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Abstract

Axions are one of the best-motivated particles beyond the standard model of parti-
cle physics and a promising candidate for dark matter. Through the superradiant
instability, axions can extract a significant amount of rotational energy from spin-
ning black holes resulting in dense axion clouds. These axion clouds can imprint
themselves on the spin of the black hole and even emit detectable gravitational
waves, making them very potent tools in the search for axions.

The considerable number of axions present in these clouds can also compensate
for the weak coupling between the axion and the standard model particles. However,
the interaction between the cloud and the astrophysical plasma that the black hole
accretes is often assumed to be negligible. In this thesis, we examine this assumption
by studying the interaction between the astrophysical plasma and the axion cloud
to determine if it can cause any significant effects.

We find no new gravitational signatures and can conclude that the interaction
is not effective enough to halt the evolution of the cloud. Therefore, the main
focus of this work is the emitted low-frequency photons that the axions convert
into through the interaction. We find that the emission from systems with typical
accretion rates can reach up to 1014 W and is most efficient around fast-spinning
stellar black holes that accrete spherically without an accretion disk. However, we
conclude that most of this emission will quickly be reabsorbed into the plasma and
not cause any detectable signals.

We also study resonant conversion of axions, which can occur when the plasma
frequency is comparable to the axion mass. We find that the low accretion rates
that enable this are reachable around isolated stellar-mass black holes that travel
rapidly through low-density regions of space. In these systems, the luminosity can
reach 1025 W, and possibly even higher if we include stimulation effects. We can,
therefore, conclude that a population of fast-traveling isolated black holes can pose
a new tool in the search for axions.

Key words: axions, superradiance, black holes, black hole accretion, astro-
physical plasma.
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Sammanfattning

Axioner är en av de bäst motiverade partiklarna bortom standardmodellen för
partikelfysik och en lovande kandidat för mörk materia. Genom superstr̊alning kan
axioner extrahera en signifikant mängd rotationsenergi fr̊an svarta h̊al vilket kan
resultera i täta axionmoln. Dessa axionmoln kan ge avtryck genom deras p̊averkan
p̊a spinnet hos svarta h̊al och till och med avge detekterbara gravitationsv̊agor.
Detta gör axionmoln till kraftfulla verktyg i sökandet efter axioner.

Den stora mängd axioner som dessa moln best̊ar av kan ocks̊a kompensera för
den svaga växelverkan mellan axionerna och partiklarna fr̊an standardmodellen.
Växelverkan mellan molnet och den astrofysikaliska plasmat som det svarta h̊alet
ackumulerar fr̊an omgivningen antas änd̊a ofta vara försumbar. I denna rapport un-
dersöker vi detta antagande genom att studera växelverkan mellan den astrofysika-
liska plasmat och axionmolnet för att avgöra om den kan orsaka n̊agra observerbara
effekter.

Vi finner inga nya gravitationella effekter och kan dra slutsatsen att växelverkan
inte är tillräckligt effektiv för att p̊averka utvecklingen av axionmolnet. Därför är hu-
vudfokus i detta arbete utstr̊alningen av de fotoner som resulterar fr̊an växelverkan.
Vi finner att emissionen fr̊an system med typiska ackretionshastigheter kan n̊a upp
till 1014 W och är mest effektiv kring svarta h̊al med l̊ag massa och högt spinn som
ackumulerar sfäriskt utan att bilda en ackretionsskiva. Vi drar dock slutsatsen att
det mesta av denna emission snabbt kommer att återabsorberas i plasmat och inte
orsaka n̊agra detekterbara signaler.

Vi studerar även konvertering av axioner via resonans, vilket kan inträffa när
plasmafrekvensen är jämförbar med massan hos axionerna. Vi finner att de l̊aga
ackretionshastigheterna som möjliggör detta kan n̊as runt isolerade svarta h̊al som
färdas snabbt genom delar av rymden med l̊ag omgivande densitet. I dessa system
kan luminositieten n̊a 1025 W, och möjligen ännu högre om vi inkluderar stimule-
ringseffekter. Vi kan därför dra slutsatsen att en population av isolerade svarta h̊al
med hög hastighet kan potentiellt användas i sökandet efter axioner.

Key words: axioner, str̊alningsförstärkning, svarta h̊al, svart h̊alansamling,
astrofysikalisk plasma.
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Preface

Geometrized units

In the theoretical parts of this thesis we have used a set of geometrized units where
ℏ = G = c = kB = 1 which simplifies the algebra significantly. To return to SI or
cgs units we use table 1 which allow us to switch between different units.

Table 1. Unit conversion table.

Quantity Factor
Energy×Mass−1 1 = c2 = 5.61× 1032 eV g−1

Energy×Time 1 = ℏ = 6.58× 10−16 eV s
Energy×Length 1 = cℏ = 1.97× 10−5 eV cm
Energy×Temperature−1 1 = kB = 8.62× 10−5 eVK−1

The only remaining unit, relevant for this thesis, is gauss, the cgs unit for
magnetic field strength. To demonstrate how the table should be used we derive
here the corresponding factor between eV and gauss:

1G = 1 g1/2 cm−1/2 s−1 =

√
5.61× 1032 eV

(1.97× 10−5 eV)
−1

(6.58× 10−16 eV)
−2 = 0.069 eV2.

v
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Chapter 1

Introduction

Physics today is described by two immensely successful theories, the standard model
of particle physics and general relativity. The former describes the known parti-
cles of the universe and their interactions through the electromagnetic and nuclear
forces, while general relativity explains the large-scale structure of gravity. Al-
though these theories are very successful, we know that some observations remain
unaccounted for by them. One unexplained phenomenon in the intersection of the
two is dark matter which we know accounts for a large portion of the energy content
of the universe but whose exact nature is unknown.

There are many different theories about what constitutes dark matter, and one
common explanation is the existence of particles beyond the standard model. One
such particle is the light, weakly interacting, long-lived, pseudoscalar boson called
the axion. It was first introduced in a solution to the strong CP problem [1–4]
and was quickly found to have properties suitable to also account for up to all
dark matter in the universe [5, 6]. This makes axions a particle of great interest
since it could potentially answer two unanswered questions in physics. Due to
this, a wide array of different experimental searches has developed over the years,
and the search is still very active today [7]. Since its introduction, the theoretical
aspects of axions have also evolved [8], and there is still a large parameter space
yet unrestricted where axions could be found. Axion physics is, therefore, still a
very active and evolving field.

Beyond the axion that solves the strong CP problem, sometimes referred to
as the QCD-axion, other theories that include axion-like particles, or ALPs, have
been developed. For example, one theory that predicts a large set of different ALPs
with masses and couplings spanning many orders of magnitude is string theory [9].
Together, the QCD-axion and different ALP models, which we will collectively refer
to as axions in this thesis, span a vast parameter space. Thus developing methods
that can probe different parts of this parameter space is of great interest and can
potentially lead to the discovery of new physics.

1



2 Chapter 1. Introduction

There is a variety of different methods used in the search for axions that have
managed to restrict large portions of the parameter space [7]. This includes direct
searches using helioscopes [10], haloscopes [11], and also light-shining-through-walls
experiments [12]. The existence of axions can also have a significant effect on stel-
lar evolution, and observations of stars have been a successful way to indirectly
constrain axions [13–19]. The largest obstacle in the search for axions is the weak
coupling with the particles of the standard model. A way to overcome this problem
is to have an environment supporting large densities of axions that can compen-
sate against the weak coupling. One source for creating a large axion density is
the superradiant instability of rotating black holes [20–23]. Through the Penrose
process [24], a boson field can extract energy from a spinning black hole through
superradiant scattering. If the field is bound to the black hole, the scattering can
repeat continuously, and enough energy can be extracted to noticeably spin down
the black hole and cause the field to grow exponentially [22, 23, 25–27]. Thus, a
small fluctuation in the axion field close to a black hole of the right mass can yield
exponential growth of the number of axions, creating what is commonly called a
superradiant axion cloud around the black hole.

In the most effective superradiant instabilities, the axion field can extract up to
29% [28] of the rotational energy of the black hole. This can cause major observa-
tional consequences and can be used to detect the instability, and consequentially
the axion [29–37]. The simplest manifestation of this is that we would expect gaps
in the mass-spin plots of the observed black hole population since all black holes
with masses where the superradiant instability is effective should be spun down.
The axion cloud will also give rise to monochromatic emission of gravitational waves
at the frequency corresponding to the axion mass. These could then be detected
using the emerging technology of gravitational-wave astronomy.

These gravitational channels of axion detection are the most explored signs of
superradiant axion clouds. The clouds can also provide an environment where the
interaction between axions and matter might become significant due to the large
axion densities and some references have studied this. For example, Refs. [38–
41] explored stimulated axion decay which can yield laser-like emission with large
luminosities, in Refs. [29, 42] the conversion in the magnetic field around black
holes are considered, and reactions with electrons found in the accreting plasma
around the black hole have been studied in the case of superradiant vector bosons
[43–45]. However, the interactions between the axion cloud and the astrophysical
plasma around the black hole are more often than not assumed to be negligible.

In this thesis, we will explore this interaction between the axion cloud and the
astrophysical plasma that the host black hole accretes. The interaction between
the cloud and the plasma can convert axions into photons, yielding electromagnetic
signals. If the conversion is effective enough to quench the superradiant growth,
it could also affect the previously mentioned gravitational signatures. We will use
accretion models such as Bondi accretion [46] and the accretion disk of Novikov
and Thorne [47] to describe the surrounding plasma, which are good first approx-
imations widely used in astrophysics. The interactions between the cloud and the
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plasma can also be categorized into two parts: scattering processes and resonant
conversion. The former dominates when the accretion rate is high, leading to a
denser plasma, where photons are converted through the process e+a→ e+γ. For
lower accretion rates, the plasma frequency can become comparable to the axion
mass, allowing for resonant conversion to take place [48]. We will analyze these sce-
narios separately to determine for which black hole systems the interaction between
the plasma and the axion cloud could lead to observable signals.

1.1 Outline

The thesis is structured as follows. The next chapter provides the necessary back-
ground regarding axions, black holes, superradiance, and the accretion models used
throughout the thesis. The two subsequent chapters comprise the main part of
the thesis. In chapter 3 we investigate the scattering processes found in denser
accretion flows, while in chapter 4 resonant conversion in less dense accretion flows
is studied. In chapter 5 we discuss the possible detection strategies of the signals
estimated in the previous chapters. We also include a discussion of the most crit-
ical uncertainties of the thesis in this chapter. Finally, in chapter 6 the thesis is
summarized and concluded.





Chapter 2

Background

In this chapter, we will go through the basic theory and terminology needed to
understand the rest of the thesis. References are provided for more detailed accounts
for the interested reader. In the first section, we will briefly review the QCD-axion
and the generalization to axion-like particles. After that, the basics of Kerr black
holes are presented to introduce the concept of superradiant instabilities, which
are described in the subsequent section. The chapter concludes with a section
describing basic accretion theory and the accretion models used in this thesis.

2.1 Axion phenomenology

2.1.1 The QCD-axion

The first axion, or the axion, also called the QCD-axion, was found as a consequence
of a solution to the strong CP problem proposed by Peccei and Quinn in 1977
[1, 2]. In order to explain why QCD does not violate CP-symmetry, they introduced
a new U(1) symmetry, often referred to as the PQ-symmetry or U(1)PQ, which
spontaneously breaks at a large energy scale, usually denoted fa. Shortly after,
Weinberg and Wilczek pointed out that this symmetry breaking results in a new
pseudo-Goldstone boson which is the particle we now call the axion [3, 4]. This
axion turns out to be a very light, weakly interacting, and stable pseudoscalar
boson, and these properties makes the axion an excellent candidate for dark matter
[5, 6].

Through its relationship to QCD, the axion is coupled to the gluon but beyond
that there exist different models of the QCD-axion. These are usually based on
two fundamental models, KSVZ [49], and DFSZ [50], where the major differences
lay in which particles are coupled under the PQ-symmetry. A recent review of
the QCD-axion and these models is given in Ref. [8]. The explicit details of the
underlying symmetries are not relevant to this thesis, and we will only go through
the axion properties relevant to us.

5



6 Chapter 2. Background

Fundamentally we have that the mass of the QCD-axion is inversely proportional
to fa, which in some models can exceed the GUT scale of fGUT ∼ 1016GeV, and is
explicitly given by [8]

ma ≈ 5.7

(
1× 1012 GeV

fa

)
µeV. (2.1)

Further, all couplings to the standard model particles are also suppressed by fa,
thus the scale of fa is the reason the axion is so light and weakly interacting. Smaller
fa is generally restricted by experiments and one usually considers fa > 108 GeV.
In this thesis we are mainly interested in the axions interaction with photons and
electrons. The photon coupling is included through the Lagrangian term

La ⊃ gaγ
4
Fµν F̃

µνa, (2.2)

where the coupling constant is given by1

gaγ =
αem

2πfa

[
E

N
− 2

3

4md +mu

mu +md

]
. (2.3)

The second term of this coupling constant comes from the fundamental connection
with the quarks, which allow the axion to interact with the photon through pions.
mu and md are the mass of the up and down quark, respectively. The first term is
due to anomalies in the conservation of the PQ-current and yields a direct coupling
to the photon. The exact values are model dependent, but typically E/N ∼ O(1).

The electron coupling is given by the Lagrangian term

La ⊃ gae
2me

ēγµγ5e∂µa, (2.4)

where
gae =

me

fa

(
c0e + δce

)
. (2.5)

e is the electron field, me is the electron mass, c0e is the tree-level coupling which
are present in some models, and δce is related to gaγ through one-loop diagrams
involving photons. We have that c0e ∼ O(0.1) for DFSZ and c0e = 0 for KSVZ.

2.1.2 Axion-like particles

Since the mass of the QCD-axion is directly related to the decay constant fa, the
available parameter space is narrow. With multiple experiments excluding large
parts of the parameter space, the existence of the QCD-axion has become less and
less likely, at least for masses larger than approximately O(0.1) eV [51]. There
are, however, other theories, mainly string theory [9], that have introduced axion-
like particles (ALPs) which have the same properties as the QCD-axion but are

1αem is the fine-structure constant.
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unrelated to the strong CP problem. The decay constant and mass of these ALPs
are not necessarily related, which extends the possible parameter space where the
axion could be found. We will, in this thesis, consider a general axion that has a
mass ma and couplings gaγ and gae unrelated to each other.

2.1.3 Experimental searches

There are a variety of different methods used in the search for axions that have man-
aged to restrict large portions of the parameter space [7]. Some methods that have
tried to detect the axions directly are helioscopes and haloscopes. Helioscopes, such
as CAST at CERN [10], try to detect axions created in the Sun, while haloscopes,
such as ADMX [11], looks for dark matter axions passing through Earth. Some
experiments also try to simultaneously create and detect the axion in a laboratory.
These are so-called light-shining-through-walls experiments [12], where some of the
photons in a laser beam aimed at a wall should convert into axions, which then
can pass through the wall, before finally turning back into photons on the other
side, giving the illusion that the laser shined through the wall. Indirect methods,
such as astrophysical observations of stellar evolution has also been successfully in
restricting large portions of the parameter space [13–19]. These exploit the fact
that an axion coupled to the standard model particles should carry away a signif-
icant amount of energy from a star, altering its evolution. Thus, observing stars
in different stages of their evolution cycle can restrict the existence of axions with
certain masses and couplings.

These experiments do not generally rely on the mass-coupling relation of the
QCD-axion, so the experimental upper bounds found for the couplings are valid for
all axions in a certain mass range. Axions with ma < 10−10 eV are those which
can experience superradiant growth around astrophysical black holes and which are
the focus of this thesis. The current upper bound on the photon coupling for these
masses comes from the helioscope CAST at CERN [10] which sets it at

gaγ < 0.66× 10−10 GeV−1 (2.6)

for masses bellow ma < 0.02 eV. The upper limit on the electron coupling comes
from astrophysical observations of red giants and white dwarfs and are set at around
[7, 8]

gae < 3× 10−13 (2.7)

for all masses of interest.

2.2 Kerr black holes

Black holes are relatively simple objects and can effectively be described by just
their mass and angular momentum, assuming that they have no net electric charge.
We usually categorize black holes into two main categories based on their mass:
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stellar black holes and supermassive black holes (SMBHs). Stellar black holes are
those believed to originate from collapsed stars and have masses of order 10M⊙,
where M⊙ = 2 × 1030 kg is the solar mass. The smallest observed stellar black
hole candidate has a mass of around 3M⊙ [52] and the largest around 60M⊙ [53].
SMBHs reside in the center of galaxies and have masses of around 105 − 1010M⊙.
Two examples are Sagittarius A* with the mass ∼ 4 × 106M⊙ [54] in the center
of the Milky Way, and Messier 87 with a mass of ∼ 6.2 × 109M⊙ [55]. Black
holes with masses in the region between stellar and SMBHs are less prevalent and
usually referred to as intermediate black holes. The only observed candidates in
this category are formed through the merging of two large stellar black holes [56].

If the black hole has no angular momentum, then space-time around it is de-
scribed by the famous Schwarzschild metric. However, we expect black holes to
carry some rotational energy, which will reshape space-time around them. Roy
Kerr was first to suggest a solution to Einstein’s field equations which included
angular momentum [57]. Spinning black holes are, therefore, often referred to as
Kerr black holes. The rotational motion is included in the metric through the spin
parameter

a =
J

M
, (2.8)

where J is the total angular momentum of the black hole. This parameter is
restricted by a < M to prevent naked singularities [58] and when a ≈M , the black
hole is called extremal. Measuring the spin of a black hole is more difficult than
measuring the mass, and estimations of spins are, therefore, less certain. However,
there is evidence for black holes with spin down to around 0.1M and up to 0.99M ,
and there seems to be a inclination towards more rapidly spinning black holes [59].

Space-time around a Kerr black hole is best descibed in Boyer–Lindquist coor-
dinates, (t, r, θ, ϕ), by the metric [60]

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4Mra

ρ2
sin2 θdtdϕ

+
ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2, (2.9)

where
ρ2 = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr. (2.10)

This metric introduces multiple important quantities, which we want to highlight.
First of all, we have the gravitational radius, which in geometrized units is rg =M .
This radius describes the scale of the black hole, and we will normalize distances
to this, r → r/M , after this section. Further, we have the coordinate singularity at
∆ = 0, which corresponds to the event horizon, but in contrast to the Schwarzschild
metric, we have two solutions, given by

r± =M ±
√
M2 − a2. (2.11)
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r+ can be thought of as the typical event horizon and coincide with the one in the
Schwarzschild metric when a = 0. We also have a region outside the event horizon,
called the ergosphere, in which extraction of energy is possible. This region is
defined as where −(1− 2Mr/ρ2) > 0 and the surface

re =M +
√
M2 − a2 cos2(θ) (2.12)

is its outer edge. The existence of this region is what allows the superradiant
instability to occur. Another surface of importance is the innermost stable circular
orbit (ISCO), risco, which is given by a more involved expression, see for example
eq. (2) in [59], but has the limits risco(a = M) = r+ and risco(a = 0) = 6M . The
ISCO is the closest a stable circular orbit can be held without the object necessarily
plummeting into the black hole. The ISCO is important in accretion disk models,
where the inner edge usually is assumed to coincide with it. Lastly, we have the
angular velocity of the event horizon

Ω =
a

2Mr+
, (2.13)

which is an important quantity for describing the superradiant instability.

