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Abstract: In this article, we consider a theoretical model for a type I Weyl semimetal, under the

presence of a diluted uniform concentration of torsional dislocations. By means of a mathematical

analysis for partial wave scattering (phase-shift) for the T-matrix, we obtain the corresponding

retarded and advanced Green’s functions that include the effects of multiple scattering events with

the ensemble of randomly distributed dislocations. Combining this analysis with the Kubo formalism,

and including vertex corrections, we calculate the electronic conductivity as a function of temperature

and concentration of dislocations. We further evaluate our analytical formulas to predict the electrical

conductivity of several transition metal monopnictides, i.e., TaAs, TaP, NbAs, and NbP.

Keywords: Weyl semimetals; transport; torsion; dislocations; Kubo relations

1. Introduction

Weyl semimetals (WSMs) constitute a remarkable example of three-dimensional,
gapless materials with nontrivial topological properties—first proposed theoretically [1–7]
and, more recently, discovered experimentally on TaAs crystals [8].

In a WSM, the band structure possesses an even number of Weyl nodes with linear
dispersion, where the conduction and valence bands touch. These nodes are monopolar
sources of Berry curvature, and hence are protected from being gapped since their charge
(chirality) is a topological invariant [7]. In the vicinity of these nodes, low energy conducting
states behave as Weyl fermions, i.e., massless quasi-particles with pseudo-relativistic Dirac
linear dispersion [4–7]. In Weyl fermions, conserved chirality determines the projection of
spin over their momentum direction, a condition referred to as “spin-momentum locking”.
While Type I WSMs are Lorentz covariant, this symmetry is violated in Type II WSMs,
where the Dirac cones are strongly tilted [9].

The presence of Weyl nodes in the bulk spectrum determines the emergence of Fermi
arcs [8], the chiral anomaly, and the chiral magnetic effect, among other remarkable properties [9].
Therefore, considerable attention has been paid to understand the electronic transport properties
of WSMs [10–12]. For instance, there are recent works on charge transport [13] in the presence
of spin–orbit coupled impurities [14], electrochemical [15] and nonlinear transport induced by
Berry curvature dipoles [16]. Somewhat less explored are the effects of mechanical strain and
deformations in WSMs. From a theoretical perspective, it has been proposed that different
types of elastic strains can be modeled as gauge fields in WSMs [17–19]. In previous works, we
have studied the combined effects of a single torsional dislocation and an external magnetic
field on the electronic [20,21] and thermoelectric [20,22] transport properties of WSMs, using
the Landauer ballistic formalism in combination with a mathematical analysis for the quantum
mechanical scattering cross-sections [23].

In this work, we extend our previous analysis to study the case of a diluted, uniform
concentration of torsional dislocations and its effects on the electrical conductivity of type I
WSMs. In contrast to our former studies [20–22], here we employ the Kubo linear-response
formalism at finite temperatures. This requires explicitly calculating the retarded and
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advanced Green´s functions for the system, including the multiple scattering events due
to the random distribution of dislocation defects in the form of a disorder-averaged self-
energy term. For this purpose, we first analyze the scattering phase shift arising from a
single torsional dislocation, and then we obtain the corresponding (retarded and advanced)
Green’s function in terms of the T-matrix elements by solving analytically the Lippmann–
Schwinger equation. We further extend this analysis, by incorporating the effect of a
random distribution of such dislocations, with a concentration nd, in the form of a disorder-
averaged self-energy into the corresponding Dyson’s equation. Finally, we analyze the
correction due to the scattering vertex, and by including this additional contribution, we
calculate the electrical conductivity from the Kubo formula, as a function of temperature and
concentration of dislocations. We present explicit evaluations of our analytical expressions
for the electrical conductivity as a function of temperature and concentration of dislocations
nd, for several materials in the family of transition metals’ monopnictides, i.e., TaAs, TaP,
NbAs and NbP, where the corresponding microscopic parameters, estimated by ab initio
methods, were reported in the literature [24–26].

2. Scattering by a Single Dislocation

As a continuum model for a type I WSM under the presence of a single dislocation
defect, as depicted in Figure 1, we consider the Hamiltonian [22]

Ĥξ = ξ h̄vFσ ·
(

p + eAξ
)

+ σ0V0δ(r − a) ≡ Ĥ
ξ
0 + Ĥ

ξ
1 , (1)

where

Ĥ
ξ
0 = ξvFσ · p, (2)

Ĥ
ξ
1 = ξevF

(

σ · φ̂
)1

2
BξrΘ(a − r) + V0δ(r − a)σ0. (3)

Here, ξ = ± labels each of the Weyl nodes located at K± = ±b/2. The expression
in Equation (2) is the free-particle Hamiltonian, whereas the expression in Equation (3)
represents the interaction with the dislocation, where torsional strain is described as a
pseudo-magnetic field inside the cylinder [21–23], as well as the lattice mismatch effect at
the boundary of the dislocation, modeled as a repulsive delta barrier on its surface [22].

Figure 1. Pictorial description of the scattering of free incident Weyl fermions coming from a left

reservoir by a single cylindrical dislocation defect.
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The “free” spinor eigenfunctions for the defect-free reference system satisfy

Ĥ
ξ
0 |Φk,λ〉 = E (0,ξ)

λ,k |Φk,λ〉, (4)

where the energy spectrum is given by

E (0,ξ)
λ,k = λξ h̄vF|k|, (5)

and λ = ±1 is the band (helicity) index. When projected onto coordinate space, these
spinor eigenfunctions have the explicit form

Φλ,k(r) =

√

|k|+ λkz

2|k|

(

1
λ|k|−kz
kx−iky

)

eik·r, (6)

and constitute an orthonormal basis for the Hilbert space.
If we now consider the (elastic) scattering effects induced by the torsional dislocation

modeled by Equation (3), we need to look for the eigenvectors |Ψλ,k〉 of the total Hamilto-
nian in Equation (1) with the same energy as in Equation (5). The answer is provided by
the solution to the well-known Lippmann–Schwinger equation

|Ψk,λ〉 = |Φk,λ〉+ Ĝ
ξ
R,0(E)Ĥ

ξ
1 |Ψk,λ〉, (7)

where the free Green’s function can be expressed in a coordinate-independent representa-
tion form via the resolvent,

Ĝ
ξ
R/A,0(E) =

[

E − Ĥ
ξ
0 ± iη+

]−1
. (8)

Here, the index R/A stands for retarded and advanced, respectively. As shown in
detail in Appendix A, in the coordinate representation, the corresponding free Green’s

function is given by the explicit matrix form G
ξ
R,0(r, r′; k) = δ(z − z′)Gξ

R,0(x, x′; k), where
r = (x, z) and

G
ξ
R,0

(

x, x′; k
)

