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Abstract: To estimate the degree of quantum entanglement of random pure states, it is crucial to

understand the statistical behavior of entanglement indicators such as the von Neumann entropy,

quantum purity, and entanglement capacity. These entanglement metrics are functions of the spec-

trum of density matrices, and their statistical behavior over different generic state ensembles have

been intensively studied in the literature. As an alternative metric, in this work, we study the sum of

the square root spectrum of density matrices, which is relevant to negativity and fidelity in quantum

information processing. In particular, we derive the finite-size mean and variance formulas of the

sum of the square root spectrum over the Bures–Hall ensemble, extending known results obtained

recently over the Hilbert–Schmidt ensemble.

Keywords: quantum entanglement; negativity; fidelity; Bures–Hall ensemble; random matrix theory

1. Introduction and Main Results

The understanding of entanglement is crucial to any successful quantum information
processing task. In studying the degree of entanglement, researchers commonly employ
entropy-based measures, for example, the von Neumann entropy [1] and quantum pu-
rity [2]. Additionally, various other entanglement metrics have been investigated, such as
the entanglement capacity proposed in [3] as a quantum analogy to the heat capacity of
classical systems. In the past decades, there has been considerable efforts in discovering
the statistical behavior of the degree entanglement of quantum bipartite systems. These
studies focus on computing the moments of the entanglement measures over different
generic (pure) state models: the Hilbert–Schmidt ensemble, the Bures–Hall ensemble, and
the emerging fermionic Gaussian ensemble. In the present work, we study the statistical
behavior of the metric—the sum of the square root of the spectrum of density matrices
over the Bures–Hall ensemble. The proposed metric is what we refer to as a square root
statistic and is relevant to the negativity introduced in [4], a computable measure of en-
tanglement between the subsystems of quantum bipartite models. Our primary findings
are the exact formulas of the first two moments of the square root statistic. Moreover, the
obtained formulas extend the recent the results of negativity [5] and fidelity [6] over the
Hilbert–Schmidt ensemble to the Bures–Hall ensemble.

1.1. Square Root Spectrum and Applications

The sum of the square root of the spectrum of density matrices is defined as

Λ =
m

∑
i=1

λ
1
2
i , (1)

where m is the dimension of the density matrix and the set {λi}m
i=1 is its spectrum. The

random variable (1) is closely related to the negativity (2) and fidelity (3) as discussed below.
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For a pure bipartite state ρ = |ψ⟩⟨ψ| with |ψ⟩ = ∑
m
j=1

√

λj|jj⟩ and ∑
m
j=1 λj = 1,

where |jj⟩ are the eigenvectors corresponding to the Schmidt coefficients, the negativity is
defined as

N (ρ) =
||ρTA ||1 − 1

2
=

∑j ̸=k

√

λjλk

2
=

(

∑
m
j=1

√

λj

)2

− 1

2
=

Λ2 − 1

2
, (2)

where || · ||1 is the trace norm (also known as the Schatten 1-norm) and ρTA refers to the
partial transpose of ρ. Among different entanglement measures, the negativity possesses a
unique property [7]. Assuming E(ρ) to be a weak entanglement monotone, characterized as
a symmetric function of negative eigenvalues of ρTA , then E(ρ) is a non-decreasing function
of N (ρ). In the case that it is additive, it follows that E(ρ) = c log(1 + 2N (ρ)) for some
constant c ≥ 0.

Fidelity [8] is a measure of the similarity between two quantum states. It quantifies
how closely one quantum state resembles another. Given two quantum states characterized
by the respective density matrices, σ and ρ, the fidelity is

F (σ, ρ) =

(

tr

√√
σρ

√
σ

)2

. (3)

In this work, we study the case

σ =
1

m
Im, (4)

which represents the maximum mixed state, and ρ is the random density matrix that
corresponds to the Bures–Hall ensemble. In this case, we have

F (σ, ρ) =
1

m
Λ2. (5)