2.3 The superradiant instability

Superradiance is an amplification effect where, under the right circumstances, a
wave scattering off a rotating body can be amplified by extracting rotational energy
from the body [28, 61]. When the rotating body is a Kerr black hole, superradiant
scattering can work in conjunction with the Penrose process [24] to extract energy
from the black hole. If the source of the scattering is bounded to the black hole,
the extraction of energy can repeat indefinitely, leading to an instability of the Kerr
metric. This process can extract a significant amount of rotational energy from the
black hole, which can spin it down noticeably. The extracted energy is deposited
into the field, leading to a large density around the black hole. This process was first
considered in the context of a “black hole bomb” where photons were bound to a
black hole by an enclosing mirror [20, 21, 62], but the mass of a massive boson field
works equally well to bound the field [22, 23, 25, 26, 33]. Thus, small fluctuations of
a massive boson field around a Kerr black hole can lead to exponential growth of the
number density of the corresponding particle [22, 23]. This growth is most efficient
for vector bosons [27], and non-existent for fermions because of Pauli-blocking [63].
In this thesis, we are interested in the (pseudo)scalar case, relevant for axions.

For the superradiant instability to be effective, the Compton wavelength of the
axion, ∼ 1/ma, must be of the same order as the gravitational radius of the black
hole, rg =M . Therefore, the gravitational coupling

α =Mma (2.14)

is closely linked to the effectiveness of the superradiant instability of black holes,
and α ∼ O(1) corresponds to the fastest energy extraction and subsequent growth
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of the surrounding field. More specifically, numerical investigations have found
that, for an extremal black hole, α = 0.42 yields the fastest growth rates [64]. For
α > 1 the instability is exponentially suppressed [22], whereas when α ≪ 1 the
growth rate are proportional to some power of α. α ≲ 1 is, therefore, the most
interesting case. From eq. (2.14) we then get that the superradiant instability can
effectively create large densities of axions around stellar black holes if ma ≲ 10−11

eV, and around SMBHs if ma ≲ 10−16 eV.

2.3.1 The superradiant rates

The superradiant instability is found when one analyzes the Klein–Gordon equation,(
∇µ∇µ −m2

a

)
φ = 0, (2.15)

in the Kerr-background, eq. (2.9). Even though the field can extract a significant
portion of the energy of the black hole, the energy will be spread out over a large
volume. It is, therefore, enough to consider the vacuum equation and neglect any
backreactions as a first-order approximation in α [31]. The equation then turns out
to be separable by the ansatz [65]

φ = e−iωt+imϕR(r)S(θ), (2.16)

where R(r) solves the radial equation (A.3), and S(θ) solves the angular equation
(A.4). There are many references exploring these equations both numerically and
analytically in different approximations. Some detailed references are Refs. [22,
23, 25–27, 29, 31, 62, 65], a review is given in Ref. [28], and a derivation in the
non-relativistic, ω ∼ ma, weak coupling, α ≪ 1, and slow spinning, a ≪ M , limits
is provided in appendix A of this thesis. The main goal is to determine the energy
eigenvalues, ω, of the quasibound-modes of the equation, which turn out to have a
small imaginary part, Γ = Im(ω). If Γ > 0, which is the case when the so-called
superradiant condition

mΩ− ω > 0 (2.17)

is satisfied, the field will grow exponentially with e-folding time 1/Γ, and the su-
perradiant instability is found. The basic approach in finding ω, and subsequently
Γ, is to consider the radial equation in two regions, the far region r ≫ M and the
near region r ≪ 1/ma. When α < 1, the two regions overlap, and by matching
the far and near solutions in the overlap, one obtains an equation for ω. The final
expressions can be found in many places, expressed slightly differently, and in this
section, we summarize the analytical results which are in good agreement for nu-
merical calculations for α < 0.2 and all spins. It is worth noting that, even though
the following analytic results do not apply for α ∼ 0.4, that a large cloud still grows
with only a slightly slower rate than predicted by these expressions [28, 64]. This
discrepancy is only relevant when studying the full time evolution of the systems,
which is not part of this thesis.
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The solution to eq. (2.15) is very similar to that of the hydrogen atom, and
this system is, therefore, sometimes referred to as the gravitational atom [27]. The
quasi-bound hydrogen like states are labeled by the three quantum numbers n, l,
and m, where l and m are the usual angular momentum numbers and ñ = n+ l+1
is the principle number. It varies in the references whether one uses n or ñ, we will
stick to n. The frequency, Re(ω), which we from now on refer to as ωnlm, is given,
to second order in α, by

ωnlm = ma

(
1− α2

2(n+ l + 1)2

)
, (2.18)

and the imaginary part Γnlm = Im(ω), also called the superradiant rate, is given
by [29]

Γnlm = maα
4l+4r+ (mΩ− ω)Cnlm, (2.19)

where

Cnlm =
24l+3(2l + n+ 1)!

(l + n+ 1)2l+4n!

(
l!

(2l)!(2l + 1)!

)2

×
l∏

j=1

(
j2
(
1− a2

r2g

)
+ 4r2+ (mΩ− ω)

2

)
. (2.20)

We see here that the rate is only positive if eq. (2.17) is satisfied. Since Ω is
proportional to a, which will decrease by the energy extraction, the instability will
eventually shut down, specifically when

m
a

M
<

4mα

m2 + 4α2
. (2.21)

From the superradiant condition, we also see that only modes with m > 0 can
extract energy from the black hole, i.e. the infalling wave has to have angular
motion parallel to the black hole spin. Further, the rate decreases with growing l,
and the most efficient mode has n = 0 and l = m = 1, which corresponds to the 2p
state of the hydrogen atom. In the slow-spinning approximation, a≪M , the rate
of this mode is

Γ011 ≈ a

M

α9

24M
, (2.22)

which expressed in seconds

Γ011 = 8.4× 10−6
( a
M

)( α

0.1

)9(M⊙

M

)
s−1. (2.23)

For superradiant growth to be observationally relevant, α and M must satisfy [33]

0.005

(
M

3M⊙

)1/9

≲ α < 0.5. (2.24)
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The lower limit comes from requiring that 1/Γ011 should be shorter than the age
of the universe and the upper limit comes from condition (2.21) which blocks su-
perradiant growth for all α > 0.5 independently of spin.

2.3.2 Shape and size of the dominate mode

If the instability is present, a large population of axions will accumulate around the
black hole. We call this population a superradiant axion cloud. As mentioned, the
2p state grows the fastest and will dominate the cloud. We can, therefore, in this
thesis, disregard all the other states. This would not be the case if one includes
self-interactions [37] or when one studies the details of gravitational wave emission
where level transitions are important [30, 31, 33, 34].

In the small α limit, the wave function of the dominate state is approximately
[31]

φ ≈ A0e
−iω011t+Γ011t+iϕα2r exp

(
−α2 r

2

)
sin θ. (2.25)

A2
0 is proportional f = Mcl/M where Mcl is the total mass of the axion cloud.

We note here that we have scaled the radial coordinate to the gravitational radius,
r → r/M , which will be kept throughout the thesis unless otherwise stated. The
dominant state also has ω011 = ma(1 − α2/8), and one can identify the velocity
of the axions as v ≈ α/2, which means that for small α it is safe to consider the
axions as non-relativistic [29]. We can, therefore, estimate the number density in
the cloud as na = ρ/ma = −T 0

0 /ma where Tµν is the energy-momentum tensor.
From Ref. [31] we then have

na ≈ Mcl

64πM2
α7 exp

(
−α2r

) [
1 + cos2 θ + sin2 θ

(
1− α2r +

α4

4
r2 + 2α2r2

)]
(2.26)

assuming 1/ω011 ≪ 1/Γ011, i.e. the field oscillations occur on much shorter time
scales than the superradiant growth. We have neglected the time dependence in
this expression, which is valid as long as we consider time scales much shorter
than 1/Γ011 where Mcl, M , and α are roughly constant. To get the exact time
dependence of the cloud, the corresponding time evolution equations should be
solved, including depletion through gravitational waves and other channels, see
e.g. Ref. [31]. We can get a limit on the maximum mass the cloud can acquire by
imposing that the angular momentum of the cloud should not exceed that of the
black hole [39]. If Na is the number of axions in the cloud, then Jcl = lNa is the
total angular momentum, where l = 1 is the azimuthal quantum number for the
dominant mode. With this, we can derive the following condition

1 >
Jcl
JBH

=
Na

aM
=

maNa

maM2a/M
=

Mcl

αMa/M
=

f

αa/M
, (2.27)

which limits the mass to f < α for an extremal black hole. More detailed consid-
erations yield an overall maximum mass of f ≈ 0.29 [28].
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The spacial distribution of the axion cloud can be estimated with the radial
expectation value, which for the dominante state is [28, 39]

⟨r⟩ ≡ rcl =
5

α2
. (2.28)

For the extent of the cloud, we have the standard deivation of the radial cordinate

∆rcl =

√
5

α2
. (2.29)

The cloud is, therefore, fairly localized around r ∼ 1/α2 ≫ rg and a first order
approximation for the number density of the cloud, used in, for example, Ref. [39],
is to assume that the axions are homogeneously spread out in a torus with ma-
jor radius rcl and minor radius ∆rcl. With this we get the homogeneous-density
approximation

n(h)a =
fM

maVc
. (2.30)

Vc is the volume of the torus which is

Vc = π(∆rclM)22πrclM = 2π2

(√
5M

α2

)2
5M

α2
= 50π2M

3

α6
(2.31)

in this approximation. With this we have

n(h)a =
fMα6

50π2maM3
=

fα5

50π2M
. (2.32)

Nummerically this is

n(h)a = 5.2× 1044
(

f

0.01

)( α

0.01

)5( M

10M⊙

)−1

cm−3, (2.33)

which is very large, and why the superradiant axion clouds are potent tools in the
search for the axion.

2.4 Accretion models

Even though black holes are quite simple objects in and of themselves, they all
accrete matter from their surroundings which adds complexity to the system. Ac-
cretion physics is an extensive and active field of research because of its essential
role in stellar, galactic, and black hole evolution and its role in black hole detec-
tion. Much of the accretion modeling today is based on magnetohydrodynamic
simulations, see, for example, Ref. [54]. However, a couple of fundamental accre-
tion models are widely used as starting points and give good first approximations
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when studying accretion flows. These are accretion disks and spherical accretion,
which will give good magnitude estimations suitable for this thesis.

The nature of black hole accretion is mainly determined by the accretion rate,
Ṁ , which describes how much matter is captured by the black hole per second.
The rate is usually normalized against the Eddington rate,

Ṁedd =
Ledd

ηc2
. (2.34)

The Eddington luminosity, Ledd, is the luminosity which balances the radiative
force with gravitational force and is roughly Ledd = 1.2 × 1038M/M⊙erg s

−1. η is
the radiative efficency which is typically taken to be ∼ 0.1 for black holes [60, 66].
The normalized accretion rate is then

ṁ =
Ṁ

Ṁedd

≈ Ṁ

1.33× 1018 M
M⊙

g s−1
. (2.35)

If the accretion rate is high, 0.01 < ṁ < 1, then there will be high friction in
the flow, and the angular momentum will even out and align the matter into an
accretion disk [47, 66, 67]. When the accretion rate is low, ṁ ≪ 0.01, the flow
becomes almost spherically symmetric and can be described as free-falling particles
[46, 68–70]. There are multiple models between these two edge cases, most notably
advection-dominated accretion flow (ADAF) [71, 72], but in this thesis, we will limit
ourselves to these two simpler models, which will suffice as base approximations.
Some typical accretion rates are ṁ ∼ 1 for stellar black holes fueled by a companion
star in a binary system, and ṁ ∼ 10−6 for SMBHs fueled by the denser inner
regions of galaxies [54, 55]. One can also consider isolated black holes for which
the properties of the surrounding medium determines the accretion rate and will
typically result in rates lower than 10−8. An accretion disk will surround stellar
black holes, and the accretion flow around the SMBHs and isolated black holes are
well approximated by spherical accretion.

2.4.1 Accretion disks

The most famous accretion models are the thin-disk by Shakura and Sunyaev [67],
and its relativistic extension by Novikov and Thorne [47]. Some basic assumptions
make it possible to solve the flow equations and extract radial profiles describing
the accretion flow in three distinct radial regions defined by the dominant pressure.
In the innermost region, the radiation pressure dominates, while in the outer two,
the gas pressure dominates. The difference between the outer and the middle region
is the process that determines the opacity. In the middle region, electron scattering
dominates, whereas free-free absorption is most important in the outer region.

In this thesis, we are interested in black holes with high spin where relativistic
effects can become important. We will, therefore, use the Novikov–Thorne model
to describe accretion disks. The density and temperature profile, as well as the
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disk thickness are all given in appendix B for each region of the Novikov–Thorne
model. These are all radial expressions which depend on the black hole mass, the
accretion rate, the spin, and a parameter αp, usually taken to be αp = 0.1 [67],
which describes the efficiency of the angular momentum transport. In appendix B
are also the equations that describes the transition between the regions provided.
Usually, the transitions occur at around r ∼ 100 and r ∼ 103 − 104 for typical
stellar black holes and at r ∼ 10 and r ∼ 100 for SMBHs. We will through out
chapter 3, where we study accretion disks, use the full equations found in appendix
B for all numerical calculations.

2.4.2 Spherical accretion

The accretion rate is very low in spherical accretion, and friction between the
accreted matter is almost negligible. One can, therefore, treat the accreted particles
to be in free fall. In this thesis, we will consider two somewhat distinct cases where
spherical accretion is relevant. The first is when we have an isolated black hole
whose only source of matter is from the interstellar medium. In this case, we can
estimate the accretion rate from the properties of the medium. In the second case,
the accretion rate is known, for example, from observations. For example, for some
SMBH where the rate can be estimated through observations, see, for example,
Ref. [55].

The setup for describing spherical accretion is that we have a black hole traveling
with velocity vrel relative to an ambient medium with density ρ∞ and temperature
T∞. We will also assume that the medium consists solely of hydrogen. The ambient
particles will then travel with a speed of order [46, 68]

veff ≈
√
v2rel + c2s (2.36)

relative to the black hole, where cs is the sound speed of the medium. The hydrogen
particles will be captured by the black hole if the effective velocity is smaller than
the escape velocity, i.e. , if

mp

r
>
mpv

2
eff

2
, (2.37)

where we remind ourselves that we have scaled the radius to the black hole mass.
From this we define the capture radius, also known as the Bondi radius, as

rb =
2

v2eff
. (2.38)

This radius define the extent of the spherical accretion flow. The relative velocity
of black holes are expected to be of the same order as the sound speed, typically
10 − 100 km s−1 [68, 73], but extreme events such as black hole mergers can kick
the remnant black hole to speeds approaching 5000 km s−1 [74].
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The accretion rate for spherical accretion can be estimated by the Bondi–Hoyle–
Lyttleton formula [46, 68, 69]

ṀBHL = 4πλsM
2ρ∞v

−3
eff , (2.39)

where λs ∈ O(1) is a factor that depends on the equation of state. This formula
corresponds to a normalized rate of

ṁ =
ṀBHL

Ṁedd

≈ 10−8λs

(
M

M⊙

)( n∞
1 cm−3

)( veff
10−4

)−3/2

, (2.40)

where n∞ = ρ∞/mp is the number density of the interstellar medium. Assuming
that the rate is constant all the way down to the horizon we have

Ṁ = 4πM2r2vr(r)ρ(r) = constant, (2.41)

where vr is the radial velocity of the accreted matter, and ρ(r) is the density of the
flow. A simple approximation for the radial velcoity is the free fall velocity

vr(r) ≈
√

2

r
, (2.42)

for which we note that vr(rb) = veff . From this we can extract the density profile
as

n(r) =
Ṁ

4
√
2πmpM2r3/2

, (2.43)

which can be used directly when Ṁ is known. If not, we insert ṀBHL and get

n(r) =
λs
4
n∞

(rb
r

)3/2
. (2.44)

This expression coincides with the general relativistic derivation made in Ref. [69],
but we have substituted for the effective velocity. λs is determined from the equation
of state, and for an ideal gas λs = 1/4, we will for simplicity set λs = 1 in this thesis.
We note that n(rb) < n∞, in this model which is due to the fact that rb is not as
rigorously defined and just captures the general scale. Furthermore, it is common
to consider the accretion to be further suppressed by an effective factor λeff as

well, i.e. ṀBHL → λeffṀBHL, where λeff captures the outflow of matter from
the black hole [75]. From the lack of X-ray signals from an expected population of
isolated black holes in our galaxy, there are arguments for this parameter to be as
small as λeff ∼ 10−3 [73, 75–77].
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The accreting plasma will also sustain a magnetic field. The field strength can
be estimated from the equipartition of magnetic and gravitational energy [68, 70],

B2

8π
≈ 1

6
ρvr(r)

2 ≈ 1

3

ρ

r
. (2.45)

With the electron density in eq. (2.44) we get the radial profile as

B(r) ≈
√

2πmpn∞
3

r
3/4
b r−5/4 ≈ 3× 103

( ne,∞
1 cm−3

)1/2 ( veff
10−3

)−3/2

r−5/4G. (2.46)

Another way to estimate the magnetic field is to use the equipartition between
magnetic and gas pressure, B2 ∝ neT , but due to the uncertainty in the electron
temperature, which we will discuss next, the above expression is preferable.

The most complicated aspect of spherical accretion is that of the temperature.
The simplest approach is to assume only adiabatic compression, then

T (r) = T∞
rb
r

(2.47)

for an ideal gas [69, 70]. However, this is mainly only accurate for the protons in the
flow. When the accretion rate is low, then the time to reach thermal equilibrium
between protons and electrons is longer than the time for the matter to reach the
singularity, and we effectively get a two-temperature flow [68, 72, 78]. The electron
temperature can then be described by the equation [78]

dTe
dr

+
3

2
(γ − 1)

Te
r

+
4mpM

3π

kṀ
(γ − 1)r2(Γe − Λe) = 0, (2.48)

where Γe and Λe account for all heating and cooling of the electrons and γ is the adi-
abatic index. The main heating is due to the Coulomb interactions with the protons,
whereas the cooling has three main parts, bremsstrahlung, synchrotron radiation,
and inverse Compton scattering of the synchrotron photons. The general treatment
of this equation is difficult, and it is further complicated by the fact that the infall
time can become shorter than the thermalization time of the electrons [72]. What
is often done instead is to use a reduced version of eq. (2.47) as an approximation.
This is motivated by the fact that if vrel ≪ cs, where cs =

√
5T∞/3mp is the sound

speed in an ideal hydrogen gas, eq. (2.47) becomes

T (r) = T∞
2

rc2s
=

6mp

5r
≈ 1× 1013 K

r
, (2.49)

which would result in extremely relativistic electrons close to the black hole. These
energetic electrons will cool much more efficently and both Refs. [72, 78] conclude
that for higher accretion rates, the electron temperature will not exceed far above
1011 K, and studies of SMBHs reach similar conclusions [54, 79]. Thus, the electron
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temperature is typical taken to be two orders of magnitude smaller than eq. (2.47),
i.e.