= − λξik

4h̄vF

[

H
(1)
0 (k|x − x′|) iλe−iϕ H

(1)
1 (k|x − x′|)

iλeiϕ H
(1)
1 (k|x − x′|) H

(1)
0 (k|x − x′|)

]

. (9)

Here, H
(1)
0 (z) and H

(1)
1 (z) are the Hankel functions, and x = (x, y) is the position

vector on any plane perpendicular to the cylinder’s axis.
For the scattering analysis, we need the retarded resolvent for the full Hamiltonian,

which is defined as the solution to the equation

(

E + iη+ − Ĥξ
)

Ĝ
ξ
R(E) = Î. (10)

Combining Equation (10) with Equation (8), we readily obtain

Ĝ
ξ
R(E) = Ĝ

ξ
R,0(E) + Ĝ

ξ
R,0(E)Ĥ

ξ
1 Ĝ

ξ
R(E)

= Ĝ
ξ
R,0(E) + Ĝ

ξ
R,0(E)T̂ξ(E)Ĝξ

R,0(E), (11)

where we introduced the standard definition of the T-matrix operator T̂ξ(E) that can be
formally expressed in closed form by

T̂ξ(E) = Ĥ
ξ
1 + Ĥ

ξ
1 Ĝ

ξ
R,0(E)T̂ξ(E)

= Ĥ
ξ
1

(

Î − Ĝ
ξ
R,0(E)Ĥ

ξ
1

)−1
. (12)
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Using this definition, along with the property Ĥ
ξ
1 |Ψk,λ〉 = T̂ξ |Φk,λ〉, we obtain the

Lippmann–Schwinger Equation (7) in the coordinate representation

Ψk,λ(r) = Φk,λ(r) +
∫

d3r′
∫

d3r′′
〈

r
∣

∣

∣
Ĝ

ξ
R,0(E)

∣

∣

∣
r′
〉〈

r′
∣

∣

∣
T̂ξ(E)

∣

∣

∣
r′′
〉

Φk,λ(r
′′). (13)

As shown in detail in Appendix B, by considering the asymptotic behavior of the

Hankel functions, H
(1)
ν (x) ∼

√

2
πx ei(x− νπ

2 − π
4 ) (for x → ∞), Equation (13) can be reduced

to the x–y plane and takes the explicit asymptotic expression

Ψk‖ ,λ(x) ∼
1√
2

(

1
λ

)

eikx − λξ

2h̄vF

√

ik

π
T
(λ,ξ)
k′‖k‖

(

1

λeiφ

)

eikr

√
r

, (14)

where, as we explain in the Appendix, the particles have only momenta perpendicular to
the defect’s axis, i.e., k‖ = (kx, ky). Comparing this last result with our previous reported
expression for the scattering amplitude [27],

[

f1(φ)
f2(φ)

]

=
e−

iπ
4√

4πk

∞

∑
m=−∞

[

eimφ

λei(m+1)φ

]

(

e2iδm − 1
)

, (15)

we identify T
(λ,ξ)
k′k = −2λξ h̄vF

√
π/ik f1(φ). Therefore, we arrived at an explicit analytical

expression for the T-matrix elements in terms of the phase shift δm(k) for each angular
momentum channel m ∈ Z

T
(λ,ξ)
k′‖k‖

= −2λξ h̄vF

k

∞

∑
m=−∞

eiδm(k) sin δm(k)e
imφ, (16)

where φ is the angle between k‖ and k′
‖, and the analytical expression for the phase shift is

given in Appendix B by Equation (A27).

Figure 2. Pictorial description of the scattering event on a plane perpendicular to the cylindrical

defect axis.
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3. Scattering by a Uniform Concentration of Dislocations

Let us now consider a uniform concentration nd = Nd/A (per unit transverse surface) of
identical cylindrical dislocations, as depicted in Figure 3, represented by the density function

ρ(x) =
Nd

∑
j=1

δ(x − Xj), (17)

where Xj is the position of the jth-dislocation’s axis. The Fourier transform of this density
function is thus given by the expression

ρ̃(k‖) =
∫

d2xe−ik‖ ·xρ(x) =
Nd

∑
j=1

e−ik‖ ·Xj . (18)

Figure 3. Random distribution of torsional dislocations seen from a plane perpendicular to the

cylinder axis.

The operator that plays the role of a scattering potential for this distribution of disloca-
tion defects is

V(x) =
∫

d2x′ρ(x′)H
ξ
1 (x − x′) =

Nd

∑
j=1

H
ξ
1 (x − Xj), (19)

where H
ξ
1 was defined in Equation (3) as the contribution from a single dislocation. The ma-

trix elements of the scattering operator Equation (19) in the free spinor basis defined by
Equation (4) are

〈

Φk‖ ,λ

∣

∣

∣
V(x)

∣

∣

∣
Φk′‖ ,λ′

〉

=
[

Ṽ(k‖ − k′
‖)
]

λλ′ , (20)

where Ṽ(k‖) is the Fourier transform of V(x):

Ṽ(k‖) =
∫

R2
d2xe−ik‖ ·xV(x) =

Nd

∑
j=1

∫

R2
d2xe−ik‖ ·xH

ξ
1 (x − Xj)

= H̃
ξ
1 (k‖)ρ̃(k‖). (21)
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Then, the matrix elements of the potential in Equation (20) become

[

Ṽ(k‖)
]

λλ′ =
[

H̃
ξ
1 (k‖)

]

λλ′ ρ̃(k‖). (22)

Let us also introduce the configurational average of a function f (Xj) over the statistical
distribution of dislocations as

〈 f 〉 =
∫

R2
d2Xj P(Xj) f (Xj), (23)

where P(Xj) is the normalized distribution function for the defects in the sample. In par-
ticular, for a uniform distribution, we have P(Xj) = 1/A, where A is the area of the plane
normal to each cylinder’s axis. Now, the full retarded Green’s function under the pres-
ence of several dislocations represented by the operator V̂ given in Equation (19) satisfies
the equation

Ĝ
ξ
R(E) = Ĝ

ξ
R,0(E) + Ĝ

ξ
R,0(E)V̂Ĝ

ξ
R(E). (24)

The configurational average, as defined in Equation (23), of the full Green’s function
in this last equation can be written as

〈

Ĝ
ξ
R(E)

〉

= Ĝ
ξ
R,0(E) + Ĝ

ξ
R,0(E)Σλ,ξ

R (E)
〈

Ĝ
ξ
R(E)

〉

. (25)

This is the Dyson’s equation with the retarded self-energy Σ
λ,ξ
R (E) that can be explicitly

solved to yield
〈

G
λ,ξ
R (k‖)

〉

=
1

E − λξ h̄vF|k‖| − Σ
λ,ξ
R (k‖)

. (26)

