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Abstract: To estimate the degree of quantum entanglement of random pure states, it is crucial to
understand the statistical behavior of entanglement indicators such as the von Neumann entropy,
quantum purity, and entanglement capacity. These entanglement metrics are functions of the spec-
trum of density matrices, and their statistical behavior over different generic state ensembles have
been intensively studied in the literature. As an alternative metric, in this work, we study the sum of
the square root spectrum of density matrices, which is relevant to negativity and fidelity in quantum
information processing. In particular, we derive the finite-size mean and variance formulas of the
sum of the square root spectrum over the Bures—-Hall ensemble, extending known results obtained
recently over the Hilbert-Schmidt ensemble.

Keywords: quantum entanglement; negativity; fidelity; Bures-Hall ensemble; random matrix theory

1. Introduction and Main Results

The understanding of entanglement is crucial to any successful quantum information
processing task. In studying the degree of entanglement, researchers commonly employ
entropy-based measures, for example, the von Neumann entropy [1] and quantum pu-
rity [2]. Additionally, various other entanglement metrics have been investigated, such as
the entanglement capacity proposed in [3] as a quantum analogy to the heat capacity of
classical systems. In the past decades, there has been considerable efforts in discovering
the statistical behavior of the degree entanglement of quantum bipartite systems. These
studies focus on computing the moments of the entanglement measures over different
generic (pure) state models: the Hilbert-Schmidt ensemble, the Bures—Hall ensemble, and
the emerging fermionic Gaussian ensemble. In the present work, we study the statistical
behavior of the metric—the sum of the square root of the spectrum of density matrices
over the Bures—Hall ensemble. The proposed metric is what we refer to as a square root
statistic and is relevant to the negativity introduced in [4], a computable measure of en-
tanglement between the subsystems of quantum bipartite models. Our primary findings
are the exact formulas of the first two moments of the square root statistic. Moreover, the
obtained formulas extend the recent the results of negativity [5] and fidelity [6] over the
Hilbert-Schmidt ensemble to the Bures—Hall ensemb]e.

1.1. Square Root Spectrum and Applications
The sum of the square root of the spectrum of density matrices is defined as

moo1
A=) AZ, 1)
i=1

where m is the dimension of the density matrix and the set {A;}" , is its spectrum. The
random variable (1) is closely related to the negativity (2) and fidelity (3) as discussed below.
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For a pure bipartite state p = [p) (| with [¢) = Y%, |/Ajljj) and 1724 A = 1,
where |jj) are the eigenvectors corresponding to the Schmidt coefficients, the negativity is
defined as

2
N(p) = ™ —1 _ Zf#km _ <211 ]) A2_1

2 2 2 -T2 @)

where || - ||1 is the trace norm (also known as the Schatten 1-norm) and p’4 refers to the
partial transpose of p. Among different entanglement measures, the negativity possesses a
unique property [7]. Assuming E(p) to be a weak entanglement monotone, characterized as
a symmetric function of negative eigenvalues of p'4, then E(p) is a non-decreasing function
of N'(p). In the case that it is additive, it follows that E(p) = clog(1+ 2N (p)) for some
constant ¢ > 0.

Fidelity [8] is a measure of the similarity between two quantum states. It quantifies
how closely one quantum state resembles another. Given two quantum states characterized
by the respective density matrices, o and p, the fidelity is

F(o,p) = (tr x/f?px/t?)z- 3)

In this work, we study the case
o= —Iy, (4)

which represents the maximum mixed state, and p is the random density matrix that
corresponds to the Bures—Hall ensemble. In this case, we have

f@@:%ﬁ. 5)

1.2. Description of Bures—Hall Ensemble

The Bures—-Hall ensemb]e is introduced in the following (see also [9,10] for detailed
formulations). Consider a bipartite system composed of two subsystems A and B of Hilbert
space (complex vector space) with dimensions m and #, respectively. The Hilbert space
Harp = Ha ® Hp. Let |i1) and |jB) be the complete basis of 74 and Hp. A random pure
state of the composite system H 4 p is defined as a linear combination of the basis |i) and