Te(r) ≈
1011K

r
, (2.50)

used in, for example, Refs. [55, 70, 71]. However, in this thesis we will also be
interested in the more extreme case of low densities where cooling effects will be
less efficient. The literature is somewhat sparse on this topic. One model, found in
Ref. [68], predicts very high temperatures at the black hole. Using their arguments
we get that the radius where the electrons become relativistic, Te(rrel) = me, can
be found from the equation

T∞
me

(
rb
rrel

)5/4

+
6mp

5merrel

((
rb
rrel

)1/4

− 1

)
= 1, (2.51)

and the electrons reach almost Te = mp at the black hole. We will, in this thesis,
mainly consider eqs. (2.47) and (2.50), the former when rb is small, and the electrons
have less time to heat up, and the second otherwise. We will also treat eq. (2.51)
as an upper bound on the temperature in the low-density limit. However, we want
to emphasize that the electron temperature of accretion flow is an area of research
in and of itself, and these models should be treated as very rough estimates.

The interstellar and intergalactic media

To use the spherical accretion model for isolated black holes we need the parameters
of the surrounding medium. Typically the interstellar medium is considered to be
composed of three types of matter: cold hydrogen clouds, warm partly ionized
hydrogen and warm fully ionized hydrogen [68, 80, 81]. The temperatures span
from ∼ 102 K to 106 K and the densities varies between 10−3−102 cm−3. The cold
clouds contain the most matter, but only account for around 1% of the interstellar
volume, so the other less dense media are more commonly encountered. Some
black holes, especially those with high velocities, can escape their galaxy, reducing
the density around it further. Typical intergalactic media has densities down to
10−6 cm−3 and temperatures up to 107 K [82].
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Scattering processes in dense
accretion flows

We will, in this thesis, consider the possible interactions between the axions found
in the superradiant clouds and the surrounding plasma that can occur if we assume
that the axion has the couplings to photons and electrons described in section 2.1.
In this chapter, we will look specifically at interactions with the plasma found in
denser accretion flows, where the plasma frequency is much larger than the axion
mass. In these, the resonant conversion we will discuss in the next chapter is
blocked, and we can treat the interactions as scattering processes of the type

e+ a→ e+ γ. (3.1)

This process can possibly cause detectable signals by either quenching the super-
radiant growth or cause a large emission of photons from the system. Quenching is
possible if the number rate,

Γ = − ṅa
na
, (3.2)

where na is the number density of axions, is larger than the superradiant rate. If
this is the case, then the axions will turn into photons faster than new axions can
be produced, halting the growth of the axion cloud, which could cause gravitational
signals or prevent the axion clouds from forming altogether. If the reactions are
too ineffective to quench the superradiance, there might still be a large luminosity
of photons emitted from the system, which could cause detectable effects. The
luminosity of the emitted photons can be calculated from

L =

∫
D

d3rQ(r), (3.3)

where D is the intersection between the axion cloud and the accretion flow and Q
is the volume emission rate of photons.

19
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Assuming that Pauli-blocking and boson-stimulation are negligible, we get the
change in axion number from [18, 19]

ṅa = −
∫
dΠedΠafe(Ee)fa(Ea)

∫
dΠ′

edΠγ |M|2(2π)4δ(pe + pa − qγ − qe), (3.4)

and the volume emission rate is similarly obtained as

Qγ =

∫
dΠedΠafe(Ee)fa(Ea)

∫
dΠ′

edΠγEγ |M|2(2π)4δ(pe + pa − qγ − qe). (3.5)

The notation we use here is pi and qi for the four momenta of the initial and final
state particles, respectively, where i = e, a, γ. Ei are the energies of the particles,
and bold quantities are the three-momenta. We distinguish between the initial
and final electron energy by using E′

e for the latter. M is the matrix element of
the process, fe and fa are the phase-space distribution of electrons and axions,
respectively, and

dΠi =
1

(2π)3
d3pi
2Ei

(3.6)

is the Lorentz invariant measure.
There are many references that have done similar calculations to these for the

reaction in the opposite direction, e+ γ → e+ a, in the context of studying stellar
evolution including axion cooling, for example, Refs. [13–19]. However, their results
are not directly applicable in our scenario, since in the opposite direction the axion
energies are determined by the thermal photons and will be much larger than the
axion mass. The axion can then safely be treated as massless. In our case, we
cannot neglect the axion mass since it is an important energy scale when the axions
are non-relativistic. Thus, we have to step back and include the axion mass in the
matrix elements and axion distribution before estimating the effects the interactions
can have on the system.

3.1 Setup and general calculations

In the intersection between the axion cloud and the plasma we have a population
of thermal electrons temperature T , which we for the most part will normalize to
the electron mass as Θe = T/me. Since the plasma is relatively hot and non-dense
we can neglect any electron degeneracy and the electrons are well described by the
Boltzmann distribution

fe(Ee) = 2 exp(−Ee/meΘe)
neπ

2

m3
eΘeK2[Θ

−1
e ]

. (3.7)

Here ne =
∫
d3pefe/(2π)

3 was used to express the distribution in terms of the
electron density, ne, instead of the chemical potential, and K2 is the modified
Bessel function of the second kind. We will consider systems where the gravitational
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coupling, α, is small. In these systems, the axions are non-relativistic, and we can
treat them to be at rest relative to the plasma electrons since their momentum is
∼ maα/2 [29]. The inclusion of the momentum can then be treated as a higher-
order correction in α. With this we can approximate the axion distribution to

fa(pa) = (2π)3naδ(pa), (3.8)

which inserted into the phase space integrals sets Ea = ma and pa = 0, and yields
a factor na/2ma.

We are now interested in calculating the number and emission rate given by
eqs. (3.4) and (3.5). These are very similar and we can simplify them simultaneously
by considering the integral

I =
na
2ma

∫
dΠefe(Ee)

∫
dΠ′

edΠγE
s
γ |M|2(2π)4δ(pe + (ma,0)− qγ − qe), (3.9)

where the phase space integration over the axion distribution has been carried out,
and s is introduced to takes us back to naΓ if s = 0 and Q if s = 1.

We continue by imposing the four-momenta conservation. Integrating over the
momentum of the outgoing electron fixes its three-momentum as qe = pe−qγ , and

the energy becomes E′
e =

√
E2

e + E2
γ − 2peEγ cos θ, where θ is the angle between

the incoming electron and the outgoing photon. The integral can then be written
as

I =
na

32π2ma

∫
dΠefe(Ee)

∫
Es−1

γ d3qγ

E′
e

|M|2δ(Ee +ma − E′
e − Eγ). (3.10)

Integrating over the photon angles fixes

cos θ =
2EeEγ − 2Eema + 2Eγma −m2

a

2Eγpe
⇔ Eγ =

2Eema +m2
a

2Ee + 2ma − 2pe cos(θ)
(3.11)

through the δ-function, which also yields the factor∣∣∣∣∣∣
d
√
E2

e + E2
γ − 2peEγ cos θ

d cos θ

∣∣∣∣∣∣
−1

=

 Eγpe√
E2

e + E2
γ − 2peEγ cos θ

−1

=
E′

e

Eγpe
(3.12)

from the inner function.1 The integral is then

I =
na

16πma

∫
dΠefe(Ee)

∫
dEγ

Es
γ

pe
|M|2, (3.13)

where the limits in Eγ are obtained from eq. (3.11) as

Eγ =

[
2Eema +m2

a

2Ee + 2ma + 2pe
,

2Eema +m2
a

2Ee + 2ma − 2pe

]
. (3.14)

1
∫
f(x)δ(g(x))dx = f(y)/g′(y) if g(y) = 0.
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Using the electron distribution from eq. (3.7) and introducing the dimensionless
quantities x = Ee/me, p =

√
x2 − 1, ξ = Eγ/ma and ϵ = ma/me we have

I =
nanem

s
a

32πm2
e

∫ ∞

1

dx
exp(−x/Θe)

ΘeK2[Θ
−1
e ]

∫ x+ϵ/2
x+ϵ−p

x+ϵ/2
x+ϵ+p

dξξs|M|2. (3.15)

For superradiant growth around astrophysical black holes, which we are interested
in, ma < 10−10 eV and so ϵ < 10−15. We can, therefore, safely neglect ϵ when
compared to x or ξ. Neglecting ϵ in the integration limits of ξ allows us to switch
the order of integration in I through the limit change{

1 < x, ξ ∈
[

x

x+ p
,

x

x− p

]}
=

{
0.5 < ξ,

ξ√
2ξ − 1

< x

}
, (3.16)

i.e.

I =
nanem

n
a

32πm2
e

∫ ∞

1/2

dξξs
∫ ∞

ξ/
√
2ξ−1

dx
exp(−x/Θe)

ΘeK2[Θ
−1
e ]

|M|2. (3.17)

This order will enable us to go further analytically and also extract the spectrum
of the emitted photons more easily.

To proceed, we need the matrix element. Process (3.1) has three tree-level con-
tributions. The first we will call the Primakoff channel, where a virtual photon
mediates the reaction. The two others are mediated by the electron, and we collec-
tively call these the Compton channel. Figure 3.1 shows the three tree-level Feyn-
man diagrams. The Compton channel requires a spin-flip to produce the photon,
this will minimize the interference between the two channels, and we can treat them
separately [16]. We can then split the matrix element as |M|2 ≈ |MP |2 + |MC |2.
This also allows us to write Γ = ΓP + ΓC and Q = QP + QC , where P stands
for the Primakoff channel and C for the Compton channel. The next step is to
find the matrix elements for the separate channels and, subsequently, determine
the individual contributions to the number and emission rates.

3.1.1 The Primakoff channel

In the literature, there are multiple sources for the matrix element for the Primakoff
channel, see, for example, Refs. [15–18]. Most of them use the approximation
that ma ≈ 0, which, as mentioned, is not appropriate for us. The references also
include varying cut-offs for the infrared divergence that stems from the massless
propagator. The natural choice, used in, for example, Ref. [15], is the plasma
frequency. However, it was later seattled in Ref. [16] that the correct cut-off should
be the Debye screening, which for a fully ionized hydrogen plasma is

κ =

√
8παemne

T
≈ 5.25× 10−11

( ne
1 cm−3

)1/2
Θ−1/2

e eV. (3.18)

To include the axion mass and this cut-off, we have to find the matrix element
from first principles. We do this by applying the normal Feynman algebra to the
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Figure 3.1. All three tree-level diagrams of the process e+a → e+ γ. Figures 3.1a
and 3.1b depicts the two tree-level diagrams of the Compton channel, and figure 3.1c
is the only tree-level diagram of the Primakoff channel.

tree-level diagram shown in figure 3.1c. We can then simplify it further by using
that we are approximately in the rest frame of the axion. The details are shown in
appendix C and the final matrix element, expressed in terms of the dimensionless
parameters x = Ee/me, ξ = Eγ/ma and ϵ = ma/me from the previous section, is
given in eq. (C.7). Following Ref. [16] we include the effective screening factor

|Feff |2 =
|k|2

|k|2 + κ2
, (3.19)

where k = pa − qγ is the momentum transfer. This is included in the matrix
element through |M|2 → |M|2|Feff |2 and we end at

|M|2 =
64παemg

2
aγm

2
eξ

2

(2ξ − 1)2(κ2a + ξ2)

(
(x2(2ξ − 1)− ξ2)+

ϵx
(
3ξ − 2ξ2 − 1

)
+ ϵ2

(
ξ3 − 3/2ξ2 + ξ − 1/4

))
, (3.20)

where we also introduced the dimensionless quantity κ2a ≡ κ2/m2
a as well. Since

ϵ ≪ 1 we only have to concern ourselves with the zeroth-order contribution in ϵ.
Inserting this into eq. (3.17) we have

I = 2nanem
n
aαemg

2
aγ

∫ ∞

1/2

dξ
ξ2+s

(2ξ − 1)2(κ2a + ξ2)
X(ξ,Θe), (3.21)

where X(ξ,Θe) is the integral over x. This integral can be evaluated analytically
to

X(ξ,Θe) =

∫ ∞

ξ/
√
2ξ−1

dx
exp(−x/Θe)

ΘeK2[Θ
−1
e ]

(
x2(2ξ − 1)− ξ2

)
=

2Θe

K[Θ−1
e ]

exp

(
− ξ

Θe

√
2ξ − 1

)(
Θe(2ξ − 1) + ξ

√
2ξ − 1

)
, (3.22)
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and we end at

I =
4nanem

n
aαemg

2
aγΘe

K2[Θ
−1
e ]

∫ ∞

1/2

dξ
ξ2+s

(
Θe(2ξ − 1) + ξ

√
2ξ − 1

)
exp
(
− ξ

Θe

√
2ξ−1

)
(2ξ − 1)2(κ2a + ξ2)

.

(3.23)

If κ ≫ ma, which is the case for most systems of interest in this chapter, we have
that ξ2/κ2a ≪ 1 since ξ is supressed by the exponential for all but the most extreme
temperatures. We can then write the number rate as

ΓP =
αemg

2
aγnem

2
a

κ2
FP (Θe) =

g2aγm
2
a

8π
ΘeFP (Θe), (3.24)

where ΘeFP (Θe) contain the full temperature dependence. From this we have that
the rates are essentially independent of the electron density. This can be confirmed
numerically, and we found that the rates change with ne only when both Θe > 1
and ne < 102 cm−3. This corresponds to environments not encountered in this
chapter.

3.1.2 The Compton channel

As for the Primakoff channel, there are multiple sources for the Compton matrix
element, but many use the approximation ma ≈ 0. To get the matrix element
we do the Feynman algebra in appendix C and the final expression for the matrix
element, expressed in terms of the dimensionless parameters x, ξ, and ϵ, becomes

|M|2 =
16παemg

2
aeϵ

2

(2x+ ϵ)(2x− 2ϵξ + ϵ)

(
1 + 2ξ2 − 2ξ +

4ξ2

(2x+ ϵ)(2x− 2ϵξ + ϵ)

)
. (3.25)

To first order in ϵ, this can be simplified to

|M|2 =
4παemg

2
aeϵ

2

x2

(
1 + 2ξ2 − 2ξ +

ξ2

x2

)
. (3.26)

Inserting this matrix element into eq. (3.17) we find

I =
αemg

2
aenanem

s+2
a

8m4
e

∫ ∞

1/2

dξξs
∫ ∞

ξ/
√
2ξ−1

dx
exp(−x/Θe)

ΘeK2[Θ
−1
e ]

(
1 + 2ξ2 − 2ξ

x2
+
ξ2

x4

)
.

(3.27)
The general behavior of the Compton number rate is then described by

ΓC =
αemg

2
aenem

2
a

m4
e

FC(Θe), (3.28)

where FC is the temperature dependent integral.
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3.2 Quenching the superradiant instability

The interactions with the plasma can quench the superradiant instability if ΓP +
ΓC ≈ Γ011. We get the number rates by setting s = 0 and divide by na in eqs. (3.23)
and (3.27). However, before we compare these with the superradiant exponent,
Γ011, we want to compare them with each other. The most important differences
between the two channels are described by eqs. (3.24) and (3.28), and assuming that
the temperature dependent integrals in these expressions are of the same order, we
have

ΓP

ΓC
≈

g2aγm
2
e

κ2g2ae/m
2
e

. (3.29)

With the upper bounds on gaγ and gae, given in eqs. (2.6) and (2.7) respectively,
we have that gaγ ≈ gae/me. With this, ΓP ≫ ΓC when κ≪ me, which is the case
for most astrophysical plasma. This allows us to neglect the Compton channel and
use Γ ≈ ΓP . This is fully supported by figure 3.2, where both number rates are
calculated numerically using the full expressions and plotted vs. the temperature.
In the figure ne = 1×1020 cm−3 was used, this corresponds to a realistic maximum
for the electron density, which should favor ΓC , but we see that ΓP still dominates
for all temperatures.

In order to quench the instability, we then want ΓP ≈ Γ011. We see in figure
3.2 that ΓP reaches a maximum of around 10−33s−1 for the very high temperatures
of Θe ∼ 10. This rate corresponds to characteristic time scales far larger than
the age of the universe, t0 ≈ 4 × 1017 s. Even though we theoretically can have a
system where α and M yield Γ011 < ΓP , this would also mean that Γ011 ≪ t−1

0 ,
and the slow growth of the superradiant instability in this case would make the
quenching irrelevant and completely undetectable. We can therefore conclude that
dense accretion flows cannot quench the instability in any system of observational
relevance.

3.3 Electromagnetic signals

Even though the interaction with the accreted matter cannot quench the instability,
it might still yield a significant electromagnetic signal, even if only a small portion
of the cloud converts into photons. Since the instability, if not quenched, yields
immense populations of axions, see eq. (2.32), which can compensate for the low
probability of photon emission. The total luminosity is given by eq. (3.3), where
the integration should be done over the intersection between the cloud and the
accretion flow. Since Q and Γ have the same dependence on each parameter, we
can neglect the Compton channel compared to the Primakoff here as well. We can
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Figure 3.2. The temperature dependenc of ΓP and ΓC . The number rates are
calculated from Γ = I|s=0/na using the expressions (3.23) and (3.27), respectively.
The electron density and axion mass are fixed as ne = 1020cm−3 and ma = 10−10

eV. Here we see that the Primakoff rate dominates for all relevant temperatures.

then approximate the total volume emission rate as

Q = QP =
4nanemaαemg

2
aγΘe

K2[Θ
−1
e ]

∫ ∞

1/2

dξ
ξ3
(
Θe(2ξ − 1) + ξ

√
2ξ − 1

)
exp
(
− ξ

Θe

√
2ξ−1

)
(2ξ − 1)2(κ2a + ξ2)

.

(3.30)
As for ΓP , we have that for low temperatures QP is essentially independent of the
electron density and the most complicated dependence is that of the temperature.

In what follows, we will investigate the luminosity emitted from the two bench-
mark models described in section 2.4, the accretion disk and spherical accretion.
The disk represents the dense but cold limit, while spherical accretion is the hot and
non-dense limit of accretion. We note that an accretion disk will not be surrounded
by completely empty space. Thus, typical luminosity from a system hosting a
disk will be more akin to a slightly reduced sum of the luminosity from spherical
accretion and a disk.