1.2. Description of Bures–Hall Ensemble

The Bures–Hall ensemble is introduced in the following (see also [9,10] for detailed
formulations). Consider a bipartite system composed of two subsystems A and B of Hilbert
space (complex vector space) with dimensions m and n, respectively. The Hilbert space
HA+B = HA ⊗HB. Let

∣

∣iA
〉

and
∣

∣jB
〉

be the complete basis of HA and HB. A random pure
state of the composite system HA+B is defined as a linear combination of the basis

∣

∣iA
〉

and
∣

∣jB
〉

[9] as

|ψ⟩ =
m

∑
i=1

n

∑
j=1

zi,j

∣

∣

∣
iA
〉

⊗
∣

∣

∣
jB
〉

, (6)

where the coefficients zi,j are uniformly distributed over all possible values satisfying the

constraint ∑
m
i=1 ∑

n
j=1 |zi,j|2 = 1. We now consider a superposition of the state (6),

|ϕ⟩ ∼ |ψ⟩+ (U ⊗ In)|ψ⟩, (7)

where U is an m × m unitary random matrix with the measure proportional to
det(Im + U)2α+1 [11] with the parameter α taking half-integer values

α = n − m − 1

2
. (8)

The corresponding density matrix of the pure state (7) is

ρ = |ϕ⟩⟨ϕ|, (9)
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with the probability constraint
tr(ρ) = 1, (10)

which has been discussed in detail in [9]. We assume that m ≤ n without loss of generality.
By partial tracing (purification) of the full density matrix (9) over the other subsystem B
(environment), the reduced density matrix ρA of the smaller subsystem A is obtained as

ρA = trBρ. (11)

The density of the eigenvalues of ρA (λi ∈ [0, 1], i = 1, . . . , m) is the (generalized) complex
Bures–Hall measure [7,12–14],

f (λ) =
1

C
δ

(

1 −
m

∑
i=1

λi

)

∏
1≤i<j≤m

(λi − λj)
2

λi + λj

m

∏
i=1

λα
i , (12)

where the constant C is

C =
2−m(m+2α)πm/2

Γ(m(m + 2α + 1)/2)

m

∏
i=1

Γ(i + 1)Γ(i + 2α + 1)

Γ
(

i + α + 1
2

) . (13)

1.3. Main Results

We now introduce our main results of the first two moments of the statistic Λ, which
are presented in Propositions 1 and 2 below.

Proposition 1. The exact mean of the square root statistic Λ in (1), valid for any subsystem
dimensions m ≤ n under the Bures–Hall ensemble (12), is given by

E f [Λ] =
Γ(d)

Γ(d + 1
2 )π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

× Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

(

1 +
k + α + 1

k + α + 3
2

)

,

(14)

where d is

d =
1

2
m(m + 2α + 1). (15)

Proposition 2. The exact second moment of the square root statistic Λ in (1), valid for any
subsystem dimensions m ≤ n under the Bures–Hall ensemble (12), is given by

E f [Λ
2] =

1

π2d

m−1

∑
k=0

m−1

∑
j=0

lk,0lj,0

lk, 1
2
lj, 1

2

((

2 +
1

2(j + α + 1)

)(

2 +
1

2(k + α + 1)

)

− 1

2
(

k − j − 1
2

)(

j − k − 1
2

)

(

1 +
j + α + 3

2

j + α + 1

k + α + 3
2

k + α + 1

)

+
3
2 + j + α

(2 + j + k + 2α)(3 + j + k + 2α)(1 + α + j)

)

+ 1,

(16)

where d is denoted in (15), and

lk,β =
Γ(m + 2α + k + 2 + β)

Γ(k + 1 + β)Γ(k + α + 1 + β)Γ(k + 2α + 2 + β)Γ(m − k − β)
. (17)
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The proof of Proposition 1 and Proposition 2 are given, respectively, in Section 2.2
and Section 2.3. Moreover, the mean value of negativity (2) and fidelity (5), valid for any
subsystem dimensions m ≤ n, are obtained as

E f [N ] =
1

2

(

E f [Λ
2]− 1

)

,

E f [F ] =
1

m
E f [Λ

2],

(18)

where the expectation E f [.] is taken over the Bures–Hall ensemble (12). By definition, the
exact variance of Λ under the Bures–Hall ensemble is given by