The effect of the statistical distribution of dislocations’ is entirely determined by the
function ρ̃(k‖). In the perturbative expansion of the full Green’s function, we encounter
nth-products of the form ρ̃(k1)ρ̃(k2) · · · ρ̃(kn). The configurational average of a single
factor is given by

〈

ρ̃(k‖)
〉

=

〈

Nd

∑
j=1

e−ik‖ ·Xj

〉

=
Nd

∑
j=1

∫

R2
d2Xj

1

A
e−ik‖ ·Xj =

Nd

A
(2π)2δ(2)(k‖), (27)

Similarly, for the product of two factors, we obtain

〈

ρ̃(k1
‖)ρ̃(k

2
‖)
〉

=

〈

Nd

∑
j=1

Nd

∑
l=1

e
−ik1

‖ ·Xj−ik2
‖ ·Xl

〉

=

〈

∑
j=l

e
−i(k1

‖+k2
‖)·Xj + ∑

j 6=l

e
−ik1

‖ ·Xj−ik2
‖ ·Xl

〉

=
Nd

A
(2π)2δ(2)(k1

‖ + k2
‖) +

Nd(Nd − 1)

A2
(2π)4δ(2)(k1

‖)δ
(2)(k2

‖), (28)

and we have a similar behavior for higher order products. Now, notice that, for Nd ≫ 1, we
have Nd(Nd − 1) ≈ N2

d , Nd(Nd − 1)(Nd − 3) ≈ N3
d and so on. We define the concentration

of defects, i.e., the number of dislocations per unit of area perpendicular to the cylinder’s
axis as nd = Nd/A. As discussed in standard references [28,29], for small concentrations
nd ≪ 1, the scaling discussed before ensures that the total Green’s function in Equation (25)
can be calculated accurately by the sequence of diagrams for the retarded self-energy
in momentum space as given in Figure 4, an approach well known as the non-crossing
approximation (NCA). This series of diagrams corresponds to the configurational average
of the T-matrix over the random distribution of dislocations after Equation (23)

Σ
λ,ξ
R (E) =

〈

T̂ξ(E)
〉

= ndT
(λ,ξ)
k‖k‖

. (29)
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Figure 4. Diagrams contributing to the retarded self-energy ΣR. The solid line corresponds to the free

retarded Green’s function, the dashed line the scattering perturbation H1, and the × a factor of nd.

Using the expression in Equation (16) for the T-matrix elements, for k‖ = k′
‖ that

implies φ = 0, we have that the real part of the self-energy

Re Σ
λ,ξ
R (k‖) = −2λξnd h̄vF

k

∞

∑
m=−∞

cos δ
(λ,ξ)
m (k) sin δ

(λ,ξ)
m (k) (30)

contains an infinite sum over highly oscillatory terms that converges to zero. Therefore, no
contribution arises from the real part of the self-energy. The imaginary part, on the other
hand, leads to the definition of the relaxation time,

1

τ(λ,ξ)(k)
= −2λξ

h̄
nd Im T

(λ,ξ)
k‖k‖

. (31)

3.1. Electrical Conductivity in the Linear-Response Regime

In order to arrive at the definition of the electrical conductivity in the linear response
regime, let us first consider a single Fourier mode for an external electric field E, in the gauge

E = − ∂

∂t
A(r, t), (32)

where A(r, t) = A(r, ω)e−iωt is the vector potential. Then, E = iωA. In the linear response
formalism, the current is given by the expression

jα(r, ω) =
∫

d3r′ σαβ(r, r′; ω)Eβ(r
′.ω), (33)

where the conductivity tensor is defined by

σαβ(r, r′; ω) =
1

iω
Kαβ(r, r′; ω). (34)

In the Kubo formalism, the tensor Kαβ is defined in terms of the retarded current-
current correlator as follows:

Kαβ(r, t; r′, t′) = ih̄−1θ(t − t′)Tr
{

ρ̂
[

ĵα(r, t), ĵβ(r
′, t′)

]}

, (35)

where ρ̂ is the statistical density matrix operator. As shown in detail in Appendix D,
the Fourier transform of this tensor to the frequency domain is given by

K
ξ
αβ(r, r′; ω) = e2v2

F

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dE

2π

f0(E′)− f0(E)

h̄ω + E − E′ + iη+
Tr
[

σαA
ξ(r, r′; E′)σβA

ξ(r′, r; E)
]

. (36)

Here, f0(E) =
[

e(E−µ)/kT + 1
]−1

is the Fermi distribution, and we introduced the

(disorder-averaged) spectral function

Aλ,ξ(k) = i
[〈

G
λ,ξ
R (k‖)

〉

−
〈

G
λ,ξ
A (k‖)

〉]

=
2
(

h̄
2τ(λ,ξ)(k)

)

(

E − Eλ,ξ
k

)2
+
(

h̄
2τ(λ,ξ)(k)

)2
(37)
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that clearly represents a Lorentzian distribution whose spectral width is defined by the
inverse of the relaxation time (see Appendix C for the details). After some algebraic
manipulations, we obtain the conductivity tensor at finite frequency and temperature

ℜ σ
ξ
αβ(r, r′; ω) =− e2h̄v2

F

2π

∫ ∞

−∞
dE

{

f0(E + h̄ω)− f0(E)

h̄ω

}

× Tr
[

σαA
ξ(r, r′; E + h̄ω)σβA

ξ(r′, r; E)
]

. (38)

Using the coordinates representation of the spectral function given in Appendix C,
after Equation (A33), we can read off the Fourier transform to momentum space of
the conductivity

σ
ξ
αβ(q; ω) =− e2h̄v2

F

2π

∫

d3k

(2π)3

∫ ∞

−∞
dE

{

f0(E + h̄ω)− f0(E)

h̄ω

}

× ∑
λ,λ′

Tr

{

σα

(

σ0 + λ
σ · (k‖ + q)

|k‖ + q|

)

σβ

(

σ0 + λ′ σ · k‖
|k‖|

)}

×Aλ,ξ(|k‖ + q|; E + h̄ω)Aλ′ ,ξ(|k‖|; E). (39)

We are interested in the DC conductivity, so we take the limit q → 0 first and then the
limit ω → 0. After a long calculation (details in the Appendix D), the result is

σ
(λ,ξ)
αβ (T) = δαβ

e2h̄v2
F

π3

∫ ∞

0
dk

∫ ∞

−∞
dE

(

−∂ f0(E)

∂E

)

〈

G
λ,ξ
R (k‖)

〉〈

G
λ,ξ
A (k‖)

〉

k‖ · k‖. (40)

3.2. Vertex Corrections

The self-energy contribution modifies the definition of the retarded and advanced
Green´s functions in Equation (40), as depicted by the double lines in Figure 5b. However,
there are also scattering processes involving links between the two internal Green function
lines, as depicted in Figure 5a. When considering such diagrams with cross-links, as in
Figure 5a, we must include the vertex correction as depicted in Figure 5b.