Note that in the coming numerical calculations, we have fixed gaγ at the unre-
stricted maximum from eq. (2.6) to give an estimate of the magnitudes involved.
We will discuss the role of gaγ in more detail in chapter 5.
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3.3.1 Accretion disks

In this section we will explore the luminosity emitted from the Novikov–Thorne
disk described in appendix B. This is a thin disk of height h(r), with an inner edge
at the ISCO. The height of the disk is much smaller than the characteristic size of
the axion cloud, h ≪ ∆rcl, as is illustrated in figure 3.3. The disk will, therefore,
determine the geometry of the intersection, and a reasonable approximation is to
treat the disk as fully located in the θ = π/2 plane. Thus, we have

Ldisk ≈ 2πr2g

∫ ∞

rISCO

drrh(r)QP (T (r), ne(r), na(r, θ = π/2)), (3.31)

where we will use the axion distribution described in eq. (2.26) and we assume that
the accreted matter is fully ionized so that ne(r) = n(r).
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Figure 3.3. A representation of the geometry of the disk and axion cloud. The
blue is the axion density from eq. (2.26) weighted by r2, the opacity corresponds to
the density. The red circle represents the torus where the homogeneous axion cloud
approximation from eq. (2.32) is valid. The black lines are the edges of the Novikov–
Thorne disk from appendix B. The parameters used for the plot are M = 10M⊙,
α = 0.1, a = 0.9, αp = 0.1 and ṁ = 0.1.
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The full parameter space for this model is α, M , a, f , ṁ and αp. However,
as we mentioned in the background, αp = 0.1 is usually fixed without further
investigation. We also have that L is directly proportional to f , so we know exactly
how it affects the luminosity. However, f ∼ 0.1 can only be reached with the more
efficient couplings of larger α, so one should be critical about the choice of f .

When it comes to ṁ, we have that the temperature, density, and height of the
disk all are proportional to ṁp for p > 0. We should, therefore, expect that higher
accretion rates should yield larger luminosities. A relatively small span of ṁ can
support an accretion disk, ṁ ≈ 0.01− 1, so we should only see minor changes due
to the rate. The luminosity depends on the spin, a, mainly through the location
of the ISCO. The ISCO decrease with higher spin, which extends the disk further
towards the black hole. This extension allows for more interaction with a hotter
surrounding which should increase the luminosity.

The two most important parameters are M and α. The exact dependence of α
is complicated because of na, but we have that na ∝ α7/M , so we should expect a
high sensitivity to α. When it comes to the black hole mass, it mainly scales the
geometry and the number of axions in the cloud. The volume of an accretion disk
is almost two dimensional, V =M2h, where h < 0.1M at the axion cloud for most
α. Then with QP ∝ m3

a = α3/M3 we have the very rough dependence

Ldisk ∝ α10

M2
h(rcl). (3.32)

Therefore, the luminosity should be roughly inversely proportional to the mass and
very sensitive to changes in α.

We investigate the parameter space numerically in figures 3.4a and 3.4b, where
the luminosity is plotted against α and M , respectively. In the two plots we also
display the dependence on ṁ and a by showing the luminosity for ṁ = 0.01 and
ṁ = 1, as well as for a = 0.1M and a = 0.99M . From these figures, we see that
the predicted dependencies are roughly correct. We can essentially conclude that a
small and rapidly spinning black hole with a strong coupling to the axion yield the
largest luminosity. Numerical values for “typical” stellar and supermassive black
holes, as well as some best possible values, are given in table 3.1 compared with
the same from the spherical accretion model studied in the next section.

3.3.2 Spherical accretion

For spherical accretion, the axion cloud determines the geometry. The simplest and
most accurate approximation is, therefore, to integrate over all of space down to
the event horizon, r+, i.e.,

Lsphere ≈ 2πr3g

∫ ∞

r+

r2dr

∫ π

0

sin θdθQP (T (r), ne(r), na(r, θ)). (3.33)

For the electron density, we use model (2.43) and assume fully ionized hydrogen,
and for the temperature, model (2.50) is used. Compared to the accretion disk,
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where we had that the luminosity follows eq. (3.32), we have here that the volume
of the intersection scales as M3 and we should expect that

Lsphere ∝
α10

M
(3.34)

instead. The simple temperature model of eq. (2.50) is independent of the mass
and L ∝ M−1 should, therefore, be followed more closely compared to the disk.
We should, therefore, still expect that smaller black holes should yield larger lumi-
nosities. However, the temperature is much larger than for the disk, so the claim
that QP is independent of ne might no longer hold since κ will be smaller than in
the disk. If it is small enough to impact the luminosity, we will see this when ṁ is
varied. We should also expect the effect to be more noticeable for large α since that
puts the cloud closer to the black hole, effectively raising the temperatures where
most of the emission occurs. Higher spin should also increase the luminosity since
in this model, the only thing affected by a is the ISCO, and a larger ISCO will lead
to a larger area of high temperatures close to the black hole.

M and α are the parameters of most interest for this model as well and in
figures 3.4c and 3.4d the luminosity is plotted vs α and M , respectively, for two
different accretion rates, ṁ = 10−8 and ṁ = 10−4, and two spins, a = 0.1M and
a = 0.99M . Note that the accretion rates are much lower than those from the disk
but still larger than the most extreme values that can be reached around isolated
black holes, see eq. (2.40). In the figures, we see that the luminosity is essentially
independent of ṁ even though the temperature is much higher than in the disk.
We also see the expected effect of increased spin, where the smaller ISCO greatly
increases the total luminosity. Overall, we get that a fast spinning and small black
hole yield the largest luminosities for spherical accretion. In table 3.1, “typical” and
best possible values of the luminosity are provided, compared to those estimated
from the disk model, to give a clearer sense of the magnitudes involved.

Table 3.1. Luminosity for different systems. The typical values correspond to pa-
rameters found more commonly in nature, whereas the best is for the most favorable
but still realistic situations. The typical parameters are chosen as α = 0.1, a = 0.9M ,
and f = 0.01, with ṁ = 0.1 for the disk and ṁ = 10−6 for spherical accretion. The
typical masses are set to 10M⊙ for stellar black holes and 107M⊙ for SMBHs. The
best parameters are chosen as α = 0.4, a = 0.99M , and f = 0.1, with ṁ = 1 for the
disk and ṁ = 10−3 for spherical accretion. The most favorable masses are set to
3M⊙ for stellar black holes and 105M⊙ for SMBHs.

Stellar, disk Stellar, sphere SMBH, disk SMBH, sphere
Typical 2× 10−4 W 5× 105 W 2× 10−19 W 0.1W

Best 1× 102 W 1× 1014 W 3× 10−6 W 3× 109 W

3.3.3 Emitted spectra

In addition to the luminosity, we can also determine the spectrum of the emit-
ted photons, which is important when considering the detectability of the signal.
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(c) Luminosity vs. α for spherical accretion.
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(d) Luminosity vs. M for spherical accretion.

Figure 3.4. The luminosity emitted from an accretion disk and spherical accretion
plotted vs. α and M , respectively. In each figure, four plots are shown each calcu-
lated with different spin and accretion rate. In figures 3.4a and 3.4c M = 10M⊙,
while in figures 3.4b and 3.4d α = 0.1. The assumed mass fraction of the axion cloud
is f = 0.01 in all figures.

Setting s = 1 in (3.23) we get the spectrum from

Fν(ξ) ≡
∫
D

d3r
dQP

dEγ

=

∫
D

d3r
4naneαemg

2
aγΘe

K2[Θ
−1
e ]

ξ3
(
Θe(2ξ − 1) + ξ

√
2ξ − 1

)
exp
(
− ξ

Θe

√
2ξ−1

)
(2ξ − 1)2(κ2a + ξ2)

, (3.35)

where the volume integration is over the same geometries as for the luminosity.
ν = Eγ = maξ is the frequency of the photons and Fν(ξ)dξ is the total power
emitted from the system in the frequency band [ν, ν + dν] = [maξ,ma(ξ + dξ)].
The shape of the spectrum emitted from a black hole of M = 3M⊙, calculated for
different values of α, is given in figure 3.5 for both the accretion disk and spherical
accretion model.
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The spectrum is relatively independent of all parameters except for α, especially
for the disk. The magnitude is only slightly affected by the spin of the black hole.
The independence of the black hole mass can be explained by the fact that we
differentiate with respect to Eγ , which is proportional to ma ∝ M−1. The differ-
entiation will, therefore, remove the dependence of M , since L ∝M−1, roughly, in
both models. However, we have to note that we have normalized the frequency to
ma, and the actual frequencies of the spectrum will be inversely proportional toM .

The shape of the spectrum from the disk is a very narrow peak at Eγ = ma

with only a slight change in magnitude with increasing α. The spectrum from
spherical accretion has a more complicated behavior. For small α, it resembles the
disk spectrum with a dominant peak at ma. However, when α increases, a large
part of the emission occurs closer to the black hole where the electrons are more
energetic, leading to more energetic photons and a significant contribution at higher
frequencies. We see a rise to a broad peak at larger frequencies of around 103ma

before the emission drops down again.
With estimates for the luminosity and a picture of the shape of the spectrum, the

question now is whether we can detect and use these signals to search for imprints
from the axion. We discuss this in chapter 5 since most of the discussion is relevant
for the results from the next chapter as well.

3.4 Plasma frequency suppression and
temperature sensitivity

We end this chapter by highlighting two important uncertainties which could affect
the results.

In figure 3.5 we see that a significant amount of the emission occur at frequencies
close to ma. In these denser accretion flows, this corresponds to frequencies far
below the plasma frequency ωpl ≈ 3×10−11 eV

√
ne/1 cm−3. We expected that the

plasma frequency should have blocked this emission more. A possible reason why
we do not see this suppression is that we treat the emitted photon in the kinematics
of section 3.1 as fully massless. One could do the kinematics and assume q2γ = ω2

pl,
this would reduce the luminosity greatly since we would effectively integrate from
ωpl in expressions (3.30) and (3.35) instead of 1/2. However, since the plasma
frequency is not a real mass, this will not be completely correct either, and a more
detailed analysis has to be made.

Another uncertainty in our analysis is that of the electron temperature of spher-
ical accretion. Through the spin dependence, we saw that the luminosity is sensitive
to the temperature close to the black hole. However, it is not clear if a more realistic
temperature model would increase or decrease the total luminosity.

We will find in chapter 5 that the luminosities we estimated in this chapter are
borderline significant as they are, and we can keep these uncertainties in mind by
treating the signals as upper bounds to the actual emission.
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Figure 3.5. The spectra, the power emitted per frequency from the system, for
spherical accretion, full lines, and the accretion disk, dashed lines, calculated for
different values of α. The remaining parameters are set as M = 3M⊙, a = 0.99M ,
f = 0.01, in both models. The accretion rates are ṁ = 1 for the disk and ṁ = 10−5

for the spherical accretion. Note that the peaks only align because of the scaling
by ma of the x-axis. α = 0.1 corresponds to ma = 4 × 10−12 eV, which, if directly
converted, yields a photon of frequency ∼ 1 kHz. To get numerical values in more
conventional units, WHz−1, one has to multiply by h, putting the highest values of
around 103 WHz−1.
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Resonant conversion in
spherical accretion

In the analysis of the previous chapter, we saw that the emission rate was, for the
most part, essentially independent of the density of the accretion flow. This breaks
down if the density is low enough that the plasma frequency, given by

ωpl ≈
(
4παemne

me

)1/2

, (4.1)

is comparable to the axion mass. If this is the case, resonant conversion of axions
can occur since the mass difference no longer blocks the conversion. The accretion
rates considered in the previous chapter were always high enough that ωpl ≫ ma

throughout the flow. However, there are situations when it is possible to have den-
sities low enough that ωpl ≈ ma in regions overlapping with the axion cloud. For
example, high-velocity black holes can experience a significantly reduced accretion
rate, as accounted for in the model of section 2.4.2. Another example is super-
nova remnants which are left in an under-density after the explosion. We will, in
this chapter, consider the first scenario: isolated black holes traveling fast through
interstellar or intergalactic space, reducing the density low enough that resonant
conversion of axions can have significant effects on the system.

The scattering formalism we used in the previous chapter is not able to capture
resonant conversion because the inclusion of κ we used from Ref. [16] does assume
that ωpl ≫ ma. Resonant conversion is instead best described by the modified
Maxwell’s equations [83], which allows axions to mix with photons when traveling
through a external magnetic field. The formalism for studying this mixing was
developed quite early in Ref. [84], and applications of it can be found in Refs. [48, 85]
in the context of DM-axions in the vicinity of neutron stars. This situation is quite
similar to our situation, with an axion cloud interacting with the magnetic field
suspended in the astrophysical plasma. The main difference is that we have much
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smaller magnetic fields, but this is compensated by the much larger densities found
in superradiant axion clouds. We will, therefore, in this chapter apply the methods
from Refs. [48, 84] to study the resonant conversion in the overlap between the
superradiant axion clouds and low-density spherical accretion.

4.1 Emitted power through resonant conversion

In this section we relay the important results from Ref. [48] in the new context of
superradiant axion clouds.

With the existence of the axion-photon coupling, given in eq. (2.2), Maxwell’s
equations for the electromagnetic field have to be modified. The modification allows
axions and photons to mix in the presence of an external magnetic field. Assuming
radial planar waves of the form

a(r, t) = ieiωt−ikrã(r) and A∥(r, t) = eiωt−ikrÃ∥(r), (4.2)

where a is the axion field, and A∥ is the photon component transverse to the
direction of propagation and co-planar with the magnetic field, one can show, see
appendix D for more details, that Maxwell’s equations reduce down to the mixing
equation [

−i
d

dr
+

1

2k

(
m2

a − ξω2
pl ∆B

∆B 0

)](
Ã∥
ã

)
= 0. (4.3)

The quantities ξ and ∆B are related to the angle θ between the direction of motion
and the external magnetic field strength, B, according to

ξ =
sin2 θ̃

1− ω2
pl

ω2 cos2 θ̃
and ∆B = Bgaγma

ξ

sin θ
. (4.4)

Equation (4.3) is valid close to the resonance radius, rc, which is where the axion
mass coincide with the plasma frequency, i.e., where

ωpl(rc) = ω ≈ ma. (4.5)

Through perturbation analysis, Ref. [48] provides the following formula for the
transition rate at radius r:

paγ =

∣∣∣∣∣∣
∫ r

0

dr′
B(r′)ξ(r′)gaγ

2vc sin θ̃
exp

−i
∫ r′

0
dr̃
[
m2

a − ξ(r̃)ω2
pl(r̃)

]
2mavc

∣∣∣∣∣∣
2

, (4.6)

where vc is the axion velocity. Taking r → ∞ and using the method of stationary
phase, the previous expression simplifies to

p∞aγ = vc lim
r−∞

paγ(r) ≈
1

2vc
g2aγB(rc)

2l2, (4.7)
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where

l =

√
2πrcMvc

3ma
(4.8)

is the effective size of the conversion area. The additional factor of vc in this
expression comes from considering the effect the changing plasma frequency has
on the frequency of the outgoing photons far from rc where the mixing becomes
negligible, see Ref. [48] for the details. The expression in eq. (4.7) holds for any θ to
first order in vc. For the axion cloud, vc ≈ α/2 and the expression can be treated as
the first-order approximation in α. Using this, the radiated power through a solid
angle dΩ at rc is

dP
dΩ

≈ 2p∞aγρa(rc)vcr
2
cM

2, (4.9)

where we have normalized rc to rg =M which results in the factor M2. The factor
of 2 comes from the fact that the conversion can come from movement inwards
and outwards from the black hole. Note that in the previous chapter, we used the
luminosity L, while here we use a different notation with dP/dΩ to resemble the
source material. Integrating the latter over the angles results in the former.

Formulas (4.7) and (4.9) are readily applicable to the superradiant axion cloud.
We can rewrite it in terms of α, using maM = α and vc ≈ α/2, and get

dP
dΩ

≈ π

3
g2aγB(rc)

2αM3r3cna(rc). (4.10)

Resonance conversion is only relevant in spherical accretion since the density is
far abvove 1 cm−3 in accretion disks. In spherical accretion B and rc are spher-
ically symmetrical but we do have an angular dependence in na. To simplify the
calculations we average the density from eq. (2.26) over the sphere at rc and get

na(rc) ≈
fα7

96πM
exp
(
−α2rc

)(
3− α2rc +

α4

4
r2c + 2α2r2c

)
≡ fα7

96πM
g(rc). (4.11)

Inserting this we get the radiated power

dP
dΩ

=
f

288
M2α8g2aγB(rc)

2r3cg(rc), (4.12)

which in watt yields

dP
dΩ

≈ 1.5× 1021
(

f

0.01

)(
M

M⊙

)2(
gaγ

0.66× 10−19 eV−1

)2(
B(rc)

1mG

)2

α8r3cg(rc) W,

(4.13)
and so it has the potential to be substantial.
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4.2 The resonance condition

Formula (4.12) is dependent on the radius rc where the plasma frequency coincides
with the axion mass. This is the resonance radius, and it is the most important
quantity of this chapter. For resonant conversion to occur rc must exist and the
total luminosity is highly sensitive to its location relative to the axion cloud. The
resonance radius is determined from its definition,

ωpl =

√
4παemne(rc)

me
= ma, (4.14)

and does only depend on the electron density of the accretion flow. It is therefore
useful to introduce

m1 ≡

√
4παem × 1 cm−3

me
= 3.71× 10−11 eV, (4.15)

which is the plasma frequency corresponding to a density of ne = 1 cm−3. We
see that this is comparable to the axion mass we have in the superradiant clouds
around stellar black holes, which means that we will require very low densities in
the accretion flow for resonant conversion to be relevant. We can already conclude
that we will not see resonant conversion around SMBHs since superradiant axion
clouds around those require masses much smaller than m1. These low electron
densities are found throughout the galaxy but for resonant conversion to yield large
luminosities we need low densities close to the black hole. The lowest densities are
achieved around isolated black holes that travels rapidly through space, as described
in section 2.4.2, and this chapter will, therefore, focus on these systems.

Inserting the electron density model from eq. (2.44) into eq. (4.14), we can
extract the resonance radius as a function of the ambient electron density, ne,∞,
and the Bondi radius, rb, as

rc = 4−2/3
( ne,∞
1 cm−3

)2/3(m1

ma

)4/3

rb

≈ 0.072
( ne,∞
1 cm−3

)2/3( M

M⊙

)4/3

α−4/3rb. (4.16)

From this, we get a condition on the system for where resonance conversion can
occur from the fact that rc < rb must be satisfied. The density model is only valid
in that region, and rc > rb means that the system requires lower electron densities
than the ambient density. From this the resonance condition can be expressed as( ne,∞

1 cm−3

)
< 4

(
ma

m1

)2

⇔
( ne,∞
1 cm−3

)
< 51.8

(
M

M⊙

)−2

α2, (4.17)

which essentially describes for which systems the axion mass is larger than the
ambient plasma frequency. In figure 4.1 we have plotted the (α,M) plane where this
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condition is satisfied for some different ambient densities. Since we want α ∼ 0.1, it
is clear from this figure that we have to consider black holes for which M ≲ 10M⊙
and ne,∞ < 0.01cm−3.

