetries actually occur in
relativistic theories which possess a special type of gauge invariance. In
such cases, the broken-symmetry argument makes no basic change in
the physical content of the theory and is merely equivalent to the usual
argument concerning the relation between gauge invariance and mass-
lessness. Unfortunately, however, more complex and realistic, relativistic,
broken-symmetry models can at present only be studied within the
context of perturbation theory so that, despite the fact that a great deal
is understood in general terms, the methods of broken symmetries have
not thus far achieved any considerable success in the realm of relativistic
particle physics.
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