Figure 5. (a) A typical diagram contributing to the conductivity in Equation (40), involving the

configurational average of the two internal GF with cross-links between them. The upper line

corresponds to the retarded GF and the lower to the advanced GF; (b) diagrammatic representation

of the two complete averaged GF (double lines) corresponding to the sum of all diagrams of the kind

in (a) with the vertex correction Γ(k‖).

Taking into account the vertex correction, the conductivity becomes

σ
(λ,ξ)
αβ (T) = δαβ

e2h̄v2
F

π3

∫ ∞

0
dk

∫ ∞

−∞
dE

(

−∂ f0(E)

∂E

)

〈

G
λ,ξ
R (k‖)

〉〈

G
λ,ξ
A (k‖)

〉

k‖ · ΓRA(k‖, E), (41)
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where the vertex function ΓRA(k‖, E) is given as the solution to the Bethe-Salpeter equation
as depicted in Figure 6. Then, we have

ΓRA(k‖, E) = k‖ + nd

∫

d2k′

(2π)2

〈

G
λ,ξ
R (k′

‖)
〉〈

G
λ,ξ
A (k′

‖)
〉∣

∣

∣
T
(λ,ξ)
k′‖k‖

∣

∣

∣

2
ΓRA(k

′
‖, E). (42)

The iterative solution of Equation (42) for ΓRA(k‖, E) shows that the vertex function
must be of the form

ΓRA(k‖, E) = γ(k‖, E)k‖. (43)

Then, we obtain a secular integral equation for the scalar function γ(k‖, E) that in the
low concentration limit becomes

γ(k‖, E) = 1 + nd
2π

h̄

∫

d2k′

(2π)2
τ(λ,ξ)(k′)

∣

∣

∣
T
(λ,ξ)
k′‖k‖

∣

∣

∣

2
δ(E − λξ h̄vFk′) γ(k′

‖, E)
k‖ · k′

‖
k2

. (44)

Figure 6. The Bethe–Salpeter integral equation for the vertex function ΓRA(k‖).

In the limit of low concentrations, we use the result in Appendix D, Equation (A46),
to obtain

σ
(λ,ξ)
αα (T) =

2e2v2
F

π2

∫ ∞

0
dk k2

(

−∂ f0(E)

∂E

)

E=λξ h̄vFk

τ(λ,ξ)(k) γ(k‖, λξ h̄vFk). (45)

At low temperatures, an exact solution is possible since the derivative of the Fermi
distribution takes a compact support at the Fermi energy. Therefore, we can evaluate γ(k)

and τ(λ,ξ)(k) at the Fermi momentum k
ξ
F, to obtain

γ(kξ
F) =

τ
(λ,ξ)
1 (kξ

F)

τ
(λ,ξ)
1 (kξ

F)− τ(λ,ξ)(kξ
F)

, (46)

where we defined (for cos φ′ = k‖ · k′
‖/k2)

1

τ
(λ,ξ)
1 (kξ

F)
= nd

2π

h̄

∫

d2k′

(2π)2

∣

∣

∣
T
(λ,ξ)
k′‖k‖

∣

∣

∣

2
cos φ′ δ(h̄vFk

ξ
F − h̄vFk′). (47)

After the substitution of γ(k‖, E) from Equation (46) into Equation (45), we finally
obtain a closed analytical expression for the bulk electrical conductivity, as a function of
temperature and concentration of dislocations nd

σ
(λ,ξ)
αα (T) =

2e2v2
F

π2kBT
τ
(λ,ξ)
tr (kξ

F)
∫ ∞

0
dk k2 f0

(

Eλ,ξ
k‖

)[

1 − f0

(

Eλ,ξ
k‖

)]

= − 4

π2vF

(

e2

h̄

)(

kBT

h̄

)2

τ
(λ,ξ)
tr (kξ

F)Li2

(

−e
h̄vFkF

kBT

)

, (48)
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where Li2(x) is the polylogarithm of order 2. Here, the total transport relaxation time is
defined by

1

τ
(λ,ξ)
tr (kξ

F)
=

1

τ(λ,ξ)(kξ
F)

− 1

τ
(λ,ξ)
1 (kξ

F)
(49)

=
2πnd

h̄

∫

d2k′

(2π)2
δ(h̄vFk

ξ
F − h̄vFk′)

∣

∣

∣
T
(λ,ξ)
k′‖k‖

∣

∣

∣

2
(1 − cos φ′).

Using the analytical expression for the T-matrix elements in Equation (16), we obtain a
closed expression for the transport relaxation time in terms of the scattering phase shifts δm(k)

1

τ
(λ,ξ)
tr (kξ

F)
=

2ndvF

k
ξ
F

∞

∑
m=−∞

sin2
[

δm(k
ξ
F)− δm−1(k

ξ
F)
]

. (50)

From Equation (48), we can investigate the zero temperature T → 0 and high tempera-
ture T ≫ h̄vFkF/kB limits, respectively. In the zero temperature limit, we obtain

σ
(λ,ξ)
αα (T → 0) =

2

π2
k

ξ2
F

(

e2

h̄

)

vF,ατ
(λ,ξ)
tr (kξ

F), (51)

a constant that depends on the microscopic material properties (such as vF), as well as on
the concentration of dislocations nd through the relaxation time.

On the other hand, in the high-temperature limit T ≫ h̄vFkF/kB, we obtain a quadratic
dependence on temperature

σ
(λ,ξ)
αα (T ≫ h̄vFkF/kB) =

1

3vF,α

(

e2

h̄

)(

kBT

h̄

)2

τ
(λ,ξ)
tr (kξ

F), (52)

where the overall constant depends on the microscopic parameters for each material, as well
as on the concentration of dislocations through the relaxation time.

4. Results

In this section, we apply the theory and analytical expressions obtained in the pre-
vious section to calculate the electrical conductivity of several materials in the family of
transition metals’ monopnictides, i.e., TaAs, TaP, NbAs, and NbP. For an estimation of the
concentration of defects nd in real crystal systems, Ref. [24] reports that the native concen-
tration of dislocations in the lattice of the materials TiO2 and SrTiO3 varies in the range
nd ∼ 105–107 cm−2. These concentrations can be enhanced using different treatments up to
1013 cm−2, close to the rendering amorphous limit. The microscopic/atomistic parameters
involved in our theory are obtained from ab-initio studies for WSM materials, as reported in
Refs. [25,26]. In particular, the later reference identifies anisotropies in the Fermi velocities
and density of charge carries at different Weyl nodes and bands. Using these results for

the densities of carriers, we compute the Fermi momentum at each Weyl node, i.e., k
ξ
F,

as displayed in Table 1.