%) 19 as

W=ii%

i=1j=1

")l 0

where the coefficients z; ; are uniformly distributed over all possible values satisfying the
constraint } ;" ; Z}Ll |zz-,j|2 = 1. We now consider a superposition of the state (6),

[9) ~ [9) + (U Tn)ly), (7)

where U is an m X m unitary random matrix with the measure proportional to
det(I,, + U)?**! [11] with the parameter a taking half-integer values

a=n—m=z. 8)

The corresponding density matrix of the pure state (7) is

p=l¢) (ol )
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with the probability constraint
tr(p) =1, (10)

which has been discussed in detail in [9]. We assume that m < n without loss of generality.
By partial tracing (purification) of the full density matrix (9) over the other subsystem B
(environment), the reduced density matrix p4 of the smaller subsystem A is obtained as

pa = trpp. (11)

The density of the eigenvalues of p4 (A; € [0,1],i = 1,...,m) is the (generalized) complex
Bures—Hall measure [7,12-14],

FA) = (1:5(1 - i_flm-) I

1<i<j<m

(A
TAiEA +A HA (12)

where the constant C is

co p—m(m+2a) zm/2 lr_nIr (i4+1DT(i42x+1)
T(m(m+20+1)/2) ;7 F(ZMJF ) ‘

(13)

1.3. Main Results
We now introduce our main results of the first two moments of the statistic A, which

are presented in Propositions 1 and 2 below.

Proposition 1. The exact mean of the square root statistic A in (1), valid for any subsystem
dimensions m < n under the Bures—Hall ensemble (12), is given by

Ef[A] = Z_: k+2w+m+2)1“(m—kif%)r(k+%)
(d—+ i T(k+2x+m+ )th KT (k+1)

(14)
(k+2¢x+ )F(k+a+2)( k—i—zx—{—l)
I(k+2a+2)T(k+a+2) k+a+%
where d is ,
d= Em(m+2oc+1). (15)

Proposition 2. The exact second moment of the square root statistic A in (1), valid for any
subsystem dimensions m < n under the Bures—Hall ensemble (12), is given by

lkoljpo 1 1
fIATT =22 kg g Lyl \U T 2t ) ) T 2k e )

jta+3k+a+3
)<1+j+zx+1k+zx+1 (16)

1
2k=j-3) (k-3
I+j+a )
+ . . . +1I
4+j+k+20)3+j+k+2a)(1+a+j)

where d is denoted in (15), and

I [(m+20+k+2+p)
T Tk+ 1+ B (k+a+1+p)T(k+2a+2+p)T(m—k—p)

(17)
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The proof of Proposition 1 and Proposition 2 are given, respectively, in Section 2.2
and Section 2.3. Moreover, the mean value of negativity (2) and fidelity (5), valid for any
subsystem dimensions m < n, are obtained as

BN = 5 (EfA%] - 1),
Ef[F] = lIEf[AZ],

m

(18)

where the expectation E¢|.] is taken over the Bures-Hall ensemble (12). By definition, the
exact variance of A under the Bures—Hall ensemble is given by

V[A] = Ef[A%] — EF[A]. (19)

With the obtained expressions of the mean (14) and variance (19), we can now study
the distribution of A by standardizing it as

_ A—Ef[A]

Y ,
Ve[A]

(20)

where the standardized variable Y is supported in Y € (—oo, c0) with zero mean and unit
variance. As inspired by the Gaussian limit conjecture of von Neumann entropy [15,16],
we plot, in Figures 1 and 2, the simulation results of the standardized random valuable Y
in comparison with the Gaussian density. It turns out that the distribution of A, similar to
the von Neumann entropy, also approaches a Gaussian distribution when the subsystem
dimensions increase with a fixed ratio m /n.