10 2 10 1

100

101

102

M
/M

ne, =0.0001 cm 3

ne, =0.001 cm 3

ne, =0.01 cm 3

Figure 4.1. Systems where rc < rb as described by eq. (4.17), visualized for a
couple of ambient densities. The shaded areas are (α,M)-pairings for which resonant
conversion of axions into photons can occur. Essentially where the ambient plasma
frequency is less than the mass of the superradiant axions.

For the brightest emission we want as large axion density as possible at rc. The
most optimal case is, therefore, when rc ≈ rcl ≈ 1/α2. Since rc = xrb where x < 1,
we have that

α ≈ x−1/2veff ⇒ veff ≲ α (4.18)

would yield the largest signals. We can see from this that we want veff to be large,
preferably comparable to α. This is not a perfect analysis since x depends on α. As
mentioned in the background, it is possible for black holes to reach velocities up to
veff = 0.017, resulting from black hole mergers, which is comparable to the smaller
values of α. However, more common velocities are around veff ≈ 10−5 − 10−3. We
will explore exactly how important the condition vaff ≈ α is for the radiated power
in the next section, together with its dependence on all the other parameters.
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4.3 Exploring the parameter space

In this section, we will explore how the radiated power from eq. (4.12) depends
on the different parameters in order to identify the systems in which a significant
signal can be achieved. Throughout, we will assume that the axion cloud has a
mass of 1% of the black hole mass, i.e. f = 0.01, and use the magnetic field model
from eq. (2.46) unless otherwise stated. We will also use the upper bound on gaγ
from eq. (2.6) to give the largest possible signals. We will discuss the role of the
coupling in more detail in the next chapter.

We argued in the previous section that we are interested in large velocities, much
larger than the sound speed of the ambient medium. We will therefore assume
veff ≈ vrel and disregard the sound speed. The sound speed was also the only
thing dependent of the ambient temperature, T∞, so when calculating the radiated
power from eq. (4.12) it seems that we can neglect the temperature completely.
However, there is a large caveat to this which we will discuss at the end of this
section.

We plot the radiated power vs. all the relevant parameters below, but before
that, we want to note two things that are relevant for all plots. First, we set a
lower limit on radiated power at 1 W, this makes the plots easier to read, and
lower signals are of no interest to us. This will sometimes result in some labeled
graphs not showing up in the figures. They are still included since the fact that
they yield neglectable signals are important for the discussion. Secondly, the graphs
are sometimes cut-off, seemingly arbitrary. This cut-off comes from imposing the
condition rc < rb. Otherwise, the models would interpolate outside the region
where they are valid.

Black hole mass and gravitational coupling: From figure 4.1, we saw that
resonant conversion is only relevant for black holes with mass ≲ 10M⊙ if α ∼ 0.1,
which is required for the instability to yield large axion densities. However, because
of the complicated dependence on rc and α in eq. (4.12) it is unclear what (M,α)-
pairings yield the highest luminosity. We, therefore, plot the radiated power vs. α
for fixed mass in figure 4.2, and vice versa in figure 4.3. In these figures we use
three different ambient densities 10−2, 10−3, and 10−4 cm−3 and held veff = 0.01
fixed.

We see from the figures that the luminosity can reach up to 1025 W when α
is large and M is small. The luminosity quickly drops of when M increase above
10M⊙ but for all masses below that limit we can have significant signals. The
luminosity seems to be less sensitive to α since we can have signals almost as high
as 1020 W all the way down to α ≈ 0.01. Thus, a small black hole with moderate
coupling to the axion is required for resonant conversion to be relevant.
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Figure 4.2. The radiated power vs. α for different pairings of black hole mass and
ambient density. We only consider α in range where superradiance is relevant, see
condition (2.24). The relative velocity used here is vrel = 0.01.
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Figure 4.3. The radiated power vs. M for different pairings of α and ambient
density. The relative velocity used here is vrel = 0.01.
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Plasma parameters: To get a better grip on how ne,∞ and veff affect the signals
we plot the radiated power vs. both of them in figures 4.4 and 4.5 respectively. We
see from the first figure that lower densities generally benefit the signals, but we can
still achieve large signals as long as ne < 10−2cm−3, which is the case in parts of
the galaxy. The most restrictive parameter for resonant conversion is the velocity.
We see in figure 4.5 that we require vrel > 10−3 and the most favorable case occurs
when vrel ≈ 0.01. These velocities are on the extreme side but are not impossible
to reach [74]. Therefore, a small isolated black hole traveling through the galaxy
at these velocities can support an environment where resonant conversion can yield
significant signals.
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Figure 4.4. The radiated power vs. the ambient electron density, ne,∞, for a couple
of (α,M) pairings. The relative velocity is fixed at vrel = 0.01.

Magnetic field: In the above analysis, we have used the magnetic field model
from eq. (2.46). However, as mentioned in the background, there are some model
uncertainties here, and one get a lower estimate if one instead uses the equipartition
B2 ∝ Tne to estimate the magnetic field. We also have large-scale galactic magnetic
fields of some µG [81, 86], and these can act as effective lower bounds on the field
strength. The differences between these models are shown in figure 4.6, where
the emitted power is plotted against the ambient density using the three different
magnetic field models. We see that, even for the lower field strengths, that the
emission can be substantial.
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(a) ne,∞ = 10−3cm−3.
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(b) ne,∞ = 10−4cm−3.

Figure 4.5. The radiated power plotted against the relative velocity, calculated
using two different ambient densities.
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Figure 4.6. The emitted power vs. ambient electron density comparing three mag-
netic field models. B(r), plotted in blue, refers to the model from eq. (2.46) which
we have used throughout this chapter. The second model, plotted in green, uses
the equipartition B2/8π ∼ 4ne(r)T (r), where ne and T is given by eqs. (2.44) and
(2.47), to estimate the magnetic field. The last plots, shown in red, uses a constant
magnetic field of 1 µG. We use vrel = 0.01 and M = 5M⊙ in all calculations for this
figure.
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Temperature: Until now, we have neglected the temperature of the flow since
when the relative velocities are large, the temperature does not affect the radiated
power. However, this is not strictly true, and there is one important detail that de-
pends on the temperature: the plasma frequency. The expression we used, eq. (4.1),
is only accurate for low temperatures. If T ≈ me the plasma frequency will increase
rapidly [87]. Therefore, we must ensure that the temperature at rc is low enough,
i.e. T (rcl) < me, for our results to be valid. As mentioned in chapter 2, the electron
temperature of accretion flows is a complicated subject with much uncertainty. For
low-density spherical accretion, we have the models eqs. (2.47) and (2.51), which
give quite different temperatures at the resonant radius. We will treat the former
as a lower estimate and the second as an upper estimate and compare the predicted
temperatures at rc.

The easiest way to check if the temperature is lower than me is to compare the
relativistic radius rrel, defined as where T (rrel) = me, to rc. If rrel < rc, then the
calculations of the previous sections should be accurate, otherwise our analysis of
resonant conversion breaks down. Starting with the temperature from eq. (2.47),
we have that

rrel =
T∞
Trel

rb = Θe,∞rb. (4.19)

rrel < rc is then satisfied if

Θe,∞ < 0.072
( ne,∞
1 cm−3

)2/3( M

M⊙

)4/3

α−4/3. (4.20)

The weakest limit, for the systems we have considered, is at around Θe,∞ < 5×10−4,
which is the limit when ne,∞ = 10−4cm−3,M =M⊙ and α = 0.5. This corresponds
to an ambient temperature of around 3 × 106 K, which is roughly the highest
observed temperature in the interstellar medium [81]. Thus we can conclude that
if the electron temperature follows the model of eq. (2.47) we do not have to worry
about high temperatures.

The temperature model in eq. (2.51) from Ref. [68] predicts higher temperatures
and we investigate this model in figure 4.7. In this figure, the region where rrel < rc
is marked in the (veff , ne,∞)-plane for different black hole mass and α pairings. The
figure indicates that there are some possibilities that the temperatures at rc are too
large. However, since the other model accepts all systems, we can treat eq. (2.51)
as a worst-case scenario. We will discuss the temperature uncertainty and other
potential flaws at the end of the next chapter.

4.4 Bondi suppression

In the previous section we have used the Bondi suppression factor λs = 1, i.e. the
accretion rate is Ṁ = ṀBHL from eq. (2.39). We saw then that we required
large velocities. Some studies have suggested that λeff has to be small, λeff ≤
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Figure 4.7. The areas in the (veff , ne,∞)-plane where rc > rrel. rrel is the radius
at which T (rrel) = me, calculated from eq. (2.51), the shaded area is therefore where
the resonant radius is farther out than where the electrons become relativistic. In
these areas, the radiated power calculated in this chapter is valid according to this
model. However, this is an upper bound, and the area of validity is, in reality, larger.
Especially since T∞ = 106 K is used in this figure, which is the highest ambient
temperature expected in interstellar space. For lower values of α, the temperature
is low enough in the whole plane.
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0.01, in order to explain the lack of signals from isolated black holes in the galaxy
[73]. If this is the case, we would have a larger parameter space where resonant
conversion could be relevant. However, another explanation for the lack of signals
proposed in these studies is that the isolated black holes have higher velocities than
previously assumed. Thus, we should not consider high velocities and small λeff
simultaneously. Instead, we will try to answer the question of whether a reduced
value of λeff could compensate and yield large luminosities for slower black holes.
I.e., how small does λeff have to be for the emitted power to remain large if we
reduce the relative velocity to 0, i.e. veff ≈ cs.

With the magnetic field model we used throughout the chapter, we have that

dP

dΩ
∝ B(rc)

2r3cg(rc) ∝ λ
4/3
effv

−4
effg(rc). (4.21)

This expression includes all the factors of λeff and veff . The exact dependence
in g(rc) is complicated, but this factor ensures that the resonant radius is as close

to the cloud as possible. Thus, we want rc to be unchanged, i.e. λ
2/3
effv

−2
eff should

stay constant. If this is the case, then the prefactors of eq. (4.21) will also stay the
same. From this we have found the condition that λeffv

−3
eff should stay constant.

Reducing from veff ≈ 0.01 to veff ≈ cs ≈ 10−4, which is the largest sound speed
typically encountered in the interstellar medium, would then require λeff = 10−6.
This is much lower than the suggested reduction of λeff ≈ 10−4 − 10−2. We can
therefore conclude that the signals favor larger velocities rather than Bondi suppres-
sion. Some in-between mode might exist with some Bondi suppression for slightly
slower black holes, which could yield large enough signals for a larger parameter
space than found in the previous section. We do, however, leave this for future
study.

4.5 Quenching the superradiant instability

We have seen in this chapter, that the estimated luminosity is much larger than for
the non-resonant conversion of the previous chapter. Therefore, to give a complete
comparison, we want to investigate whether resonant conversion can quench the
superradiant instability since it is more efficient in turning axions into photons
than the non-resonant conversion. Since there is very little exchange of energy
between the plasma and the axion cloud, the signal should be quite monochromatic
with all photons emitted close to Eγ ≈ ma. We can then estimate the number

of converted axions per second to be Ṅ ≈ L/ma. Assuming a fully developed
axion cloud of mass Mcl ≈ fM , we have that the total number of axions present is
N = fM/ma, and we can approximate the number rate as

Γ ≈ L/ma

Mcl/ma
=

L

fM
. (4.22)
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The largest signals estimated have a luminosity of L ≈ 1025 W for M = 3M⊙ and
f = 0.01. With this we have

Γ ≈ 1× 10−21 s−1. (4.23)

This is much larger than what we found in 3.2. However, it is still much smaller
than the superradiant rate. We can therefore use the same argument as in section
3.2 to conclude that resonant conversion will not be able to quench the superradiant
instability. Thus, neither resonant nor non-resonant interactions between the astro-
physical plasma and the axions can interfere with the evolution of the superradiant
axion cloud.



Chapter 5

Detectability

In this chapter, we will discuss the possible application of the work from the previous
chapters. To give a complete picture, we will also look closer at which systems the
work is relevant for and put the work in its astrophysical context. Before we go into
details, it is worth summarizing the results of the two previous chapters. We have
studied the interaction between a superradiant axion cloud and the astrophysical
plasma around a black hole. We divided it into dense accretion flows and non-
dense accretion flows where resonant conversion could occur, each type studied in
chapter 3 and 4, respectively. The commonality found between both was that the
interaction was not effective enough to quench the evolution of the axion cloud,
and we, therefore, focused the study on electromagnetic signals. We found that the
signals from both types of systems could be neglected for SMBHs and reached the
highest luminosities for the smallest stellar black holes.

In chapter 3, we found that the emission was essentially independent of the den-
sity of the flow and the contribution from an accretion disk was negligible compared
with that from spherical accretion. However, the estimates from a single accretion
disk are not the complete picture, and the total luminosity from a system hosting
a disk are probably more akin to that estimated for spherical accretion since the
disk will be surrounded by a hotter plasma in addition to the disk [59]. However,
there will be a reduction compared with pure spherical accretion since the disk
will cool the system overall. The maximum luminosity found in this chapter was
around 1014 W if the black hole were small, rapidly spinning, and only accreted
spherically. Neglecting the reduction that a disk would entail, whose presence we
rely on to detect black holes, this is the maximum luminosity we can expect from
an axion cloud surrounding one of the observed stellar black holes in our galaxy.

In chapter 4, we looked at systems where resonant conversion of axions into
photons could occur. In these systems, the luminosities reached 1025 W, which is
significantly higher than for non-resonant conversion. To achieve this magnitude,
we found that the black hole had to travel fast through an ambient medium of
densities found in the sparsest regions of interstellar space or in intergalactic space.

47
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In this chapter, we will look at the which parts of the axion parameter space
could potentially be observed through direct detection of our signals using radio
astronomy. We will also look at the interaction between the emitted photons and
their surroundings, both directly in the accretion flow and the ambient medium
to see if this could have detectable effects. The population of systems where it is
likely that the estimated signals to be realized is then discussed. Finally, we end
this chapter, and the thesis, by discussing some of the major uncertainties of the
used models.

5.1 Direct detection

The main goal of this work is to find new channels through which we can search
for the axion. In this section we want to compare our signals to the sensitivity
of modern telescopes in order to determine if they can be used for this. However,
the telescope in question must be able to operate at the given frequencies of the
signals and it turns out that this is the main limitation of applying our results in
the search for the axion.

We plotted the spectrum from the denser spherical accretion and the accretion
disk in figure 3.5. We see in this figure that for the disk and the weakest signals
from spherical accretion, we have a peak at ma, and only when α increases do
a significant emission occurs at higher energies of 102 − 103ma. In contrast, the
resonant conversion only produces photons with energies ∼ ma. The axion mass
corresponds to a frequency of

Eγ = ma =
α

M
= 4.2

( α

0.4

)(3M⊙

M

)
kHz. (5.1)

This frequency is sadly far below the range of modern ground-based radio tele-
scopes whom all operate at frequencies above 10MHz. This limit is imposed by
absorption in the ionosphere and large interference from human-made sources at
lower frequencies [88]. Thus, we have to consider space-based radio astronomy [88–
90]. However, there are few telescopes currently operational here as well. They
can reach frequencies down to around 100 kHz but are only observing sources in
the solar system. There is much interest in developing this field to reach these
extremely low frequencies, but there are many challenges to overcome before we
can use space-based telescopes to search for our estimated signals. One of which
is absorption in the solar wind of photons below 10 kHz. Thus, direct detection is
challenging with current methods but dedicated space-based telescopes could pos-
sibly be used to search for narrow peaks at kHz corresponding to the axion mass
in the future.
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5.1.1 Using a hypothetical radio telescope

Even though direct detection is difficult, we might still want to toy with the idea
of a telescope operating at the relevant frequencies. We can then get an idea about
if our signals are large enough to detect in principle and which part of the axion
parameter space could theoretically be searched with them.

To estimate if a signal is detectable by a given telescope, one can compare the
flux density,

S =
dP
dΩ

bd2
=

L

b4πd2
(5.2)

calculated using the distance, d, to the source and the bandwidth, b, of the signal,
with the minimum detectable flux of the telescope, Smin. Smin can be estimated
by the formula [48, 91]

Smin =
1

ηs

SEFD√
2b∆t

, (5.3)

where SEFD is the system-equivalent flux density, b is the observing bandwidth, ∆t
is the total observation time, and ηs is the signal conversion efficiency. η−1

s can also
be referred to as the minimal signal to noise ratio. Since this section is speculative,
we will, for simplification, assume that b is fine-tuned to be the same in both the
signal flux density and Smin, and that it is of the same order as the frequency of the
observed peak of the spectrum. We will not do any advanced bandwidth analysis.
For the resonant conversion, we will therefore use b = ma and for non-resonant
conversion b ≈ ma − 103ma, depending on α.

For a stellar black hole not experiencing resonant conversion we then have that

S ≈ 10−6

(
1000 pc

d

)2(
L

10TW

)(
1MHz

B

)
Jy, (5.4)

where 1 Jy = 1 × 10−26 Wm−2 Hz−1, and for a black hole experiencing resonant
conversion

S ≈ 104
(
1000 pc

d

)2(
L

1× 1020 W

)(
1 kHz

B

)
Jy. (5.5)

We consider d = 1000 pc since there could exist a population of isolated black holes
in this region [73]. However, the most favorable signals from isolated black holes
require ne ≈ 10−4 cm−3 which we encounter more commonly outside the galaxy
and would then be located at d ≳ 105 pc.

If S > Smin the signal is detectable. However, since the telescope in question
does not exist, we have to motivate some realistic values for ηs, ∆t, and the SEFD. A
good modern telescope can have efficiency up to almost ηs ∼ 1, and we can use ηs ≈
.5 for our hypothetical telescope. Due to the restriction imposed by the atmosphere
discussed in the previous section, we can assume that this telescope will be space-
based and can handle longer observation times. In Ref. [48] they use an observation
time of 100 h, which is a good baseline. The SEFD is difficult to estimate since
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it is the least straightforward to interpolate from existing telescopes and is highly
frequency dependent. In Ref. [48] they use the approximate value 2 Jy from the
Arecibo Telescope operating at GHz, and the DSL mission described in Ref. [90]
might achieve a sensitivity down to ∼5 Jy operating around 1 MHz. Therefore, it
is not inconceivable to propose that a telescope designed for the detection of the
specific wavelengths in question might reach down to 1 Jy. However, a more realistic
estimate, compared with most currently operating radio telescopes, is around 100
Jy. To be somewhat restrictive, we will, for our hypothetical telescope, use SEFD =
100 Jy. We can now estimate what part of the parameter space we can probe using
our estimated signals with this hypothetical telescope.