Table 1. Values of k
ξ
F computed from the carrier densities reported in Ref. [26].

Material k
+
F

[nm−1] k
−
F

[nm−1]

TaAs 0.23 0.05

TaP 0.50 0.09

NbAs 0.46 0.03

NbP 1.04 0.15
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In what follows, for definiteness, we shall assume that the axis of the defects is along
the crystallographic z-direction and that we are measuring the conductivity along the
x-direction. Then, we use the reported x-components of the Fermi velocities [25,26]. We

have different Fermi velocities v
(λ,ξ)
F,x , for the conduction band (λ = +1) and for the valence

band (λ = −1), and for each of the Weyl nodes (ξ = ±), respectively. Actually, for the
valence band, Refs. [25,26] report the hole velocity. Their results are presented in Table 2.

Table 2. Values of the Fermi velocity v
(λ,ξ)
F,x in units of 105 m/s, as reported in Ref. [26]. Notice that,

for the valence bands (λ = −1), they report the hole velocity.

Material v
(+,+)
F,x v

(−,+)
F,x v

(+,−)
F,x v

(−,−)
F,x

TaAs 3.2 −5.3 2.6 −4.3

TaP 3.7 −5.4 2.0 −3.9

NbAs 3.0 −4.8 2.5 −3.2

NbP 3.0 −5.1 1.7 −2.4

Now, in order to study the additional effect of the torsional dislocations, we follow
our previous work [22] to estimate the geometrical parameters involved in the model. We
assume that the dislocations are cylindrical regions along the z-axis with radius a. Here, we
further assume that the defects possess an average radius of a = 15 nm. The simple relation
between the torsional angle θ (in degrees) and the pseudo-magnetic field representing strain
is BSa2 = 1.36 θ φ̃0 [22], where the modified flux quantum in this material is approximately

φ̃0 ≡ h̄vF

e
=

1

2π

vF

c

hc

e
=

1

2π

1.5

300
· 4.14 × 105 TÅ

2 ≈ 330 TÅ
2
. In this work, we have

chosen a torsion angle θ = 15◦. The lattice mismatch effect at the surface of the dislocation
cylinders is modeled by a repulsive delta-potential, with strength V0, expressed in terms of
the “spinor rotation” angle α = V0/h̄vF. According to our previous work [22], a realistic
choice is α = 3π/4.

With all of these parameters fixed, we can compute the transport relaxation time for
each material from Equation (50). Our results are presented in Table 3.

Table 3. Computed values for the total relaxation time and the total transport relaxation time for each

material after Equation (50). We consider a concentration of dislocations nd = 1011 cm−2.

Material τ [10−13 s] τtr [10−13 s]

TaAs 2.2 2.6

TaP 2.4 3.2

NbAs 2.2 3.1

NbP 2.4 4.2

Now, we compute the conductivity along the x-direction σxx. In what follows, we
simply call it σ(T), as a function of temperature. The total conductivity is the sum over
nodes and bands

σ(T) = ∑
ξ=±1

∑
λ=±1

σ
(λ,ξ)
xx (T), (53)

where σ
(λ,ξ)
xx (T) is given in Equation (48), including the vertex correction. Our results for

T = 0 are presented in Table 4.
The conductivity as a function of temperature, for the transition metals’ monopnictides

TaAs, TaP, NbAs and NbP, is presented in Figure 7 for all of them compared, and individu-
ally in the panel Figure 8.
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Table 4. Computed values for the total conductivity σ0 = σ(T = 0) at zero temperature for each

material. We consider a value of nd = 1011 cm−2.

Material σ0 [103
Ω

−1 cm−1]

TaAs 1.5

TaP 7.9

NbAs 7.5

NbP 34.6
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Figure 7. A comparison of the total conductivity versus temperature behavior for the transition

metals’ monopnictides TaAs, TaP, NbAs and NbP. Here, we use a concentration of dislocations of

nd = 1011 cm−2.
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Figure 8. The total conductivity vs. temperature behavior for the transition metals monopnictides

TaAs, TaP, NbAs, and NbP. Here, we use a concentration of dislocations of nd = 1011 cm−2.

Now, let us study the conductivity behavior with respect to the density of disloca-
tions nd. In Figure 9, we present a plot of the natural logarithm of the conductivity versus
temperature for three different concentrations of dislocations.
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Figure 9. Natural logarithm of the conductivity versus temperature for three different concentrations

of dislocations.

The total conductivity as a function of the concentration of defects and at zero temper-
ature is presented in Figure 10.
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Figure 10. Plot of total conductivity versus defects’ concentration. The graphs were computed at

zero temperature.

Finally, a plot of the resistance, defined as the inverse of conductivity, as a function of
the dislocations’ density is presented in Figure 11.
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Figure 11. Total resistance, R = 1/G, as a function of the concentration of defects nd for the family of

materials TaAs, TaP, NbAs and NbP. The graphs were computed at zero temperature.

5. Discussion and Conclusions

In this work, we have studied the effect of a distribution of mechanical defects, i.e., tor-
sional dislocations, over the electrical conductivity of the family of transition metals monop-
nictides TaAs, TaP, NbAs and NbP. Our theory is based on the mathematical analysis of the
scattering phase shifts from a single defect, as stated in our previous work [20–23,27]. We ex-
tended this previous analysis to develop a Green´s function formalism, in order to represent
the scattering due to a finite concentration of randomly distributed defects. Within the non-
crossing approximation for the self-energy, we solved explicitly for the disorder-averaged
retarded Green´s function that allows us to calculate the electrical conductivity in the
Kubo linear-response formalism. We obtained general analytical expressions in terms of
the parameters involved in the low-energy model representing the family of materials,
and using the ab-initio estimations for such parameters, we provided a characterization of
the conductivity as a function of temperature and concentration of defects for the transition
metal monopnictides TaAs, TaP, NbAs and NbP. As a universal feature, we identified
a ∼ T2 temperature dependence for T ≫ h̄vFkF/kB, where the pre-factor depends on
material-specific microscopic parameters as well as in the concentration of dislocations nd

through the scattering relaxation time. Our results do not involve the electron–phonon
scattering effects that will presumably contribute at finite temperatures. However, those
can be included via Mathiessen’s rule in an overall relaxation time combining Equation (50)
for τtr with a separate theoretical estimation for the electron–phonon relaxation time τe−ph,

as follows: τ−1 = τ−1
tr + τ−1

e−ph. Since the electron–phonon interaction that determines the

magnitude of τe−ph is an entirely different physical mechanism, it deserves an analysis on
its own, to be communicated in a separate article which is under current development.
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Appendix A. Calculation of the Retarded Free Green’s Function

The free retarded Green’s function (GF) is represented in the coordinate basis as follows:

G
ξ
R,0(r, r′; E) =

〈

r

∣

∣

∣

∣

∣

1

E − Ĥ
ξ
0 + iη+

∣

∣

∣

∣

∣

r′
〉

. (A1)

On this basis, G
ξ
R,0(r, r′; E) satisfies the differential equation

(

E + iη+ − ξvFσ · h̄

i
∇

)

G
ξ
R,0(r, r′; E) = σ0δ(3)(r − r′). (A2)

where σ0 is the 2 × 2 unit matrix. Let us introduce the scalar GF, Gξ
R,0(r, r′), by means of

the expression

G
ξ
R,0(r, r′; E) =

(

E + iη+ + ξvFσ · h̄

i
∇

)

Gξ
R,0(r, r′). (A3)

Bearing in mind that we are treating the elastic scattering problem, the energy of the
out-state must be the same as those of the incident-free-particle state, i.e., E = λξ h̄vF|k|.
Then, the scalar GF satisfies the Helmholtz equation

(

∇2 + k2 + iη+
)

Gξ
R,0(r, r′) =

1

h̄2v2
F

δ(3)(r − r′). (A4)

Due to the symmetry along the z-axis, we can decouple it from its perpendicular plane
as follows:

Gξ
R,0(r, r′; k) =

∫ ∞

−∞

dqz

2π
eiqz(z−z′)Gξ

R,0(x, x′; qz, k), (A5)

where Gξ
R,0(x, x′; qz, k) is a reduced GF and x = (x, y) is the position vector on the plane.

Then, the Helmholtz equation for the reduced GF on the plane takes the form

(

∇2
‖ − q2

z + k2 + iη+
)

Gξ
R,0(x, x′; qz, k) =

1

h̄2v2
F

δ(2)(x − x′), (A6)

where ∇2
‖ = ∂2

x + ∂2
y. As can be seen from the Figure 1, the free incident particle’s propagation is

normal to the cylinder’s axis. We assume that the incident particles have negligible momentum
along the z-axis, and by momentum conservation, they remain with negligible momentum
along that direction during the transport process. Then, we can write k = (k‖, 0) where
k‖ = (kx, ky). Hence, the system is reduced to an effective two-dimensional description, and
we can consider the reduced GF on the plane as independent of the Fourier mode qz. Then,
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from Equation (A5), we have Gξ
R,0(r, r′; k) = δ(z − z′)Gξ

R,0(x, x′; k), and we can expand the
reduced GF on the plane in the traverse Fourier space

Gξ
R,0(x, x′; k) =

∫ d2q‖
(2π)2

eiq‖ ·(x−x′)G̃ξ
R,0(q‖), (A7)

where q‖ = (qx, qy). Replacing in Equation (A6), we obtain in the traverse Fourier space

G̃ξ
R,0(q‖) = − 1

h̄2v2
F

1

q2
‖ − k2 − iη+

. (A8)

We perform the integration in Equation (A7) in polar coordinates

Gξ
R,0(x, x′; k) = − 1

h̄2v2
F

2π

(2π)2

∫ ∞

0
dq‖ q‖

J0(q‖R)

q2
‖ − k2 − iη+

, (A9)

where R = |x − x′|, and we have used the integral representation of the Bessel functions
∫ 2π

0 eiz cos φ±sin φdφ = 2πin Jn(z). In order to perform the last integration, we need the result

∫ ∞

0

xν+1 Jν(bx)

(x2 + a2)
µ+1

dx =
aν−µbµ

2µΓ(µ + 1)
Kν−µ(ab), (A10)

together with the relation Kn(z) =
π
2 in+1H

(1)
n (iz). The result is

Gξ
R,0(x, x′; k) = − i

4h̄2v2
F

H
(1)
0

(

k|x − x′|
)

. (A11)

This form is adequate because, in the asymptotic form for large |x − x′|, it produces
outgoing cylindrical waves as is desired for the retarded GF. Now, to obtain the final form
for the free GF matrix, we apply the definition in Equation (A3) with E = λξ h̄vF|k|, taking
into account that we have reduced to a two-dimensional system on the plane x-y

G
ξ
R,0

(

r, r′; k
)

= − iλξ

4h̄vF
δ(z − z′)

(

kσ0 − iλσ ·∇‖
)

H
(1)
0

(

k|x − x′|
)

. (A12)

In plane polar coordinates,

σ ·∇‖ = (σ · r̂)
∂

∂r
+ (σ · ϕ̂)1

r

∂

∂ϕ
(A13)

where r = |x − x′|, ϕ is the angle the vector x − x′ makes with the x axis and

σ · r̂ =

(

0 e−iϕ

eiϕ 0

)

, σ · ϕ̂ =

(

0 −ie−iϕ

ieiϕ 0

)

. (A14)

The final form for the retarded Green’s function matrix in the coordinates representation is

G
ξ
R,0

(

r, r′; k
)

= − λξik

4h̄vF
δ(z − z′)

[

H
(1)
0 (k|x − x′|) iλe−iϕ H

(1)
1 (k|x − x′|)

iλeiϕ H
(1)
1 (k|x − x′|) H

(1)
0 (k|x − x′|)

]

, (A15)

which produces Equation (9).
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Appendix B. Scattering by a Single Cylindrical Defect

We can represent the Lippmann–Schwinger Equation (7) in the coordinate basis
as follows:

Ψk,λ(r) = Φk,λ(r) +
∫

d3r′
∫

d3r′′
〈

r
∣

∣

∣
Ĝ

ξ
R,0(E)

∣

∣

∣
r′
〉〈

r′
∣

∣

∣
T̂ξ(E)

∣

∣

∣
r′′
〉

Φk,λ(r
′′). (A16)

The form of free spinors in Equation (6) with momentum k‖ on the x–y plane is

Φλ,k(r) =
1√
2

(

1

λeiφ

)

eik·r ≡ 1√
2

(

1

λeiφ

)

eik‖ ·x = Φλ,k‖(x). (A17)

where kx = k cos φ and ky = k sin φ. The incident spinors are assumed to enter the scattering
region with momentum along the x-axis, and they are represented by

Φinc
λ,k‖

(x) =
1√
2

(

1
λ

)

eikx. (A18)

Now, Ĥ
ξ
1 is a local potential independent of the z coordinate as can be seen from

Equation (3). Then, the T-matrix is diagonal in the coordinate basis and depends only on
vectors x on the plane. Thus,

〈

r′
∣

∣T̂ξ(E)
∣

∣r′′
〉

= Tξ(x′, E)δ(3)(r′ − r′′), where Tξ(x′, E) is a
2 × 2 matrix. The incident spinor is given in Equation (A18), and using the retarded GF
in Equation (A15), the Lippmann–Schwinger equation in Equation (A16) is reduced to the
x–y plane as follows:

Ψk‖ ,λ(x) =
1√
2

(

1
λ

)

eikx +
∫

d2x′Gξ
R,0

(

x, x′; k
)

Tξ(x′, E)Φk‖ ,λ(x
′), (A19)

where G
ξ
R,0(x, x′; k) is given in Equation (9). The asymptotic form for large argument of the

Hankel’s functions are

H
(1)
0 (k|x − x′|) ∼

√

2

iπk|x − x′| e
ik|x−x′ |, (A20)

H
(1)
1 (k|x − x′|) ∼ −i

√

2

iπk|x − x′| e
ik|x−x′ |, (A21)

where we have used the known limiting form

H
(1)
ν (x) ∼

√

2

πx
ei(x− νπ

2 − π
4 ), x → ∞. (A22)

Now, recall the geometry of the scattering process as depicted in Figure 2. We expand
|x − x′| for large |x| as follows:

|x − x′| ∼ r − n̂ · x′ +O
(

(r′/r)2
)

, (A23)

where r = |x|, r′ = |x′| and n̂ is the unit vector in the direction of x, i.e., n̂ = x/r. Noting
that in this asymptotic form the direction of k′

‖ coincides with that of x and is practically
the same of x− x′, i.e., k′

‖ = kn̂ and that the angle φ and the vector k′
‖ make the k‖ incident

momentum be approximately the same angle x − x′, i.e., φ ∼ ϕ, we have the asymptotic
form for the free Green’s function in Equation (9)

G
ξ
R,0

(

x, x′; k
)

∼ − λξk

4h̄vF

√

2i

πk

[

1 λe−iφ

λeiφ 1

]

e−ik′
‖ ·x′ eikr

√
r

. (A24)
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Replacing the asymptotic form in Equation (A24) in Equation (A19), we obtain
Equation (14)

Ψk‖ ,λ(x) ∼
1√
2

(

1
λ

)

eikx − λξ

2h̄vF

√

ik

π
T
(λ,ξ)
k′‖k‖

(

1

λeiφ

)

eikr

√
r

, (A25)

where the T-matrix elements are

T
(λ,ξ)
k′‖k‖

(E) =
∫

d2x′Φ†
k′‖ ,λ(x

′)Tξ(x′, E)Φk‖ ,λ(x
′). (A26)

In order to compute the T-matrix elements, we need the phase shifts, whose analytical
expression is presented in Equation (32) of the supplemental material of our previous
work [22]. Here, we reproduce the final result

tan δm =

βJm+1 − ̺
ξ
n Jm · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

+ tan α



Jm + β̺
ξ
n Jm+1 · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)





βYm+1 − ̺
ξ
nYm · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

+ tan α



Ym + β̺
ξ
nYm+1 · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)





, (A27)

where δm is a function of k through the Bessel functions Jm ≡ Jm(ka) and Ym ≡ Ym(ka),
and za = |Bξ |a2/2φ̃0 (a is the cylinder’s radius).

Appendix C. The Spectral Function

The spectral function can be defined as follows:

Âξ(E) = i
[

Ĝ
ξ
R(E)− Ĝ

ξ
A(E)

]

, (A28)

in terms of the complete retarded and advanced Green’s functions. Then, the spectral

function is Hermitian
[

Âξ(E)
]†

= Âξ(E). Given the averaged complete retarded Green’s
function in Equation (26), the form of the spectral function in momentum space is

Aλ,ξ(k‖) = i
[〈

G
λ,ξ
R (k‖)

〉

−
〈

G
λ,ξ
A (k‖)

〉]

= i

[

1

E − λξ h̄vFk − Σ
λ,ξ
R (k‖)

− 1

E − λξ h̄vFk − Σ
λ,ξ
A (k‖)

]

. (A29)

Clearly, it takes the form of a Lorentzian distribution with compact support around
the free particle’s energy

Aλ,ξ(k) =
2
(

h̄
2τ(λ,ξ)(k)

)

(

E − Eλ,ξ
k

)2
+
(

h̄
2τ(λ,ξ)(k)

)2
, (A30)

where τ(λ,ξ)(k) is the relaxation time and Eλ,ξ
k = λξ h̄vFk. In the limit of low concentration of

defects, i.e., large relaxation time because of Equation (31), the spectral function becomes a
delta distribution

lim
τ→∞

Aλ,ξ(k) = 2πδ
(

E − Eλ,ξ
k

)

. (A31)

Due to its behavior as a Lorentzian, the spectral function has the important property [29]

Aλ,ξ(k)Aλ′ ,ξ(k′) = Aλ,ξ(k)Aλ,ξ(k)δλλ′ . (A32)
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Representing the spectral function Equation (A28) in the coordinate basis using the
complete set of eigenstates of the full Hamiltonian, we have

A
ξ(r, r′) =

∫

d3k

(2π)3
eik·(r−r′) ∑

λ

(

σ0 + λ
σ · k‖
|k‖|

)

Aλ,ξ(k). (A33)

Notice that, because k‖ = (kx, ky), when we perform the integration, the spectral function

takes the form A
ξ(r, r′) = δ(z − z′)Aξ(x, x′), which looks similar to the decoupled form of

the GF in Equation (A15).

Appendix D. Linear Response Theory

The tensor Kαβ is defined using the retarded current–current correlator in Equation (35).
Introducing in Equation (35) the complete and orthonormal basis {|Ψλ,k〉} of the total

Hamiltonian, such that Ĥξ |Ψλ,k〉 = Eλ,ξ
k |Ψλ,k〉 and ρ̂|Ψλ,k〉 = ρ

(

Eλ,ξ
k

)

|Ψλ,k〉, we obtain

K
ξ
αβ(r, t; r′, t′) =ih̄−1θ(t − t′)

∫

d3k

(2π)3

∫

d3k′

(2π)3 ∑
λ,λ′

[

ρ
(

Eλ,ξ
k

)

− ρ
(

Eλ′ ,ξ
k′

)]

×
〈

Ψλ,k

∣

∣ ĵα(r)
∣

∣Ψλ′ ,k′
〉〈

Ψλ′ ,k′
∣

∣ ĵβ(r
′)
∣

∣Ψλ,k

〉

e
i
h̄

(

Eλ,ξ
k −Eλ′ ,ξ

k′

)

(t−t′)
. (A34)

Using the Fourier representation of the Heaviside step function, we obtain the correla-
tor in the frequency domain

K
ξ
αβ(r, r′; ω) =

∫

d3k

(2π)3

∫

d3k′

(2π)3 ∑
λ,λ′

[

ρ
(

Eλ′ ,ξ
k′

)

− ρ
(

Eλ,ξ
k

)]

h̄ω + Eλ,ξ
k − Eλ′ ,ξ

k′ + iη+

×
〈

Ψλ,k

∣

∣ ĵα(r)
∣

∣Ψλ′ ,k′
〉〈

Ψλ′ ,k′
∣

∣ ĵβ(r
′)
∣

∣Ψλ,k

〉

. (A35)