m=4,n=6
— — = Simulation
05 — Gaussian approx.
0.4
w0
L
‘o
o
5}
= 03T
£
AE
o
£
oz
o
011
D i
-6 4 6

Figure 1. Probability density of Y in (20) in comparison with the Gaussian density. The dashed black
line is plotted by the simulation results of Y with subsystem dimensions m = 4, n = 6 and the solid
blue line is the standard Gaussian density.
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m=16,n=24
= — = Simulation
06 — Gaussian approx.
0.4
W
A
=
o
i}
D 03T
£
E
o
£
Lozl
o
017
D It i i i ""\-— L
-6 -4 -2 0 2 4 6

Figure 2. Probability density of Y in (20) versus the Gaussian density. The dashed black line is plotted
by the simulation results of Y with subsystem dimensions m = 16, n = 24 and the solid blue line is
the standard Gaussian density.

2. Moments Computation

In this section, we discuss the moment computation that gives rise to the results in
Propositions 1 and 2. Specifically, in Section 2.1, we relate the computation of the moments
to that over a more convenient ensemble with no fixed trace constraint. The detailed
derivation of the first and second moments of the square root statistic A are presented in
Section 2.2 and Section 2.3, respectively.

2.1. Ensemble Conversion

We calculate the random variable under the original ensemble (12) by converting it to
an unconstrained ensemble of the Bures—Hall measure,

hx)== 11

1<i<j<m

%o, i €10, 21
P Hxle x; € [0,00) (21)

where the constant C’ depends on the constant C in (13) as

C'=Cr(d) (22)
with 4 denoting
d= %m(m+21x+1). (23)
The density of the trace
6 = ixi, 6 € [0, 00) (24)
i=1
is

i=1

g0) = [ h<x>5<9 -y ) ﬁ dx, 25)

where, by the change of variables,
X = 9/\1', (26)
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we have c
5(0) = Ge'o! [ F(yyar
. @7
— 679 Qdfl .
r'(d)

Keeping in mind the above result (27), the change of variables (26) in (12) now leads to

the relation
m

m
)] [dx = g(6)f (V)6 | da, 9
i=1 i=1
which implies that 6 is independent of each A;, i = 1, ..., m since the densities factorize.
This fact allows us to relate the moments of

1
A=) A? (29)

1

s

Il
_

over the Bures—Hall ensemble (12) to that of a random variable

NI—

X = X

1

(30)

s

Il
—_

over the unconstrained ensemble (21).
We now derive the relations between the first two moments of the random variables.
For the first moment, by definition, we have

Ef[A] :/0 ¢ cw/ AF(A ]‘[ (31)
where we have multiplied a constant
1= / Tl opi-tqg (32)
I(d+3)

by using the result (27). In (31), substituting A with X gives

Ef[A}:/ /wxe " (A)d()ﬁd)\i

i=1

_ TI(a)
_F(d+1)/ de/ Xf(A H
@ 7 o
T'(d /
= —"t Xh(x dx;
T(d+1)Jo ( )E '
_ T gy
rd+3)
Similarly, we obtain the relation between the second moments as
2 _ Lo oo 34
Ef[A%] = dEh[X ]. (34)

Using the result (33) and (34), we have
Vi[A] = Ef[A%] — E}[A]
S rd \., (35)
= JE[X] = <+)) By [X].
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Ey[X]=—-),

Therefore, the remaining task in obtaining the main results (14) and (16) is to calculate the
first two moments of the statistic X in (30).