V f [Λ] = E f [Λ
2]−E

2
f [Λ]. (19)

With the obtained expressions of the mean (14) and variance (19), we can now study
the distribution of Λ by standardizing it as

Y =
Λ −E f [Λ]
√

V f [Λ]
, (20)

where the standardized variable Y is supported in Y ∈ (−∞, ∞) with zero mean and unit
variance. As inspired by the Gaussian limit conjecture of von Neumann entropy [15,16],
we plot, in Figures 1 and 2, the simulation results of the standardized random valuable Y
in comparison with the Gaussian density. It turns out that the distribution of Λ, similar to
the von Neumann entropy, also approaches a Gaussian distribution when the subsystem
dimensions increase with a fixed ratio m/n.

Figure 1. Probability density of Y in (20) in comparison with the Gaussian density. The dashed black

line is plotted by the simulation results of Y with subsystem dimensions m = 4, n = 6 and the solid

blue line is the standard Gaussian density.
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Figure 2. Probability density of Y in (20) versus the Gaussian density. The dashed black line is plotted

by the simulation results of Y with subsystem dimensions m = 16, n = 24 and the solid blue line is

the standard Gaussian density.

2. Moments Computation

In this section, we discuss the moment computation that gives rise to the results in
Propositions 1 and 2. Specifically, in Section 2.1, we relate the computation of the moments
to that over a more convenient ensemble with no fixed trace constraint. The detailed
derivation of the first and second moments of the square root statistic Λ are presented in
Section 2.2 and Section 2.3, respectively.

2.1. Ensemble Conversion

We calculate the random variable under the original ensemble (12) by converting it to
an unconstrained ensemble of the Bures–Hall measure,

h(x) =
1

C′ ∏
1≤i<j≤m

(xi − xj)
2

xi + xj

m

∏
i=1

xα
i e−xi , xi ∈ [0, ∞) (21)

where the constant C′ depends on the constant C in (13) as

C′ = CΓ(d) (22)

with d denoting

d =
1

2
m(m + 2α + 1). (23)

The density of the trace

θ =
m

∑
i=1

xi, θ ∈ [0, ∞) (24)

is

g(θ) =
∫

x
h(x)δ

(

θ −
m

∑
i=1

xi

)

m

∏
i=1

dxi, (25)

where, by the change of variables,
xi = θλi, (26)
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we have

g(θ) =
C

C′ e
θθd−1

∫

λ
f (λ)dλi

=
1

Γ(d)
e−θθd−1.

(27)

Keeping in mind the above result (27), the change of variables (26) in (12) now leads to
the relation

h(x)
m

∏
i=1

dxi = g(θ) f (λ)dθ
m

∏
i=1

dλi, (28)

which implies that θ is independent of each λi, i = 1, . . . , m since the densities factorize.
This fact allows us to relate the moments of

Λ =
m

∑
i=1

λ
1
2
i (29)

over the Bures–Hall ensemble (12) to that of a random variable

X =
m

∑
i=1

x
1
2
i (30)

over the unconstrained ensemble (21).
We now derive the relations between the first two moments of the random variables.

For the first moment, by definition, we have

E f [Λ] =
∫ ∞

0

e−θθd− 1
2

Γ(d + 1
2 )

dθ

∫ ∞

0
Λ f (λ)

m

∏
i=1

dλi, (31)

where we have multiplied a constant

1 =
∫ ∞

0

1

Γ(d + 1
2 )

e−θθd− 1
2 dθ (32)

by using the result (27). In (31), substituting Λ with X gives

E f [Λ] =
∫ ∞

0

∫ ∞

0

X

θ
1
2

e−θθd− 1
2

Γ(d + 1
2 )

f (λ)dθ
m

∏
i=1

dλi

=
Γ(d)

Γ(d + 1
2 )

∫ ∞

0
g(θ)dθ

∫ ∞

0
X f (λ)

m

∏
i=1

dλi

=
Γ(d)

Γ(d + 1
2 )

∫ ∞

0
Xh(x)

m

∏
i=1

dxi

=
Γ(d)

Γ(d + 1
2 )

Eh[X].