The electric current density operator for the Weyl equation is ĵξ(r) = −eξvF|r〉σ〈r|. Then,

K
ξ
αβ(r, r′; ω) =e2v2

F

∫

d3k

(2π)3

∫

d3k′

(2π)3 ∑
λ,λ′

[

ρ
(

Eλ′ ,ξ
k′

)

− ρ
(

Eλ,ξ
k

)]

h̄ω + Eλ,ξ
k − Eλ′ ,ξ

k′ + iη+

× Tr
[

σαΨλ′ ,k′(r)⊗ Ψ†
λ′ ,k′(r′)σβΨλ,k(r

′)⊗ Ψ†
λ,k(r)

]

. (A36)

We can rewrite this last expression in terms of the spectral function and the re-
tarded/advanced GFs as follows:

K
ξ
αβ(r, r′; ω) =− 2e2v2

F

∫ ∞

−∞

dE

2π
f0(E)Tr

[

σαA
ξ(r, r′; E)σβG

ξ
A(r

′, r; E − h̄ω)

+σαG
ξ
R(r, r′; E + h̄ω)σβA

ξ(r′, r; E)
]

, (A37)

where the additional factor of 2 is due to the spin degeneracy, and f0(E) is the Fermi
distribution. In the first term, we can shift energy variable E → E + h̄ω, such that

K
ξ
αβ(r, r′; ω) =− 2e2v2

F

∫ ∞

−∞

dE

2π

[

f0(E + h̄ω)Tr σαA
ξ(r, r′; E + h̄ω)σβG

ξ
A(r

′, r; E)

+ f0(E)Tr σαG
ξ
R(r, r′; E + h̄ω)σβA

ξ(r′, r; E)
]

. (A38)
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We are interested in the real part of the conductivity tensor. Then,

ℜ σ
ξ
αβ(r, r′; ω) = ℜ

(

1

iω
K

ξ
αβ(r, r′; ω)

)

= − i

2ω

[

K
ξ
αβ(r, r′; ω)− K

ξ†
βα(r, r′; ω)

]

, (A39)

where we have used the fact that K∗
αβ = K†

βα. Then, taking the Hermitian conjugate of

Equation (A38) and using the cyclic property of the trace, we can write

ℜ σ
ξ
αβ(r, r′; ω) =− e2h̄v2

F

2π

∫ ∞

−∞
dE

{

f0(E + h̄ω)− f0(E)

h̄ω

}

× TrσαA
ξ(r, r′; E + h̄ω)σβA

ξ(r′, r; E). (A40)

Introducing the spectral density in Equation (A33) in the DC conductivity expression
in Equation (A40), we have

ℜ σ
ξ
αβ(r, r′; ω) =

∫

d3q

(2π)3
eiq·(r−r′)

[

− e2h̄v2
F

2π

∫

d3k′

(2π)3

∫ ∞

−∞
dE

{

f0(E + h̄ω)− f0(E)

h̄ω

}

× ∑
λ,λ′

Tr

{

σα

(

σ0 + λ
σ · (k‖ + q)

|k‖ + q|

)

σβ

(

σ0 + λ′ σ · k‖
|k‖|

)}

×Aλ,ξ(|k‖ + q|; E + h̄ω)Aλ′ ,ξ(|k‖|; E)

]

. (A41)

Then, the Fourier transform to the momentum space of the conductivity is the result
in Equation (39). We are computing the DC conductivity, so we take the limit q → 0 first
and then the limit ω → 0. The result is

σ
ξ
αβ(T) =− e2h̄v2

F

2π

∫

d3k

(2π)3

∫ ∞

−∞
dE

∂ f0(E)

E

× ∑
λ

Tr

{

σα

(

σ0 + λ
σ · k‖
|k‖|

)

σβ

(

σ0 + λ
σ · k‖
|k‖|

)}

Aλ,ξ(|k‖|; E)Aλ,ξ(|k‖|; E). (A42)

where we have used Equation (A32). Now, we perform the trace

Tr

{

σα

(

σ0 + λ
σ · k‖
|k‖|

)

σβ

(

σ0 + λ
σ · k‖
|k‖|

)}

= Tr

{

σασβ + λ
(

σασβσγ + σασγσβ

) kγ

|k‖|
+ λ2σασγσβσγ′

kγkγ′

|k‖|2

}

= 4
kαkβ

|k‖|2
, (A43)

where we have used the Pauli matrices trace technology and the fact that λ2 = 1. The angu-
lar integration is performed immediately as follows:

∫

dΩ kαkβ = k2
∫ π

0
dθ sin θ

∫ 2π

0
dφ nαnβ = 2πk2δαβ, (A44)

where nα is the component of the unit vector n along the α-direction (on the plane) and
k‖ = kn. Then, we have
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σ
ξ
αβ(T) = −δαβ

4e2h̄v2
F

(2π)3kBT ∑
λ

∫ ∞

−∞
dE f0(E)[1 − f0(E)]

×
∫ ∞

0
dk
[〈

G
λ,ξ
R (k‖)

〉

−
〈

G
λ,ξ
A (k‖)

〉][〈

G
λ,ξ
R (k‖)

〉

−
〈

G
λ,ξ
A (k‖)

〉]

k‖ · k‖, (A45)

where we have used the definition of the spectral function in terms of the retarded and
advanced GFs. In the limit of a low concentration of defects, i.e., nd → 0, we have that the
unique leading contribution to the conductivity is given by the Lorentzian distribution

〈

G
λ,ξ
R (k‖)

〉〈

G
λ,ξ
A (k‖)

〉

=
1

(E − λξ h̄vFk)2 +
(

h̄
2τ(λ,ξ)(k)

)2

→ 2πτ(λ,ξ)(k)

h̄
δ(E − λξ h̄vFk), (A46)

where we have used the fact that the self-energy is purely imaginary and its relation with the
relaxation time. The other contributions are negligible because they are not singular in nd.
For instance, in the low concentration limit, we have a contribution for two retarded GFs of
the form

〈

G
λ,ξ
R (k‖)

〉〈

G
λ,ξ
R (k‖)

〉

=
(E − λξ h̄vFk)2 −

(

h̄
2τ(λ,ξ)(k)

)2

{

(E − λξ h̄vFk)2 +
(

h̄
2τ(λ,ξ)(k)

)2
}2

+ i(E − λξ h̄vFk)2πδ(E − λξ h̄vFk). (A47)

The second term is zero and the first term is a function centered at E − λξ h̄vFk,
but when integrated over k, it gives zero. Something similar occurs with the contribution
of two advanced GFs. The result is the diagonal conductivity tensor given in Equation (40).
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