2.2. Calculation of the First Moment

Computing the average value of X requires the one-point correlation function of the
unconstrained ensemble (21), which is [17]

() = 5, (Koa (%) + Kig(x,1)), 6)

where the correlation kernels Kp;(x,x) and Kjp(x,x) admit the following integral
representations

1
Koi(x,y) = xz’”l/o 2 H, (by) G (Ex)dt,

1 (37)
Kio(x,y) = 21 [P H 4 (1) Ga by
with
H,y(x) = G4 (g{ﬁ;}_"‘;j’f x> = Gy, (qlx)
(38)
G0 = a2 5732504 | ) = 2o
further denoting some Meijer G-functions [18]. The mean value of X is
E,[X] = —m/ Xy (x)dx
0
= —% x? (Koz(x, x) + Kyp(x, x)) dx (39)
0
L= b+
=3/, (Ig(t) +17,,(t))dt,
where we have used the notation [19], Equation (31)
1) () = /O PGl (qltx)GEA(gltx)dx, ¢ > 0. (40)
The above integration has been evaluated in [19] as
1P (1) = 11, (41)
with Lgﬁ ) denoting the t independent part
1B _ nl ()T (k420 +m +2)T(m — k — B)
1 = T(k+2a+2)T(k+2x+2 —q)T(m — k)k! @)

I(k+B+2a+2)T(k+p+20+2—7q)
Fk+p+20+m+2)I(-k—p)

Inserting the above result (42) into (39) and evaluating the integration over ¢, one obtains

Ml (—DRC(k + 20 4+ m +2)T(m —k — Y T(k+ L + 20 +2)T(k+ } +a+2)
T(m—k)k! T(k+1+2a+m+2)T(—k-1)
m—k—DT(k+1+2a+2)T(k+1+a+1)
T(m—kk! T(k+1+2a+m+2)I(—k—1)"

~—|

= Tlk+2a+2)0(k+a+2

m_l (—1)KT(k +2a +m +2)T
I(k+20+2)T(k+a+1

(43)

~—|

k=0
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By using the following identity of gamma function
I(3)T(3
F(—l—k) = (_1)’“17(2) (2)1 , (44)
2 F(k+1+5)

the mean value is further simplified to

li k+2¢x+m+2)l"(m—k—%)F(k+%)F(k+2a+%)r(k+a+g)
= Tk+2a+m+HT(m—k)T(k+1) Tk 420 +2)T(k+a+2)

(45)
< k+a+1>
X\ 14+ —7=).
k+ o+ 2
Inserting the result (45) into the relation (33), the first moment of A is obtained as
E/[A] = I(d) mil T(k+20+m+2)T(m—k—DT(k+3)T(k+2a+T(k+a+3)
f T(d+ )7 5 T(k+2x+m+3)T(m—kT(k+1) T(k+2a+2)T(k+a+2) o
( k+a+1)
x (14— ).
k+a+ b
This completes the proof of Proposition 1.
2.3. Calculation of the Second Moment
According to the relation of second moments (35), it now suffices to calculate E;,[X?]
in obtaining E;,[A?]. By definition, we have
2= / < xf) h(x)] ] dx;
T \i=1 i=1
n 1
—/<le> del+2/< x2x ) del (47)
*\i=1 1<i<j<m
= m/ xhy(x)dx +m(m —1) / / xfyfhz(x,y) dxdy.
0 0 Jo
To proceed the above integrals, one will need the joint density of one and two arbitrary
eigenvalues, respectively, denoted by hy(x) and hy(x,y). The former one is given in (36)
and the latter one in [17,20]
1
hy(x,y) = Tni(m 1) ((Km(x,X) + Kio(x, %)) (Kot (v, v) + Kio(y, v)) — 2Ko1 (x, y)Kor (v, x)
(48)
= 205, 3)Kua(y,3) ~ 2K (3, ) K (1,9) ~ 2Kon(, 1 Kan (0, ),
where .
Koo(,y) = [ P57 Ha(t0) Huga (ty) dt
0
1
Ko (x, ) = 2241 / 25 H, (ty) Gy (1) dt
. (49)

1
Kio(x,y) = y***! /0 P H,q (£x) Gy (ty) dt

o041

1 x
Kin(oy) = ()™ [ PG ()Gaty) at = A
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By using the densities (36) and (48), computing the integrals in (47) now boils down
to computing

11
Ey[X?] = 51a — 5 (Is +1c) — Ip + Ef[X], (50)

where -
a = | x(Kon(x, %) + Kuo(x,x)) dx

//xZJ/ZKm(xy)Km(}/r ) dx dy

(51)

x3y2 Ko (x,y)Kio(y, ) dx dy
1
2

Nw

(%, y)K11(x, y) dx dy.