(33)

Similarly, we obtain the relation between the second moments as

E f [Λ
2] =

1

d
Eh[X

2]. (34)

Using the result (33) and (34), we have

V f [Λ] = E f [Λ
2]−E

2
f [Λ]

=
1

d
Eh[X

2]−
(

Γ(d)

Γ(d + 1
2 )

)2

E
2
h[X].

(35)
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Therefore, the remaining task in obtaining the main results (14) and (16) is to calculate the
first two moments of the statistic X in (30).

2.2. Calculation of the First Moment

Computing the average value of X requires the one-point correlation function of the
unconstrained ensemble (21), which is [17]

h1(x) =
1

2m
(K01(x, x) + K10(x, x)), (36)

where the correlation kernels K01(x, x) and K10(x, x) admit the following integral
representations

K01(x, y) = x2α+1
∫ 1

0
t2α+1Hα(ty)Gα+1(tx)dt,

K10(x, y) = y2α+1
∫ 1

0
t2α+1Hα+1(tx)Gα(ty)dt

(37)

with

Hq(x) = G 1,1
2,3

(

−m−2α−1;m
0;−q,−2α−1

∣

∣

∣

∣

∣

x

)

≡ G1,1
2,3(q|x)

Gq(x) = G 2,1
2,3

(

−m−2α−1;m
0,−q;−2α−1

∣

∣

∣

∣

∣

x

)

≡ G2,1
2,3(q|x)

(38)

further denoting some Meijer G-functions [18]. The mean value of X is

Eh[X] = −m
∫ ∞

0
x

1
2 h1(x)dx

= −1

2

∫ ∞

0
x

1
2 (K01(x, x) + K10(x, x))dx

= −1

2

∫ ∞

1
(I

1
2
α (t) + I

1
2
α+1(t))dt,

(39)

where we have used the notation [19], Equation (31)

I
(β)
q (t) =

∫ ∞

0
xβG1,1

2,3(q|tx)G2,1
2,3(q|tx)dx, t > 0. (40)

The above integration has been evaluated in [19] as

I
(β)
q (t) = t−β−1 I

(β)
q , (41)

with I
(β)
q denoting the t independent part

I
(β)
q =

m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − β)

Γ(k + 2α + 2)Γ(k + 2α + 2 − q)Γ(m − k)k!

× Γ(k + β + 2α + 2)Γ(k + β + 2α + 2 − q)

Γ(k + β + 2α + m + 2)Γ(−k − β)
.

(42)

Inserting the above result (42) into (39) and evaluating the integration over t, one obtains

Eh[X] = −
m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − 1
2 )

Γ(k + 2α + 2)Γ(k + α + 2)Γ(m − k)k!

Γ(k + 1
2 + 2α + 2)Γ(k + 1

2 + α + 2)

Γ(k + 1
2 + 2α + m + 2)Γ(−k − 1

2 )

−
m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − 1
2 )

Γ(k + 2α + 2)Γ(k + α + 1)Γ(m − k)k!

Γ(k + 1
2 + 2α + 2)Γ(k + 1

2 + α + 1)

Γ(k + 1
2 + 2α + m + 2)Γ(−k − 1

2 )
.

(43)
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By using the following identity of gamma function

Γ

(

−1

2
− k

)

= (−1)k−1 Γ( 1
2 )Γ(

1
2 )

Γ(k + 1 + 1
2 )

, (44)

the mean value is further simplified to

Eh[X] =
1

π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

×
(

1 +
k + α + 1

k + α + 3
2

)

.

(45)

Inserting the result (45) into the relation (33), the first moment of Λ is obtained as

E f [Λ] =
Γ(d)

Γ(d + 1
2 )π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

×
(

1 +
k + α + 1

k + α + 3
2

)

.

(46)

This completes the proof of Proposition 1.