In all numerical results in the previous chapters, we have used the upper bound
on gaγ from eq. (2.6) to give the highest possible luminosity. The goal now is to find
what the minimum gaγ is that still yields detectable signals. Since S has the simple
S ∝ g2aγ dependence, we can extract the lowest possible coupling easily from the
equation S = Smin. Thus, given a black hole of mass M , we can look for axions of
masses close to ma ∼ 1/M , and with a coupling down to the limit estimated from
S = Smin, using our hypothetical radio telescope. From this, we get a region in
the (ma, gaγ) parameter space which, theoretically, could be probed and excluded
if we do not find the signals.

In figure 5.1 we have plotted the hypothetical S = Smin line in the (ma, gaγ)
plane for a couple of black hole systems experiencing resonant or non-resonant con-
version. The region above this line represent the axions that we could theoretically
look for using direct detection of our signals. The figure shows that resonant conver-
sion around isolated black holes is fairly potent in restricting the parameter space.
However, since we have to detect and identify the isolated black holes themselves
first, they are not very practical for this purpose. We could potentially be able to
use the signals to search for the black holes instead. The black holes experiencing
non-resonant conversion do not cover any new areas but could be used to reinforce
the exclusion from CAST for small axion masses.

We reiterate here that the main purpose of this section and figure 5.1 is to
illustrate the magnitude of the signals and is purely hypothetical in its actual
practical use for searching for the the axion. As we will discuss, other obstacles
than the low frequency make this type direct observation difficult.

5.2 Absorption

In the previous section, we assumed that the emitted photons travel undisturbed
through the galaxy. This is not necessarily the case, especially not at the lowest
frequencies of interest. The photons will interact with the astrophysical plasma
and can be absorbed or even upscattered. At the frequencies in question free-free
absorption is the dominant channel of absorption. The mean-free path for a photon
of energy Eγ traveling through a medium with particle densities ne = np = n of
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Figure 5.1. The part of the axion parameter space that could be searched observing
six different black hole configurations. The area above the lines represents the axion
parameter space which can be probed using the hypothetical telescope to search for
the estimated signals of this work. The blue lines represent stellar black holes that
accrete spherically without resonant conversion, located at a distance of 1000 pc from
Earth. The darker blue has M = 10M⊙ and the lighter blue line has M = 3M⊙.
The purple and green lines are black holes outside of the galaxy which experience
resonant conversion. These are also located at d = 1000 pc from Earth, and the
green represent a mass of 10M⊙, while the purple has M = 3M⊙. The full line was
calculated using ne,∞ = 1 × 10−4 cm−3, the dashed with ne,∞ = 1 × 10−3 cm−3,
and the dotted with ne,∞ = 1 × 10−2 cm−3. Each line is limited to axion masses
in [0.05/M, 0.5/M ], all black holes are assumed to have a = 0.9M , and the cloud
has the mass fraction of f = 0.01. The resonant conversion is also calculated with
vrel = 0.01. The shaded area represents the parameter space that has been excluded
by CAST [10].
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temperature T is [41, 92]

lmfp = (nσff )
−1
, (5.6)

where

σff =
4π2ασT√

6π
n

√
me

T

gff (Eγ , T )

TE2
γ

(5.7)

and the gaunt factor is given by

gff (Eγ , T ) ≈ 4.691

(
1− 0.118 ln

((
Eγ

6.58 µeV

)(
T

1× 104 K

)−3/2
))

. (5.8)

Scaled to the black hole mass, for comparison, we have

lmfp

M
≈ 1.1× 107

(
M

3M⊙

)−3 ( α

0.1

)2( T

1× 104 K

)3/2 ( n

1 cm−3

)−2

. (5.9)

If we consider the simple model for spherical accretion we have used, where T ∝ r−1

and n ∝ r−3/2, then lmfp ∝ r3/2 in the accretion flow, and will be shorter closer
to the black hole, i.e. more absorption will occur near the black hole. We can then
get a conservative estimate by considering lmfp = lmfp(n∞, T∞). Comparing this
with the Bondi radius, rb ∝ v−2

eff , will tell us whether the absorption will occur in
the accretion flow or out in the surrounding medium.

For the resonant conversion, we required that veff > 10−3 and n∞ < 10−2

cm−3, and can readily conclude that most photons will be able to escape the system
without being absorbed back into the accretion flow. However, for non-resonant
conversion, we cannot draw this conclusion. Assuming that veff ≈ cs we have that

rb ≈ c−2
s ≈ 1.3× 109

(
T

1× 104 K

)−1

(5.10)

for an ideal hydrogen gas, which is larger than lmfp. Even though we have photons
of energies up to 103ma, which would increase lmfp, we also have higher densities
than 1 cm−3. It is, therefore, very likely that a significant portion of the non-
resonant emission will be absorbed directly back into the accreted plasma. The
question is then if this will affect the flow in any meaningful way. Assuming that
the emitted energy is quickly reabsorbed in the accretion flow, we can then estimate
the energy added to each accreted particle by

E ≈ L

Ṁ/mp

≈ 0.08 eV

(
L

1× 1014 W

)(
ṁ

10−8

)−1

. (5.11)

This energy is insignificant, especially when we consider the fact that much of the
energy of the emitted photons come from the electrons themselves when Eγ > ma,
and the energy would simply be recycled. Therefore, we can conclude that the non-
resonant conversion will not significantly affect the accretion flow, nor will most of
the emitted photons escape the system.
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For resonant conversion, we have that lmfp ≫ rb. The photons will escape the
system, and the energy will be spread out through the interstellar or intergalactic
medium. However, the total energy is not large enough to affect the medium
significantly, L/(nl3mfp) ≪ 1 eV/s, compared to, for example, Ref. [41], where

they estimate that burst of energy up to 1038 J distributed during a short period
of time could cause shock waves in the medium. The photons from the resonant
conversion will, therefore, simply pass through the medium or be absorbed into the
surrounding without heating it noticeably.

Some of the photons will, instead of being absorbed, be upscattered through
inverse Compton scattering, similar to the Sunyaev–Zeldovich effect for the CMB
[93, 94]. In theory, this could increase the energy of the low-frequency photons
to detectable levels, especially if it occurs in the hotter parts of the accretion
flow. However, many subsequent scatterings are required to increase the magni-
tude enough to be detectable [94], and the mean free path for inverse Compton
scattering in the limits Eγ ≪ me is [95]

lmfp

M
≈
(
8πα2

em

m2
e

neM

)−1

≈ 1× 1019
(
M⊙

M

)( ne
1 cm−3

)−1

, (5.12)

which is much larger than for the free-free absorption. It is, therefore, unlikely that
this can help in the search for the signals in question.

5.3 Stimulation effects

We expect that the photons from the resonant conversion will leave the system
without being absorbed in the accretion flow. However, they can still affect the
system without being absorbed. Since the number of photons is large, they con-
tribute with a non-negligible electromagnetic field. Suppose the added magnetic
field is comparable to the magnetic field suspended in the accretion flow. Then we
will get an amplification of the conversion rate, which would lead to even larger
magnetic fields and so on. This stimulation effect could lead to much larger signals
than first estimated, which in turn would increase the likelihood of detection.

In Refs. [26, 40, 41] this type of stimulation process has been studied, but where
the source of photons comes from the axion decay into photons. In these systems,
the stimulation effect leads to pulsing laser-like emission with luminosities of up to
1 × 1050 W. In these papers, they neglect any interactions with the surrounding
plasma. However, as we have shown, the interaction with the plasma can lead
to significant photon emission, which could possibly result in similar stimulation
effects as those estimate from the axion decay.

The emitted photons can stimulate the resonant conversion if the magnetic
field the emitted photons contribute to reaches the same magnitude as the initial
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magnetic field. If the energy density of the emitted photons is ργ , then the magnetic
field strength they contribute with is

Bγ ≈ √
ργ . (5.13)

We can estimate ργ through

ργ = p∞aγmana =
π

3
g2aγB

2αrcMna(rc), (5.14)

where p∞aγ is the energy transfer function from eq. (4.7). Assuming that we are in
the most beneficial situation where rc = rcl = 5/α2 we have, from eq. (4.11), that

ργ =
50f

288
g2aγB

2α3, (5.15)

where we have used g(5/α2) ≈ 10/α2. Stimulation effects becomes important if
Bγ ≳ B(rc) which we can rewrite as√

50f

288
gaγα

3/2 ≳ 1. (5.16)

This can be formulated as the condition

gaγ ≳ 2× 10−16 GeV−1
√
f
( α

0.01

)−3/2

(5.17)

on the coupling constant. We can compare this to a similar condition found for
stimulated decay in Refs. [40, 41]

gaγ ≳ 1× 10−15 GeV−1f−1/2
( α

0.01

)−2

. (5.18)

These conditions describe the coupling strength required for a system to experience
stimulation effects. We see that our bound is very similar to theirs, and we can
therefore expect stimulation effects to be relevant for resonant conversion as well.
Thus, there is a possibility that including stimulation effects could increase the
luminosities estimated in chapter 4 by many orders of magnitude. We also have to
note that the plasma frequency blocks the decay of axions when ωpl > ma/2, and
resonant conversion cannot be relevant simultaneously as the stimulated decay. The
plasma interaction could instead replace the decay as the source of photons and still
lead to lasing of similar amplitudes as estimated in Refs. [26, 40, 41]. The plasma
interaction might also accelerate the lasing since decay is a slower process than the
plasma interactions. Overall, considering stimulation effects increase the likelihood
that resonant conversion can cause observational signals. We do, however, have to
leave a more detailed analysis of this for future study.
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5.4 Relevant astrophysical systems

Throughout this thesis, we have assumed the existence of a black hole of a given
massM and spin a, coupled to an axion field of mass α/M , where α is large enough
to form an axion cloud of mass Mcl = fM . We have then essentially treated all of
these parameters as independent, which is not the case. For example,M and αmust
satisfy condition (2.24) for the growth of the cloud to occur in astrophysical time
and we considered 0.5 > α > 0.01 in the analysis to keep to this condition. Further,
we have that the mass of the cloud cannot exceed f ≈ αa/M from eq. (2.27), and
for that reason we rarely exceeded f > 0.01, which might even be a bit restrictive
for the largest α but slightly too large for the smallest. We were less careful with
the condition from eq. (2.21) which imposes large spin. However, the luminosity
from the resonant conversion is only dependent of the spin through f , and the non-
resonant favors extremal spin, so our results are compatible with this condition.

The above restrictions give reasonable estimations of the parameters involved.
However, to get the full relationship between them and the complete picture of the
system overall, one must consider the full time evolution. All the parameters are
time-dependent and the discussed conditions must be satisfied at different times
during the growth of the cloud. To study the time evolution, one has to solve the
relevant differential equations, including the superradiant growth, energy extraction
from the black hole, and all the relevant depletion channels in the cloud. A good
study of this is Ref. [31]. They include accretion, which is important for the evo-
lution of the black hole, as well as depletion through gravitational wave emission.
As we have concluded, the plasma interaction is not effective enough to quench the
evolution of the cloud. Thus the general behavior from reference [31] give good
insight for our systems as well. Solving these time evolution equations is beyond
the scope of this thesis, but we can relay the important points to supplement the
complete picture of the systems of interest.

In contrast to how we have treated the analysis in the main part of the thesis,
the only fully static parameter is the axion mass, which will have a single value if
the axion exists. Thus, the black hole must be tuned to the corresponding mass,
M ≈ 1/ma, for an axion cloud to form. If the accretion rate is large enough,
and the black hole mass is smaller than 1/ma, it will eventually grow and spin
up enough to trigger the instability. The cloud will then grow and reduce the
black hole spin until eq. (2.21) no longer is satisfied, shutting down the instability.
The exact behavior after the shutdown is the most complicated, but the cloud will
start to deplete, mainly due to gravitational wave emission and partly due to the
interactions we have discussed. Therefore, the signals we have estimated will change
in time, mostly due to the proportionality to f , but also since α changes when M
grows. The decreasing value of a will also affect the emission through non-resonant
conversion. Our estimated luminosities will then represent the maximum achieved
only during a shorter period of time and not represent a constant emission. A
complete time analysis would, of course, benefit this work but there is one detail in
this analysis which is not valid for our systems.
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The described scenario relies on the accretion to eventually put the system in
the right mass range to trigger the instability. However, for the resonant conversion
we have considered the accretion rates are around ṁ ≈ 10−10−10−18, see eq. (2.40),
and the time scale which describes how fast accretion affect the mass of the black
hole is

M

Ṁ
≈ 5× 107ṁ−1yr. (5.19)

We can, therefore, not rely on accretion to tune isolated black holes to the axion
mass since it would take far longer than is observationally relevant to change the
mass significantly. Therefore, the black hole has to be created at the correct mass.
Further, for resonant conversion, we also require fast traveling isolated black holes.
The small catalog of observed black holes does not support the existence of any
that satisfy the relevant criteria. This is mainly due to the fact that we require
high accretion rates to discover black holes. However, there are reasons to believe
that large populations of isolated black holes exist in our galaxy. They have just
eluded observation so far.

From stellar evolution models, there are estimates that there should exist up
to 108 stellar black holes in our galaxy [96]. These are remnants of supernova
explosions and are more often than not left isolated. Another theory that could
result in a large population is that of primordial black holes (PBHs) [97]. These
are black holes created in overdense regions in the early stages of the universe and
are candidates to explain a portion of the dark matter in the universe. The mass
of PBHs is not restricted to the typical values of stellar remnants and could be less
thanM⊙. Regardless of their origin, there are reasons to believe isolated black holes
exist in the galaxy, and many are currently searching for them through the emission
caused by low rate accretion [73, 75–77]. Since we know very little about these black
holes, we cannot say much about their evolution and interactions. However, they
might reach the high velocities we require for resonant conversion, either from the
initial supernova kick or through merging events. With these velocities, they could
also easily escape the galaxy, reducing the ambient density around them.

An additional benefit in considering PHBs is the possibility of lower masses.
The main restriction of the signals we have derived is the mass bound from stellar
evolution. Lower mass black holes could potentially probe for larger axions that
undergo resonant conversion at larger densities which would no longer require in-
tergalactic ambient densities and extreme velocities. Further, the frequency of the
emission would be higher around PBHs and potentially be detectable with modern
telescopes. Suppose the population of black holes contributes to a significant por-
tion of the dark matter in the galaxy. Then we should also expect that a significant
portion of these black holes are located far outside the galaxy center since the dark
matter halo extends further than the galaxy itself. This could then result in the
lower densities of around 10−4 cm−3 that benefit resonant conversion.

The existence of a large population of isolated black holes, independent of their
origin, is the most likely source of the signals we have studied in this thesis and could
help with the search for the axion, especially if their mass is smaller than considered
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in this thesis. We end this section by also mentioning that significant signals from
resonant conversion could also be treated as a tool to help the search for isolated
black holes, especially if the axion with the right mass is discovered through other
means. The detection of the right signals from some unknown source could then
lead us to both isolated black holes and the axion, or the absence of signals could
mutually exclude the existence of axions in this mass range and isolated black holes
of the corresponding mass.

5.5 Model uncertainties

We want to end the thesis by reiterate and discuss the largest uncertainties in the
models of this work and bring up some possible steps for improvement.

The first point of uncertainty is that of the inclusion of the plasma frequency
in chapter 3. We mentioned that we see quite a lot of emission at low frequencies
which was not expected. One possible error is that the plasma frequency is not
considered in the kinematics and its inclusion would likely reduce the emission at
Eγ < ωpl. Another interpretation is that the low frequency photons will be quickly
absorbed back into the plasma, yielding no effective emission at these frequencies.
Either way, we concluded in this chapter that the signals estimated in chapter 3
are barely significant as is, so this problem will not affect the general conclusion.
However, a more detailed analysis would definitely benefit the work. It could also
be helpful for future applications with low mass axions since it is more common
throughout the literature to consider axion conversion where Eγ ≫ ma ≫ ωpl,
which, as we have seen, is not always the case.

The second, and most important uncertainty, lies in the simplified models of the
electron temperature in spherical accretion. The temperature affects the estimated
signals from both the non-resonant and resonant conversion. For relativistic tem-
peratures our analysis for resonant conversion would break down since the plasma
frequency becomes temperature dependent and a study including the full expression
would be required. However, higher temperatures would benefit the non-resonant
conversion and increase the total emission, especially if the temperature closest to
the black hole is increased in a more realistic model. A population of non-thermal
electrons is also likely to be present, and we have not included it in our models. A
more detailed study of the temperature of the accretion flow, possibly using simu-
lation methods or some non-explicit T (r) dependencies, is necessary to increase the
accuracy here. The choice of models simplified the analysis in this work but pos-
sibly reduced the accuracy. However, the findings are still relevant and show that
the interaction between the axion clouds and the surrounding plasma can cause
significant effects in the right circumstances.

The final point of uncertainty is that of the stability of the spherical accretion
model for n and B in the high velocity and high spin limits. The model was chosen
partly due to its simplicity, and its validity is interpolated to extreme limits in veff
and a. The high spin limit is usually assumed to hold without much discussion.
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As we saw for the disk model, the biggest effect of high spin is the location of the
ISCO, and it is not unreasonable to assume that the location of the ISCO and the
event horizon is the most important differences for spherical accretion in this limit
as well. One example which considers the effect of high spin is Ref. [98] where they
found that high spin might reduce the accretion rate but the spherical symmetry
might also be lost. The extreme velocities that we have considered in this work
have rarely been studied in this context of spherical accretion. Ref. [68] includes a
small discussion and concludes that the spherical accretion should be stable from
forming a disk at high speeds but do not claim anything further than that. The
spherical accretion model might break down in other ways, for example, by losing
spherical symmetry or be affected by turbulence. A more sophisticated analysis
of this limit has to be made to be sure, but this is not the subject of this thesis.
We assumed that the models are stable enough that our results still pose as valid
approximations.
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Summary and conclusions

In this thesis, we have studied the interaction between superradiant axion clouds
and the astrophysical plasma the hosting black hole accretes. We divided the inter-
actions into two separate parts, scattering processes in denser accretion flow, which
we studied in chapter 3, and resonant conversion possible in low-rate accretion flow,
which was the focus of chapter 4. We could conclude, for both types of interactions,
that the conversion of axions into photons was not effective enough to quench the
formation of the axion cloud and affect previously predicted gravitational signals.
We, therefore, shifted the focus to the possible electromagnetic signals caused by
the conversion of axions into photons.

We found that the scattering processes relevant in dense accretion flows to be
essentially independent of the density of the accreted matter. This was due to the
fact that the signals were proportional to the electron density but also suppressed
by the Debye screening which is proportional to the density. These two effects then
canceled each other for most systems of interest. Due to this independence of the
density we could conclude that the emission from the interaction in an accretion
disk would be negligible compared to that from the hotter plasma found in spherical
accretion. In the most favorable case, the luminosity from spherical accretion could
reach up to 1014 W, with a significant contribution at a frequency a couple of
magnitudes larger than the axion mass. The most significant emission was predicted
to come from a small and fast-spinning black hole, whereas the emission estimated
from SMBHs was found to be insignificant.