2.3.1. Calculation of I5

Using the same strategy in calculating [, [X] in Section 2.2 (see also [15], Equations (52)—(55)),
for example, the integral I in (51) is computed as

I__mi (—-1)*mT(k+20 +m+2)T(k+2) T(k+2a+3)(k+a+3)
AT A \T(k+20+2)0(k+a+2)T(m — k)k! T(k+2a +m +3)[(k — m +2)

(1) T(k+20+m+2)T(k+2) T(k+2a+3)(k+a+2) (52)
+ I'(k+2a+2)T(k+a+1)T(m—k)k! F(k+2a+m+3)r(k—m+2))
=mQu+m+1).

2.3.2. Calculation of Ig and I¢

For the calculation of I and I, it is more convenient to use the finite sum represen-
tation [19,20] of the Meijer G-functions G;?l) in the kernels (49) and evaluate the integrals
over t by using the identity [18]

17) . (3

1x”71Gm’" A1y An;0n+41s---/0p
0 P\ bibmibmy, by

Consequently, the integrals Ig and I¢ are computed to

_ ~mu+l 1-a,aq,...80;0,41,.--8p
77x> dx = Gp+1q+1 ( b1 oo by 4 1,0-1Dg,—a

m—1
Ig= ) fixfej

k=0
m—1 (54)
Ic= Y 8ikSkjs
k=0
where we denote
_ (=1)T(m+2a+j+2) /°° 122 j=kj- mm+2a+]+1
Sk = S D@t 2 DT at L 2T =) Jo © i | 2atitacyijoior | ¥ ) (55)
B (—1)IT(m +2a+j+2) /°° 122 jkj-mmt2atjtl
8ik = TG I 1+ 2T a £ 2T m =) Jo ¥ O34 | aatibratjsnzje-|¥ | 4 (56)
Using the Mellin transform of the Meijer G-function [18]
« F-lgmn A1y 0n 415 _sn]mlr(b"'_s) r'l:lr(l_aj_s)
/ qu b1 bmbpg,e bq nx dx = g b ’ (57)
0 || — (”J+S)H] 1 (1 —bj—s)




Entropy 2024, 26, 68 10 of 13
the integrals in (55) and (56) are, respectively, calculated as
oo (=1)/T(m+2a+j+2)T(j+2a+1+3)
e TG+ DI (w+j+ )T+ +2)T(m — j) 8)
(TGHa+ A —j+k=3)I(—j+m—3))
T(m+2x+j+3)0(—3 —)T(3 —j+k)
and 3
jtats
e = fik= . 59
$ik = Jik i ©9)

Applying the identity of Gamma function (44), f; x is now written as

T(m+20+j+2)T(j+3)T(m—j—3)  TG+2a+PTG+a+3)

ﬁ*:_]XW+UFU+a+1HU+2&+2ﬂKm—jHXm+2a+j+gﬂk—'—f
il 1
ﬁl],%k— ._%/

where we have utilized the shorthand notation

_ F(m+20+j+2+x)
TG+1+x)(j+a+1+x)(j+2a+2+x)(m—j—x)

lix

2.3.3. Calculation of Ip
To calculate Ip, we use another form of the correlation kernels [18]

m—1
Koo(x,y) = kZ Pi(x)qi (v)
=0
m—1
Kip(x,y) = x*y*Hle ™Y k;) Pe(—y)Qi(—x) —w(x,y),

with the weight function w(x, y) of the biorthogonal polynomials py(x), 4;(y),

L7 mwm ot iy = s,

given by
_ xvcyuc+1e—x—y
w(x,y) = Ty

The functions in (62) can be expressed via Meijer G-functions [17,20] as
x)
x)

gi(%) = V2(~1)/(j + & +1)G,4 (0;2;“%,%&“1

Qj(x) = V2(=1)*!(j+a +1)e "G5 ( —a—jintj+2

11 [ —2e—1—jij+1
pi(x) = V2(—1)/G,4 < O 2n1

Pi(x) = VA(~1)/ e 5G4 <]]

0,0;,—a—1

0,0+1;—a

_x>.