2.3. Calculation of the Second Moment

According to the relation of second moments (35), it now suffices to calculate Eh[X
2]

in obtaining Eh[Λ
2]. By definition, we have

Eh[X
2] =

∫

x

(

m

∑
i=1

x
1
2
i

)2

h(x)
m

∏
i=1

dxi

=
∫

x

(

m

∑
i=1

xi

)

h(x)
m

∏
i=1

dxi + 2
∫

x

(

∑
1≤i<j≤m

x
1
2
i x

1
2
j

)

h(x)
m

∏
i=1

dxi

= m
∫ ∞

0
xh1(x)dx + m(m − 1)

∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 h2(x, y)dx dy.

(47)

To proceed the above integrals, one will need the joint density of one and two arbitrary
eigenvalues, respectively, denoted by h1(x) and h2(x, y). The former one is given in (36)
and the latter one in [17,20]

h2(x, y) =
1

4m(m − 1)

(

(

K01(x, x) + K10(x, x)
)(

K01(y, y) + K10(y, y)
)

− 2K01(x, y)K01(y, x)

− 2K10(x, y)K10(y, x)− 2K00(x, y)K11(x, y)− 2K00(y, x)K11(y, x)

)

,

(48)

where

K00(x, y) =
∫ 1

0
t2α+1Hα(tx)Hα+1(ty)dt

K01(x, y) = x2α+1
∫ 1

0
t2α+1Hα(ty)Gα+1(tx)dt

K10(x, y) = y2α+1
∫ 1

0
t2α+1Hα+1(tx)Gα(ty)dt

K11(x, y) = (xy)2α+1
∫ 1

0
t2α+1Gα+1(tx)Gα(ty)dt − xαyα+1

x + y
.

(49)
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By using the densities (36) and (48), computing the integrals in (47) now boils down
to computing

Eh[X
2] =

1

2
IA − 1

2
(IB + IC)− ID +E

2
h[X], (50)

where

IA =
∫ ∞

0
x(K01(x, x) + K10(x, x))dx

IB =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K01(x, y)K01(y, x)dx dy

IC =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K10(x, y)K10(y, x)dx dy

ID =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K00(x, y)K11(x, y)dx dy.

(51)

2.3.1. Calculation of IA

Using the same strategy in calculatingEh[X] in Section 2.2 (see also [15], Equations (52)–(55)),
for example, the integral IA in (51) is computed as

IA = −
m−1

∑
k=0

(

(−1)k+mΓ(k + 2α + m + 2)Γ(k + 2)

Γ(k + 2α + 2)Γ(k + α + 2)Γ(m − k)k!

Γ(k + 2α + 3)Γ(k + α + 3)

Γ(k + 2α + m + 3)Γ(k − m + 2)

+
(−1)k+mΓ(k + 2α + m + 2)Γ(k + 2)

Γ(k + 2α + 2)Γ(k + α + 1)Γ(m − k)k!

Γ(k + 2α + 3)Γ(k + α + 2)

Γ(k + 2α + m + 3)Γ(k − m + 2)

)

= m(2α + m + 1).

(52)

2.3.2. Calculation of IB and IC

For the calculation of IB and IC, it is more convenient to use the finite sum represen-

tation [19,20] of the Meijer G-functions G1,1
2,3 in the kernels (49) and evaluate the integrals

over t by using the identity [18]

∫ 1

0
xa−1G m,n

p,q

(

a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq

∣

∣

∣

∣

∣

ηx

)

dx = G m,n+1
p+1,q+1

(

1−a,a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq ,−a

∣

∣

∣

∣

∣

η

)

. (53)

Consequently, the integrals IB and IC are computed to

IB =
m−1

∑
j,k=0

f j,k fk,j

IC =
m−1

∑
j,k=0

gj,kgk,j,

(54)

where we denote

f j,k =
(−1)jΓ(m + 2α + j + 2)

Γ(j + 1)Γ(α + j + 1)Γ(2α + j + 2)Γ(m − j)

∫ ∞

0
x

1
2 G 2,2

3,4

(

j−k,j−m;m+2α+j+1
2α+j+1,α+j;j,j−k−1

∣

∣

∣

∣

∣

x

)

dx (55)

gj,k =
(−1)jΓ(m + 2α + j + 2)