The resonant conversion in low-rate accretion could yield luminosities of up to
1025 W. To achieve these magnitudes, the accretion rate had to be low enough so
that the plasma frequency could be comparable to the axion mass somewhere in
the accretion flow. We concluded that the black holes have to travel very fast and
through a low-density region of space for this to be possible. We also found that, in
a realistic setting, resonant conversion can only happen for black holes with masses
less than ∼ 10M⊙. As for the non-resonant conversion, we saw that the smallest
possible black hole led to the largest luminosities.

59



60 Chapter 6. Summary and conclusions

In chapter 5, we discussed the possibility of detecting the signals from both
types of interactions. We saw there that direct detection seemed challenging and
would require dedicated space-based telescopes looking for narrow peaks in the kHz
range corresponding to a specific axion mass. We also discussed the possibility for
the photons to cause other detectable signatures from the system. We found that
the most likely scenario was that the photons would be quickly absorbed, possibly
already in the accretion flow. However, the energy extracted from the axion cloud
was estimated to be too low to heat the plasma enough to disrupt the accretion
flow or cause detectable shock waves in the surrounding medium.

The black holes that we have observed throughout the universe belong to the
category of denser accretion flows, and we could not find any new signatures that
could be used to detect an axion cloud around these. The signals from resonant
conversion were found to be more promising and could potentially be large enough
to be observable with dedicated telescopes and then be used to search for axions or
isolated black holes. We also mentioned that stimulation effects might be relevant
in the resonant case due to the large photon density. We did not go into details
about this but referred to Refs. [39–41] where similar effects have been studied.
However, we concluded that stimulation effects could amplify the signals further
and improve the possibility of detection. Since the signals could be detectable, we
discussed the population of isolated black holes around which resonant conversion
could be relevant. We concluded that the theoretically predicted large population
of isolated black holes in and around the galaxy was well suited to yield signs of
resonant conversion. Overall, we can conclude that the commonly used assumption
that we can neglect the interaction between an axion cloud and the astrophysical
plasma still holds well for typical black hole systems but around isolated black holes
it could be important and potentially helpful in the search for axions.



Appendix A

Deriving the superradiant
exponents

In this appendix, we derive the superradiant rates in the slow-spinning, a≪M , and
non-relativistic, ω ≈ ma, approximation. The derivation provided here is a detailed
account based mainly on similar calculations found in Refs. [23, 25, 26, 62], and
serves the purpose to fill in gaps commonly brushed over.

The goal of the derivation is to determine the energy eigenvalues of the quasi-
bound modes of the axion field around a black hole. This is done by first separating
the Klein–Gordon equation into one angular and one radial equation. The angular
equation is then solved to acquire the separation constant. The radial equation can
then be solved by dividing space into a far and a near region. In each region, the
radial equation can be solved analytically, and the final step of the derivation is to
match the solutions in the overlap of the two regions. This yields an equation from
which the energy eigenvalues can be extracted. The superradiant exponents can
then be found as the imaginary part of the eigenvalues.

A.1 Klein–Gordon equation in the
Kerr-background

The dynamics of the axion field is described by the Klein–Gordon equation(
∇µ∇µ −m2

a

)
ψ = 0, (A.1)

where any backreactions and non-linarities can be neglected, see Ref. [31] for a
discussion of this topic. Using the Kerr-metric in eq. (2.9) one can get the full

61



62 Appendix A. Deriving the superradiant exponents

equation in terms of Boyer–Lindquist coordinates. It turns out that this equation
is separable using the ansatz [65]

ψ = e−iωt+imϕR(r)S(θ), (A.2)

where R(r) solves the radial equation

∆∂r (∆∂rR(r))+
[(
(r2 + a2)ω −ma

)2 −∆
(
r2m2

a − 2ωma+ a2ω2 + C
)]
R(r) = 0,

(A.3)
and S(θ) solves the angular equation

1

sin θ
∂θ (sin θ∂θS(θ)) +

[
C − a2(m2

a − ω2) cos2 θ − m2

sin2 θ

]
S(θ) = 0, (A.4)

where C is the separation constant. Equations (A.3) and (A.4) can now be treated
separately.

A.2 The angular equation

Equation (A.4) can be forund as eq. (21.6.2) in chapter 21 about spheroidal wave
functions in Ref. [99] in the form

d

dη

[
(1− η2)

d

dη
Slm(c, η)

]
+

(
λlm − c2η2 − m2

1− η2

)
Slm(c, η) = 0. (A.5)

To match ours we identify η = cos θ, c2 = a2(m2
a −ω2), λlm = C, Slm(c, η) = S(θ),

and that

d

d cos θ
sin2 θ

d

d cos θ
=

d

− sin θdθ
sin2 θ

d

− sin θdθ
=

1

sin θ

d

dθ
sin θ

d

dθ
. (A.6)

The eigenvalues, λlm, can be expanded as

λlm =

∞∑
i=0

k2ic
2i, (A.7)

where the first two terms are

k0 = l(l + 1) and k2 =
1

2

[
1− (2m− 1)(2m+ 1)

(2l − 1)(2l + 3)

]
. (A.8)

Here l and m are integers satisfying |m| ≤ l. Note that in the limit c → 0 we
recover the spherical harmonics

eimϕS(θ)
∣∣
c=0

= Ylm(θ, ϕ), (A.9)

showing the resemblance to the hydrogen atom. From this we have obtained the
separation constant, which in the slow spinning and non-relativistic limit are well
approximated by

λlm ≈ l(l + 1). (A.10)
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A.3 The radial equation

A.3.1 Setup for the radial equation

From the angular equation we have retrieved an expression for the separation con-
stant, C = λlm, and we can now study the radial equation, eq. (A.3). Since we
assume a ≪ M we have that aω ≈ ama ≪ α ≪ 1, and also r ≫ a in the whole
region of consideration. This allow us to neglect some terms in eq. (A.3) of higher
order in α, and left is

∆∂r (∆∂rR(r)) +
[(
r2ω −ma

)2 −∆
(
r2m2

a + l(l + 1)
)]
R(r) = 0. (A.11)

To proceed, we divide the space in two regions, the near region where r − r+ ≪
1/ma, and the far region where r − r+ ≫ M . Since α = maM ≪ 1 we have an
overlap between these two regions, and the strategy is then to match the solutions
found in the two regions in the overlap. This will allow us to extract the eigenvalues
ω.

To do this we need boundary conditions for equation in both regions. Since we
consider quasi-bound states we want a well behaved solution at infinity and thus
limr→∞R(r) = 0 is the boundary condition in the far region. At the horizon, r+,
we want the wave to be ingoing, i.e. the radial momentum given by the momentum
operator −i∂r should be negative.

A.3.2 Near region

In the near region r ≈ r+, and since we assume a ≪ M , r+ ≈ 2M , which means
that rma ≈ α. Thus, to first order in α we have

∆∂r (∆∂rR(r)) +
[
(r4+ (ω −mΩ)

2 −∆l(l + 1)
]
R(r) = 0, (A.12)

where the angular velocity of the horizon, Ω = a/2Mr+ ≈ a/r2+, were inserted. We
can now introduce the coordinate

z =
r − r+
r − r−

(A.13)

that goes from z = 0 at the horizon and to z = 1 at infinity. With this definition
we get

∂r =
(z − 1)2

r+ − r−
∂z (A.14)

and

∆ =
z (r+ − r−)

2

(1− z)2
. (A.15)

Inserting these, dividing by ∆(1− z), and introducing

ϖ = (ω −mΩ)r2+/(r+ − r−) (A.16)
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transforms the radial equation to the following equation in z

z(1− z)∂2zR(z) + (1− z)∂zR(z) +ϖ2 1− z

z
R(z)− l(l + 1)

1− z
R(z) = 0. (A.17)

Here we redefine R as
R(z) = ziϖ(1− z)l+1F (z) (A.18)

with this inserted the equation takes the form

z(1− z)∂2zF (z) +
[
c̃− (ã+ b̃+ 1)z

]
∂zF (z)− ãb̃F (z) = 0. (A.19)

We have briefly introduced the constants ã = l+1+2iϖ, b̃ = l+1 and c̃ = 1+2iϖ
to match it with the standard hypergeometric equation, eq. (15.5.1) in Ref. [99], the
tilde is used to avoid confusion with the previouly introduced variables. Close to
z = 0, which is the definition of the near region, we have two linearly independent
solutions F (ã, b̃, c̃, z) and z1−c̃F (ã − c̃ + 1, b̃ − c̃ + 1, 2 − c̃, z), which inserted into
R(z) gives

R(z) = ziϖ(1− z)l+1
(
Az−2iϖF (ã− c̃+ 1, b̃− c̃+ 1, 2− c̃, z) +BF (ã, b̃, c̃, z)

)
.

(A.20)
When z → 0 we have that these solutions behave as (r − r+)

±iϖ. Since we have
the boundary condition of ingoing waves at the horizon we must set B = 0, and
the solution in the near region is

R(z) = Az−iϖ(1− z)1+lF (l + 1, l + 1− 2iϖ, 1− 2iϖ, z). (A.21)

In the end, we want to match this solution with the solution in the far region,
in the overlap between M and 1/ma. In this region we have that z ≈ 1, and we
can do the following shift [99]

F (a, b, c, z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1, 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1, 1− z) (A.22)

and we can use F (a, b, c, 0) = 1. Further in this limit we have that

1− z =
r − r−
r − r−

− r − r+
r − r−

≈
r≫r−

r+ − r−
r

, (A.23)

and altogether we have the following near solution in the middle region

Rnear(r) ≈ A

[(
r+ − r−

r

)l+1
Γ(1− 2iϖ)Γ(−2l − 1)

Γ(−l − 2iϖ)Γ(−l)

+

(
r+ − r−

r

)−l
Γ(1− 2iϖ)Γ(2l + 1)

Γ(l + 1)Γ(l + 1− 2iϖ)

]
. (A.24)
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A.3.3 Far region

When r− r+ ≫M we can disregard the spin completely in our slow-rotation limit,
and we have the equation

∆∂r (∆∂rR(r)) +
[
r4ω2 −∆

(
r2m2

a + l(l + 1)
)]
R(r) = 0, (A.25)

where ∆ = r2 − 2Mr. Using the chain rule it is easy to see that

∆∂r (∆∂rR(r)) = ∆3/2
(
∂2r

(
∆1/2R(r)

)
−R∂2r∆

1/2
)

(A.26)

with which the equation can be rearranged to

∂2r

(
∆1/2R(r)

)
−R∂2r∆

1/2 +

[
r4

∆2
ω2 − r2

∆
m2

a −
l(l + 1)

∆

]
∆1/2R(r) = 0. (A.27)

In the far region we have that r ≫M and thus 2M/r ≪ 1 so

r4

∆2
≈ 1 + 2

2M

r
,
r2

∆
≈ 1 +

2M

r
, (A.28)

and

∆1/2 ≈ r(1− M

r
) = r −M ≈ r. (A.29)

The far region equation is then approximetly

∂2r (rR(r)) +

[
ω2 −m2

a +
4Mω2 − 2Mm2

a

r
− l(l + 1)

r2

]
rR(r) = 0. (A.30)

Here we define
z = kr = 2(m2

a − ω2)1/2r (A.31)

and

ν =
4Mω2 − 2Mm2

a

k
, (A.32)

which changes the equation to the shape of equation eq. (13.1.31) in Ref. [99],

∂2z (zR) +

[
−1

4
+
ν

z
− l(l + 1)

z2

]
zR = 0, (A.33)

which has the solution

zR = Be−
1
2 zzl+1U(l + 1− ν, 2l + 2, z), (A.34)

where U is a confluent hypergeometric function. In the overlap we have small z
where U behaves as

U(ã, b̃, z) ≈ π

sin
(
πb̃
) ( 1

Γ(1 + ã− b̃)Γ(b̃)
− z1−b̃ 1

Γ(ã)Γ(2− b̃)

)
, (A.35)
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which means that we have the far region solution

Rfar(r) ≈ Be−kr/2 π

sin(π(2l + 2))

(
1

Γ(−l − ν)Γ(2l + 2)
(kr)l

− 1

Γ(1 + l − ν)Γ(−2l)
(kr)−l−1

)
(A.36)

in the middle region.

A.3.4 Matching far and near regions

Comparing the near and far solutions in the middle region, i.e. eqs. (A.24) and
(A.36), we see that we have one rl term and one r−l−1 term in both. If the
solutions are equal in the middle region then the ratio between these two terms
should also be equal which give the equation

− Γ(−l − ν)Γ(2l + 2)

Γ(1 + l − ν)Γ(−2l)
k−2l−1 =

Γ(l + 1)Γ(−2l − 1)Γ(l + 1− 2iϖ)

Γ(2l + 1)Γ(−l)Γ(−l − 2iϖ)
(r+ − r−)

2l+1.

(A.37)
Here we can use the expression

Γ(l + 1− 2iϖ)

Γ(−l − 2iϖ)
= (−1)l+12iϖ

l∏
j=1

(j2 + 4ϖ2), (A.38)

which can be derived from Γ(x+ 1) = xΓ(x) [25, 62], and we have

Γ(−l − ν)

Γ(1 + l − ν)Γ(−2l)
= (−1)l2iϖ((r+ − r−)k)

2l+1

× (2l + 1)!l!

(2l)!

Γ(−2l − 1)

Γ(−l)

l∏
j=1

(j2 + 4ϖ2). (A.39)

To go further, we need to handle negative integers in the Γ-function. In general we
simply want to apply the formula

Γ(−n)
Γ(−m)

=
(−1)(n−m)m!

n!
. (A.40)

However, we need to be very careful with a detail often left out in the literature.
The formula above only applies in the simultaneous limit and we have an additional
negative sign when we approach integer values from different directions, i.e.

lim
δ→0

Γ(−n+ δ)

Γ(−m+ δ)
=

(−1)(n−m)m!

n!
= − lim

δ→0

Γ(−n+ δ)

Γ(−m− δ)
. (A.41)

Thus, to continue we have to remember the definition of l from eq. (A.7). In reality
we have l+ δ where δ ≪ α≪ 1 and practically we take δ → 0. This does not come
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into play in the derivation until now when applying formula (A.40). We first apply
the formula to the right-hand side of eq. (A.39) where the original form is valid and
get

Γ(−l − ν)

Γ(1 + l − ν)Γ(−2l)
= −i2ϖ((r+−r−)k)2l+1 (l!)2

((2l + 1)!)2(2l)!

l∏
j=1

(j2+4ϖ2). (A.42)

Here we notice that the right-hand side of eq. (A.42) are proportional to a factor
k2l+1 and since k ≪ 1 when ma ∼ ω this side is very suppressed. We can, therefore,
define the function

G(ν) =
Γ(−l − ν)

Γ(1 + l − ν)Γ(−2l)
, (A.43)

and ν = ν0 + δν where G(ν0) = 0. The first order contribution yields the equation

Γ(ν0) =
Γ(−l − ν0)

Γ(1 + l − ν0)Γ(−2l)
= 0. (A.44)

Through formula (A.40), we have that Γ(−l−ν0)/Γ(−2l) are finite if −l−ν0 = −m
is an negative integer, and 1/Γ(l+ 1− ν0) = 0 if l+ 1− ν0 = −n also is a negative
integer. These can both be satisfied since m = n+ 2l+ 1 and l is an integer in the
limit wen are interested in. Since ν = ν0 + δν we can also split ω = ω0 + δω and
we can extract ω0 through eqs. (A.31)-(A.32) as

ω2
0 = m2

a −
m4

aM
2

ν20
− 4

M2

ν20
(ω2

0 −m2
a). (A.45)

To second order in α we can neglect the third term here and we have

ω0 ≈ ma

(
1− α2

2(n+ l + 1)

)
. (A.46)

These are the hydrogen like energy levels of the superradiant modes where n+ l+1
can be compared to the principle quantum number, and we get the condition l <
n+ l + 1 from the fact that m = −l − ν0 has to be positive.

Since ω0 is real, we have to go to the next order contribution to extract the
superraiant rates. We do this by Taylor expansion of G:

G(ν0 + δν) = G(ν0) +
Γ(−m)

Γ(−n)Γ(−2l)
(ψ(−n)− ψ(−m)) δν, (A.47)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, which has the property

ψ(−z)
Γ(−z)

= (−1)z+1z! (A.48)
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in the limit where z goes to a positive integer. With this we have

G(ν0 + δν) =
Γ(−m)

Γ(−2l)

(
(−1)n+1n!− Γ(−m)

Γ(−n)
(−1)m+1m!

)
δν. (A.49)

−m behaves as −l and therefore we can apply (A.40) directly on the first factor,
where as −n behaves as l and we have to remember eq. (A.41) in the second term.
With this in mind we have have

G(ν0 + δν) = (−1)m−2l (2l)!

m!

(
(−1)n+1n! + (−1)2m−n+1n!

)
δν, (A.50)

where we use m = n+ 2l + 1 and get

G(ν0 + δν) = 2
(2l)!n!

(n+ 2l + 1)!
δν. (A.51)

With this in eq. (A.42) we can express

δν = −iϖ0((r+−r−)k0)2l+1

(
l!

(2l + 1)!(2l)!

)2
(n+ 2l + 1)!

n!

l∏
j=1

(j2+4ϖ2
0), (A.52)

where ϖ0 = ϖ(ω0) and

k0 = k(ω0) = 2(m2
a − ω2

0)
1/2 ≈ 2

Mm2
a

(n+ l + 1)
(A.53)

is the corresponding first order contributions. To extract δω we use

δν =
∂ν

∂ω

∣∣∣∣
ω=ω0

δω =

(
ω0M

3m2
a − 2ω2

0

(m2
a − ω2

0)
3/2

)
δω, (A.54)

and with the same expression as for k0 we have

δω = δν

M3m6
a

(n+l+1)3

ω0M
(
m2

a + 2
M2m4

a

(n+l+1)2

) = δν
M2m3

a

(n+ l + 1)3
+O(α3), (A.55)

where we have used ω0 = ma(1+O(α2)) to get the first order contribution. Inserting
δν from eq. (A.52) with the expression for k0 we have

δω = −i22l+1ϖ0(r+ − r−)
2l+1M2l+3m4l+5

a

×
(

l!

(2l + 1)!(2l)!

)2
(n+ 2l + 1)!

n!(n+ l + 1)2l+4

l∏
j=1

(j2 + 4ϖ2
0). (A.56)
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What we have left to insert is

ϖ0 = (ω0 −mΩ)
r2+

(r+ − r−)
, (A.57)

doing so we can express δω as

δω = 22l+1iM2l+3m4l+5
a (mΩ− ω0)r

2l+2
+

×
(

l!