(60)

(61)

(62)

(63)

(64)

(65)
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Using the representations (62), the corresponding integrals of Ip in (51) are now
written as

=T [7 [ e 0t et )p -y drdy
jk=0

atlo—x—y

Xy
—Z/ / X2yt pj(x)q; (y) ———— g draw

(66)

In (66), the first double integral can be separately evaluated over x and y by the Formula (57).
Explicitly, for the integration over x, we have

| s pi(0 Qe -0

o0 ..
_ (_1\jtk+1 11 —2a—1—j;j+1
=(-1) A Gos | o, 2n1

x G2,1 B—k;B+20+k+2
23\ B+aB+2a+1;8

- , co (2042 +7)
= (- / F(1+a)l(2x+2)I(+1)

x> dx

2F(2a+2+j,—j;1+a,20 +2;x)

67)

21 B—lp+20-+k+2 (

x Gy <€3+aﬁ3+§a+1;ﬁ x> dx

_ i (—1)HHRHIT (20 4+ 2+ j + ) /'°° b2l [ Bkpraatki2| ) 4o
ST(1+a+i)l2a+24+)l(i+1)T(j—i+1) 23\ Brapr2uetlip

i (=) T2a+2+j+)T(B+i+1) T(B+a+i+)T(B+20+i+2)
ST(A+a+)lQRa+2+ )i+ 1)I(—i+1)T(B+2a+k+i+3)[(B+i+1—k)

Similarly, for the integration over y, we have
| oAyt g Py dy

_i (—1)SHHTQa 424 j+s)T(B+s+1)  T(B+a+s+2)T(B+2a+s+2)
2T+ a+s)T2e+2+8)T(s+1)I(j—s+1)T(B+2a+k+s+3)T(B+s+1—k)

(68)

For the integral that involves the weight function w(x, y) in (66), we have
5 B X a+l
d d
//XVP] )aj(y) = ry

_ifz 1 F(B+a+i+DT(B+a+k+2)
CEETI+DI(—i+1) 2B+i+k+20+2
(—1)"T (2 +2+j+1) F(2a+2+j+k)
F(1+a+)TRa+24+)TR+a+ kT Ra+2+k)(k+1I(j—k+1)

(69)

Applying the results (67)—(69) with g = % in (66), we obtain

m—1

LZ i T4a+j+1 .
= U 2+i+j+2a)(2+i+j+2a+1)(1+zx+j)’ 70)

N\»—\
N

where we recall the function /; , is denoted in (61).
Inserting the summation forms (45), (52), (54), and (70), we obtain the second moment
of X
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20 +m+1) 1 "=t Lolio 1 1
E,[X?] = m(— il I (o 2 N[
n[X7] 2 T = ];) lk,%lj,% + 2(j+a+1) * 2(k+a+1)

B 1 1+j+a+§k+a+% 1)
2(k—j—%)(j—k—%) jta+1k+a+1
S+jta >
24+ j+k+20)B3+j+k+20)(1+a+j))

+
(
Now, using the relation (34), we complete the proof of Proposition 2.

3. Conclusions

In this work, we compute the exact mean values of negativity and fidelity over the
Bures-Hall ensemble via computing the first two moments of the sum of the square root
spectrum of density matrices. We derived the results by utilizing established formulas of
the correlation functions of the Bures—-Hall ensemble, along with corresponding tools of
special functions. Future work will involve computing higher-order moments of the sum
of the square root spectrum and determining its asymptotic distributions.
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