Γ(j + 1)Γ(α + j + 2)Γ(2α + j + 2)Γ(m − j)

∫ ∞

0
x

1
2 G 2,2

3,4

(

j−k,j−m;m+2α+j+1
2α+j+1,α+j+1;j,j−k−1

∣

∣

∣

∣

∣

x

)

dx. (56)

Using the Mellin transform of the Meijer G-function [18]

∫ ∞

0
xs−1G m,n

p,q

(

a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq

∣

∣

∣

∣

∣

ηx

)

dx =
η−s ∏

m
j=1 Γ(bj + s)∏

n
j=1 Γ(1 − aj − s)

∏
p
j=n+1 Γ(aj + s)∏

q
j=m+1 Γ(1 − bj − s)

, (57)
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the integrals in (55) and (56) are, respectively, calculated as

f j,k =
(−1)jΓ(m + 2α + j + 2)Γ(j + 2α + 1 + 3

2 )

Γ(j + 1)Γ(α + j + 1)Γ(2α + j + 2)Γ(m − j)

× Γ(j + α + 3
2 )Γ(1 − j + k − 3

2 )Γ(1 − j + m − 3
2 ))

Γ(m + 2α + j + 5
2 )Γ(− 1

2 − j)Γ( 1
2 − j + k)

(58)

and

gj,k = f j,k
j + α + 3

2

j + α + 1
. (59)

Applying the identity of Gamma function (44), f j,k is now written as

f j,k = − Γ(m + 2α + j + 2)Γ(j + 3
2 )Γ(m − j − 1

2 )

Γ(j + 1)Γ(j + α + 1)Γ(j + 2α + 2)Γ(m − j)

Γ(j + 2α + 5
2 )Γ(j + α + 3

2 )

Γ(m + 2α + j + 5
2 )(k − j − 1

2 )π

= − 1

π

lj,0

lj, 1
2

1

k − j − 1
2

,

(60)

where we have utilized the shorthand notation

lj,x =
Γ(m + 2α + j + 2 + x)

Γ(j + 1 + x)Γ(j + α + 1 + x)Γ(j + 2α + 2 + x)Γ(m − j − x)
. (61)

2.3.3. Calculation of ID

To calculate ID, we use another form of the correlation kernels [18]

K00(x, y) =
m−1

∑
k=0

pk(x)qk(y)

K11(x, y) = xαyα+1e−x−y
m−1

∑
k=0

Pk(−y)Qk(−x)− w(x, y),

(62)

with the weight function w(x, y) of the biorthogonal polynomials pk(x), ql(y),

∫ ∞

0

∫ ∞

0
pk(x)ql(y)w(x, y)dxdy = δkl , (63)

given by

w(x, y) =
xαyα+1e−x−y

x + y
. (64)

The functions in (62) can be expressed via Meijer G-functions [17,20] as

pj(x) =
√

2(−1)jG 1,1
2,3

(

−2α−1−j;j+1
0;−α,−2α−1

∣

∣

∣

∣

∣

x

)

qj(x) =
√

2(−1)j(j + α + 1)G 1,1
2,3

(

−2α−1−j;j+1
0;−α−1,−2α−1

∣

∣

∣

∣

∣

x

)

Pj(x) =
√

2(−1)j+1e−xG 2,1
2,3

(

−α−j−1;α+j+1
0,α;−α−1

∣

∣

∣

∣

∣

− x

)

Qj(x) =
√

2(−1)j+1(j + α + 1)e−xG 2,1
2,3

(

−α−j;α+j+2
0,α+1;−α

∣

∣

∣

∣

∣

− x

)

.

(65)
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Using the representations (62), the corresponding integrals of ID in (51) are now
written as

ID =
m−1

∑
j,k=0

∫ ∞

0

∫ ∞

0
x

1
2 xαe−x pj(x)Qk(−x)y

1
2 yα+1e−yqj(y)Pk(−y)dx dy

−
m−1

∑
j=0

∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 pj(x)qj(y)

xαyα+1e−x−y

x + y
dx dy.