(2l + 1)!(2l)!

)2
(n+ 2l + 1)!

(n+ l + 1)2l+4n!

l∏
j=1

(
j2
(
1− r−

r+

)2

+ 4r2+(mΩ− ω0)
2

)
.

(A.58)

As a last step we use that r+ ≈ 2M and r− ≈ a in the slow rotation limit and get

δω = iα4l+5(mΩ− ω0)Cnlm, (A.59)

where

Cnlm = 24l+3

(
l!

(2l + 1)!(2l)!

)2
(n+ 2l + 1)!

(n+ l + 1)2l+4n!

×
l∏

j=1

(
j2
(
1− a

2M

)2
+ 16M2(mΩ− ω0)

2

)
. (A.60)

A.4 Summary

Above we found the energy eigenvalues of the supperradiant modes, and they could
be split as ω = ω0 + δω where the parts are found in eqs. (A.46) and (A.59)
respectively. One usually redefine these as

ω = ωnlm + iΓnlm, (A.61)

where nlm resembles the hydrogen quantum numbers with n+ l+1 as the principle
quantum number. The energy levels ωnlm behaves exactly as the hydrogen modes
and the major difference is the imaginary part, which gives rise to the exponential
growth in the field when the superradiant condition

mΩ > ωnlm (A.62)

is satisfied. The rate Γnlm derived in this appendix is only slightly less general
than the one presented in chapter 2 from Ref. [29]. The most important feature is
the superradiant condition, the α4l+5 behavior, and that the rate of the dominant
mode, n = 0 and l = m = 1, can be found to first order in α in the slow rotation
limit as1

Γ011 =
a

M

α9

12M
. (A.63)

1Somewhere in the derivation in this appendix we have lost a factor ofs 2 compared to generally
accepted solution, see eq. (2.22).





Appendix B

The Novikov–Thorne Disk

In this appendix we present the details of the accretion disk model by Novikov and
Thorne we used in chapter 3. The source for this appendix is Refs. [47, 66] and
further details can be found in those.

The Novikov–Thorne disk is the relativistic extenstion of the thin-disk model of
Shakura and Sunjaev disk [67]. Through some small extra assumptions the relevant
equation describing the flow of the accreted matter can be solved algebraically
in three distinct radial regions characterized by the dominant pressure. In the
innermost region, the radiation pressure dominates, while in the outer two, the
gas pressure dominates. The difference between the outer and the middle region is
the process that determines the opacity. In the middle region, electron scattering
dominates, whereas free-free absorption is the most important in the outer region.
In each region the particle density n, the temperature T , and the thickness of the
disk H can be found as function of multiple parameters. The expressions for these
are given bellow for each region. The parameters these functions depend on are: the
radius, which in the expressions has been normalized to rg; the mass of the black
hole, m = M/M⊙; the accretion rate, ṁ, which we have normalized according to
eq. (2.35); and a parameter α, which describes the efficiency of the momentum
transport. The profiles are also proportional to A−E and Q which are functions of
r and the the dimensionless spin, a∗ = a/M given further below in this appendix.

In the inner region we have

n =
[
1× 1017 cm−3

]
α−1
p ṁ−2m−1r

3
2A−4B6DE2Q−2, (B.1)

T =
[
5× 107 K

]
α
− 1

4
p m− 1

4 r−
3
8A− 1

2B 1
2 E 1

4 , (B.2)

h =
[
2× 106 cm

]
ṁmA2B−3C 1

2D−1E−1Q. (B.3)

This region extends down to the ISCO and transitions to the middle region at rin
which is given by the implicit equation

rin = 5.2× 102α
2
21m

2
15 ṁ

4
5A 20

21B− 36
21D− 8

21 E− 10
21Q 16

21 , (B.4)

71
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where A−Q all depend on rin. Typical values of rin is ∼ 1 − 10 for SMBHs and
∼ 50− 100 for stellar black holes.

The middle region is described by

n =
[
6× 1025 cm−3

]
α
− 7

10
p ṁ

2
5m− 7

10 r−
33
20A−1B 3

5D− 1
5 E 1

2Q 2
5 , (B.5)

T =
[
2× 109 K

]
α
− 1

5
p ṁ

2
5m− 1

5 r−
9
10B− 2

5D− 1
5Q 2

5 , (B.6)

h =
[
3× 103 cm

]
3.2α

− 1
10

p ṁ
1
5m

9
10 r

21
20AB− 6

5 C 1
2D− 3

5 E− 1
2Q 1

5 , (B.7)

and is valid between rin and rout where rout is given by the explicit equation

rout = 1.9× 104ṁ2/3A 2
3B− 8

15D− 1
3 E− 1

3Q 2
3 . (B.8)

rout is around 100 for most SMBHs and ranges between 103 − 104 for stellar black
holes.

The outer region is space outside of rout and where

n =
[
8× 1026 cm−3

]
α
− 7

10
p ṁ

11
20m− 7

10 r−
15
8 A− 17

20B 3
10D− 11

40 E 17
40Q 11

20 , (B.9)

T =
[
4× 108 K

]
α
− 1

5
p ṁ

3
10m− 1

5 r−
3
4A− 1

10B− 1
5D− 3

20 E 1
20Q 3

10 , (B.10)

h =
[
1× 103 cm

]
α
− 1

10
p ṁ

3
20m

9
10 r

9
8A 19

20B− 11
10 C 1

2D− 23
40 E− 19

40Q 3
20 . (B.11)

The functions A to E are defined as

A = 1 + a2∗r
−2 + 2a2∗r

−3, (B.12)

B = 1 + a∗r
−3/2, (B.13)

C = 1− 3r−1 + 2a∗r
−3/2, (B.14)

D = 1− 2r−1 + a2∗r
−2, (B.15)

E = 1 + 4a2∗r
−2 − 4a2∗r

−3 + 3a4∗r
−4, (B.16)

and Q is given by

Q = Q0

[
y − y0 −

3

2
ln

(
y

y0

)
− 3(y1 − a∗)

2

y1(y1 − y2)(y1 − y3)
ln

(
y − y1
y0 − y1

)
− 3(y2 − a∗)

2

y2(y2 − y1)(y2 − y3)
ln

(
y − y2
y0 − y2

)
− 3(y3 − a∗)

2

y3(y3 − y1)(y3 − y2)
ln

(
y − y3
y0 − y3

)]
,

(B.17)
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where

Q0 =
1 + a∗r

−3/2

(r − 3 + 2a∗r−1/2)1/2
,

y =
√
r,

y0 =
√
rISCO,

y1 = 2 cos(arccos(a∗)− π)/3),

y2 = 2 cos(arccos(a∗) + π)/3),

y3 = −2 cos(arccos(a∗)/3).





Appendix C

Matrix elements

In this appendix we present the details for deriving the matrix elements used in
chapter 3. We have the interaction

e+ a→ e+ γ (C.1)

which have three tree-level contributions shown in figure 3.1. We denote the four
momenta for the initial particles as pi, i = e, a, and the final momenta as qi,
i = e, γ. For the Feynman algebra we use common notation that can be found in,
for example, Ref. [95].

C.1 The Primakoff channel

The tree-level Feynman diagram for the Primakoff channel is shown in figure 3.1c.
To find the matrix element for this we need the axion-photon vertex, which can be
derived from expression (2.2) to

igaγϵ
µνρσpνqρ, (C.2)

where p and q are the photon momenta, and ϵ is the four dimensional Levi-Civita
tensor. With this and normal Feynman rules we have that

iM = ε∗ρ(qγ)ū(qe) (ieγ
α)u(pe)

−igαµ
(pa − qγ)2

iϵµνρσ (pa − qγ)ν (qγ)σ

= i
egaγ
t
ε∗ρ(qγ)ū(qe)γµu(pe)ϵ

µνρσ (pa − qγ)ν (qγ)σ, (C.3)

where t = (pa − qγ) is the usual Mandelstam variable, ε is the polarization vectos
of the photon, and u is the electron spinnors. Averaging over initial spins and
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summing over outgoing yields

⟨|M|2⟩ =
e2g2aγ
2t2

(−gρr) Tr
(
γµ(/pe +me)γm(/qe +me)

)
× ϵµνρσϵmnrs (pa − qγ)ν (qγ)σ (pa − qγ)n (qγ)s. (C.4)

Simplifying this in Mathematica using FeynCalc [100] we have

⟨|M|2⟩ =
4e2g2aγ
t2

(pa · qepa · qγpe · qγ + pa · pepa · qγqe · qγ

−p2ape · qγqe · qγ − q2γpa · pepa · qe +m2
e

(
p2aq

2
γ − (pa · qγ)2

))
. (C.5)

In the main part of the thesis we are interested in axions approximately at rest.
In this frame we can derive the following expressions for the Mandelstam variables
and relevant dot products:

s = m2
a +m2

e + 2Eema,

t = m2
a − 2maEγ ,

u = m2
e −m2

a + 2ma(Eγ − Ee),

pa · qγ = maEγ ,

pa · pe = maEe,

pe · qγ = m2
a/2−ma(Eγ − Ee),

pe · qe = m2
e −m2

a/2 +maEγ ,

pa · qe = m2
a −ma(Eγ − Ee),

qe · qγ = m2
a/2 +maEe.

Inserting these in the matrix we have

⟨|M|2⟩ =
64παemg

2
aγ

(2Eγ −ma)2

(
2E2

eEγma − E2
em

2
a − E2

γm
2
e

+3EeEγm
2
a − 2EeE

2
γma − Eem

3
a + E3

γma −
3

2
E2

γm
2
a + Eγm

3
a −

1

4
m4

a

)
. (C.6)

To simplify the calculations in the main part we introduced the dimensionless quan-
tities x = Ee/me, ξ = Eγ/ma, and ϵ = ma/me with which have the final result

|M|2 =
64παemgaγm

2
e

(2ξ − 1)2
(
(x2(2ξ − 1)− ξ2)

+ϵx
(
3ξ − 2ξ2 − 1

)
+ ϵ2

(
ξ3 − 3

2
ξ2 + ξ − 1

4

))
. (C.7)



C.2. The Compton channel 77

C.2 The Compton channel

To calculate the matrix elements for the Compton channel we need the axion-
electron vertex which can be derived from eq. (2.4) to

igae
2me

/paγ5. (C.8)

The Compton channel has two tree-level contributions, see figures 3.1a and 3.1b.
The first we call the s-contribution for which the matrix element is

iM = ε∗µ(qe)ū(qe) (iγ
µe)

i(/pa + /pe +me)

s−m2
e

−igae
2me

/paγ5u(pe)

= i
egae

2me(s−m2
e)
ε∗µ(qe)ū(qe)γ

µ
(
/pa + /pe +me

)
/paγ5u(pe). (C.9)

Similarly we have the u-contribution which have the matrix element

iMu = i
egae

2me(u−m2
e)
ε∗µ(qe)ū(qe)/paγ5

(
/pe − /qγ +me

)
γµu(pe). (C.10)

The total matrix element is then M = Ms +Mu and we have

|M|2 =
παemg

2
ae

m2
e

(
ε∗µ(qe)ū(qe)C

µu(pe)
)
(ε∗ν(qe)ū(qe)C

νu(pe))
∗
, (C.11)

where we have defined

Cµ = γµ

(
/pa + /pe +me

)
s−m2

e
/paγ5 + /paγ5

(
/pe − /qγ +me

)
u−m2

e

γµ. (C.12)

Averaging over the incoming particles and summing over the outgoing we get

⟨|M|2⟩ = παemg
2
ae

2m2
e

(−gµν) Tr
(
Cµ(/pe +me)C̄

ν(/qe +me)
)
, (C.13)

where

C̄ν = γ0 (Cν)
†
γ0 = /paγ5

(
/pa + /pe +me

)
s−m2

e

γµ + γµ

(
/pe − /qγ +me

)
u−m2

e
/paγ5. (C.14)

The trace algebra is easily done in FeynCalc [100] and inserting the Mandelstam
variables and dot products from the previous section we find

⟨|M|2⟩ = 16παemg
2
ae

(2Ee +ma)(2Ee − 2Eγ +ma)

×

(
m2

a + 2Eγ − 2Eγma +
4E2

γm
2
e

(2Ee +ma)(2Ee − 2Eγ +ma)

)
. (C.15)
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Finally, we use the dimensionless quantities x, ξ, and ϵ and end at

⟨|M|2⟩ = 16παemg
2
aeϵ

2

(2x+ ϵ)(2x− 2ϵξ + ϵ)

(
1 + 2ξ2 − 2ξ +

4ξ2

(2x+ ϵ)(2x− 2ϵξ + ϵ)

)
.

(C.16)



Appendix D

Modified Maxwell’s
equations

Including the axion-photon coupling yields the following modified Maxwell’s equa-
tions [83, 101]

∇ ·E = ρ− gaγB · ∇a, (D.1)

∇×B− ∂tE = J+ gaγ (B∂ta−E×∇a) , (D.2)

∇ ·B = 0, (D.3)

∇×E+ ∂tB = 0, (D.4)

−∂2t a+∇2a = m2
aa− gaγE ·B. (D.5)

We are interested in resonant conversion of axions into photons in an external
magnetic field, this will occur in a relative small area around a black hole and
we can therefore neglect any relativistic effects. We will consider the axions and
electric field to be plane waves moving in the z-direction, i.e.

a = ã(z)eiωt−ikz and E =

Ex

Ey

Ez

 eiωt−ikz, (D.6)

where ω ≈ ma is the frequency and k ≈ maα/2 is the wave number. Further, we
choose our coordinates so that the external magnetic field takes the form

Be = Be

 0
sin θ
cos θ

 . (D.7)

In this coordinate system eq. (D.5) becomes

ω2ã+ ∂2z ã = m2
aã− gaγBe (Ey sin θ + Ez cos θ) . (D.8)

79



80 Appendix D. Modified Maxwell’s equations

With the remaining equations, eqs. (D.1)-(D.4), one can derive the following equa-
tion for the propagation of the electric field [48]

−∇2E+∇(∇ ·E) = ω2D+ ω2gaγaBe, (D.9)

where D is the electric displacement field imposed by the magnetic field given by

D = Ryz(θ)

 ϵ, ig, 0
−ig, ϵ, 0
0, 0, η

Ryz(−θ). (D.10)

The elements are defined as

ϵ = 1− ωpl

ω2 − Ω2
c

, g =
ω2
plΩc

ω(ω2 − Ω2
c)

and η = 1−
ω2
pl

ω2
, (D.11)

where Ωc =
√
αemBe/me, and Ryz are rotation matrices. If the magnitude of the

external magnetic field satisfy

√
αemBe

me
≫ ma ≈ ωpl, (D.12)

then ϵ → 1 and g → 0, this decouples Ex from the other components. Since Ez

does not propagate we then have(
−∂2zEy

0

)
= ω2

(
1− ω2

pl

ω2 sin2 θ −ω2
pl

ω2 sin θ cos θ

−ω2
pl

ω2 sin θ cos θ 1− ω2
pl

ω2 cos2 θ

)(
Ey

Ez

)
+ gaγω

2ãBe

(
sin θ
cos θ

)
.

(D.13)
From this Ez can be solved for algebraically, and substituting it into the equation
for Ey and eq. (D.8) we get the following equation

− ∂2z

(
Ey

ã

)
=


ω2−ω2

pl

1−
ω2
pl

ω2 cos2 θ

gaγω
2Be sin θ

1−
ω2
pl

ω2 cos2 θ

gaγBe sin θ

1−
ω2
pl

ω2 cos2 θ

ω2 −m2
a −

g2
aγB

2
e cos2 θ

1−
ω2
pl

ω2 cos2 θ

(Ey

ã

)
, (D.14)

which describes the mixing between a and Ey. We can neglect the term proportional
to g2aγ since we are typically interested in magnetic fields much smaller than 1 ×
108 G ≈ 1× 106 eV2, which yields gaγB ≪ 1× 10−13 eV ≈ ma for the values of gaγ
and ma we are interested in. We then have the equation

− ∂2z

(
Ey

ã

)
=


ω2−ω2

pl

1−
ω2
pl

ω2 cos2 θ

gaγω
2Be sin θ

1−
ω2
pl

ω2 cos2 θ
gaγBe sin θ

1−
ω2
pl

ω2 cos2 θ

ω2 −m2
a

(Ey

ã

)
. (D.15)
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We want to express this in terms of the photon field transverse to the wave motion,
Ã∥ = Ey/iω, instead of the electric field. If we also redefine ã → iã and z = r we
can rewrite the equation as

− ∂2r

(
Ã∥
ã

)
=


ω2−ω2

pl

1−
ω2
pl

ω2 cos2 θ

gaγωBe sin θ

1−
ω2
pl

ω2 cos2 θ
gaγωBe sin θ

1−
ω2
pl

ω2 cos2 θ

ω2 −m2
a

(Ã∥
ã

)
. (D.16)

We have used expressions in the main work which are based on this mixing
equation. However, condition (D.12) does not hold for the systems we consider
in chapter 4. This is, fortunately, not a major problem. In general, we will have
mixing between the axion and the transveres photon polarization independently
of the magnitude of Be [84], and the corrections should be minor if we consider
magnetic fields that does not satisfy (D.12). For example, in the opposite limit,√
αemBe/me ≪ ma, g → 0 and ϵ→ η close to rc. Using this instead we end at the

mixing equation of the form

− ∂2r

(
Ã∥
ã

)
=

(
ω2 − ω2

pl gaγωBe sin θ

gaγωBe sin θ ω2 −m2
a

)(
Ã∥
ã

)
, (D.17)

which is essentially the same as what is found in Ref. [84], but with the plasma
frequency inserted as the mass of the photon. This is however different to eq. (D.16),
but Ref. [48] argues that using θ = π/2 gives the first order approximation in vc,
the axion velocity, and in that case eqs. (D.16) and (D.17) reduces to the same
expression. Further, inserting θ = π/2 from the beginning we arrive at the same
expression independently of the magnetic field. We can therefore conclude that the
expressions used in chapter 4 should hold to first order in α, since vc ≈ α/2 in the
axion cloud, independently on the strength of the magnetic field.

The last step in the derivation of both Refs. [48, 84] is to lineraize the equation
through the WKB approximation which hold close to rc where the matrix changes
slowly compared to 1/k, and we get the equation

2ik∂r

(
Ã∥
ã

)
=


ω2−ω2

pl

1−
ω2
pl

ω2 cos2 θ

gaγωBe sin θ

1−
ω2
pl

ω2 cos2 θ
gaγωBe sin θ

1−
ω2
pl

ω2 cos2 θ

ω2 −m2
a

(Ã∥
ã

)
, (D.18)

where if we define

ξ =
sin2 θ

1− ω2
pl

m2
a
cos2 θ

and ∆B = Begaγma
ξ

sin θ
, (D.19)

we arrive at eq. (4.3).
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