(66)

In (66), the first double integral can be separately evaluated over x and y by the Formula (57).
Explicitly, for the integration over x, we have

∫ ∞

0
xβxαe−x pj(x)Qk(−x)dx

= (−1)j+k+1
∫ ∞

0
G 1,1

2,3

(

−2α−1−j;j+1
0;−α,−2α−1

∣

∣

∣

∣

∣

x

)

G 2,1
2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

= (−1)j+k+1
∫ ∞

0

Γ(2α + 2 + j)

Γ(1 + α)Γ(2α + 2)Γ(j + 1) 2F2(2α + 2 + j,−j; 1 + α, 2α + 2; x)

× G 2,1
2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

=
j

∑
i=0

(−1)i+j+k+1Γ(2α + 2 + j + i)

Γ(1 + α + i)Γ(2α + 2 + i)Γ(i + 1)Γ(j − i + 1)

∫ ∞

0
xiG 2,1

2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

=
j

∑
i=0

(−1)i+j+1Γ(2α + 2 + j + i)Γ(β + i + 1)

Γ(1 + α + i)Γ(2α + 2 + i)Γ(i + 1)Γ(j − i + 1)

Γ(β + α + i + 1)Γ(β + 2α + i + 2)

Γ(β + 2α + k + i + 3)Γ(β + i + 1 − k)
.

(67)

Similarly, for the integration over y, we have

∫ ∞

0
yβyα+1e−yqj(y)Pk(−y)dy

=
j

∑
s=0

(−1)s+j+1Γ(2α + 2 + j + s)Γ(β + s + 1)

Γ(2 + α + s)Γ(2α + 2 + s)Γ(s + 1)Γ(j − s + 1)

Γ(β + α + s + 2)Γ(β + 2α + s + 2)

Γ(β + 2α + k + s + 3)Γ(β + s + 1 − k)
.

(68)

For the integral that involves the weight function w(x, y) in (66), we have

∫ ∞

0

∫ ∞

0
xβyβ pj(x)qj(y)

xαyα+1e−x−y

x + y
dx dy

=
j

∑
i=0

j

∑
k=0

1

Γ(i + 1)Γ(j − i + 1)

Γ(β + α + i + 1)Γ(β + α + k + 2)

2β + i + k + 2α + 2

× (−1)k+iΓ(2α + 2 + j + i)

Γ(1 + α + i)Γ(2α + 2 + i)

Γ(2α + 2 + j + k)

Γ(2 + α + k)Γ(2α + 2 + k)Γ(k + 1)Γ(j − k + 1)
.

(69)

Applying the results (67)–(69) with β = 1
2 in (66), we obtain

ID = − 1

π2

m−1

∑
i=0

m−1

∑
j=0

li,0lj,0

li, 1
2
lj, 1

2

1
2 + α + j + 1

(2 + i + j + 2α)(2 + i + j + 2α + 1)(1 + α + j)
, (70)

where we recall the function lj,x is denoted in (61).
Inserting the summation forms (45), (52), (54), and (70), we obtain the second moment

of X
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Eh[X
2] =

m(2α + m + 1)

2
+

1

π2

m−1

∑
k=0

m−1

∑
j=0

lk,0lj,0

lk, 1
2
lj, 1

2

((

2 +
1

2(j + α + 1)

)(

2 +
1

2(k + α + 1)

)

− 1

2
(

k − j − 1
2

)(

j − k − 1
2

)

(

1 +
j + α + 3

2

j + α + 1

k + α + 3
2

k + α + 1

)

+
3
2 + j + α

(2 + j + k + 2α)(3 + j + k + 2α)(1 + α + j)

)

.

(71)

Now, using the relation (34), we complete the proof of Proposition 2.

3. Conclusions

In this work, we compute the exact mean values of negativity and fidelity over the
Bures–Hall ensemble via computing the first two moments of the sum of the square root
spectrum of density matrices. We derived the results by utilizing established formulas of
the correlation functions of the Bures–Hall ensemble, along with corresponding tools of
special functions. Future work will involve computing higher-order moments of the sum
of the square root spectrum and determining its asymptotic distributions.
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